Hanrahan, Michael P; Venkatesh, Amrit; Carnahan, Scott L; Calahan, Julie L; Lubach, Joseph W; Munson, Eric J; Rossini, Aaron J
2017-10-25
We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1 H and 13 C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1 H- 13 C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1 H and 13 C solid-state NMR spectra obtained from 2D 1 H- 13 C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13 C/ 1 H linewidth to the homogeneous 1 H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1 H- 13 C HETCOR NMR spectra. 2D 1 H- 13 C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.
Solid-state NMR studies of form I of atorvastatin calcium.
Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil
2012-03-22
Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).
Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona
2016-04-15
Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...
13C CP MAS NMR and GIAO-CHF calculations of coumarins.
Zolek, Teresa; Paradowska, Katarzyna; Wawer, Iwona
2003-01-01
13C cross-polarization magic-angle spinning NMR spectra were recorded for a series of solid coumarins. Ab initio calculations of shielding constants were performed with the use of GIAO-CHF method. The combined CPMAS NMR and theoretical approach was successful in characterizing solid-state conformations of coumarins; a relationship sigma (ppm) = -1.032 xdelta + 205.28 (R(2) = 0.9845) can be used to obtain structural information for coumarins, for which solid-state NMR or crystal structure data are not available. Copyright 2002 Elsevier Science (USA)
Ito, Atsutoshi; Watanabe, Tomoyuki; Yada, Shuichi; Hamaura, Takeshi; Nakagami, Hiroaki; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji
2010-01-04
The purpose of this study was to elaborate the relationship between the (13)C CP/MAS NMR spectra and the recrystallization behavior during the storage of troglitazone solid dispersions. The solid dispersions were prepared by either the solvent method or by co-grinding. The recrystallization behavior under storage conditions at 40 degrees C/94% RH was evaluated by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. Solid dispersions prepared by the solvent method or by prolonged grinding brought about inhibition of the nucleation and the nuclei growth at the same time. No differences in the PXRD profiles were found in the samples prepared by the co-grinding and solvent methods, however, (13)C CP/MAS NMR showed significant differences in the spectra. The correlation coefficients using partial least square regression analysis between the PXRD profiles and the apparent nuclei-growth constant or induction period to nucleation were 0.1305 or 0.6350, respectively. In contrast, those between the (13)C CP/MAS NMR spectra and the constant or the period were 0.9916 or 0.9838, respectively. The (13)C CP/MAS NMR spectra had good correlation with the recrystallization kinetic parameters evaluated by the KJMA equation. Consequently, solid-state NMR was judged to be a useful tool for the prediction of the recrystallization behavior of solid dispersions.
NASA Astrophysics Data System (ADS)
Hong, Mei
1999-08-01
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive 13C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective 13C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-13C]glucose preferentially labels the ends of the side chains, while [2-13C]glycerol labels the Cα of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles φ simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively 13C labeled protein were performed using 15N-13C 2D correlation spectroscopy. From the time dependence of the 15N-13C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective 13C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.
Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M
2013-06-13
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-09-02
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range 13 C- 13 C correlation MAS spectra obtained with selectivelymore » 13 CO- and 13 Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.« less
Solid-state NMR and IR for the analysis of pharmaceutical solids: polymorphs of fosinopril sodium.
Brittain, H G; Morris, K R; Bugay, D E; Thakur, A B; Serajuddin, A T
1993-01-01
The two polymorphic modifications of fosinopril sodium have been characterized as to their differences in melting behaviour, powder X-ray diffraction patterns, Fourier transform infrared spectra (FTIR), and solid-state 31P- and 13C-NMR spectra. The polymorphs were found to be enantiotropically related based upon melting point, heat of fusion, and solution mediated transformation data. Analysis of the solid-state FTIR and 13C-NMR data indicated that the environment of the acetal side chain of fosinopril sodium differed in two polymorphs, and that there might be cis-trans isomerization about the C6-N peptide bond. These conformational differences are postulated as the origin of the observed polymorphism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.E.; Spencer, R.B.; Burger, V.T.
1984-01-01
Solid-state cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectra have been recorded on chlorophyll a-water aggregates, methyl pyrochlorophyllide a, and methyl pyropheophorbide a. Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid-state spectra. 18 references, 2 figures, 1 table.
NASA Astrophysics Data System (ADS)
Wałejko, P.; Paradowska, K.; Szeleszczuk, Ł.; Wojtulewski, S.; Baj, A.
2018-03-01
Trolox C (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) is a water-soluble vitamin E analogue that is available in enantiomeric forms R or S. Enantiomerically pure Trolox 1, its derivatives 2, 3 (R and S enantiomers) and racemic forms 1-3 were studied using solid-state 13C cross-polarisation (CP) magic angle spinning (MAS) NMR (13C CPMAS NMR). Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of the shielding constants supported the assignment of 13C resonances in the solid-state NMR spectra. For the 13C CPMAS NMR spectra of 1, resonances of pure enantiomers were significantly broader than those of the racemic R/S form. In order to explain these effects, five of the available crystal structures were analysed (1R/S, 3R/S, 2S and the newly measured 2R/S and 3S). Cyclic dimers with one R and one S enantiomer linked by two OHsbnd Odbnd C2b hydrogen bonds were formed in 1R/S. Similar hydrogen-bonded dimers were present in 3S but not in 3R/S, in which interactions are water-mediated. A comparison of X-ray diffraction, CPMAS NMR data and the DFT GIPAW calculations of racemic forms and pure enantiomers was conducted for the first time. Our results, particularly the solid-state NMR data, were discussed in relation to Wallach's rule, that the racemic crystal appears as more ordered than its chiral counterpart.
Protein-nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR.
Wiegand, Thomas; Liao, Wei-Chih; Ong, Ta Chung; Däpp, Alexander; Cadalbert, Riccardo; Copéret, Christophe; Böckmann, Anja; Meier, Beat H
2017-11-01
DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein-DNA and protein-ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein-DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31 P- 13 C polarization-transfer experiments followed by the recording of a 2D 13 C- 13 C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Veglia, Gianluigi
2013-05-01
We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.
2013-01-01
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493
The role of solid state 13 C NMR spectroscopy in studies of the nature of native celluloses
R.H. Atalla; D.L. VanderHart
1999-01-01
Published spectroscopic observations pertaining to the crystal structure of native celluloses are reviewed for the purpose of defining our current level of understanding about crystalline polymorphism in these materials. Emphasis is placed on observations from solid state 13 C nuclear magnetic resonance (NMR), which first led to the postulate that most native,...
The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.
Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra
2005-07-18
In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.
Karg, M; Scholz, G; König, R; Kemnitz, E
2012-02-28
The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.
Advanced solid-state NMR spectroscopy of natural organic matter.
Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus
2017-05-01
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy
Ferro, Monica; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco
2017-01-01
Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1H fast MAS NMR and 13C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles. PMID:28228859
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy.
Ferro, Monica; Castiglione, Franca; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea
2017-01-01
Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1 H fast MAS NMR and 13 C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13 C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13 C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles.
(13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.
Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G
2015-06-05
(13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumner, S.C.J.
1986-01-01
Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less
Solid-state NMR and computational studies of 4-methyl-2-nitroacetanilide.
Harris, Robin K; Ghi, Phuong Y; Hammond, Robert B; Ma, Cai Yun; Roberts, Kevin J; Yates, Jonathan R; Pickard, Chris J
2006-03-01
Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.
Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR
USDA-ARS?s Scientific Manuscript database
Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...
Polymerization of euphorbia oil in carbon dioxide media
USDA-ARS?s Scientific Manuscript database
Boron trifluoride diethyl etherate (BF3•OEt2), Lewis acid, catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, was conducted in carbon dioxide. The resulting polymers (RPEO) were characterized by FTIR, 1H-NMR, 13C-NMR, solid state 13C-NMR spectroscopies, differential sc...
Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.
1996-01-01
The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.
Dračínský, Martin; Buděšínský, Miloš; Warżajtis, Beata; Rychlewska, Urszula
2012-01-12
Selected guaianolide type sesquiterpene lactones were studied combining solution and solid-state NMR spectroscopy with theoretical calculations of the chemical shifts in both environments and with the X-ray data. The experimental (1)H and (13)C chemical shifts in solution were successfully reproduced by theoretical calculations (with the GIAO method and DFT B3LYP 6-31++G**) after geometry optimization (DFT B3LYP 6-31 G**) in vacuum. The GIPAW method was used for calculations of solid-state (13)C chemical shifts. The studied cases involved two polymorphs of helenalin, two pseudopolymorphs of 6α-hydroxydihydro-aromaticin and two cases of multiple asymmetric units in crystals: one in which the symmetry-independent molecules were connected by a series of hydrogen bonds (geigerinin) and the other in which the symmetry-independent molecules, deprived of any specific intermolecular interactions, differed in the conformation of the side chain (badkhysin). Geometrically different molecules present in the crystal lattices could be easily distinguished in the solid-state NMR spectra. Moreover, the experimental differences in the (13)C chemical shifts corresponding to nuclei in different polymorphs or in geometrically different molecules were nicely reproduced with the GIPAW calculations.
Giovine, Raynald; Volkringer, Christophe; Trébosc, Julien; Amoureux, Jean Paul; Loiseau, Thierry; Lafon, Olivier; Pourpoint, Frédérique
2017-03-01
The metal-organic framework MIL-53(Al) (aluminium terephthalate) exhibits a structural transition between two porous structures with large pore (lp) or narrow pore (np) configurations. This transition, called the breathing effect, is observed upon changes in temperature or external pressure, as well as with the adsorption of guest molecules, such as H 2 O, within the pores. We show here how these different pore openings can be detected by observing the dephasing of 13 C magnetization under 13 C- 27 Al dipolar couplings using Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR) solid-state NMR experiments with Simultaneous Frequency and Amplitude Modulation (SFAM) recoupling. These double-resonance NMR experiments between 13 C and 27 Al nuclei, which have close Larmor frequencies, are feasible thanks to the use of a frequency splitter. The experimental SFAM-RESPDOR signal fractions agree well with those simulated from the MIL-53(Al)-lp and -np crystal structures obtained from powder X-ray diffraction analysis. Hence, these 13 C- 27 Al solid-state NMR experiments validate these structures and confirm their rigidity. A similar agreement is reported for the framework ligands in the as-synthesized (as) MIL-53(Al), in which the pores contain free ligands. Furthermore, in this case, 13 C-{ 27 Al} SFAM-RESPDOR experiments allow an estimation of the average distance between the free ligands and the 27 Al nuclei of the framework.
Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.
1987-01-01
An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.
Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.
Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw
2014-11-01
In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs. Copyright © 2014 Elsevier B.V. All rights reserved.
Didanosine polymorphism in a supercritical antisolvent process.
Bettini, R; Menabeni, R; Tozzi, R; Pranzo, M B; Pasquali, I; Chierotti, M R; Gobetto, R; Pellegrino, L
2010-04-01
Solid-state properties of active ingredients are crucial in pharmaceutical development owing to their significant clinical and economical implications. In the present work we investigated the solid-state properties and the solubility in water of didanosine, DDI, re-crystallized from a dimethylsulfoxide solution using supercritical CO(2) as an antisolvent (SAS process) for comparison with the commercially available drug product. We also applied modern solid-state NMR (SS NMR) techniques, namely 2D (1)H DQ CRAMPS (Combined Rotation And Multiple Pulse Spectroscopy) and (1)H-(13)C on- and off-resonance CP (cross polarization) FSLG-HETCOR experiments, known for providing reliable information about (1)H-(1)H and (1)H-(13)C intra- and intermolecular proximities, in order to address polymorphism issues arising from the crystallization of a new form in the supercritical process. A new polymorph of didanosine was obtained from the supercritical antisolvent process and characterized by means of 1D and 2D multinuclear ((1)H, (13)C, (15)N) SS NMR. The particle size of the new crystal phase was reduced by varying the antisolvent density through a pressure increase. The structural differences between the commercial product and the SAS re-crystallized DDI are highlighted by X-ray diffractometry and well described by solid-state NMR. The carbon C6 (13)C chemical shift suggests that both commercial and re-crystallized didanosine samples are in the enol form. The analysis of homo- and heteronuclear proximities obtained by means of 2D NMR experiments shows that commercial and SAS re-crystallized DDI possess very similar molecular conformation and hydrogen bond network, but different packing. The new polymorph proved to be a metastable form at ambient conditions, showing higher solubility in water and lower stability to mechanical stress. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
6-Aminopenicillanic acid revisited: A combined solid state NMR and in silico refinement
NASA Astrophysics Data System (ADS)
Aguiar, Daniel Lima Marques de; San Gil, Rosane Aguiar da Silva; Alencastro, Ricardo Bicca de; Souza, Eugenio Furtado de; Borré, Leandro Bandeira; Vaiss, Viviane da Silva; Leitão, Alexandre Amaral
2016-09-01
13C/15N (experimental and ab initio) solid-state NMR was used to achieve an affordable way to improve hydrogen refinement of 6-aminopenicillanic acid (6-APA) structure. The lattice effect on the isotropic chemical shifts was probed by using two different magnetic shielding calculations: isolated molecules and periodic crystal structure. The electron density difference maps of optimized and non-optimized structures were calculated in order to investigate the interactions inside the 6-APA unit cell. The 13C and 15N chemical shifts assignments were unambiguously stablished. In addition, some of the literature 13C resonances ambiguities could be properly solved.
NASA Astrophysics Data System (ADS)
Knicker, Heike
2016-04-01
"Nuclear magnetic resonance (NMR) does not lie". More than anything else, this statement of a former colleague and friend has shaped my relation to solid-state NMR spectroscopy. Indeed, if this technique leads to results which contradict the expectations, it is because i) some parts of the instrument are broken, ii) maladjustment of the acquisition parameters or iii) wrong preparation or confusion of samples. However, it may be even simpler, namely that the expectations were wrong. Of course, for researchers, the latter is the most interesting possibility since it forces to reassess accepted views and to search for new explanations. As my major analytical tool, NMR spectroscopy has confronted me with this challenge often enough to turn this issue into the main subject of my talk and to share with the audience how it formed my understanding of function and nature of soil organic matter (SOM). Already shortly after its introduction into soil science in the 1980's, the data obtained with solid-state 13C NMR spectroscopy opened the stage for ongoing discussions, since they showed that in humified SOM aromatic carbon is considerably less important than previously thought. This finding had major implications regarding the understanding of the origin of SOM and the mechanisms by which it is formed. Certainly, the discrepancy between the new results and previous paradigms contributed to mistrust in the reliability of solid-state NMR techniques. The respective discussion has survived up to our days, although already in the 1980's and 1990's fundamental studies could demonstrate that quantitative solid-state NMR data can be obtained if i) correct acquisition parameters are chosen, ii) the impact of paramagnetic compounds is reduced and iii) the presence of soot in soils can be excluded. On the other hand, this mistrust led to a detailed analysis of the impact of paramagnetics on the NMR behavior of C groups which then improved our understanding of the role of carbohydrates for organo-mineral interactions. Since decent solid-state NMR spectra cannot be obtained from graphenic components, the successful acquisition of solid-state 13C and 15N NMR spectra of charcoals challenged the well accepted model of their chemical nature. Application of advanced 2D NMR approaches confirmed the new view of charcoal as a heterogeneous material, the composition of which depends upon the feedstock and charring condition. The respective consequences of this alternative for the understanding of C sequestration are still matter of ongoing debates. Although the sensitivity of 15N for NMR spectroscopy is 50 times lower than that of 13C, first solid-state 15N NMR spectra of soils with natural 15N abundance were already published in the 1990's. They clearly identified peptide-like structures as the main organic N form in unburnt soils. However, in spite of their high contribution to SOM, the role of peptides in soils is far from understood. Considering the new technological developments in the field of NMR spectroscopy, this technique will certainly not stop to contribute to unexpected results.
Wawer, Iwona; Pisklak, Maciej; Chilmonczyk, Zdzisław
2005-08-10
Sildenafil citrate (SC) (Viagra) and sildenafil base in pure form are easily and unequivocally characterized by multinuclear NMR spectroscopy. Analysis of chemical shifts indicates that: (i) N6-H forms intramolecular hydrogen bonds, (ii) N25 is protonated in the salt and (iii) intermolecular OH...N hydrogen bonds involving N2 and N4 are present in the solid sildenafil citrate. 13C CPMAS NMR method has been proposed for the identification and quantitation of Viagra in its pharmaceutical formulations.
Wilson, M.A.; Hatcher, P.G.
1988-01-01
Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. ?? 1988.
Saitô, Hazime
2004-11-01
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.
Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
2017-10-13
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
Meza-Contreras, Juan C; Manriquez-Gonzalez, Ricardo; Gutiérrez-Ortega, José A; Gonzalez-Garcia, Yolanda
2018-05-22
The production and crystallinity of 13 C bacterial cellulose (BC) was examined in static culture of Komagataeibacter xylinus with different chemical and physical stimuli: the addition of NaCl or cloramphenicol as well as exposure to a magnetic field or to UV light. Crystalline BC biosynthesized under each stimulus was studied by XRD and solid state 13 C NMR analyses. All treatments produced BC with enhanced crystallinity over 90% (XRD) and 80% (NMR) compared to the control (83 and 76%, respectively) or to Avicel (77 and 62%, respectively). The XRD data indicated that the crystallite size was 80-85 Å. Furthermore, changes on the allomorphs (I α and I β ) ratio tendency of BC samples addressed to the stimuli were estimated using the C4 signal from 13 C NMR data. These results showed a decrease of the allomorph I α (3%) when BC was biosynthesized with UV light and chloramphenicol compared to control (58.79%). In contrast, the BC obtained with NaCl increased up to 60.31% of the I α allomorph ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.
Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.
Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier
2016-09-01
Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Saïdi, Fadila; Taulelle, Francis; Martineau, Charlotte
2016-08-01
In this contribution, we present an analysis of the main parameters influencing the efficiency of the (1)H → (13)C multiple-contact cross-polarization nuclear magnetic resonance (NMR) experiment in the context of solid pharmaceutical materials. Using the optimum experimental conditions, quantitative (13)C NMR spectra are then obtained for porous metal-organic frameworks (potential drug carriers) and for components present in drug formulations (active principle ingredient and excipients, amorphous or crystalline). Finally, we show that mixtures of components can also be quantified with this method and, hence, that it represents an ideal tool for quantification of pharmaceutical formulations by (13)C cross-polarization under magic-angle spinning NMR in the industry as it is robust and easy to set up, much faster than direct (13)C polarization and is efficient for samples at natural abundance. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2012-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592
Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2013-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.
Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR
NASA Astrophysics Data System (ADS)
Baldock, J. A.; Sanderman, J.
2011-12-01
The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.
USDA-ARS?s Scientific Manuscript database
Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...
Oh, Se-Woung; Weiss, Joseph W E; Kerneghan, Phillip A; Korobkov, Ilia; Maly, Kenneth E; Bryce, David L
2012-05-01
Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using (11)B solid-state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic-angle spinning samples, the (11)B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the (11)B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X-ray crystallographic structures are reported. Calculations of the (11)B NMR parameters are performed using cluster model and periodic gauge-including projector-augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon-13 solid-state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect (13)C-(11)B spin-spin (J) coupling constants are also measured experimentally and compared with calculated values. The (11)B/(10)B isotope effect on the (13)C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X-ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.
Wu, Chin H; Das, Bibhuti B; Opella, Stanley J
2010-02-01
(13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. Copyright 2009 Elsevier Inc. All rights reserved.
Gervais, Christel; Bonhomme-Coury, Laure; Mauri, Francesco; Babonneau, Florence; Bonhomme, Christian
2009-08-28
Octameric silsesquioxanes (RSiO(1.5))(8) are versatile and interesting nano building blocks, suitable for the synthesis of nanocomposites with controlled porosity. In this paper, we revisit the (29)Si and (13)C solid state NMR spectroscopy for this class of materials, by using GIPAW (gauge including projected augmented wave) first principles calculations [Pickard & Mauri, Phys. Rev. B, 2001, 63, 245101]. Full tensorial data, including the chemical shift anisotropies (CSA) and the absolute orientation of the corresponding principal axes systems (PAS), were calculated. Subsequent averaging of the calculated tensors (due to fast reorientation of the R groups around the Si-C bonds) allowed for the interpretation of the strong reduction of CSA and dipolar couplings for these derivatives. Good agreement was observed between the averaged calculated data and the experimental parameters. Interesting questions related to the interplay between X-ray crystallography and solid state NMR are raised and will be emphasized.
Lu, Jun-Xia; Bayro, Marvin J.; Tycko, Robert
2016-01-01
We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35–60 nm diameters, planar sheets formed by the Arg18-Leu mutant (R18L-CA), and R18L-CA spheres with 20–100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of 15N,13C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in 15N and 13C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282
NASA Astrophysics Data System (ADS)
Zhang, Zhengfeng; Li, Jianping; Chen, Yanke; Xie, Huayong; Yang, Jun
2017-12-01
In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N → 13C‧ and 15N → 13Cα), Bro-DBP has almost the same 15N → 13Cα efficiency while offers 30-40% enhancement on 15N → 13C‧ transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C‧)-selected method, whose 15N → 13C‧ efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.
Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P
2007-08-01
Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.
Asada, Mamiko Nasu; Nemoto, Takayuki; Mimura, Hisashi
2016-03-01
We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Webber, Amy L; Elena, Bénédicte; Griffin, John M; Yates, Jonathan R; Pham, Tran N; Mauri, Francesco; Pickard, Chris J; Gil, Ana M; Stein, Robin; Lesage, Anne; Emsley, Lyndon; Brown, Steven P
2010-07-14
A disaccharide is a challenging case for high-resolution (1)H solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having (1)H chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution (1)H (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. (1)H-(1)H DQ-SQ CRAMPS spectra are presented together with (1)H (DQ)-(13)C correlation spectra obtained with a new pulse sequence that correlates a high-resolution (1)H DQ dimension with a (13)C single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond (13)C-(1)H J couplings. Compared to the observation of only a single broad peak in a (1)H DQ spectrum recorded at 30 kHz magic-angle spinning (MAS), the use of DUMBO (1)H homonuclear decoupling in the (1)H DQ CRAMPS experiment allows the resolution of distinct DQ correlation peaks which, in combination with first-principles chemical shift calculations based on the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach, enables the assignment of the (1)H resonances to the 24 distinct protons. We believe this to be the first experimental solid-state NMR determination of the hydroxyl OH (1)H chemical shifts for a simple sugar. Variable-temperature (1)H-(1)H DQ CRAMPS spectra reveal small increases in the (1)H chemical shifts of the OH resonances upon decreasing the temperature from 348 K to 248 K.
Application and Reliability of Solid-State NMR in Environmental Sciences
NASA Astrophysics Data System (ADS)
Knicker, Heike
2010-05-01
For the characterization of soil organic matter, a suite of analytical approaches are available. Chemical degradative methods involve an extraction scheme with which the soluble part of the mixture is isolated and analyzed by colorimetrical or chromatographic means. Macromolecular structures can be subjected to thermolytic or combined thermochemolytic degradation. Because secondary reactions (rearrangement, cracking, hydrogenation and polymerization) in a heterogeneous mixture cannot be excluded, it is obvious that conclusions regarding the original structure in the macromolecular phase have to be drawn with caution. A powerful alternative represents solid-state nuclear magnetic resonance (NMR) spectroscopy, allowing the examination of the bulk sample without major pre-treatment In environmental sciences, this technique mostly involves the isotope 13C to study the chemical composition of organic matter in soils, sediments or compost to study the temporal development of humic material or chemical alterations due to variation in environmental parameters. Due to its low sensibility solid-state 15N NMR studies on such samples are only found occasionally. The emphasis of solid-state NMR spectroscopy is not only to determine the gross chemical composition of the material under study via a chemical shift assignment but also a quantitative correlation between the different signal intensities and the relative contribution of the respective C or N types to the total organic C or N content. However, despite increasing popularity, this approach is still viewed as mysterious techniques, in particular with respect to quantification. Accordingly, the purpose of this review is to give a short overview on the possibilities and limitations of this technique in environmental science and in particular for the study of soil organic matter. In general, solid-state 13C NMR spectra of soil organic matter are obtained with the cross polarization magic angle spinning (CPMAS) technique. This technique increases the sensitivity of 13C by magnetization transfer from the 1H to the 13C spin system during a contact time tc. However, one has to bear in mind that some molecular properties may obscure quantification. Thus, for carbons with large C-H internuclear distances (bigger than four bonds, i.e in graphite structures) and for C in groups with high molecular mobility (i.e. gas) the proton-dipolar interactions are weakened and the polarization transfer may be incomplete. The observed intensity can also be affected by interactions of the protons with paramagnetic compounds. To circumvent this problem, the samples are often demineralized with hydrofluoric acid. Alternatively, the Bloch decay, a technique in which the 13C is directly excited is used. Here, on the other hand, one has to consider long relaxation times which may lead to saturation effects. Nevertheless, as it will be discussed within the presentation those quantification problems can be solved for most soil samples and then solid-state NMR spectroscopy represents a powerful tool for qualitative and quantitative analysis. Special techniques, such as dipolar dephasing or the proton spin relaxation editing can be used to extract additional information about chemical properties or mobility. A more detailed examination of the cross polarization behavior can be used to analyze the interaction of organic matter and paramagnetics but also for obtaining revealing properties on a molecular level. Applications involving isotopic labeling combined with both 13C and/or 15N NMR allows to follow the fate of a specific compound i.e. in a natural matrix and- if the enrichment is high enough - the use of 2D solid-state NMR techniques. In particular with respect to environmental chemistry, this combination of isotopic labeling with the use of corresponding NMR spectroscopy shows great potential for a better understanding of the kind of interaction between pollutants and natural organic matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaozhou; Bond, Andrew D.; Johansson, Kristoffer E.
2014-08-01
The crystal structure of (Z)-N-(5-ethyl-2,3-di-hydro-1,3,4-thiadiazol-2-ylidene) -4-methylbenzenesulfonamide contains an imine tautomer, rather than the previously reported amine tautomer. The tautomers can be distinguished using dispersion-corrected density functional theory calculations and by comparison of calculated and measured {sup 13}C solid-state NMR spectra. The crystal structure of the title compound, C{sub 11}H{sub 13}N{sub 3}O{sub 2}S{sub 2}, has been determined previously on the basis of refinement against laboratory powder X-ray diffraction (PXRD) data, supported by comparison of measured and calculated {sup 13}C solid-state NMR spectra [Hangan et al. (2010 ▶). Acta Cryst. B66, 615–621]. The mol@@ecule is tautomeric, and was reported as an aminemore » tautomer [systematic name: N-(5-ethyl-1,3,4-thia@@diazol-2-yl)-p-toluene@@sulfonamide], rather than the correct imine tautomer. The protonation site on the mol@@ecule’s 1,3,4-thia@@diazole ring is indicated by the inter@@molecular contacts in the crystal structure: N—H⋯O hydrogen bonds are established at the correct site, while the alternative protonation site does not establish any notable inter molecular inter@@actions. The two tautomers provide essentially identical Rietveld fits to laboratory PXRD data, and therefore they cannot be directly distinguished in this way. However, the correct tautomer can be distinguished from the incorrect one by previously reported qu@@anti@@tative criteria based on the extent of structural distortion on optimization of the crystal structure using dispersion-corrected density functional theory (DFT-D) calculations. Calculation of the {sup 13}C SS-NMR spectrum based on the correct imine tautomer also provides considerably better agreement with the measured {sup 13}C SS-NMR spectrum.« less
Mao, J.-D.; Schimmelmann, A.; Mastalerz, Maria; Hatcher, P.G.; Li, Y.
2010-01-01
Quantitative and advanced 13C solid-state NMR techniques were employed to investigate (i) the chemical structure of a high volatile bituminous coal, as well as (ii) chemical structural changes of this coal after evacuation of adsorbed gases, (iii) during oxidative air exposure at room temperature, and (iv) after oxidative heating in air at 75 ??C. The solid-state NMR techniques employed in this study included quantitative direct polarization/magic angle spinning (DP/MAS) at a high spinning speed of 14 kHz, cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CH, CH2, and CHn selection, 13C chemical shift anisotropy (CSA) filtering, two-dimensional (2D) 1H-13C heteronuclear correlation NMR (HETCOR), and 2D HETCOR with 1H spin diffusion. With spectral editing techniques, we identified methyl CCH 3, rigid and mobile methylene CCH2C, methine CCH, quaternary Cq, aromatic CH, aromatic carbons bonded to alkyls, small-sized condensed aromatic moieties, and aromatic C-O groups. With direct polarization combined with spectral-editing techniques, we quantified 11 different types of functional groups. 1H-13C 2D HETCOR NMR experiments indicated spatial proximity of aromatic and alkyl moieties in cross-linked structures. The proton spin diffusion experiments indicated that the magnetization was not equilibrated at a 1H spin diffusion time of 5 ms. Therefore, the heterogeneity in spatial distribution of different functional groups should be above 2 nm. Recoupled C-H long-range dipolar dephasing showed that the fraction of large charcoal-like clusters of polycondensed aromatic rings was relatively small. The exposure of this coal to atmospheric oxygen at room temperature for 6 months did not result in obvious chemical structural changes of the coal, whereas heating at 75 ??C in air for 10 days led to oxidation of coal and generated some COO groups. Evacuation removed most volatiles and caused a significant reduction in aliphatic signals in its DP/MAS spectrum. DP/MAS, but not CP/MAS, allowed us to detect the changes during low-temperature oxidation and loss of volatiles. These results demonstrate the applicability of advanced solid-state NMR techniques in chemical characterization of coal. ?? 2010 American Chemical Society.
Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR
2015-01-01
We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368
Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun
2015-06-02
Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.
Gowda, Vasantha; Laitinen, Risto S; Telkki, Ville-Veikko; Larsson, Anna-Carin; Antzutkin, Oleg N; Lantto, Perttu
2016-12-06
The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state 13 C and 15 N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and 13 C and 15 N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P2 1 /n. Both 13 C and 15 N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental 13 C and 15 N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the metal-ligand bonding of the heteroleptic lanthanum complex.
NASA Astrophysics Data System (ADS)
Ośmiałowski, Borys; Kolehmainen, Erkki; Ikonen, Satu; Ahonen, Kari; Löfman, Miika
2011-12-01
2-Acylamino-6-[1 H]-pyridones [acyl = RCO, where R = methyl ( 1), ethyl ( 2), iso-propyl ( 3), tert-butyl ( 4), and 1-adamantyl ( 5)] have been synthesized and characterized by NMR spectroscopy. From three congeners, 2, 3 and 5, also single crystal X-ray structures have been solved. For these derivatives GIPAW calculations acts as a "bridge" between solid-state NMR data and calculated chemical shifts based on X-ray determined geometry. In crystals all three compounds exist as pyridone tautomers possessing similar six-membered ring structure stabilized by intramolecular C dbnd O⋯HN hydrogen bond. Theoretical GIPAW calculated and experimental 13C and 15N CPMAS NMR shifts are in excellent agreement with each other.
Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2015-07-21
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
CP/MAS /sup 13/C NMR spectroscopic study of chlorophyll a in the solid state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.E.; Spencer, R.B.; Burger, V.T.
1983-09-01
Solid-state cross-polarization, magic-angle sample spinning carbon-13 nuclear magnetic resonance spectra have been recorded on chlorophyll a- water aggregates, methyl pyrochlorophyllide a and methyl pyropheophorbide a (derivatives that lack a phytyl chain). Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid state spectra.
Sergeyev, Ivan; Moyna, Guillermo
2005-05-02
A novel method for the determination of the three-dimensional (3D) structure of oligosaccharides in the solid state using experimental 13C NMR data is presented. The approach employs this information, combined with 13C chemical shift surfaces (CSSs) for the glycosidic bond carbons in the generation of NMR pseudopotential energy functions suitable for use as constraints in molecular modeling simulations. Application of the method to trehalose, cellobiose, and cellotetraose produces 3D models that agree remarkably well with the reported X-ray structures, with phi and psi dihedral angles that are within 10 degrees from the ones observed in the crystals. The usefulness of the approach is further demonstrated in the determination of the 3D structure of the cellohexaose, an hexasaccharide for which no X-ray data has been reported, as well as in the generation of accurate structural models for cellulose II and amylose V6.
Foston, Marcus; Katahira, Rui; Gjersing, Erica; Davis, Mark F; Ragauskas, Arthur J
2012-02-15
The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a (13)C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. (13)C spin diffusion time constants (T(SD)) were extracted using a two-site spin diffusion theory developed for (13)C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated (13)C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances ∼0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.
Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E
2013-01-21
Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.
Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro
2013-01-01
Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rogers, K.; Cooper, W. T.; Hodgkins, S. B.; Verbeke, B. A.; Chanton, J.
2017-12-01
Solid state direct polarization 13C NMR spectroscopy (DP-NMR) is generally considered the most quantitatively reliable method for soil organic matter (SOM) characterization, including determination of the relative abundances of carbon functional groups. These functional abundances can then be used to calculate important soil parameters such as degree of humification and extent of aromaticity that reveal differences in reactivity or compositional changes along gradients (e.g. thaw chronosequence in permafrost). Unfortunately, the 13C NMR DP-NMR experiment is time-consuming, with a single sample often requiring over 24 hours of instrument time. Alternatively, solid state cross polarization 13C NMR (CP-NMR) can circumvent this problem, reducing analyses times to 4-6 hours but with some loss of quantitative reliability. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) is a quick and relatively inexpensive method for characterizing solid materials, and has been suggested as an alternative to NMR for analysis of soil organic matter and determination of humification (HI) and aromatization (AI) indices. However, the quantitative reliability of ATR-FTIR for SOM analyses has never been verified, nor have any ATR-FTIR data been compared to similar measurements by NMR. In this work we focused on FTIR vibrational bands that correspond to the three functional groups used to calculate HI and AI values: carbohydrates (1030 cm-1), aromatics (1510, 1630 cm-1), and aliphatics (2850, 2920 cm-1). Data from ATR-FTIR measurements were compared to analogous quantitation by DP- and CP-NMR using peat samples from Sweden, Minnesota, and North Carolina. DP- and CP-NMR correlate very strongly, although the correlations are not always 1:1. Direct comparison of relative abundances of the three functional groups determined by NMR and ATR-FTIR yielded satisfactory results for carbohydrates (r2= 0.78) and aliphatics (r2=0.58), but less so for aromatics (r2= 0.395). ATR-FTIR has to this point been used primarily for relative abundance analyses (e.g. calculating HI and AI values), but these results suggest FTIR can provide quantitative reliability that approaches that of NMR.
Grüning, Wolfram R; Rossini, Aaron J; Zagdoun, Alexandre; Gajan, David; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe
2013-08-28
We present the molecular level characterization of a phenylpyridine-based periodic mesoporous organosilicate and its post-functionalized organometallic derivatives through the fast acquisition of high quality natural isotopic abundance 1D (13)C, (15)N, and (29)Si and 2D (1)H-(13)C and (1)H-(29)Si solid-state NMR spectra enhanced with dynamic nuclear polarization.
Ando, Shigeru; Kikuchi, Junko; Fujimura, Yuko; Ida, Yasuo; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji
2012-09-01
Physicochemical characterization and structural evaluation of a 2:1 naproxen-nicotinamide cocrystal were performed. The 2:1 cocrystal showed rapid naproxen dissolution and less water vapor adsorption, indicating better pharmaceutical properties of naproxen. The unique 2:1 cocrystal formation was evaluated by solid-state nuclear magnetic resonance (NMR). The assignments of all H and (13) C peaks for naproxen and the cocrystal were performed using dipolar-insensitive nuclei enhanced by polarization transfer and (1) H-(13) C cross-polarization (CP)-heteronuclear correlation (HETCOR) NMR measurements. The (13) C chemical shift revealed that two naproxen molecules and one nicotinamide molecule existed in the asymmetric unit of the cocrystal. The (1) H chemical shifts indicated that the carboxylic group of the naproxen in the cocrystal was nonionized, and the CH-π interaction between naproxens was very strong. From the (1) H-(13) C CP-HETCOR NMR spectrum with contact time of 5 ms, two different synthons, carboxylic acid-amide and carboxylic acid-pyridine ring, were found between naproxen and nicotinamide. Single-crystal X-ray analysis, which supported the solid-state NMR results, clarified the geometry and intermolecular interactions in more detail. The structure is unique among pharmaceutical cocrystals because each carboxyl group of the two naproxens formed different intermolecular synthons. Copyright © 2012 Wiley Periodicals, Inc.
Solid State Nuclear Magnetic Resonance Studies of the Murchison Organic Macromolecule
NASA Technical Reports Server (NTRS)
Cody, G. D., III; Alexander, C. M. OD.; Tera, F.
2001-01-01
We have used high speed H-1 (DEPTH) and C-13 (VACP MAS-slow spinning) solid state NMR to determine the contributions of protonated vs non-protonated carbon in the Murchison Macromolecule. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria
2008-08-01
We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.
Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei
2015-01-06
Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang
2018-02-01
The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugmire, R.J.; Solum, M.S.
This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less
NASA Astrophysics Data System (ADS)
Isab, Anvarhusein A.; Wazeer, Mohamed I. M.
2006-09-01
Complexation of Ag + with captopril, 1-[(2 S)-3-mercapto-2-methylpropionyl]- L-proline, has been studied by 1H and 13C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag + were measured by 1H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag + between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in 13C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag + via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.
Eldridge, S M; Chen, C R; Xu, Z H; Nelson, P N; Boyd, S E; Meszaros, I; Chan, K Y
2013-11-01
Using solid state (13)C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Southern, Scott A; Bryce, David L
2015-12-10
Group IV tetrel elements may act as tetrel bond donors, whereby a region of positive electrostatic potential (σ-hole) interacts with a Lewis base. The results of calculations of NMR parameters are reported for a series of model compounds exhibiting tetrel bonding from a methyl carbon to the oxygen or nitrogen atoms in various functional groups. The (13)C chemical shift (δiso) and the (1c)J((13)C,Y) coupling (Y = (17)O, (15)N) across the tetrel bond are recorded as a function of geometry. The sensitivity of the NMR parameters to the noncovalent interaction is demonstrated via an increase in δiso and in |(1c)J((13)C,Y)| as the tetrel bond shortens. Gauge-including projector-augmented wave density functional theory (DFT) calculations of δiso are reported for crystals that exhibit tetrel bonding in the solid state. Experimental δiso values for solid sarcosine and its tetrel-bonded salts corroborate the computational findings. This work offers new insights into tetrel bonding and facilitates the incorporation of tetrel bonds as restraints in NMR crystallographic structure refinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu
2015-07-21
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of {sup 1}H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as {sup 13}C or {sup 15}N. In this method, after the initial preparation of proton magnetization and cross-polarization to {sup 13}C nuclei, transverse magnetization of desired {sup 13}C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferredmore » to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific {sup 13}C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of {sup 1}H-{sup 1}H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.« less
Probing Silica-Biomolecule Interactions by Solid-State NMR and Molecular Dynamics Simulations.
Brückner, Stephan Ingmar; Donets, Sergii; Dianat, Arezoo; Bobeth, Manfred; Gutiérrez, Rafael; Cuniberti, Gianaurelio; Brunner, Eike
2016-11-08
Understanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively 13 C-labeled choline with 29 Si-labeled monosilicic acid/silica at the molecular level. Silica/choline nanocomposites were analyzed by solid-state NMR spectroscopy in combination with extended molecular dynamics (MD) simulations to understand the silica/organic interface. Cross-polarization magic angle spinning (CP MAS)-based NMR experiments like 1 H- 13 C CP-REDOR (rotational-echo double resonance), 1 H- 13 C HETCOR (heteronuclear correlation), and 1 H- 29 Si- 1 H double CP are employed to determine spatial parameters. The measurement of 29 Si- 13 C internuclear distances for selectively 13 C-labeled choline provides an experimental parameter that allows the direct verification of MD simulations. Atomistic modeling using classical MD methodologies is performed using the INTERFACE force field. The modeling results are in excellent agreement with the experimental data and reveal the relevant molecular conformations as well as the nature and interplay of the interactions between the choline cation and the silica surface. Electrostatic interactions and hydrogen bonding are both important and depend strongly on the hydration level as well as the charge state of the silica surface.
Gul-E-Noor, Farhana; Jee, Bettina; Pöppl, Andreas; Hartmann, Martin; Himsl, Dieter; Bertmer, Marko
2011-05-07
The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents with respect to copper) were adsorbed via the gas phase. (1)H and (13)C MAS NMR spectra of dehydrated and water-loaded Cu(3)(BTC)(2) samples gave evidence on the structural changes due to water adsorption within the MOF material as well as information on water dynamics. The analysis of (1)H spinning sideband intensities reveals differences in the (1)H-(63/65)Cu hyperfine coupling between dehydrated and water-loaded samples. The investigation was continued for 60 days to follow the stability of the Cu(3)(BTC)(2) network under humid conditions. NMR data reveal that Cu(3)(BTC)(2) decomposes quite fast with the decomposition being different for different water contents. This journal is © the Owner Societies 2011
Toraya, Shuichi; Javkhlantugs, Namsrai; Mishima, Daisuke; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira
2010-01-01
Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state 31P and 13C NMR spectroscopy. 31P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (Tc) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the Tc. 13C NMR spectra of site-specifically 13C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers. PMID:21081076
Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens
2012-06-20
The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.
Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sitesmore » in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.« less
Webber, Amy L; Emsley, Lyndon; Claramunt, Rosa M; Brown, Steven P
2010-09-30
(1)H-(13)C two-dimensional magic-angle spinning (MAS) solid-state NMR correlation spectra, recorded with the MAS-J-HMQC experiment, are presented for campho[2,3-c]pyrazole. For each (13)C moiety, there are six resonances associated with the six distinct molecules in the asymmetric unit cell (Z' = 6). The one-bond C-H correlations observed in the 2D (1)H-(13)C MAS-J-HMQC spectra allow the experimental determination of the (1)H and (13)C chemical shifts associated with the separate CH, CH(2), and CH(3) groups. (1)H and (13)C chemical shifts calculated by using the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach are presented. Calculations for the whole unit cell (12 × 29 = 348 atoms, with geometry optimization of all atoms) allow the assignment of the experimental (1)H and (13)C chemical shifts to the six distinct molecules. The calculated chemical shifts for the full crystal structure are compared with those for isolated molecules as extracted from the geometry-optimized crystal structure. In this way, the effect of intermolecular interactions on the observed chemical shifts is quantified. In particular, the calculations are sufficiently precise to differentiate the small (<1 ppm) differences between the (1)H chemical shifts of the six resonances associated with each distinct CH or CH(2) moiety.
Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu
2010-12-01
The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.
Williams, Linda A.; Guo, Neng; Motta, Alessandro; Delferro, Massimiliano; Fragalà, Ignazio L.; Miller, Jeffrey T.; Marks, Tobin J.
2013-01-01
Structural characterization of the catalytically significant sites on solid catalyst surfaces is frequently tenuous because their fraction, among all sites, typically is quite low. Here we report the combined application of solid-state 13C-cross-polarization magic angle spinning nuclear magnetic resonance (13C-CPMAS-NMR) spectroscopy, density functional theory (DFT), and Zr X-ray absorption spectroscopy (XAS) to characterize the adsorption products and surface chemistry of the precatalysts (η5-C5H5)2ZrR2 (R = H, CH3) and [η5-C5(CH3)5]Zr(CH3)3 adsorbed on Brønsted superacidic sulfated alumina (AlS). The latter complex is exceptionally active for benzene hydrogenation, with ∼100% of the Zr sites catalytically significant as determined by kinetic poisoning experiments. The 13C-CPMAS-NMR, DFT, and XAS data indicate formation of organozirconium cations having a largely electrostatic [η5-C5(CH3)5]Zr(CH3)2+···AlS− interaction with greatly elongated Zr···OAlS distances of ∼2.35(2) Å. The catalytic benzene hydrogenation cycle is stepwise understandable by DFT, and proceeds via turnover-limiting H2 delivery to surface [η5-C5(CH3)5]ZrH2(benzene)+···AlS− species, observable by solid-state NMR and XAS. PMID:23269836
USDA-ARS?s Scientific Manuscript database
Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions...
Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, Thomas; Pugmire, Ronald
2015-01-01
Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogensmore » were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.« less
A 13C NMR study of the structure of four cinnamic acids and their methyl esters
NASA Astrophysics Data System (ADS)
Silva, A. M. S.; Alkorta, I.; Elguero, J.; Silva, V. L. M.
2001-09-01
The 13C NMR spectra, both in DMSO solution and in the solid state of four cinnamic acids (p-methoxy, p-hydroxy, p-methyl, p-chloro) and their corresponding methyl esters have been recorded. The two main results in the solid state are: (i) the only significant difference between acids and esters chemical shifts concerns the Cdbnd O group which, on average, appears at 173 ppm in the acids and 168 ppm in the esters; (ii) the signals of the ortho and meta carbons both in the acids and the esters are splitted. The two 'anomalies' disappear in DMSO solution. These observations can be rationalized using simple GIAO/B3LYP/6-31G∗ calculations.
13C CPMAS NMR studies and DFT calculations of triterpene xylosides isolated from Actaea racemosa
NASA Astrophysics Data System (ADS)
Jamróz, Marta K.; Paradowska, Katarzyna; Gliński, Jan A.; Wawer, Iwona
2011-05-01
13C CPMAS NMR spectra of four triterpene glycosides: cimigenol xyloside ( 1), 26-deoxyactein ( 2), cimicifugoside H-1 ( 3) and 24-acethylhydroshengmanol xyloside ( 4) were recorded and analyzed to characterize their solid-state structure. Experimental data were supported by theoretical calculations of NMR shielding constants with the GIAO/6-31G**-su1 approach. A number of methods for the conformational search and a number of functionals for the DFT calculations were applied to ( 1). The best method was proven to be MMFF or MMFFAQ for the conformational search and the PBE1PBE functional for the DFT calculations. Extra calculations simulating C16 dbnd O⋯HOH hydrogen bond yield the isotropic shielding closer to the experimental solid-state value. For all the compounds CP kinetics parameters were calculated using either the I-S or the I-I*-S model. The analysis of CP kinetics data for methyl groups revealed differences in the T2 time constant for two methyl groups (C29 and C30) linked at C4.
NASA Astrophysics Data System (ADS)
Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona
2008-02-01
13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.
Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.
2010-01-01
We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.
Monitoring Cocrystal Formation via In Situ Solid-State NMR.
Mandala, Venkata S; Loewus, Sarel J; Mehta, Manish A
2014-10-02
A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.
Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS
Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2016-01-01
Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids. PMID:26801026
Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.
Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul
2016-01-04
Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.
Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations
NASA Astrophysics Data System (ADS)
Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław
2017-10-01
Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.
Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.
Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham
2017-07-01
Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-01-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201
Thurber, Kent R; Tycko, Robert
2014-05-14
We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
NASA Astrophysics Data System (ADS)
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.
Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.
A sink for methane on Mars? The answer is blowing in the wind
NASA Astrophysics Data System (ADS)
Knak Jensen, Svend J.; Skibsted, Jørgen; Jakobsen, Hans J.; ten Kate, Inge L.; Gunnlaugsson, Haraldur P.; Merrison, Jonathan P.; Finster, Kai; Bak, Ebbe; Iversen, Jens J.; Kondrup, Jens C.; Nørnberg, Per
2014-07-01
Tumbling experiments that mimic the wind erosion of quartz grains in an atmosphere of 13C-enriched methane are reported. The eroded grains are analyzed by 13C and 29Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250 °C. The NMR findings offer an explanation for the fast disappearance of methane on Mars.
NMR spectroscopic study of organic phosphate esters coprecipitated with calcite
NASA Astrophysics Data System (ADS)
Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea
2016-06-01
Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small signals occur with characteristics consistent with phosphate monoesters. The results of this study indicate that trace- to minor concentrations of dissolved organic molecules can be effectively taken up during calcite precipitation and incorporated in the structure, leaving a resilient record of materials present during crystallization.
Nakazawa, Yasumoto; Asakura, Tetsuo
2003-06-18
Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.
Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona
2016-04-15
Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...
2018-02-15
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Lupulescu, Adonis; Frydman, Lucio
2011-10-07
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics
A Molecular Budget for a Peatland Based Upon 13C Solid-State Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Moody, Catherine S.; Worrall, Fred; Clay, Gareth D.; Burt, Tim P.; Apperley, David C.; Rose, Rob
2018-02-01
Peatlands can accumulate organic matter into long-term carbon (C) storage within the soil profile. This study used solid-state 13C nuclear magnetic resonance (13C-NMR) to investigate the transit of organic C through a peatland ecosystem to understand the molecular budget that accompanies the long-term accumulation of C. Samples of biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter (DOM) were taken from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and C budget for the ecosystem were known. The results showed that: The interpretation of the 13C-NMR spectra shows that polysaccharides are preferentially removed through the ecosystem, while lignin components are preferentially retained and come to dominate the organic matter accumulated at depth in the profile. The DOM is derived from the oxidation of both biomass and the degradation of lignin, while the particulate organic matter is derived from erosion of the peat profile. The DOM is differentiated by its proportion of oxidized functional groups and not by its aromatic content. The changes in functionality leading to DOM production suggest side chain oxidation resulting in C-C cleavage/depolymerisation of lignin, a common reaction within white rot fungi. The 13C-NMR budget shows that O-alkyl functional groups are disproportionately lost between primary production and accumulation in the deep peat, while C-alkyl functional groups are disproportionately preserved. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 93% polysaccharide-derived carbon and 7% lignin-derived carbon.
Aluas, Mihaela; Filip, Claudiu
2005-05-01
A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.
NASA Astrophysics Data System (ADS)
Pandey, Manoj Kumar; Ramachandran, Ramesh
2010-03-01
The application of solid-state NMR methodology for bio-molecular structure determination requires the measurement of constraints in the form of 13C-13C and 13C-15N distances, torsion angles and, in some cases, correlation of the anisotropic interactions. Since the availability of structurally important constraints in the solid state is limited due to lack of sufficient spectral resolution, the accuracy of the measured constraints become vital in studies relating the three-dimensional structure of proteins to its biological functions. Consequently, the theoretical methods employed to quantify the experimental data become important. To accentuate this aspect, we re-examine analytical two-spin models currently employed in the estimation of 13C-13C distances based on the rotational resonance (R 2) phenomenon. Although the error bars for the estimated distances tend to be in the range 0.5-1.0 Å, R 2 experiments are routinely employed in a variety of systems ranging from simple peptides to more complex amyloidogenic proteins. In this article we address this aspect by highlighting the systematic errors introduced by analytical models employing phenomenological damping terms to describe multi-spin effects. Specifically, the spin dynamics in R 2 experiments is described using Floquet theory employing two different operator formalisms. The systematic errors introduced by the phenomenological damping terms and their limitations are elucidated in two analytical models and analysed by comparing the results with rigorous numerical simulations.
Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...
2018-02-03
In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi
In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less
13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines
NASA Technical Reports Server (NTRS)
Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.
1983-01-01
The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.
Characterization and 2D structural model of corn straw and poplar leaf biochars.
Zhao, Nan; Lv, YiZhong; Yang, XiXiang; Huang, Feng; Yang, JianWen
2017-12-22
The integrated experimental methods were used to analyze the physicochemical properties and structural characteristics and to build the 2D structural model of two kinds of biochars. Corn straw and poplar leaf biochars were gained by pyrolysing the raw materials slowly in a furnace at 300, 500, and 700 °C under oxygen-deficient conditions. Scanning electron microscope was applied to observe the surface morphology of the biochars. High temperatures destroyed the pore structures of the biochars, forming a particle mixture of varying sizes. The ash content, yield, pH, and surface area were also observed to describe the biochars' properties. The yield decreases as the pyrolysis temperature increases. The biochars are neutral to alkaline. The biggest surface area is 251.11 m 2 /g for 700 °C corn straw biochar. Elemental analysis, infrared microspectroscopy, solid-state C-13 NMR spectroscopy, and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) were also used to study the structural characteristics and build the 2D structural models of biochars. The C content in the corn straw and poplar leaf biochars increases with the increase of the pyrolysis temperature. A higher pyrolysis temperature makes the aryl carbon increase, and C=O, OH, and aliphatic hydrocarbon content decrease in the IR spectra. Solid-state C-13 NMR spectra show that a higher pyrolysis temperature makes the alkyl carbon and alkoxy carbon decrease and the aryl carbon increase. The results of IR microspectra and solid-state C-13 NMR spectra reveal that some noticeable differences exist in these two kinds of biochars and in the same type of biochar but under different pyrolysis temperatures. The conceptual elemental compositions of 500 °C corn straw and poplar leaf biochars are C 61 H 33 NO 13 and C 59 H 41 N 3 O 12 , respectively. Significant differences exist in the SEM images, physicochemical properties, and structural characteristics of corn straw and poplar leaf biochars.
Prebiotic significance of the Maillard reaction
NASA Astrophysics Data System (ADS)
Kolb, Vera M.; Bajagic, Milica; Zhu, William; Cody, George D.
2005-09-01
The Maillard reaction was studied from a prebiotic point of view. We have shown that the Maillard reaction between ribose and common amino acids occurs readily in the solid state at 65°C. The C-13 NMR spectra of the solid insoluble Maillard products of ribose and serine, or alanine or isoleucine were compared to the spectrum of the insoluble organic carbon on Murchison.
Biomolecular solid state NMR with magic-angle spinning at 25K.
Thurber, Kent R; Tycko, Robert
2008-12-01
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.
Three-Dimensional Conformation of Folded Polymers in Single Crystals
NASA Astrophysics Data System (ADS)
Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu
2015-10-01
The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.
On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.
Nebel, Holger; Neumann, Markus; Mayer, Christian; Epple, Matthias
2008-09-01
The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.
Sene, Saad; Reinholdt, Marc; Renaudin, Guillaume; Berthomieu, Dorothée; Zicovich-Wilson, Claudio M; Gervais, Christel; Gaveau, Philippe; Bonhomme, Christian; Filinchuk, Yaroslav; Smith, Mark E; Nedelec, Jean-Marie; Bégu, Sylvie; Mutin, P Hubert; Laurencin, Danielle
2013-01-14
Boronic acids (R-B(OH)(2)) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)(3)(-)) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C(4)H(9)-B(OH)(3)](2), which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid-state NMR spectroscopy ((1)H, (13)C, (11)B and (43)Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave--GIPAW--method). These data allow relationships between the geometry around the OH groups in boronates and the IR and (1)H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic-inorganic materials containing boronate building blocks. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Iriepa, I.; Bellanato, J.; Gálvez, E.; Gil-Alberdi, B.
2010-07-01
Some mono-substituted amides ( 2- 5) derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9α-amine were synthesized and studied by IR, 1H and 13C NMR spectroscopy. The crystal structure of 3-methyl-2,4-diphenyl-9α-(3,5-dichlorobenzamido)-3-azabicyclo[3.3.1]nonane ( 3) was determined by X-ray diffraction. NMR data showed that all compounds adopt in CDCl 3 a preferred flattened chair-chair conformation with the N-CH 3 group in equatorial disposition. X-ray data agreed with this conformation in the case of compound 3. IR data revealed that compounds 2 and 3 present a C dbnd O⋯HN intermolecular bond in the solid state. This conclusion was also confirmed by X-ray data of compound 3. In the case of compound 5, IR results suggested intermolecular NH⋯N-heterocyclic bonding. On the contrary, in the pyrazine derivative ( 4), IR, 1H and 13C NMR data showed the presence of an intramolecular NH⋯N1″-heterocyclic hydrogen bond in the solid state and solution. Moreover, NMR and IR data showed a preferred trans disposition for the NH-C dbnd O group. NMR also revealed free rotation of the -NH-CO-R group around C9-NH bond. Pharmacological assays on mice were drawn to evaluate analgesic activity.
Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu
2016-01-21
Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and themore » use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids.« less
A solid-state [sup 13]C NMR study of the molecular motion of ethylene adsorbed on a silver surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianxin Wang; Ellis, P.D.
1993-01-13
The reorientation of ethylene on a silver catalyst surface has been studied by solid-state [sup 13]C NMR. The static cross-polarization spectra at different temperatures have been measured. Different jump site models are proposed to simulate the experimental results. It was found that the models involving a low number of jump sites are more sensitive to the experimental details. By comparison of the simulated and experimental results, the 6- and 4-site jump models are chosen as the most satisfactory model to fit the experimental spectra. On the basis of this representation, the activation energy derived for the jump process is 4.3more » kJ/mol. From the simulated results, it was concluded that the symmetry axis for the motion of the ethylene at low temperatures ([minus]173 to ca. [minus]45[degrees]C) is perpendicular to the plane of the ethylene molecule. At higher temperatures motion about other axes is initiated such that at room temperature a nearly isotropically averaged [sup 13]C shielding tensor is observed. 20 refs., 9 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Kanmi; Pruski, Marek
Two-dimensional through-bond {sup 1}H({sup 13}C) solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse {sup 1}H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of {sup 1}H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N-formyl-l-methionyl-l-leucyl-l-phenylalanine (f-MLF-OH) and brown coal.
NASA Astrophysics Data System (ADS)
Mao, Kanmi; Pruski, Marek
2009-12-01
Two-dimensional through-bond 1H{ 13C} solid-state NMR experiments utilizing fast magic angle spinning (MAS) and homonuclear multipulse 1H decoupling are presented. Remarkable efficiency of polarization transfer can be achieved at MAS rates exceeding 40 kHz, which is instrumental in these measurements. Schemes utilizing direct and indirect detection of heteronuclei are compared in terms of resolution and sensitivity. A simple procedure for optimization of 1H homonuclear decoupling sequences under these conditions is proposed. The capabilities of these techniques were confirmed on two naturally abundant solids, tripeptide N- formyl- L-methionyl- L-leucyl- L-phenylalanine (f-MLF-OH) and brown coal.
Bates, A.L.; Hatcher, P.G.
1992-01-01
Isolated lignin with a low carbohydrate content was spiked with increasing amounts of alpha-cellulose, and then analysed by solid-state 13C nuclear magnetic resonance (NMR) using cross-polarization with magic angle spinning (CPMAS) and dipolar dephasing methods in order to assess the quantitative reliability of CPMAS measurement of carbohydrate content and to determine how increasingly intense resonances for carbohydrate carbons affect calculations of the degree of lignin's aromatic ring substitution and methoxyl carbon content. Comparisons were made of the carbohydrate content calculated by NMR with carbohydrate concentrations obtained by phenol-sulfuric acid assay and by the calculation from the known amounts of cellulose added. The NMR methods used in this study yield overestimates for carbohydrate carbons due to resonance area overlap from the aliphatic side chain carbons of lignin. When corrections are made for these overlapping resonance areas, the NMR results agree very well with results obtained by other methods. Neither the calculated methoxyl carbon content nor the degree of aromatic ring substitution in lignin, both calculated from dipolar dephasing spectra, change with cellulose content. Likewise, lignin methoxyl content does not correlate with cellulose abundance when measured by integration of CPMAS spectra. ?? 1992.
Widdifield, Cory M; Cavallo, Gabriella; Facey, Glenn A; Pilati, Tullio; Lin, Jingxiang; Metrangolo, Pierangelo; Resnati, Giuseppe; Bryce, David L
2013-09-02
Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear ((13)C, (14/15)N, (19)F, and (127)I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N(+)(CH2)10N(+)(CH3)3][2 I(-)]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. (13)C and (15)N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using (14)N NMR spectroscopy, with a systematic decrease in the (14)N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at (127)I solid-state NMR spectroscopy experiments are presented and variable-temperature (19)F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Birkefeld, Anja Britta; Bertermann, Rüdiger; Eckert, Hellmut; Pfleiderer, Bettina
2003-01-01
To investigate aging processes of silicone gel breast implants, which may include migration of free unreacted material from the gel and rubber to local (e.g. connective tissue capsule) or distant sites in the body, chemical alteration of the polymer and infiltration of body compounds, various approaches of multinuclear nuclear magnetic resonance (NMR) experiments (29Si, 13C, 1H) were evaluated. While 29Si, 13C, and 1H solid-state magic angle spinning (MAS) NMR techniques performed on virgin and explanted envelopes of silicone prostheses provided only limited information, high-resolution liquid-state NMR techniques of CDCl(3) extracts were highly sensitive analytical tools for the detection of aging related changes in the materials. Using 2D 1H, 1H correlation spectroscopy (COSY) and 29Si, 1H heteronuclear multiple bond coherence (HMBC) experiments with gradient selection, it was possible to detect lipids (mainly phospholipids) as well as silicone oligomer species in explanted envelopes and gels. Silicone oligomers were also found in connective tissue capsules, indicating that cyclic polysiloxanes can migrate from intact implants to adjacent and distant sites. Furthermore, lipids can permeate the implant and modify its chemical composition. Copyright 2002 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam
2015-03-01
Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.
Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz
2016-11-20
Solid-state nuclear magnetic resonance (ssNMR) is a powerful and unique method for analyzing solid forms of the active pharmaceutical ingredients (APIs) directly in their original formulations. Unfortunately, despite their wide range of application, the ssNMR experiments often suffer from low sensitivity and peaks overlapping between API and excipients. To overcome these limitations, the crosspolarization inversion recovery method was successfully used. The differences in the spin-lattice relaxation time constants for hydrogen atoms T1(H) between API and excipients were employed in order to separate and discriminate their peaks in ssNMR spectra as well as to increase the intensity of API signals in low-dose formulations. The versatility of this method was demonstrated by different examples, including the excipients mixture and commercial solid dosage forms (e.g. granules and tablets). Copyright © 2016 Elsevier B.V. All rights reserved.
Kametani, Shunsuke; Tasei, Yugo; Nishimura, Akio; Asakura, Tetsuo
2017-08-09
Polyalanine (polyA) sequences are well known as the simplest sequence that naturally forms anti-parallel β-sheets and constitute a key element in the structure of spider and wild silkworm silk fibers. We have carried out a systematic analysis of the packing of anti-parallel β-sheets for (Ala) n , n = 5, 6, 7 and 12, using primarily 13 C solid-state NMR and MD simulation. HFIP and TFA are frequently used as the dope solvents for recombinant silks, and polyA was solidified from both HFIP and TFA solutions by drying. An analysis of Ala Cβ peaks in the 13 C CP/MAS NMR spectra indicated that polyA from HFIP was mainly rectangular but polyA from TFA was mainly staggered. The transition from the rectangular to the staggered arrangement in (Ala) 6 was observed for the first time from the change in the Ala Cβ peak through heat treatment at 200 °C for 4 h. The removal of the bound water was confirmed by thermal analysis. This transition could be reproduced by MD simulation of (Ala) 6 molecules at 200 °C after removal of the bound water molecules. In this way, the origin of the stability of the different packing arrangements of polyA was clarified.
Solid-state NMR reveals differential carbohydrate utilization in diapausing Culex pipiens
NASA Astrophysics Data System (ADS)
Chang, James; Singh, Jugeshwar; Kim, Sungshil; Hockaday, William C.; Sim, Cheolho; Kim, Sung Joon
2016-11-01
Culex pipiens is the mosquito that vectors West Nile Virus and other human-pathogenic flavivruses in North America. In response to shortened day length and lower temperatures, female Cx. pipiense prepares for the diapause by actively feeding on carbohydrates to increase the biosynthesis of glycogen and lipid to store energy for overwintering. The effect of feeding different carbohydrates on glycogen and lipid biosynthesis in diapausing mosquitoes was investigated in vivo using 13C solid-state NMR. Diapause-destined adult females and nondiapausing counterparts after adult eclosion were fed with three different carbohydrate sources for 7 days: 1) 10% sucrose, 2) 10% D-[13C6]glucose, and 3) 1% D-[13C6]glucose co-provisioned with 10% sucrose. NMR measurements show that sucrose and glucose are metabolized differently in diapausing mosquitoes. Mosquitoes fed on sucrose primarily accumulate glycogen with increased branching structures, but less of lipids. In contrast, mosquitoes fed exclusively on glucose show accumulation of both glycogen and lipid with increased aliphatic chain length. Glucose is exclusively metabolized for the biosynthesis of triacylglyceride when mosquitoes were co-fed with sucrose. Our findings provide novel insights into the insect carbohydrate metabolism that governs glycogen and lipid biosynthesis during diapause, which is fundamental for the insect survival during inimical environments.
Guo, Wen; Morrisett, Joel D.; DeBakey, Michael E.; Lawrie, Gerald M.; Hamilton, James A.
2010-01-01
Because of renewed interest in the progression, stabilization, and regression of atherosclerotic plaques, it has become important to develop methods for characterizing structural features of plaques in situ and noninvasively. We present a nondestructive method for ex vivo quantification of 2 solid-phase components of plaques: crystalline cholesterol and calcium phosphate salts. Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of human carotid endarterectomy plaques revealed 13C resonances of crystalline cholesterol monohydrate and a 31P resonance of calcium phosphate hydroxyapatite (CPH). The spectra were obtained under conditions in which there was little or no interference from other chemical components and were suitable for quantification in situ of the crystalline cholesterol and CPH. Carotid atherosclerotic plaques showed a wide variation in their crystalline cholesterol content. The calculated molar ratio of liquid-crystalline cholesterol to phospholipid ranged from 1.1 to 1.7, demonstrating different capabilities of the phospholipids to reduce crystallization of cholesterol. The spectral properties of the phosphate groups in CPH in carotid plaques were identical to those of CPH in bone. 31P MAS NMR is a simple, rapid method for quantification of calcium phosphate salts in tissue without extraction and time-consuming chemical analysis. Crystalline phases in intact atherosclerotic plaques (ex vivo) can be quantified accurately by solid-state 13C and 31PMAS NMR spectroscopy. PMID:10845882
On the problem of resonance assignments in solid state NMR of uniformly 15N, 13C-labeled proteins
NASA Astrophysics Data System (ADS)
Tycko, Robert
2015-04-01
Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty of resonance assignment, using a computational Monte Carlo/simulated annealing (MCSA) algorithm to search for assignments from artificial three-dimensional spectra that are constructed from the reported isotropic 15N and 13C chemical shifts of two proteins whose structures have been determined by solution NMR methods. The results demonstrate how assignment simulations can provide new insights into factors that affect the assignment process, which can then help guide the design of experimental strategies. Specifically, simulations are performed for the catalytic domain of SrtC (147 residues, primarily β-sheet secondary structure) and the N-terminal domain of MLKL (166 residues, primarily α-helical secondary structure). Assuming unambiguous residue-type assignments and four ideal three-dimensional data sets (NCACX, NCOCX, CONCA, and CANCA), uncertainties in chemical shifts must be less than 0.4 ppm for assignments for SrtC to be unique, and less than 0.2 ppm for MLKL. Eliminating CANCA data has no significant effect, but additionally eliminating CONCA data leads to more stringent requirements for chemical shift precision. Introducing moderate ambiguities in residue-type assignments does not have a significant effect.
Chierotti, Michele R; Gobetto, Roberto; Nervi, Carlo; Bacchi, Alessia; Pelagatti, Paolo; Colombo, Valentina; Sironi, Angelo
2014-01-06
The hydrogen bond network of three polymorphs (1α, 1β, and 1γ) and one solvate form (1·H2O) arising from the hydration-dehydration process of the Ru(II) complex [(p-cymene)Ru(κN-INA)Cl2] (where INA is isonicotinic acid), has been ascertained by means of one-dimensional (1D) and two-dimensional (2D) double quantum (1)H CRAMPS (Combined Rotation and Multiple Pulses Sequences) and (13)C CPMAS solid-state NMR experiments. The resolution improvement provided by homonuclear decoupling pulse sequences, with respect to fast MAS experiments, has been highlighted. The solid-state structure of 1γ has been fully characterized by combining X-ray powder diffraction (XRPD), solid-state NMR, and periodic plane-wave first-principles calculations. None of the forms show the expected supramolecular cyclic dimerization of the carboxylic functions of INA, because of the presence of Cl atoms as strong hydrogen bond (HB) acceptors. The hydration-dehydration process of the complex has been discussed in terms of structure and HB rearrangements.
NASA Astrophysics Data System (ADS)
Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy
2014-07-01
Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.
Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy
2014-07-01
Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei
2016-06-13
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal, and animal cellulose, interacts with hemicellulose, is poorly hydrated, and is targeted by the protein expansin during wall loosening. To obtain information about the C6 hydroxymethyl conformation of these plant celluloses, we carried out DFT calculations of (13)C chemical shifts, using the Iα and Iβ crystal structures as templates and varying the C5-C6 torsion angle. Comparison with the experimental chemical shifts suggests that all interior cellulose favor the tg conformation, but cellulose d also has a similar propensity to adopt the gt conformation. These results indicate that cellulose in plant primary cell walls, due to their interactions with matrix polysaccharides, and has polymorphic structures that are not a simple superposition of the Iα and Iβ allomorphs, thus distinguishing them from bacterial and animal celluloses.
Wang, Tuo; Yang, Hui; Kubicki, James D.; Hong, Mei
2017-01-01
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D 13C-13C correlation spectra of uniformly 13C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose 13C chemical shifts differ significantly from the 13C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing and hydrogen bonding from celluloses of other organisms. 2D 13C-13C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Cellulose f and g are well mixed chains on the microfibril surface, cellulose a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal and animal cellulose, interacts with hemicellulose, is poorly hydrated, and is targeted by the protein expansin during wall loosening. To obtain information about the C6 hydroxymethyl conformation of these plant celluloses, we carried out DFT calculations of 13C chemical shifts, using the Iα and Iβ crystal structures as templates and varying the C5-C6 torsion angle. Comparison with the experimental chemical shifts suggests that all interior cellulose favor the tg conformation, but cellulose d also has a similar propensity to adopt the gt conformation. These results indicate that cellulose in plant primary cell walls, due to their interactions with matrix polysaccharides, has polymorphic structures that are not a simple superposition of the Iα and Iβ allomorphs, thus distinguishing them from bacterial and animal celluloses. PMID:27192562
NASA Astrophysics Data System (ADS)
Gerpe, Alejandra; Piro, Oscar E.; Cerecetto, Hugo; González, Mercedes
2007-12-01
A series of indazole N1-oxide derivatives has been spectroscopically studied in solution using 1H, 13C, and 15N NMR based on pulsed field gradient selected PFG 1H sbnd X (X = 13C and 15N) gHMQC and gHMBC experiments. Some indazoles were prepared using a new methodology to compare its spectral and structural data with the indazole N1-oxide parent compounds. The 13C resonances of the indazole N1-oxide carbon 3 and 7a demonstrate the N-oxide push-electron capability. The 15N resonances of the indazole N-oxide, nitrogen 1, are near to 30 ppm more shielded than the corresponding values in the indazole heterocycle (deoxygenated form). Moreover, the structures of one indazole and one indazole N-oxide were unambiguously confirmed by X-ray crystallography. The solid state structures were contrasted with the theoretical ones obtained in vacuo at different calculus level. The aromaticity of the derivatives was studied analyzing the H sbnd H coupling constants of indazole's aromatic hydrogens and measuring C sbnd C distances in the solid state. The fragmentation that takes place in EI/MS was gathered for all the indazole N-oxide derivatives and the general fragmentation pattern analyzed.
Presti, Davide; Pedone, Alfonso; Menziani, Maria Cristina
2014-08-04
The structural and (13)C/(1)H NMR parameters of the four crystal forms (1α, 1·H2O, 1β, and 1γ) of the solid wheel-and-axle (WAA) metal-organic compound [(p-cymene)Ru(κN-INA)Cl2] have been studied by means of periodic DFT calculations. The quality of the results obtained strongly depends on a correct description of long-range interactions; thus, in the geometry refinement protocol used, the pure DFT functionals need to be coupled with a dispersion-correction term (B3LYP-D2, B3LYP-D*). The solid-state (13)C/(1)H NMR δ(iso) parameters and (13)C MAS NMR spectra, calculated by means of the PBE-GIPAW method, agree well with the experimental data for the four crystal forms (mean absolute deviations of the (13)C and (1)H δ(iso) data values lie in the ranges 1.3-2.9 and 0.3-1.0 ppm, respectively). In this context, some revisions in the experimental assignment of the (13)C/(1)H NMR δ(iso) parameters of the 1·H2O, 1β, and 1γ crystal forms can be suggested. The mismatch in the assignment seems to be due to the rotation of the -COOH moiety, which occurs at the 1α-1·H2O transition and was not considered in the experiments. Finally, the results obtained suggest the presence of two COOH···Cl hydrogen bonds of comparable strength established by the two molecules in the asymmetric unit of the 1γ polymorph, in partial disagreement with previous findings.
Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe
2017-12-06
Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 < MoF 3 < MoF 6 before sharply decreasing for MoF 9 , with a similar effect for the supported systems (MoF 0 ≈ MoF 9 < MoF 6 < MoF 3 ). This is consistent with the different kinetic behavior (zeroth order in alkyne for MoF 9 derivatives instead of first order for the others) and the isolation of stable metallacyclobutadiene intermediates of MoF 9 for both molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.
De Sa Peixoto, Paulo; Laurent, Guillaume; Azaïs, Thierry; Mosser, Gervaise
2013-01-01
In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen. PMID:23341452
Prakash, Shipra; Iturmendi, Nerea; Grelard, Axelle; Moine, Virginie; Dufourc, Erick
2016-05-15
Stability of wines is of great importance in oenology matters. Quantitative estimation of dark red precipitates formed in Merlot and Cabernet Sauvignon wine from Bordeaux region for vintages 2012 and 2013 was performed during the oak barrel ageing process. Precipitates were obtained by placing wine at -4°C or 4°C for 2-6 days and monitored by periodic sampling during a one-year period. Spectroscopic identification of the main families of components present in the precipitate powder was performed with (13)C solid-state CPMAS NMR and 1D and 2D solution NMR of partially water re-solubilized precipitates. The study revealed that the amount of precipitate obtained is dependent on vintage, temperature and grape variety. Major components identified include potassium bitartrate, polyphenols, polysaccharides, organic acids and free amino acids. No evidence was found for the presence of proteins. The influence of main compounds found in the precipitates is discussed in relation to wine stability. Copyright © 2016. Published by Elsevier Ltd.
Hatcher, P.G.; Schnitzer, M.; Vassallo, A.M.; Wilson, M.A.
1989-01-01
Dipolar dephasing 13C NMR studies of three highly aromatic humic acids, one from a modern soil and two from paleosols, have permitted the determination of the degree of aromatic substitution. From these data and the normal solid-state 13C NMR data we have been able to develop a model for the average chemical structure of these humic acids that generally correlates well with permanganate oxidation data. The models depict these humic acids as benzene di- and tricarboxylic acids interconnected by biphenyl linkages. An increasing degree of substitution is observed with increasing geologic age. These structures may be characteristic of the resistant aromatic part of the "core" of humic substances that survives degradation. ?? 1989.
Spindler, Xanthe; Shimmon, Ronald; Roux, Claude; Lennard, Chris
2015-05-01
Most spectroscopic studies of the reaction products formed by ninhydrin, 1,2-indanedione-zinc (Ind-Zn) and 1,8-diazafluoren-9-one (DFO) when reacted with amino acids or latent fingermarks on paper substrates are focused on visible absorption or luminescence spectroscopy. In addition, structural elucidation studies are typically limited to solution-based mass spectrometry or liquid nuclear magnetic resonance (NMR) spectroscopy, which does not provide an accurate representation of the fingermark development process on common paper substrates. The research presented in this article demonstrates that solid-state carbon-13 magic angle spinning NMR ((13)C-MAS-NMR) is a technique that can not only be utilised for structural studies of fingermark enhancement reagents, but is a promising technique for characterising the effect of paper chemistry on fingermark deposition and enhancement. The latter opens up a research area that has been under-explored to date but has the potential to improve our understanding of how fingermark secretions and enhancement reagents interact with paper substrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong
2013-01-01
Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.
Evidence for cis Amide Bonds in Peptoid Nanosheets.
Hudson, Benjamin C; Battigelli, Alessia; Connolly, Michael D; Edison, John; Spencer, Ryan K; Whitelam, Stephen; Zuckermann, Ronald N; Paravastu, Anant K
2018-05-17
Peptoid nanosheets are supramolecular protein-mimetic materials that form from amphiphilic polypeptoids with aromatic and ionic side chains. Nanosheets have been studied at the nanometer scale, but the molecular structure has been difficult to probe. We report the use of 13 C- 13 C dipolar recoupling solid-state NMR measurements to reveal the configuration of backbone amide bonds selected by 13 C isotopic labeling of adjacent α-carbons. Measurements on the same molecules in the amorphous state and in nanosheets revealed that amide bonds in the center of the amino block of peptoid (NaeNpe) 7 -(NceNpe) 7 (B28) favor the trans configuration in the amorphous state and the cis configuration in the nanosheet. This unexpected result contrasts with previous NMR and theoretical studies of short solvated peptoids. Furthermore, examination of the amide bond at the junction of the two charged blocks within B28 revealed a mixture of both cis and trans configurational states, consistent with the previously predicted brickwork-like intermolecular organization.
Ukmar, Tina; Kaučič, Venčeslav; Mali, Gregor
2011-09-01
Two polymorphs of indomethacin were investigated by 1H MAS and CRAMPS, and 1H-13C CPMAS and HETCOR NMR techniques. The obtained spectra clearly elucidated the structural differences between the polymorphs, especially the different numbers of indomethacin molecules within the crystallographic asymmetric units and the different schemes of hydrogen bonding among the molecules. Known structure of indomethacin gamma was used in first-principles DFT/GIPAW calculations of 1H and 13C isotropic chemical shifts. Two packages, freely available Quantum Espresso and commercially available CASTEP, were employed. They both provided values that excellently agreed with the measured values, and thus allowed unambiguous assignment of 1H and 13C spectral lines.
Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy
2013-01-01
A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ssNMR provides evidence for carbonate formation on the surface of the carbon cathode, the carbonate being removed at high charging voltages in the first cycle, but accumulating in later cycles. Small amounts of lithium hydroxide and formate are also detected in discharged cathodes and while the hydroxide formation is reversible, the formate persists and accumulates in the cathode upon further cycling. The results indicate that the rechargeability of the battery is limited by both the electrolyte and the carbon cathode stability. The utility of ssNMR spectroscopy in directly detecting product formation and decomposition within the battery is demonstrated, a necessary step in the assessment of new electrolytes, catalysts, and cathode materials for the development of a viable lithium–oxygen battery. PMID:24489976
Lubach, Joseph W; Hau, Jonathan
2018-02-20
To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
Solid-state NMR characterization of copolymers of nylon 11 and nylon 12.
Johnson, C G; Mathias, L J
1997-05-01
Solid-state 13C and 15N NMR spectroscopy, in conjunction with differential scanning calorimetry, wide-angle X-ray diffraction and infrared spectroscopy, were used to characterize a series of nylon 11 and 12 copolymers with mole percentages of nylon 12 monomer of 0, 15, 35, 50, 65, 85, and 100%. Monotonic melting point (Tm) and heat of fusion depressions were observed for the copolymer series with the 65 mol% nylon 12 copolymer having the lowest apparent crystallinity and Tm at 148 degrees C. Solid-state 15N NMR spectra showed a smooth shift of the main peak position for the as-prepared copolymers from 84 ppm for the alpha-form of pure nylon 11 to 89 ppm for the gamma-form of pure nylon 12. Similar behavior was seen for FTIR amide V and VI modes which are also sensitive to the alpha- and gamma-crystal forms. 13C NMR T1 measurements showed that the overall most mobile sample was the 65:35 copolymer. The amide group of the 1:1 copolymer was labelled using 15N-labelled amino acids available through the Gabriel synthesis; an annealed, solution-cast film of this sample showed a T1N value of 349 s, similar to values seen for annealed nylon 11 and nylon 12 homopolymers. The WAXS pattern for the 65 mol% nylon 12 sample showed a sharp peak at 2 theta = 21.3, overlapping a broad peak centered at 2 theta = 21.0. These are consistent with the values seen for gamma-form nylon 12. The 1:1 copolymer (15N labelled) was shown to be polymorphic, like the homopolymers after specific treatments, with a gamma-like phase formed upon solvent casting, and an alpha-like phase dominating for as-polymerized material and precipitated flakes.
NASA Astrophysics Data System (ADS)
Cody, G.; Fogel, M. L.; Jin, K.; Griffen, P.; Steele, A.; Wang, Y.
2011-12-01
Approximately 6 years ago, while at the Geophysical Laboratory, James Scott became interested in the application of Solid State Nuclear Magnetic Resonance Spectroscopy to study bacterial metabolism. As often happens, other experiments intervened and the NMR experiments were not pursued. We have revisited Jame's question and find that using a multi-nuclear approach (1H, 2H, and 13C Solid State NMR) on laboratory cell culture has some distinct advantages. Our experiments involved batch cultures of E. coli (MG1655) harvested at stationary phase. In all experiments the growth medium consisted of MOPS medium for enterobacteria, where the substrate is glucose. In one set of experiments, 10 % of the water was D2O; in another 10 % of the glucose was per-deuterated. The control experiment used both water and glucose at natural isotopic abundance. A kill control of dead E. coli immersed in pure D2O for an extended period exhibited no deuterium incorporation. In both deuterium enriched experiments, considerable incorporation of deuterium into E. coli's biomolecular constituents was detected via 2H Solid State NMR. In the case of the D2O enriched experiment, 58 % of the incorporated deuterium is observed in a sharp peak at a frequency of 0.31 ppm, consistent with D incorporation in the cell membrane lipids, the remainder is observed in a broad peak at a higher frequency (centered at 5.4 ppm, but spanning out to beyond 10 ppm) that is consistent with D incorporation into predominantly DNA and RNA. In the case of the D-glucose experiments, 61 % of the deuterium is observed in a sharp resonance peak at 0.34 ppm, also consistent with D incorporation into membrane lipids, the remainder of the D is observed at a broad resonance peak centered at 4.3 ppm, consistent with D enrichment in glycogen. Deuterium abundance in the E. coli cells grown in 10 % D2O is nearly 2X greater than that grown with 10 % D-glucose. Very subtle differences are observed in both the 1H and 13C solid-state NMR experiments, most notably in the spectral region corresponding to glycogen H and C, respectively. Interestingly, whereas in both experiments the predominant site of incorporation was in the membrane lipids, the line width of the aliphatic-D resonance in the D2O enriched experiment is 67 % wider than that observed in the D-glucose enriched experiment. This difference could be due to greater residual 1H-2H dipolar coupling in membrane lipids synthesized with 10 % D2O due to D being incorporated during NADP(D) reduction of the fatty acid precursor during synthesis and the H-glucose being the source of carbon and hydrogen starting with acetyl-CoA. In the case of the D-glucose experiment, the narrower absorption line may be consistent with individual FA's being more homogeneously deuterated. Analysis of the membrane lipids is currently being performed via GCMS in order to gain potentially more insight to guide interpretation of the 2H solid state NMR spectra.
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M; Graham, Matthew J; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z D
2010-05-28
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.
NASA Astrophysics Data System (ADS)
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M.; Graham, Matthew J.; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z. D.
2010-05-01
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with β-cyclodextrin (β-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state C13 NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the β-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in C13 solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after β-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of β-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that β-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using H1 NMR, and a 3:1 (PO unit to β-CD) was found for all inclusion complexes, which indicated that the number of threaded β-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the β-CD in the inclusion complex formed a channel-like structure that is different from the pure β-CD crystal structure.
Optimized Spectral Editing of 13C MAS NMR Spectra of Rigid Solids Using Cross-Polarization Methods
NASA Astrophysics Data System (ADS)
Sangill, R.; Rastrupandersen, N.; Bildsoe, H.; Jakobsen, H. J.; Nielsen, N. C.
Combinations of 13C magic-angle spinning (MAS) NMR experiments employing cross polarization (CP), cross polarization-depolarization (CPD), and cross polarization-depolarization-repolarization are analyzed quantitatively to derive simple and general procedures for optimized spectral editing of 13C CP/MAS NMR spectra of rigid solids by separation of the 13C resonances into CH n subspectra ( n = 0, 1, 2, and 3). Special attention is devoted to a differentiation by CPD/MAS of CH and CH 2 resonances since these groups behave quite similarly during spin lock under Hartmann-Hahn match and are therefore generally difficult to distinguish unambiguously. A general procedure for the design of subexperiments and linear combinations of their spectra to provide optimized signal-to-noise ratios for the edited subspectra is described. The technique is illustrated by a series of edited 13C CP/MAS spectra for a number of rigid solids ranging from simple organic compounds (sucrose and l-menthol) to complex pharmaceutical products (calcipotriol monohydrate and vitamin D 3) and polymers (polypropylene, polyvinyl alcohol, polyvinyl chloride, and polystyrene).
Phyo, Pyae; Wang, Tuo; Xiao, Chaowen; Anderson, Charles T; Hong, Mei
2017-09-11
Significant cellulose-pectin interactions in plant cell walls have been reported recently based on 2D 13 C solid-state NMR spectra of intact cell walls, but how these interactions affect cell growth has not been probed. Here, we characterize two Arabidopsis thaliana lines with altered expression of the POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1) gene, which encodes a polygalacturonase that cleaves homogalacturonan (HG). PGX1 AT plants overexpress PGX1, have HG with lower molecular weight, and grow larger, whereas pgx1-2 knockout plants have HG with higher molecular weight and grow smaller. Quantitative 13 C solid-state NMR spectra show that PGX1 AT cell walls have lower galacturonic acid and xylose contents and higher HG methyl esterification than controls, whereas high molecular weight pgx1-2 walls have similar galacturonic acid content and methyl esterification as controls. 1 H-transferred 13 C INEPT spectra indicate that the interfibrillar HG backbones are more aggregated whereas the RG-I side chains are more dispersed in PGX1 AT cell walls than in pgx1-2 walls. In contrast, the pectins that are close to cellulose become more mobile and have weaker cross peaks with cellulose in PGX1 AT walls than in pgx1-2 walls. Together, these results show that polygalacturonase-mediated plant growth is accompanied by increased esterification and decreased cross-linking of HG, increased aggregation of interfibrillar HG, and weaker HG-cellulose interactions. These structural and dynamical differences give molecular insights into how pectins influence wall dynamics during cell growth.
Perras, Frederic A.; Luo, Hao; Zhang, Ximing; ...
2016-12-27
Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Luo, Hao; Zhang, Ximing
Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less
Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z
2016-09-01
The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. Copyright © 2016. Published by Elsevier Inc.
Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L
2017-03-01
Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.
Molecular Structure of Humin and Melanoidin via Solid State NMR
Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena
2011-01-01
Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogenous network-type polymer in which sugar molecules cross-link the heterocycles. PMID:21456563
Mobile humic acids and recalcitrant calcium humate in eight US soils
USDA-ARS?s Scientific Manuscript database
Both excitation-emission matrix (EEM) fluorescence spectroscopy and solid state C-13 nuclear magnetic resonance (NMR) spectroscopy have been applied for studying soil organic matter (SOM), but rarely have both techniques been employed together. We analyzed the fluorescence features of water extracta...
Chemical and microscopic characterization of outer seed coats of fossil and extant water plants
NASA Astrophysics Data System (ADS)
van Bergen, P. F.; Goñi, M.; Collinson, M. E.; Barrie, P. J.; Damsté, J. S. Sinninghe; De Leeuw, J. W.
1994-09-01
Sclerotic outer seed coat layers (testae) of three fossil and two extant water plant species were analyzed using scanning electron and light microscopy in addition to Curie-point pyrolysis, solid state 13C NMR, and CuO oxidation. Comparison between the chemical results from the fossil and extant samples reveals that the original resistant constituents in the sclerotic testae are native lignin-celluloses which are transformed to polyphenol macromolecules recognized in the fossil samples. The combination of microscopic and chemical data provides new insights regarding the early diagenetic processes by which lignin-cellulose-containing plant remains may have been transformed. In particular, the unaltered morphology in combination with major chemical modifications is used as the basis to postulate the timing and nature of lignin transformations. The combination of pyrolysis, solid state 13C NMR, and CuO oxidation is shown to be a powerful tool to characterize the chemical structure of testae of fossil and extant water plants.
Xia, H; Matharu, A S
2017-09-21
Mango peel is the major by-product of mango processing, and compromises 7-24% of the total mango weight. In this study, pectin was extracted from mango peel waste by using subcritical water extraction (SWE) in the absence of mineral acid. A highest yield of 18.34% was achieved from the Kesar variety and the pectin was characterised using ATR-IR spectroscopy, TGA and 13 C solid-state NMR spectroscopy to confirm the structure. The degree of esterification (DE) of the pectin was analysed with both titrimetry and 13 C solid-state NMR spectroscopy, and a high DE (>70%) was observed for all three varieties (Keitt, Sindhri and Kesar). This is the first report on acid-free subcritical water extraction of pectin from mango peel, which provides a green route for the valorisation of mango peel waste and contributes to a source of biobased materials and chemicals for a sustainable 21 st century.
Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam
2015-03-01
Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved. Copyright © 2015 Elsevier Inc. All rights reserved.
Crankshaft motion in a highly congested bis(triarylmethyl)peroxide.
Khuong, Tinh-Alfredo V; Zepeda, Gerardo; Sanrame, Carlos N; Dang, Hung; Bartberger, Michael D; Houk, K N; Garcia-Garibay, Miguel A
2004-11-17
Crankshaft motion has been proposed in the solid state for molecular fragments consisting of three or more rotors linked by single bonds, whereby the two terminal rotors are static and the internal rotors experience circular motion. Bis-[tri-(3,5-di-tert-butyl)phenylmethyl]-peroxide 2 was tested as a model in search of crankshaft motion at the molecular level. In the case of peroxide 2, the bulky trityl groups may be viewed as the external static rotors, while the two peroxide oxygens can undergo the sought after internal rotation. Evidence for this process in the case of peroxide 2 was obtained from conformational dynamics determined by variable-temperature (13)C and (1)H NMR between 190 and 375 K in toluene-d(8). Detailed spectral assignments for the interpretation of two coalescence processes were based on a correlation between NMR spectra obtained in solution at low temperature, in the solid state by (13)C CPMAS NMR, and by GIAO calculations based on a B3LYP/6-31G structure of 2 obtained from its X-ray coordinates as the input. Evidence supporting crankshaft rotation rather than slippage of the trityl groups was obtained from molecular mechanics calculations.
Triple Resonance Solid State NMR Experiments with Reduced Dimensionality Evolution Periods
NASA Astrophysics Data System (ADS)
Astrof, Nathan S.; Lyon, Charles E.; Griffin, Robert G.
2001-10-01
Two solid state NMR triple resonance experiments which utilize the simultaneous incrementation of two chemical shift evolution periods to obtain a spectrum with reduced dimensionality are described. The CON CA experiment establishes the correlation of 13Ci-1 to 13Cαi and 15Ni by simultaneously encoding the 13COi-1 and 15Ni chemical shifts. The CAN COCA experiment establishes the correlation 13Cai and 15COi to 13Cαi-1 and 15Ni-1 within a single experiment by simultaneous encoding of the 13Cαi and 15Ni chemical shifts. This experiment establishes sequential amino acid correlations in close analogy to the solution state HNCA experiment. Reduced dimensionality 2D experiments are a practical alternative to recording multiple 3D data sets for the purpose of obtaining sequence-specific resonance assignments of peptides and proteins in the solid state.
Batema, Guido D; Lutz, Martin; Spek, Anthony L; van Walree, Cornelis A; van Klink, Gerard P M; van Koten, Gerard
2014-08-28
A series of organometallic 4,4'-substituted benzylidene aniline complexes 4-ClPt-3,5-(CH2NMe2)2C6H2CH[double bond, length as m-dash]NC6H4R'-4', abbreviated as PtCl[NCN(CH[double bond, length as m-dash]NC6H4R'-4')-4], with R' = NMe2, Me, H, Cl, CN (, respectively), was synthesized via a Schiff-base condensation reaction involving reaction of PtCl[NCN(CH[double bond, length as m-dash]O)-4] () with the appropriate 4-R'-substituted aniline derivative () in toluene. The resulting arylplatinum(ii) products were obtained in 75-88% yield. Notably, product was also obtained in 68% yield from a reaction in the solid state by grinding solid with aniline . The structures of , , and in the solid state (single crystal X-ray diffraction) showed a non-planar geometry, in particular for compound . The electronic interaction between the donor benzylidene fragment PtCl(NCN-CH) and the para-R' aniline substituent through the azomethine bridge was studied with NMR and UV/Vis spectroscopy. Linear correlations were found between the azomethine (1)H, the (195)Pt NMR and various (13)C NMR chemical shifts, and the substituent parameters σF and σR of R' at the aniline site. In common with organic benzylidene anilines, the azomethine (1)H NMR chemical shift showed anomalous substituent behavior. The (195)Pt NMR chemical shift of the platinum center can be used as a probe for the electronic properties of the delocalized π-system of the benzylidene aniline framework, to which it is connected. The dual substituent parameter treatment of the azomethine (13)C NMR shift gave important insight into the unique behaviour of the Pt-pincer group as a substituent. Inductively, it is a very strong electron-withdrawing group, whereas mesomerically it behaves like a very strong electron donating group.
NASA Astrophysics Data System (ADS)
Vaccher, Claude; Berthelot, Pascal; Debaert, Michel; Vermeersch, Gaston; Guyon, René; Pirard, Bernard; Vercauteren, Daniel P.; Dory, Magdalena; Evrard, Guy; Durant, François
1993-12-01
The conformations of 3-(substituted furan-2-yl) and 3-(substituted thien-2-yl)-γ-aminobutyric acid 1-9 in solution (D 2O) are estimated from high-resolution (300 MHz) 1H NMR coupling data. Conformations and populations of conformers are calculated by means of a modified Karplus-like relationship for the vicinal coupling constants. The results are compared with X-ray crystallographic investigations (torsion angles) and ab initio HF MO ST-3G or STO-3G* calculations. 1H NMR spectral analysis shows how 1-9 in solution retain the preferred g- conformation around the C3C4 bond, as found in the solid state, while a partial rotation is set up around the C2C3 bond: the conformations about C2C3 are all highly populated in solution. The 13C spin-lattice relaxation times are also discussed.
Gräsing, Daniel; Bielytskyi, Pavlo; Céspedes-Camacho, Isaac F; Alia, A; Marquardsen, Thorsten; Engelke, Frank; Matysik, Jörg
2017-09-21
Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13 C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.
NASA Astrophysics Data System (ADS)
LIU, S. S.; Zhu, Y.; Meng, W.; Wu, F.
2016-12-01
Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state 13C NMR and solution 31P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Kanmi
The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H- 1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H- 1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace} 13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5 m more » $$\\bar{x}$$, PMLG5 mm $$\\bar{x}$$x and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLG m $$\\bar{x}$$ during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the 1H resolution during t 1 evolution in the traditional, 13C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of 1H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected 1H{l_brace} 13C{r_brace} and 19F{l_brace} 13C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted 29Si direct polarization and 29Si 19F 2D experiments, 2D double-quantum (DQ) 19F MAS NMR spectra and spin-echo measurements. Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside the MSN pores, was studied by solid-state NMR (Chapter 6). By analyzing the 1H- 1H DQMAS and NOESY correlation spectra, the CTAB and CPB molecules were shown to co-exist inside the pores without forming significant monocomponent domains. A 'folded-over' conformation of CPB headgroups was proposed according to the results from 1H- 29Si 2D HETCOR.« less
Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR.
Gupta, Sebanti; Tycko, Robert
2018-02-01
Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15 N, 13 C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.
Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.
Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M
2015-10-06
Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum
Courtney, Joseph M.; Ye, Qing; Nesbitt, Anna E.; Tang, Ming; Tuttle, Marcus D.; Watt, Eric D.; Nuzzio, Kristin M.; Sperling, Lindsay J.; Comellas, Gemma; Peterson, Joseph R.; Morrissey, James H.; Rienstra, Chad M.
2016-01-01
Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D 13C-13C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins—GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor—and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. PMID:26365800
Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.
Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo
2010-09-09
Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.
Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P
2017-10-01
Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional 1 H, 13 C and 15 N and two-dimensional 1 H- 13 C and 14 N- 1 H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the 1 H, 13 C and 14 N/ 15 N resonances. A two-dimensional 1 H- 1 H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Wiegand, Thomas; Cadalbert, Riccardo; Gardiennet, Carole; Timmins, Joanna; Terradot, Laurent; Böckmann, Anja; Meier, Beat H
2016-11-02
DnaB helicases are bacterial, ATP-driven enzymes that unwind double-stranded DNA during DNA replication. Herein, we study the sequential binding of the "non-hydrolysable" ATP analogue AMP-PNP and of single-stranded (ss) DNA to the dodecameric DnaB helicase from Helicobacter pylori using solid-state NMR. Phosphorus cross-polarization experiments monitor the binding of AMP-PNP and DNA to the helicase. 13 C chemical-shift perturbations (CSPs) are used to detect conformational changes in the protein upon binding. The helicase switches upon AMP-PNP addition into a conformation apt for ssDNA binding, and AMP-PNP is hydrolyzed and released upon binding of ssDNA. Our study sheds light on the conformational changes which are triggered by the interaction with AMP-PNP and are needed for ssDNA binding of H. pylori DnaB in vitro. They also demonstrate the level of detail solid-state NMR can provide for the characterization of protein-DNA interactions and the interplay with ATP or its analogues. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Humin is the largest and also the least understood fraction of soil organic matter. The humin structure and its correlation with microbiological properties are particularly uncertain. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to investigate the structural chan...
Chemical Modification of Kraft Lignin: Effect on Chemical and Thermal Properties
Yao Chen; Nicole M. Stark; Zhiyong Cai; Charles R. Frihart; Linda F. Lorenz; Rebecca E. Ibach
2014-01-01
Esterified kraft lignins (KL) were prepared by reaction with maleic anhydride (MA), succinic anhydride (SA), and phthalic anhydride (PA) in acetone solutions. The esterified lignins were characterized using ATR-FTIR, solid state CP-MAS 13C NMR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). PA...
Deuterium and carbon-13 NMR of the solid polymorphism of benzenehexoyl hexa-n-hexanoate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lifshitz, E.; Goldfarb,, D.; Vega, S.
Deuterium and carbon-13 NMR of specifically labeled benzenehexoyl hexa-n-hexanoate in the various solid-state phases are reported. The spectra exhibit dynamic line shapes which change discontinuously at the phase transitions. The results are interpreted in terms of sequential melting of the side chains on going from the low-temperature solid phases IV, III, etc., toward the liquid. In phase IV the molecules are very nearly static, except for fast rotation of the methyl groups about their C/sub 3/ axes. The results in phase III were quantitatively interpreted in terms of a two-site isomerization process involving simultaneous rotation by 95/sup 0/ about C/submore » 1/-C/sub 2/ and transition from gtg to g'g't (or equivalently g'tg' to ggt) for the rest of the chain. The specific rate of this reaction at 0/sup 0/C is approx. 10/sup 5/s/sup -1/. In phase II additional chain isomerization processes set-in which were, however, not analyzed quantitatively. Further motional modes, involving reorientation of whole chains about their C/sup ar/-O bonds, appear on going to phase I. In all solid phases the benzene ring remains static.« less
Li, R; Rajan, R; Wong, W C V; Reid, D G; Duer, M J; Somovilla, V J; Martinez-Saez, N; Bernardes, G J L; Hayward, R; Shanahan, C M
2017-12-14
Non-enzymatic glycation of extracellular matrix with (U- 13 C 5 )-d-ribose-5-phosphate (R5P), enables in situ 2D ssNMR identification of many deleterious protein modifications and crosslinks, including previously unreported oxalamido and hemiaminal (CH 3 -CH(OH)NHR) substructures. Changes in charged residue proportions and distribution may be as important as crosslinking in provoking and understanding harmful tissue changes.
Nozirov, Farhod; Szczesniak, Eugeniusz; Fojud, Zbigniew; Dobrzynski, Piotr; Klinowski, Jacek; Jurga, Stefan
2002-08-01
Copolymers of glycolide and epsilon-caprolactone were studied using differential scanning calorimetry and solid-state NMR. The variation of the T1 relaxation time with temperature reflects local disorder and can be quantified in terms of the distribution of correlation times predicted by the Davidson-Cole model. T, relaxation is dominated by trans-gauche isomerisation, with an activation energy of 34-35 kJ mol(-1).
The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids
Hatcher, P.G.; Wilson, M.A.
1991-01-01
Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.
NASA Astrophysics Data System (ADS)
Wang, Xiaoliang; Lu, Shoudong; Sun, Pingchuan; Xue, Gi
2013-03-01
The differential scanning calorimetry (DSC) and solid state NMR have been used to systematically study the length scale of the miscibility and local dynamics of the epoxy resin/poly(ethylene oxide) (ER/PEO) blends with different PEO molecular weight. By DSC, we found that the diffusion behavior of PEO with different Mw is an important factor in controlling these behaviors upon curing. We further employed two-dimensional 13C-{1H}PISEMA NMR experiment to elucidate the possible weak interaction and detailed local dynamics in ER/PEO blends. The CH2O group of PEO forms hydrogen bond with hydroxyl proton of cured-ER ether group, and its local dynamics frozen by such interaction. Our finding indicates that molecular weight (Mw) of PEO is a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interaction in these blends.
Lyons, P.C.; Mastalerz, Maria; Orem, W.H.
2009-01-01
A maturation series of resins and fossil resins from New Zealand, ranging in age from Modern to Eocene and ranging from uncoalified to high volatile C bituminous coal, were analyzed by elemental, pyrolysis-gas chromatography (Py-GC), Fourier Transform infrared (FTir), and solid-state 13C nuclear magnetic resonance (13C NMR) techniques. For comparison, four resin samples from the Latrobe Valley, Australia, were analyzed. All of the resins and fossil resins of this study show very high H/C atomic ratios, and are characterized by dominant peaks in the 10-60??ppm range of solid-state 13C NMR spectra and prominent bands in the aliphatic stretching region (2800-3000??cm- 1) of FTir spectra, all indicating a highly aliphatic molecular structure. The 13C NMR and FTir data indicate a diterpenoid structure for these resins. There is an abrupt loss of oxygen that occurs at the Lignite A/Subbituminous C stage, which is attributed to a dramatic loss of carboxyl (COOH) from the diterpenoid molecule. This is a new finding in the diagenesis of resins. This important loss in oxygenated functional groups is attributed to a maturation change. Also, there is a progressive loss of exomethylene (CH2) groups with increasing degree of maturation, as shown by both 13C NMR and FTir data. This change has been noted by previous investigators. Exomethylene is absent in the fossil resins from the Eocene high volatile C bituminous coals. This progressive loss is characteristic of Class I resinites. FTir data indicate that the oxygenated functional groups are strong in all the resin samples except the fossil resin from high volatile C bituminous coal. This important change in oxygenated functional groups is attributed to maturation changes. The 13C NMR and FTir data indicate there are minor changes in the Agathis australis resin from the living tree and soil, which suggests that alteration of A. australis resins begins shortly after deposition in the soil for as little as 1000??years. The Morwell and Yallourn fossil resins from brown coal (lignite B) Australia do not have some of the FTir characteristics of the New Zealand resins, which most likely indicates they have a different plant source because different degrees of oxidation and weathering and changes due to fires (i.e., charring) can be ruled out. Our results have implications for studies of the maturation, provenance, and botanical sources of fossil resins and resinites in Eocene and Miocene coals and sediments of New Zealand and Australia. ?? 2009 Elsevier B.V. All rights reserved.
Sardo, Mariana; Siegel, Renée; Santos, Sérgio M; Rocha, João; Gomes, José R B; Mafra, Luis
2012-06-28
We present a complete set of experimental approaches for the NMR assignment of powdered tripeptide glutathione at natural isotopic abundance, based on J-coupling and dipolar NMR techniques combined with (1)H CRAMPS decoupling. To fully assign the spectra, two-dimensional (2D) high-resolution methods, such as (1)H-(13)C INEPT-HSQC/PRESTO heteronuclear correlations (HETCOR), (1)H-(1)H double-quantum (DQ), and (1)H-(14)N D-HMQC correlation experiments, have been used. To support the interpretation of the experimental data, periodic density functional theory calculations together with the GIPAW approach have been used to calculate the (1)H and (13)C chemical shifts. It is found that the shifts calculated with two popular plane wave codes (CASTEP and Quantum ESPRESSO) are in excellent agreement with the experimental results.
Macrocyclic molecular rotors with bridged steroidal frameworks.
Czajkowska-Szczykowska, Dorota; Rodríguez-Molina, Braulio; Magaña-Vergara, Nancy E; Santillan, Rosa; Morzycki, Jacek W; Garcia-Garibay, Miguel A
2012-11-16
In this work, we describe the synthesis and solid-state dynamics of isomeric molecular rotors 7E and 7Z, consisting of two androstane steroidal frameworks linked by the D rings by triple bonds at their C17 positions to a 1,4-phenylene rotator. They are also linked by the A rings by an alkenyl diester bridge to restrict the conformational flexibility of the molecules and reduce the number of potential crystalline arrays. The analysis of the resulting molecular structures and packing motifs offered insights of the internal dynamics that were later elucidated by means of line shape analyses of the spectral features obtained through variable-temperature solid-state (13)C NMR; such analysis revealed rotations in the solid state occurring at kilohertz frequency at room temperature.
NASA Astrophysics Data System (ADS)
Willans, Mathew J.; Sears, Devin N.; Wasylishen, Roderick E.
2008-03-01
The use of continuous-wave (CW) 1H decoupling has generally provided little improvement in the 13C MAS NMR spectroscopy of paramagnetic organic solids. Recent solid-state 13C NMR studies have demonstrated that at rapid magic-angle spinning rates CW decoupling can result in reductions in signal-to-noise and that 1H decoupling should be omitted when acquiring 13C MAS NMR spectra of paramagnetic solids. However, studies of the effectiveness of modern 1H decoupling sequences are lacking, and the performance of such sequences over a variety of experimental conditions must be investigated before 1H decoupling is discounted altogether. We have studied the performance of several commonly used advanced decoupling pulse sequences, namely the TPPM, SPINAL-64, XiX, and eDROOPY sequences, in 13C MAS NMR experiments performed under four combinations of the magnetic field strength (7.05 or 11.75 T), rotor frequency (15 or 30 kHz), and 1H rf-field strength (71, 100, or 140 kHz). The effectiveness of these sequences has been evaluated by comparing the 13C signal intensity, linewidth at half-height, LWHH, and coherence lifetimes, T2', of the methine carbon of copper(II) bis( DL-alanine) monohydrate, Cu(ala) 2·H 2O, and methylene carbon of copper(II) bis( DL-2-aminobutyrate), Cu(ambut) 2, obtained with the advanced sequences to those obtained without 1H decoupling, with CW decoupling, and for fully deuterium labelled samples. The latter have been used as model compounds with perfect 1H decoupling and provide a measure of the efficiency of the 1H decoupling sequence. Overall, the effectiveness of 1H decoupling depends strongly on the decoupling sequence utilized, the experimental conditions and the sample studied. Of the decoupling sequences studied, the XiX sequence consistently yielded the best results, although any of the advanced decoupling sequences strongly outperformed the CW sequence and provided improvements over no 1H decoupling. Experiments performed at 7.05 T demonstrate that the XiX decoupling sequence is the least sensitive to changes in the 1H transmitter frequency and may explain the superior performance of this decoupling sequence. Overall, the most important factor in the effectiveness of 1H decoupling was the carbon type studied, with the methylene carbon of Cu(ambut) 2 being substantially more sensitive to 1H decoupling than the methine carbon of Cu(ala) 2·H 2O. An analysis of the various broadening mechanisms contributing to 13C linewidths has been performed in order to rationalize the different sensitivities of the two carbon sites under the four experimental conditions.
Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials.
Guégan, Régis; Veron, Emmanuel; Le Forestier, Lydie; Ogawa, Makoto; Cadars, Sylvian
2017-09-26
The aggregation of surfactants on solid surfaces as they are adsorbed from solution is the basis of numerous technological applications such as colloidal stabilization, ore flotation, and floor cleaning. The understanding of both the structure and the dynamics of surfactant aggregates applies to the development of alternative ways of preparing hybrid layered materials. For this purpose, we study the adsorption of the triethylene glycol mono n-decyl ether (C 10 E 3 ) nonionic surfactant onto a synthetic montmorillonite (Mt), an aluminosilicate clay mineral for organoclay preparation with important applications in materials sciences, catalysis, wastewater treatment, or as drug delivery. The aggregation mechanisms follow those observed in an analogous natural Mt, with the condensation of C 10 E 3 in a bilayer arrangement once the surfactant self-assembles in a lamellar phase beyond the critical micelle concentration, underlining the importance of the surfactant state in solution. Solid-state 1 H nuclear magnetic resonance (NMR) at fast magic-angle spinning (MAS) and high magnetic field combined with 1 H- 13 C correlation experiments and different types of 13 C NMR experiments selectively probes mobile or rigid moieties of C 10 E 3 in three different aggregate organizations: (i) a lateral monolayer, (ii) a lateral bilayer, and (iii) a normal bilayer. High-resolution 1 H{ 27 Al} CP- 1 H- 1 H spin diffusion experiments shed light on the proximities and dynamics of the different fragments and fractions of the intercalated surfactant molecules with respect to the Mt surface. 23 Na and 1 H NMR measurements combined with complementary NMR data, at both molecular and nanometer scales, precisely pointed out the location of the C 10 E 3 ethylene oxide hydrophilic group in close contact with the Mt surface interacting through ion-dipole or van der Waals interactions.
NASA Astrophysics Data System (ADS)
Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Ferguson, Sarah; Taylor, David; McDonald, George; Lumata, Lloyd
Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging technique in biomedical and metabolic imaging since it amplifies the liquid-state nuclear magnetic resonance (NMR) and imaging (MRI) signals by >10,000-fold. Originally used in nuclear scattering experiments, DNP works by creating a non-Boltzmann nuclear spin distribution by transferring the high electron (γ = 28,000 MHz/T) thermal polarization to the nuclear spins via microwave irradiation of the sample at high magnetic field and low temperature. A dissolution device is used to rapidly dissolve the frozen sample and consequently produces an injectable ``hyperpolarized'' liquid at physiologically-tolerable temperature. Here we report the construction and performance evaluation of a dissolution DNP hyperpolarizer at 6.4 T and 1.4 K using a continuous-flow cryostat. The solid and liquid-state 13C NMR signal enhancement levels of 13C acetate samples doped with trityl OX063 and 4-oxo-TEMPO free radicals will be discussed and compared with the results from the 3.35 T commercial hyperpolarizer. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Abu-Baker, Shadi; Lorigan, Gary A.
2008-01-01
Phospholamban (PLB) is a 52-amino acid integral membrane protein that helps to regulate the flow of Ca2+ ions in cardiac muscle cells. Recent structural studies on the PLB pentamer and the functionally active monomer (AFA-PLB) debate whether its cytoplasmic domain, in either the phosphorylated or dephosphorylated states, is α-helical in structure as well as whether it associates with the lipid head groups [Oxenoid, K. (2005) Proc Natl. Acad. Sci. USA 102, 10870–10875, Karim, C. B. (2004) Proc. Natl. Acad. Sci. USA 101, 14437–14442, Andronesi, C.A. (2005) J. Am. Chem. Soc. 127, 12965–12974, Li, J. (2003) Biochemistry 42, 10674–10682, Metcalfe, E. E. (2005) Biochemistry 44, 4386–4396, Clayton, J. C. (2005) Biochemistry 44, 17016–17026]. Comparing the secondary structure of the PLB pentamer and its phosphorylated form (P-PLB) as well as their interaction with the lipid bilayer is crucial in order to understand its regulatory function. Therefore, in this study, the full-length wild-type (WT)-PLB and P-PLB were incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) phospholipid bilayers and studied utilizing solid-state NMR spectroscopy. The analysis of the 2H and 31P solid-state NMR data of PLB and P-PLB in POPC multilamellar vesicles (MLVs) indicates that a direct interaction takes place between both proteins and the phospholipid head groups. However, the interaction of P-PLB with POPC bilayers was less significant when compared to PLB. Moreover, the secondary structure using 13C=O site-specific isotopically labeled Ala15-PLB and Ala15-P-PLB in POPC bilayers suggests that this residue, located in the cytoplasmic domain, is a part of an α-helical structure for both PLB and P-PLB. PMID:17073452
(13)C NMR Studies, Molecular Order, and Mesophase Properties of Thiophene Mesogens.
Veeraprakash, B; Lobo, Nitin P; Narasimhaswamy, T
2015-12-03
Three-ring mesogens with a core comprising thiophene linked to one phenyl ring directly and to the other via flexible ester are synthesized with terminal alkoxy chains to probe the mesophase properties and find the molecular order. The phenyl thiophene link in the core offers a comparison of the mesophase features with the molecular shape of the mesogen. The synthesized mesogens display enantiotropic polymesomorphism and accordingly nematic, smectic A, smectic C and smectic B mesophases are perceived depending upon the terminal chain length. For some of the homologues, monotropic higher order smectic phases such as smectic F and crystal E are also witnessed. The existence of polymesomorphism are originally observed by HOPM and DSC and further confirmed by powder X-ray diffraction studies. For the C8 homologue, high resolution solid state (13)C NMR spectroscopy is employed to find the molecular structure in the liquid crystalline phase and using the 2D SLF technique, the (13)C-(1)H dipolar couplings are extracted to calculate the order parameter. By comparing the ratio of local order of thiophene as well as phenyl rings, we establish the bent-core shape of the mesogen. Importantly, for assigning the carbon chemical shifts of the core unit of aligned C8 mesogen, the (13)C NMR measured in mesophase of the synthetic intermediate is employed. Thus, the proposed approach addresses the key step in the spectral assignment of target mesogens with the use of (13)C NMR data of mesomorphic intermediate.
Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hui; Wang, Tuo; Oehme, Daniel
Here, the doublet C4 peaks at ~ 85 and ~ 89 ppm in solid-state 13C NMR spectra of native cellulose have been attributed to signals of C4 atoms on the surface (solvent-exposed) and in the interior of microfibrils, designated as sC4 and iC4, respectively. The relative intensity ratios of sC4 and iC4 observed in NMR spectra of cellulose have been used to estimate the degree of crystallinity of cellulose and the number of glucan chains in cellulose microfibrils. However, the molecular structures of cellulose responsible for the specific surface and interior C4 peaks have not been positively confirmed. Using densitymore » functional theory (DFT) methods and structures produced from classical molecular dynamics simulations, we investigated how the following four factors affect 13C NMR chemical shifts in cellulose: conformations of exocyclic groups at C6 ( tg, gt and gg), H 2O molecules H-bonded on the surface of the microfibril, glycosidic bond angles (Φ, Ψ) and the distances between H4 and HO3 atoms. We focus on changes in the δ 13C4 value because it is the most significant observable for the same C atom within the cellulose structure. DFT results indicate that different conformations of the exocyclic groups at C6 have the greatest influence on δ 13C4 peak separation, while the other three factors have secondary effects that increase the spread of the calculated C4 interior and surface peaks.« less
Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study
Yang, Hui; Wang, Tuo; Oehme, Daniel; ...
2017-11-02
Here, the doublet C4 peaks at ~ 85 and ~ 89 ppm in solid-state 13C NMR spectra of native cellulose have been attributed to signals of C4 atoms on the surface (solvent-exposed) and in the interior of microfibrils, designated as sC4 and iC4, respectively. The relative intensity ratios of sC4 and iC4 observed in NMR spectra of cellulose have been used to estimate the degree of crystallinity of cellulose and the number of glucan chains in cellulose microfibrils. However, the molecular structures of cellulose responsible for the specific surface and interior C4 peaks have not been positively confirmed. Using densitymore » functional theory (DFT) methods and structures produced from classical molecular dynamics simulations, we investigated how the following four factors affect 13C NMR chemical shifts in cellulose: conformations of exocyclic groups at C6 ( tg, gt and gg), H 2O molecules H-bonded on the surface of the microfibril, glycosidic bond angles (Φ, Ψ) and the distances between H4 and HO3 atoms. We focus on changes in the δ 13C4 value because it is the most significant observable for the same C atom within the cellulose structure. DFT results indicate that different conformations of the exocyclic groups at C6 have the greatest influence on δ 13C4 peak separation, while the other three factors have secondary effects that increase the spread of the calculated C4 interior and surface peaks.« less
Märker, Katharina; Paul, Subhradip; Fernández-de-Alba, Carlos; Lee, Daniel; Mouesca, Jean-Marie; Hediger, Sabine
2017-01-01
The self-assembly of small organic molecules is an intriguing phenomenon, which provides nanoscale structures for applications in numerous fields from medicine to molecular electronics. Detailed knowledge of their structure, in particular on the supramolecular level, is a prerequisite for the rational design of improved self-assembled systems. In this work, we prove the feasibility of a novel concept of NMR-based 3D structure determination of such assemblies in the solid state. The key point of this concept is the deliberate use of samples that contain 13C at its natural isotopic abundance (NA, 1.1%), while exploiting magic-angle spinning dynamic nuclear polarization (MAS-DNP) to compensate for the reduced sensitivity. Since dipolar truncation effects are suppressed to a large extent in NA samples, unique and highly informative spectra can be recorded which are impossible to obtain on an isotopically labeled system. On the self-assembled cyclic diphenylalanine peptide, we demonstrate the detection of long-range internuclear distances up to ∼7 Å, allowing us to observe π-stacking through 13C–13C correlation spectra, providing a powerful tool for the analysis of one of the most important non-covalent interactions. Furthermore, experimental polarization transfer curves are in remarkable agreement with numerical simulations based on the crystallographic structure, and can be fully rationalized as the superposition of intra- and intermolecular contributions. This new approach to NMR crystallography provides access to rich and precise structural information, opening up a new avenue to de novo crystal structure determination by NMR. PMID:28451235
NASA Astrophysics Data System (ADS)
Jamróz, Marta K.; Jamróz, Michał H.; Cz. Dobrowolski, Jan; Gliński, Jan A.; Gleńsk, Michał
One new and six known triterpene xylosides were isolated from Cimicifuga racemosa (black cohosh, Actaea racemosa). The structure of a new compound, designated as isocimipodocarpaside (1), was established to be (24S)-3β-hydroxy-24,25-oxiirane-16,23-dione-9,10-seco-9,19-cyclolanost-1(10),7(8),9(11)-trien 3-O-β-D-xylopyranoside, by means of 1H and 13C NMR, IR and Raman spectroscopies and Mass Spectrometry. The six known compounds are: 23-epi-26-deoxycimicifugoside (2), 23-epi-26-deoxyactein (3), 25-anhydrocimigenol xyloside (4), 23-O-acetylshengmanol xyloside (5), 25-O-acetylcimigenol xyloside (6) and 3'-O-acetylcimicifugoside H-1 (7). On the basis of NMR data supported by DFT calculations of NMR shielding constants of (2), its structure, previously described as 26-deoxycimicifugoside was corrected and determined as 23-epi-26-deoxycimicifugoside. The 13C CPMAS NMR spectra of the studied compounds (1)-(7) provided data on their solid-state interactions. The IR and Raman spectra in the Cdbnd O, Cdbnd C, and Csbnd H stretching vibration regions clearly discriminate different triterpenes found in C. racemosa.
Kojima, Taro; Higashi, Kenjirou; Suzuki, Toyofumi; Tomono, Kazuo; Moribe, Kunikazu; Yamamoto, Keiji
2012-10-01
The stabilization mechanism of a supersaturated solution of mefenamic acid (MFA) from a solid dispersion with EUDRAGIT(®) EPO (EPO) was investigated. The solid dispersions were prepared by cryogenic grinding method. Powder X-ray diffractometry, in vitro dissolution test, in vivo oral absorption study, infrared spectroscopy, and solid- and solution-state NMR spectroscopies were used to characterize the solid dispersions. Dissolution tests in acetate buffer (pH 5.5) revealed that solid dispersion showed > 200-fold higher concentration of MFA. Supersaturated solution was stable over 1 month and exhibited improved oral bioavailability of MFA in rats, with a 7.8-fold higher area under the plasma concentration-versus-time curve. Solid-state (1)H spin-lattice relaxation time (T(1)) measurement showed that MFA was almost monomolecularly dispersed in the EPO polymer matrix. Intermolecular interaction between MFA and EPO was indicated by solid-state infrared and (13)C-T(1) measurements. Solution-state (1)H-NMR measurement demonstrated that MFA existed in monomolecular state in supersaturated solution. (1)H-T(1) and difference nuclear Overhauser effect measurements indicated that cross relaxation occurred between MFA and EPO due to the small distance between them. The formation and high stability of the supersaturated solution were attributable to the specifically formed intermolecular interactions between MFA and EPO.
Wang, Tuo; Hong, Mei
2016-01-01
Until recently, the 3D architecture of plant cell walls was poorly understood due to the lack of high-resolution techniques for characterizing the molecular structure, dynamics, and intermolecular interactions of the wall polysaccharides in these insoluble biomolecular mixtures. We introduced multidimensional solid-state NMR (SSNMR) spectroscopy, coupled with (13)C labelling of whole plants, to determine the spatial arrangements of macromolecules in near-native plant cell walls. Here we review key evidence from 2D and 3D correlation NMR spectra that show relatively few cellulose-hemicellulose cross peaks but many cellulose-pectin cross peaks, indicating that cellulose microfibrils are not extensively coated by hemicellulose and all three major polysaccharides exist in a single network rather than two separate networks as previously proposed. The number of glucan chains in the primary-wall cellulose microfibrils has been under active debate recently. We show detailed analysis of quantitative (13)C SSNMR spectra of cellulose in various wild-type (WT) and mutant Arabidopsis and Brachypodium primary cell walls, which consistently indicate that primary-wall cellulose microfibrils contain at least 24 glucan chains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Coordination geometry of lead carboxylates - spectroscopic and crystallographic evidence.
Catalano, Jaclyn; Murphy, Anna; Yao, Yao; Yap, Glenn P A; Zumbulyadis, Nicholas; Centeno, Silvia A; Dybowski, Cecil
2015-02-07
Despite their versatility, only a few single-crystal X-ray structures of lead carboxylates exist, due to difficulties with solubility. In particular, the structures of long-chain metal carboxylates have not been reported. The lone electron pair in Pb(ii) can be stereochemically active or inactive, leading to two types of coordination geometries commonly referred to as hemidirected and holodirected structures, respectively. We report (13)C and (207)Pb solid-state NMR and infrared spectra for a series of lead carboxylates, ranging from lead hexanoate (C6) to lead hexadecanoate (C18). The lead carboxylates based on consistent NMR parameters can be divided in two groups, shorter-chain (C6, C7, and C8) and longer-chain (C9, C10, C11, C12, C14, C16, and C18) carboxylates. This dichotomy suggests two modes of packing in these solids, one for the short-chain lead carboxylates and one for long-chain lead carboxylates. The consistency of the (13)C and (207)Pb NMR parameters, as well as the IR data, in each group suggests that each motif represents a structure characteristic of each subgroup. We also report the single-crystal X-ray diffraction structure of lead nonanoate (C9), the first single-crystal structure to have been reported for the longer-chain subgroup. Taken together the evidence suggests that the coordination geometry of C6-C8 lead carboxylates is hemidirected, and that of C9-C14, C16 and C18 lead carboxylates is holodirected.
NASA Astrophysics Data System (ADS)
Ishii, Yoshitaka
2001-05-01
A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as 13C-13C systems under very fast magic angle spinning (MAS) in solid-state nuclear magnetic resonance (NMR) spectroscopy. The presented technique, finite pulse rf driven recoupling (fpRFDR), restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase- and symmetry-cycled π-pulse train in which a rotor-synchronous π pulse is applied every rotation period. The restored effective dipolar interaction has the form of a zero-quantum dipolar Hamiltonian for static solids, whose symmetry in spin space is different from that obtained by conventional rf driven recoupling (RFDR) techniques. It is demonstrated that the efficiency of recoupling by fpRFDR is not strongly dependent on chemical shift differences or resonance offsets in contrast to previous recoupling methods under very fast MAS. To realize distance measurements without effects of spin relaxation, a constant-time version of fpRFDR (CT-fpRFDR) is introduced, in which the effective evolution period is varied by refocusing dipolar evolution with a rotor-synchronized solid echo while the total recoupling period is kept constant. From CT-fpRFDR experiments at a spinning speed of 30.3 kHz in a field of 17.6 T, the 13C-13C distance of [1-13C]Ala-[1-13C]Gly-Gly was determined to be 3.27 Å, which agrees well with the value of 3.20 Å obtained by x-ray diffraction. Also, two-dimensional (2D) 13C/13C chemical-shift correlation NMR spectrum in a field of 9.4 T was obtained with fpRFDR for fibrils of the segmentally 13C- and 15N-labeled Alzheimer's β-Amyloid fragments, Aβ16-22 (residues 16-22 taken from the 40-residue Aβ peptide) in which Leu-17 through Ala-21 are uniformly 13C- and 15N-labeled. Most 13C resonances for the main chain as well as for the side chains are assigned based on 2D 13C/13C chemical-shift correlation patterns specific to amino-acid types. Examination of the obtained 13C chemical shifts revealed the formation of β-strand across the entire molecule of Aβ16-22. Possibility of high throughput determination of global main-chain structures based on 13C shifts obtained from 2D 13C/13C chemical-shift correlation under very fast MAS is also discussed for uniformly/segmentally 13C-labeled protein/peptide samples.
Spectral Study of Modified Humic Acids from Lignite
NASA Astrophysics Data System (ADS)
Zherebtsov, Sergey; Malyshenko, Natalya; Bryukhovetskaya, Ludmila; Ismagilov, Zinfer
2017-11-01
The IR-Fourier, ESR and solid-state 13C NMR analysis are used for investigation of unmodified and modified humic acids obtained from Tisul lignite (the Kansko-Achinsk Basin). Treatment with Hydrogen peroxide used for modification of humic acids and it changes the functionalgroup composition of the humic acids and increases the sorptional capacity
Hatcher, Patrick G; Obeid, Wassim; Wozniak, Andrew S; Xu, Chen; Zhang, Saijin; Santschi, Peter H; Quigg, Antonietta
2018-01-01
The Deepwater Horizon oil spill stimulated the release of marine snow made up of dead/living plankton/bacteria and their exopolymeric polysaccharide substances (EPS), termed marine oil snow (MOS), promoting rapid removal of oil from the water column into sediments near the well site. Mesocosm simulations showed that Macondo surrogate oil readily associates with the marine snow. Quantitative solid-state 13 C NMR readily distinguishes this oil from naturally formed marine snow and reveals that adding the dispersant Corexit enhances the amount of oil associated with the MOS, thus contributing to rapid removal from the water column. Solvent extraction of MOS removes the oil-derived compounds for analysis by one and two-dimensional GC/MS and evaluation of potential transformations they undergo when associated with the EPS. The results reveal that the oil associated with EPS is subjected to rapid transformation, in a matter of days, presumably by bacteria and fungi associated with EPS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shaibat, Medhat A; Casabianca, Leah B; Siberio-Pérez, Diana Y; Matzger, Adam J; Ishii, Yoshitaka
2010-04-08
Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of alpha- and beta-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. (13)C high-resolution SSNMR spectra of alpha- and beta-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. (13)C and (1)H SSNMR relaxation times of alpha- and beta-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs.
A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz
McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.
2009-01-01
Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870
Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid.
Mali, Kailas K; Dhawale, Shashikant C; Dias, Remeth J
2017-12-01
The objective of this study was to synthesize and characterize citric acid crosslinked carboxymethyl tamarind gum (CMTG) hydrogels films. The hydrogel films were characterized by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, solid state 13 C-nuclear magnetic resonance ( 13 C NMR) spectroscopy and differential scanning calorimeter (DSC). The prepared hydrogel films were evaluated for the carboxyl content and swelling ratio. The model drug moxifloxacin hydrochloride was loaded into hydrogels films and drug release was studied at pH 7.4. The hemolysis assay was used to study the biocompatibility of hydrogel films. The results of ATR-FTIR, solid state 13 C NMR and DSC confirmed the formation of ester crosslinks between citric acid and CMTG. The total carboxyl content of hydrogel film was found to be decreased when amount of CMTG was increased. The swelling of hydrogel film was found to be decreased with increase in curing temperature and time. CMTG hydrogel films showed high drug loading with non-Fickian release mechanism suggesting controlled release of drug. The hydrogel films were found to be biocompatible. It can be concluded that the citric acid can be used for the preparation of CMTG hydrogel films. Further, CMTG hydrogel film can be used potentially for controlled release of drug. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficient design of multituned transmission line NMR probes: the electrical engineering approach.
Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G
2011-01-01
Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented. Copyright © 2011 Elsevier Inc. All rights reserved.
Characterisation of indomethacin and nifedipine using variable-temperature solid-state NMR.
Apperley, David C; Forster, Angus H; Fournier, Romain; Harris, Robin K; Hodgkinson, Paul; Lancaster, Robert W; Rades, Thomas
2005-11-01
We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by 13C CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature 1H relaxation measurements of static samples have revealed a T1rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature 13C and 1H NMR. There is a change in slope for T1H and T1rhoH at the glass transition temperature (Tg) for indomethacin, but this occurs a few degrees below Tg for nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by 13C NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements. Copyright (c) 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryce, David L.; Wasylishen, Roderick E.
2002-06-21
The chemical shift (CS) and electric field gradient (EFG) tensors in the piano-stool compound mesitylenetricarbonylmolybdenum(0), 1, have been investigated via {sup 95}Mo and {sup 13}C solid-state magic-angle spinning (MAS) NMR as well as relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) calculations. Molybdenum-95 (I = 5/2) MAS NMR spectra acquired at 18.8 T are dominated by the anisotropic chemical shift interaction ({Omega} = 775 {+-} 30 ppm) rather than the 2nd-order quadrupolar interaction (C{sub Q} = -0.96 {+-} 0.15 MHz), an unusual situation for a quadrupolar nucleus. ZORA-DFT calculations of the {sup 95}Mo EFG and CS tensors are in agreementmore » with the experimental data. Mixing of appropriate occupied and virtual d-orbital dominated MOs in the region of the HOMO-LUMO gap are shown to be responsible for the large chemical shift anisotropy. The small, but non-negligible, {sup 95}Mo quadrupolar interaction is discussed in terms of the geometry about Mo. Carbon-13 CPMAS spectra acquired at 4.7 T demonstrate the crystallographic and magnetic nonequivalence of the twelve {sup 13}C nuclei in 1, despite the chemical equivalence of some of these nuclei in isotropic solutions. The principal components of the carbon CS tensors are determined via a Herzfeld-Berger analysis, and indicate that motion of the mesitylene ring is slow compared to a rate which would influence the carbon CS tensors (i.e. tens of {micro}s). ZORA-DFT calculations reproduce the experimental carbon CS tensors accurately. Oxygen-17 EFG and CS tensors for 1 are also calculated and discussed in terms of existing experimental data for related molybdenum carbonyl compounds. This work provides an example of the information available from combined multi-field solid-state multinuclear magnetic resonance and computational investigations of transition metal compounds, in particular the direct study of quadrupolar transition metal nuclei with relatively small magnetic moments.« less
Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass
Wu, Qiong; Huang, Lang; Yu, Shitao; ...
2017-05-26
We investigated the structural characteristics of products derived from the hydrothermal carbonization (HTC) of loblolly pine (LP) and straw grass (SG) via solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS 13C NMR), heteronuclear single-quantum correlation nuclear magnetic resonance (HSQC-NMR), and solution 13C NMR and 31P NMR techniques. Our results revealed that after HTC, hydrochars from both LP and SG mainly consisted of a combination of lignin, furfural, and condensed polyaromatic structures with a high level of fixed carbon content and higher heating value (HHV). Hydrochar from LP exhibited a higher aryl to furan ratio, and those from SG contained moremore » aliphatic functional groups. Solution 13C NMR and HSQC revealed that both liquid chemicals were condensed polyphenolic structures with aliphatic groups that exist mainly in the form of side chains. Although the LP products exhibited a higher proportion of aromatic structures, the types of polyphenol and aliphatic C–H were more diverse in the SG products. Results also indicated that reactions such as chain scission and condensation occurred during hydrothermal carbonization processes. Overall, HTC was found to be an effective refinery treatment for converting different waste biomass into valuable energy materials and chemicals.« less
Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiong; Huang, Lang; Yu, Shitao
We investigated the structural characteristics of products derived from the hydrothermal carbonization (HTC) of loblolly pine (LP) and straw grass (SG) via solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS 13C NMR), heteronuclear single-quantum correlation nuclear magnetic resonance (HSQC-NMR), and solution 13C NMR and 31P NMR techniques. Our results revealed that after HTC, hydrochars from both LP and SG mainly consisted of a combination of lignin, furfural, and condensed polyaromatic structures with a high level of fixed carbon content and higher heating value (HHV). Hydrochar from LP exhibited a higher aryl to furan ratio, and those from SG contained moremore » aliphatic functional groups. Solution 13C NMR and HSQC revealed that both liquid chemicals were condensed polyphenolic structures with aliphatic groups that exist mainly in the form of side chains. Although the LP products exhibited a higher proportion of aromatic structures, the types of polyphenol and aliphatic C–H were more diverse in the SG products. Results also indicated that reactions such as chain scission and condensation occurred during hydrothermal carbonization processes. Overall, HTC was found to be an effective refinery treatment for converting different waste biomass into valuable energy materials and chemicals.« less
Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka
2015-01-01
We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081
NASA Astrophysics Data System (ADS)
Knicker, Heike; Paneque-Carmona, Marina; Velasco-Molina, Marta; de la Rosa, José Maria; León-Ovelar, Laura Regina; Fernandez-Boy, Elena
2017-04-01
Intense research on biochar and charcoal of the last years has revealed that depending on the production conditions, the chemical and physical characteristics of their aromatic network can greatly vary. Since such variations are determining the behavior and stability of charred material in soils, a better understanding of the structural changes occurring during their heating and the impact of those changes on their function is needed. One method to characterize pyrogenic organic matter (PyOM) represents solid-state 13C NMR spectroscopy applying the cross polarization (CP) magic angle spinning technique (MAS). A drawback of this technique is that the quantification of NMR spectra of samples with highly condensed and proton-depleted structures is assumed to be bias. Typical samples with such attributes are charcoals produced at temperatures above 700°C under pyrolytic conditions. Commonly their high condensation degree leads to graphenic structures that are not only reducing the CP efficiency but create also a conductive lattice which acts as a shield and prevents the entering of the excitation pulse into the sample during the NMR experiments. Since the latter can damage the NMR probe and in the most cases the obtained NMR spectra show only one broad signal assignable to aromatic C, this technique is rarely applied for characterizing high temperature chars or soot. As a consequence, a more detailed knowledge of the nature of the aromatic ring systems is still missing. The latter is also true for the aromatic domains of PyOM produced at lower temperatures, since older NMR instruments operating at low magnetic fields deliver solid-state 13C NMR spectra with low resolution which turns a more detailed analysis of the aromatic chemical shift region into a challenging task. In order to overcome this disadvantages, modern NMR spectroscopy offers not only instruments with greatly improved resolution but also special pulse sequences for NMR experiments which allow a more detailed chemical shift assignment. Applying the latter to various charcoals and biochars, we intended to test their usefulness for a better characterization of PyOM and elucidation how specific aromatic features can affect their behavior in soils. We could demonstrate that furans represent the major compound class of low temperature chars produced from woody material. As indicated by 2D techniques, residual alkyl C in such chars has minor covalent binding to the aromatic network. Reducing the electrical conductivity of high-temperature chars by addition of aluminum oxide permitted the application of the cross CP technique. Determination of the relaxation and CP dynamics confirmed high rigidity of their aromatic domains which were dominated by coronene-type moieties. In contrast to common view, we could demonstrate that quantifiable CP NMR spectra can be obtained from high temperature chars with contact times of 3 to 5 ms and pulse delays > 3 s.
Pöppler, Ann Christin; Corlett, Emily K; Pearce, Harriet; Seymour, Mark P; Reid, Matthew; Montgomery, Mark G; Brown, Steven P
2017-03-01
A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely dithianon (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho[2,3-b][1,4]dithiine-2,3-dicarbonitrile-4,6-dimethyl-N-phenylpyrimidin-2-amine (1/1), C 14 H 4 N 2 O 2 S 2 ·C 12 H 13 N 2 ]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental 1 H and 13 C chemical shifts are determined from two-dimensional 1 H- 13 C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C-H connectivities and longer-range C...H proximities, whereas H...H proximities are identified in a 1 H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated molecules allows the determination of the change in chemical shift upon going from an isolated molecule to the full crystal structure. For the 1 H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to intermolecular N-H...O and C-H...O hydrogen bonding, while changes of -2.7 and -1.5 ppm are due to ring current effects associated with C-H...π interactions. Even though there is a close intermolecular S...O distance of 3.10 Å, it is of note that the molecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straasø, Lasse A.; Shankar, Ravi; Nielsen, Niels Chr.
The homonuclear radio-frequency driven recoupling (RFDR) experiment is commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological samples due to its ease of implementation, stability towards fluctuations/missetting of radio-frequency (rf) field strength, and in general low rf requirements. A theoretical operator-based Floquet description is presented to appreciate the effect of having a temporal displacement of the π-pulses in the RFDR experiment. From this description, we demonstrate improved transfer efficiency for the RFDR experiment by generating an adiabatic passage through the zero-quantum recoupling condition. We have compared the performances of RFDR and the improved sequence tomore » mediate efficient {sup 13}CO to {sup 13}C{sub α} polarization transfer for uniformly {sup 13}C,{sup 15}N-labeled glycine and for the fibril forming peptide SNNFGAILSS (one-letter amino acid codes) uniformly {sup 13}C,{sup 15}N-labeled at the FGAIL residues. Using numerically optimized sweeps, we get experimental gains of approximately 20% for glycine where numerical simulations predict an improvement of 25% relative to the standard implementation. For the fibril forming peptide, using the same sweep parameters as found for glycine, we have gains in the order of 10%–20% depending on the spectral regions of interest.« less
Binding of methane to activated mineral surfaces - a methane sink on Mars?
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Knak Jensen, S. J.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, Ebbe; Iversen, J. J.; Kondrup, J. C.
2015-10-01
Tumbling experiments that simulate the wind erosion of quartz grains in an atmosphere of 13 C-enriched methane are reported. The eroded grains are analyzed by 13C and 29 Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250oC. These findings offer a model for a methane sink that might explain the fast disappearance of methane on Mars.
Bullock, Peter T. B.; Reid, David G.; Ying Chow, W.; Lau, Wendy P. W.; Duer, Melinda J.
2014-01-01
NMR is ideal for characterizing non-enzymatic protein glycation, including AGEs (advanced glycation endproducts) underlying tissue pathologies in diabetes and ageing. Ribose, R5P (ribose-5-phosphate) and ADPR (ADP-ribose), could be significant and underinvestigated biological glycating agents especially in chronic inflammation. Using [U-13C]ribose we have identified a novel glycoxidation adduct, 5-deoxy-5-desmethylpronyl-lysine, ‘norpronyl-lysine’, as well as numerous free ketones, acids and amino group reaction products. Glycation by R5P and ADPR proceeds rapidly with R5P generating a brown precipitate with PLL (poly-L-lysine) within hours. ssNMR (solid-state NMR) 13C–13C COSY identifies several crosslinking adducts such as the newly identified norpronyl-lysine, in situ, from the glycating reaction of 13C5-ribose with collagen. The same adducts are also identifiable after reaction of collagen with R5P. We also demonstrate for the first time bio-amine (spermidine, N-acetyl lysine, PLL) catalysed ribose 2-epimerization to arabinose at physiological pH. This work raises the prospect of advancing understanding of the mechanisms and consequences of glycation in actual tissues, in vitro or even ex vivo, using NMR isotope-labelled glycating agents, without analyses requiring chemical or enzymatic degradations, or prior assumptions about glycation products. PMID:27919030
Wu, Chin H; Grant, Christopher V; Cook, Gabriel A; Park, Sang Ho; Opella, Stanley J
2009-09-01
A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800MHz (1)H/(15)N and (1)H/(13)C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.
NASA Astrophysics Data System (ADS)
Horii, Fumitaka; Idehara, Toshitaka; Fujii, Yutaka; Ogawa, Isamu; Horii, Akifumi; Entzminger, George; Doty, F. David
2012-07-01
A dynamic nuclear polarization (DNP)-enhanced cross-polarization/magic-angle spinning (DNP/CP/MAS) NMR system has been developed by combining a 200 MHz Chemagnetics CMX-200 spectrometer operating at 4.7 T with a high-power 131.5 GHz Gyrotron FU CW IV. The 30 W sub-THz wave generated in a long pulse TE _{{41}}^{{(1)}} mode with a frequency of 5 Hz was successfully transmitted to the modified Doty Scientific low-temperature CP/MAS probe through copper smooth-wall circular waveguides. Since serious RF noises on NMR signals by arcing in the electric circuit of the probe and undesired sample heating were induced by the continuous sub-THz wave pulse irradiation with higher powers, the on-off sub-THz wave pulse irradiation synchronized with the NMR detection was developed and the appropriate setting of the irradiation time and the cooling time corresponding to the non-irradiation time was found to be very effective for the suppression of the arcing and the sample heating. The attainable maximum DNP enhancement was more than 30 folds for C1 13 C-enriched D-glucose dissolved in the frozen medium containing mono-radical 4-amino-TEMPO. The first DNP/CP/MAS 13 C NMR spectra of poly(methyl methacrylate) (PMMA) sub-micron particles were obtained at the dispersed state in the same frozen medium, indicating that DNP-enhanced 1H spins effectively diffuse from the medium to the PMMA particles through their surface and are detected as high-resolution 13 C spectra in the surficial region to which the 1H spins reach. On the basis of these results, the possibility of the DNP/CP/MAS NMR characterization of the surface structure of nanomaterials including polymer materials was discussed.
Natural abundance high-resolution solid state 2 H NMR spectroscopy
NASA Astrophysics Data System (ADS)
Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.
1994-08-01
We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.
Natural abundance high-resolution solid state 2 H NMR spectroscopy
NASA Astrophysics Data System (ADS)
Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.
1994-08-01
We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.
Stephane Mananga, Eugene
2013-01-01
Floquet-Magnus expansion is used to study the effect of chemical shift anisotropy in solid-state NMR of rotating solids. The chemical shift interaction is irradiated with two types of radiofrequency pulse sequences: BABA and C7. The criteria for the chemical shift anisotropy to be averaged out in each rotor period are obtained. Copyright © 2013 Elsevier Inc. All rights reserved.
Jamróz, Marta K; Jamróz, Michał H; Cz Dobrowolski, Jan; Gliński, Jan A; Gleńsk, Michał
2012-07-01
One new and six known triterpene xylosides were isolated from Cimicifuga racemosa (black cohosh, Actaea racemosa). The structure of a new compound, designated as isocimipodocarpaside (1), was established to be (24S)-3β-hydroxy-24,25-oxiirane-16,23-dione-9,10-seco-9,19-cyclolanost-1(10),7(8),9(11)-trien 3-O-β-d-xylopyranoside, by means of (1)H and (13)C NMR, IR and Raman spectroscopies and Mass Spectrometry. The six known compounds are: 23-epi-26-deoxycimicifugoside (2), 23-epi-26-deoxyactein (3), 25-anhydrocimigenol xyloside (4), 23-O-acetylshengmanol xyloside (5), 25-O-acetylcimigenol xyloside (6) and 3'-O-acetylcimicifugoside H-1 (7). On the basis of NMR data supported by DFT calculations of NMR shielding constants of (2), its structure, previously described as 26-deoxycimicifugoside was corrected and determined as 23-epi-26-deoxycimicifugoside. The (13)C CPMAS NMR spectra of the studied compounds (1)-(7) provided data on their solid-state interactions. The IR and Raman spectra in the CO, CC, and CH stretching vibration regions clearly discriminate different triterpenes found in C. racemosa. Copyright © 2012 Elsevier B.V. All rights reserved.
Metal Substitution in Keggin-Type Tridecameric Aluminum-Oxo-Hydroxy Clusters.
Parker, Wallace O'Neil; Millini, Roberto; Kiricsi, Imre
1997-02-12
The species resulting from a typical preparation for metal-substituted hybrids of the Keggin tridecamer, Al 13 or [AlO 4 Al 12 (OH) 24 (OH 2 ) 12 ] 7+ , were examined by performing 27 Al NMR on the solutions during aging and by studying the precipitated sulfate salts via solid state 27 Al NMR and powder X-ray diffraction (XRD). Aqueous mixtures (0.25 mol L -1 ) of AlCl 3 and another metal ion (M), in a 12:1 mole ratio (Al:M), where M = Fe 3+ , Zn 2+ , Ga 3+ , In 3+ , Sn 2+ , La 3+ , and Bi 3+ , were subjected to forced hydrolysis by addition of NaOH (1.0 mol L -1 ) until OH/(Al + M) = 2.25, and the kinetics of Al 13 formation and disappearance with aging at 80 °C was monitored by 27 Al NMR spectroscopy. Al 13 units polymerize on aging with an apparent rate constant (k) of 4.8(8) × 10 -2 h -1 to form a species referred to as AlP 2 . Only the solutions containing Ga 3+ and Sn 2+ exhibited faster Al 13 conversion rates. GaAl 12 forms quickly at 80 °C (k = 0.54 h -1 ) and is more stable than AlP 2 . Sn 2+ apparently promotes AlP 2 formation (k = 0.38 h -1 ). XRD and solid state NMR reveal that only the Ga hybrid can be prepared by this method. No hybrid formation was evidenced using M = Mg 2+ , Fe 3+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , In 3+ , La 3+ , or Ce 3+ at 25 °C or M = Co 2+ or La 3+ under reflux conditions. Isostructural (cubic symmetry) single crystals were obtained for the sulfate salts of Al 13 and GaAl 12 . Single-crystal XRD analysis of these two polyoxocations provides the first rigorous comparison between them and shows they have very similar structures. The main crystallographic data for Al 13 and GaAl 12 are as follows: Na[AlO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 ·10H 2 O, cubic, F4̄3m, a = 17.856(2) Å, Z = 4; Na[GaO 4 Al 12 (OH) 24 (H 2 O) 12 ](SO 4 ) 4 ·10H 2 O, cubic, F4̄3m, a = 17.869(3) Å, Z = 4. Thus, the greater thermal stability of GaAl 12 cannot be rationalized in terms of the overall geometric considerations, as suggested by others. Solid state NMR also shows the coordination symmetries of the outer 12 Al nuclei in both clusters to be similar.
NASA Astrophysics Data System (ADS)
Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.
2012-04-01
Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.
Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J
2012-04-01
Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. Copyright © 2012 Elsevier Inc. All rights reserved.
Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S
2017-01-01
The ultimate aim of this study was to apply a non-targeted chemometric analysis (principal component analysis and hierarchical clustering analysis using the heat map approach) of NMR data to investigate the variability of organic compounds in nine genotype cowpea seeds, without any complex pre-treatment. In general, both exploratory tools show that Tvu 233, CE-584, and Setentão genotypes presented higher amount mainly of raffinose and Tvu 382 presented the highest content of choline and least content of raffinose. The evaluation of the aromatic region showed the Setentão genotype with highest content of niacin/vitamin B3 whereas Tvu 382 with lowest amount. To investigate rigid and mobile components in the seeds cotyledon, 13 C CP and SP/MAS solid-state NMR experiments were performed. The cotyledon of the cowpea comprised a rigid part consisting of starch as well as a soft portion made of starch, fatty acids, and protein. The variable contact time experiment suggests the presence of lipid-amylose complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reid, David G; Bonnet, Susan L; Kemp, Gabre; van der Westhuizen, Jan H
2013-10-01
(13)C NMR is an effective method of characterizing proanthocyanidin (PAC) tannins in quebracho (Schinopsis lorentzii) heartwood and black wattle (Acacia mearnsii) bark, before and after commercial extraction. The B-rings of the constituent flavan-3-ols, catechols (quebracho) or pyrogallols (wattle), are recognized in unprocessed source materials by "marker" signals at ca. 118 or 105ppm, respectively. NMR allows the minimum extraction efficiency to be calculated; ca. 30%, and ca. 80%, for quebracho heartwood and black wattle bark, respectively. NMR can also identify PAC tannin (predominantly robinetinidin), and compare tannin content, in bark from other acacia species; tannin content decreases in the order A. mearnsii, Acacia pycnantha (87% of A. mearnsii), Acacia dealbata and Acacia decurrens (each 74%) and Acacia karroo (30%). Heartwood from an underexploited PAC tannin source, Searsia lancea, taxonomically close to quebracho, shows abundant profisetinidin and catechin PACs. NMR offers the advantage of being applicable to source materials in their native state, and has potential applications in optimizing extraction processes, identification of tannin sources, and characterization of tannin content in cultivar yield improvement programmes. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Solid state 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to study the structure of soil humic fractions; however, knowledge regarding carbon structural relationships in humic fractions is limited. In this study, mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fr...
Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
2000-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperature was developed and used to assess the influence of the reaction pH on the formaldehyde emission and heat stability of the cured resins. Additionally, solid-state 13C CP/MAS nuclear magnetic resonance (NMR) techniques were used to investigate the...
NASA Astrophysics Data System (ADS)
Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi
2017-12-01
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.
Polymer mobility in cell walls of cucumber hypocotyls
NASA Technical Reports Server (NTRS)
Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.
1999-01-01
Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.
NASA Astrophysics Data System (ADS)
Jamróz, Marta K.; Bąk, Joanna; Gliński, Jan A.; Koczorowska, Agnieszka; Wawer, Iwona
2009-09-01
Actein is a prominent triterpene glycoside occurring in Actaea racemosa. The triterpene glycosides are believed to be responsible for the estrogenic activity of an extract prepared from this herb. We determined in the crystal structure of actein by X-ray crystallography to be monoclinic P2(1) chiral space group. Refining the disorder, we determined 70% and 30% of contributions of ( S)- and ( R)-actein, respectively. The IR and Raman spectra suggest that actein forms at least four different types of hydrogen bonds. The 13C NMR spectra of actein were recorded both in solution and solid state. The 13C CPMAS spectrum of actein displays multiplet signals, in agreement with the crystallographic data. The NMR shielding constants were calculated for actein using GIAO approach and a variety of basis sets: 6-31G**, 6-311G**, 6-31+G**, cc-pVDZ, cc-pVDZ-su1 and 6-31G**-su1, as well as IGLO approach combined with the IGLO II basis set. The best results (RMSD of 1.6 ppm and maximum error of 3.4 ppm) were obtained with the 6-31G**-su1 basis set. The calculations of the shielding constants are helpful in the interpretation of the 13C CPMAS NMR spectra of actein and actein's analogues.
Compositions and constituents of freshwater dissolved organic matter isolated by reverse osmosis.
Zhang, Yulong; Huang, Wen; Ran, Yong; Mao, Jingdong
2014-08-15
Dissolved organic matter (DOM) from riverine and lacustrine water was isolated using a reverse osmosis (RO) system. Solid-state (13)C nuclear magnetic resonance ((13)C NMR) was used to quantitatively evaluate the compositions and constituents of DOM, which are compared with previous investigations on marine DOM. Results indicated that concentration factor (CF) was a key metric controlling yield and sorption of DOM on the RO system. The sorption was likely non-selective, based on the (13)C NMR and δ(13)C analyses. Carbohydrates and lipids accounted for 25.0-41.5% and 30.2-46.3% of the identifiable DOM, followed by proteins (18.2-19.8%) and lignin (7.17-12.8%). The freshwater DOM contained much higher alkyl and aromatic C but lower alkoxyl and carboxyl C than marine DOM. The structural difference was not completely accounted for by using structure of high molecular weight (HMW) DOM, suggesting a size change involved in transformations of DOM during the transport from rivers to oceans. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P
2017-01-01
Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid 13 C and solution 31 P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid 13 C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution 31 P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, David O.; Erickson, Karla A.; Scott, Brian L.
We synthesized and characterized the title compound, (E)-1-(2,6-diisopropylphenyl)-2-phenyldiazine (I) using a combination of 1H, 13C, and 15N NMR spectroscopy, infrared and UV/Vis spectroscopy, X-ray crystallography, and GC mass spectrometry. The solid-state structure is also reported. The unsymmetric azobenzene crystallizes in the space group P2 1/c with unit cell parameters a = 8.001(7) Å, b = 17.827(16) Å, c = 11.129(10) Å, β = 101.960(10)°, V = 1553(2) Å 3, Z = 4, D calc = 1.139 g/cm 3.
Baumann, David O.; Erickson, Karla A.; Scott, Brian L.; ...
2017-10-24
We synthesized and characterized the title compound, (E)-1-(2,6-diisopropylphenyl)-2-phenyldiazine (I) using a combination of 1H, 13C, and 15N NMR spectroscopy, infrared and UV/Vis spectroscopy, X-ray crystallography, and GC mass spectrometry. The solid-state structure is also reported. The unsymmetric azobenzene crystallizes in the space group P2 1/c with unit cell parameters a = 8.001(7) Å, b = 17.827(16) Å, c = 11.129(10) Å, β = 101.960(10)°, V = 1553(2) Å 3, Z = 4, D calc = 1.139 g/cm 3.
NASA Astrophysics Data System (ADS)
Knicker, Heike
2016-04-01
During the last years, increasing evidences are provided that the common view of charcoal as a polyaromatic network is too much simplified. Experiments with model compounds indicated that it represents a heterogeneous mixture of thermally altered biomacromolecules with N, O and likely also S substitutions as common features. If produced from a N-rich feedstock, the so called black nitrogen (BN) has to be considered as an integral part of the aromatic charcoal network. In order to study this network one-dimensional (1D) solid-state nuclear magnetic resonance (NMR) spectroscopy is often applied. However, this technique suffers from broad resonance lines and low resolution. Applying 2D techniques can help but until recently, this was unfeasible for natural organic matter (NOM) due to sensitivity problems and the high complexity of the material. On the other hand, during the last decade, the development of stronger magnetic field instruments and advanced pulse sequences has put them into reach for NOM research. Although 2D NMR spectroscopy has many different applications, all pulse sequences are based on the introduction of a preparation time during which the magnetization of a spin system is adjusted into a state appropriate to whatever properties are to be detected in the indirect dimension. Then, the spins are allowed to evolve with the given conditions and after their additional manipulation during a mixing period the modulated magnetization is detected. Assembling several 1D spectra with incrementing evolution time creates a data set which is two-dimensional in time (t1, t2). Fourier transformation of both dimensions leads to a 2D contour plot correlating the interactions detected in the indirect dimension t1 with the signals detected in the direct dimension t2. The so called solid-state heteronuclear correlation (HETCOR) NMR spectroscopy represents a 2D technique allows the determination which protons are interacting with which carbons. In the present work this technique was used for monitoring the chemical changes occurring during charring of biomass derived from model compounds, fire-affected and unaffected NOM. The 2D 13C HETCOR NMR spectrum of the fire- unaffected soils revealed that most of the carboxyl C occurs as ester or amide. Aside from cross peaks typically seen in spectra of NOM, the spectrum of the respective fire-affected counterpart shows additional signals assignable to PyOM.
NASA Astrophysics Data System (ADS)
Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas; Ramamoorthy, Ayyalusamy
2015-01-01
Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional 1H-13C dipolar coupling/chemical shift correlation experiment using 13C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H - w1C = ±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly 13C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of 1H-13C dipolar couplings are insensitive to 1H/13C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated 1H detected avenues for ultrafast MAS.
Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L
2013-08-01
We report on the (25)Mg solid-state nuclear magnetic resonance (NMR) characterization of a series of magnesium complexes featuring Mg(2+) ions in organic coordination environments. Six compounds have been synthesized with benzoate and salicylate ligands, which are typically used as linkers in metal organic frameworks (MOFs). The use of ultrahigh-field solid-state NMR has revealed a relatively large range of values for the (25)Mg quadrupolar coupling constant, CQ((25)Mg), in these compounds. In contrast to some previously studied inorganic Mg(2+) complexes, the values of CQ((25)Mg) in organic Mg(2+) complexes are well rationalized by the degree of octahedral strain of the "MgO6" coordination polyhedra. (13)C and (25)Mg isotropic chemical shifts were also found to be sensitive to the binding mode of the carboxylate ligands. The experimental findings are corroborated by gauge-including projector-augmented-wave (GIPAW) density functional theory (DFT) computations, and these have allowed for an interpretation of the experimentally observed trend in the CQ((25)Mg) values and for the visualization of the EFG tensor principal components with respect to the molecular structure. These new insights may prove to be valuable for the understanding and interpretation of (25)Mg NMR data for Mg(2+) ions in organic binding environments such as those found in MOFs and protein-divalent metal binding sites.
Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.
2013-01-01
This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617
NASA Astrophysics Data System (ADS)
Babjaková, Eva; Dastychová, Lenka; Hanulíková, Barbora; Kuřitka, Ivo; Nečas, Marek; Vašková, Hana; Vícha, Robert
2015-04-01
The interest in the oxo-enol tautomerism of 1,3-dioxo compounds is justified by their usefulness in many synthetic fields. A series of new 1,3-bis(1-adamantyl)propan-1,3-diones with a variably substituted phenyl ring at the C2 position was prepared either by the reaction of an appropriate Grignard reagent with adamatane-1-carbonyl chloride or by SEAr on the unsubstituted 1,3-bis(1-adamantyl)-2-phenylpropan-1,3-dione. In addition to the single crystal X-ray diffraction analysis of three of the prepared compounds, the experimental 1H and 13C NMR, IR and Raman spectroscopic data were assigned and compared to those obtained by DFT computations. In the solid state, the syn-dioxo forms were exclusively observed, which are shown to also predominate in CHCl3 solutions. The analysis of the Hirshfeld surface revealed that H⋯H and O⋯H contacts dominate the intermolecular interactions in the solid state, whereas π⋯π stacking plays a marginal role.
A multinuclear solid-state NMR study of the dimethyltin chalcogenides ((CH 3) 2SnE) 3, E S,Se,Te
NASA Astrophysics Data System (ADS)
Gay, Ian D.; Jones, C. H. W.; Sharma, R. D.
The solid-state NMR spectra, measured using MAS, are reported for 13C, 119Sn, 77Se, and 125Te in the compounds (Me 2SnE) 3, E S, Se, or Te. For ((CH 3) 2SnS) 3, tetragonal, three inequivalent carbons and two inequivalent tins are observed consistent with a reinterpretation of the crystal structure data of this compound which shows a twofold axis through opposing tin and sulfur atoms, the molecule being in a twisted-boat conformation. For the monoclinic form six inequivalent carbons and three inequivalent tins were observed. Chemical shifts for 13C and 119Sn and the magnitudes of the 2JSn Sn coupling constants are reported. The tetragonal forms of ((CH 3) 2SnSe) 3 and ((CH 3) 2SnTe) 3 show the presence of two inequivalent tin and chalcogen atoms and three inequivalent carbons, again consistent with a twofold axis. In these compounds it is possible to identify the three different observed single-bond coupling constants with the distinct crystallographically determined tin-chalcogen bonds. The 13C, 119Sn, 77Se, and 125Te chemical shifts are reported, together with the magnitude of 1JSn E (E Se or Te). In addition to isotropic shifts and couplings, chemical-shift anisotropies are reported for Sn, Se, and Te.
Bjerring, Morten; Jain, Sheetal; Paaske, Berit; Vinther, Joachim M; Nielsen, Niels Chr
2013-09-17
Rapid developments in solid-state NMR methodology have boosted this technique into a highly versatile tool for structural biology. The invention of increasingly advanced rf pulse sequences that take advantage of better hardware and sample preparation have played an important part in these advances. In the development of these new pulse sequences, researchers have taken advantage of analytical tools, such as average Hamiltonian theory or lately numerical methods based on optimal control theory. In this Account, we focus on the interplay between these strategies in the systematic development of simple pulse sequences that combines continuous wave (CW) irradiation with short pulses to obtain improved rf pulse, recoupling, sampling, and decoupling performance. Our initial work on this problem focused on the challenges associated with the increasing use of fully or partly deuterated proteins to obtain high-resolution, liquid-state-like solid-state NMR spectra. Here we exploit the overwhelming presence of (2)H in such samples as a source of polarization and to gain structural information. The (2)H nuclei possess dominant quadrupolar couplings which complicate even the simplest operations, such as rf pulses and polarization transfer to surrounding nuclei. Using optimal control and easy analytical adaptations, we demonstrate that a series of rotor synchronized short pulses may form the basis for essentially ideal rf pulse performance. Using similar approaches, we design (2)H to (13)C polarization transfer experiments that increase the efficiency by one order of magnitude over standard cross polarization experiments. We demonstrate how we can translate advanced optimal control waveforms into simple interleaved CW and rf pulse methods that form a new cross polarization experiment. This experiment significantly improves (1)H-(15)N and (15)N-(13)C transfers, which are key elements in the vast majority of biological solid-state NMR experiments. In addition, we demonstrate how interleaved sampling of spectra exploiting polarization from (1)H and (2)H nuclei can substantially enhance the sensitivity of such experiments. Finally, we present systematic development of (1)H decoupling methods where CW irradiation of moderate amplitude is interleaved with strong rotor-synchronized refocusing pulses. We show that these sequences remove residual cross terms between dipolar coupling and chemical shielding anisotropy more effectively and improve the spectral resolution over that observed in current state-of-the-art methods.
2-Octyl thiophene based three ring mesogens: solid state (13)C NMR and XRD investigations.
Veeraprakash, B; Lobo, Nitin P; Narasimhaswamy, T; Mandal, A B
2015-08-14
2-Octyl thiophene based three-ring mesogens namely 4-n-alkoxyphenyl 4-(5-n-octyl-2-thienyl)benzoates are synthesized by employing palladium acetate based direct arylation. The alkoxy terminal is varied with even carbons from C2 to C14 and enantiotropic polymesomorphism is noticed for all the homologs. Accordingly, phase sequence consisting of nematic, smectic A, smectic C and smectic B is seen for mesogens with terminal chains C6, C8, C10 and C12 on cooling the isotropic phase. For mesogens with C2, C4, C8 and C10 terminal alkoxy chains, the mesophase assignment from hot-stage optical microscopy and differential scanning calorimetry is further confirmed by variable temperature powder X-ray diffraction measurements. The appearance of smectic B phase is established by noticing sharp and intense peaks in both small-angle and wide-angle regions. For a representative mesogen, i.e. T10, high-resolution solid-state (13)C NMR investigations are carried out in all the phases, viz. nematic, smectic A, smectic C and smectic B phases. The orientational order parameters calculated from (13)C-(1)H dipolar couplings from 2D SAMPI-4 experiments are found to be 0.44, 0.67, 0.73 and 0.79 in nematic, smectic A, smectic C and smectic B mesophases for the center phenyl ring respectively. Remarkably, the thiophene order parameter in all mesophases is found to be higher than that of phenyl rings and is explained by considering the molecular shape, which has a terminal bend. Further, the mesogens are found to be photoemissive in chloroform solution with an emission band at ∼410 nm.
Intercalation complex of proflavine with DNA: Structure and dynamics by solid-state NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Pei; Juang, Chilong; Harbison, G.S.
1990-07-06
The structure of the complex formed between the intercalating agent proflavine and fibrous native DNA was studied by one- and two-dimensional high-resolution solid-state nuclear magnetic resonance (NMR). Carbon-13-labeled proflavine was used to show that the drug is stacked with the aromatic ring plane perpendicular to the fiber axis and that it is essentially immobile. Natural abundance carbon-13 NMR of the DNA itself shows that proflavine binding does not change the puckering of the deoxyribose ring. However, phosphorus-31 NMR spectra show profound changes in the orientation of the phosphodiester grouping on proflavine binding, with some of the phosphodiesters tilting almost parallelmore » to the helix axis, and a second set almost perpendicular. The first group to the phosphodiesters probably spans the intercalation sites, whereas the tilting of the second set likely compensates for the unwinding of the DNA by the intercalator.« less
Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan
2014-01-01
(13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.
Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu
2011-10-28
A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. This journal is © the Owner Societies 2011
Heat stability of cured urea-formaldehyde resins by measuring formaldehyde emission
Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi
1999-01-01
A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperaÂtures was developed and used to assess the influence of the reaction pH at synthesis on the formaldehyde emission during cure and heat stability of the cured resins without water. Additionally, 13C-CP/MAS solid-state nuclear magnetic resonance (NMR)...
Shaibat, Medhat A.; Casabianca, Leah B.; Siberio-Pérez, Diana Y.; Matzger, Adam J; Ishii, Yoshitaka
2010-01-01
Cu(II)(phthalocyanine) (CuPc) is broadly utilized as an archetypal molecular semiconductor and is the most widely used blue printing pigment. CuPc crystallizes in six different forms; the chemical and physical properties are substantially modulated by its molecular packing among these polymorphs. Despite the growing importance of this system, spectroscopic identification of different polymorphs for CuPc has posed difficulties. This study presents the first example of spectroscopic distinction of α- and β-forms of CuPc, the most widely used polymorphs, by solid-state NMR (SSNMR) and Raman spectroscopy. 13C high-resolution SSNMR spectra of α- and β-CuPc using very-fast magic angle spinning (VFMAS) at 20 kHz show that hyperfine shifts sensitively reflect polymorphs of CuPc. The experimental results were confirmed by ab initio chemical shift calculations. 13C and 1H SSNMR relaxation times of α- and β-CuPc under VFMAS also showed marked differences, presumably because of the difference in electronic spin correlation times in the two forms. Raman spectroscopy also provided another reliable method of differentiation between the two polymorphs. PMID:20225842
Abraham, Anuji; Crull, George
2014-10-06
A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.
Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph
2004-01-01
Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...
Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd
Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Hatcher, P.G.
1988-01-01
A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.
Küçükbenli, Emine; Sonkar, Kanchan; Sinha, Neeraj; de Gironcoli, Stefano
2012-04-12
We report here the first fully ab initio determination of (13)C NMR spectra for several crystal structures of cholesterol, observed in various biomaterials. We combine Gauge-Including Projector Augmented Waves (GIPAW) calculations at relaxed structures, fully including dispersion forces, with Magic Angle Spinning Solid State NMR experiments and spectral editing to achieve a detailed interpretation of the complex NMR spectra of cholesterol crystals. By introducing an environment-dependent secondary referencing scheme in our calculations, not only do we reproduce the characteristic spectral features of the different crystalline polymorphs, thus clearly discriminating among them, but also closely represent the spectrum in the region of several highly overlapping peaks. This, in combination with spectral editing, allows us to provide a complete peak assignment for monohydrate (ChM) and low-temperature anhydrous (ChAl) crystal polymorphs. Our results show that the synergy between ab initio calculations and refined experimental techniques can be exploited for an accurate and efficient NMR crystallography of complex systems of great interest for biomaterial studies. The method is general in nature and can be applied for studies of various complex biomaterials.
[Physicochemical properties of suplatast tosilate racemate and enantiomers].
Ushio, T; Endo, K; Yamamoto, K
1996-11-01
The physicochemical properties of the enantiomer and racemates of suplatast tosilate (ST) were investigated by means of infrared spectroscopy, solid-state 13C CP/MAS NMR spectroscopy, thermal analysis, and X-ray diffraction analysis, and by measuring the solubility and hygroscopy. The infrared and NMR spectra and X-ray diffraction pattern of the enantiomer were distinctly different from those of the racemate. The melting point of the enantiomer was lower than that of the racemate by 5 degrees C, while the solubility of the enantiomer was 1.3 times higher than that of the racemate. The hygroscopic rate of the enantiomer was greater than that of the racemate. These results suggested that ST was classified into a racemic compound crystal. Furthermore, by comparing the relative peak intensity ratios on X-ray diffraction patterns of the crystals with various optical purities prepared by recrystallization, it was found that a mixture of racemic compound crystals and either of racemic mixture crystals or racemic solid solutions was obtained by recrystallization of ST in the content of 0 to 64%ee, while the recrystallization of ST in the content of more than 64%ee led to the formation of racemic mixture crystals or racemic solid solutions.
Huang, Wenlin; Serra, Olga; Dastmalchi, Keyvan; Jin, Liqing; Yang, Lijia; Stark, Ruth E
2017-03-15
The potato (Solanum tuberosum L.) ranks third in worldwide consumption among food crops. Whereas disposal of potato peels poses significant challenges for the food industry, secondary metabolites in these tissues are also bioactive and essential to crop development. The diverse primary and secondary metabolites reported in whole tubers and wound-healing tissues prompted a comprehensive profiling study of native periderms from four cultivars with distinctive skin morphologies and commercial food uses. Polar and nonpolar soluble metabolites were extracted concurrently, analyzed chromatographically, and characterized with mass spectrometry; the corresponding solid interfacial polymeric residue was examined by solid-state 13 C NMR. In total, 112 secondary metabolites were found in the phellem tissues; multivariate analysis identified 10 polar and 30 nonpolar potential biomarkers that distinguish a single cultivar among Norkotah Russet, Atlantic, Chipeta, and Yukon Gold cultivars which have contrasting russeting features. Compositional trends are interpreted in the context of periderm protective function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Long; Alamillo, Ricardo; Elliott, William A.
Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less
NASA Astrophysics Data System (ADS)
Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona
2016-06-01
In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.
Mandal, Abhishek; Hoop, Cody L.; DeLucia, Maria; Kodali, Ravindra; Kagan, Valerian E.; Ahn, Jinwoo; van der Wel, Patrick C.A.
2015-01-01
The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly 13C,15N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the increased peroxidase activity that represents its pivotal proapoptotic function, but we do not observe evidence for large-scale unfolding or penetration into the membrane core. PMID:26536264
Mallik, Abul K; Qiu, Hongdeng; Oishi, Tomohiro; Kuwahara, Yutaka; Takafuji, Makoto; Ihara, Hirotaka
2015-07-07
For the first time, we synthesized multiple embedded polar groups (EPGs) containing linear C18 organic phases. The new materials were characterized by elemental analysis, IR spectroscopy, (1)H NMR, diffuse reflectance infrared Fourier transform (DRIFT), solid-state (13)C cross-polarization magic angle spinning (CP/MAS) NMR, suspended-state (1)H NMR, and differential scanning calorimetry (DSC). (29)Si CP/MAS NMR was carried out to investigate the degree of cross-linking of the silane and silane functionality of the modified silica. Solid-state (13)C CP/MAS NMR and suspended-state (1)H NMR spectroscopy indicated a higher alkyl chain order for the phase containing four EPGs than for the phase with three EPGs. To correlate the NMR results with temperature-dependent chromatographic studies, standard reference materials (SRM 869b and SRM 1647e), a column selectivity test mixture for liquid chromatography was employed. A single EPG containing the C18 phase was also prepared in a similar manner to be used as a reference column especially for the separation of basic and polar compounds in reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), respectively. Detailed chromatographic characterization of the new phases was performed in terms of their surface coverage, hydrophobic selectivity, shape selectivity, hydrogen bonding capacity, and ion-exchange capacity at pH 2.7 and 7.6 for RPLC as well as their hydrophilicity, the selectivity for hydrophilic-hydrophobic substituents, the selectivity for the region and configurational differences in hydrophilic substituents, the evaluation of electrostatic interactions, and the evaluation of the acidic-basic nature for HILIC-mode separation. Furthermore, peak shapes for the basic analytes propranolol and amitriptyline were studied as a function of the number of EPGs on the C18 phases in the RPLC. The chromatographic performance of multiple EPGs containing C18 HILIC phases is illustrated by the separation of sulfa drugs, β-blockers, xanthines, nucleic acid bases, nucleosides, and water-soluble vitamins. Both of the phases showed the best performance for the separation of shape-constrained isomers, nonpolar, polar, and basic compounds in RPLC- and HILIC-mode separation of sulfa drugs, and other polar and basic analytes compared to the conventional alkyl phases with and without embedded polar groups and HILIC phases. Surprisingly, one phase would be able to serve the performance of three different types of phases with very high selectivity, and we named this phase the "smart phase". Versatile applications with a single column will reduce the column purchasing cost for the analyst as well as achieve high separation, which is challenging with the commercially available columns.
Bennett, Thomas D; Todorova, Tanya K; Baxter, Emma F; Reid, David G; Gervais, Christel; Bueken, Bart; Van de Voorde, B; De Vos, Dirk; Keen, David A; Mellot-Draznieks, Caroline
2016-01-21
The mechanism and products of the structural collapse of the metal–organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metal–ligand bonding in each case. The amorphous products contain inorganic–organic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked.
Solid state structure and absolute configuration of filifolinol acetate.
Muñoz, Marcelo A; Urzúa, Alejandro; Echeverría, Javier; Modak, Brenda; Joseph-Nathan, Pedro
2011-06-01
Careful reevaluation of the 1H and 13C NMR spectroscopic data of filifolinol acetate (4) led to the reassignment of the C-10 and C-11 signals, as well as the gem-dimethyl signals. Single crystal X-ray analysis provided an independent structural confirmation of 4, and comparison of the experimental vibrational circular dichroism spectrum with calculations performed using density functional theory provided the absolute configuration of this 3H-spiro-1-benzofuran-2,1'-cyclohexane and related molecules.
Ciogli, Alessia; Simone, Patrizia; Villani, Claudio; Gasparrini, Francesco; Laganà, Aldo; Capitani, Donatella; Marchetti, Nicola; Pasti, Luisa; Massi, Alessandro; Cavazzini, Alberto
2014-06-23
The structural and chromatographic characterization of two novel fluorinated mesoporous materials prepared by covalent reaction of 3-(pentafluorophenyl)propyldimethylchlorosilane and perfluorohexylethyltrichlorosilane with 2.5 μm fully porous silica particles is reported. The adsorbents were characterized by solid state (29)Si, (13)C, and (19)F NMR spectroscopy, low-temperature nitrogen adsorption, elemental analysis (C and F), and various chromatographic measurements, including the determination of adsorption isotherms. The structure and abundance of the different organic surface species, as well as the different silanol types, were determined. In particular, the degree of so-called horizontal polymerization, that is, Si-O-Si bridging parallel to the silica surface due to the reaction, under "quasi-dry" conditions, of trifunctional silanizing agents with the silica surface was quantified. Significant agreement was found between the information provided by solid-state NMR, elemental analysis, and excess isotherms regarding the amount of surface residual silanol groups, on the one hand, and the degree of surface functionalization, on the other. Finally, the kinetic performance of the fluorinated materials as separation media for applications in near-ultrahigh-performance liquid chromatography was evaluated. At reduced velocities of about 5.5 (ca. 600 bar backpressure at room temperature) with 3 mm diameter columns and toluene as test compound, reduced plate heights on the order of 2 were obtained on columns of both adsorbents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Abdulla, Hussain A. N.; Minor, Elizabeth C.; Dias, Robert F.; Hatcher, Patrick G.
2013-10-01
In a study of chemical transformations of estuarine high-molecular-weight (HMW, >1000 Da) dissolved organic matter (DOM) collected over a period of two years along a transect through the Elizabeth River/Chesapeake Bay system to the coastal Atlantic Ocean off Virginia, USA, δ13C values, N/C ratios, and principal component analysis (PCA) of the solid-state 13C NMR (nuclear magnetic resonance) spectra of HMW-DOM show an abrupt change in both its sources and chemical structural composition occurring around salinity 20. HMW-DOM in the lower salinity region had lighter isotopic values, higher aromatic and lower carbohydrate contents relative to that in the higher salinity region. These changes around a salinity of 20 are possibly due to introduction of a significant amount of new carbon (autotrophic DOM) to the transect. PC-1 loadings plot shows that spatially differing DOM components are similar to previously reported 13C NMR spectra of heteropolysaccharides (HPS) and carboxyl-rich alicyclic molecules (CRAM). Applying two dimensional correlation spectroscopy techniques to 1H NMR spectra from the same samples reveals increases in the contribution of N-acetyl amino sugars, 6-deoxy sugars, and sulfated polysaccharides to HPS components along the salinity transect, which suggests a transition from plant derived carbohydrates to marine produced carbohydrates within the HMW-DOM pool. In contrast to what has been suggested previously, our combined results from 13C NMR, 1H NMR, and FTIR indicate that CRAM consists of at least two different classes of compounds (aliphatic polycarboxyl compounds and lignin-like compounds).
Valentín, J L; López-Manchado, M A; Posadas, P; Rodríguez, A; Marcos-Fernández, A; Ibarra, L
2006-06-15
The mechanism of the reaction between a silica sample coming from acid treatment of sepiolite (denominated Silsep) and an organosilane, namely bis(triethoxysilylpropyl)tetrasulfane (TESPT), has been evaluated by solid state NMR spectroscopy, being compared with the silanization reaction of a commercial silica. The effect of the silane concentration and temperature on the course of the reaction was considered. Experimental results indicate that the silanization reaction is more effective in the case of Silsep, favoring both the reaction of silane molecules with the filler surface and the reaction between neighboring silane molecules. This different behavior is attributed to structural factors, moisture, and number of acid centers on silica surface. Environmental scanning electron microscopy (ESEM) was used to deposit micrometric water drops on the surface of these samples and to evaluate the proportion and distribution of the organophylization process.
Peña, Brisa; de Ménorval, Louis-Charles; Garcia-Valls, Ricard; Gumí, Tània
2011-11-01
Textile detergent and softener industries have incorporated perfume microencapsulation technology to improve their products. Perfume encapsulation allows perfume protection until use and provides a long-lasting fragrance release. But, certain industrial microcapsules show low encapsulation capacity and low material stability. Polysulfone capsules have been already proposed to solve these drawbacks. Among them, PSf/Vanillin capsules were considered as a desirable system. They present both good material stability and high encapsulation capacity. However, several factors such as the final location of the perfume in the polymeric matrix, the aggregation state that it has in the capsule and its interaction with the capsule components have not been studied yet. These factors can provide vast information about the capsule performance and its improvement. With the aim to characterize these parameters, the physical and chemical properties of PSf/Vanillin capsules have been investigated by nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and N(2) adsorption-desorption measurements. AFM micrograph and N(2) isotherms confirm that the presence of vanillin modify the physical structure of PSf/Vanillin microcapsules as it is trapped in the capsule porosity. NMR results show that vanillin is present in solid state in PSf/Vanillin microcapsules.
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2016-12-01
Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.
Marín-Luna, Marta; Alkorta, Ibon; Elguero, José
2018-03-01
This paper compares the absolute shieldings obtained by gauge-including-projected-augmented-wave (GIPAW) to those obtained by gauge-invariant atomic orbital/Becke, 3-parameter, Lee-Yang-Parr (GIAO/B3LYP)/6-311++G(d,p)-polarizable continuum model (PCM, dimethyl sulfoxide) for nine benzazoles (benzimidazoles, indazoles, and benzotriazoles) recorded in the solid-state. Three nuclei were explored, 13 C, 15 N, and 19 F, and the gauge-including-projected-augmented-wave approach only proved better for 15 N MAS NMR. Copyright © 2017 John Wiley & Sons, Ltd.
Evidence of land plant affinity for the Devonian fossil Protosalvinia (Foerstia)
Romankiw, L.A.; Hatcher, P.G.; Roen, J.B.
1988-01-01
The Devonian plant fossil Protosalvinia (Foerstia) has been examined by solid-state 13C nuclear magnetic resonance spectroscopy (NMR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). Results of these studies reveal that the chemical structure of Protosalvinia is remarkably similar to that of coalified wood. A well-defined phenolic carbon peak in the NMR spectra and the appearance of phenol and alkylated phenols in pyrolysis products are clearly indicative of lignin-like compounds. These data represent significant new information on the chemical nature of Protosalvinia and provide the first substantial organic geochemical evidence for land plant affinity. -Authors
Middleton, David A
2011-02-01
Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary structure, alignment and registration of β-strands within amyloid fibrils and identify the tertiary and quaternary contacts defining the packing of the β-sheet layers. Detection of (14)N-(13)C dipolar couplings may provide potentially useful additional structural constraints on β-sheet packing within amyloid fibrils but has not until now been exploited for this purpose. Here a frequency-selective, transfer of population in double resonance SSNMR experiment is used to detect a weak (14)N-(13)C dipolar coupling in amyloid-like fibrils of the peptide H(2)N-SNNFGAILSS-COOH, which was uniformly (13)C and (15)N labelled across the four C-terminal amino acids. The (14)N-(13)C interatomic distance between leucine and asparagine side groups is constrained between 2.4 and 3.8 Å, which allows current structural models of the β-spine arrangement within the fibrils to be refined. This procedure could be useful for the general structural analysis of other proteins in condensed phases and environments, such as biological membranes. Copyright © 2011 John Wiley & Sons, Ltd.
Fluorination Effects on NOS Inhibitory Activity of Pyrazoles Related to Curcumin.
Nieto, Carla I; Cabildo, María Pilar; Cornago, María Pilar; Sanz, Dionisia; Claramunt, Rosa M; Torralba, María Carmen; Torres, María Rosario; Elguero, José; García, José A; López, Ana; Acuña-Castroviejo, Darío
2015-08-28
A series of new (E)-3(5)-[β-(aryl)-ethenyl]-5(3)-phenyl-1H-pyrazoles bearing fluorine atoms at different positions of the aryl group have been synthesized starting from the corresponding β-diketones. All compounds have been characterized by elemental analysis, DSC as well as NMR (¹H, (13)C, (19)F and (15)N) spectroscopy in solution and in solid state. Three structures have been solved by X-ray diffraction analysis, confirming the tautomeric forms detected by solid state NMR. The in vitro study of their inhibitory potency and selectivity on the activity of nNOS and eNOS (calcium-calmodulin dependent) as well as iNOS (calcium-calmodulin independent) isoenzymes is presented. A qualitative structure-activity analysis allowed the establishment of a correlation between the presence/ absence of different substituents with the inhibition data proving that fluorine groups enhance the biological activity. (E)-3(5)-[β-(3-Fluoro-4-hydroxyphenyl)-ethenyl]-5(3)-phenyl-1H-pyrazole (13), is the best inhibitor of iNOS, being also more selective towards the other two isoforms.
Approaches to Establishing the Chemical Structure of Extraterrestrial Organic Solids
NASA Technical Reports Server (NTRS)
Cody, G. D.; Alexander, C. M. OD.; Wirick, Susan
2003-01-01
The majority of extraterrestrial organic matter in carbonaceous chondrites resides in a chemically complex, insoluble and perhaps macromolecular phase. We have been applying a series of independent solid state NMR experiments that are designed to provide a self consistent chemical characterization of this complex material. To date we have thoroughly analyzed 8 organic residues from different meteorites, including a CR2 (EET92042), CIl(Orgueil), CM2 (Murchison), Tagish Lake, CM2 (AlH83100), CM2 (Cold Bokkefeld), CM2 (Mighei), CM3 (Y86720). In fig 1. (1)H to (13)C cross polarization NMR spectra of four of these are shown. Note that there exists an enormous range in chemistry exhibited in organic solid [evident by the breadth of the spectral features both in the aliphatic region (sp(sup 3)) and the aromatic region (sp(sup 2))]. There is also considerable differences in the carbon chemistry across the meteorite groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, Tiago Mendes, E-mail: tiago.ferreira@fkem1.lu.se; Physical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund; Ollila, O. H. Samuli
2015-01-28
Molecular dynamics (MD) simulations give atomically detailed information on structure and dynamics in amphiphilic bilayer systems on timescales up to about 1 μs. The reorientational dynamics of the C–H bonds is conventionally verified by measurements of {sup 13}C or {sup 2}H nuclear magnetic resonance (NMR) longitudinal relaxation rates R{sub 1}, which are more sensitive to motional processes with correlation times close to the inverse Larmor frequency, typically around 1-10 ns on standard NMR instrumentation, and are thus less sensitive to the 10-1000 ns timescale motion that can be observed in the MD simulations. We propose an experimental procedure for atomicallymore » resolved model-free estimation of the C–H bond effective reorientational correlation time τ{sub e}, which includes contributions from the entire range of all-atom MD timescales and that can be calculated directly from the MD trajectories. The approach is based on measurements of {sup 13}C R{sub 1} and R{sub 1ρ} relaxation rates, as well as {sup 1}H−{sup 13}C dipolar couplings, and is applicable to anisotropic liquid crystalline lipid or surfactant systems using a conventional solid-state NMR spectrometer and samples with natural isotopic composition. The procedure is demonstrated on a fully hydrated lamellar phase of 1-palmitoyl-2-oleoyl-phosphatidylcholine, yielding values of τ{sub e} from 0.1 ns for the methyl groups in the choline moiety and at the end of the acyl chains to 3 ns for the g{sub 1} methylene group of the glycerol backbone. MD simulations performed with a widely used united-atom force-field reproduce the τ{sub e}-profile of the major part of the acyl chains but underestimate the dynamics of the glycerol backbone and adjacent molecular segments. The measurement of experimental τ{sub e}-profiles can be used to study subtle effects on C–H bond reorientational motions in anisotropic liquid crystals, as well as to validate the C–H bond reorientation dynamics predicted in MD simulations of amphiphilic bilayers such as lipid membranes.« less
Adiram-Filiba, Nurit; Schremer, Avital; Ohaion, Eli; Nadav-Tsubery, Merav; Lublin-Tennenbaum, Tammi; Keinan-Adamsky, Keren; Goobes, Gil
2017-05-31
Deriving the conformation of adsorbed proteins is important in the assessment of their functional activity when immobilized. This has particularly important bearings on the design of contemporary and new encapsulated enzyme-based drugs, biosensors, and other bioanalytical devices. Solid-state nuclear magnetic resonance (NMR) measurements can expand our molecular view of proteins in this state and of the molecular interactions governing protein immobilization on popular biocompatible surfaces such as silica. Here, the authors study the immobilization of ubiquitin on the mesoporous silica MCM41 by NMR and other techniques. Protein molecules are shown to bind efficiently at pH 5 through electrostatic interactions to individual MCM41 particles, causing their agglutination. The strong attraction of ubiquitin to MCM41 surface is given molecular context through evidence of proximity of basic, carbonyl and polar groups on the protein to groups on the silica surface using NMR measurements. The immobilized protein exhibits broad peaks in two-dimensional 13 C dipolar-assisted rotational resonance spectra, an indication of structural multiplicity. At the same time, cross-peaks related to Tyr and Phe sidechains are missing due to motional averaging. Overall, the favorable adsorption of ubiquitin to MCM41 is accompanied by conformational heterogeneity and by a major loss of motional degrees of freedom as inferred from the marked entropy decrease. Nevertheless, local motions of the aromatic rings are retained in the immobilized state.
Katakura, Ryo; Koide, Yoshihiro
2006-07-24
Treatment of AlO(OH) with 3 equiv of 8-hydroxyquinolinol in refluxing deionized water provided the meridional and facial isomers of tris(8-hydroxyquinolinate)aluminum (Alq3) with good yields as solid deposits after 1 and 90 h, respectively. X-ray diffraction and solid-state 13C NMR studies revealed that mer-Alq3 is formed in the early stage of the reaction and then gradually converts to fac-Alq3, which is thermodynamically less stable, although no existence of a catalyst substance is implied.
Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage.
Lalli, Daniela; Turano, Paola
2013-11-19
Ferritins are intracellular proteins that can store thousands of iron(III) ions as a solid mineral. These structures autoassemble from four-helix bundle subunits to form a hollow sphere and are a prototypical example of protein nanocages. The protein acts as a reservoir, encapsulating iron as ferric oxide in its central cavity in a nontoxic and bioavailable form. Scientists have long known the structural details of the protein shell, owing to very high resolution X-ray structures of the apoform. However, the atomic level mechanism governing the multistep biomineralization process remained largely elusive. Through analysis of the chemical behavior of ferritin mutants, chemists have found the role of some residues in key reaction steps. Using Mössbauer and XAS, they have identified some di-iron intermediates of the catalytic reaction trapped by rapid freeze quench. However, structural information about the iron interaction sites remains scarce. The entire process is governed by a number of specific, but weak, interactions between the protein shell and the iron species moving across the cage. While this situation may constitute a major problem for crystallography, NMR spectroscopy represents an optimal tool to detect and characterize transient species involving soluble proteins. Regardless, NMR analysis of the 480 kDa ferritin represents a real challenge. Our interest in ferritin chemistry inspired us to use an original combination of solution and solid state approaches. While the highly symmetric structure of the homo-24-mer frog ferritin greatly simplifies the spectra, the large protein size hinders the efficient coherence transfer in solution, thus preventing the sequence specific assignments. In contrast, extensive (13)C-spin diffusion makes the solution (13)C-(13)C NOESY experiment our gold standard to monitor protein side chains both in the apoprotein alone and in its interaction with paramagnetic iron species, inducing line broadening on the resonances of nearby residues. We could retrieve the structural information embedded in the (13)C-(13)C NOESY due to a partial sequence specific assignment of protein backbone and side chains we obtained from solid state MAS NMR of ferritin microcrystals. We used the 59 assigned amino acids (∼33% of the total) as probes to locate paramagnetic ferric species in the protein cage. Through this approach, we could identify ferric dimers at the ferroxidase site and on their pathway towards the nanocage. Comparison with existing data on bacterioferritins and bacterial ferritins, as well as with eukaryotic ferritins loaded with various nonfunctional divalent ions, allowed us to reinterpret the available information. The resulting picture of the ferroxidase site is slightly different with various ferritins but is designed to provide multiple and generally weak iron ligands. The latter assist binding of two incoming iron(II) ions in two proximal positions to facilitate coupling with oxygen. Subsequent oxidation is accompanied by a decrease in the metal-metal distance (consistent with XAS/Mössbauer) and in the number of protein residues involved in metal coordination, facilitating the release of products as di-iron clusters under the effect of new incoming iron(II) ions.
Kakitani, Yoshinori; Harada, Ken-ichi; Mizoguchi, Tadashi; Koyama, Yasushi
2007-06-05
Pigments including bacteriochlorophyll (BChl) c, carotenoids, and a trace of BChl a together with a lipid, monogalactosyl diglyceride (MGDG), were extracted with chloroform/methanol (1:1 v/v) from an aqueous suspension (50 mM Tris-HCl, pH 8.0) of chlorosomes from Chlorobium limicola; other lipids and proteins were left behind in the aqueous layer by funnel separation. The chloroform layer was dried by purging N2 gas, dissolved in methanol, and rapidly injected into the aqueous layer to reassemble chlorosomes. This technique has been developed to replace one-half of the inherent 12C-BChl c by 13C-BChl c to identify the intermolecular 13C...13C magnetic dipole correlation peaks (that are supposed to reduce their intensities to one-fourth by reducing the 13C-BChl c concentration into one-half) and to determine the structure of BChl c aggregates in the rod elements by means of solid-state NMR spectroscopy. The isotopically replaced chlorosomes were characterized (1) by sucrose density gradient centrifugation, zeta potential measurement, electron microscopy, and dynamic light scattering measurement to determine the morphology of chlorosomes, (2) by 13C NMR spectroscopy, electronic absorption and circular dichroism spectroscopies, and low-angle X-ray diffraction to determine the pigment assembly in the rod elements, and (3) by subpicosecond time-resolved absorption spectroscopy to determine the excited-state dynamics in the pigment assembly. The results characterized the reassembled chlorosomes to have (1) similar but longer morphological structures, (2) almost the same pigment assembly in the rod elements, and (3) basically the same excited-state dynamics in the pigment assembly.
The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.
Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano
2016-01-01
Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.
Mananga, Eugene S; Reid, Alicia E; Charpentier, Thibault
2012-02-01
This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λ(n)(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Reid, Alicia E.; Charpentier, Thibault
2013-01-01
This article describes the use of an alternative expansion scheme called Floquet-Magnus expansion (FME) to study the dynamics of spin system in solid-state NMR. The main tool used to describe the effect of time-dependent interactions in NMR is the average Hamiltonian theory (AHT). However, some NMR experiments, such as sample rotation and pulse crafting, seem to be more conveniently described using the Floquet theory (FT). Here, we present the first report highlighting the basics of the Floquet-Magnus expansion (FME) scheme and hint at its application on recoupling sequences that excite more efficiently double-quantum coherences, namely BABA and C7 radiofrequency pulse sequences. The use of Λn(t) functions available only in the FME scheme, allows the comparison of the efficiency of BABA and C7 sequences. PMID:22197191
1987-12-01
261.3 show equivalent areas consistant with tiie alternating copolymer structure. Comparison with the model acetanilide (-241.5) indicates the...T.; Fujito, T.; Deguchi. 1\\.; Ando, 1. Macromolecules. 1987, 2?0, 2441. 4 TABLE I CP MNAS ,_’ii N-methyl benzamide -2-o3.3 -226. Acetanilide -241.9
Chatterjee, Subhasish; Prados-Rosales, Rafael; Frases, Susana; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.
2012-01-01
Melanins are a class of natural pigments associated with a wide range of biological functions, including microbial virulence, energy transduction, and protection against solar radiation. Because of their insolubility and structural heterogeneity, solid-state nuclear magnetic resonance (NMR) spectroscopy provides an unprecedented means to define the molecular architecture of these enigmatic pigments. The requirement of obligatory catecholamines for melanization of the pathogenic fungus Cryptococcus neoformans also offers unique opportunities for investigating melanin development. In the current study, pigments produced with L-dopa, methyl-L-dopa, epinephrine, and norepinephrine precursors are compared structurally using 13C and 1H magic-angle spinning (MAS) NMR. Striking structural differences were observed for both aromatic and aliphatic molecular constituents of the mature fungal pigment assemblies, thus making it possible to redefine the molecular prerequisites for formation of the aromatic domains of insoluble indole-based biopolymers, to rationalize their distinctive physical characteristics, and to delineate the role of cellular constituents in assembly of the melanized macromolecules with polysaccharides and fatty acyl chain-containing moieties. By achieving an augmented understanding of the mechanisms of C. neoformans melanin biosynthesis and cellular assembly, such studies can guide future drug discovery efforts related to melanin-associated virulence, resistance to tumor therapy, and production of melanin mimetics under cell-free conditions. PMID:22765382
Time averaging of NMR chemical shifts in the MLF peptide in the solid state.
De Gortari, Itzam; Portella, Guillem; Salvatella, Xavier; Bajaj, Vikram S; van der Wel, Patrick C A; Yates, Jonathan R; Segall, Matthew D; Pickard, Chris J; Payne, Mike C; Vendruscolo, Michele
2010-05-05
Since experimental measurements of NMR chemical shifts provide time and ensemble averaged values, we investigated how these effects should be included when chemical shifts are computed using density functional theory (DFT). We measured the chemical shifts of the N-formyl-L-methionyl-L-leucyl-L-phenylalanine-OMe (MLF) peptide in the solid state, and then used the X-ray structure to calculate the (13)C chemical shifts using the gauge including projector augmented wave (GIPAW) method, which accounts for the periodic nature of the crystal structure, obtaining an overall accuracy of 4.2 ppm. In order to understand the origin of the difference between experimental and calculated chemical shifts, we carried out first-principles molecular dynamics simulations to characterize the molecular motion of the MLF peptide on the picosecond time scale. We found that (13)C chemical shifts experience very rapid fluctuations of more than 20 ppm that are averaged out over less than 200 fs. Taking account of these fluctuations in the calculation of the chemical shifts resulted in an accuracy of 3.3 ppm. To investigate the effects of averaging over longer time scales we sampled the rotameric states populated by the MLF peptides in the solid state by performing a total of 5 micros classical molecular dynamics simulations. By averaging the chemical shifts over these rotameric states, we increased the accuracy of the chemical shift calculations to 3.0 ppm, with less than 1 ppm error in 10 out of 22 cases. These results suggests that better DFT-based predictions of chemical shifts of peptides and proteins will be achieved by developing improved computational strategies capable of taking into account the averaging process up to the millisecond time scale on which the chemical shift measurements report.
NASA Astrophysics Data System (ADS)
Nelson, Peter N.; Taylor, Richard A.
2015-03-01
A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state 13C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc > 8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.
Gas-Phase Synthesis and Characterization of CH4-Loaded Hydroquinone Clathrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.; Lee, Y; Takeya, S
2010-01-01
A CH{sub 4}-loaded hydroquinone (HQ) clathrate was synthesized via a gas-phase reaction using the {alpha}-form of crystalline HQ and CH{sub 4} gas at 12 MPa and room temperature. Solid-state {sup 13}C cross-polarization/magic angle spinning (CP/MAS) NMR and Raman spectroscopic measurements confirm the incorporation of CH{sub 4} molecules into the cages of the HQ clathrate framework. The chemical analysis indicates that about 69% of the cages are filled by CH{sub 4} molecules, that is, 0.69 CH{sub 4} per three HQ molecules. Rietveld refinement using synchrotron X-ray powder diffraction (XRD) data shows that the CH{sub 4}-loaded HQ clathrate adopts the {beta}-form ofmore » HQ clathrate in a hexagonal space group R3 with lattice parameters of a = 16.6191 {angstrom} and c = 5.5038 {angstrom}. Time-resolved synchrotron XRD and quadrupole mass spectroscopic measurements show that the CH{sub 4}-loaded HQ clathrate is stable up to 368 K and gradually transforms to the {alpha}-form by releasing the confined CH{sub 4} gases between 368-378 K. Using solid-state {sup 13}C CP/MAS NMR, the reaction kinetics between the {alpha}-form HQ and CH{sub 4} gas is qualitatively described in terms of the particle size of the crystalline HQ.« less
Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E.
2015-01-01
Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment “ghosts” and applied 2D 13C-13C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. PMID:25825492
Chatterjee, Subhasish; Prados-Rosales, Rafael; Itin, Boris; Casadevall, Arturo; Stark, Ruth E
2015-05-29
Melanin pigments protect against both ionizing radiation and free radicals and have potential soil remediation capabilities. Eumelanins produced by pathogenic Cryptococcus neoformans fungi are virulence factors that render the fungal cells resistant to host defenses and certain antifungal drugs. Because of their insoluble and amorphous characteristics, neither the pigment bonding framework nor the cellular interactions underlying melanization of C. neoformans have yielded to comprehensive molecular-scale investigation. This study used the C. neoformans requirement of exogenous obligatory catecholamine precursors for melanization to produce isotopically enriched pigment "ghosts" and applied 2D (13)C-(13)C correlation solid-state NMR to reveal the carbon-based architecture of intact natural eumelanin assemblies in fungal cells. We demonstrated that the aliphatic moieties of solid C. neoformans melanin ghosts include cell-wall components derived from polysaccharides and/or chitin that are associated proximally with lipid membrane constituents. Prior to development of the mature aromatic fungal pigment, these aliphatic moieties form a chemically resistant framework that could serve as the scaffold for melanin synthesis. The indole-based core aromatic moieties show interconnections that are consistent with proposed melanin structures consisting of stacked planar assemblies, which are associated spatially with the aliphatic scaffold. The pyrrole aromatic carbons of the pigments bind covalently to the aliphatic framework via glycoside or glyceride functional groups. These findings establish that the structure of the pigment assembly changes with time and provide the first biophysical information on the mechanism by which melanin is assembled in the fungal cell wall, offering vital insights that can advance the design of bioinspired conductive nanomaterials and novel therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Tsutsumi, Atsushi; Javkhlantugs, Namsrai; Kira, Atsushi; Umeyama, Masako; Kawamura, Izuru; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira
2012-01-01
Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268–284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed 13C and 31P NMR, 13C-31P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. 31P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. 13C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by 13C-31P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu3, which are in excellent agreement with the experimental values. PMID:23083717
Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy
2018-02-01
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.
Al-Jaroudi, Said S; Monim-ul-Mehboob, M; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Wazeer, Mohammed I M; Altuwaijri, Saleh; Isab, Anvarhusein A
2014-12-01
The gold(III) complexes of the type [(DACH)Au(en)]Cl3, 1,2-Diaminocyclohexane ethylenediamine gold(III) chloride [where 1,2-DACH = cis-, trans-1,2- and S,S-1,2diaminocyclohexane and en = ethylenediamine] have been synthesized and characterized using various analytical and spectroscopic techniques including elemental analysis, UV-Vis and FTIR spectra; and solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and ethylenediamine (en) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was determined by (1)H and (13)C NMR spectra. Their electrochemical behavior was studied by cyclic voltammetry. The structural details and relative stabilities of the four possible isomers of the complexes were also reported at the B3LYP/LANL2DZ level of theory. The coordination sphere of these complexes around gold(III) center adopts distorted square planar geometry. The computational study also demonstrates that trans- conformations is slightly more stable than the cis-conformations. The antiproliferative effects and cytotoxic properties of the mixed diamine ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 1 is the most effective antiproliferative agent among mixed ligand based gold(III) complexes 1-3. The IC50 data reveal that the in vitro cytotoxicity of complexes 1 and 3 against SGC7901 cancer cells are fairly better than that of cisplatin.
Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun
2015-01-01
Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886
Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachleben, Joseph Robert
1993-09-01
Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10 -8 s -1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O 2 and ultraviolet. A method formore » measuring 14N- 1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T 1 and T 2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.« less
Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids
NASA Astrophysics Data System (ADS)
Sachleben, J. R.
1993-09-01
Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.
NMR at Low and Ultra-Low Temperatures
Tycko, Robert
2017-01-01
Conspectus Solid state nuclear magnetic resonance (NMR) measurements at low temperatures have been common in physical sciences for many years, and are becoming increasingly important in studies of biomolecular systems. This article reviews a diverse set of projects from my laboratory, dating back to the early 1990s, that illustrate the motivations for low-temperature solid state NMR, the types of information that are available from the measurements, and likely directions for future research. These projects include NMR studies of both physical and biological systems, performed at low (cooled with nitrogen, down to 77 K) and very low (cooled with helium, below 77 K) temperatures, and performed with and without magic-angle spinning (MAS). In NMR studies of physical systems, the main motivation is to study phenomena that occur only at low temperatures. Two examples from my laboratory are studies of molecular rotation and an orientational ordering in solid C60 at low temperatures and studies of unusual electronic states, called skyrmions, in two-dimensionally confined electron systems within semiconductor quantum wells. NMR measurements on quantum wells were facilitated by optical pumping of nuclear spin polarizations, a signal enhancement phenomenon that exists at very low temperatures. In studies of biomolecular systems, motivations for low-temperature NMR include suppression of molecular tumbling (thereby permitting solid state NMR measurements on soluble proteins), suppression of conformational exchange (thereby permitting quantitation of conformational distributions), and trapping of transient intermediate states in a non-equilibrium kinetic process (by rapid freeze-quenching). Solid state NMR measurements on AIDS-related peptide/antibody complexes, chemically denatured states of the model protein HP35, and a transient intermediate in the rapid folding pathway of HP35 illustrate these motivations. NMR sensitivity generally increases with decreasing sample temperature. It is therefore advantageous to go as cold as possible, particularly in studies of biomolecular systems in frozen solutions. However, solid state NMR studies of biomolecular systems generally require rapid MAS. A novel MAS NMR probe design that uses nitrogen gas for sample spinning and cold helium only for sample cooling allows a wide variety of solid state NMR measurements to be performed on biomolecular systems at 20-25 K, where signals are enhanced by factors of 12-15 relative to measurements at room temperature. MAS NMR at very low temperatures also facilitates dynamic nuclear polarization (DNP), allowing sizeable additional signal enhancements and large absolute NMR signal amplitudes to be achieved with relatively low microwave powers. Current research in my laboratory seeks to develop and exploit DNP-enhanced MAS NMR at very low temperatures, for example in studies of transient intermediates in protein folding and aggregation processes and studies of peptide/protein complexes that can be prepared only at low concentrations. PMID:23470028
Bernardi, Larissa S; Ferreira, Fábio F; Cuffini, Silvia L; Campos, Carlos E M; Monti, Gustavo A; Kuminek, Gislaine; Oliveira, Paulo R; Cardoso, Simone G
2013-12-15
Venlafaxine hydrochloride (VEN) is an antidepressant drug widely used for the treatment of depression. The purpose of this study was to carry out the preparation and solid state characterization of the pure polymorphs (Forms 1 and 2) and the polymorphic identification and quantification of four commercially-available VEN raw materials. These two polymorphic forms were obtained from different crystallization methods and characterized by X-ray Powder Diffraction (XRPD), Diffuse Reflectance Infrared Fourier Transform (DRIFT), Raman Spectroscopy (RS), liquid and solid state Nuclear Magnetic Resonance (NMR and ssNMR) spectroscopies, Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) techniques. The main differences were observed by DSC and XRPD and the latter was chosen as the standard technique for the identification and quantification studies in combination with the Rietveld method for the commercial raw materials (VEN1-VEN4) acquired from different manufacturers. Additionally Form 1 and Form 2 can be clearly distinguished from their (13)C ssNMR spectra. Through the analysis, it was possible to conclude that VEN1 and VEN2 were composed only of Form 1, while VEN3 and VEN4 were a mixture of Forms 1 and 2. Additionally, the Rietveld refinement was successfully applied to quantify the polymorphic ratio for VEN3 and VEN4. Copyright © 2013 Elsevier B.V. All rights reserved.
Campbell, Paul S; Santini, Catherine C; Bouchu, Denis; Fenet, Bernard; Rycerz, Leszek; Chauvin, Yves; Gaune-Escard, Marcelle; Bessada, Catherine; Rollet, Anne-Laure
2010-02-07
Dialkylimidazolium chlorometallate molten salts resulting from the combination of zirconium or hafnium tetrachloride and 1-butyl-3-methylimidazolium chloride, [C(1)C(4)Im][Cl], have been prepared with a molar fraction of MCl(4), R = n(MCl4)/n(MCl4) + n([C1C4IM][Cl]) equal to 0, 0.1, 0.2, 0.33, 0.5, 0.67. The structure and composition were studied by Differential Scanning Calorimetry (DSC), (35)Cl (263 to 333 K), (1)H and (13)C solid state and solution NMR spectroscopy, and electrospray ionisation (ESI) mass spectrometry. The primary anions of the MCl(4)-based ILs were [MCl(5)], [MCl(6)] and [M(2)Cl(9)], whose relative abundances varied with R. For R = 0.33, pure solid [C(1)C(4)Im](2)[MCl(6)], for both M = Zr and Hf are formed (m.p. = 366 and 385 K, respectively). For R = 0.67 pure ionic liquids [C(1)C(4)Im][M(2)Cl(9)] for both M = Zr and Hf are formed (T(g) = 224 and 220 K, respectively). The thermal dissociation has been attempted of [C(1)C(4)Im](2)[HfCl(6)], and [C(1)C(4)Im](2)[ZrCl(6)] monitored by (35)Cl and (91)Zr solid NMR (high temperature up to 551 K).
1,3,5-Hydroxybenzene structures in mosses
Wilson, M.A.; Sawyer, J.; Hatcher, P.G.; Lerch, H. E.
1989-01-01
A number of mosses from widely different families have been studied by cross polarization solid state 13C NMR spectroscopy. Although polysaccharide-type materials dominate the NMR spectra, significant amounts of aromatic carbons are observed in some mosses. Some of this material can be removed by ultrasonic bath treatment, and is lignin derived, probably from impurities from fine root material from associated higher plants. However other material is truly moss-derived and appears to be from 1,3,5-hydroxybenzene structures. This is inconsistent with lignin as being a component of mosses, and suggests a tannin or hydroxybenzofuran polymer is responsible for moss rigidity. ?? 1989.
Organic geochemical analysis of sedimentary organic matter associated with uranium
Leventhal, J.S.; Daws, T.A.; Frye, J.S.
1986-01-01
Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.
NASA Astrophysics Data System (ADS)
Otsuka, Kei; Iikubo, Hideaki; Kogure, Takayuki; Takano, Yoshiki; Hiraki, Ko-ichi; Takahashi, Toshihiro; Cui, Hengbo; Kato, Reizo
2014-05-01
We performed 13C NMR measurements of a selectively 13C isotope-labeled single-crystal sample of a frustrated spin system, β'-Et2Me2P[Pd(dmit)2]2. A long-range antiferromagnetic (AF) ordering below 17 K was confirmed by the observation of NMR spectrum broadening and well split resonance lines at lower temperatures. NMR spectra in the AF state can be well explained by a two sublattice model. From the analysis of the angular dependence of the NMR spectrum, we clarified the magnetic structure in the AF state, where the easy and hard axes are the crystallographic c*- and b-axes, respectively, and the effective localized moments are quite small, ˜0.28 μB/dimer. This suggests a strong quantum fluctuation effect due to magnetic frustrations in a quasi-triangular spin-1/2 system.
Duan, Pu; Cao, Xiaoyan; Pham, Hien; Datye, Abhaya; Schmidt-Rohr, Klaus
2018-06-09
Hydrothermally stable carbon overlayers can protect mesoporous oxides (SiO₂ and Al₂O₃) from hydrolysis during aqueous-phase catalysis. Overlayers made at 800 °C by pyrolysis of 2,3-naphthalenediol deposited out of acetone solution were analyzed by solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. Power absorption due to sample conductivity was prevented by diluting the sample in nonconductive and background-free tricalcium phosphate. While pyrolysis on SiO₂ produced a predominantly aromatic carbon film, at least 15% of nonaromatic carbon (sp³-hybridized C as well as C=O) was observed on γ-Al₂O₃. These species were not derived from residual solvent, according to spectra of the same material treated at 400 °C. The sp³-hybridized C exhibited weak couplings to hydrogen, short spin-lattice relaxation times, and unusually large shift anisotropies, which are characteristics of tetrahedral carbon with high concentrations of unpaired electrons. Moderate heat treatment at 400 °C on SiO₂ and Al₂O₃ resulted in yellow-brown and nearly black samples, respectively, but the darker color on Al₂O₃ did not correspond to more extensive carbonization. Aromatic carbon bonded to hydrogen remained predominant and the peaks of naphthalenediol were still recognizable; however, some of the chemical shifts differed by up to 5 ppm, indicating significant differences in local structure. On SiO₂, additional sharp peaks were detected and attributed to 1/3 of the 2,3-naphthalene molecules undergoing fast, nearly isotropic motions.
NASA Astrophysics Data System (ADS)
Gopinath, T.; Veglia, Gianluigi
2016-06-01
Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.
Miyoshi, Toshikazu; Mamun, Al; Hu, Wei
2010-01-14
The order-disorder phenomenon of local packing structures, space heterogeneity, and molecular dynamics and average lamellar thickness,
Maity, Niladri; Barman, Samir; Callens, Emmanuel; ...
2015-11-30
The well-defined single-site silica-supported tungsten complex [(Si–O–)W(Me) 5], 1, is an excellent precatalyst for alkane metathesis. The unique structure of 1 allows the synthesis of unprecedented tungsten hydrido methyl surface complexes via a controlled hydrogenolysis. Specifically, in the presence of molecular hydrogen, 1 is quickly transformed at -78 °C into a partially alkylated tungsten hydride, 4, as characterized by 1H solid-state NMR and IR spectroscopies. Species 4, upon warming to 150 °C, displays the highest catalytic activity for propane metathesis yet reported. DFT calculations using model systems support the formation of [(Si–O–)WH 3(Me) 2], as the predominant species at -78more » °C following several elementary steps of hydrogen addition (by σ-bond metathesis or α-hydrogen transfer). Rearrangement of 4 occuring between -78 °C and room temperature leads to the formation of an unique methylidene tungsten hydride [(Si–O–)WH 3(CH 2)], as determined by solid-state 1H and 13C NMR spectroscopies and supported by DFT. Thus for the first time, a coordination sphere that incorporates both carbene and hydride functionalities has been observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten
We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ({sup RESPIRATION}CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated frommore » second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the {sup RESPIRATION}CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous {sup 15}N → {sup 13}CO and {sup 15}N → {sup 13}C{sub α} coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.« less
Dastmalchi, Keyvan; Kallash, Linda; Wang, Isabel; Phan, Van C.; Huang, Wenlin; Serra, Olga; Stark, Ruth E.
2016-01-01
The cultivation, storage, and distribution of potato tubers are compromised by mechanical damage and suboptimal healing. To investigate wound-healing progress in cultivars with contrasting russeting patterns, metabolite profiles reported previously for polar tissue extracts were complemented by GC/MS measurements for nonpolar extracts and quantitative 13C NMR of interfacial solid suspensions. Potential marker compounds that distinguish cultivar type and wound-healing time point included fatty acids, fatty alcohols, alkanes, glyceryl esters, α,ω-fatty diacids, and hydroxyfatty acids. The abundant long-chain fatty acids in nonpolar extracts and solids from the smooth-skinned Yukon Gold cultivar suggested extensive suberin biopolymer formation; this hypothesis was supported by high proportions of arenes, alkenes, and carbonyl groups in the solid and among the polar markers. The absence of many potential marker classes in nonpolar Atlantic extracts and interfacial solids suggested a limited extent of suberization. Modest scavenging activities of all nonpolar extracts indicate that the majority of antioxidants produced in response to wounding are polar. PMID:26166447
Dastmalchi, Keyvan; Kallash, Linda; Wang, Isabel; Phan, Van C; Huang, Wenlin; Serra, Olga; Stark, Ruth E
2015-08-05
The cultivation, storage, and distribution of potato tubers are compromised by mechanical damage and suboptimal healing. To investigate wound-healing progress in cultivars with contrasting russeting patterns, metabolite profiles reported previously for polar tissue extracts were complemented by GC/MS measurements for nonpolar extracts and quantitative (13)C NMR of interfacial solid suspensions. Potential marker compounds that distinguish cultivar type and wound-healing time point included fatty acids, fatty alcohols, alkanes, glyceryl esters, α,ω-fatty diacids, and hydroxyfatty acids. The abundant long-chain fatty acids in nonpolar extracts and solids from the smooth-skinned Yukon Gold cultivar suggested extensive suberin biopolymer formation; this hypothesis was supported by high proportions of arenes, alkenes, and carbonyl groups in the solid and among the polar markers. The absence of many potential marker classes in nonpolar Atlantic extracts and interfacial solids suggested a limited extent of suberization. Modest scavenging activities of all nonpolar extracts indicate that the majority of antioxidants produced in response to wounding are polar.
Watfa, Nancy; Floquet, Sébastien; Terazzi, Emmanuel; Haouas, Mohamed; Salomon, William; Korenev, Vladimir S; Taulelle, Francis; Guénée, Laure; Hijazi, Akram; Naoufal, Daoud; Piguet, Claude; Cadot, Emmanuel
2015-02-14
A series of compounds resulting from the ionic association of a nanoscopic inorganic cluster of formula [K2NaxLiy{Mo4O4S4(OH)2(H2O)3}2(HzP8W48O184)]((34-x-y-z)-), 1, with several organic cations such as dimethyldioctadecylammonium DODA(+), trimethylhexadecylammonium TMAC16(+), alkylmethylimidazoliums mimCn(+) (n = 12-20) and alkyl-dimethylimidazoliums dmimCn(+) (n = 12 and 16) was prepared and characterized in the solid state by FT-IR, EDX, Elemental analysis, TGA and solid state NMR. The solid state NMR experiments performed on (1)H, (13)C and (31)P nuclei evidenced the interactions between the cations and 1 as well as the organization of the alkyl chains of the cations within the solid. Polarized optical microscopy, DSC and SA-XRD experiments implicated mesomorphic phases for DODA(+) and mimCn(+) salts of 1. The crystallographic parameters were determined and demonstrated that the inter-lamellar spacing could be controlled upon changing the length of the alkyl chain, a very interesting result if we consider the huge size of the inorganic cluster 1 and the simple nature of the cations.
Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.
Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P
2014-05-14
(2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.
The effects of soy on freezable bread dough: a magnetic resonance study.
Simmons, Amber L; Vodovotz, Yael
2012-11-15
Hygroscopic soy ingredients were hypothesised to slow the rate of water migration in unleavened bread dough during frozen storage. Thawed soy (18% dry weight) and wheat dough samples were assessed using non-destructive nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) for up to 8 wks frozen storage time. MRI suggested a spatially homogeneous, net increase in proton mobility with frozen storage and, with solution state proton NMR, distinct "free" and "bound" states were discerned. T(2) relaxation times of the majority proton population suggested increased mobility with frozen storage time, and statistical difference from the fresh sample was seen later for the soy samples than the wheat samples. As seen by (13)C-solid state NMR, the crystallinity of the starch was not affected by either soy addition or frozen storage. In conclusion, addition of soy to bakery products led to slightly enhanced preservation of "fresh" characteristics of the dough during frozen storage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining
2015-10-05
The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60 min at a low magnetic field of 9.4 T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet
2011-12-01
This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials. Copyright © 2011 Elsevier B.V. All rights reserved.
Pérez-Torralba, Marta; Ángeles García, M; López, Concepción; Torralba, M Carmen; Rosario Torres, M; Alkorta, Ibon; Elguero, José
2013-01-01
Summary Two novel tetrafluorinated 1,5-benzodiazepinones were synthesized and their X-ray structures determined. 6,7,8,9-Tetrafluoro-4-methyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one crystallizes in the monoclinic P21/c space group and 6,7,8,9-tetrafluoro-1,4-dimethyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one in the triclinic P−1 space group. Density functional theory studies at the B3LYP/6-311++G(d,p) level were carried out on these compounds and on four non-fluorinated derivatives, allowing to calculate geometries, tautomeric energies and ring-inversion barriers, that were compared with the experimental results obtained by static and dynamic NMR in solution and in solid state. PMID:24204428
CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.
Idström, Alexander; Brelid, Harald; Nydén, Magnus; Nordstierna, Lars
2013-01-30
The hornification process of paper pulp was investigated using solid-state (13)C NMR spectroscopy. Nanocrystalline cellulose was used to serve as a model system of the crystalline parts of the fibrils in pulp fibers. Characterization of the nanocrystalline cellulose dimensions was carried out using scanning electron microscopy. The samples were treated by drying and wetting cycles prior to NMR analysis where the hornification phenomenon was recorded by spectral changes of the cellulose C-4 carbon signals. An increase of the crystalline signal and a decrease of the signals corresponding to the accessible amorphous domains were found for both paper pulp and nanocrystalline cellulose. These spectral changes grew stronger with repeating drying and wetting cycles. The results show that cellulose co-crystallization contribute to hornification. Another conclusion is that the surfaces of higher hydrophobicity in cellulose fibrils have an increased preference for aggregation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pöppler, Ann-Christin; Corlett, Emily K.; Pearce, Harriet; Seymour, Mark P.; Reid, Matthew; Montgomery, Mark G.
2017-01-01
A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely dithianon (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho[2,3-b][1,4]dithiine-2,3-dicarbonitrile–4,6-dimethyl-N-phenylpyrimidin-2-amine (1/1), C14H4N2O2S2·C12H13N2]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental 1H and 13C chemical shifts are determined from two-dimensional 1H–13C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C—H connectivities and longer-range C⋯H proximities, whereas H⋯H proximities are identified in a 1H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated molecules allows the determination of the change in chemical shift upon going from an isolated molecule to the full crystal structure. For the 1H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to intermolecular N—H⋯O and C—H⋯O hydrogen bonding, while changes of −2.7 and −1.5 ppm are due to ring current effects associated with C—H⋯π interactions. Even though there is a close intermolecular S⋯O distance of 3.10 Å, it is of note that the molecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small. PMID:28257008
Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR
NASA Astrophysics Data System (ADS)
Simmons, Thomas J.; Mortimer, Jenny C.; Bernardinelli, Oigres D.; Pöppler, Ann-Christin; Brown, Steven P.; Deazevedo, Eduardo R.; Dupree, Ray; Dupree, Paul
2016-12-01
Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.
Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR.
Simmons, Thomas J; Mortimer, Jenny C; Bernardinelli, Oigres D; Pöppler, Ann-Christin; Brown, Steven P; deAzevedo, Eduardo R; Dupree, Ray; Dupree, Paul
2016-12-21
Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13 C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.
Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E
2016-01-11
Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Jun-Wei; Li, Xing; Zheng, Jian-Mei
2016-05-15
Water soluble coordination polymer of potassium lead 1,3-propylenediaminetetraacetate {K_4[Pb_2(1,3-pdta)_2]·6H_2O}{sub n} (1) and its insoluble products {[Pb(1,3-H_2pdta)(H_2O)]·2H_2O}{sub n} (2), {[Pb_2(1,3-pdta)(H_2O)_4]·4H_2O}{sub n} (3) and [Pb{sub 2}(1,3-pdta)(H{sub 2}O){sub 2}]{sub n} (4) were obtained from the direct reactions of lead nitrate with 1,3-propylenediaminetetraacetic acid in different conditions (1,3-H{sub 4}pdta=1,3-propylenediaminetetraacetic acid). The former 1 could be converted to the insoluble products of {[Pb_2(1,3-pdta)(H_2O)_4]·4H_2O}{sub n} (3) and [Pb{sub 2}(1,3-pdta)(H{sub 2}O){sub 2}]{sub n} (4) in weak acidic solution. The complexes have been full characterized by EA, FT-IR, solution and solid state {sup 13}C NMR spectra, thermogravimetric and structural analyses. Interestingly, 3 contains a unique (H{sub 2}O){sub 26}more » cluster and a 5.2 Å pore after eliminating the guest water molecules, which exhibits reversible adsorption for methanol. This is confirmed by PXRD and solid state {sup 13}C NMR analyses. Nano-confined methanol in microporous structure has been observed based on the large downfield shift of {sup 13}C NMR signal (Δδ 9.72 ppm), attributing to the methyl group in methanol. - Graphical abstract: Water soluble coordination polymer K{sub 4n}[Pb{sub 2}(1,3-pdta){sub 2}]{sub n}·6nH{sub 2}O (1) is converted to its insoluble product [Pb{sub 2}(1,3-pdta)(H{sub 2}O){sub 4}]{sub n}·4nH{sub 2}O (3), which contains a unique (H{sub 2}O){sub 26} cluster and exhibits reversible adsorption for methanol. - Highlights: • Water-soluble coordination polymer was constructed by lead propylenediaminetetraacetate. • Its MOF product has a unique (H{sub 2}O){sub 26} cluster. • The product exhibits reversible adsorption for methanol.« less
Hartman, Joshua D; Day, Graeme M; Beran, Gregory J O
2016-11-02
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13 C and 15 N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study.
2016-01-01
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13C and 15N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study. PMID:27829821
Establishing a molecular relationship between chondritic and cometary organic solids
Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.
2011-01-01
Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Ja Hun; Hu, Jian Z.; Hoyt, David W.
2010-03-11
Ex situ solid state NMR was used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercriticalCO2 with and without H2O. Run conditions were 80 C and 96 atm. 29Si NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce dissolved Mg2+, and mono- and oligomeric hydroxylated silica species. Surface hydrolysis products contain only Q0 (Si(OH)4) and Q1(Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to lessmore » than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. 29Si NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. 13C MAS NMR identified a possible reaction intermediate as (MgCO3)4-Mg(OH)2-5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed.« less
Bates, A.L.; Hatcher, P.G.
1989-01-01
A series of samples taken from the cross section of a 3-m-diameter fossilized gymnospermous log (Araucariaceae) in the Yallourn Seam of the Australian brown coals was examined by solid state 13C nuclear magnetic resonance to delineate chemical changes related to the combined processes of peatification and coalification. The results show that cellulosic materials were degraded and lost on the periphery of the log, however, the degree of such degradation in the central core is substantially less. The lignin is uniformly altered by coalification reactions to a macromolecular substance displaying decreased aryl ether linkages but significantly greater amounts of carbon linkages compared to modern lignin. Changes in the methoxyl carbon contents of lignin in cross section reveal demethylation reactions, but these do not appear to be related to degree of carbon linking. Both the degredation of cellulosic materials and demethylation of lignin appear to be early diagenetic processes occurring during peatification independently of the coalification reactions. ?? 1989.
Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR
NASA Astrophysics Data System (ADS)
Lange, Adam; Giller, Karin; Hornig, Sönke; Martin-Eauclaire, Marie-France; Pongs, Olaf; Becker, Stefan; Baldus, Marc
2006-04-01
The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane-similar to the catalytic function of the active site of an enzyme-and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.
Development of solid-state NMR techniques for the characterisation of pharmaceutical compounds
NASA Astrophysics Data System (ADS)
Tatton, Andrew S.
Structural characterisation in the solid state is an important step in understanding the physical and chemical properties of a material. Solid-state NMR techniques applied to solid delivery forms are presented as an alternative to more established structural characterisation methods. The effect of homonuclear decoupling upon heteronuclear couplings is investigated using a combination of experimental and density-matrix simulation results acquired from a 13C-1H spinecho pulse sequence, modulated by scalar couplings. It is found that third-order cross terms under MAS and homonuclear decoupling contribute to strong dephasing effects in the NMR signal. Density-matrix simulations allow access to parameters currently unattainable in experiment, and demonstrate that higher homonuclear decoupling rf nutation frequencies reduce the magnitude of third-order cross terms. 15N-1H spinecho experiments were applied to pharmaceutically relevant samples to differentiate between the number of directly attached protons. Using this method, proton transfer in an acid-base reaction is proven in pharmaceutical salts. The indirect detection of 14N lineshapes via protons obtained using 2D 14N-1H HMQC experiments is presented, where coherence transfer is achieved via heteronuclear through-space dipolar couplings. The importance of fast MAS frequencies is demonstrated, and it is found that increasing the recoupling duration reveals longer range NH proximities. The 2D 14N-1H HMQC method is used to demonstrate the presence of specific hydrogen bonding interactions, and thus aid in identifying molecular association in a cocrystal and an amorphous dispersion. In addition, hydrogen bonding motifs were identified by observing the changes in the 14N quadrupolar parameters between individual molecular components relative to the respective solid delivery form. First-principles calculations of NMR chemical shifts and quadrupolar parameters using the GIPAW method were combined with 14N-1H experimental results to assist with spectral assignment and the identification of the hydrogen bonding interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Hayden T.; Harrison, Katharine Lee
2016-10-01
The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Limore » + ions, and that the mobility of polymer associated Li + was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li + within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.« less
NASA Astrophysics Data System (ADS)
Czernek, Jiří; Pawlak, Tomasz; Potrzebowski, Marek J.; Brus, Jiří
2013-01-01
The 13C and 15N CPMAS SSNMR measurements were accompanied by the proper theoretical description of the solid-phase environment, as provided by the density functional theory in the pseudopotential plane-wave scheme, and employed in refining the atomic coordinates of the crystal structures of thiamine chloride hydrochloride and of its monohydrate. Thus, using the DFT functionals PBE, PW91 and RPBE, the SSNMR-consistent solid-phase structures of these compounds are derived from the geometrical optimization, which is followed by an assessment of the fits of the GIPAW-predicted values of the chemical shielding parameters to their experimental counterparts.
Upreti, Mani; Strassburger, Ken; Chen, You L.; Wu, Shaoxiong; Prakash, Indra
2011-01-01
Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state 13C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes. PMID:22174615
Joint experimental and computational 17O solid state NMR study of Brownmillerite Ba2In2O5.
Dervişoğlu, Rıza; Middlemiss, Derek S; Blanc, Frédéric; Holmes, Lesley A; Lee, Yueh-Lin; Morgan, Dane; Grey, Clare P
2014-02-14
Structural characterization of Brownmillerite Ba2In2O5 was achieved by an approach combining experimental solid-state NMR spectroscopy, density functional theory (DFT) energetics, and GIPAW NMR calculations. While in the previous study of Ba2In2O5 by Adler et al. (S. B. Adler, J. A. Reimer, J. Baltisberger and U. Werner, J. Am. Chem. Soc., 1994, 116, 675-681), three oxygen resonances were observed in the (17)O NMR spectra and assigned to the three crystallographically unique O sites, the present high resolution (17)O NMR measurements under magic angle spinning (MAS) find only two resonances. The resonances have been assigned using first principles (17)O GIPAW NMR calculations to the combination of the O ions connecting the InO4 tetrahedra and the O ions in equatorial sites in octahedral InO6 coordination, and to the axial O ions linking the four- and six-fold coordinated In(3+) ions. Possible structural disorder was investigated in two ways: firstly, by inclusion of the high-energy structure also previously studied by Mohn et al. (C. E. Mohn, N. L. Allan, C. L. Freeman, P. Ravindran and S. Stølen, J. Solid State Chem., 2005, 178, 346-355), where the structural O vacancies are stacked rather than staggered as in Brownmillerite and, secondly, by exploring structures derived from the ground-state structure but with randomly perturbed atomic positions. There is no noticeable NMR evidence for any substantial occupancy of the high-energy structure at room temperature.
Composite-pulse and partially dipolar dephased multiCP for improved quantitative solid-state 13C NMR
NASA Astrophysics Data System (ADS)
Duan, Pu; Schmidt-Rohr, Klaus
2017-12-01
Improved multiple cross polarization (multiCP) pulse sequences for quickly acquiring quantitative 13C NMR spectra of organic solids are presented. Loss of 13C magnetization due to imperfect read-out and storage pulses in multiCP has been identified as a significant mechanism limiting polarization enhancement for 13C sites with weak couplings to 1H. This problem can be greatly reduced by composite 90° pulses with non-orthogonal phases that flip the magnetization onto the spin-lock field and back to the longitudinal direction for the 1H repolarization period; the observed loss is <3% for over ±10 kHz resonance offset and up to 20% flip-angle error. This composite-pulse multiCP (ComPmultiCP) sequence consistently provides performance superior to that of conventional multiCP, without any trade-off. The longer total CP time enabled by the composite pulses allows for a wider amplitude ramp during CP, which decreases the sensitivity to Hartmann-Hahn mismatch by a factor of two, with a <7% root-mean-square deviation within a 1-dB range for Boc-alanine. In samples with very short T1ρ, under-polarization of non-protonated carbons can be compensated by slight dipolar dephasing of CHn signals resulting from relatively weak decoupling during the Hahn spin echo period before detection. Quantitative spectra have been obtained by ComPmultiCP for low-crystallinity branched polyethylene at 4.5 kHz MAS, and in combination with partial dipolar dephasing for soil organic matter at 14 kHz MAS.
Reichhardt, Courtney; Ferreira, Jose A G; Joubert, Lydia-Marie; Clemons, Karl V; Stevens, David A; Cegelski, Lynette
2015-11-01
Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The (13)C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional (15)N and (31)P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A new soluble and bioactive polymorph of praziquantel.
Zanolla, Debora; Perissutti, Beatrice; Passerini, Nadia; Chierotti, Michele R; Hasa, Dritan; Voinovich, Dario; Gigli, Lara; Demitri, Nicola; Geremia, Silvano; Keiser, Jennifer; Cerreia Vioglio, Paolo; Albertini, Beatrice
2018-06-01
Praziquantel is the only available drug to treat Schistosomiasis. However, its utilization is limited by many drawbacks, including the high therapeutic dose needed, resulting in large tablets and capsules difficult to be swallowed, especially from pediatric patients. In this study, an alternative option to overcome these disadvantages is proposed: to switch to a novel crystalline polymorph of racemic compound praziquantel. The preparation of the crystalline polymorph was realized via a neat grinding process in a vibrational mill. The new phase (Form B) was chemically identical to the starting material (as proved by HPLC, 1 H NMR, and polarimetry), but showed different physical properties (as evaluated by SEM, differential scanning calorimetry, thermogravimetry, ATR-FTIR spectroscopy, X-ray powder diffraction, and solid-state NMR). Furthermore, the crystal structure of the new phase was solved from the powder synchrotron X-ray diffraction pattern, resulting in a monoclinic C2/c cell and validated by DFT-D calculation. Moreover the simulated solid-state NMR 13 C chemical shifts were in excellent agreement with the experimental data. The conversion of original praziquantel into Form B showed to affect positively the water solubility and the intrinsic dissolution rate of praziquantel. Both the in vitro and in vivo activity against Schistosoma mansoni were maintained. Our findings suggest that the new phase, that proved to be physically stable for at least one year, is a promising product for designing a new praziquantel formulation. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mao, J.-D.; Tremblay, L.; Gagné, J.-P.; Kohl, S.; Rice, J.; Schmidt-Rohr, K.
2007-11-01
Detailed structural information on two humic acids extracted from two sinking particulate matter samples at a water depth of 20 m in the Saguenay Fjord (F-20-HA) and the St. Lawrence Estuary (E-20-HA) (Canada), was obtained by advanced solid-state NMR. Spectral-editing analyses provided numerous structural details rarely reported in geochemical studies. The NMR data account almost quantitatively for the elemental compositions. The two humic acids were found to be quite similar, consisting of four main structural components: peptides (ca. 39 ± 3% vs. 34 ± 3% of all C for E-20-HA and F-20-HA, respectively); aliphatic chains, 14-20 carbons long (ca. 25 ± 5% vs. 17 ± 5% of all C); aromatic structures (ca. 17 ± 2% vs. 26 ± 2% of all C); and sugar rings (14 ± 2% vs. 15 ± 2% of all C). Peptides were identified by 13C{ 14N} SPIDER NMR, which selects signals of carbons bonded to nitrogen, and by dipolar DEPT, which selects CH-group signals, in particular the NCH band of peptides. The SPIDER spectra also indicate that heterocycles constitute a significant fraction of the aromatic structures. The aliphatic (CH 2) n chains, which are highly mobile, contain at least one double bond per two chains and end in methyl groups. 1H spin diffusion NMR experiments showed that these mobile aliphatic chains are in close (<10 nm) proximity to the other structural components. A major bacterial contribution to these two samples could explain why the samples, which have different dominant organic matter sources (terrestrial vs. marine), are similar to each other as well as to degraded algae and particles from other waters. The NMR data suggest structures containing mobile lipids in close proximity to peptides and carbohydrates (e.g., peptidoglycan) as found in bacterial cell walls. Measured yields of muramic acid and D-amino acids confirmed the presence of bacterial cell wall components in the studied samples.
Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F
2013-04-03
The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high.
Ahmed, Mumdooh A M; Bamm, Vladimir V; Shi, Lichi; Steiner-Mosonyi, Marta; Dawson, John F; Brown, Leonid; Harauz, George; Ladizhansky, Vladimir
2009-01-01
The 18.5 kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that maintains the structural integrity of the myelin sheath of the central nervous system by conjoining the cytoplasmic leaflets of oligodendrocytes and by linking the myelin membrane to the underlying cytoskeleton whose assembly it strongly promotes. It is a multifunctional, intrinsically disordered protein that behaves primarily as a structural stabilizer, but with elements of a transient or induced secondary structure that represent binding sites for calmodulin or SH3-domain-containing proteins, inter alia. In this study we used solid-state NMR (SSNMR) and Fourier transform infrared (FTIR) spectroscopy to study the conformation of 18.5 kDa MBP in association with actin microfilaments and bundles. FTIR spectroscopy of fully (13)C,(15)N-labeled MBP complexed with unlabeled F-actin showed induced folding of both protein partners, viz., some increase in beta-sheet content in actin, and increases in both alpha-helix and beta-sheet content in MBP, albeit with considerable extended structure remaining. Solid-state NMR spectroscopy revealed that MBP in MBP-actin assemblies is structurally heterogeneous but gains ordered secondary structure elements (both alpha-helical and beta-sheet), particularly in the terminal fragments and in a central immunodominant epitope. The overall conformational polymorphism of MBP is consistent with its in vivo roles as both a linker (membranes and cytoskeleton) and a putative signaling hub.
Verly, Rodrigo M.; Moraes, Cléria Mendonça de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C.L.; Bechinger, Burkhard
2009-01-01
DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an α-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046
Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Jeffrey, F. Mark; Malloy, Craig R.; Pascual, Juan M.
2011-01-01
Glucose readily supplies the brain with the majority of carbon needed to sustain neurotransmitter production and utilization., The rate of brain glucose metabolism can be computed using 13C nuclear magnetic resonance (NMR) spectroscopy by detecting changes in 13C contents of products generated by cerebral metabolism. As previously observed, scalar coupling between adjacent 13C carbons (multiplets) can provide additional information to 13C contents for the computation of metabolic rates. Most NMR studies have been conducted in large animals (often under anesthesia) because the mass of the target organ is a limiting factor for NMR. Yet, despite the challengingly small size of the mouse brain, NMR studies are highly desirable because the mouse constitutes a common animal model for human neurological disorders. We have developed a method for the ex vivo resolution of NMR multiplets arising from the brain of an awake mouse after the infusion of [1,6-13C2]glucose. NMR spectra obtained by this method display favorable signal-to-noise ratios. With this protocol, the 13C multiplets of glutamate, glutamine, GABA and aspartate achieved steady state after 150 min. The method enables the accurate resolution of multiplets over time in the awake mouse brain. We anticipate that this method can be broadly applicable to compute brain fluxes in normal and transgenic mouse models of neurological disorders. PMID:21946227
Antiferromagnetic Ordering in Organic Conductor λ-(BEDT-TTF)2GaCl4 Probed by 13C NMR
NASA Astrophysics Data System (ADS)
Saito, Yohei; Fukuoka, Shuhei; Kobayashi, Takuya; Kawamoto, Atsushi; Mori, Hatsumi
2018-01-01
The ground state of λ-(BEDT-TTF)2GaCl4, which has the same structure as the organic superconductor λ-(BETS)2GaCl4, was investigated by magnetic susceptibility and 13C NMR measurements. The temperature dependence of the magnetic susceptibility revealed an antiferromagnetic (AF) correlation with J/kB ≃ 98 K. NMR spectrum splitting and the divergence of 1/T1 were observed at approximately 13 K, which is associated with the AF transition. We found that the AF structure is commensurate according to discrete NMR peak splitting, suggesting that the ground state of λ-(BEDT-TTF)2GaCl4 is an AF dimer-Mott insulating state. Our results suggest that the superconducting phase of λ-type salts would be located near the AF insulating phase.
Synthesis and structure elucidation of fluoro substituted guanidines as potential therapeutic agents
NASA Astrophysics Data System (ADS)
Ullah, Waseem; Imtiaz-ud-Din; Raheel, Ahmad; Badshah, Amin; Tahir, Muhammad Nawaz
2017-09-01
Six new fluoro -substituted guanidines (1-6) were synthesized and characterized by 1H and 13C NMR spectroscopy to ascertain the structures in solution (DMSO) besides the solid state information collected through FT IR and single crystal X-ray spectroscopy. The XRD data for (1-3) show that molecules are stabilized by strong intramolecular hydrogen bonding. The compounds were also preliminary bio-assayed for anti-microbial studies and show good to moderate activities. The anti-oxidant data revealed that o and p-substituted fluoro-guanidines enhances their DPPH scavenging ability significantly.
Equbal, Asif; Paul, Subhradip; Mithu, Venus Singh; Madhu, P K; Nielsen, Niels Chr
2014-09-01
We present new non-rotor-synchronized variants of the recently introduced refocused continuous wave (rCW) heteronuclear decoupling method significantly improving the performance relative to the original rotor-synchronized variants. Under non-rotor-synchronized conditions the rCW decoupling sequences provide more efficient decoupling, are easier to setup, and prove more robust towards experimental parameters such as radio frequency (rf) field amplitude and spinning frequency. This is demonstrated through numerical simulations substantiated with experimental results under different sample spinning and rf field amplitude conditions for powder samples of U-(13)C-glycine and U-(13)C-L-histidine·HCl·H2O. Copyright © 2014 Elsevier Inc. All rights reserved.
Romaniuk, Joseph A H; Cegelski, Lynette
2018-06-11
Gram-positive bacteria surround themselves with a multilayered macromolecular cell wall that is essential to cell survival and serves as a major target for antibiotics. The cell wall of Staphylococcus aureus is composed of two major structural components, peptidoglycan (PG) and wall teichoic acid (WTA), together creating a heterogeneous and insoluble matrix that poses a challenge to quantitative compositional analysis. Here, we present 13 C cross polarization magic angle spinning solid-state nuclear magnetic resonance (NMR) spectra of intact cell walls, purified PG, and purified WTA. The spectra reveal the clear molecular differences in the two polymers and enable quantification of PG and WTA in isolated cell walls, an attractive alternative to estimating teichoic acid content from a phosphate analysis of completely pyrolyzed cell walls. Furthermore, we discovered that unique PG and WTA spectral signatures could be identified in whole-cell NMR spectra and used to compare PG and WTA levels among intact bacterial cell samples. The distinguishing whole-cell 13 C NMR contributions associated with PG include the GlcNAc-MurNAc sugar carbons and glycyl α-carbons. WTA contributes carbons from the phosphoribitol backbone. Distinguishing 15 N spectral signatures include glycyl amide nitrogens in PG and the esterified d-alanyl amine nitrogens in WTA. 13 C NMR analysis was performed with samples at natural abundance and included 10 whole-cell sample comparisons. Changes consistent with altered PG and WTA content were detected in whole-cell spectra of bacteria harvested at different growth times and in cells treated with tunicamycin. This use of whole-cell NMR provides quantitative parameters of composition in the context of whole-cell activity.
NASA Astrophysics Data System (ADS)
Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech
2018-01-01
The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1H, 13C and 15N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH3salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO2salDAMN and naphDAMN only one form (X) was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keniry, M.A.; Rothgeb, T.M.; Smith, R.L.
1983-04-12
Deuterium (/sup 2/H) nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times (T/sub 1/) were obtained of L-(epsilon-/sup 2/H/sub 3/)methionine, L-(epsilon-/sup 2/H/sub 3/)methionine in a D,L lattice, and (S-methyl-/sup 2/H/sub 3/)methionine in the crystalline solid state, as a function of temperature, in addition to obtaining /sup 2/H T/sub 1/ and line-width results as a function of temperature on (epsilon-/sup 2/H/sub 3/)methionine-labeled sperm whale (Physeter catodon) myoglobins by using the method of magnetic ordering. Also recorded were /sup 13/C cross-polarization ''magic-angle'' sample-spinning NMR spectra of (epsilon-/sup 13/C)methionine-labeled crystalline cyanoferrimyoglobin (at 37.7 MHz, corresponding to a magnetic field strength of 3.52 T)more » and of the same protein in aqueous solution. (JMT)« less
An extrapolation scheme for solid-state NMR chemical shift calculations
NASA Astrophysics Data System (ADS)
Nakajima, Takahito
2017-06-01
Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.
NASA Astrophysics Data System (ADS)
Rakshit, Subhadeep; Sanyal, Prasanta; Vardhan Gaur, Harsh
2015-04-01
Soil organic carbon, one of the largest reservoirs of carbon, is a heterogeneous mixture of organic compounds with dominant contribution derived from decomposition of plants in various stages. Although general ideas about the processes and mechanisms of soil organic matter (SOM) degradation have been developed, a very few study has linked the SOM with its parent material. In this study we aim to generate reference data set of functional groups from modern vegetation samples (C3 and C4plants) to better understand the degradation dynamics and preferences. The carbon functional groups from modern vegetation samples (eight C3 and nine C4 plants collected from Mohanpur, Nadia, West Bengal, India) were examined by solid state 13C CPMAS NMR spectroscopy. Additionally, isotopic investigations (δ13C) has also been carried out on the modern vegetation samples to understand the relationship of bulk isotopic values to the concentration of functional groups. The major functional groups (alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone) of modern vegetation samples form 16%, 65%, 5%, 14% and 1% respectively in C3 plants. Considerable differences has been observed for C4 plants with average values of alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone are 8%, 83%, 3%, 5% and 1% respectively. The concentration of functional groups from the modern vegetational samples can be considered as reference scale to compare with the 13C NMR data derived from the different soil horizons to understand the SOM degradation dynamics. The δ13CV PDB values of modern vegetation samples plotted against the individual concentration of functional groups shows significant correlation in C4 plants, whereas a lack in correlation has been observed for C3 plants. We assume this difference in relationship of δ13CV PDB values with functional groups of C3 and C4plants can be due to the differences in photosynthesis pathways, the fractionation of CO2 and accumulation of the products during various stages of photosynthesis. A more detailed investigation is warranted to understand the governing mechanism behind this observation.
Tallavaara, Pekka; Jokisaari, Jukka
2008-03-28
An alternative NMR method for determining nuclear shielding anisotropies in molecules is proposed. The method is quite simple, linear and particularly applicable for heteronuclear spin systems. In the technique, molecules of interest are dissolved in a thermotropic liquid crystal (LC) which is confined in a mesoporous material, such as controlled pore glass (CPG) used in this study. CPG materials consist of roughly spherical particles with a randomly oriented and connected pore network inside. LC Merck Phase 4 was confined in the pores of average diameter from 81 to 375 A and LC Merck ZLI 1115 in the pores of average diameter 81 A. In order to demonstrate the functionality of the method, the (13)C shielding anisotropy of (13)C-enriched methyl iodide, (13)CH(3)I, was determined as a function of temperature using one dimensional (13)C NMR spectroscopy. Methane gas, (13)CH(4), was used as an internal chemical shift reference. It appeared that methyl iodide molecules experience on average an isotropic environment in LCs inside the smallest pores within the whole temperature range studied, ranging from bulk solid to isotropic phase. In contrast, in the spaces in between the particles, whose diameter is approximately 150 microm, LCs behave as in the bulk. Consequently, isotropic values of the shielding tensor can be determined from spectra arising from molecules inside the pores at exactly the same temperature as the anisotropic ones from molecules outside the pores. Thus, for the first time in the solution state, shielding anisotropies can easily be determined as a function of temperature. The effects of pore size as well as of different LC media on the shielding anisotropy are examined and discussed.
NASA Astrophysics Data System (ADS)
Kozlecki, Tomasz; Tolstoy, Peter M.; Kwocz, Agnieszka; Vovk, Mikhail A.; Kochel, Andrzej; Polowczyk, Izabela; Tretyakov, Peter Yu.; Filarowski, Aleksander
2015-10-01
Three β-hydroxynaphthylamides (morpholine, pyrrolidine and dimethylamine derivatives) have been synthesized and their conformational state was analyzed by NMR, X-ray and DFT calculations. In aprotic solution the molecules contain intramolecular OHO hydrogen bonds, which change into intermolecular ones in solid state. The energy barriers for the amide group rotation around the CN bond were estimated from the line shape analysis of 1H and 13C NMR signals. A tentative correlation between the barrier height and the strength of OHO bond was proposed. Calculations of the potential energy profiles for the rotations around CC and CN bonds were done. In case of morpholine derivative experimental indications of additional dynamics: chair-chair 'ring flip' in combination with the twisting around CC bond were obtained and confirmed by quantum chemistry calculations.
Advanced solid-state NMR spectroscopy of natural organic matter
USDA-ARS?s Scientific Manuscript database
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...
Thurber, Kent; Tycko, Robert
2016-03-01
We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.
Chalcogen analogues of nicotine lactam studied by NMR, FTIR, DFT and X-ray methods
NASA Astrophysics Data System (ADS)
Jasiewicz, Beata; Malczewska-Jaskóła, Karolina; Kowalczyk, Iwona; Warżajtis, Beata; Rychlewska, Urszula
2014-07-01
The selenoanalogue of nicotine has been synthesized and characterized by spectroscopic and X-ray diffraction methods. The crystals of selenonicotine are isomorphic with the thionicotine homologue and consist of molecules engaged in columnar π⋯π stacking interactions between antiparallely arranged pyridine moieties. These interactions, absent in other crystals containing nicotine fragments, seem to be induced by the presence of a lactam group. The molecular structures in the vacuum of the oxo-, thio- and selenonicotine homologues have been calculated by the DFT method and compared with the available X-ray data. The delocalized structure of thionicotine is stabilized by intramolecular Csbnd H⋯S hydrogen bond, which becomes weaker in the partial zwitterionic resonance structure of selenonicotine in favor of multiple Csbnd H⋯Se intermolecular hydrogen-bonds. The calculated data allow a complete assignment of vibration modes in the solid state FTIR spectra. The 1H and 13C NMR chemical shifts were calculated by the GIAO method with B3LYP/6-311G(3df) level. A comparison between experimental and calculated theoretical results indicates that the density functional B3LYP method provided satisfactory results for predicting FTIR, 1H, 13C NMR spectra properties.
CFA-1: the first chiral metal-organic framework containing Kuratowski-type secondary building units.
Schmieder, Phillip; Denysenko, Dmytro; Grzywa, Maciej; Baumgärtner, Benjamin; Senkovska, Irena; Kaskel, Stefan; Sastre, German; van Wüllen, Leo; Volkmer, Dirk
2013-08-14
The novel homochiral metal-organic framework CFA-1 (Coordination Framework Augsburg-1), [Zn5(OAc)4(bibta)3], containing the achiral linker {H2-bibta = 1H,1'H-5,5'-bibenzo[d][1,2,3]triazole}, has been synthesised. The reaction of H2-bibta and Zn(OAc)2·2H2O in N-methylformamide (NMF) (90 °C, 3 d) yields CFA-1 as trigonal prismatic single crystals. CFA-1 serves as a convenient precursor for the synthesis of isostructural frameworks with redox-active metal centres, which is demonstrated by the postsynthetic exchange of Zn(2+) by Co(2+) ions. The framework is robust to solvent removal and has been structurally characterized by synchrotron single-crystal X-ray diffraction and solid state NMR measurements ((13)C MAS- and (1)H MAS-NMR at 10 kHz). Results from MAS-NMR and IR spectroscopy studies are corroborated by cluster and periodic DFT calculations performed on CFA-1 cluster fragments.
NASA Astrophysics Data System (ADS)
Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Asiri, Abdullah M.; Kurt, Mustafa
2014-01-01
The spectroscopic properties of 3,5-difluorophenylboronic acid (3,5-DFPBA, C6H3F2B(OH)2) were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C NMR spectroscopic techniques. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase and 1H and 13C NMR spectra in DMSO solution were recorded. The UV spectra that dissolved in ethanol and water were recorded in the range of 200-400 nm for each solution. The structural and spectroscopic data of the molecule have been obtained for possible three conformers from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Hydrogen-bonded dimer of title molecule, optimized by counterpoise correction, was also studied B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. The effects due to the substitutions of boric acid group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), nonlinear optical properties (NLO) and thermodynamic features were performed.
Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.
Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C
2009-07-07
Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.
Evidence for Novel β-Sheet Structures in Iowa Mutant β-Amyloid Fibrils†
Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P. R. O.; Meredith, Stephen C.
2009-01-01
Asp23-to-Asn mutation within the coding sequence of β-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer’s disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Aβ40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Aβ40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 × 10-3 min-1 and 1.07 × 10-4 min-1 for D23N-Aβ40 and the wild-type peptide WT-Aβ40, respectively) and without a lag phase. Electron microscopy shows that D23N-Aβ40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-β pattern, with a sharp reflection at 4.7 Å and a broad reflection at 9.4 Å, which is notably smaller than the value for WT-Aβ40 fibrils (10.4 Å). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Aβ40 fibrils containing the in-register, parallel β-sheet structure commonly found in WT-Aβ40 fibrils and most other amyloid fibrils. Antiparallel β-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Aβ40 fibrils and the unusual vasculotropic clinical picture in these patients. PMID:19358576
Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd
2015-03-01
Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.
Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N.; Huang, Chaobo; Pan, Hui
2017-01-01
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13C NMR spectroscopy (CP/MAS 13C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu2+ and Cd2+, and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu2+ and Cd2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively. PMID:28772885
Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N; Huang, Chaobo; Pan, Hui
2017-05-12
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13 C NMR spectroscopy (CP/MAS 13 C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu 2+ and Cd 2+ , and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu 2+ and Cd 2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively.
Phyo, Pyae; Wang, Tuo; Yang, Yu; O'Neill, Hugh; Hong, Mei
2018-05-14
In contrast to the well-studied crystalline cellulose of microbial and animal origins, cellulose in plant cell walls is disordered due to its interactions with matrix polysaccharides. Plant cell wall (PCW) is an undisputed source of sustainable global energy; therefore, it is important to determine the molecular structure of PCW cellulose. The most reactive component of cellulose is the exocyclic hydroxymethyl group: when it adopts the tg conformation, it stabilizes intrachain and interchain hydrogen bonding, while gt and gg conformations destabilize the hydrogen-bonding network. So far, information about the hydroxymethyl conformation in cellulose has been exclusively obtained from 13 C chemical shifts of monosaccharides and oligosaccharides, which do not reflect the environment of cellulose in plant cell walls. Here, we use solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy to measure the hydroxymethyl torsion angle of cellulose in two model plants, by detecting distance-dependent polarization transfer between H4 and H6 protons in 2D 13 C- 13 C correlation spectra. We show that the interior crystalline portion of cellulose microfibrils in Brachypodium and Arabidopsis cell walls exhibits H4-H6 polarization transfer curves that are indicative of a tg conformation, whereas surface cellulose chains exhibit slower H4-H6 polarization transfer that is best fit to the gt conformation. Joint constraints by the H4-H6 polarization transfer curves and 13 C chemical shifts indicate that it is unlikely for interior cellulose to have a significant population of the gt and gg conformation mixed with the tg conformation, while surface cellulose may adopt a small percentage of the gg conformation. These results provide new constraints to the structure and matrix interactions of cellulose in plant cell walls, and represent the first direct determination of a torsion angle in an important noncrystalline carbohydrate polymer.
Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance
Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.
2009-01-01
The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated with the fire had an OR of 1.091 (??0.003). Fire appears to be a major factor driving the soil C pool to higher oxidation states and lower OR values. Episodic fluxes caused by disturbances like fire may have substantially different ORs from ecosystem respiration fluxes and therefore should be better quantified to reduce uncertainties associated with our understanding of the global atmospheric carbon budget. Copyright 2009 by the American Geophysical Union.
High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.
Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte
2017-10-01
The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Noritsugu Terashima; Takuya Akiyama; Sally Ralph; Dmitry Evtuguin; Carlos Neto Pascoal; Jim Parkas; Magnus Paulsson; Ulla Westermark; John Ralph
2009-01-01
In the structural analysis of lignins by 13C-NMR, signal overlap limits definitive assignment and accurate intensity measurement. Selective labeling by 13C-enrichment of a specific carbon in lignin enhances its signal intensity in the spectrum. Further enhancement of the specifically labeled carbons can be realized via...
De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G
2008-03-28
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5
NASA Astrophysics Data System (ADS)
Ruan, Qing-Xia; Zhou, Ping
2008-07-01
In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.
Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy
Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.
2017-01-01
Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522
Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck
2016-10-04
The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.
Bernardinelli, Oigres Daniel; Lima, Marisa Aparecida; Rezende, Camila Alves; Polikarpov, Igor; deAzevedo, Eduardo Ribeiro
2015-01-01
The crystallinity index (CI) is often associated with changes in cellulose structure after biological and physicochemical pretreatments. While some results obtained with lignocellulosic biomass demonstrate a progressive increase in the CI as a function of pretreatments, it is also shown that the CI can significantly vary depending on the choice of the measurement method. Besides, the influence of the CI on the recalcitrance of biomass has been controversial for a long time, but the most recent results tend to point out that the efficiency of pretreatments in reducing the recalcitrance is not clearly correlated with the decrease of the CI. Much of this controversy is somewhat associated with the inability to distinguish between the CI of the cellulose inside the biomass and the CI of the full biomass, which contains other amorphous components such as lignin and hemicellulose. Cross polarization by multiple contact periods (Multi-CP) method was used to obtain quantitative (13)C solid-state nuclear magnetic resonance (ssNMR) spectra of sugarcane bagasse biomass submitted to two-step pretreatments and/or enzymatic hydrolysis. By comparing the dipolar filtered Multi-CP (13)C NMR spectra of untreated bagasse samples with those of samples submitted to acid pretreatment, we show that a 1% H2SO4-assisted pretreatment was very effective in removing practically all the hemicellulose signals. This led us to propose a spectral editing procedure based on the subtraction of MultiCP spectra of acid-treated biomass from that of the extracted lignin, to obtain a virtually pure cellulose spectrum. Based on this idea, we were able to evaluate the CI of the native cellulose inside the sugarcane bagasse biomass. The results show the validity of the proposed method as a tool for evaluating the variations in the CI of the cellulose inside biomasses of similar kinds. Despite a clear increase in the CI of biomass as measured by X-ray diffraction, no significant variations were observed in the CI of the cellulose inside the biomass after a particular 1% H2SO4/0.25-4% NaOH chemical-assisted pretreatments. The CI of cellulose inside the biomass solid fraction that remained after the enzymatic hydrolysis was also evaluated. The results show a slight increase in crystallinity.
Saş, E Babur; Kurt, M; Can, M; Okur, S; İçli, S; Demiç, S
2014-12-10
The molecular structure and vibrations of 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid (MePIFA) were investigated by infrared and Raman spectroscopies, UV-Vis, (1)H and (13)C NMR spectroscopic techniques and NBO analysis. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. (1)H and (13)C NMR spectra and UV-Vis spectrum were recorded in DMSO solution. HOMO-LUMO analysis and molecular electrostatic potential (MEP) analysis were performed. The theoretical calculations for the molecular structure and spectroscopies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After the geometry of the molecule was optimized, vibration wavenumbers and fundamental vibration wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analysis were made using GaussSum 2.2 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Saş, E. Babur; Kurt, M.; Can, M.; Okur, S.; İçli, S.; Demiç, S.
2014-12-01
The molecular structure and vibrations of 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid (MePIFA) were investigated by infrared and Raman spectroscopies, UV-Vis, 1H and 13C NMR spectroscopic techniques and NBO analysis. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. 1H and 13C NMR spectra and UV-Vis spectrum were recorded in DMSO solution. HOMO-LUMO analysis and molecular electrostatic potential (MEP) analysis were performed. The theoretical calculations for the molecular structure and spectroscopies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After the geometry of the molecule was optimized, vibration wavenumbers and fundamental vibration wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analysis were made using GaussSum 2.2 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.
Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.
Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard
2013-06-26
The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.
Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K.
2003-01-01
Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (??i,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (??T,n = ????i,n) was observed for hydrophobic neutral DOM fractions, followed by lower ??T,n values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.
Blanc, Frédéric; Leskes, Michal; Grey, Clare P
2013-09-17
Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified.
Chen, Bin; Longhini, Andrew P; Nußbaumer, Felix; Kreutz, Christoph; Dinman, Jonathan D; Dayie, T Kwaku
2018-04-11
Conformational dynamics of RNA molecules play a critical role in governing their biological functions. Measurements of RNA dynamic behavior sheds important light on sites that interact with their binding partners or cellular stimulators. However, such measurements using solution-state NMR are difficult for large RNA molecules (>70 nt; nt=nucleotides) owing to severe spectral overlap, homonuclear 13 C scalar couplings, and line broadening. Herein, a strategic combination of solid-phase synthesis, site-specific isotopic labeled phosphoramidites, and enzymatic ligation is introduced. This approach allowed the position-specific insertion of isotopic probes into a 96 nt CCR5 RNA fragment. Accurate measurements of functional dynamics using the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) experiments enabled extraction of the exchange rates and populations of this RNA. NMR chemical shift perturbation analysis of the RNA/microRNA-1224 complex indicated that A90-C1' of the pseudoknot exhibits similar changes in chemical shift observed in the excited state. This work demonstrates the general applicability of a NMR-labeling strategy to probe functional RNA structural dynamics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asakura, Tetsuo; Isobe, Kotaro; Kametani, Shunsuke; Ukpebor, Obehi T; Silverstein, Moshe C; Boutis, Gregory S
2017-03-01
The mechanical properties of Bombyx mori silk fibroin (SF), such as elasticity and tensile strength, change remarkably upon hydration. However, the microscopic interaction with water is not currently well understood on a molecular level. In this work, the dynamics of water molecules interacting with SF was studied by 2 H solution NMR relaxation and exchange measurements. Additionally, the conformations of hydrated [3- 13 C]Ala-, [3- 13 C]Ser-, and [3- 13 C]Tyr-SF fibers and films were investigated by 13 C DD/MAS NMR. Using an inverse Laplace transform algorithm, we were able to identify four distinct components in the relaxation times for water in SF fiber. Namely, A: bulk water outside the fiber, B: water molecules trapped weakly on the surface of the fiber, C: bound water molecules located in the inner surface of the fiber, and D: bound water molecules located in the inner part of the fiber were distinguishable. In addition, four components were also observed for water in the SF film immersed in methanol for 30s, while only two components for the film immersed in methanol for 24h. The effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. The mechanical properties of Bombyx mori silk fibroin (SF) change remarkably upon hydration. However, the microscopic interaction between SF and water is not currently well understood on a molecular level. We were able to identify four distinct components in the relaxation times for water in SF fiber by 2 H solution NMR relaxation and exchange measurements. In addition, the effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Thus, our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[ n]arene Crystals.
Jie, Kecheng; Liu, Ming; Zhou, Yujuan; Little, Marc A; Pulido, Angeles; Chong, Samantha Y; Stephenson, Andrew; Hughes, Ashlea R; Sakakibara, Fumiyasu; Ogoshi, Tomoki; Blanc, Frédéric; Day, Graeme M; Huang, Feihe; Cooper, Andrew I
2018-06-06
The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal-organic frameworks, is one solution to this problem. Here, we studied a flexible molecular material, perethylated pillar[ n]arene crystals ( n = 5, 6), which can be used to separate C8 alkylaromatic compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene and ortho-xylene, with 90% specificity in the solid state. Selectivity is an intrinsic property of the pillar[6]arene host, with the flexible pillar[6]arene cavities adapting during adsorption thus enabling preferential adsorption of para-xylene in the solid state. The flexibility of pillar[6]arene as a solid sorbent is rationalized using molecular conformer searches and crystal structure prediction (CSP) combined with comprehensive characterization by X-ray diffraction and 13 C solid-state NMR spectroscopy. The CSP study, which takes into account the structural variability of pillar[6]arene, breaks new ground in its own right and showcases the feasibility of applying CSP methods to understand and ultimately to predict the behavior of soft, adaptive molecular crystals.
The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope.
Morag, Omry; Sgourakis, Nikolaos G; Baker, David; Goldbourt, Amir
2015-01-27
Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 μm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II β-turn; there is a rise of 16.6-16.7 Å and a tilt of 36.1-36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies.
31P Solid-state NMR based monitoring of permeation of cell penetrating peptides into skin
Desai, Pinaki R.; Cormier, Ashley R.; Shah, Punit P.; Patlolla, Ram R.; Paravastu, Anant K.; Singh, Mandip
2013-01-01
The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11 and YKA) through skin intercellular lipids using 31P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, sections (0–60, 61–120 and 121–180 µm) were collected and analyzed for 31P NMR signal. The concentration dependent shift of 0, 25, 50, 100 and 200 mg/ml of TAT on skin layers, diffusion of TAT, R8, R11 and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using 31P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in 31P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100 mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180 µm within 30 min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, 31P solid-state NMR can be used to track CPP penetration into different skin layers. PMID:23702274
Solid-state NMR covariance of homonuclear correlation spectra.
Hu, Bingwen; Amoureux, Jean-Paul; Trebosc, Julien; Deschamps, Michael; Tricot, Gregory
2008-04-07
Direct covariance NMR spectroscopy, which does not involve a Fourier transformation along the indirect dimension, is demonstrated to obtain homonuclear correlation two-dimensional (2D) spectra in the solid state. In contrast to the usual 2D Fourier transform (2D-FT) NMR, in a 2D covariance (2D-Cov) spectrum the spectral resolution in the indirect dimension is determined by the resolution along the detection dimension, thereby largely reducing the time-consuming indirect sampling requirement. The covariance method does not need any separate phase correction or apodization along the indirect dimension because it uses those applied in the detection dimension. We compare in detail the specifications obtained with 2D-FT and 2D-Cov, for narrow and broad resonances. The efficiency of the covariance data treatment is demonstrated in organic and inorganic samples that are both well crystallized and amorphous, for spin -1/2 nuclei with 13C, 29Si, and 31P through-space or through-bond homonuclear 2D correlation spectra. In all cases, the experimental time has been reduced by at least a factor of 10, without any loss of resolution and signal to noise ratio, with respect to what is necessary with the 2D-FT NMR. According to this method, we have been able to study the silicate network of glasses by 2D NMR within reasonable experimental time despite the very long relaxation time of the 29Si nucleus. The main limitation of the 2D-Cov data treatment is related to the introduction of autocorrelated peaks onto the diagonal, which does not represent any actual connectivity.
Thorn, Kevin A.; Cox, Larry G.
2015-01-01
Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected. PMID:26556054
Bartsch, Timo; Wiegand, Thomas; Ren, Jinjun; Eckert, Hellmut; Johrendt, Dirk; Niehaus, Oliver; Eul, Matthias; Pöttgen, Rainer
2013-02-18
Polycrystalline samples of the phosphide oxides RE(2)AuP(2)O (RE = La, Ce, Pr, Nd) were obtained from mixtures of the rare earth elements, binary rare earth oxides, gold powder, and red phosphorus in sealed silica tubes. Small single crystals were grown in NaCl/KCl fluxes. The samples were studied by powder X-ray diffraction, and the structures were refined from single crystal diffractometer data: La(2)AuP(2)O type, space group C2/m, a = 1515.2(4), b = 424.63(8), c = 999.2(2) pm, β = 130.90(2)°, wR2 = 0.0410, 1050 F(2) values for Ce(2)AuP(2)O, and a = 1503.6(4), b = 422.77(8), c = 993.0(2) pm, β = 130.88(2)°, wR2 = 0.0401, 1037 F(2) values for Pr(2)AuP(2)O, and a = 1501.87(5), b = 420.85(5), c = 990.3(3) pm, β = 131.12(1)°, wR2 = 0.0944, 1143 F(2) values for Nd(2)AuP(2)O with 38 variables per refinement. The structures are composed of [RE(2)O](4+) polycationic chains of cis-edge-sharing ORE(4/2) tetrahedra and polyanionic strands [AuP(2)](4-), which contain gold in almost trigonal-planar phosphorus coordination by P(3-) and P(2)(4-) entities. The isolated phosphorus atoms and the P(2) pairs in La(2)AuP(2)O could clearly be distinguished by (31)P solid state NMR spectroscopy and assigned on the basis of a double quantum NMR technique. Also, the two crystallographically inequivalent La sites could be distinguished by static (139)La NMR in conjunction with theoretical electric field gradient calculations. Temperature-dependent magnetic susceptibility measurements show diamagnetic behavior for La(2)AuP(2)O. Ce(2)AuP(2)O and Pr(2)AuP(2)O are Curie-Weiss paramagnets with experimental magnetic moments of 2.35 and 3.48 μ(B) per rare earth atom, respectively. Their solid state (31)P MAS NMR spectra are strongly influenced by paramagnetic interactions. Ce(2)AuP(2)O orders antiferromagnetically at 13.1(5) K and shows a metamagnetic transition at 11.5 kOe. Pr(2)AuP(2)O orders ferromagnetically at 7.0 K.
Uznanski, Pawel; Zakrzewska, Joanna; Favier, Frederic; Kazmierski, Slawomir; Bryszewska, Ewa
2017-01-01
A comparative study of amine and silver carboxylate adducts [R 1 COOAg-2(R 2 NH 2 )] (R 1 = 1, 7, 11; R 2 = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, 13 C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ( 1 H and 13 C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism. Graphical abstractThe synthesis of a series (bis)alkylamine silver(I) carboxylate complexes in nonpolar solvents were carried out and fully characterized both in the solid and solution. Carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination. The complexes form layered structures which thermally decompose forming nanoparticles stabilized only by aliphatic carboxylates.
Controlling coherence using the internal structure of hard pi pulses.
Dong, Yanqun; Ramos, R G; Li, Dale; Barrett, S E
2008-06-20
The tiny difference between hard pi pulses and their delta-function approximation can be exploited to control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are demonstrated using the zeroth- and first-order average Hamiltonian terms, for 13C NMR in 60C. The 29Si NMR linewidth of silicon has been reduced by a factor of about 70,00 using this approach, which also has potential applications in magnetic resonance microscopy and imaging of solids.
Surface modification and antimicrobial properties of cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Bespalova, Yulia A.
Surface modification of cellulose nanocrystals (CNC) was performed by acetylation and subsequent reaction with various tertiary amines with different lengths of alkyl groups. Chloroacetic anhydride (95%) was used for acetylation. The acetylation of CNC was confirmed using IR spectroscopy. The bands associated with C=0 stretching (1740 cm-1) and C-Cl stretching (793 cm -1) was present in the acetylated CNC but they were absent in the neat CNC. It has been suggested that the primary hydroxyl groups of CNC are substituted by chloro acetyl groups during acetylation reaction. Subsequent reaction of chloro acetylated CNC with N, N - Dimethyl ethylamine, N, N - Dimethyl hexylamine, N, N - Dimethyl dodecylamine, N, N - Dimethyl hexadecylamine and N, N - Dimethyl decylamine formed quaternary ammonium salts. These quaternary ammonium salts were characterized by FTIR and solid state13C NMR spectroscopy. FTIR spectra of five types of quaternary ammonium salts of CNC are similar and they showed infrared bands at 2905 -1 and 2850 cm-1, attributed to symmetrical and unsymmetrical C-H stretching vibration. The absence of C-Cl band at 793 cm-1 proves that quaternary salt formation was successful. The 13C NMR spectrum of quaternary ammonium modified CNC with N, N - Dimethyl dodecylamine shows several additional resonances ranging from 14.5 ppm to 58.0 ppm when compared to 13C NMR spectrum of pure CNC. This evidence proves that long alkyl chains have been added to the pure CNC. The disc diffusion method confirmed that quaternary ammonium modified CNCs with a chain longer than ten carbons are effective antimicrobial agents against Staphylococcus aureus and E. coli bacteria. Pure CNC and quaternary ammonium modified CNCs with an alkyl chain length of ten or less were not able to inhibit bacteria growth.
Koontz, John L; Marcy, Joseph E; O'Keefe, Sean F; Duncan, Susan E
2009-02-25
Cyclodextrin (CD) complexation procedures are relatively simple processes, but these techniques often require very specific conditions for each individual guest molecule. Variations of the coprecipitation from aqueous solution technique were optimized for the CD complexation of the natural antioxidants alpha-tocopherol and quercetin. Solid inclusion complex products of alpha-tocopherol/beta-CD and quercetin/gamma-CD had molar ratios of 1.7:1, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. The molar reactant ratios of CD/antioxidant were optimized at 8:1 to improve the yield of complexation. The product yields of alpha-tocopherol/beta-CD and quercetin/gamma-CD complexes from their individual reactants were calculated as 24 and 21% (w/w), respectively. ATR/FT-IR, 13C CP/MAS NMR, TGA, and DSC provided evidence of antioxidant interaction with CD at the molecular level, which indicated true CD inclusion complexation in the solid state. Natural antioxidant/CD inclusion complexes may serve as novel additives in controlled-release active packaging to extend the oxidative stability of foods.
Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins
Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi
2013-01-01
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578
Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech
2018-01-15
The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1 H, 13 C and 15 N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH 3 salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO 2 salDAMN and naphDAMN only one form (X) was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy
NASA Astrophysics Data System (ADS)
Vaughn, John S.
Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate that fluorine occupies a complex distribution of atomic positions, which give rise to complex 19F peak shapes owing to varied F-Ca distance. 13C NMR analysis of carbonate-hydroxylapatite indicates that AB-type carbonate hydroxylapatite can be prepared without the presence of sodium or heat treatment. Isotopic 17O enrichment of hydroxylapatite and 17O NMR analysis reveals distinct signals corresponding to phosphate and hydroxyl oxygens, and heat treatment under vacuum results in loss of hydroxyl signal due to decomposition to tricalcium phosphate, which was observed by powder X-Ray diffraction (PXRD).
Applications of solid-state NMR to membrane proteins.
Ladizhansky, Vladimir
2017-11-01
Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
Solid-state studies and antioxidant properties of the γ-cyclodextrin·fisetin inclusion compound.
Pais, Joana M; Barroca, Maria João; Marques, Maria Paula M; Almeida Paz, Filipe A; Braga, Susana S
2017-01-01
Fisetin is a natural antioxidant with a wide range of nutraceutical properties, including antidiabetic, neuroprotecting, and suppression or prevention of tumors. The present work describes the preparation of a water-soluble, solid inclusion compound of fisetin with gamma-cyclodextrin (γ-CD), a cyclic oligosaccharide approved for human consumption. A detailed physicochemical analysis of the product is carried out using elemental analysis, powder X-ray diffraction (PXRD), Raman, infrared and 13 C{ 1 H} CP-MAS NMR spectroscopies, and thermal analysis (TGA) to verify fisetin inclusion and to present a hypothetical structural arrangement for the host-guest units. The antioxidant activity of the γ-CD·fisetin inclusion compound is evaluated by the DPPH assay.
Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen
2018-01-01
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (~100 μL, i.e. 3 mm diameter NMR tubes). PMID:29459343
NASA Astrophysics Data System (ADS)
Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen
2018-04-01
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 μL, i.e. 3 mm diameter NMR tubes).
Dubroca, Thierry; Smith, Adam N; Pike, Kevin J; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R; Frydman, Lucio; Hill, Stephen
2018-04-01
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T ( 1 H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13 C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31 P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T ( 1 H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 µL, i.e. 3 mm diameter NMR tubes). Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vane, Christopher H.; Kim, Alexander W.; Moss-Hayes, Vicky; Snape, Colin E.; Diaz, Miguel Castro; Khan, Nicole S.; Engelhart, Simon E.; Horton, Benjamin P.
2013-08-01
Arboreal termites are wood decaying organisms that play an important role in the first stages of C cycling in mangrove systems. The chemical composition of Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa leaf, stem, and pneumatophore tissues as well as associated sediments was compared to that of nests of the termite Nasutitermes acajutlae. Nests gave δ13C values of -26.1 to -27.2‰ (±0.1) and C/N of 43.3 (±2.0) to 98.6 (±16.2) which were similar to all stem and pneumatophores but distinct from mangrove leaves or sediments. Organic matter processed by termites yielded lignin phenol concentrations (Λ, lambda) that were 2-4 times higher than stem or pneumatophores and 10-20 times higher than that of leaves or sediments, suggesting that the nests were more resistant to biodegradation than the mangrove vegetation source. 13C NMR revealed that polysaccharide content of mangrove tissues (50-69% C) was higher than that of the nests (46-51% C). Conversely, lignin accounted for 16.2-19.6% C of nest material, a threefold increase relative to living mangrove tissues; a similar increase in aromatic methoxyl content was also observed in the nests. Lipids (aliphatic and paraffinic moieties) were also important but rather variable chemical components of all three mangrove species, representing between 13.5 and 28.3% of the C content. Termite nests contained 3.14 Mg C ha-1 which represents approximately 2% of above ground C storage in mangroves, a value that is likely to increase upon burial due to their refractory chemical composition.
Silverstein, Moshe C.; Bilici, Kübra; Morgan, Steven W.; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S.
2015-01-01
Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin—a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. 13C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the 13C-1H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The 13C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive force due to peptide-glucose interactions of the VPGVG motif, which may play an important role in the observed stiffening in glucose-treated elastin. PMID:25863067
Green Perylene Bisimide Dyes: Synthesis, Photophysical and Electrochemical Properties
Chang, Che-Wei; Tsai, Hsing-Yang; Chen, Kew-Yu
2014-01-01
Three asymmetric amino-substituted perylene bisimide dyes with different n-alkyl chain lengths (n = 6, 12, or 18), 1-(N,N-dialkylamino)perylene bisimides (1a–1c), were synthesized under mild condition in high yields and were characterized by 1H NMR, 13C NMR (nuclear magnetic resonance), HRMS (High Resolution Mass Spectrometer), UV-Vis and fluorescence spectra, as well as cyclic voltammetry (CV). These molecules show intense green color in both solution and solid state and are highly soluble in dichloromethane and even in nonpolar solvents, such as hexane. The shapes of the absorption spectra of 1a–1c in solid state and in solution were found to be virtually the same, indicating that the long alkyl chains could efficiently prevent aggregation. They exhibit a unique charge transfer emission in the near-infrared region, of which the peak wavelengths show strong solvatochromism. The dipole moments of the compounds have been estimated using the Lippert-Mataga equation, and upon excitation, they show larger dipole moment changes than that of 1-aminoperylene bisimide (2). Furthermore, all of the compounds exhibit two quasi-reversible one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane at modest potentials. Complementary density functional theory (DFT) calculations performed on these dyes are reported in order to rationalize their molecular structures and electronic properties. PMID:28788140
Chen, Kew-Yu; Chang, Che-Wei
2014-01-01
Three symmetric alkylamino-substituted perylene bisimides with different n-alkyl chain lengths (n = 6, 12, or 18), 1,7-bis-(N,N-dialkylamino)perylene bisimides (1a–1c), were synthesized under mild condition and were characterized by 1H NMR, 13C NMR and high resolution mass spectroscopy. Their optical and electrochemical properties were measured using UV-Vis and emission spectroscopic techniques as well as cyclic voltammetry (CV). These compounds show deep green color in both solution and solid state, and are highly soluble in dichloromethane and even in nonpolar solvents such as hexane. The shapes of the absorption spectra of 1a–1c in the solution and solid state were found to be almost the same, indicating that the long alkyl chains could efficiently prevent intermolecular contact and aggregation. They show a unique charge transfer emission in the near-infrared region, of which the peak wavelengths exhibit strong solvatochromism. The dipole moments of the molecules have been estimated using the Lippert–Mataga equation, and upon excitation, they show larger dipole moment changes than that of 1,7-diaminoperylene bisimide (2). Moreover, all the dyes exhibit two irreversible one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane at modest potentials. Complementary density functional theory calculations performed on these chromophores are reported in order to rationalize their electronic structure and optical properties. PMID:28788262
Frequency-selective REDOR and spin-diffusion relays in uniformly labeled whole cells.
Rice, David M; Romaniuk, Joseph A H; Cegelski, Lynette
2015-11-01
Solid-state NMR is a powerful and non-perturbative method to measure and define chemical composition and architecture in bacterial cell walls, even in the context of whole cells. Most NMR studies on whole cells have used selectively labeled samples. Here, we introduce an NMR sequence relay using frequency-selective REDOR (fsREDOR) and spin diffusion elements to probe a unique amine contribution in uniformly (13)C- and (15)N-labeled Staphylococcus aureus whole cells that we attribute to the d-alanine of teichoic acid. In addition to the primary peptidoglycan structural scaffold, cell walls can contain significant amounts of teichoic acid that contribute to cell-wall function. When incorporated into teichoic acid, d-alanine is present as an ester, connected via its carbonyl to a ribitol carbon, and thus has a free amine. Teichoic acid d-Ala is removed during cell-wall isolations and can only be detected in the context of whole cells. The sequence presented here begins with fsREDOR and a chemical shift evolution period for 2D data acquisition, followed by DARR spin diffusion and then an additional fsREDOR period. fsREDOR elements were used for (13)C observation to avoid complications from (13)C-(13)C couplings due to uniform labeling and for (15)N dephasing to achieve selectivity in the nitrogens serving as dephasers. The results show that the selected amine nitrogen of interest is near to teichoic acid ribitol carbons and also the methyl group carbon associated with alanine. In addition, its carbonyl is not significantly dephased by amide nitrogens, consistent with the expected microenvironment around teichoic acid. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanism of Phenol Alkylation in Zeolite H-BEA Using In Situ Solid-State NMR Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhenchao; Shi, Hui; Wan, Chuan
Alkylation of phenolic compounds in the liquid phase is of fundamental and practical importance to the conversion of biomass-derived feedstocks into fuels and chemicals. In this work, the reaction mechanism for phenol alkylation with cyclohexanol and cyclohexene has been investigated on a commercial HBEA zeolite by in situ 13C MAS NMR, using decalin as the solvent. From the variable temperature 13C MAS NMR measurements of phenol and cyclohexanol adsorption on HBEA from decalin solutions, it is shown that the two molecules have similar adsorption strength in the HBEA pore. Phenol alkylation with cyclohexanol, however, becomes significantly measurable only after cyclohexanolmore » is largely converted to cyclohexene via dehydration. This is in contrast to the initially rapid alkylation of phenol when using cyclohexene as the co-reactant. 13C isotope scrambling results demonstrate that the electrophile, presumably cyclohexyl carbenium ion, is directly formed in a protonation step when cyclohexene is the co-reactant, but requires re-adsorption of the alcohol dehydration product, cyclohexene, when cyclohexanol dimer is the dominant surface species (e.g., at 0.5 M cyclohexanol concentration) that is unable to generate carbenium ion. At the initial reaction stage of phenol-cyclohexanol alkylation on HBEA, the presence of the cyclohexanol dimer species hinders the adsorption of cyclohexene at the Brønsted acid site and the subsequent activation of the more potent electrophile (carbenium ion). Isotope scrambling data also show that intramolecular rearrangement of cyclohexyl phenyl ether, the O-alkylation product, does not significantly contribute to the formation of C-alkylation products.« less
Intermediate couplings: NMR at the solids-liquids interface
NASA Astrophysics Data System (ADS)
Spence, Megan
2006-03-01
Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.
NASA Astrophysics Data System (ADS)
Tycko, Robert
2015-04-01
Twenty years ago, applications of solid state nuclear magnetic resonance (NMR) methods to real problems involving biological systems or biological materials were few and far between. Starting in the 1980s, a small number of research groups had begun to explore the possibility of obtaining structural and dynamical information about peptides, proteins, and other biopolymers from solid state NMR spectra. Progress was initially slow due to the relatively primitive state of solid state NMR probes, spectrometers, sample preparation methods, and pulse sequence techniques, coupled with the small number of people contributing to this research area. By the early 1990s, with the advent of new ideas about pulse sequence techniques such as dipolar recoupling, improvements in techniques for orienting membrane proteins and in technology for magic-angle spinning (MAS), improvements in the capabilities of commercial NMR spectrometers, and general developments in multidimensional spectroscopy, it began to appear that biomolecular solid state NMR might have a viable future. It was not until 1993 that the annual number of publications in this area crept above twenty.
de Nooy, A E; Capitani, D; Masci, G; Crescenzi, V
2000-01-01
Original data are provided demonstrating that the title condensations are simple and versatile methods for the synthesis of hydrogels based on a variety of carboxylated polysaccharides. In this work, the biopolymers considered are sodium hyaluronate and sodium alginate. Nonnatural carboxylated polysaccharides were commercial (carboxymethyl)cellulose or were obtained by carboxymethylation or selective oxidation of primary alcohol groups of scleroglucan and dextran. Hydrogels prepared via the Passerini reaction were transparent, alkali labile materials whereas the transparency of the Ugi gels depended on the polysaccharide, the cross-linker, and the degree of cross-linking. The Ugi gels were stable for several months at a pH ranging from 1.3 to 11 and up to temperatures over 90 degrees C. The structure of the networks was studied by means of 13C CP-MAS and 15N CP-MAS NMR spectroscopy. A quantitative NMR analysis and elemental analysis of the dry gels allowed us to estimate the efficiency of the reactions, i.e., the actual degree of cross-linking, which appeared to be about 80% of theoretical. The influence of added salt and pH on the swelling of several Ugi gels with different degrees of cross-linking was studied in a qualitative manner.
Cao, Xiaoyan; Drosos, Marios; Leenheer, Jerry A; Mao, Jingdong
2016-02-16
A lignite humic acid (HA) was separated from inorganic and non-HA impurities (i.e., aluminosilicates, metals) and fractionated by a combination of dialysis and XAD-8 resin. Fractionation revealed a more homogeneous structure of lignite HA. New and more specific structural information on the main lignite HA fraction is obtained by solid-state nuclear magnetic resonance (NMR) spectroscopy. Quantitative (13)C multiple cross-polarization (multiCP) NMR indicated oxidized phenyl propane structures derived from lignin. MultiCP experiments, conducted on potassium HA salts titrated to pH 10 and pH 12, revealed shifts consistent with carboxylate and phenolate formation, but structural changes associated with enolate formation from aromatic beta keto acids were not detected. Two-dimensional (1)H-(13)C heteronuclear correlation (2D HETCOR) NMR indicated aryl-aliphatic ketones, aliphatic and aromatic carboxyl groups, phenol, and methoxy phenyl ethers. Acidic protons from carboxyl groups in both the lignite HA fraction and a synthetic HA-like polycondensate were found to be hydrogen-bonded with electron-rich aromatic rings. Our results coupled with published infrared spectra provide evidence for the preferential hydrogen bonding of acidic hydrogens with electron-rich aromatic rings rather than adjacent carbonyl groups. These hydrogen-bonding interactions likely result from stereochemical arrangements in primary structures and folding.
Hartmann-Hahn 2D-map to optimize the RAMP-CPMAS NMR experiment for pharmaceutical materials.
Suzuki, Kazuko; Martineau, Charlotte; Fink, Gerhard; Steuernagel, Stefan; Taulelle, Francis
2012-02-01
Cross polarization-magic angle spinning (CPMAS) is the most used experiment for solid-state NMR measurements in the pharmaceutical industry, with the well-known variant RAMP-CPMAS its dominant implementation. The experimental work presented in this contribution focuses on the entangled effects of the main parameters of such an experiment. The shape of the RAMP-CP pulse has been considered as well as the contact time duration, and a particular attention also has been devoted to the radio-frequency (RF) field inhomogeneity. (13)C CPMAS NMR spectra have been recorded with a systematic variation of (13)C and (1)H constant radiofrequency field pair values and represented as a Hartmann-Hahn matching two-dimensional map. Such a map yields a rational overview of the intricate optimal conditions necessary to achieve an efficient CP magnetization transfer. The map also highlights the effects of sweeping the RF by the RAMP-CP pulse on the number of Hartmann-Hahn matches crossed and how RF field inhomogeneity helps in increasing the CP efficiency by using a larger fraction of the sample. In the light of the results, strategies for optimal RAMP-CPMAS measurements are suggested, which lead to a much higher efficiency than constant amplitude CP experiment. Copyright © 2012 John Wiley & Sons, Ltd.
Nuclear magnetic resonance studies of the regulation of the pentose phosphate pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolo, N.R.
1991-11-01
The goal of this work is to investigate the potential for and limitations of in vivo nuclear magnetic resonance (NMR) spectroscopy for quantitation of glucose flux through the pentose phosphate pathway (shunt). Interest in the shunt is motivated by the possibility that its activity may be greatly increased in cancer and in the pathological states of cardiac and cerebral ischemia. The ability to dynamically monitor flux through the pentose shunt can give new knowledge about metabolism in pathological states. {sup 13}C NMR spectroscopy was used to monitor shunt activity by determination of the ratios of ({sup 13}C-4) to ({sup 13}C-5)-glutamate,more » ({sup 13}C-3) to ({sup 13}C-2)-alanine or ({sup 13}C-3) to ({sup 13}C-2)-lactate produced when ({sup 13}C-2)-glucose is infused. These methods provide measures of the effect of oxidative stresses on shunt activity in systems ranging from cell free enzyme-substrate preparations to cell suspensions and whole animals. In anaerobic cell free preparations, the fraction of glucose flux through the shunt was monitored with a time resolution of 3 minutes. This work predicts the potential for in vivo human studies of pentose phosphate pathway activity based on the mathematical simulation of the {sup 13}C fractional enrichments of C4 and C5-glutamate as a function of shunt activity and on the signal-to- noise ratio acquired in {sup 13}C NMR human studies from the current literature.« less
Nuclear magnetic resonance studies of the regulation of the pentose phosphate pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolo, Nicolas Robin
1991-11-01
The goal of this work is to investigate the potential for and limitations of in vivo nuclear magnetic resonance (NMR) spectroscopy for quantitation of glucose flux through the pentose phosphate pathway (shunt). Interest in the shunt is motivated by the possibility that its activity may be greatly increased in cancer and in the pathological states of cardiac and cerebral ischemia. The ability to dynamically monitor flux through the pentose shunt can give new knowledge about metabolism in pathological states. 13C NMR spectroscopy was used to monitor shunt activity by determination of the ratios of [ 13C-4] to [ 13C-5]-glutamate, [more » 13C-3] to [ 13C-2]-alanine or [ 13C-3] to [ 13C-2]-lactate produced when [ 13C-2]-glucose is infused. These methods provide measures of the effect of oxidative stresses on shunt activity in systems ranging from cell free enzyme-substrate preparations to cell suspensions and whole animals. In anaerobic cell free preparations, the fraction of glucose flux through the shunt was monitored with a time resolution of 3 minutes. This work predicts the potential for in vivo human studies of pentose phosphate pathway activity based on the mathematical simulation of the 13C fractional enrichments of C4 and C5-glutamate as a function of shunt activity and on the signal-to- noise ratio acquired in 13C NMR human studies from the current literature.« less
Solid state NMR: The essential technology for helical membrane protein structural characterization
Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna
2014-01-01
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099
Solid state NMR: The essential technology for helical membrane protein structural characterization
NASA Astrophysics Data System (ADS)
Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna
2014-02-01
NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.
NASA Astrophysics Data System (ADS)
Melenevskaya, E. Yu.; Mokeev, M. V.; Nasonova, K. V.; Podosenova, N. G.; Sharonova, L. V.; Gribanov, A. V.
2012-10-01
The results from studying the adsorption of blood plasma components (e.g., protein, triglycerides, cholesterol, and lipoproteins of low and high density) using silica gels modified with fullerene molecules (in the form of C60 or the hydroxylated form of C60(OH) x ) and subjected to hydration (or, alternatively, dehydration) are presented. The conditions for preparing adsorbents that allow us to control the adsorption capacity of silica gel and the selectivity of adsorption toward the components of blood plasma, are revealed. The nature and strength of the interactions of the introduced components (fullerene molecules and water) with functional groups on the silica surface are studied by means of solid state NMR spectroscopy (NMR-SS). Conclusions regarding the nature of the centers that control adsorption are drawn on the basis of NMR-SS spectra in combination with direct measurements of adsorption. The interaction of the oxygen of the hydroxyl group of silica gel with fullerene, leading to the formation of electron-donor complexes of C60-H, C60-OH, or C60-OSi type, is demonstrated by the observed changes in the NMR-SS spectra of silica gels in the presence of fullerene.
NASA Astrophysics Data System (ADS)
Albayrak, Çiğdem; Gümrükçüoğlu, İsmail E.; Odabaşoğlu, Mustafa; İskeleli, Nazan Ocak; Ağar, Erbil
2009-08-01
Some novel azo compounds were prepared by the reaction of 2-hydroxyacetophenone with aniline and its substituted derivatives. The structures of synthesized azo compounds were determined by IR, UV-Vis, 1H NMR and 13C NMR spectroscopic techniques and the structures of some of these compounds were also determined by X-ray diffraction studies. Structural analysis using IR in solid state shows that the azo form is favoured in the azo compounds whereas UV-Vis analysis of the azo compounds in solution has shown that there is a azo and ionic form. The azo compounds in the basic solvents dimethylformamide (DMF) and dimethylsulfoxide (DMSO) are both azo and ionic form while these compounds in ethyl alcohol (EtOH) and chloroform (CHCl 3) are only azo form.
Li, Xiaobo; Sergeyev, Ivan V; Aussenac, Fabien; Masters, Anthony F; Maschmeyer, Thomas; Hook, James M
2018-06-04
Metal-free polymeric carbon nitrides (PCNs) are promising photocatalysts for solar hydrogen production, but their structure-photoactivity relationship remains elusive. Two PCNs were characterized by dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy, which circumvented the need for specific labeling with either 13 C- or 15 N-enriched precursors. Rapid 1D and 2D data acquisition was possible, providing insights into the structural contrasts between the PCNs. Compared to PCN_B with lower performance, PCN_P is a more porous and more active photocatalyst that is richer in terminal N-H bonds not associated with interpolymer chains. It is proposed that terminal N-H groups act as efficient carrier traps and reaction sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Quantitative NMR Analysis of Phosphorus in Carbonaceous and Ordinary Chondrites
NASA Technical Reports Server (NTRS)
Pasek, M. A.; Smith, V. D.; Lauretta, D. S.
2004-01-01
Phosphorus is important in a number of biochemical molecules, from DNA to ATP. Early life may have depended on meteorites as a primary source of phosphorus as simple dissolution of crustal apatite may not produce the necessary concentration of phosphate. Phosphorus is found in several mineral phases in meteorites. Apatite and other Ca- and Mg phosphate minerals tend to be the dominant phosphorus reservoir in stony meteorites, whereas in more iron-rich or reduced meteorites, the phosphide minerals schreibersite, (Fe, Ni)3P, and perryite, (Ni, Fe)5(Si, P)2 are dominant. However, in CM chondrites that have experienced significant aqueous alteration, phosphorus has been detected in more exotic molecules. A series of phosphonic acids including methyl-, ethyl-, propyl- and butyl- phosphonic acids were observed by GC-MS in Murchison. Phosphorian sulfides are in Murchison and Murray. NMR spectrometry is capable of detecting multiple substances with one experiment, is non-destructive, and potentially quantitative, as discussed below. Despite these advantages, NMR spectrometry is infrequently applied to meteoritic studies due in large part to a lack of applicability to many compounds and the relatively high limit of detection requirements. Carbon-13 solid-state NMR has been applied to macromolecular carbon in Murchison. P-31 NMR has many advantages over aqueous carbon-13 NMR spectrometry. P-31 is the only isotope of phosphorus, and P-31 gives a signal approximately twice as strong as C-13. These two factors together with the relative abundances of carbon and phosphorus imply that phosphorus should give a signal approximately 20 as strong as carbon in a given sample. A discussion on the preparation of the quantitative standard and NMR studies are presented
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher,M.; Christl, I.; Vogt, R.
The chemical composition and carbon isotope signature of aquatic dissolved organic matter (DOM) in five boreal forest catchments in Scandinavia were investigated. The DOM was isolated during spring and fall seasons using a reverse osmosis technique. The DOM samples were analyzed by elemental analysis, FT-IR, solid-state CP-MAS {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. In addition, the relative abundance of carbon isotopes ({sup 12}C, {sup 13}C, {sup 14}C) in the samples was measured. There were no significant differences in the chemical composition or carbon isotope signature of the DOM sampled in spring and fall seasons. Also, differences in DOM composition betweenmore » the five catchments were minor. Compared to reference peat fulvic and humic acids, all DOM samples were richer in O-alkyl carbon and contained less aromatic and phenolic carbon, as shown by FT-IR, {sup 13}C-NMR, and C-1s NEXAFS spectroscopy. The DOM was clearly enriched in {sup 14}C relative to the NBS oxalic acid standard of 1950, indicating that the aquatic DOM contained considerable amounts of organic carbon younger than about 50 years. The weight-based C:N ratios of 31 {+-} 6 and the {delta}{sup 13}Cvalues of -29 {+-} 2{per_thousand}indicate that the isolated DOM is of terrestrial rather than aquatic origin. We conclude that young, hydrophilic carbon compounds of terrestrial origin are predominant in the samples investigated, and that the composition of the aquatic DOM in the studied boreal forest catchments is rather stable during low to intermediate flow conditions.« less
Romer, Frederik H; Underwood, Andrew P; Senekal, Nadine D; Bonnet, Susan L; Duer, Melinda J; Reid, David G; van der Westhuizen, Jan H
2011-01-28
Solid state ¹³C-NMR spectra of pure tannin powders from four different sources--mimosa, quebracho, chestnut and tara--are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan. Groups of signals indicative of the source, and type (condensed vs. hydrolyzable) of tannin used in the manufacture are well resolved in the spectra of the finished leathers. These fingerprints are compared with those arising from leathers tanned with other common tanning agents. Paramagnetic chromium (III) tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III) structures. Aluminium (III) and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The ²⁷Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance.
Sealed rotors for in situ high temperature high pressure MAS NMR
Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao; ...
2015-07-06
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less
Sealed rotors for in situ high temperature high pressure MAS NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Z.; Hu, Mary Y.; Zhao, Zhenchao
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) investigations on heterogeneous samples containing solids, semi-solids, liquid and gases or a mixture of them under non-conventional conditions of a combined high pressure and high temperature, or cold temperature suffer from the unavailability of a perfectly sealed rotor. Here, we report the design of reusable and perfectly-sealed all-zircornia MAS rotors. The rotors are easy to use and are suitable for operation temperatures from below 0 to 250 °C and pressures up to 100 bar. As an example of potential applications we performed in situ MAS NMR investigations of AlPO₄-5 molecular sieve crystallization,more » a kinetic study of the cyclohexanol dehydration reaction using 13C MAS NMR, and an investigation of the metabolomics of intact biological tissue at low temperature using 1H HR-MAS NMR spectroscopy. The in situ MAS NMR experiments performed using the reported rotors allowed reproduction of the results from traditional batch reactions, while offering more detailed quantitative information at the molecular level, as demonstrated for the molecular sieve synthesis and activation energy measurements for cyclohexanol dehydration. The perfectly sealed rotor also shows promising application for metabolomics studies using 1H HR-MAS NMR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, J.C.C.; Emmerich, F.G.; Bonagamba, T.J.
The occurrence of silicon in two kinds of biomass (rice hulls and endocarp of babassu coconut) and the thermal transformations taking place in these materials under heat treatments are studied here. The authors report also the production, characterization, and study of carbonaceous materials with high SiC content through the carbothermal reduction of silica, using these natural precursors. X-ray diffraction, scanning electron microscopy, and {sup 13}C and {sup 29}Si room temperature high-resolution solid-state NMR measurements are used in the characterization and study of the materials as well as the process of SiC formation. Important conclusions about the nature of silicon inmore » these types of biomass and the effects of heat treatments on the structure of silicon-containing species are derived from the results presented. It is shown that silicon in these materials occurs in two distinct forms: amorphous hydrated silica and organically bound silicon species. The influence of spin-lattice relaxation dynamics on the NMR spectra is discussed, evidencing the role played by the paramagnetic defects produced in the materials through pyrolysis.« less
NASA Astrophysics Data System (ADS)
Uznanski, Pawel; Zakrzewska, Joanna; Favier, Frederic; Kazmierski, Slawomir; Bryszewska, Ewa
2017-03-01
A comparative study of amine and silver carboxylate adducts [R1COOAg-2(R2NH2)] (R1 = 1, 7, 11; R2 = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, 13C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies (1H and 13C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.
Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation
NASA Astrophysics Data System (ADS)
Zhao, Xue-Zhou; Jiang, Teng; Wang, Long; Yang, Hao; Zhang, Sui; Zhou, Ping
2010-12-01
Curcumin and its complexes with Zn 2+ and Cu 2+ ions were synthesized and characterized by elemental analysis, mass spectroscopy, IR spectroscopy, UV spectroscopy, solution 1H and solid-state 13C NMR spectroscopy, EPR spectroscopy. In addition, the density functional theory (DFT)-based UV and 13C chemical shift calculations were also performed to view insight into those compound structures and properties. The results show that curcumin easily chelate the metal ions, such as Zn 2+ and Cu 2+, and the Cu(II)-curcumin complex has an ability to scavenge free-radicals. We demonstrated the differences between Zn(II)-curcumin and Cu(II)-curcumin complexes in structure and properties, enhancing the comprehensions about the curcumin roles in the Alzhermer's disease treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neil, J.D.J.; Sykes, B.D.
The coat protein of bacteriophage M13 is inserted into the inner membrane of Escherichia coli where it exists as an integral membrane protein during the reproductive cycle of the phage. The protein sequence consists of a highly hydrophobic 19-residue central segment flanked by an acidic 20-residue N-terminus and a basic 11-residue C-terminus. The authors have measured backbone amide hydrogen exchange of the protein solubilized in perdeuteriated sodium dodecyl sulfate using /sup 1/H nuclear magnetic resonance (NMR) spectroscopy. Direct proton exchange-out measurements in D/sub 2/O at 24 /sup 0/C were used to follow the exchange of the slowest amides in themore » protein. Multiple exponential fitting of the exchange data showed that these amides exchanged in two kinetic sets with exchange rates that differed by more than 100-fold. Steady-state saturation-transfer techniques were also used to measure exchange. These methods showed that 15-20 amides in the protein are very stable at 55/sup 0/C and that bout 30 amides have exchange rates retarded by at least 10/sup 5/-fold at 24/sup 0/C. Saturation-transfer studies also showed that the pH dependence of exchange in the hydrophilic termini was unusual. Relaxation and solid-state NMR experiments have previously shown that the majority of the protein backbone is rigid on the picosecond to microsecond time scale, except for the extreme ends of the molecule which are mobile. The hydrogen exchange results, which are sensitive to a much longer time scale, suggest a stable core with a progressive increase in amplitude or frequency of motions as the ends of the protein are approached.« less
Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S
2015-02-05
In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Sardo, Mariana; Santos, Sérgio M; Babaryk, Artem A; López, Concepción; Alkorta, Ibon; Elguero, José; Claramunt, Rosa M; Mafra, Luís
2015-02-01
We present the structure of a new equimolar 1:1 cocrystal formed by 3,5-dimethyl-1H-pyrazole (dmpz) and 4,5-dimethyl-1H-imidazole (dmim), determined by means of powder X-ray diffraction data combined with solid-state NMR that provided insight into topological details of hydrogen bonding connectivities and weak interactions such as CH···π contacts. The use of various 1D/2D (13)C, (15)N and (1)H high-resolution solid-state NMR techniques provided structural insight on local length scales revealing internuclear proximities and relative orientations between the dmim and dmpz molecular building blocks of the studied cocrystal. Molecular modeling and DFT calculations were also employed to generate meaningful structures. DFT refinement was able to decrease the figure of merit R(F(2)) from ~11% (PXRD only) to 5.4%. An attempt was made to rationalize the role of NH···N and CH···π contacts in stabilizing the reported cocrystal. For this purpose four imidazole derivatives with distinct placement of methyl substituents were reacted with dmpz to understand the effect of methylation in blocking or enabling certain intermolecular contacts. Only one imidazole derivative (dmim) was able to incorporate into the dmpz trimeric motif thus resulting in a cocrystal, which contains both hydrophobic (methyl groups) and hydrophilic components that self-assemble to form an atypical 1D network of helicoidal hydrogen bonded pattern, featuring structural similarities with alpha-helix arrangements in proteins. The 1:1 dmpz···dmim compound I is the first example of a cocrystal formed by two different azoles. Copyright © 2014 Elsevier Inc. All rights reserved.
Kumar, Rajiv; Singh, R P; Singh, R P
2008-11-15
In this study, we synthesized 1,2-di(o-aminophenoxy)ethane, as the starting material, used in the preparation of a novel hexadentate OONNOO-donor macrocyclic ligand-1,4,11,14-tetraoxo-7,8-diaza-5,6:9,10;15,16:19,20-terabezocyclododeca-8,17-iene. It has twenty membered organic framework (OF), which has been designed, synthesized and characterized. Our main findings of this paper are related to the organic framework of ligand, its capacity to digest the metal ions and the stability of metal organic framework (MOFs) with cobalt(II), nickel(II) and manganese(II). The authenticity of the used organic framework and its metal complexes have been detected and observed in solid state as well as in aqueous solutions. The main observations were made on the basis of physiochemical measurements viz.: elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, 1H NMR, 13C NMR, mass spectroscopy, electronic, ESR spectroscopy. In addition, the magnetic susceptibility and electrochemistry measurements have been made. The 1H NMR spectra suggest stereochemistry and proton movement interaction. Considering the used organic framework there are a lot of carbon atoms in the molecule reflected by the 13C NMR spectrum. All these observations gave a clear view to confirming the encapsulation; arrive at the composition, structure and geometry of encapsulated complexes. In simple words, it confirms the host/guest coordination and its stability. Electrochemical properties of the complexes have been investigated to confirm the various changes in oxidation state of metals with change in potentials with respect to current at different scan rate.
Thorn, Kevin A.; Cox, Larry G.
2015-01-01
Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.
Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich
2008-12-11
The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.
Temperature dependence of broadline NMR spectra of water-soaked, epoxy-graphite composites
NASA Astrophysics Data System (ADS)
Lawing, David; Fornes, R. E.; Gilbert, R. D.; Memory, J. D.
1981-10-01
Water-soaked, epoxy resin-graphite fiber composites show a waterline in their broadline proton NMR spectrum which indicates a state of intermediate mobility between the solid and free water liquid states. The line is still present at -42 °C, but shows a reversible decrease in amplitude with decreasing temperature. The line is isotropic upon rotation of the fiber axis with respect to the external magnetic field.
Broom, Lucy K.; Clarkson, Guy J.; Guillou, Nathalie; Hooper, Joseph E.; Dawson, Daniel M.; Tang, Chiu C.; Ashbrook, Sharon E.
2017-01-01
The templated zeolite-analogue GaPO-34 (CHA structure type) crystallises from a gel precursor Ga2O3 : 2H3PO4 : 1HF : 1.7SDA : 70H2O (where SDA = structure directing agent), treated hydrothermally for 24 hours at 170 °C using either pyridine or 1-methylimizadole as SDA and one of either poorly crystalline ε-Ga2O3 or γ-Ga2O3 as gallium precursor. If the same gels are stirred for periods shorter than 2 hours but treated under identical hydrothermal conditions, then a second phase crystallises, free of GaPO-34. If β-Ga2O3 is used as a reagent only the second phase is found to crystallise, irrespective of gel aging time. The competing phase, which we denote GaPO-34A, has been structurally characterised using synchrotron powder X-ray diffraction for the pyridine material, GaPO-34A(pyr), and using single-crystal X-ray diffraction for the 1-methylimiazole material, GaPO-34A(mim). The structure of GaPO-34A(pyr), P1, a = 10.22682(6) Å, b = 12.09585(7) Å, c = 13.86713(8) Å, α = 104.6531(4)°, β = 100.8111(6)°, γ = 102.5228(6)°, contains 7 unique gallium sites and 6 phosphorus sites, with empirical formula [Ga7P6O24(OH)2F3(H2O)2]·2(C5NH6). GaPO-34A(mim) is isostructural but is modelled as a half volume unit cell, P1, a = 5.0991(2) Å, b = 12.0631(6) Å, c = 13.8405(9) Å, α = 104.626(5)°, β = 100.346(5)°, γ = 101.936(4)°, with a gallium and a bridging fluoride partially occupied and two partially occupied SDA sites. Solid-state 31P and 71Ga NMR spectroscopy confirms the structural complexity of GaPO-34A with signals resulting from overlapping lineshapes from multiple Ga and P sites, while 1H and 13C solid-state NMR spectra confirm the presence of the protonated SDA and provide evidence for disorder in the SDA. The protonated SDA is located in 14-ring one-dimensional channels with hydrogen bonding deduced from the SDA nitrogens to framework oxygen distances. Upon thermal treatment to investigate SDA removal, structure collapse occurs, which may be due the large number of bridging hydroxides and fluorides in the as-made material, and the unequal amounts of gallium and phosphorus present. PMID:29171855
He, Chao; Lin, Guangxin; Upton, Kathleen T; Imanaka, Hiroshi; Smith, Mark A
2012-05-17
Titan, the largest moon of Saturn, is enveloped in a reddish brown organic haze. Titan haze is presumed to be formed from methane and nitrogen (CH(4) and N(2)) in Titan's upper atmosphere through energetic photochemistry and particle bombardment. Though Titan haze has been directly investigated using methods including the Cassini mission, its formation mechanism and the contributing chemical structures and prebiotic potential are still not well developed. We report here the structural investigation of the (13)C and (15)N labeled, simulated Titan haze aerosol (tholin) by solution-state NMR. The one-dimensional (1)H, (13)C, and (15)N NMR spectra and decoupling experiments indicate that the tholin sample contains amine, nitrile, imine, and N-heteroaromatic compounds of tremendous import in understanding complex organic chemistry in anaerobic, extraterrestrial environments.
NASA Astrophysics Data System (ADS)
Benner, Ronald; Hatcher, Patrick G.; Hedges, John I.
1990-07-01
Changes in the chemical composition of mangrove ( Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed.
Benner, R.; Hatcher, P.G.; Hedges, J.I.
1990-01-01
Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.
Rupasinghe, Sanjeewa G.; Duan, Hui; Frericks Schmidt, Heather L.; Berthold, Deborah A.; Rienstra, Chad M.; Schuler, Mary A.
2008-01-01
Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, E. coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain (SAD) and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis 13C,15N-labeled CYP98A3 is expressed at yields of 2–4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins. PMID:18005930
Chakravarty, Paroma; Kothari, Sanjeev; Deese, Alan; Lubach, Joseph W
2015-07-06
The purpose of this study was to identify and characterize precipitates obtained from a liquid formulation of GNE068.HCl, a Genentech developmental compound, and lipophilic excipients, such as propylene glycol monocaprylate, and monolaurate. Precipitates were characterized using powder X-ray diffractometry (PXRD), differential scanning calorimetry, thermogravimetry, microscopy, nuclear magnetic resonance spectroscopy (NMR; solution and solid-state) and water sorption analysis. PXRD and NMR revealed the precipitates to be crystalline solvates of propylene glycol esters. The solvates (capryolate and lauroglycolate) were isomorphic and stable up to 70 °C, beyond which melting of the lattice occurred with subsequent dissolution of the active ingredient in the melt (microscopy and variable temperature PXRD). They were found to be mechanically stable (no change in PXRD pattern upon compression) and were nonhygroscopic up to ∼70% RH (25 °C). Our results highlight the outcome of inadvertent drug-excipient interactions in two separate lipid solution formulations with good solid-state properties and, thus, potential for further development.
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
Loquet, Antoine; Tolchard, James; Berbon, Melanie; Martinez, Denis; Habenstein, Birgit
2017-09-17
Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13 C/ 15 N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.
Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.
Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido
2012-07-10
We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.
Teng, Q; Nicholson, L K; Cross, T A
1991-04-05
An analytical method for the determination of torsion angles from solid state 15N nuclear magnetic resonance (n.m.r.) spectroscopic data is demonstrated. Advantage is taken of the 15N-1H and 15N-13C dipolar interactions as well as the 15N chemical shift interaction in oriented samples. The membrane-bound channel conformation of gramicidin A has eluded an atomic resolution structure determination by more traditional approaches. Here, the torsion angles for the Ala3 site are determined by obtaining the n.m.r. data for both the Gly2-Ala3 and Ala3-Leu4 peptide linkages. Complete utilization of the orientational constraints derived from these orientation-dependent nuclear spin interactions in restricting the conformational space is most effectively achieved by utilizing spherical trigonometry. Two possible sets of torsion angles for the Ala3 site are obtained (phi, psi = -129 degrees, 153 degrees and -129 degrees, 122 degrees), both of which are consistent with a right-handed beta-helix. Other functional and computational evidence strongly supports the set for which the carbonyl oxygen atom of the Ala3-Leu4 linkage is rotated into the channel lumen.
Widdifield, Cory M; Nilsson Lill, Sten O; Broo, Anders; Lindkvist, Maria; Pettersen, Anna; Svensk Ankarberg, Anna; Aldred, Peter; Schantz, Staffan; Emsley, Lyndon
2017-06-28
The crystal structure of the Form A polymorph of N-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxo-pyrazin-1-yl]benzamide (i.e., AZD7624), determined using single-crystal X-ray diffraction (scXRD) at 100 K, contains two molecules in the asymmetric unit (Z' = 2) and has regions of local static disorder. This substance has been in phase IIa drug development trials for the treatment of chronic obstructive pulmonary disease, a disease which affects over 300 million people and contributes to nearly 3 million deaths annually. While attempting to verify the crystal structure using nuclear magnetic resonance crystallography (NMRX), we measured 13 C solid-state NMR (SSNMR) spectra at 295 K that appeared consistent with Z' = 1 rather than Z' = 2. To understand this surprising observation, we used multinuclear SSNMR ( 1 H, 13 C, 15 N), gauge-including projector augmented-wave density functional theory (GIPAW DFT) calculations, crystal structure prediction (CSP), and powder XRD (pXRD) to determine the room temperature crystal structure. Due to the large size of AZD7624 (ca. 500 amu, 54 distinct 13 C environments for Z' = 2), static disorder at 100 K, and (as we show) dynamic disorder at ambient temperatures, NMR spectral assignment was a challenge. We introduce a method to enhance confidence in NMR assignments by comparing experimental 13 C isotropic chemical shifts against site-specific DFT-calculated shift distributions established using CSP-generated crystal structures. The assignment and room temperature NMRX structure determination process also included measurements of 13 C shift tensors and the observation of residual dipolar coupling between 13 C and 14 N. CSP generated ca. 90 reasonable candidate structures (Z' = 1 and Z' = 2), which when coupled with GIPAW DFT results, room temperature pXRD, and the assigned SSNMR data, establish Z' = 2 at room temperature. We find that the polymorphic Form A of AZD7624 is maintained at room temperature, although dynamic disorder is present on the NMR timescale. Of the CSP-generated structures, 2 are found to be fully consistent with the SSNMR and pXRD data; within this pair, they are found to be structurally very similar (RMSD 16 = 0.30 Å). We establish that the CSP structure in best agreement with the NMR data possesses the highest degree of structural similarity with the scXRD-determined structure (RMSD 16 = 0.17 Å), and has the lowest DFT-calculated energy amongst all CSP-generated structures with Z' = 2.
NASA Astrophysics Data System (ADS)
Purtas, Fatih; Sayin, Koray; Ceyhan, Gokhan; Kose, Muhammet; Kurtoglu, Mukerrem
2017-06-01
A new Schiff base containing azo chromophore group obtained by condensation of 2-hydroxy-4-[(E)-phenyldiazenyl]benzaldehyde with 3,4-dimethylaniline (HL) are used for the syntheses of new copper(II) and zinc(II) chelates, [Cu(L)2], and [Zn(L)2], and characterized by physico-chemical and spectroscopic methods such as 1H and 13C NMR, IR, UV.-Vis. and elemental analyses. The solid state structure of the ligand was characterized by single crystal X-ray diffraction study. X-ray diffraction data was then used to calculate the harmonic oscillator model of aromaticity (HOMA) indexes for the rings so as to investigate of enol-imine and keto-amine tautomeric forms in the solid state. The phenol ring C10-C15 shows a considerable deviation from the aromaticity with HOMA value of 0.837 suggesting the shift towards the keto-amine tautomeric form in the solid state. The analytical data show that the metal to ligand ratio in the chelates was found to be 1:2. Theoretical calculations of the possible isomers of the ligand and two metal complexes are performed by using B3LYP method. Electrochemical and photoluminescence properties of the synthesized azo-Schiff bases were also investigated.
NASA Astrophysics Data System (ADS)
Baumann, Wolfgang; Oprunenko, Yuri; Günther, Harald
1995-05-01
The dynamic behaviour of tetramethylethylene diamine (TMEDA) ligands in three organometallic complexes, dimeric phenyllithium, [Li(tmeda)μ-Ph]2 (1), lithium cyclopentadienide, [Li(tmeda)]C5H5 (2), and dilithium naphthalendiide, trans-[Li(tmeda)]2C10H8 (3), has been studied by CP/MAS 13C and 15N as well as 7Li MAS NMR spectroscopy of powdered samples. Two dynamic processes with free activation enthalpies of 40 and 68 kJ mol-1, respectively, were detected for 1. The first one can be assigned to ring inversion of the five-membered Li-TMEDA rings, while the second is caused by a complete rotation of the TMEDA ligands or a ring inversion of the central four-membered C-Li-C-Li metallacycle. Fast rotation of the ligands on the NMR time scale was found for 2, while 3 shows 180° ring flips of the Li-TMEDA groups, which are characterized by an energy barrier ΔG" (317) of 64 kJ mol-1
19F and 13C NMR studies of polyol metabolism in freeze-tolerant pupae of Hyalophora cecropia.
Podlasek, C A; Serianni, A S
1994-01-28
Sorbitol biosynthesis and regulation in freeze tolerant pupae of Hyalophora cecropia have been investigated as a function of temperature by 19F and 13C nuclear magnetic resonance (NMR) spectroscopy using several 13C-labeled and/or fluorine-substituted carbohydrates. 3-Deoxy-3-fluoro-D-glucose (3DFG) was metabolized to 3-deoxy-3-fluoro-D-sorbitol (3DFS), 3-deoxy-3-fluoro-D-fructose (3DFF), and 3-deoxy-3-fluoro-D-gluconic acid (3DFGA), indicating that the enzymes required for sorbitol biosynthesis and metabolism are active in H. cecropia at warm (22 degrees C) and cold (4 and -10 degrees C) temperatures. Two additional metabolites were produced when pupae were injected with either 3DFG, 3DFS, 3DFF, or 3-deoxy-3-fluoro-D-mannose (3DFM). One of these was identified as 3-deoxy-3-fluoro-D-mannitol (3DFML) by 13C NMR using [1-13C]3DFM and [1-13C]3DFG as metabolic probes. H. cecropia pupae injected with D-glucose labeled with 13C at C-1, C-2, or C-3 and subsequently analyzed by 13C NMR clearly demonstrated the ability to generate sorbitol and fructose. In contrast, gas chromatography/mass spectrometric analysis of hemolymph failed to detect sorbitol in pupae reared under natural conditions (i.e. in the absence of injected enriched sugars). Thus, although H. cecropia pupae have the enzymic machinery to biosynthesize sorbitol, they do not appear to accumulate high steady-state concentrations of this polyol over the temperature range studied. The specificity of the enzymes involved in alditol biosynthesis in H. cecropia was examined by 13C NMR with a wide range of aldoses enriched with 13C at C-1. Pupae were capable of converting these sugars to their corresponding [1-13C]alditols, indicating that nonspecific dehydrogenase(s), in addition to aldose reductase, is(are) involved in polyol biosynthesis in H. cecropia pupae.
NASA Technical Reports Server (NTRS)
Dorn, H. C.; Wang, J. S.; Glass, T. E.
1986-01-01
This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.
NASA Astrophysics Data System (ADS)
Xu, Y.; Simpson, M. J.; Eyles, N.; Simpson, A.; Baer, A. J.
2009-05-01
Cryoconite is a dark-colored, dust-like material found on the surfaces of glaciers. Cryoconite holes, which are produced by accelerated ice melt due to more solar radiation absorption by cryoconite than bare ice, act as habitats for microbial life and biologically mediated chemical reactions on otherwise relatively inert glacier surfaces. Cryoconite holes may behave as bacterial shelters during "Snowball Earth" events postulated for the Neoproterozoic Earth. In this study organic matter (OM) biomarkers and a host of one- and two-dimensional NMR techniques were used to characterize cryoconite organic matter (COM) collected from the Athabasca Glacier in the Canadian Rocky Mountains. Solvent extracts contain large quantities of fatty acids, n-alkanols, n- alkanes, wax esters and sterols. A large contribution of C23 and C25 relative to C29 and C31 n-alkanes ([C23/(C23+C29)] = 0.51) suggests that allochthonous COM is derived mainly from lower order plants such as mosses and lichens. This is confirmed by the absence of lignin-derived phenols, a biomarker of terrestrial vascular plants, after copper (II) oxidation in extracts and NMR analyses of COM. Solution-state 1H NMR reveals prominent peptide/protein structures which are characteristic of microbial inputs, while solid-state 13C CP/MAS NMR analysis shows a very high alkyl/O-alkyl ratio (2.16), suggesting that COM is unique compared to organic matter found in nearby soils which have alkyl/O-alkyl ratio of ~0.39. Our NMR results suggest that COM is dominated by microbial-derived compounds, which is also confirmed by phospholipid fatty acid results (6,950µg/gOC) which show significant microbial contributions to COM primarily from bacteria and minor microeukaryotes. Both biomarker and NMR data suggest that COM likely supports active microbial communities on the Athabasca Glacier. Given that such material is incorporated within the glacier in the accumulation zone or flushed by meltwaters into subglacial environments, reworked COM may provide nutrient sources for active microbial communities found within and under glaciers.
A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses
ERIC Educational Resources Information Center
Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin
2004-01-01
An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…
Testing signal enhancement mechanisms in the dissolution NMR of acetone
NASA Astrophysics Data System (ADS)
Alonso-Valdesueiro, Javier; Elliott, Stuart J.; Bengs, Christian; Meier, Benno; Levitt, Malcolm H.
2018-01-01
In cryogenic dissolution NMR experiments, a substance of interest is allowed to rest in a strong magnetic field at cryogenic temperature, before dissolving the substance in a warm solvent, transferring it to a high-resolution NMR spectrometer, and observing the solution-state NMR spectrum. In some cases, negative enhancements of the 13C NMR signals are observed, which have been attributed to quantum-rotor-induced polarization. We show that in the case of acetone (propan-2-one) the negative signal enhancements of the methyl 13C sites may be understood by invoking conventional cross-relaxation within the methyl groups. The 1H nuclei acquire a relative large net polarization through thermal equilibration in a magnetic field at low temperature, facilitated by the methyl rotation which acts as a relaxation sink; after dissolution, the 1H magnetization slowly returns to thermal equilibrium at high temperature, in part by cross-relaxation processes, which induce a transient negative polarization of nearby 13C nuclei. We provide evidence for this mechanism experimentally and theoretically by saturating the 1H magnetization using a radiofrequency field pulse sequence before dissolution and comparing the 13 C magnetization evolution after dissolution with the results obtained from a conventional 1 H-13 C cross relaxation model of the CH3 moieties in acetone.
Kováčik, Andrej; Vogel, Alexander; Adler, Juliane; Pullmannová, Petra; Vávrová, Kateřina; Huster, Daniel
2018-05-01
In this work, we studied model stratum corneum lipid mixtures composed of the hydroxylated skin ceramides N-lignoceroyl 6-hydroxysphingosine (Cer[NH]) and α-hydroxylignoceroyl phytosphingosine (Cer[AP]). Two model skin lipid mixtures of the composition Cer[NH] or Cer[AP], N-lignoceroyl sphingosine (Cer[NS]), lignoceric acid (C24:0) and cholesterol in a 0.5:0.5:1:1 molar ratio were compared. Model membranes were investigated by differential scanning calorimetry and 2 H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Each component of the model mixture was specifically deuterated for selective detection by 2 H NMR. Thus, the exact phase composition of the mixture at varying temperatures could be quantified. Moreover, using X-ray powder diffraction we investigated the lamellar phase formation. From the solid-state NMR and DSC studies, we found that both hydroxylated Cer[NH] and Cer[AP] exhibit a similar phase behavior. At physiological skin temperature of 32 °C, the lipids form a crystalline (orthorhombic) phase. With increasing temperature, most of the lipids become fluid and form a liquid-crystalline phase, which converts to the isotropic phase at higher temperatures (65-80 °C). Interestingly, lignoceric acid in the Cer[NH]-containing mixture has a tendency to form two types of fluid phases at 65 °C. This tendency was also observed in Cer[AP]-containing membranes at 80 °C. While Cer[AP]-containing lipid models formed a short periodicity phase featuring a repeat spacing of d = 5.4 nm, in the Cer[NH]-based model skin lipid membranes, the formation of unusual long periodicity phase with a repeat spacing of d = 10.7 nm was observed. Copyright © 2018 Elsevier B.V. All rights reserved.
Hopkins, D W; Chudek, J A; Bignell, D E; Frouz, J; Webster, E A; Lawson, T
1998-01-01
Solid-state 13C nuclear magnetic resonance spectroscopy has been used to characterize the C in samples of the food (wood), gut contents and faeces from the wood-feeding termite, Microcerotermes parvus; soil in the guts and mound material from the soil-feeding termite, Thoracotermes macrothorax; and the food and faeces from the litter-feeding, coprophagous larvae of the dipteran fly, Bibio marci. Spectra from the wood-feeding termite indicated preferential loss of polysaccharide and accumulation of lignin with some modification to the O-aromatic-C and methoxyl-C (O-methyl-C) components during passage through the gut. Spectra for the soil-feeding termite indicated little change in the distribution of 13C between resonances following passage through the gut, except for some evidence of preferential polysaccharide loss. Interpretation of the spectra from these organisms was restricted by the relatively low C content of the soils and mound material, and by the large contribution to the NMR spectra from the gut tissue rather than the gut contents. Spectra for the litter-feeding dipteran larvae indicated preferential feeding on the polysaccharide-rich component of the litter and then overall loss of polysaccharide-C and accumulation of both aromatic-C and methoxyl-C in the gut. These changes were greater for the second passage than for the first passage through the gut, suggesting that principally mechanical and physical changes occurred initially and that chemical digestion was prevalent during the second passage.
Kaleta, Jiří; Dron, Paul I; Zhao, Ke; Shen, Yongqiang; Císařová, Ivana; Rogers, Charles T; Michl, Josef
2015-06-19
A new generation of rod-shaped dipolar molecular rotors designed for controlled insertion into channel arrays in the surface of hexagonal tris(o-phenylenedioxy)cyclotriphosphazene (TPP) has been designed and synthesized. Triptycene is used as a stopper intended to prevent complete insertion, forcing the formation of a surface inclusion. Two widely separated (13)C NMR markers are present in the shaft for monitoring the degree of insertion. The structure of the two-dimensional rotor arrays contained in these surface inclusions was examined by solid-state NMR and X-ray powder diffraction. The NMR markers and the triptycene stopper functioned as designed, but half of the guest molecules were not inserted as deeply into the TPP channels as the other half. As a result, the dipolar rotators were distributed equally in two planes parallel to the crystal surface instead of being located in a single plane as would be required for ferroelectricity. Dielectric spectroscopy revealed rotational barriers of ∼4 kcal/mol but no ferroelectric behavior.
NASA Astrophysics Data System (ADS)
Antoszczak, Michał; Janczak, Jan; Brzezinski, Bogumił; Huczyński, Adam
2017-02-01
For the first time, the crystalline complex of salinomycin with benzylamine was obtained and its molecular structure was studied using single crystal X-ray diffraction, FT-IR, 1H NMR, 13C NMR, 2D NMR and ESI MS methods. These studies provided evidence that the proton from the carboxylic group of salinomycin (SAL) is transferred to the amine group of benzylamine (BnA) forming the host-guest complex (SAL-BnA). It was shown that the SAL-BnA complex both in solid state and in chloroform solution is stabilized by the intramolecular O-H⋯O hydrogen bonds and also by the intermolecular hydrogen bonding interactions of the carboxylate, ketone and/or hydroxyl groups of SAL with water molecules present in the investigated system. The solvated acetonitrile molecules are additionally located in the voids between the SAL-BnA complex molecules in the crystal structure, while water molecules involved in the dihydrated crystalline SAL-BnA complex partially move into the solvent upon dissolution in chloroform.
NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization.
Kruk, Joanna; Doskocz, Marek; Jodłowska, Elżbieta; Zacharzewska, Anna; Łakomiec, Joanna; Czaja, Kornelia; Kujawski, Jacek
2017-01-01
Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as 1 H, 13 C, 31 P, 19 F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.
Dynamic Nuclear Polarization and other magnetic ideas at EPFL.
Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey
2012-01-01
Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.
NASA Astrophysics Data System (ADS)
Mursito, Anggoro Tri; Hirajima, T.; Listiyowati, L. N.
2018-02-01
Mempawah peat of West Kalimantan was selected as raw material for studying the physicochemical properties of peat fuel products and their characteristic in the hydrothermal upgrading process at a temperature range of 150°C to 380°C at an average heating rate of 6.6°C/min for 30 minutes. The 13C NMR spectra revealed changes in the effect of temperature on carbon aromaticity of raw peat and peat fuel products which were in 0.39 to 0.63 as the temperature increased. Other phenomenon occurring during the experiment was hydrophilicity index of peat fuel surface decreases of about 1.7 and 1.4 with increased treatment temperature. We also found that hydrothermal upgrading also affected the combustion properties of peat fuel products. Ignition temperature of raw peat and solid products were at 175°C and between 188°C to 285°C respectively. Temperature at the maximum combustion rate of raw peat and solid products was at 460°C, and between 477°C to 509°C were suggested to the increasing of reactivity of solid products respectively. Here, we discussed several phenomenon of the peat fuel product during hydrothermal process with a respect to the change in the physicochemical properties as determined by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA) analyses, 13C NMR and also other supporting analytical equipment.
Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu
2016-03-07
The formation mechanism of drug nanoparticles was investigated using solid-state nuclear magnetic resonance (NMR) techniques for the efficient discovery of an optimized nanoparticle formulation. The cogrinding of nifedipine (NIF) with polymers, including hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP), and sodium dodecyl sulfate (SDS) was performed to prepare the NIF nanoparticle formulations. Then, solid-state NMR relaxometry was used for the nanometer-order characterization of NIF in the polymer matrix. Solid-state NMR measurements revealed that the crystal size of NIF was reduced to several tens of nanometers with amorphization of NIF by cogrinding with HPMC and SDS for 100 min. Similarly, the size of the NIF crystal was reduced to less than 90 nm in the 40 min ground mixture of NIF/PVP/SDS. Furthermore, 100 min grinding of NIF/PVP/SDS induced amorphization of almost all the NIF crystals followed by nanosizing. The hydrogen bond between NIF and PVP led to the efficient amorphization of NIF in the NIF/PVP/SDS system compared with NIF/HPMC/SDS system. The efficient nanosizing of the NIF crystal in the solid state, revealed by the solid-state NMR relaxation time measurements, enabled the formation of large amounts of NIF nanoparticles in water followed by the polymer dissolution. In contrast, excess amorphization of the NIF crystals failed to efficiently prepare the NIF nanoparticles. The solid-state characterization of the crystalline NIF revealed good correlation with the NIF nanoparticles formation during aqueous dispersion. Furthermore, the solid-state NMR measurements including relaxometry successfully elucidated the nanometer-order dispersion state of NIF in polymer matrix, leading to the discovery of optimized conditions for the preparation of suitable drug nanoparticles.
NASA Astrophysics Data System (ADS)
Bardak, F.; Karaca, C.; Bilgili, S.; Atac, A.; Mavis, T.; Asiri, A. M.; Karabacak, M.; Kose, E.
2016-08-01
Isophthalic acid (C6H4(CO2H)2) is a noteworthy organic compound widely used in coating and synthesis of resins and the production of commercially important polymers such as drink plastic bottles. The effects of isophthalic acid (IPA) on human health, toxicology, and biodegradability are the main focus of many researchers. Because structural and spectroscopic investigation of molecules provides a deep understanding of interactional behaviors of compounds, this study stands for exploring those features. Therefore, the spectroscopic, structural, electronic, and thermodynamical properties of IPA were thoroughly studied in this work experimentally using UV-Vis, 1H and 13C NMR, FT-IR, FT-Raman and theoretically via DFT and TD-DFT calculations. The UV-Vis absorption spectrum in water was taken in the region 200-400 nm. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The infrared and Raman spectra of the solid IPA were recorded in the range of 4000-400 cm- 1 and 3500-50 cm- 1, respectively. DFT and TD-DFT calculations were performed at the level of B3LYP/6-311++G(d,p) in determination of geometrical structure, electronic structure analysis and normal mode. The 13C and 1H nuclear magnetic resonance (NMR) spectra were estimated by using the gauge-invariant atomic orbital (GIAO) method. The scaled quantum mechanics (SQM) method was used to determine the total energy distribution (TED) to assign the vibrational modes accurately. Weak interactions such as hydrogen bonding and Van der Walls were analyzed via reduced density gradient (RDG) analysis in monomeric and dimeric forms. Furthermore, the excitation energies, density of state (DOS) diagram, thermodynamical properties, molecular electro-static potential (MEP), and nonlinear optical (NLO) properties were obtained.
Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R
2016-09-02
Drugs and other interventions for high impact hepatic diseases often target biochemical pathways such as gluconeogenesis, lipogenesis, or the metabolic response to oxidative stress. However, traditional liver function tests do not provide quantitative data about these pathways. In this study, we developed a simple method to evaluate these processes by NMR analysis of plasma metabolites. Healthy subjects ingested [U-(13)C3]glycerol, and blood was drawn at multiple times. Each subject completed three visits under differing nutritional states. High resolution (13)C NMR spectra of plasma triacylglycerols and glucose provided new insights into a number of hepatic processes including fatty acid esterification, the pentose phosphate pathway, and gluconeogenesis through the tricarboxylic acid cycle. Fasting stimulated pentose phosphate pathway activity and metabolism of [U-(13)C3]glycerol in the tricarboxylic acid cycle prior to gluconeogenesis or glyceroneogenesis. Fatty acid esterification was transient in the fasted state but continuous under fed conditions. We conclude that a simple NMR analysis of blood metabolites provides an important biomarker of pentose phosphate pathway activity, triacylglycerol synthesis, and flux through anaplerotic pathways in mitochondria of human liver. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Widdifield, Cory M; Bryce, David L
2009-09-07
Solid-state NMR spectroscopy and GIPAW DFT calculations reveal the pronounced sensitivity of (79/81)Br and (25)Mg quadrupolar coupling constants to subtle aspects of solid state structure which were not previously detected by pXRD methods.
Abi-Ghaida, Fatima; Laila, Zahra; Ibrahim, Ghassan; Naoufal, Daoud; Mehdi, Ahmad
2014-09-14
Novel silylated hydroborate clusters comprising the closo-decaborate cage were prepared and characterized by (1)H, (13)C, (11)B, (29)Si NMR and mass spectroscopy ESI. The synthesis of such silylated clusters was achieved using reactive derivatives of [B10H10](2-), [1-B10H9N2](-) and [2-B10H9CO](-). These silylated decaborate clusters constitute a new class of precursors that can be covalently anchored onto various silica supports without any prior surface modification. As a proof of concept, the synthesized precursors were successfully anchored on mesoporous silica, SBA-15 type, in different percentages, where the mesoporous material retained its structure. All materials modified with closo-decaborate were characterized by (11)B and (29)Si solid state NMR, XRD, TEM and nitrogen sorption.
John Ralph; Jane M. Marita; Sally A. Ralph; Ronald D. Hatfield; Fachuang Lu; Richard M. Ede; Junpeng Peng; Larry L. Landucci
1999-01-01
Despite the rather random and heterogeneous nature of isolated lignins, many of their intimate structural details are revealed by diagnostic NMR experiments. 13C-NMR was recognized early-on as a high-resolution method for detailed structural characterization, aided by the almost exact agreement between chemical shifts of carbons in good low-molecular...
Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik
2015-11-02
Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.
Cerreia Vioglio, Paolo; Catalano, Luca; Vasylyeva, Vera; Nervi, Carlo; Chierotti, Michele R; Resnati, Giuseppe; Gobetto, Roberto; Metrangolo, Pierangelo
2016-11-14
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a versatile characterization technique that can provide a plethora of information complementary to single crystal X-ray diffraction (SCXRD) analysis. Herein, we present an experimental and computational investigation of the relationship between the geometry of a halogen bond (XB) and the SSNMR chemical shifts of the non-quadrupolar nuclei either directly involved in the interaction ( 15 N) or covalently bonded to the halogen atom ( 13 C). We have prepared two series of X-bonded co-crystals based upon two different dipyridyl modules, and several halobenzenes and diiodoalkanes, as XB-donors. SCXRD structures of three novel co-crystals between 1,2-bis(4-pyridyl)ethane, and 1,4-diiodobenzene, 1,6-diiodododecafluorohexane, and 1,8-diiodohexadecafluorooctane were obtained. For the first time, the change in the 15 N SSNMR chemical shifts upon XB formation is shown to experimentally correlate with the normalized distance parameter of the XB. The same overall trend is confirmed by density functional theory (DFT) calculations of the chemical shifts. 13 C NQS experiments show a positive, linear correlation between the chemical shifts and the C-I elongation, which is an indirect probe of the strength of the XB. These correlations can be of general utility to estimate the strength of the XB occurring in diverse adducts by using affordable SSNMR analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biochemical resistance of pyrogenic organic matter in fire-affected mineral soils of Southern Europe
NASA Astrophysics Data System (ADS)
Knicker, H.; González Vila, F. J.; Clemente Salas, L.
2012-04-01
Incorporated into the soil, naturally formed pyrogenic organic matter (PyOM) is considered as highly recalcitrant, but direct estimation of PyOM decomposition rates are scarce. With this aim in mind, we subjected organic matter (OM) of fire-affected and unaffected soils to biochemical degradation under laboratory conditions and monitored CO2 production over a period of seven months. The soils derived from fire affected and unaffected areas of the Sierra de Aznalcóllar and the Doñana National Park, Southern Spain. Virtual fractionation of the solid-state 13C nuclear magnetic resonance (NMR) spectra of the fire affected soils into fire-unaffected soil organic matter (SOM) and PyOM yielded charcoal C contributions of 30 to 50% to the total organic C (Corg) of the sample derived from the Aznalcóllar region. Fitting the respiration data with a double exponential decay model revealed a fast carbon flush during the first three weeks of the experiment. Solid-state 13C NMR spectroscopy evidenced the contribution of aromatic moieties of the PyOM to this initial carbon release and to the biosynthesis of new microbial biomass. The input of PyOM resulted in an increase of the mean residence time (MRT) of the slow OM pool of the soil by a factor of 3 to 4 to approximately 40 years which rises doubts rises doubts about the presumed big influence of PyOM as an additional C-sink in soils. On the other hand, although being small the difference in turnover rates is evident and has some major implication with respect to long-term alteration of the chemical composition of OM in fire-affected soils. Based on the obtained results and the analysis of PyOM in other soil systems, a conceptual model is presented which can explain the different behavior of PyOM under different soil conditions.
NASA Astrophysics Data System (ADS)
Mikhalev, K. N.; Germov, A. Yu; Uimin, M. A.; Yermakov, A. E.; Konev, A. S.; Novikov, S. I.; Gaviko, V. S.; Ponosov, Yu S.
2018-05-01
59Co, 13C NMR spectra, magnetization and Raman spectra of Co@C nanoparticles encapsulated in carbon have been analyzed. It has been shown that the cores of the nanoparticles consist of metallic cobalt with FCC structure and perhaps the carbide of cobalt Co3C. Carbon shell have been characterized as a highly defective structure similar to amorphous or glassy-like carbon, however, it may include a small amount of the carbon nanotubes.
Characterization of a water-solid interaction in a partially ordered system.
Chakravarty, Paroma; Lubach, Joseph W
2013-11-04
GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.
Corzilius, Björn; Michaelis, Vladimir K; Penzel, Susanne A; Ravera, Enrico; Smith, Albert A; Luchinat, Claudio; Griffin, Robert G
2014-08-20
The study of inorganic crystalline materials by solid-state NMR spectroscopy is often complicated by the low sensitivity of heavy nuclei. However, these materials often contain or can be prepared with paramagnetic dopants without significantly affecting the structure of the crystalline host. Dynamic nuclear polarization (DNP) is generally capable of enhancing NMR signals by transferring the magnetization of unpaired electrons to the nuclei. Therefore, the NMR sensitivity in these paramagnetically doped crystals might be increased by DNP. In this paper we demonstrate the possibility of efficient DNP transfer in polycrystalline samples of [Co(en)3Cl3]2·NaCl·6H2O (en = ethylenediamine, C2H8N2) doped with Cr(III) in varying concentrations between 0.1 and 3 mol %. We demonstrate that (1)H, (13)C, and (59)Co can be polarized by irradiation of Cr(III) with 140 GHz microwaves at a magnetic field of 5 T. We further explain our findings on the basis of electron paramagnetic resonance spectroscopy of the Cr(III) site and analysis of its temperature-dependent zero-field splitting, as well as the dependence of the DNP enhancement factor on the external magnetic field and microwave power. This first demonstration of DNP transfer from one paramagnetic metal ion to its diamagnetic host metal ion will pave the way for future applications of DNP in paramagnetically doped materials or metalloproteins.
2015-01-01
The study of inorganic crystalline materials by solid-state NMR spectroscopy is often complicated by the low sensitivity of heavy nuclei. However, these materials often contain or can be prepared with paramagnetic dopants without significantly affecting the structure of the crystalline host. Dynamic nuclear polarization (DNP) is generally capable of enhancing NMR signals by transferring the magnetization of unpaired electrons to the nuclei. Therefore, the NMR sensitivity in these paramagnetically doped crystals might be increased by DNP. In this paper we demonstrate the possibility of efficient DNP transfer in polycrystalline samples of [Co(en)3Cl3]2·NaCl·6H2O (en = ethylenediamine, C2H8N2) doped with Cr(III) in varying concentrations between 0.1 and 3 mol %. We demonstrate that 1H, 13C, and 59Co can be polarized by irradiation of Cr(III) with 140 GHz microwaves at a magnetic field of 5 T. We further explain our findings on the basis of electron paramagnetic resonance spectroscopy of the Cr(III) site and analysis of its temperature-dependent zero-field splitting, as well as the dependence of the DNP enhancement factor on the external magnetic field and microwave power. This first demonstration of DNP transfer from one paramagnetic metal ion to its diamagnetic host metal ion will pave the way for future applications of DNP in paramagnetically doped materials or metalloproteins. PMID:25069794
Folding of Polymer Chains in Early Stage of Crystallization
NASA Astrophysics Data System (ADS)
Yuan, Shichen; Miyoshi, Toshikazu
Understanding the structural formation of long polymer chains in the early stage of crystallization is one of the long-standing problems in polymer science. Using solid state NMR, we investigated chain trajectory of isotactic polypropylene in the mesomorphic nano-domains formed via rapid and deep quenching. Comparison of experimental and simulated 13C-13C Double Quantum (DQ) buildup curves demonstrated that instead of random re-entry models and solidification models, individual chains in the mesomorphic form iPP adopt adjacent reentry sequences with an average folding number of
Metal-organic frameworks with dynamic interlocked components
NASA Astrophysics Data System (ADS)
Vukotic, V. Nicholas; Harris, Kristopher J.; Zhu, Kelong; Schurko, Robert W.; Loeb, Stephen J.
2012-06-01
The dynamics of mechanically interlocked molecules such as rotaxanes and catenanes have been studied in solution as examples of rudimentary molecular switches and machines, but in this medium, the molecules are randomly dispersed and their motion incoherent. As a strategy for achieving a higher level of molecular organization, we have constructed a metal-organic framework material using a [2]rotaxane as the organic linker and binuclear Cu(II) units as the nodes. Activation of the as-synthesized material creates a void space inside the rigid framework that allows the soft macrocyclic ring of the [2]rotaxane to rotate rapidly, unimpeded by neighbouring molecular components. Variable-temperature 13C and 2H solid-state NMR experiments are used to characterize the nature and rate of the dynamic processes occurring inside this unique material. These results provide a blueprint for the future creation of solid-state molecular switches and molecular machines based on mechanically interlocked molecules.
Arabinan-cellulose composite in Opuntia ficus-indica prickly pear spines.
Vignon, M R; Heux, L; Malainine, M-E; Mahrouz, M
2004-01-02
The ultrastructure of the spines decorating the cladodes of the cactus Opuntia ficus-indica was investigated by optical microscopy, scanning and transmission electron microscopy, wide angle X-ray, and solid state 13C NMR analyses. Each spine consisted of a compact parallel arrangement of slender cellulosic fibers (0.4 mm in length and 6-10 microm in diameter) with small lumens. The fibers were disencrusted by alkali and sodium chlorite bleaching, yielding a remarkable arabinan-cellulose (1:1) product. X-ray fiber diagrams of the spines before and after purification confirmed the presence of crystalline cellulose domains with molecular axis parallel to the spine axis. CP-MAS 13C T1 NMR data showed a strong interaction at a nanometric level of a fraction of the arabinan and the cellulose crystalline domains. By sequential hydrothermal extractions, followed by a trifluoroacetic acid treatment, a relatively pure cellulose was isolated while the extracted fibers became fibrillated into slender microfibrils having no more than 4-6 nm diameter. The hydrothermal extract yielded the alpha-L-arabinofuranan consisting of a chain of (1-->5)-linked L-arabinosyl residues with branching either at C-2 or C-3 or at both C-2 and C-3. Taken together, these observations suggest that the bulk of the spine fibers consists of an intimate composite of cellulose microfibrils embedded in an arabinan matrix.
Zakharova, Maria V; Masoumifard, Nima; Hu, Yimu; Han, Jongho; Kleitz, Freddy; Fontaine, Frédéric-Georges
2018-04-18
Conventional amines and phosphines, such as diethylenetriamine, diphenylpropylphosphine, triethylamine, and tetramethylpiperidine, were grafted or impregnated on the surface of metalated SBA-15 materials, such as Ti-, Al-, and Zr-SBA-15, to generate air-stable solid-supported Lewis acid-base pairs. The Lewis acidity of the metalated materials before and after the introduction of Lewis bases was verified by means of pyridine adsorption-Fourier transform infrared spectroscopy. Detailed characterization of the materials was achieved by solid-state 13 C and 31 P MAS NMR spectroscopy, low-temperature N 2 physisorption, X-ray photoelectron spectroscopy, and energy-dispersive X-ray mapping analyses. Study of their potential interactions with CO 2 was performed using CO 2 adsorption isotherm experiments, which provided new insights into their applicability as solid CO 2 adsorbents. A correlation between solid-supported Lewis acid-base pair strength and the resulting affinity to CO 2 is discussed based on the calculation of isosteric enthalpy of adsorption.
Novel nuclear magnetic resonance techniques for studying biological molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laws, David Douglas
2000-06-01
Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. Inmore » this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13C a, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.« less
Cr{sub 2}O{sub 5} as new cathode for rechargeable sodium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xu-Yong; Chien, Po-Hsiu; Rose, Alyssa M.
2016-10-15
Chromium oxide, Cr{sub 2}O{sub 5}, was synthesized by pyrolyzing CrO{sub 3} at 350 °C and employed as a new cathode in rechargeable sodium ion batteries. Cr{sub 2}O{sub 5}/Na rechargeable batteries delivered high specific capacities up to 310 mAh/g at a current density of C/16 (or 20 mA/g). High-resolution solid-state {sup 23}Na NMR both qualitatively and quantitatively revealed the reversible intercalation of Na ions into the bulk electrode and participation of Na ions in the formation of the solid-electrolyte interphase largely at low potentials. Amorphization of the electrode structure occurred during the first discharge revealed by both NMR and X-ray diffractionmore » data. CrO{sub 3}-catalyzed electrolyte degradation and loss in electronic conductivity led to gradual capacity fading. The specific capacity stabilized at >120 mAh/g after 50 charge-discharge cycles. Further improvement in electrochemical performance is possible via electrode surface modification, polymer binder incorporation, or designs of new morphologies. - Graphical abstract: Electrochemical profile of a Cr{sub 2}O{sub 5}/Na battery cell and high-resolution solid-state {sup 23}Na MAS NMR spectrum of a Cr{sub 2}O{sub 5} electrode discharged to 2 V. - Highlights: • Cr{sub 2}O{sub 5} was synthesized and used as a new cathode in rechargeable Na ion batteries. • A high capacity of 310 mAh/g and an energy density of 564 Wh/kg were achieved. • High-resolution solid-state {sup 23}Na NMR was employed to follow the reaction mechanisms.« less
Pressure-temperature phase diagram of a charge-ordered organic conductor studied by C13 NMR
NASA Astrophysics Data System (ADS)
Itou, T.; Miyagawa, K.; Nakamura, J.; Kanoda, K.; Hiraki, K.; Takahashi, T.
2014-07-01
We performed C13 NMR measurements on the quasi-one-dimensional (Q1D) charge-ordered system (DI-DCNQI)2Ag under ambient and applied pressure to clarify the pressure-temperature phase diagram. For pressures up to 15 kbar, the NMR spectra exhibit complicated splitting at low temperatures, indicating a "generalized 3D Wigner crystal" state. In this pressure region, we find that increased pressure causes a decrease in the charge disproportionation ratio, along with a decrease in the transition temperature of the generalized 3D Wigner crystal. In the high-pressure region, near 20 kbar, where a 1D confined liquid crosses over to a 3D Fermi liquid at high temperatures, the ground state is replaced by a nonmagnetic insulating state that is qualitatively different from the generalized 3D Wigner crystal.
NASA Astrophysics Data System (ADS)
Debnath, Diptanu; Purkayastha, Atanu; Kirillov, Alexander; Ganguly, Rakesh; Misra, Tarun Kumar
2017-12-01
6-Aminouracils have extensively been used as precursors for synthesizing numerous uracil derivatives of biological and pharmaceutical significance. This study describes an application of 1,3-dimethyl-5-(arylazo)-6-aminouracils (Uazo: Uazo1-Uazo4, precursors) for an efficient synthesis of a series of 8-substituted-azapurins (AP), namely 1,3-dimethyl-8-(aryl)-azapurin-2,6-diones (aryl = p-HC6H4 (AP1), -MeC6H4 (AP2), sbnd ClC6H4 (AP3), and sbnd SO2NH2C6H4 (AP4)) following an oxidation method in the presence of copper (II) nitrate and in alkaline medium. The obtained compounds were isolated in good yields as crystalline air-stable products and have been fully characterized in the solution by UV-vis and NMR spectroscopy, as well as in the solid state by FT-IR spectroscopy, elemental analysis, and single-crystal X-ray diffraction (for AP2 and AP4). UV-vis study evidences that the conversion of the 6-aminouracil precursors occurs via an intermediate, Cu(II)-complex and a plausible mechanism for the formation of AP1-AP4 has been proposed. Unlike AP2 the crystal structure of AP4 reveals the formation of interdigitated 1D H-bonded chains that has been topologically classified within the 2C1 type. The 1H NMR spectra of the products have proton signals that completely devoid of hydrazone (sbnd NHsbnd) and imine (=NH) signals of their parent Uazo derivatives, thus confirming their full conversion and a stability of the AP1-AP4 in solution. The excitation and emission spectra of AP1-AP4 were also recorded in solution, revealing electronic transitions between similar vibrational energy levels of S0 (singlet ground state) and S1 (singlet first excited state).
Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I
2006-10-15
A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.
NASA Astrophysics Data System (ADS)
Beckmann, Peter A.; Paty, Carol; Allocco, Elizabeth; Herd, Maria; Kuranz, Carolyn; Rheingold, Arnold L.
2004-03-01
We report x-ray diffractometry in a single crystal of 2-t-butyl-4-methylphenol (TMP) and low-frequency solid state nuclear magnetic resonance (NMR) proton relaxometry in a polycrystalline sample of TMP. The x-ray data show TMP to have a monoclinic, P21/c, structure with eight molecules per unit cell and two crystallographically inequivalent t-butyl group (C(CH3)3) sites. The proton spin-lattice relaxation rates were measured between 90 and 310 K at NMR frequencies of 8.50, 22.5, and 53.0 MHz. The relaxometry data is fitted with two models characterizing the dynamics of the t-butyl groups and their constituent methyl groups, both of which are consistent with the determined x-ray structure. In addition to presenting results for TMP, we review previously reported x-ray diffractometry and low-frequency NMR relaxometry in two other van der Waals solids which have a simpler structure. In both cases, a unique model for the reorientational dynamics was found. Finally, we review a similar previously reported analysis in a van der Waals solid with a very complex structure in which case fitting the NMR relaxometry requires very many parameters and serves mainly as a flag for a careful x-ray diffraction study.
Caulkins, Bethany G; Young, Robert P; Kudla, Ryan A; Yang, Chen; Bittbauer, Thomas J; Bastin, Baback; Hilario, Eduardo; Fan, Li; Marsella, Michael J; Dunn, Michael F; Mueller, Leonard J
2016-11-23
Carbanionic intermediates play a central role in the catalytic transformations of amino acids performed by pyridoxal-5'-phosphate (PLP)-dependent enzymes. Here, we make use of NMR crystallography-the synergistic combination of solid-state nuclear magnetic resonance, X-ray crystallography, and computational chemistry-to interrogate a carbanionic/quinonoid intermediate analogue in the β-subunit active site of the PLP-requiring enzyme tryptophan synthase. The solid-state NMR chemical shifts of the PLP pyridine ring nitrogen and additional sites, coupled with first-principles computational models, allow a detailed model of protonation states for ionizable groups on the cofactor, substrates, and nearby catalytic residues to be established. Most significantly, we find that a deprotonated pyridine nitrogen on PLP precludes formation of a true quinonoid species and that there is an equilibrium between the phenolic and protonated Schiff base tautomeric forms of this intermediate. Natural bond orbital analysis indicates that the latter builds up negative charge at the substrate C α and positive charge at C4' of the cofactor, consistent with its role as the catalytic tautomer. These findings support the hypothesis that the specificity for β-elimination/replacement versus transamination is dictated in part by the protonation states of ionizable groups on PLP and the reacting substrates and underscore the essential role that NMR crystallography can play in characterizing both chemical structure and dynamics within functioning enzyme active sites.
NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs.
Jeong, Ji-Ho; Kim, Ji-Sun; Choi, Sung-Sub; Kim, Yongae
2016-01-19
Lactophoricin (LPcin), a component of proteose peptone (113-135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing (1)H-(15)N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting (15)N 1D and 2D (1)H-(15)N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built (1)H-(15)N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55-75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.
2000-12-01
A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.
SIMPSON: A general simulation program for solid-state NMR spectroscopy
NASA Astrophysics Data System (ADS)
Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.
2011-12-01
A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.
Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterization by MAS NMR
2009-01-01
Experimental Section Materials. Cu(acetate)2(H2O), Cu(L-tartrate)3(H2O)3, Cu( CO3 )- Cu(OH)2, 1,3,5-benzenetricarboxylic acid, NH4HCO3, and N,N...for 3 days. The crystals were activated under high vacuum at a temperature of 170 °C. Nitrogen Adsorption Equilibria. Nitrogen adsorption equi- libria...solid (NH4)3BTC. 13C CP-MAS NMR confirmed the identity and purity of the trisubstituted material. BTC-Cu( CO3 )Cu(OH)2-NH4HCO3 Reaction. BTC (100 mg, 480
De la Rosa, José Maria; Martin-Sanchez, Pedro M; Sanchez-Cortes, Santiago; Hermosin, Bernardo; Knicker, Heike; Saiz-Jimenez, Cesareo
2017-10-18
Two novel species of the fungal genus Ochroconis, O. lascauxensis and O. anomala have been isolated from the walls of the Lascaux Cave, France. The interest in these fungi and their melanins lies in the formation of black stains on the walls and rock art which threatens the integrity of the paintings. Here we report solid-state cross polarization magic-angle spinning 13 C and 15 N nuclear magnetic resonance (NMR) spectroscopy and surface-enhanced Raman spectroscopy (SERS) of the melanins extracted from the mycelia of O. lascauxensis and O. anomala in order to known their chemical structure. The melanins from these two species were compared with those from other fungi. The melanins from the Ochroconis species have similar SERS and 13 C and 15 N NMR spectra. Their chemical structures as suggested by the data are not related to 3,4-dihydroxyphenylalanine, 5,6-dihydroxyindole or 1,8-dihydroxynaphthalene precursors and likely the building blocks from the melanins have to be based on other phenols that react with the N-terminal amino acid of proteins. The analytical pyrolysis of the acid hydrolysed melanin from O. lascauxensis supports this assumption.
Mura, Carla; Valenti, Donatella; Floris, Costantino; Sanna, Roberta; De Luca, Maria Antonietta; Fadda, Anna Maria; Loy, Giuseppe
2011-09-01
The aim of the present study was to develop a colon targeted delivery system for metronidazole using polymeric prodrug formulation. Two chitosan amide conjugates of metronidazole were prepared by using two different spacers to covalently link the drug to the amino group of the chitosan glucosamine units. Glutaric and succinic hemiesters of metronidazole were thus prepared and then coupled to chitosan to obtain metronidazole-glutaryl- and metronidazole-succinyl-chitosan conjugates. Polymeric prodrugs were characterized by solid state NMR method, namely carbon 13 cross polarization magic angle spinning ((13)C NMR CPMAS). Prodrug stability study was carried out in acid (pH = 1.2) and in alkaline (pH = 7.4) buffers in a thermostatic bath at 37 °C. Drug release from the two prodrugs was studied by incubating each of them with 10% w/v cecal and colonic content of rats. Obtained results showed that both prodrugs were adequately stable in acid environment, while the succinyl conjugate was more stable than the glutaryl one in alkaline buffer. Both the prodrugs released the drug in cecal and colonic content, showing that the two systems could serve as colon specific delivery systems of metronidazole. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation.
Beckmann, Peter A; Bohen, Joseph M; Ford, Jamie; Malachowski, William P; Mallory, Clelia W; Mallory, Frank B; McGhie, Andrew R; Rheingold, Arnold L; Sloan, Gilbert J; Szewczyk, Steven T; Wang, Xianlong; Wheeler, Kraig A
2017-09-01
We report a variety of experiments and calculations and their interpretations regarding methyl group (CH 3 ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C 6 H 8 O 3 (1) + H 2 O → C 6 H 10 O 4 (2)]. The techniques are solid state 1 H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution 1 H NMR spectroscopy. The solid state 1 H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state 1 H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state 1 H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images. Copyright © 2017 Elsevier Inc. All rights reserved.
Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin
NASA Technical Reports Server (NTRS)
Bernards, M. A.; Lopez, M. L.; Zajicek, J.; Lewis, N. G.
1995-01-01
Suberin is an abundant, complex, intractable, plant cell wall polymeric network that forms both protective and wound-healing layers. Its function is, therefore, critical to the survival of all vascular plants. Its chemical structure and biosynthesis are poorly defined, although it is known to consist of both aromatic and aliphatic domains. While the composition of the aliphatic component has been fairly well characterized, that of the phenolic component has not. Using a combination of specific carbon-13 labeling techniques, and in situ solid state 13C NMR spectroscopic analysis, we now provide the first direct evidence for the nature of the phenolic domain of suberin and report here that it is almost exclusively comprised of a covalently linked, hydroxycinnamic acid-derived polymeric matrix.
Bonding structure in amorphous carbon nitride: A spectroscopic and nuclear magnetic resonance study
NASA Astrophysics Data System (ADS)
Sánchez-López, J. C.; Donnet, C.; Lefèbvre, F.; Fernández-Ramos, C.; Fernández, A.
2001-07-01
Since the prediction of Liu and Cohen [Science 245, 841 (1989)] of the potential extraordinary mechanical properties of crystalline β-C3N4, many authors have attempted its synthesis. However, in most cases, the obtained materials are amorphous phases with a complex bonding structure. Their characterization is complicated due to the absence of a reference compound, the lack of long-range order, and the poor knowledge about their bonding structure. In this article, we present 1H, 13C, and 15N solid-state nuclear magnetic resonance (NMR) measurements for the determination of the bonding types in amorphous CNx films. NMR measurements do not require long-range order and are able to clearly identify the signals from the sp2- and sp3-bonded phases. The analysis of the data obtained by other characterization techniques, such as infrared spectroscopy, x-ray photoelectron spectroscopy, electron energy-loss spectroscopy, and x-ray absorption near-edge spectroscopy on the same sample, based on the information acquired by NMR, enables the description of a structure model for the studied amorphous-CNx phase prepared by dc-magnetron sputtering and to revise the interpretation found in the literature.
Gopinath, T; Veglia, Gianluigi
2018-01-01
Conventional NMR pulse sequences record one spectrum per experiment, while spending most of the time waiting for the spin system to return to the equilibrium. As a result, a full set of multidimensional NMR experiments for biological macromolecules may take up to several months to complete. Here, we present a practical guide for setting up a new class of MAS solid-state NMR experiments (POE or polarization optimized experiments) that enable the simultaneous acquisition of multiple spectra of proteins, accelerating data acquisition. POE exploit the long-lived 15 N polarization of isotopically labeled proteins and enable one to obtain up to eight spectra, by concatenating classical NMR pulse sequences. This new strategy propels data throughput of solid-state NMR spectroscopy of fibers, microcrystalline preparations, as well as membrane proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M., E-mail: ems@kbm.sdu.dk
2014-11-15
A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4}more » has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.« less
Dai, Weili; Wang, Chuanming; Yi, Xianfeng; Zheng, Anmin; Li, Landong; Wu, Guangjun; Guan, Naijia; Xie, Zaiku; Dyballa, Michael; Hunger, Michael
2015-07-20
Experimental evidence for the presence of tert-butyl cations, which are important intermediates in acid-catalyzed heterogeneous reactions, on solid acids has still not been provided to date. By combining density functional theory (DFT) calculations with (1)H/(13)C magic-angle-spinning NMR spectroscopy, the tert-butyl cation was successfully identified on zeolite H-ZSM-5 upon conversion of isobutene by capturing this intermediate with ammonia. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tian, Donglin; Li, Tao; Zhang, Rongchun; Wu, Qiang; Chen, Tiehong; Sun, Pingchuan; Ramamoorthy, Ayyalusamy
2017-06-29
Fabricating materials with excellent mechanical performance from the natural renewable and degradable biopolymers has drawn significant attention in recent decades due to the environmental concerns and energy crisis. As two of the most promising substitutes of synthetic polymers, silk fibroin (SF), and cellulose, have been widely used in the field of textile, biomedicine, biotechnology, etc. Particularly, the cellulose/SF blend film exhibits better strength and toughness than that of regenerated cellulose film. Herein, this study is aimed to understand the molecular origin of the enhanced mechanical properties for the cellulose/SF blend film, using solid-state NMR as a main tool to investigate the conformational changes, intermolecular interactions between cellulose and SF and the water organization. It is found that the content of the β-sheet structure is increased in the cellulose/SF blend film with respect to the regenerated SF film, accompanied by the reduction of the content of random coil structures. In addition, the strong hydrogen bonding interaction between the SF and cellulose is clearly elucidated by the two-dimensional (2D) 1 H- 13 C heteronuclear correlation (HETCOR) NMR experiments, demonstrating that the SF and cellulose are miscible at the molecular level. Moreover, it is also found that the -NH groups of SF prefer to form hydrogen bonds with the hydroxyl groups bonded to carbons C2 and C3 of cellulose, while the hydroxyl groups bonded to carbon C6 and the ether oxygen are less favorable for hydrogen bonding interactions with the -NH groups of SF. Interestingly, bound water is found to be present in the air-dried cellulose/SF blend film, which is predominantly associated with the cellulose backbones as determined by 2D 1 H- 13 C wide-line-separation (WISE) experiments with spin diffusion. This clearly reveals the presence of nanoheterogeneity in the cellulose/SF blend film, although cellulose and SF are miscible at a molecular level. Without doubt, these in-depth atomic-level structural information could help reveal the molecular origin of the enhanced mechanical properties of the blend film, and thus to establish the structure-property relationship, which could further provide guidance for the fabrication of high performance biopolymer-based materials.
Assessing the effects of UVA photocatalysis on soot-coated TiO2-containing mortars.
De la Rosa, José M; Miller, Ana Z; Pozo-Antonio, J Santiago; González-Pérez, José A; Jiménez-Morillo, Nicasio T; Dionisio, Amelia
2017-12-15
The deposition of soot on building surfaces darkens their colour and leads to undesirable black crusts, which are one of the most serious problems on the conservation of built cultural heritage. As a preventive strategy, self-cleaning systems based on the use of titanium dioxide (TiO 2 ) coatings have been employed on building materials for degrading organic compounds deposited on building surfaces, improving their durability and performance. In this study, the self-cleaning effect of TiO 2 -containing mortars coated with diesel soot has been appraised under laboratory conditions. The mortar samples were manufactured using lime putty and two different doses of TiO 2 (2.5% and 5%). The lime mortars were then coated with diesel engine soot and irradiated with ultraviolet A (UVA) illumination for 30days. The photocatalytic efficiency was evaluated by visual inspection, field emission scanning electron microscopy (FESEM) and colour spectrophotometry. Changes in the chemical composition of the soot particles (including persistent organic pollutants) were assessed by analytical pyrolysis (Py-GC/MS) and solid state 13 C NMR spectroscopy. The FESEM and colour spectrophotometry revealed that the soot-coated TiO 2 -containing mortars promoted a self-cleaning effect after UVA irradiation. The combination of analytical pyrolysis and 13 C solid state NMR showed that the UVA irradiation caused the cracking of polycyclic aromatic structures and n-alkyl compounds of the diesel soot and its transformation into methyl polymers. Our findings also revealed that the inclusion of TiO 2 in the lime mortar formulations catalysed these transformations promoting the self-cleaning of the soot-stained mortars. The combined action of TiO 2 and UVA irradiation is a promising proxy to clean lime mortars affected by soot deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.
2011-01-01
Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.
Possible 6-qubit NMR quantum computer device material; simulator of the NMR line width
NASA Astrophysics Data System (ADS)
Hashi, K.; Kitazawa, H.; Shimizu, T.; Goto, A.; Eguchi, S.; Ohki, S.
2002-12-01
For an NMR quantum computer, splitting of an NMR spectrum must be larger than a line width. In order to find a best device material for a solid-state NMR quantum computer, we have made a simulation program to calculate the NMR line width due to the nuclear dipole field by the 2nd moment method. The program utilizes the lattice information prepared by commercial software to draw a crystal structure. By applying this program, we can estimate the NMR line width due to the nuclear dipole field without measurements and find a candidate material for a 6-qubit solid-state NMR quantum computer device.
Cerreia Vioglio, P.; Szell, P. M. J.; Chierotti, M. R.; Gobetto, R.
2018-01-01
Despite the applicability of solid-state NMR to study the halogen bond, the direct NMR detection of 79/81Br covalently bonded to carbon remains impractical due to extremely large spectral widths, even at ultra-high magnetic fields. In contrast, nuclear quadrupole resonance (NQR) offers comparatively sharp resonances. Here, we demonstrate the abilities of 79/81Br NQR to characterize the electronic changes in the C–Br···N halogen bonding motifs found in supramolecular assemblies constructed from 1,4-dibromotetrafluorobenzene and nitrogen-containing heterocycles. An increase in the bromine quadrupolar coupling constant is observed, which correlates linearly with the halogen bond distance (dBr···N). Notably, 79/81Br NQR is able to distinguish between two symmetry-independent halogen bonds in the same crystal structure. This approach offers a rapid and reliable indication for the occurrence of a halogen bond, with experimental times limited only by the observation of 79/81Br NQR resonances. PMID:29899948
Magnetic coupling between liquid 3He and a solid state substrate: a new approach
NASA Astrophysics Data System (ADS)
Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko
2000-07-01
We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.
ERIC Educational Resources Information Center
Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.
2014-01-01
High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…
Novel electrolytes for use in new and improved batteries: An NMR study
NASA Astrophysics Data System (ADS)
Berman, Marc B.
This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.
Afonin, Sergii; Dürr, Ulrich H N; Glaser, Ralf W; Ulrich, Anne S
2004-02-01
Solid state (19)F NMR revealed the conformation and alignment of the fusogenic peptide sequence B18 from the sea urchin fertilization protein bindin embedded in flat phospholipid bilayers. Single (19)F labels were introduced into nine distinct positions along the wild-type sequence by substituting each hydrophobic amino acid, one by one, with L-4-fluorophenylglycine. Their anisotropic chemical shifts were measured in uniaxially oriented membrane samples and used as orientational constraints to model the peptide structure in the membrane-bound state. Previous (1)H NMR studies of B18 in 30% TFE and in detergent micelles had shown that the peptide structure consists of two alpha-helical segments that are connected by a flexible hinge. This helix-break-helix motif was confirmed here by the solid-state (19)F NMR data, while no other secondary structure (beta-sheet, 3(10)-helix) was compatible with the set of orientational constraints. For both alpha-helical segments we found that the helical conformation extends all the way to the respective N- and C-termini of the peptide. Analysis of the corresponding tilt and azimuthal rotation angles showed that the N-terminal helix of B18 is immersed obliquely into the bilayer (at a tilt angle tau approximately 54 degrees), whereas the C-terminus is peripherally aligned (tau approximately 91 degrees). The azimuthal orientation of the two segments is consistent with the amphiphilic distribution of side-chains. The observed 'boomerang'-like mode of insertion into the membrane may thus explain how peptide binding leads to lipid dehydration and acyl chain perturbation as a prerequisite for bilayer fusion to occur. Copyright 2004 John Wiley & Sons, Ltd.