NASA Astrophysics Data System (ADS)
Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi
2006-02-01
Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.
A New All Solid State Approach to Gaseous Pollutant Detection
NASA Technical Reports Server (NTRS)
Brown, V.; Tamstorf, K.
1971-01-01
Recent efforts in our laboratories have concentrated on the development of an all solid state gas sensor, by combining solid electrolyte (ion exchange membrane) technology with advanced thin film deposition processes. With the proper bias magnitude and polarity these miniature electro-chemical,cells show remarkable current responses for many common pollution gases. Current activity is now focused on complementing a multiple array (matrix) of these solid state sensors, with a digital electronic scanner device possessing "scan-compare-identify-alarm: capability. This innovative approach to multi-component pollutant gas analysis may indeed be the advanced prototype for the "third generation" class of pollution analysis instrumentation so urgently needed in the decade ahead.
Hybrid organic–inorganic porous semiconductor transducer for multi-parameters sensing
Caliò, Alessandro; Cassinese, Antonio; Casalino, Maurizio; Rea, Ilaria; Barra, Mario; Chiarella, Fabio; De Stefano, Luca
2015-01-01
Porous silicon (PSi) non-symmetric multi-layers are modified by organic molecular beam deposition of an organic semiconductor, namely the N,N′-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2). Joule evaporation of PDIF-CN2 into the PSi sponge-like matrix not only improves but also adds transducing skills, making this solid-state device a dual signal sensor for chemical monitoring. PDIF-CN2 modified PSi optical microcavities show an increase of about five orders of magnitude in electric current with respect to the same bare device. This feature can be used to sense volatile substances. PDIF-CN2 also improves chemical resistance of PSi against alkaline and acid corrosion. PMID:26063814
Fabrication of a Miniature Multi-Parameter Sensor Chip for Water Quality Assessment.
Zhou, Bo; Bian, Chao; Tong, Jianhua; Xia, Shanhong
2017-01-14
Water contamination is a main inducement of human diseases. It is an important step to monitor the water quality in the water distribution system. Due to the features of large size, high cost, and complicated structure of traditional water determination sensors and devices, it is difficult to realize real-time water monitoring on a large scale. In this paper, we present a multi-parameter sensor chip, which is miniature, low-cost, and robust, to detect the pH, conductivity, and temperature of water simultaneously. The sensor chip was fabricated using micro-electro-mechanical system (MEMS) techniques. Iridium oxide film was electrodeposited as the pH-sensing material. The atomic ratio of Ir(III) to Ir(IV) is about 1.38 according to the X-ray photoelectron spectroscopy (XPS) analysis. The pH sensing electrode showed super-Nernstian response (-67.60 mV/pH) and good linearity (R² = 0.9997), in the range of pH 2.22 to pH 11.81. KCl-agar and epoxy were used as the electrolyte layer and liquid junction for the solid-state reference electrode, respectively, and its potential stability in deionized water was 56 h. The conductivity cell exhibited a linear determination range from 21.43 μ S / cm to 1.99 mS / cm , and the electrode constant was 1.566 cm -1 . Sensitivity of the temperature sensor was 5.46 Ω / ° C . The results indicate that the developed sensor chip has potential application in water quality measurements.
Optical bending sensor using distributed feedback solid state dye lasers on optical fiber.
Kubota, Hiroyuki; Oomi, Soichiro; Yoshioka, Hiroaki; Watanabe, Hirofumi; Oki, Yuji
2012-07-02
Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association
Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-01-01
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets’ state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems. PMID:29113085
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association.
Liu, Yu; Liu, Jun; Li, Gang; Qi, Lin; Li, Yaowen; He, You
2017-11-05
This paper focuses on the tracking problem of multiple targets with multiple sensors in a nonlinear cluttered environment. To avoid Jacobian matrix computation and scaling parameter adjustment, improve numerical stability, and acquire more accurate estimated results for centralized nonlinear tracking, a novel centralized multi-sensor square root cubature joint probabilistic data association algorithm (CMSCJPDA) is proposed. Firstly, the multi-sensor tracking problem is decomposed into several single-sensor multi-target tracking problems, which are sequentially processed during the estimation. Then, in each sensor, the assignment of its measurements to target tracks is accomplished on the basis of joint probabilistic data association (JPDA), and a weighted probability fusion method with square root version of a cubature Kalman filter (SRCKF) is utilized to estimate the targets' state. With the measurements in all sensors processed CMSCJPDA is derived and the global estimated state is achieved. Experimental results show that CMSCJPDA is superior to the state-of-the-art algorithms in the aspects of tracking accuracy, numerical stability, and computational cost, which provides a new idea to solve multi-sensor tracking problems.
Modular nonvolatile solid state recorder (MONSSTR) update
NASA Astrophysics Data System (ADS)
Klang, Mark R.; Small, Martin B.; Beams, Tom
2001-12-01
Solid state recorders have begun replacing traditional tape recorders in fulfilling the requirement to record images on airborne platforms. With the advances in electro-optical, IR, SAR, Multi and Hyper-spectral sensors and video recording requirements, solid state recorders have become the recorder of choice. Solid state recorders provide the additional storage, higher sustained bandwidth, less power, less weight and smaller footprint to meet the current and future recording requirements. CALCULEX, Inc., manufactures a non-volatile flash memory solid state recorder called the MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used to record images from many different digital sensors on high performance aircraft such as the RF- 4, F-16 and the Royal Air Force Tornado. MONSSTR, with its internal multiplexer, is also used to record instrumentation data. This includes multiple streams of PCM and multiple channels of 1553 data. Instrumentation data is being recorded by MONSSTR systems in a range of platforms including F-22, F-15, F-16, Comanche Helicopter and US Navy torpedos. MONSSTR can also be used as a cockpit video recorder. This paper will provide an update of the MONSSTR.
Fabrication of a Miniature Multi-Parameter Sensor Chip for Water Quality Assessment
Zhou, Bo; Bian, Chao; Tong, Jianhua; Xia, Shanhong
2017-01-01
Water contamination is a main inducement of human diseases. It is an important step to monitor the water quality in the water distribution system. Due to the features of large size, high cost, and complicated structure of traditional water determination sensors and devices, it is difficult to realize real-time water monitoring on a large scale. In this paper, we present a multi-parameter sensor chip, which is miniature, low-cost, and robust, to detect the pH, conductivity, and temperature of water simultaneously. The sensor chip was fabricated using micro-electro-mechanical system (MEMS) techniques. Iridium oxide film was electrodeposited as the pH-sensing material. The atomic ratio of Ir(III) to Ir(IV) is about 1.38 according to the X-ray photoelectron spectroscopy (XPS) analysis. The pH sensing electrode showed super-Nernstian response (−67.60 mV/pH) and good linearity (R2 = 0.9997), in the range of pH 2.22 to pH 11.81. KCl-agar and epoxy were used as the electrolyte layer and liquid junction for the solid-state reference electrode, respectively, and its potential stability in deionized water was 56 h. The conductivity cell exhibited a linear determination range from 21.43 μS/cm to 1.99 mS/cm, and the electrode constant was 1.566 cm−1. Sensitivity of the temperature sensor was 5.46 Ω/°C. The results indicate that the developed sensor chip has potential application in water quality measurements. PMID:28098824
Hybrid organic-inorganic porous semiconductor transducer for multi-parameters sensing.
Caliò, Alessandro; Cassinese, Antonio; Casalino, Maurizio; Rea, Ilaria; Barra, Mario; Chiarella, Fabio; De Stefano, Luca
2015-07-06
Porous silicon (PSi) non-symmetric multi-layers are modified by organic molecular beam deposition of an organic semiconductor, namely the N,N'-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2). Joule evaporation of PDIF-CN2 into the PSi sponge-like matrix not only improves but also adds transducing skills, making this solid-state device a dual signal sensor for chemical monitoring. PDIF-CN2 modified PSi optical microcavities show an increase of about five orders of magnitude in electric current with respect to the same bare device. This feature can be used to sense volatile substances. PDIF-CN2 also improves chemical resistance of PSi against alkaline and acid corrosion. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Redesigned Gas Mass Flow Sensors for Space Shuttle Pressure Control System and Fuel Cell System
NASA Technical Reports Server (NTRS)
1996-01-01
A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.
Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring
Hu, Hai-Feng
2018-01-01
As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants’ multi-parameters and the bearings’ wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes. PMID:29621175
Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring.
Wang, Si-Yuan; Yang, Ding-Xin; Hu, Hai-Feng
2018-04-05
As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants' multi-parameters and the bearings' wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes.
Solid-State Multi-Sensor Array System for Real Time Imaging of Magnetic Fields and Ferrous Objects
NASA Astrophysics Data System (ADS)
Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.
2008-02-01
In this paper the development of a solid-state sensors based system for real-time imaging of magnetic fields and ferrous objects is described. The system comprises 1089 magneto inductive solid state sensors arranged in a 2D array matrix of 33×33 files and columns, equally spaced in order to cover an approximate area of 300 by 300 mm. The sensor array is located within a large current-carrying coil. Data is sampled from the sensors by several DSP controlling units and finally streamed to a host computer via a USB 2.0 interface and the image generated and displayed at a rate of 20 frames per minute. The development of the instrumentation has been complemented by extensive numerical modeling of field distribution patterns using boundary element methods. The system was originally intended for deployment in the non-destructive evaluation (NDE) of reinforced concrete. Nevertheless, the system is not only capable of producing real-time, live video images of the metal target embedded within any opaque medium, it also allows the real-time visualization and determination of the magnetic field distribution emitted by either permanent magnets or geometries carrying current. Although this system was initially developed for the NDE arena, it could also have many potential applications in many other fields, including medicine, security, manufacturing, quality assurance and design involving magnetic fields.
Eide, Per Kristian; Holm, Sverre; Sorteberg, Wilhelm
2012-09-07
We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure (sensor zero level) occur clinically; trend plots of the ICP parameters also confirm this. Solid sensors are superior to fluid - and air pouch sensors when evaluating the dynamic ICP parameters.
Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.
Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K
2016-07-20
SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.
Efficient design of multituned transmission line NMR probes: the electrical engineering approach.
Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G
2011-01-01
Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented. Copyright © 2011 Elsevier Inc. All rights reserved.
2012-01-01
Background We recently reported that in an experimental setting the zero pressure level of solid intracranial pressure (ICP) sensors can be altered by electrostatics discharges. Changes in the zero pressure level would alter the ICP level (mean ICP); whether spontaneous changes in mean ICP happen in clinical settings is not known. This can be addressed by comparing the ICP parameters level and waveform of simultaneous ICP signals. To this end, we retrieved our recordings in patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. Materials and Methods: During a time period of 10 years, 17 patients with cerebral bleeds were monitored with two ICP sensors simultaneously; sensor 1 was always a solid sensor while Sensor 2 was a solid -, a fluid - or an air-pouch sensor. The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves. The output was determined in consecutive 6-s time windows, both with regard to the static parameter mean ICP and the dynamic parameters (mean wave amplitude, MWA, and mean wave rise time, MWRT). Differences in mean ICP, MWA and MWRT between the two sensors were determined. Transfer functions between the sensors were determined to evaluate how sensors reproduce the ICP waveform. Results Comparing findings in two solid sensors disclosed major differences in mean ICP in 2 of 5 patients (40%), despite marginal differences in MWA, MWRT, and linear phase magnitude and phase. Qualitative assessment of trend plots of mean ICP and MWA revealed shifts and drifts of mean ICP in the clinical setting. The transfer function analysis comparing the solid sensor with either the fluid or air-pouch sensors revealed more variable transfer function magnitude and greater differences in the ICP waveform derived indices. Conclusions Simultaneous monitoring of ICP using two solid sensors may show marked differences in static ICP but close to identity in dynamic ICP waveforms. This indicates that shifts in ICP baseline pressure (sensor zero level) occur clinically; trend plots of the ICP parameters also confirm this. Solid sensors are superior to fluid – and air pouch sensors when evaluating the dynamic ICP parameters. PMID:22958653
First Deminsys (high speed FBG interrogator) flight
NASA Astrophysics Data System (ADS)
van Els, Thomas J.
2009-03-01
Deminsys is the world's fastest multi sensor / multi channel FBG interrogator, identifies one till four channels with typically 8 sensors per channel. The system is especially developed for the interrogation of signals up to 19,3 kHz for each sensor and the sample frequency is independent of the number of sensors. By having multiple sensors per fibre you can create a very compact network of sensors. Due to its revolutionary (light weight, compact and solid state) design, Deminsys seems to fit perfectly into (research) programs for aerospace, medic & life science, maritime, industrial, crash test and all other fast detection applications. Technobis Fibre Technologies (TFT) and NLR made a first test flight with the Deminsys optical fibre measurement system using the NLR test aircraft on October 24th 2008. This flight was a first step in the further development of the current system in order to make it suitable for operation on-board an aircraft and bring it from TRL3 towards TRL5, a functional model for aerospace applications.
A study of pile-up in integrated time-correlated single photon counting systems
NASA Astrophysics Data System (ADS)
Arlt, Jochen; Tyndall, David; Rae, Bruce R.; Li, David D.-U.; Richardson, Justin A.; Henderson, Robert K.
2013-10-01
Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.
A study of pile-up in integrated time-correlated single photon counting systems.
Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K
2013-10-01
Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.
Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors
Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.
2016-01-01
SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643
A novel optical gating method for laser gated imaging
NASA Astrophysics Data System (ADS)
Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer
2013-06-01
For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.
Development and Experimental Evaluation of an Automated Multi-Media Course on Transistors.
ERIC Educational Resources Information Center
Whitted, J.H., Jr.; And Others
A completely automated multi-media self-study program for teaching a portion of electronic solid-state fundamentals was developed. The subject matter areas included were fundamental theory of transistors, transistor amplifier fundamentals, and simple mathematical analysis of transistors including equivalent circuits, parameters, and characteristic…
Diode-pumped solid state green laser for ophthalmologic application
NASA Astrophysics Data System (ADS)
Eno, Taizo; Goto, Yoshiaki; Momiuchi, Masayuki
2002-10-01
We have developed diode pumped solid state green laser suitable for ophthalmologic applications. Beam parameters were designed by considering the coagulation system. We have lowered the beam quality to multi transverse and longitudinal mode on purpose to improve the speckle noise of the slit lamp output beam. The beam profile shows homogeneous intensity and it is very useful for ophthalmologic application. End pumping and short cavity configuration made it possible.
Electromagnetic energy coupling mechanism with matrix architecture control
NASA Technical Reports Server (NTRS)
Hughes, Eli (Inventor); Knowles, Gareth (Inventor)
2006-01-01
The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.
Ionospheric Multi-Point Measurements Using Tethered Satellite Sensors
NASA Technical Reports Server (NTRS)
Gilchrist, B. E.; Heelis, R. A.; Raitt, W. J.
1998-01-01
Many scientific questions concerning the distribution of electromagnetic fields and plasma structures in the ionosphere require measurements over relatively small temporal and spatial scales with as little ambiguity as possible. It is also often necessary to differentiate several geophysical parameters between horizontal and vertical gradients unambiguously. The availability of multiple tethered satellites or sensors, so-called "pearls-on-a-string," may make the necessary measurements practical. In this report we provide two examples of scientific questions which could benefit from such measurements (1) high-latitude magnetospheric-ionospheric coupling; and, (2) plasma structure impact on large and small-scale electrodynamics. Space tether state-of-the-art and special technical considerations addressing mission lifetime, sensor pointing, and multi-stream telemetry are reviewed.
A survey of current solid state star tracker technology
NASA Astrophysics Data System (ADS)
Armstrong, R. W.; Staley, D. A.
1985-12-01
This paper is a survey of the current state of the art in design of star trackers for spacecraft attitude determination systems. Specific areas discussed are sensor technology, including the current state-of-the-art solid state sensors and techniques of mounting and cooling the sensor, analog image preprocessing electronics performance, and digital processing hardware and software. Three examples of area array solid state star tracker development are presented - ASTROS, developed by the Jet Propulsion Laboratory, the Retroreflector Field Tracker (RFT) by Ball Aerospace, and TRW's MADAN. Finally, a discussion of solid state line arrays explores the possibilities for one-dimensional imagers which offer simplified scan control electronics.
Characterization of a Low-Cost Multi-Parameter Sensor for Resource Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Sengupta, Manajit; Andreas, Afshin M
Low-cost multi-parameter sensing and measurement devices enable cost-effective monitoring of the functional, operational reliability, efficiency, and resiliency of the electrical grid. The National Renewable Research Laboratory (NREL) Solar Radiation Research Laboratory (SRRL), in collaboration with Arable Labs Inc., deployed Arable Lab's Mark multi-parameter sensor system. The unique suite of system sensors measures the down-welling and upwelling shortwave solar resource and longwave radiation, humidity, air temperature, and ground temperature. This study describes the shortwave calibration, characteriza-tion, and validation of measurement accuracy of this instrument by comparison with existing instruments that are part of NREL-SRRL's Baseline Measurement System.
Bieg, Christoph; Fuchsberger, Kai; Stelzle, Martin
2017-01-01
This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D. Graphical Abstract ᅟ.
Multi-interface level in oil tanks and applications of optical fiber sensors
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Marques, Carlos; Frizera, Anselmo; Pontes, Maria José
2018-01-01
On the oil production also involves the production of water, gas and suspended solids, which are separated from the oil on three-phase separators. However, the control strategies of an oil separator are limited due to unavailability of suitable multi-interface level sensors. This paper presents a description of the multi-phase level problem on the oil industry and a review of the current technologies for multi-interface level assessment. Since optical fiber sensors present chemical stability, intrinsic safety, electromagnetic immunity, lightweight and multiplexing capabilities, it can be an alternative for multi-interface level measurement that can overcome some of the limitations of the current technologies. For this reason, Fiber Bragg Gratings (FBGs) based optical fiber sensor system for multi-interface level assessment is proposed, simulated and experimentally assessed. The results show that the proposed sensor system is capable of measuring interface level with a relative error of only 2.38%. Furthermore, the proposed sensor system is also capable of measuring the oil density with an error of 0.8 kg/m3.
Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle
Barriuso, Alberto L.; De Paz, Juan F.; Lozano, Álvaro
2018-01-01
Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed. PMID:29301310
Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle.
Barriuso, Alberto L; Villarrubia González, Gabriel; De Paz, Juan F; Lozano, Álvaro; Bajo, Javier
2018-01-02
Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed.
A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives
Malocha, Donald C.; Gallagher, Mark; Fisher, Brian; Humphries, James; Gallagher, Daniel; Kozlovski, Nikolai
2013-01-01
This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC) SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown. PMID:23666124
Fabrication of nanostructured electrodes and interfaces using combustion CVD
NASA Astrophysics Data System (ADS)
Liu, Ying
Reducing fabrication and operation costs while maintaining high performance is a major consideration for the design of a new generation of solid-state ionic devices such as fuel cells, batteries, and sensors. The objective of this research is to fabricate nanostructured materials for energy storage and conversion, particularly porous electrodes with nanostructured features for solid oxide fuel cells (SOFCs) and high surface area films for gas sensing using a combustion CVD process. This research started with the evaluation of the most important deposition parameters: deposition temperature, deposition time, precursor concentration, and substrate. With the optimum deposition parameters, highly porous and nanostructured electrodes for low-temperature SOFCs have been then fabricated. Further, nanostructured and functionally graded La0.8Sr0.2MnO2-La 0.8SrCoO3-Gd0.1Ce0.9O2 composite cathodes were fabricated on YSZ electrolyte supports. Extremely low interfacial polarization resistances (i.e. 0.43 Ocm2 at 700°C) and high power densities (i.e. 481 mW/cm2 at 800°C) were generated at operating temperature range of 600°C--850°C. The original combustion CVD process is modified to directly employ solid ceramic powder instead of clear solution for fabrication of porous electrodes for solid oxide fuel cells. Solid particles of SOFC electrode materials suspended in an organic solvent were burned in a combustion flame, depositing a porous cathode on an anode supported electrolyte. Combustion CVD was also employed to fabricate highly porous and nanostructured SnO2 thin film gas sensors with Pt interdigitated electrodes. The as-prepared SnO2 gas sensors were tested for ethanol vapor sensing behavior in the temperature range of 200--500°C and showed excellent sensitivity, selectivity, and speed of response. Moreover, several novel nanostructures were synthesized using a combustion CVD process, including SnO2 nanotubes with square-shaped or rectangular cross sections, well-aligned ZnO nanorods, and two-dimensional ZnO flakes. Solid-state gas sensors based on single piece of these nanostructures demonstrated superior gas sensing performances. These size-tunable nanostructures could be the building blocks of or a template for fabrication of functional devices. In summary, this research has developed new ways for fabrication of high-performance solid-state ionic devices and has helped generating fundamental understanding of the correlation between processing conditions, microstructure, and properties of the synthesized structures.
Kavurmacı, Murat; Ekercin, Semih; Altaş, Levent; Kurmaç, Yakup
2013-08-01
This paper focuses on the evaluation of water quality variations in Hirfanlı Water Reservoir, which is one of the most important water resources in Turkey, through EO-1 (Earth Observing-1) Advanced Land Imager (ALI) multispectral data and real-time field sampling. The study was materialized in 20 different sampling points during the overpass of the EO-1 ALI sensor over the study area. A multi-linear regression technique was used to explore the relationships between radiometrically corrected EO-1 ALI image data and water quality parameters: chlorophyll a, turbidity, and suspended solids. The retrieved and verified results show that the measured and estimated values of water quality parameters are in good agreement (R (2) >0.93). The resulting thematic maps derived from EO-1 multispectral data for chlorophyll a, turbidity, and suspended solids show the spatial distribution of the water quality parameters. The results indicate that the reservoir has average nutrient values. Furthermore, chlorophyll a, turbidity, and suspended solids values increased at the upstream reservoir and shallow coast of the Hirfanlı Water Reservoir.
NASA Technical Reports Server (NTRS)
1999-01-01
Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.
Velocity Profile measurements in two-phase flow using multi-wave sensors
NASA Astrophysics Data System (ADS)
Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.
2009-02-01
Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.
NASA Astrophysics Data System (ADS)
Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Wang, Shuai; Wang, Xun; Liu, Yong; Tang, Guomao; Xu, Bing
2017-11-01
In order to solve the problem of large low-order aberrations with solid-state zigzag slab lasers, an automatic compensator has been developed in this paper. In this compensator, three lenses are mounted on a motorized rail, whose positions can be obtained using ray tracing method based on the beam parameters detected by a wave-front sensor. The initial peak to valley (PV) values of the wave-front range up to several tens of microns. Both simulated and experimental results show that the PV values of the wave-front can be reduced to around 1 . 6 μm with the proposed automatic compensator.
Zhang, Yi-Ran; Xiong, Hai-Rong; Guo, Xiao-Hua
2014-01-01
In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30∼35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01 ± 0.15 log CFU/g and spores of Bacillus of about 10.30 ± 0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P < 0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P < 0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.
Solid state lasers for use in non-contact temperature measurements
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.
1989-01-01
The last decade has seen a series of dramatic developments in solid state laser technology. Prominent among these has been the emergence of high power semiconductor laser diode arrays and a deepening understanding of the dynamics of solid state lasers. Taken in tandem these two developments enable the design of laser diode pumped solid state lasers. Pumping solid state lasers with semiconductor diodes relieves the need for cumbersome and inefficient flashlamps and results in an efficient and stable laser with the compactness and reliability. It provides a laser source that can be reliably used in space. These new coherent sources are incorporated into the non-contact measurement of temperature. The primary focus is the development and characterization of new optical materials for use in active remote sensors of the atmosphere. In the course of this effort several new materials and new concepts were studied which can be used for other sensor applications. The general approach to the problem of new non-contact temperature measurements has had two components. The first component centers on passive sensors using optical fibers; an optical fiber temperature sensor for the drop tube was designed and tested at the Marshall Space Flight Center. Work on this problem has given insight into the use of optical fibers, especially new IR fibers, in thermal metrology. The second component of the effort is to utilize the experience gained in the study of passive sensors to examine new active sensor concepts. By active sensor are defined as a sensing device or mechanism which is interrogated in some way be radiation, usually from a laser. The status of solid state lasers as sources for active non-contact temperature sensors are summarized. Some specific electro-optic techniques are described which are applicable to the sensor problems at hand. Work on some of these ideas is in progress while other concepts are still being worked out.
A New Multifunctional Sensor for Measuring Oil/Water Two-phase State in Pipelines
NASA Astrophysics Data System (ADS)
Sun, Jinwei; Shida, Katsunori
2001-03-01
This paper presents a non-contact U form multi-functional sensor for the oil pipeline flow measurement. Totally four thin and narrow copper plates are twined on both sides of the sensor, from which two variables (capacitance, self inductance) are to be examined as the two functional outputs of the sensor. Thus, the liquid concentration (oil and water), temperature are finally evaluated. The flow velocity inside the pipeline could also be estimated by computing the cross correlation of the capacitance-pair. To restrain the effects of parasitic parameters and improve the dynamic response of the sensor, a proper shielding strategy is considered. A suitable algorithm for data reconstruction is also presented in the system design.
Metal/Metal Oxide Differential Electrode pH Sensors
NASA Technical Reports Server (NTRS)
West, William; Buehler, Martin; Keymeulen, Didier
2007-01-01
Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.
NASA Astrophysics Data System (ADS)
Chang, Song-Lin
There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.
Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel J D
2012-01-01
Monitoring the quality of drinking water from the treatment plant to the consumers tap is critical to ensure compliance with national standards and/or WHO guideline levels. There are a number of processes and factors affecting the water quality during transmission and distribution which are little understood. A significant obstacle for gaining a detailed knowledge of various physical and chemical processes and the effect of the hydraulic conditions on the water quality deterioration within water supply systems is the lack of reliable and low-cost (both capital and O & M) water quality sensors for continuous monitoring. This paper has two objectives. The first one is to present a detailed evaluation of the performance of a novel in-pipe multi-parameter sensor probe for reagent- and membrane-free continuous water quality monitoring in water supply systems. The second objective is to describe the results from experimental research which was conducted to acquire continuous water quality and high-frequency hydraulic data for the quantitative assessment of the water quality changes occurring under steady and unsteady-state flow conditions. The laboratory and field evaluation of the multi-parameter sensor probe showed that the sensors have a rapid dynamic response, average repeatability and unreliable accuracy. The uncertainties in the sensor data present significant challenges for the analysis and interpretation of the acquired data and their use for water quality modelling, decision support and control in operational systems. Notwithstanding these uncertainties, the unique data sets acquired from transmission and distribution systems demonstrated the deleterious effect of unsteady state flow conditions on various water quality parameters. These studies demonstrate: (i) the significant impact of the unsteady-state hydraulic conditions on the disinfectant residual, turbidity and colour caused by the re-suspension of sediments, scouring of biofilms and tubercles from the pipe and increased mixing, and the need for further experimental research to investigate these interactions; (ii) important advances in sensor technologies which provide unique opportunities to study both the dynamic hydraulic conditions and water quality changes in operational systems. The research in these two areas is critical to better understand and manage the water quality deterioration in ageing water transmission and distribution systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spatio-temporal alignment of multiple sensors
NASA Astrophysics Data System (ADS)
Zhang, Tinghua; Ni, Guoqiang; Fan, Guihua; Sun, Huayan; Yang, Biao
2018-01-01
Aiming to achieve the spatio-temporal alignment of multi sensor on the same platform for space target observation, a joint spatio-temporal alignment method is proposed. To calibrate the parameters and measure the attitude of cameras, an astronomical calibration method is proposed based on star chart simulation and collinear invariant features of quadrilateral diagonal between the observed star chart. In order to satisfy a temporal correspondence and spatial alignment similarity simultaneously, the method based on the astronomical calibration and attitude measurement in this paper formulates the video alignment to fold the spatial and temporal alignment into a joint alignment framework. The advantage of this method is reinforced by exploiting the similarities and prior knowledge of velocity vector field between adjacent frames, which is calculated by the SIFT Flow algorithm. The proposed method provides the highest spatio-temporal alignment accuracy compared to the state-of-the-art methods on sequences recorded from multi sensor at different times.
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2006-01-01
A miniature, ultra-high resolution, and color scanning microscope using microchannel and solid-state technology that does not require focus adjustment. One embodiment includes a source of collimated radiant energy for illuminating a sample, a plurality of narrow angle filters comprising a microchannel structure to permit the passage of only unscattered radiant energy through the microchannels with some portion of the radiant energy entering the microchannels from the sample, a solid-state sensor array attached to the microchannel structure, the microchannels being aligned with an element of the solid-state sensor array, that portion of the radiant energy entering the microchannels parallel to the microchannel walls travels to the sensor element generating an electrical signal from which an image is reconstructed by an external device, and a moving element for movement of the microchannel structure relative to the sample. Discloses a method for scanning samples whereby the sensor array elements trace parallel paths that are arbitrarily close to the parallel paths traced by other elements of the array.
A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors
NASA Astrophysics Data System (ADS)
Mathew, Ribu; Ravi Sankar, A.
2018-06-01
In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.
Sentinel-2: State of the Image Quality Calibration at the End of the Commissioning
NASA Astrophysics Data System (ADS)
Tremas, Thierry; Lonjou, Vincent; Lacherade, Sophie; Gaudel-Vacaresse, Angelique; Languille, Florie
2016-08-01
This article summarizes the activity of CNES during the In Orbit Calibration Phase of Sentinel 2A as well as the transfer of production of GIPP (Ground Image Processing Parameters) from CNES to ESRIN. The state of the main calibration parameters and performances, few months before PDGS is declared fully operational, are listed and explained.In radiometry a special attention is paid to the absolute calibration using the on-board diffuser, and the vicarious calibration methods using instrumented or statistically well characterized sites and inter- comparisons with other sensors. Regarding geometry, the presentation focuses on the performances of absolute location with and without reference points. The requirements of multi-band and multi-temporal registration are exposed. Finally, the construction and the rule of the GRI (Ground Reference Images) in the future are explained.
Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.
Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann
2016-01-20
The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.
Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain
Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann
2016-01-01
The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form. PMID:28787865
Real-time monitoring of ischemia inside stomach.
Tahirbegi, Islam Bogachan; Mir, Mònica; Samitier, Josep
2013-02-15
The low pH in the gastric juice of the stomach makes it difficult to fabricate stable and functional all-solid-state pH ISE sensors to sense ischemia, mainly because of anion interference and adhesion problem between the ISE membrane and the electrode surface. In this work, the adhesion of ISE membrane on solid surface at low pH was improved by modifying the surface with a conductive substrate containing hydrophilic and hydrophobic groups. This creates a stable and robust candidate for low pH applications. Moreover, anion interference problem at low pH was solved by integration of all-solid-state ISE and internal reference electrodes on an array. So, the same tendencies of anion interferences for all-solid-state ISE and all-solid-state reference electrodes cancel each other in differential potentiometric detection. The developed sensor presents a novel all-solid-state potentiometric, miniaturized and mass producible pH ISE sensor for detecting ischemia on the stomach tissue on an array designed for endoscopic applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Method for laser spot welding monitoring
NASA Astrophysics Data System (ADS)
Manassero, Giorgio
1994-09-01
As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
NASA Astrophysics Data System (ADS)
Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix
New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply, economically and ecologically. Based on the knowledge of the screen printing sensor production a complete solid state electrolyte oxygen sensor could be produced using Inkjet technology. First measurements in oxygen environment already show promising results. A defined oxygen concentration could be seen during exposition of the Inkjet sensors in an oxygen environment. The obtained results demonstrate the potential to use the technology development in other applications such as in situ respiratory gas analysis systems for human spaceflight. Further approaches at the Institute of Space Systems include the implementation of Inkjet printed solid state electrolyte sensors for the use as redundant safety sensors for the Institute's hybrid life support test beds including fuel cells and algal photo bioreactor elements.
1989-12-05
during past decade. In order to understand the basic operation of these sensors, especially of the CHEMFET, the appropriate background information will...during the past decade for detecting organophosphorus compounds, the chemically- sensitive thin films investigated in this thesis, and finally, the...reactivate the phosphorylated cholinesterase enzyme. Solid State Chemical Sensors During the past decade, a number of solid state chemical sensors have been
Miniaturized Amperometric Solid Electrolyte Carbon Dioxide Sensors
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Liu, C. C.; Hammond, J. W.; Ward, B.; Lukco, D.; Lampard, P.; Artale, M.; Androjna, D.
2006-01-01
A miniaturized electrochemical carbon dioxide (CO2) sensor using Na3Z r2Si2PO12 (NASICON) as a solid electrolyte has been fabricated and de monstrated. Microfabrication techniques were used for sensor fabricat ion to yield a sensing area around 1.0 mm x 1.1 mm. The NASICON solid electrolyte and the Na2CO3/BaCO3 (1:1.7 molar ratio) auxiliary elect rolyte were deposited by sputtering in between and on top of the inte rdigitated finger-shaped platinum electrodes. This structure maximize s the length of the three-phase boundary (electrode, solid electrolyt e, and auxiliary electrolyte), which is critical for gas sensing. The robust CO2 sensor operated up to 600 C in an amperometric mode and a ttempts were made to optimize sensor operating parameters. Concentrat ions of CO2 between 0.02% and 4% were detected and the overall sensor performance was evaluated. Linear response of sensor current output to ln[CO2 concentration] ranging from 0.02% to 1% was achieved.
Fiber Optic Sensor Embedment Study for Multi-Parameter Strain Sensing
Drissi-Habti, Monssef; Raman, Venkadesh; Khadour, Aghiad; Timorian, Safiullah
2017-01-01
The fiber optic sensors (FOSs) are commonly used for large-scale structure monitoring systems for their small size, noise free and low electrical risk characteristics. Embedded fiber optic sensors (FOSs) lead to micro-damage in composite structures. This damage generation threshold is based on the coating material of the FOSs and their diameter. In addition, embedded FOSs are aligned parallel to reinforcement fibers to avoid micro-damage creation. This linear positioning of distributed FOS fails to provide all strain parameters. We suggest novel sinusoidal sensor positioning to overcome this issue. This method tends to provide multi-parameter strains in a large surface area. The effectiveness of sinusoidal FOS positioning over linear FOS positioning is studied under both numerical and experimental methods. This study proves the advantages of the sinusoidal positioning method for FOS in composite material’s bonding. PMID:28333117
A Model of Solid State Gas Sensors
NASA Astrophysics Data System (ADS)
Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.
1997-03-01
Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.
NASA Astrophysics Data System (ADS)
Bae, Seongtae
Since giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) spinvalve effects were developed for the last two decades after discovered, world wide researches on applying these effects for various kinds of solid state active devices has provided a strong impact on challenging new functional micro-magnetoelectronic devices. In particular, recently developed nano-structured magnetic spin-valve thin film materials for spin-electronic devices are now considered as building blocks of state-of-the-art electronic engineering. This research has been concentrated on developing and designing magneto-electronic solid state devices with high thermal and electrical stability using an alpha-Fe 2O3 and NiO oxide anti-ferromagnetic exchange biased GMR bottom spin-valves (BSV), NiFe/Cu/Co and NiFe/Cu/CoFe based closed-flux metallic pseudo spin-valves, and PtMn exchange biased TMR spin-valves. The category covering this research is divided into four main research steps. First is to investigate exchange bias coupling characteristics of alpha-Fe2 O3 and NiO oxide Anti-ferromagnetic materials (AF)/Ferromagnetic (F) layer systems for optimizing exchange biased BSV and to study magnetic properties of various kinds of magnetic thin films including single through multi-layered structures for the fundamental research on NiFe/Cu/Co and NiFe/Cu/CoFe closed-flux metallic pseudo spin-valves. Second is to develop and improve new kinds of BSVs and closed-flux metallic spinvalves by controlling process parameters in terms of crystalline orientation texture of AF and F layers, interfacial surface roughness, grain size (its size distribution), chemical composition, and kinetics of sputtering film growth. Third is to design, to fabricate, and to investigate the magnetic and electrical properties of magneto-electronic devices as well as their applications such as GMR magnetoresistive random access memory (MRAM), GMR read head, TMR read head, and new kinds of GMR solid state devices, which can be promisingly substituted for current microelectronic devices. Finally, the last is to focus on studying electrical reliability of GMR read sensor and GMR MRAM cell in terms of electromigration-induced failures of various kinds of magnetic thin films, which are currently used in GMR spin-valve materials, and is to investigate the effects of current (or voltage) induced dielectric breakdown in aluminum oxide tunnel barrier under various testing conditions on the electrical stability of real TMR read sensors.
Swap intensified WDR CMOS module for I2/LWIR fusion
NASA Astrophysics Data System (ADS)
Ni, Yang; Noguier, Vincent
2015-05-01
The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.
Integration of Biological Specificity with Solid-State Devices for Selective Chemical Sensing
2016-01-29
materials onto a single sensor chip. We demonstrate a path to combine a large number of DNA aptamers with nanoscale device arrays to achieve integrated...solid-state, sensor chips with specificity. 15. SUBJECT TERMS DNA sensors aptamers chemiresistors nanosensors LSER specificity vapor 16. SECURITY...and engineering. In particular, DNA and RNA aptamers are a class of man- made receptors with a high degree of specificity that rivals proteins. DNA
The Solid State Image Sensor's Contribution To The Development Of Silicon Technology
NASA Astrophysics Data System (ADS)
Weckler, Gene P.
1985-12-01
Until recently, a solid-state image sensor with full television resolution was a dream. However, the dream of a solid state image sensor has been a driving force in the development of silicon technology for more than twenty-five years. There are probably many in the main stream of semiconductor technology who would argue with this; however, the solid state image sensor was conceived years before the invention of the semi conductor RAM or the microprocessor (i.e., even before the invention of the integrated circuit). No other potential application envisioned at that time required such complexity. How could anyone have ever hoped in 1960 to make a semi conductor chip containing half-a-million picture elements, capable of resolving eight to twelve bits of infornation, and each capable of readout rates in the tens of mega-pixels per second? As early as 1960 arrays of p-n junctions were being investigated as the optical targets in vidicon tubes, replacing the photoconductive targets. It took silicon technology several years to catch up with these dreamers.
Design of a Geothermal Downhole Magnetic Flowmeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glowka, Dave A.; Normann, Randy A.
2015-06-15
This paper covers the development of a 300°C geothermal solid-state magnetic flowmeter (or magmeter) to support in situ monitoring of future EGS (enhanced geothermal system) production wells. Existing flowmeters are simple mechanical spinner sensors. These mechanical sensors fail within as little as 10 hrs, while a solid-state magmeter has the potential for months/years of operation. The design and testing of a magnetic flow sensor for use with existing high-temperature electronics is presented.
Single Protein Structural Analysis with a Solid-state Nanopore Sensor
NASA Astrophysics Data System (ADS)
Li, Jiali; Golovchenko, Jene; McNabb, David
2005-03-01
We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.
A passive optical fibre hydrophone array utilising fibre Bragg grating sensors
NASA Astrophysics Data System (ADS)
Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.
2018-02-01
Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.
NASA Astrophysics Data System (ADS)
Reid, J. S.; Zhang, J.; Hyer, E. J.; Campbell, J. R.; Christopher, S. A.; Ferrare, R. A.; Leptoukh, G. G.; Stackhouse, P. W.
2009-12-01
With the successful development of many aerosol products from the NASA A-train as well as new operational geostationary and polar orbiting sensors, the scientific community now has a host of new parameters to use in their analyses. The variety and quality of products has reached a point where the community has moved from basic observation-based science to sophisticated multi-component research that addresses the complex atmospheric environment. In order for these satellite data contribute to the science their uncertainty levels must move from semi-quantitative to quantitative. Initial attempts to quantify uncertainties have led to some recent debate in the community as to the efficacy of aerosol products from current and future NASA satellite sensors. In an effort to understand the state of satellite product fidelity, the Naval Research Laboratory and a newly reformed Global Energy and Water Cycle Experiment (GEWEX) aerosol panel have both initiated assessments of the nature of aerosol remote sensing uncertainty and bias. In this talk we go over areas of specific concern based on the authors’ experiences with the data, emphasizing the multi-sensor problem. We first enumerate potential biases, including retrieval, sampling/contextual, and cognitive bias. We show examples of how these biases can subsequently lead to the pitfalls of correlated/compensating errors, tautology, and confounding. The nature of bias is closely related to the information content of the sensor signal and its subsequent application to the derived aerosol quantity of interest (e.g., optical depth, flux, index of refraction, etc.). Consequently, purpose-specific validation methods must be employed, especially when generating multi-sensor products. Indeed, cloud and lower boundary condition biases in particular complicate the more typical methods of regressional bias elimination and histogram matching. We close with a discussion of sequestration of uncertainty in multi-sensor applications of these products in both pair-wise and fused fashions.
Wearable Wireless Sensor for Multi-Scale Physiological Monitoring
2013-10-01
AD_________________ Award Number: W81XWH-12-1-0541 TITLE: Wearable Wireless Sensor for Multi-Scale...TYPE Annual 3. DATES COVERED 25 12- 13 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Wearable Wireless Sensor for Multi-Scale Physiological...peripheral management • Procedures for low power mode activation and wake - up • Routines for start- up state detection • Flash memory management
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K. M.; Ross, D. K.; Butterworth, A. L.; Gainsforth, Z.; Jilly-Rehak, C. E.; Westphal, A. J.
2017-01-01
Oxygen fugacity is an intensive parameter that controls some fundamental chemical and physical properties in planetary materials. In terrestrial magmas high fO2 promotes magnetite stability and low fO2 causes Fe-enrichment due to magnetite suppression. In lunar and asteroidal basalts, low fO2 can allow metal to be stable. Experimental studies will therefore be most useful if they are done at a specific and relevant fO2 for the samples under consideration. Control of fO2 in the solid media apparatus (piston cylinder multi-anvil) has relied on either sliding sensors or graphite capsule buffering, which are of limited application to the wide range of fO2 recorded in planetary or astromaterials. Here we describe a new approach that allows fO2 to be specified across a wide range of values relevant to natural samples.
Novel diode laser-based sensors for gas sensing applications
NASA Technical Reports Server (NTRS)
Tittel, F. K.; Lancaster, D. G.; Richter, D.
2000-01-01
The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.
The application of smart sensor techniques to a solid-state array multispectral sensor
NASA Technical Reports Server (NTRS)
Mcfadin, L. W.
1978-01-01
The solid-state array spectroradiometer (SAS) developed at JSC for remote sensing applications is a multispectral sensor which has no moving parts, is virtually maintenance-free, and has the ability to provide data which requires a minimum of processing. The instrument is based on the 42 x 342 element charge injection device (CID) detector. This system allows the combination of spectral scanning and across-track spatial scanning along with its associated digitization electronics into a single detector.
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
Investigation into the use of microwave sensors to monitor particulate manufacturing processes
NASA Astrophysics Data System (ADS)
Austin, John Samuel, III
Knowledge of a material's properties in-line during manufacture is of critical importance to many industries, including the pharmaceutical industry, and can be used for either process or quality control. Different microwave sensor configurations were tested to determine both the moisture content and the bulk density in pharmaceutical powders during processing on-line. Although these parameters can significantly affect a material's flowability, compressibility, and cohesivity, in the presence of blends, the picture is incomplete. Due to the ease with which particulate blends tend to segregate, blend uniformity and chemical composition are two critical parameters in nearly all solids manufacturing industries. The prevailing wisdom has been that microwave sensors are not capable of or sensitive enough to measure the relative concentrations of components in a blend. Consequently, it is common to turn to near infrared sensing to determine material composition on-line. In this study, a novel microwave sensor was designed and utilized to determine, separately, the concentrations of different components in a blend of pharmaceutical powders. This custom microwave sensor was shown to have comparable accuracy to the state-of-the-art for both chemical composition and moisture content determination.
Microscope-on-Chip Using Micro-Channel and Solid State Image Sensors
NASA Technical Reports Server (NTRS)
Wang, Yu
2000-01-01
Recently, Jet Propulsion Laboratory has invented and developed a miniature optical microscope, microscope-on-chip using micro-channel and solid state image sensors. It is lightweight, low-power, fast speed instrument, it has no image lens, does not need focus adjustment, and the total mass is less than 100g. A prototype has been built and demonstrated at JPL.
Joint sparsity based heterogeneous data-level fusion for target detection and estimation
NASA Astrophysics Data System (ADS)
Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe
2017-05-01
Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.
NASA Technical Reports Server (NTRS)
Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James
2003-01-01
We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.
Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi
2017-05-05
A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.
Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System
NASA Astrophysics Data System (ADS)
Nouiraa, H.; Deschaud, J. E.; Goulettea, F.
2016-06-01
LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters for the corrected model, and we are able to give a confidence value for the calibration parameters found. Optimization results on both synthetic and real data are presented.
NASA Astrophysics Data System (ADS)
Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit
2018-03-01
New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.
Quantification of Water Quality Parameters for the Wabash River Using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Tan, J.; Cherkauer, K. A.; Chaubey, I.
2011-12-01
Increasingly impaired water bodies in the agriculturally dominated Midwestern United States pose a risk to water supplies, aquatic ecology and contribute to the eutrophication of the Gulf of Mexico. Improving regional water quality calls for new techniques for monitoring and managing water quality over large river systems. Optical indicators of water quality enable a timely and cost-effective method for observing and quantifying water quality conditions by remote sensing. Compared to broad spectral sensors such as Landsat, which observe reflectance over limited spectral bands, hyperspectral sensors should have significant advantages in their ability to estimate water quality parameters because they are designed to split the spectral signature into hundreds of very narrow spectral bands increasing their ability to resolve optically sensitive water quality indicators. Two airborne hyperspectral images were acquired over the Wabash River using a ProSpecTIR-VS2 sensor system on May 15th, 2010. These images were analyzed together with concurrent in-stream water quality data collected to assess our ability to extract optically sensitive constituents. Utilizing the correlation between in-stream data and reflectance from the hyperspectral images, models were developed to estimate the concentrations of chlorophyll a, dissolved organic carbon and total suspended solids. Models were developed using the full array of hyperspectral bands, as well as Landsat bands synthesized by averaging hyperspectral bands within the Landsat spectral range. Higher R2 and lower RMSE values were found for the models taking full advantage of the hyperspectral sensor, supporting the conclusion that the hyperspectral sensor was better at predicting the in-stream concentrations of chlorophyll a, dissolved organic carbon and total suspended solids in the Wabash River. Results also suggest that predictive models may not be the same for the Wabash River as for its tributaries.
From dark to bright: novel daylighting applications in solid state lighting
NASA Astrophysics Data System (ADS)
Adler, Helmar G.
2011-10-01
The term "daylighting" is used in various ways, on one hand in a more architectural sense, i.e. using existing daylight to illuminate spaces, and on the other, more recently, for using light sources to replicate daylight. The emergence of solid state lighting (SSL) opens up a large number of new avenues for daylighting. SSL allows innovative controllability of intensity and color for artificial light sources that can be advantageously applied to daylighting. With the assistance of these new technologies the combination of natural and artificial lighting could lead to improvements in energy savings and comfort of living beings. Thus it is imperative to revisit or even improve daylighting research so that building networks of the future with their sensor, energy (e.g. HVAC) and lighting requirements can benefit from the emerging capabilities. This paper will briefly review existing daylighting concepts and technology and discuss new ideas. An example of a tunable multi-color SSL system will be shown.
Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai
2013-12-01
Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors,more » solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.« less
NASA Astrophysics Data System (ADS)
Hu, Shunren; Chen, Weimin; Liu, Lin; Gao, Xiaoxia
2010-03-01
Bridge structural health monitoring system is a typical multi-sensor measurement system due to the multi-parameters of bridge structure collected from the monitoring sites on the river-spanning bridges. Bridge structure monitored by multi-sensors is an entity, when subjected to external action; there will be different performances to different bridge structure parameters. Therefore, the data acquired by each sensor should exist countless correlation relation. However, complexity of the correlation relation is decided by complexity of bridge structure. Traditionally correlation analysis among monitoring sites is mainly considered from physical locations. unfortunately, this method is so simple that it cannot describe the correlation in detail. The paper analyzes the correlation among the bridge monitoring sites according to the bridge structural data, defines the correlation of bridge monitoring sites and describes its several forms, then integrating the correlative theory of data mining and signal system to establish the correlation model to describe the correlation among the bridge monitoring sites quantificationally. Finally, The Chongqing Mashangxi Yangtze river bridge health measurement system is regards as research object to diagnosis sensors fault, and simulation results verify the effectiveness of the designed method and theoretical discussions.
Low Complexity Track Initialization and Fusion for Multi-Modal Sensor Networks
2012-11-08
feature was demonstrated via the simulations. Aerospace 2011work further documents our investigation of multiple target tracking filters in...bounds that determine how well a sensor network can resolve and localize multiple targets as a function of the operating parameters such as sensor...probability density (PHD) filter for binary measurements using proximity sensors. 15. SUBJECT TERMS proximity sensors, PHD filter, multiple
Evaluation of Food Freshness and Locality by Odor Sensor
NASA Astrophysics Data System (ADS)
Koike, Takayuki; Shimada, Koji; Kamimura, Hironobu; Kaneki, Noriaki
The aim of this study was to investigate whether food freshness and locality can be classified using a food evaluation system consisting four SnO2-semiconductor gas sensors and a solid phase column, into which collecting aroma materials. The temperature of sensors was periodically changed to be in unsteady state and thus, the sensor information was increased. The parameters (in quefrency band) were extracted from sensor information using cepstrum analysis that enable to separate superimposed information on sinusoidal wave. The quefrency was used as parameters for principal component and discriminant analyses (PCA and DCA) to detect food freshness and food localities. We used three kinds of strawberries, people can perceive its odors, passed from one to three days after harvest, and kelps and Ceylon tea, people are hardly to perceive its odor, corrected from five areas as sample. Then, the deterioration of strawberries and localities of kelps and Ceylon teas were visually evaluated using the numerical analyses. While the deteriorations were classified using PCA or DCA, the localities were classified only by DCA. The findings indicate that, although odorant intensity influenced the method detecting food quality, the quefrency obtained from odorant information using cepstrum analysis were available to detect the difference in the freshness and the localities of foods.
An inexact reverse logistics model for municipal solid waste management systems.
Zhang, Yi Mei; Huang, Guo He; He, Li
2011-03-01
This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.
An oil fraction neural sensor developed using electrical capacitance tomography sensor data.
Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita
2013-08-26
This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.
An Oil Fraction Neural Sensor Developed Using Electrical capacitance Tomography Sensor Data
Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita
2013-01-01
This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes. PMID:24064598
A multi-parameter optical fiber sensor with interrogation and discrimination capabilities
NASA Astrophysics Data System (ADS)
Zhan, Yage; Wu, Hua; Yang, Qinyu; Pei, Jincheng; Yang, Xichun
2009-11-01
A multi-parameter and multi-function, but low-cost, optical fiber grating sensor with self-interrogation and self-discrimination capabilities is presented theoretically and experimentally. The sensor bases on three fiber Bragg gratings (FBG) and one fiber long period grating (LPG). Strain, vibration, pressure, ordinary temperature (-10 to 100 °C) and high temperature (100-800 °C) can be measured by the sensor. When high temperature (100-800 °C) is measured, the LPG is used as a high temperture sensor head and FBG 1 is used as an interrogation element. Alternatively, when one of the other four measurands is measured, FBG 1 (or FBG 2) is used as a sensor head and LPG is used as an interrogation element. When two of the other four measurands are measured simultaneously, FBG 1 and FBG 2 are used as sensor heads and LPG is used as a shared interrogation element. FBG 3 is used as a reference element to eliminate the errors resulted from light source fluctuation and the cross-sensitivity between measurand and environmental temperature. The measurands can be interrogated according to the signals of the photodiodes (PDs), which are related to the relative wavelength shift of the LPG and the FBGs. Experimental results agree well with theoretical analyses. The interrogation scheme is immune to light source fluctuation and the cross-sensitivity between measurands and enviromental temperature, and also the dynamic range is large.
Electric-field enhanced performance in catalysis and solid-state devices involving gases
Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin
2015-05-19
Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.
Pressure sensitivity analysis of fiber Bragg grating sensors
NASA Astrophysics Data System (ADS)
Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex
2014-09-01
Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).
Elman, Noel M; Ben-Yoav, Hadar; Sternheim, Marek; Rosen, Rachel; Krylov, Slava; Shacham-Diamand, Yosi
2008-06-15
A lab-on-chip consisting of a unique integration of whole-cell sensors, a MOEMS (Micro-Opto-Electro-Mechanical-System) modulator, and solid-state photo-detectors was implemented for the first time. Whole-cell sensors were genetically engineered to express a bioluminescent reporter (lux) as a function of the lac promoter. The MOEMS modulator was designed to overcome the inherent low frequency noise of solid-state photo-detectors by means of a previously reported modulation technique, named IHOS (Integrated Heterodyne Optical System). The bio-reporter signals were modulated prior to photo-detection, increasing the SNR of solid-state photo-detectors at least by three orders of magnitude. Experiments were performed using isopropyl-beta-d-thiogalactopyranoside (IPTG) as a preliminary step towards testing environmental toxicity. The inducer was used to trigger the expression response of the whole-cell sensors testing the sensitivity of the lab-on-chip. Low intensity bio-reporter optical signals were measured after the whole-cell sensors were exposed to IPTG concentrations of 0.1, 0.05, and 0.02mM. The experimental results reveal the potential of this technology for future implementation as an inexpensive massive method for rapid environmental toxicity detection.
A Vision for an International Multi-Sensor Snow Observing Mission
NASA Technical Reports Server (NTRS)
Kim, Edward
2015-01-01
Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.
Li, Ming; Miao, Chunyan; Leung, Cyril
2015-01-01
Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162
Li, Ming; Miao, Chunyan; Leung, Cyril
2015-12-04
Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.
Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda
2016-10-27
Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.
Closely spaced fibre Bragg grating sensors for detailed measurement of peristalsis in the human gut
NASA Astrophysics Data System (ADS)
Arkwright, John W.; Dinning, Phil G.; Underhill, Ian D.; Maunder, Simon A.; Blenman, Neil; Szczesniak, Michal M.; Cook, Ian J.
2009-10-01
We report the design and use of multi-channel fibre Bragg grating based manometry catheters with pressure sensors spaced at 1 cm intervals along its axis. The catheters have been tested in-vivo in both the human oesophagus and colon and have been shown to provide analogous results to commercially available solid state pressure sensors. The advantage of using fibre gratings comes from the ability to extend the number of sensor elements without increasing the diameter or complexity of the catheter or data acquisition system. We present our progress towards the fabrication of a manometry catheter suitable for recording manometric data along the full length of the human colon. Results from early phase equivalence testing and recent in-vivo trials in the human oesophagus and colon are presented. The colonic recordings were taken in basal and post-prandial periods of 2.5 hours each. The close axial spacing of the pressure sensors has identified the complex nature of propagating sequences in the colon in both antegrade (towards the anus) and retrograde (away from the anus) for the first time. By sub-sampling the data using data from sensors 7 cm apart the potential to misrepresent propagating sequences at wider sensor spacings is demonstrated and proposed as a potential reason why correlation between peristaltic abnormalities recorded using traditional catheters, with 7.5-10 cm spaced sensors, and actual patient symptoms remains elusive.
NASA Astrophysics Data System (ADS)
Maimaitijiang, Maitiniyazi; Ghulam, Abduwasit; Sidike, Paheding; Hartling, Sean; Maimaitiyiming, Matthew; Peterson, Kyle; Shavers, Ethan; Fishman, Jack; Peterson, Jim; Kadam, Suhas; Burken, Joel; Fritschi, Felix
2017-12-01
Estimating crop biophysical and biochemical parameters with high accuracy at low-cost is imperative for high-throughput phenotyping in precision agriculture. Although fusion of data from multiple sensors is a common application in remote sensing, less is known on the contribution of low-cost RGB, multispectral and thermal sensors to rapid crop phenotyping. This is due to the fact that (1) simultaneous collection of multi-sensor data using satellites are rare and (2) multi-sensor data collected during a single flight have not been accessible until recent developments in Unmanned Aerial Systems (UASs) and UAS-friendly sensors that allow efficient information fusion. The objective of this study was to evaluate the power of high spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochemical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters including Leaf Area Index (LAI), above ground fresh and dry biomass. Multiple low-cost sensors integrated on UASs were used to collect RGB, multispectral, and thermal images throughout the growing season at a site established near Columbia, Missouri, USA. From these images, vegetation indices were extracted, a Crop Surface Model (CSM) was advanced, and a model to extract the vegetation fraction was developed. Then, spectral indices/features were combined to model and predict crop biophysical and biochemical parameters using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and Extreme Learning Machine based Regression (ELR) techniques. Results showed that: (1) For biochemical variable estimation, multispectral and thermal data fusion provided the best estimate for nitrogen concentration and chlorophyll (Chl) a content (RMSE of 9.9% and 17.1%, respectively) and RGB color information based indices and multispectral data fusion exhibited the largest RMSE 22.6%; the highest accuracy for Chl a + b content estimation was obtained by fusion of information from all three sensors with an RMSE of 11.6%. (2) Among the plant biophysical variables, LAI was best predicted by RGB and thermal data fusion while multispectral and thermal data fusion was found to be best for biomass estimation. (3) For estimation of the above mentioned plant traits of soybean from multi-sensor data fusion, ELR yields promising results compared to PLSR and SVR in this study. This research indicates that fusion of low-cost multiple sensor data within a machine learning framework can provide relatively accurate estimation of plant traits and provide valuable insight for high spatial precision in agriculture and plant stress assessment.
In Situ Multi-Species (O2, N2, Fuel, Other) Fiber Optic Sensor for Fuel Tank Ullage
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2007-01-01
A rugged and compact fiber optic sensor system for in situ real-time measurement of nitrogen (N2), oxygen (O2), hydrocarbon (HC) fuel vapors, and other gases has been developed over the past several years at Glenn Research Center. The intrinsically-safe, solid-state fiber optic sensor system provides a 1% precision measurement (by volume) of multiple gases in a 5-sec time window. The sensor has no consumable parts to wear out and requires less than 25 W of electrical power to operate. The sensor head is rugged and compact and is ideal for use in harsh environments such as inside an aircraft fuel tank, or as a feedback sensor in the vent-box of an on-board inert gas generation system (OBIGGS). Multiple sensor heads can be monitored with a single optical detection unit for a cost-effective multi-point sensor system. The present sensor technology is unique in its ability to measure N2 concentration directly, and in its ability to differentiate different types of HC fuels. The present sensor system provides value-added aircraft safety information by simultaneously and directly measuring the nitrogen-oxygen-fuel triplet, which provides the following advantages: (1) information regarding the extent of inerting by N2, (2) information regarding the chemical equivalence ratio, (3) information regarding the composition of the aircraft fuel, and (4) by providing a self-consistent calibration by utilizing a singular sensor for all species. Using the extra information made available by this sensor permits the ignitability of a fuel-oxidizer mixture to be more accurately characterized, which may permit a reduction in the amount of inerting required on a real-time basis, and yet still maintain a fire-safe fuel tank. This translates to an increase in fuel tank fire-safety through a better understanding of the physics of fuel ignition, and at the same time, a reduction in compressed bleed air usage and concomitant aircraft operational costs over the long-run. The present fiber optic sensor can also be used as a false-alarm-free engine/hidden/cargo space fire detector (by measuring increased CO2 and CO, and decreased O2), a multi-point in situ measurement and certification system for halogenated-compound fire protection systems, and for the testing and certification of other aircraft safety sensor systems. The technology (LEW-17826-1) developed in the present sensor system is patent pending.
Application of process tomography in gas-solid fluidised beds in different scales and structures
NASA Astrophysics Data System (ADS)
Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.
2018-04-01
Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.
Teaching pH Measurements with a Student-Assembled Combination Quinhydrone Electrode
ERIC Educational Resources Information Center
Scholz, Fritz; Steinhardt, Tim; Kahlert, Heike; Porksen, Jens R.; Behnert, Jurgen
2005-01-01
A simple combination pH electrode consisting of a solid-state quinhydrone sensor and a solid-state quinhydrone reference electrode is described. Both electrodes are essentially rubber stoppers that are inserted into a special doublewalled holder.
NASA Astrophysics Data System (ADS)
Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.
2017-12-01
Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.
2007-02-26
IIGE Intra-Inversion Gradient Estimation JPG Jefferson Proving Ground (Indiana); www.jpgbrac.com MTADS Multi- sensor Towed Array Detection...wherein the Statement of Need sought development of algorithms to exploit data from current state-of-the-art geophysical sensors and advanced sensors ...profile direction using an array of magnetometers as in the Multi- sensor Towed Array Detection System (MTADS). In most instances, such data may be
Kuberský, Petr; Altšmíd, Jakub; Hamáček, Aleš; Nešpůrek, Stanislav; Zmeškal, Oldřich
2015-01-01
A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity. PMID:26569248
Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.
2017-04-01
In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.
TAMOAS: In Situ Gasometry in the Atmosphere with Solid Electrolyte Sensors on BEXUS-19
NASA Astrophysics Data System (ADS)
Bronowski, A.; Clemens, R.; Jaster, T.; Kosel, F.; Matyash, I.; Westphal, A.
2015-09-01
A student experiment developed for testing gas sensors in the stratosphere is described. The setup consists of a measurement electronic running miniaturized in situ amperiometric gas sensors based on different solid state electrolytes dedicated for oxygen, ozone and atomic oxygen. The experiment took place at Esrange Space Center in October 2014. The setup was attached to the high-altitude balloon BEXUS-19 and reached an altitude of 27 km at night. The primary objective was to test the prototype sensors and to gain data during flight.
Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages.
Lonsdale, W; Wajrak, M; Alameh, K
2018-04-01
A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO 2 on Al 2 O 3 substrate, modified with thin layers of sputter-deposited Ta 2 O 5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO 2 . The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimized tuner selection for engine performance estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)
2013-01-01
A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.
Characterization of hot bonding of bi-metal C45/25CrMo4 by plane strain compression test
NASA Astrophysics Data System (ADS)
Enaim, Mohammed; Langlois, Laurent; Zimmer-Chevret, Sandra; Bigot, Régis; Krumpipe, Pierre
2018-05-01
The need to produce multifunctional parts in order to conform to complex specifications becomes crucial in today's industrial context. This is why new processes are under study to develop multi-material parts which can satisfy this kind of requirements. This paper investigates the possibility of producing hot bonding of bi-metal C45/25CrMo4 parts by forging. This manufacturing process is a solid state joining process that involves, simultaneously, the welding and shaping of multi-material part. In this study, the C45/25CrMo4 bimetal was investigated. The forging is conducted at 1100°C and the influence of reduction rate on microstructure and bonding was investigated. The bonding model is inspired from Bay's model. Following this model, two parameters govern the solid-state bonding at the interface between materials: normal contact pressure and surface expansion. The objective is to check the bonding quality under different pressure and surface expansion. To achieve this goal, the plane strain compression test is chosen as the characterization test. Finally, simulations and experiments of this test are compared.
Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.
1996-01-01
Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.
Solid-State Sensor and Actuator Workshop Held in Hilton Head Island, South Carolina on 4-7 June 1990
1990-01-01
resonator was measured. It is shown in Figure 2. The text by Ferry gives very lucid discussions of the salient feature of the curves is that the width... features near 140 MHz. This is expected: the Synthesized SH-APM has displacement components on both faces of the quartz plate and, in this particular case...struc- [2 + F3 tural dimensions are highly desired features in micro- machined solid-state sensors, an understanding of damping WHERE caused by
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas
2014-05-01
Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-10-20
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation.
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-01-01
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation. PMID:29053608
Enhanced performance of microfluidic soft pressure sensors with embedded solid microspheres
NASA Astrophysics Data System (ADS)
Shin, Hee-Sup; Ryu, Jaiyoung; Majidi, Carmel; Park, Yong-Lae
2016-02-01
The cross-sectional geometry of an embedded microchannel influences the electromechanical response of a soft microfluidic sensor to applied surface pressure. When a pressure is exerted on the surface of the sensor deforming the soft structure, the cross-sectional area of the embedded channel filled with a conductive fluid decreases, increasing the channel’s electrical resistance. This electromechanical coupling can be tuned by adding solid microspheres into the channel. In order to determine the influence of microspheres, we use both analytic and computational methods to predict the pressure responses of soft microfluidic sensors with two different channel cross-sections: a square and an equilateral triangular. The analytical models were derived from contact mechanics in which microspheres were regarded as spherical indenters, and finite element analysis (FEA) was used for simulation. For experimental validation, sensor samples with the two different channel cross-sections were prepared and tested. For comparison, the sensor samples were tested both with and without microspheres. All three results from the analytical models, the FEA simulations, and the experiments showed reasonable agreement confirming that the multi-material soft structure significantly improved its pressure response in terms of both linearity and sensitivity. The embedded solid particles enhanced the performance of soft sensors while maintaining their flexible and stretchable mechanical characteristic. We also provide analytical and experimental analyses of hysteresis of microfluidic soft sensors considering a resistive force to the shape recovery of the polymer structure by the embedded viscous fluid.
A multimodal image sensor system for identifying water stress in grapevines
NASA Astrophysics Data System (ADS)
Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong
2012-11-01
Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2014-06-24
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2015-02-17
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier
2016-02-22
The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.
Optical thermometry using fluorescence intensities multi-ratios in NaGdTiO4:Yb3+/Tm3+ phosphors
NASA Astrophysics Data System (ADS)
Zhou, Aihua; Song, Feng; Song, Feifei; Feng, Ming; Adnan, Khan; Ju, Dandan; Wang, Xueqing
2018-04-01
The NaGdTiO4:Yb3+/Tm3+ phosphor has been effectively synthesized by the traditional solid-state reaction method and its down-conversion and up-conversion luminescence properties were systematically studied. The results indicate that the electric dipole-dipole interaction is the main mechanism for the luminescence quenching. The fact that the ratios of the up-conversion intensities, i.e., I795nm/I798nm, I807nm/I798nm, and I812nm/I798nm, increase linearly with temperature (100 K-300 K) provides us a simple and accurate temperature measurement method. Multi-ratios can be more accurate than using only one ratio, allowing for self-referenced temperature determination. It's promising for NaGdTiO4: Yb3+/Tm3+ to be used for optical temperature sensors.
Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform
Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot
2006-01-01
A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.
Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs
NASA Technical Reports Server (NTRS)
Shirron, Peter J.
2014-01-01
Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M.; Zhao, W.; Tanioka, K.
Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and themore » results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant medical x-ray exposures. Conclusions: This work demonstrates that the HARP-DRL sensor enables the practical implementation of a SHARP solid-state x-ray sensor capable of quantum noise limited operation throughout the entire range of clinically relevant x-ray exposures. This is an important step toward the realization of a SHARP-AMFPI x-ray flat-panel imager.« less
NASA Astrophysics Data System (ADS)
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele; Pernechele, Claudio; Dionisio, Cesare
2017-11-01
This paper presents an innovative algorithm developed for attitude determination of a space platform. The algorithm exploits images taken from a multi-purpose panoramic camera equipped with hyper-hemispheric lens and used as star tracker. The sensor architecture is also original since state-of-the-art star trackers accurately image as many stars as possible within a narrow- or medium-size field-of-view, while the considered sensor observes an extremely large portion of the celestial sphere but its observation capabilities are limited by the features of the optical system. The proposed original approach combines algorithmic concepts, like template matching and point cloud registration, inherited from the computer vision and robotic research fields, to carry out star identification. The final aim is to provide a robust and reliable initial attitude solution (lost-in-space mode), with a satisfactory accuracy level in view of the multi-purpose functionality of the sensor and considering its limitations in terms of resolution and sensitivity. Performance evaluation is carried out within a simulation environment in which the panoramic camera operation is realistically reproduced, including perturbations in the imaged star pattern. Results show that the presented algorithm is able to estimate attitude with accuracy better than 1° with a success rate around 98% evaluated by densely covering the entire space of the parameters representing the camera pointing in the inertial space.
Sensor-Free or Sensor-Full: A Comparison of Data Modalities in Multi-Channel Affect Detection
ERIC Educational Resources Information Center
Paquette, Luc; Rowe, Jonathan; Baker, Ryan; Mott, Bradford; Lester, James; DeFalco, Jeanine; Brawner, Keith; Sottilare, Robert; Georgoulas, Vasiliki
2016-01-01
Computational models that automatically detect learners' affective states are powerful tools for investigating the interplay of affect and learning. Over the past decade, affect detectors--which recognize learners' affective states at run-time using behavior logs and sensor data--have advanced substantially across a range of K-12 and postsecondary…
Stability Analysis of Multi-Sensor Kalman Filtering over Lossy Networks
Gao, Shouwan; Chen, Pengpeng; Huang, Dan; Niu, Qiang
2016-01-01
This paper studies the remote Kalman filtering problem for a distributed system setting with multiple sensors that are located at different physical locations. Each sensor encapsulates its own measurement data into one single packet and transmits the packet to the remote filter via a lossy distinct channel. For each communication channel, a time-homogeneous Markov chain is used to model the normal operating condition of packet delivery and losses. Based on the Markov model, a necessary and sufficient condition is obtained, which can guarantee the stability of the mean estimation error covariance. Especially, the stability condition is explicitly expressed as a simple inequality whose parameters are the spectral radius of the system state matrix and transition probabilities of the Markov chains. In contrast to the existing related results, our method imposes less restrictive conditions on systems. Finally, the results are illustrated by simulation examples. PMID:27104541
NASA Technical Reports Server (NTRS)
Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)
2003-01-01
Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.
Tracking initially unresolved thrusting objects in 3D using a single stationary optical sensor
NASA Astrophysics Data System (ADS)
Lu, Qin; Bar-Shalom, Yaakov; Willett, Peter; Granström, Karl; Ben-Dov, R.; Milgrom, B.
2017-05-01
This paper considers the problem of estimating the 3D states of a salvo of thrusting/ballistic endo-atmospheric objects using 2D Cartesian measurements from the focal plane array (FPA) of a single fixed optical sensor. Since the initial separations in the FPA are smaller than the resolution of the sensor, this results in merged measurements in the FPA, compounding the usual false-alarm and missed-detection uncertainty. We present a two-step methodology. First, we assume a Wiener process acceleration (WPA) model for the motion of the images of the projectiles in the optical sensor's FPA. We model the merged measurements with increased variance, and thence employ a multi-Bernoulli (MB) filter using the 2D measurements in the FPA. Second, using the set of associated measurements for each confirmed MB track, we formulate a parameter estimation problem, whose maximum likelihood estimate can be obtained via numerical search and can be used for impact point prediction. Simulation results illustrate the performance of the proposed method.
Recent advances in the science and technology for solid state lighting
NASA Astrophysics Data System (ADS)
Munkholm, Anneli
2003-03-01
Recent development of high power light emitting diodes (LEDs) has enabled fabrication of solid state devices with efficiencies that surpass that of incandescent light, as well as providing a total light output significantly exceeding that of conventional indicator LEDs. This breakthrough in high flux is opening up new applications for use of high power LEDs, such as liquid crystal display backlighting and automotive headlights. Some of the key elements to this technological breakthrough are the flip-chip device design, power packaging and phosphor coating technology, which will be discussed. In addition to device design improvements, our fundamental knowledge of the III-nitride material system is improving and has resulted in higher internal quantum efficiencies. Strain plays a significant role in complex AlInGaN heterostructures used in current devices. Using a multi-beam optical strain sensor (MOSS) system to measure the wafer curvature in situ, we have characterized the strain during metal-organic chemical vapor deposition of III-nitrides. Strain measurements of InGaN, AlGaN and Si-doped GaN films on GaN will be presented.
Combined, solid-state molecular property and gamma spectrometers for CBRNE detection
NASA Astrophysics Data System (ADS)
Rogers, Ben; Grate, Jay; Pearson, Brett; Gallagher, Neal; Wise, Barry; Whitten, Ralph; Adams, Jesse
2013-05-01
Nevada Nanotech Systems, Inc. (Nevada Nano) has developed a multi-sensor solution to Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) detection that combines the Molecular Property Spectrometer™ (MPS™)—a micro-electro-mechanical chip-based technology capable of measuring a variety of thermodynamic and electrostatic molecular properties of sampled vapors and particles—and a compact, high-resolution, solid-state gamma spectrometer module for identifying radioactive materials, including isotopes used in dirty bombs and nuclear weapons. By conducting multiple measurements, the system can provide a more complete characterization of an unknown sample, leading to a more accurate identification. Positive identifications of threats are communicated using an integrated wireless module. Currently, system development is focused on detection of commercial, military and improvised explosives, radioactive materials, and chemical threats. The system can be configured for a variety of CBRNE applications, including handheld wands and swab-type threat detectors requiring short sample times, and ultra-high sensitivity detectors in which longer sampling times are used. Here we provide an overview of the system design and operation and present results from preliminary testing.
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan
2018-01-01
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.
Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan
2018-02-06
This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.
Solid state television camera (CCD-buried channel)
NASA Technical Reports Server (NTRS)
1976-01-01
The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.
Solid state television camera (CCD-buried channel), revision 1
NASA Technical Reports Server (NTRS)
1977-01-01
An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.
Solid state, CCD-buried channel, television camera study and design
NASA Technical Reports Server (NTRS)
Hoagland, K. A.; Balopole, H.
1976-01-01
An investigation of an all solid state television camera design, which uses a buried channel charge-coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array was utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a design which addresses the program requirements for a deliverable solid state TV camera.
Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments. PMID:22163467
Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei
2010-01-01
One type of all-solid-state chloride sensor was fabricated using a MnO(2) electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K(+), Ca(2+), Na(+) and SO(4) (2-) ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.
Computer-intensive simulation of solid-state NMR experiments using SIMPSON.
Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas
2014-09-01
Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.
Liu, Bailing; Zhang, Fumin; Qu, Xinghua
2015-01-01
An improvement method for the pose accuracy of a robot manipulator by using a multiple-sensor combination measuring system (MCMS) is presented. It is composed of a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure the position of the manipulator in real time, and the angle sensor is rigidly attached to the manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator. The simulation and experimental results show that the pose accuracy of the robot manipulator is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with reported pose accuracy improvement methods, the primary advantage of this method is that it does not require the complex solution of the kinematics parameter equations, increase of the motion constraints and the complicated procedures of the traditional vision-based methods. It makes the robot processing more autonomous and accurate. To improve the reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of view (FOV) is indicated by the experimental results. PMID:25850067
Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.
1996-08-06
Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.
A colorimetric turn-on optical chemosensor for Cu2+ ions and its application as solid state sensor
NASA Astrophysics Data System (ADS)
Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Kalam, Abul
2018-05-01
We report a novel coumarin based optical chemosensor (Probe 1) for the selective and sensitive detection of Cu2+ ions in aqueous medium. The addition of Cu2+ ions to Probe 1 shows distinct color change from light yellow to pinkish red color under visible light with the sensing limit of 1.54 μM. Moreover, practical utility of Probe 1 as solid state optical sensor (test paper, TLC plates) for sensing Cu2+ has been demonstrated by instantaneous "naked eye" response.
Solid state high resolution multi-spectral imager CCD test phase
NASA Technical Reports Server (NTRS)
1973-01-01
The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.
Hopf, Barbara; Dutz, Franz J; Bosselmann, Thomas; Willsch, Michael; Koch, Alexander W; Roths, Johannes
2018-04-30
A new iterative matrix algorithm has been applied to improve the precision of temperature and force decoupling in multi-parameter FBG sensing. For the first time, this evaluation technique allows the integration of nonlinearities in the sensor's temperature characteristic and the temperature dependence of the sensor's force sensitivity. Applied to a sensor cable consisting of two FBGs in fibers with 80 µm and 125 µm cladding diameter installed in a 7 m-long coiled PEEK capillary, this technique significantly reduced the uncertainties in friction-compensated temperature measurements. In the presence of high friction-induced forces of up to 1.6 N the uncertainties in temperature evaluation were reduced from several degrees Celsius if using a standard linear matrix approach to less than 0.5°C if using the iterative matrix approach in an extended temperature range between -35°C and 125°C.
Multi reflection of Lamb wave emission in an acoustic waveguide sensor.
Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael
2013-02-27
Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.
Zhu, Qingyuan; Xiao, Chunsheng; Hu, Huosheng; Liu, Yuanhui; Wu, Jinjin
2018-01-13
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy.
Xiao, Chunsheng; Liu, Yuanhui; Wu, Jinjin
2018-01-01
Articulated wheel loaders used in the construction industry are heavy vehicles and have poor stability and a high rate of accidents because of the unpredictable changes of their body posture, mass and centroid position in complex operation environments. This paper presents a novel distributed multi-sensor system for real-time attitude estimation and stability measurement of articulated wheel loaders to improve their safety and stability. Four attitude and heading reference systems (AHRS) are constructed using micro-electro-mechanical system (MEMS) sensors, and installed on the front body, rear body, rear axis and boom of an articulated wheel loader to detect its attitude. A complementary filtering algorithm is deployed for sensor data fusion in the system so that steady state margin angle (SSMA) can be measured in real time and used as the judge index of rollover stability. Experiments are conducted on a prototype wheel loader, and results show that the proposed multi-sensor system is able to detect potential unstable states of an articulated wheel loader in real-time and with high accuracy. PMID:29342850
NASA Technical Reports Server (NTRS)
Vanderspiegel, Jan
1994-01-01
This report surveys different technologies and approaches to realize sensors for image warping. The goal is to study the feasibility, technical aspects, and limitations of making an electronic camera with special geometries which implements certain transformations for image warping. This work was inspired by the research done by Dr. Juday at NASA Johnson Space Center on image warping. The study has looked into different solid-state technologies to fabricate image sensors. It is found that among the available technologies, CMOS is preferred over CCD technology. CMOS provides more flexibility to design different functions into the sensor, is more widely available, and is a lower cost solution. By using an architecture with row and column decoders one has the added flexibility of addressing the pixels at random, or read out only part of the image.
Sung, Wen-Tsai; Chiang, Yen-Chun
2012-12-01
This study examines wireless sensor network with real-time remote identification using the Android study of things (HCIOT) platform in community healthcare. An improved particle swarm optimization (PSO) method is proposed to efficiently enhance physiological multi-sensors data fusion measurement precision in the Internet of Things (IOT) system. Improved PSO (IPSO) includes: inertia weight factor design, shrinkage factor adjustment to allow improved PSO algorithm data fusion performance. The Android platform is employed to build multi-physiological signal processing and timely medical care of things analysis. Wireless sensor network signal transmission and Internet links allow community or family members to have timely medical care network services.
Sensor module design and forward and inverse kinematics analysis of 6-DOF sorting transferring robot
NASA Astrophysics Data System (ADS)
Zhou, Huiying; Lin, Jiajian; Liu, Lei; Tao, Meng
2017-09-01
To meet the demand of high strength express sorting, it is significant to design a robot with multiple degrees of freedom that can sort and transfer. This paper uses infrared sensor, color sensor and pressure sensor to receive external information, combine the plan of motion path in advance and the feedback information from the sensors, then write relevant program. In accordance with these, we can design a 6-DOF robot that can realize multi-angle seizing. In order to obtain characteristics of forward and inverse kinematics, this paper describes the coordinate directions and pose estimation by the D-H parameter method and closed solution. On the basis of the solution of forward and inverse kinematics, geometric parameters of links and link parameters are optimized in terms of application requirements. In this way, this robot can identify route, sort and transfer.
2016-08-18
multi- sensor remote sensing approach to describe the distribution of oil from the DWH spill. They used airborne and satellite , multi- and hyperspectral...Experimental Sensors e.g., Acoustic and Nuclear Magnetic Resonance (NMR) (Fingas and Brown, 2012; Puestow et al., 2013). These are further...ship, aerial - aircraft, aerostat or UAV, or satellite ), among other classification criteria. A comprehensive review of sensor categories employed
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-01-01
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors. PMID:28608820
Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis
2017-06-13
We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.
Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk
2016-04-15
Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Prabhash; Grachyova, D. V.; Moskalenko, A. S.
2016-04-13
Dispersion of single-walled carbon nanotubes (SWCNTs) is an established fact, however, its effect on toxic gas sensing for the development of solid state resistive sensor was not well reported. In this report, the dispersion quality of SWCNTs has been investigated and improved, and this well-dispersed SWCNTs network was used for sensor fabrication to monitor nitrogen dioxide gas. Ultraviolet (UV)-visible spectroscopic studies shows the strength of SWNTs dispersion and scanning electron microscopy (SEM) imaging provides the morphological properties of the sensor device. In this gas sensor device, two sets of resistive type sensors were fabricated that consisting of a pair ofmore » interdigitated electrodes (IDEs) using dielectrophoresis technique with different SWCNTs network density. With low-density SWCNTs networks, this fabricated sensor exhibits a high response for nitrogen dioxide sensing. The sensing of nitrogen dioxide is mainly due to charge transfer from absorbed molecules to sidewalls of nanotube and tube-tube screening acting a major role for the transport properties of charge carriers.« less
NASA Astrophysics Data System (ADS)
Chetty, S.; Field, L. A.
2014-12-01
SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.
NASA Astrophysics Data System (ADS)
Chou, Jyh-Pin; Bodrog, Zoltán; Gali, Adam
2018-03-01
Solid-state qubits from paramagnetic point defects in solids are promising platforms to realize quantum networks and novel nanoscale sensors. Recent advances in materials engineering make it possible to create proximate qubits in solids that might interact with each other, leading to electron spin or charge fluctuation. Here we develop a method to calculate the tunneling-mediated charge diffusion between point defects from first principles and apply it to nitrogen-vacancy (NV) qubits in diamond. The calculated tunneling rates are in quantitative agreement with previous experimental data. Our results suggest that proximate neutral and negatively charged NV defect pairs can form a NV-NV molecule. A tunneling-mediated model for the source of decoherence of the near-surface NV qubits is developed based on our findings on the interacting qubits in diamond.
NASA Technical Reports Server (NTRS)
Irwin, E. L.; Farnsworth, D. L.
1972-01-01
A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.
Solid-state optical refrigeration to sub-100 Kelvin regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.
We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.
Solid-state optical refrigeration to sub-100 Kelvin regime
Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; ...
2016-02-05
We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.
Solid-state optical refrigeration to sub-100 Kelvin regime
Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; Sheik-Bahae, Mansoor
2016-01-01
Since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈ 91 K from room temperature. PMID:26847703
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
Solid-state gas sensors for breath analysis: a review.
Di Natale, Corrado; Paolesse, Roberto; Martinelli, Eugenio; Capuano, Rosamaria
2014-05-08
The analysis of volatile compounds is an efficient method to appraise information about the chemical composition of liquids and solids. This principle is applied to several practical applications, such as food analysis where many important features (e.g. freshness) can be directly inferred from the analysis of volatile compounds. The same approach can also be applied to a human body where the volatile compounds, collected from the skin, the breath or in the headspace of fluids, might contain information that could be used to diagnose several kinds of diseases. In particular, breath is widely studied and many diseases can be potentially detected from breath analysis. The most fascinating property of breath analysis is the non-invasiveness of the sample collection. Solid-state sensors are considered the natural complement to breath analysis, matching the non-invasiveness with typical sensor features such as low-cost, easiness of use, portability, and the integration with the information networks. Sensors based breath analysis is then expected to dramatically extend the diagnostic capabilities enabling the screening of large populations for the early diagnosis of pathologies. In the last years there has been an increased attention to the development of sensors specifically aimed to this purpose. These investigations involve both specific sensors designed to detect individual compounds and non-specific sensors, operated in array configurations, aimed at clustering subjects according to their health conditions. In this paper, the recent significant applications of these sensors to breath analysis are reviewed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-02-16
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.
Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-01-01
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929
NASA Astrophysics Data System (ADS)
Gao, M.; Li, J.
2018-04-01
Geometric correction is an important preprocessing process in the application of GF4 PMS image. The method of geometric correction that is based on the manual selection of geometric control points is time-consuming and laborious. The more common method, based on a reference image, is automatic image registration. This method involves several steps and parameters. For the multi-spectral sensor GF4 PMS, it is necessary for us to identify the best combination of parameters and steps. This study mainly focuses on the following issues: necessity of Rational Polynomial Coefficients (RPC) correction before automatic registration, base band in the automatic registration and configuration of GF4 PMS spatial resolution.
Solid state recorders for airborne reconnaissance
NASA Astrophysics Data System (ADS)
Klang, Mark R.
2003-08-01
Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.
Enhanced electrodes for solid state gas sensors
Garzon, Fernando H.; Brosha, Eric L.
2001-01-01
A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.
Optimal multi-type sensor placement for response and excitation reconstruction
NASA Astrophysics Data System (ADS)
Zhang, C. D.; Xu, Y. L.
2016-01-01
The need to perform dynamic response reconstruction always arises as the measurement of structural response is often limited to a few locations, especially for a large civil structure. Besides, it is usually very difficult, if not impossible, to measure external excitations under the operation condition of a structure. This study presents an algorithm for optimal placement of multi-type sensors, including strain gauges, displacement transducers and accelerometers, for the best reconstruction of responses of key structural components where there are no sensors installed and the best estimation of external excitations acting on the structure at the same time. The algorithm is developed in the framework of Kalman filter with unknown excitation, in which minimum-variance unbiased estimates of the generalized state of the structure and the external excitations are obtained by virtue of limited sensor measurements. The structural responses of key locations without sensors can then be reconstructed with the estimated generalized state and excitation. The asymptotic stability feature of the filter is utilized for optimal sensor placement. The number and spatial location of the multi-type sensors are determined by adding the optimal sensor which gains the maximal reduction of the estimation error of reconstructed responses. For the given mode number in response reconstruction and the given locations of external excitations, the optimal multi-sensor placement achieved by the proposed method is independent of the type and time evolution of external excitation. A simply-supported overhanging steel beam under multiple types of excitation is numerically studied to demonstrate the feasibility and superiority of the proposed method, and the experimental work is then carried out to testify the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
May, J. C.; Rowley, C. D.; Meyer, H.
2017-12-01
The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of the surface retrievals comes from using a 3-hourly SST field, as opposed to a daily SST field.
Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman Behal; Sunil Kumar; Goodarz Ahmadi
2007-08-05
Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant modelmore » and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.« less
NASA Astrophysics Data System (ADS)
Anders, Niels; Suomalainen, Juha; Seeger, Manuel; Keesstra, Saskia; Bartholomeus, Harm; Paron, Paolo
2014-05-01
The recent increase of performance and endurance of electronically controlled flying platforms, such as multi-copters and fixed-wing airplanes, and decreasing size and weight of different sensors and batteries leads to increasing popularity of Unmanned Aerial Systems (UAS) for scientific purposes. Modern workflows that implement UAS include guided flight plan generation, 3D GPS navigation for fully automated piloting, and automated processing with new techniques such as "Structure from Motion" photogrammetry. UAS are often equipped with normal RGB cameras, multi- and hyperspectral sensors, radar, or other sensors, and provide a cheap and flexible solution for creating multi-temporal data sets. UAS revolutionized multi-temporal research allowing new applications related to change analysis and process monitoring. The EGU General Assembly 2014 is hosting a session on platforms, sensors and applications with UAS in soil science and geomorphology. This presentation briefly summarizes the outcome of this session, addressing the current state and future challenges of small-platform data acquisition in soil science and geomorphology.
Distributed multi-sensor particle filter for bearings-only tracking
NASA Astrophysics Data System (ADS)
Zhang, Jungen; Ji, Hongbing
2012-02-01
In this article, the classical bearings-only tracking (BOT) problem for a single target is addressed, which belongs to the general class of non-linear filtering problems. Due to the fact that the radial distance observability of the target is poor, the algorithm-based sequential Monte-Carlo (particle filtering, PF) methods generally show instability and filter divergence. A new stable distributed multi-sensor PF method is proposed for BOT. The sensors process their measurements at their sites using a hierarchical PF approach, which transforms the BOT problem from Cartesian coordinate to the logarithmic polar coordinate and separates the observable components from the unobservable components of the target. In the fusion centre, the target state can be estimated by utilising the multi-sensor optimal information fusion rule. Furthermore, the computation of a theoretical Cramer-Rao lower bound is given for the multi-sensor BOT problem. Simulation results illustrate that the proposed tracking method can provide better performances than the traditional PF method.
Advanced scanners and imaging systems for earth observations. [conferences
NASA Technical Reports Server (NTRS)
1973-01-01
Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Nadeem, S.; Khan, Zafar Hayat
2014-10-01
Peristaltic flow is used to study the flow and heat transfer of carbon nanotubes in an asymmetric channel with thermal and velocity slip effects. Two types of carbon nanotubes, namely, single- and multi-wall carbon nanotubes are utilized to see the analysis with water as base fluids. Empirical correlations are used for the thermo-physical properties of carbon nanotubes (CNTs) in terms of solid volume fraction of CNTs. The governing equations are simplified using long wavelength and low Reynolds number approximation. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of CNTs and temperature profile. The effects of various flow parameters, i.e. Hatmann number M, the solid volume fraction of the nanoparticles ϕ, Grashof number G, velocity slip parameter β, thermal slip parameter γ and Prandtl number P r are presented graphically for both single- (SWCNT) and multi-wall carbon nanotubes (MWCNT).
Multi-parameter fiber optic sensors based on fiber random grating
NASA Astrophysics Data System (ADS)
Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi
2017-04-01
Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.
NASA Technical Reports Server (NTRS)
Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.
2012-01-01
The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events
Reduced signal crosstalk multi neurotransmitter image sensor by microhole array structure
NASA Astrophysics Data System (ADS)
Ogaeri, Yuta; Lee, You-Na; Mitsudome, Masato; Iwata, Tatsuya; Takahashi, Kazuhiro; Sawada, Kazuaki
2018-06-01
A microhole array structure combined with an enzyme immobilization method using magnetic beads can enhance the target discernment capability of a multi neurotransmitter image sensor. Here we report the fabrication and evaluation of the H+-diffusion-preventing capability of the sensor with the array structure. The structure with an SU-8 photoresist has holes with a size of 24.5 × 31.6 µm2. Sensors were prepared with the array structure of three different heights: 0, 15, and 60 µm. When the sensor has the structure of 60 µm height, 48% reduced output voltage is measured at a H+-sensitive null pixel that is located 75 µm from the acetylcholinesterase (AChE)-immobilized pixel, which is the starting point of H+ diffusion. The suppressed H+ immigration is shown in a two-dimensional (2D) image in real time. The sensor parameters, such as height of the array structure and measuring time, are optimized experimentally. The sensor is expected to effectively distinguish various neurotransmitters in biological samples.
Cooperative dry-electrode sensors for multi-lead biopotential and bioimpedance monitoring.
Rapin, M; Proença, M; Braun, F; Meier, C; Solà, J; Ferrario, D; Grossenbacher, O; Porchet, J-A; Chételat, O
2015-04-01
Cooperative sensors is a novel measurement architecture that allows the acquiring of biopotential signals on patients in a comfortable and easy-to-integrate manner. The novel sensors are defined as cooperative in the sense that at least two of them work in concert to measure a target physiological signal, such as a multi-lead electrocardiogram or a thoracic bioimpedance.This paper starts by analysing the state-of-the-art methods to simultaneously measure biopotential and bioimpedance signals, and justifies why currently (1) passive electrodes require the use of shielded or double-shielded cables, and (2) active electrodes require the use of multi-wired cabled technologies, when aiming at high quality physiological measurements.In order to overcome the limitations of the state-of-the-art, a new method for biopotential and bioimpedance measurement using the cooperative sensor is then presented. The novel architecture allows the acquisition of the aforementioned biosignals without the need of shielded or multi-wire cables by splitting the electronics into separate electronic sensors comprising each of two electrodes, one for voltage measurement and one for current injection. The sensors are directly in contact with the skin and connected together by only one unshielded wire. This new configuration requires one power supply per sensor and all sensors need to be synchronized together to allow them to work in concert.After presenting the working principle of the cooperative sensor architecture, this paper reports first experimental results on the use of the technology when applied to measuring multi-lead ECG signals on patients. Measurements performed on a healthy patient demonstrate the feasibility of using this novel cooperative sensor architecture to measure biopotential signals and compliance with common mode rejection specification accordingly to international standard (IEC 60601-2-47) has also been assessed.By reducing the need of using complex wiring setups, and by eliminating the presence of central recording devices (cooperative sensors directly sense and store the measured biosignals on the site), the depicted novel technology is a candidate to a novel generation of highly-integrated, comfortable and reliable technologies that measure physiological signals in real-life scenarios.
NASA Technical Reports Server (NTRS)
Fleming, K. J.; Crump, O. B.
1994-01-01
VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, L.J.; Keller, P.E.
1997-10-28
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Consensus-based distributed estimation in multi-agent systems with time delay
NASA Astrophysics Data System (ADS)
Abdelmawgoud, Ahmed
During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.
Cellular telephone-based radiation sensor and wide-area detection network
Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA
2006-12-12
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
Real-time sensor validation and fusion for distributed autonomous sensors
NASA Astrophysics Data System (ADS)
Yuan, Xiaojing; Li, Xiangshang; Buckles, Bill P.
2004-04-01
Multi-sensor data fusion has found widespread applications in industrial and research sectors. The purpose of real time multi-sensor data fusion is to dynamically estimate an improved system model from a set of different data sources, i.e., sensors. This paper presented a systematic and unified real time sensor validation and fusion framework (RTSVFF) based on distributed autonomous sensors. The RTSVFF is an open architecture which consists of four layers - the transaction layer, the process fusion layer, the control layer, and the planning layer. This paradigm facilitates distribution of intelligence to the sensor level and sharing of information among sensors, controllers, and other devices in the system. The openness of the architecture also provides a platform to test different sensor validation and fusion algorithms and thus facilitates the selection of near optimal algorithms for specific sensor fusion application. In the version of the model presented in this paper, confidence weighted averaging is employed to address the dynamic system state issue noted above. The state is computed using an adaptive estimator and dynamic validation curve for numeric data fusion and a robust diagnostic map for decision level qualitative fusion. The framework is then applied to automatic monitoring of a gas-turbine engine, including a performance comparison of the proposed real-time sensor fusion algorithms and a traditional numerical weighted average.
Jungmann, Julia H; Heeren, Ron M A
2013-01-15
Instrumental developments for imaging and individual particle detection for biomolecular mass spectrometry (imaging) and fundamental atomic and molecular physics studies are reviewed. Ion-counting detectors, array detection systems and high mass detectors for mass spectrometry (imaging) are treated. State-of-the-art detection systems for multi-dimensional ion, electron and photon detection are highlighted. Their application and performance in three different imaging modes--integrated, selected and spectral image detection--are described. Electro-optical and microchannel-plate-based systems are contrasted. The analytical capabilities of solid-state pixel detectors--both charge coupled device (CCD) and complementary metal oxide semiconductor (CMOS) chips--are introduced. The Medipix/Timepix detector family is described as an example of a CMOS hybrid active pixel sensor. Alternative imaging methods for particle detection and their potential for future applications are investigated. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sargent, Ronald A.
1995-06-01
Recent intelligent transportation systems (ITS) initiatives sponsored by commercial transportation companies and the U.S. Department of Transportation include an area dedicated to Automated Vehicle Control Systems (AVCS). AVCS systems are dedicated to improving passenger automobile safety, efficiency, and impact on the environment. Minimizing the number of automobile collisions through automated obstacle detection and vehicle response is vital to this effort. Simple, reliable, low cost sensors installed in automobiles to provide driver warning and/or input to vehicle systems such as braking or cruise control are the key piece to making this technology as common as air bags and seat belts. EPA emission regulations now require specific areas to periodically report the mix of vehicle types. These reports must include in the mix the 13 possible categories for vehicles. Simple low cost senors installed as part of the traffic management system will facilitate the determination of vehicle category. Laser Atlanta has recently developed two distinct types of sensors that utilize a unique multi- beam approach to detect `targets' that are potential hazards. They also provide range and range rate data to automobile control and traffic management systems.
Investigating the use of multi-point coupling for single-sensor bearing estimation in one direction
NASA Astrophysics Data System (ADS)
Woolard, Americo G.; Phoenix, Austin A.; Tarazaga, Pablo A.
2018-04-01
Bearing estimation of radially propagating symmetric waves in solid structures typically requires a minimum of two sensors. As a test specimen, this research investigates the use of multi-point coupling to provide directional inference using a single-sensor. By this provision, the number of sensors required for localization can be reduced. A finite-element model of a beam is constructed with a symmetrically placed bipod that has asymmetric joint-stiffness properties. Impulse loading is applied at different points along the beam, and measurements are taken from the apex of the bipod. A technique is developed to determine the direction-of-arrival of the propagating wave. The accuracy when using the bipod with the developed technique is compared against results gathered without the bipod and measuring from an asymmetric location along the beam. The results show 92% accuracy when the bipod is used, compared to 75% when measuring without the bipod from an asymmetric location. A geometry investigation finds the best accuracy results when one leg of the bipod has a low stiffness and a large diameter relative to the other leg.
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-11-06
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.
Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks
Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang
2016-01-01
Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture. PMID:27827971
Accuracy Assessment of Professional Grade Unmanned Systems for High Precision Airborne Mapping
NASA Astrophysics Data System (ADS)
Mostafa, M. M. R.
2017-08-01
Recently, sophisticated multi-sensor systems have been implemented on-board modern Unmanned Aerial Systems. This allows for producing a variety of mapping products for different mapping applications. The resulting accuracies match the traditional well engineered manned systems. This paper presents the results of a geometric accuracy assessment project for unmanned systems equipped with multi-sensor systems for direct georeferencing purposes. There are a number of parameters that either individually or collectively affect the quality and accuracy of a final airborne mapping product. This paper focuses on identifying and explaining these parameters and their mutual interaction and correlation. Accuracy Assessment of the final ground object positioning accuracy is presented through real-world 8 flight missions that were flown in Quebec, Canada. The achievable precision of map production is addressed in some detail.
NASA Astrophysics Data System (ADS)
Nguyen, Emmanuel; Antoni, Jerome; Grondin, Olivier
2009-12-01
In the automotive industry, the necessary reduction of pollutant emission for new Diesel engines requires the control of combustion events. This control is efficient provided combustion parameters such as combustion occurrence and combustion energy are relevant. Combustion parameters are traditionally measured from cylinder pressure sensors. However this kind of sensor is expensive and has a limited lifetime. Thus this paper proposes to use only one cylinder pressure on a multi-cylinder engine and to extract combustion parameters from the other cylinders with low cost knock sensors. Knock sensors measure the vibration circulating on the engine block, hence they do not all contain the information on the combustion processes, but they are also contaminated by other mechanical noises that disorder the signal. The question is how to combine the information coming from one cylinder pressure and knock sensors to obtain the most relevant combustion parameters in all engine cylinders. In this paper, the issue is addressed trough the Bayesian inference formalism. In that cylinder where a cylinder pressure sensor is mounted, combustion parameters will be measured directly. In the other cylinders, they will be measured indirectly from Bayesian inference. Experimental results obtained on a four cylinder Diesel engine demonstrate the effectiveness of the proposed algorithm toward that purpose.
A Pulse Rate Detection Method for Mouse Application Based on Multi-PPG Sensors
Chen, Wei-Hao
2017-01-01
Heart rate is an important physiological parameter for healthcare. Among measurement methods, photoplethysmography (PPG) is an easy and convenient method for pulse rate detection. However, as the PPG signal faces the challenge of motion artifacts and is constrained by the position chosen, the purpose of this paper is to implement a comfortable and easy-to-use multi-PPG sensor module combined with a stable and accurate real-time pulse rate detection method on a computer mouse. A weighted average method for multi-PPG sensors is used to adjust the weight of each signal channel in order to raise the accuracy and stability of the detected signal, therefore reducing the disturbance of noise under the environment of moving effectively and efficiently. According to the experiment results, the proposed method can increase the usability and probability of PPG signal detection on palms. PMID:28708112
Development of subminiature multi-sensor hot-wire probes
NASA Technical Reports Server (NTRS)
Westphal, Russell V.; Ligrani, Phillip M.; Lemos, Fred R.
1988-01-01
Limitations on the spatial resolution of multisensor hot wire probes have precluded accurate measurements of Reynolds stresses very near solid surfaces in wind tunnels and in many practical aerodynamic flows. The fabrication, calibration and qualification testing of very small single horizontal and X-array hot-wire probes which are intended to be used near solid boundaries in turbulent flows where length scales are particularly small, is described. Details of the sensor fabrication procedure are reported, along with information needed to successfully operate the probes. As compared with conventional probes, manufacture of the subminiature probes is more complex, requiring special equipment and careful handling. The subminiature probes tested were more fragile and shorter lived than conventional probes; they obeyed the same calibration laws but with slightly larger experimental uncertainty. In spite of these disadvantages, measurements of mean statistical quantities and spectra demonstrate the ability of the subminiature sensors to provide the measurements in the near wall region of turbulent boundary layers that are more accurate than conventional sized probes.
NASA Astrophysics Data System (ADS)
Jacobs, Alan M.; Cox, John D.; Juang, Yi-Shung
1987-01-01
A solid-state digital x-ray detector is described which can replace high resolution film in industrial radiography and has potential for application in some medical imaging. Because of the 10 micron pixel pitch on the sensor, contact magnification radiology is possible and is demonstrated. Methods for frame speed increase and integration of sensor to a large format are discussed.
Extended range chemical sensing apparatus
Hughes, Robert C.; Schubert, W. Kent
1994-01-01
An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.
Sensors research and technology
NASA Technical Reports Server (NTRS)
Cutts, James A.
1988-01-01
Information on sensors research and technology is given in viewgraph form. Information is given on sensing techniques for space science, passive remote sensing techniques and applications, submillimeter coherent sensing, submillimeter mixers and local oscillator sources, non-coherent sensors, active remote sensing, solid state laser development, a low vibration cooler, separation of liquid helium and vapor phase in zero gravity, and future plans.
Research on multi-parameter monitoring of steel frame shaking-table test using smartphone
NASA Astrophysics Data System (ADS)
Han, Ruicong; Loh, Kenneth J.; Zhao, Xuefeng; Yu, Yan
2017-04-01
The numerical simulation promises an effective method to assess seismic damage of high-rise structure. But it's difficult to determine the input parameters and the simulation results are not completely consistent with the real condition. A more direct approach to evaluate the seismic damage is the structural health monitoring (SHM), which is one complex set of various kinds of sensors, devices and software, and always needs professionals. SHM system has achieved great development over recent years, especially on bridge structures. However it's not so popular on high-rise building due to its difficult implementation. Developing a low-cost and convenient monitoring technique will be helpful for the safety maintenance of high-rise building. Smartphones, which embedded with sensors, network transmission, data storage and processing system, are evolving towards crowdsourcing. The popularity of smartphones presents opportunities for implementation of portable SHM system on buildings. In this paper, multi-parameter monitoring of a three-story steel frame on shaking table under earthquake excitations was conducted with smartphone, and the comparison between smartphone and traditional sensors was provided. First, the monitoring applications on iOS platform, Orion-CC and D-viewer, were introduced. Then the experimental details were presented, including three-story frame model, sensors placement, viscous dampers and so on. Last, the acceleration and displacement time-history curves of smartphone and traditional sensors are provided and compared to prove the feasibility of the monitoring on frame under earthquake excitations by smartphone.
NASA Astrophysics Data System (ADS)
Hromadka, J.; Korposh, S.; Partridge, M. C.; James, S.; Davis, F.; Crump, D.; Lee, S.-W.; Tatam, R. P.
2017-04-01
An array of three long period gratings (LPGs) fabricated in a single optical fibre and multiplexed in the wavelength domain was used to measure simultaneously temperature, relative humidity (RH) and volatile organic compounds (VOCs). Each LPG sensor was designed to optimize its response to a desired measurand. The LPGs were fabricated with periods such that they operated at or near the phase matching turning point. The sensors were calibrated in the laboratory and the simultaneous measurement of the key indoor air quality parameters was undertaken in laboratory and office environments. It was demonstrated successfully that the data produced by the LPG sensor array under real conditions was in a good agreement with that produced by commercially available sensors. Further, the potential application of fibre optic sensors for VOCs detection at high levels has been demonstrated.
NASA Technical Reports Server (NTRS)
1976-01-01
The design, fabrication, and tests of a solid state television camera using a new charge-coupled imaging device are reported. An RCA charge-coupled device arranged in a 512 by 320 format and directly compatible with EIA format standards was the sensor selected. This is a three-phase, sealed surface-channel array that has 163,840 sensor elements, which employs a vertical frame transfer system for image readout. Included are test results of the complete camera system, circuit description and changes to such circuits as a result of integration and test, maintenance and operation section, recommendations to improve the camera system, and a complete set of electrical and mechanical drawing sketches.
The chief goal is to develop new selective solid state sensors for carcinogenic and toxic chromium(VI) and arsenic(V) in water based on redox quenching of the luminescence from nanostructured porous silicon and polysiloles.
Jatana, Gurneesh; Geckler, Sam; Koeberlein, David; ...
2016-09-01
We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H 2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuringmore » gas temperature, pressure, and H 2O concentration, and a CO 2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO 2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO 2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less
Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.
Wu, Chuan-Yu; Best, Serena M; Bentham, A Craig; Hancock, Bruno C; Bonfield, William
2006-08-01
Pharmaceutical tablets are generally produced by compacting a mixture of several ingredients, including active drugs and excipients. It is of practical importance if the properties of such tablets can be predicted on the basis of the ones for constituent components. The purpose of this work is to develop a theoretical model which can predict the tensile strength of compacted multi-component pharmaceutical mixtures. The model was derived on the basis of the Ryshkewitch-Duckworth equation that was originally proposed for porous materials. The required input parameters for the model are the relative density or solid fraction (ratio of the volume of solid materials to the total volume of the tablets) of the multi-component tablets and parameters associated with the constituent single-component powders, which are readily accessible. The tensile strength of tablets made of various powder blends at different relative density was also measured using diametrical compression. It has been shown that the tensile strength of the multi-component powder compacts is primarily a function of the solid fraction. Excellent agreement between prediction and experimental data for tablets of binary, ternary and four-component blends of some widely used pharmaceutical excipients was obtained. It has been demonstrated that the proposed model can well predict the tensile strength of multi-component pharmaceutical tablets. Thus, the model will be a useful design tool for formulation engineers in the pharmaceutical industry.
Multifuctional integrated sensors (MFISES).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homeijer, Brian D.; Roozeboom, Clifton
2015-10-01
Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and themore » real world applications of the sensors systems.« less
Multi-Target/Multi-Sensor Tracking using Only Range and Doppler Measurements
2009-04-01
I+1) k ) represents a global maximum, given the Gaussian components used in our model, and given that P(I) has been fixed using parameter values...on Pattern Analysis and Machine Intelligence, 24 (2002), 381—396. [37] Perlovsky, L. I., Plum, C. P., Franchi , P. R., Tichovolsky, E. J., Choi, D. S
Multi-field coupled sensing network for health monitoring of composite bolted joint
NASA Astrophysics Data System (ADS)
Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav
2016-04-01
Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.
Butun, Ismail; Ra, In-Ho; Sankar, Ravi
2015-01-01
In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915
Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine system
NASA Astrophysics Data System (ADS)
Caballero, Isabel; Navarro, Gabriel; Ruiz, Javier
2018-06-01
Dredging activities in estuaries frequently cause deleterious environmental effects on the water quality which can impact flora, fauna, and hydrodynamics, among others. A medium- and high-resolution satellite-based procedure is used in this study to monitor turbidity plumes generated during the dredging operations in the Guadalquivir estuary, a major estuarine system providing important ecosystem services in southwest Europe. A multi-sensor scheme is evaluated using a combination of five public and commercial medium- and high-resolution satellites, including Landsat-8, Sentinel-2A, WorldView-2, WorldView-3, and GeoEye-1, with pixel sizes ranging from 30 m to 0.3 m. Applying a multi-conditional algorithm after the atmospheric correction of the optical imagery with ACOLITE, Sen2Cor and QUAC processors, it is demonstrated the feasibility to monitoring suspended solids during dredging operations at a spatial resolution unachievable with traditional satellite-based ocean color sensors (>300 m). The frame work can be used to map on-going, post and pre-dredging activities and asses Total Suspended Solids (TSS) anomalies caused by natural and anthropogenic processes in coastal and inland waters. These promising results are suitable to effectively improve the assessment of features relevant to environmental policies for the challenging coastal management and might serve as a notable contribution to the Earth Observation Program.
WO3 nanoparticle-based conformable pH sensor.
Santos, Lídia; Neto, Joana P; Crespo, Ana; Nunes, Daniela; Costa, Nuno; Fonseca, Isabel M; Barquinha, Pedro; Pereira, Luís; Silva, Jorge; Martins, Rodrigo; Fortunato, Elvira
2014-08-13
pH is a vital physiological parameter that can be used for disease diagnosis and treatment as well as in monitoring other biological processes. Metal/metal oxide based pH sensors have several advantages regarding their reliability, miniaturization, and cost-effectiveness, which are critical characteristics for in vivo applications. In this work, WO3 nanoparticles were electrodeposited on flexible substrates over metal electrodes with a sensing area of 1 mm(2). These sensors show a sensitivity of -56.7 ± 1.3 mV/pH, in a wide pH range of 9 to 5. A proof of concept is also demonstrated using a flexible reference electrode in solid electrolyte with a curved surface. A good balance between the performance parameters (sensitivity), the production costs, and simplicity of the sensors was accomplished, as required for wearable biomedical devices.
Computer-Assisted Laboratory Stations.
ERIC Educational Resources Information Center
Snyder, William J., Hanyak, Michael E.
1985-01-01
Describes the advantages and features of computer-assisted laboratory stations for use in a chemical engineering program. Also describes a typical experiment at such a station: determining the response times of a solid state humidity sensor at various humidity conditions and developing an empirical model for the sensor. (JN)
Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue.
Tsytsarev, Vassiliy; Akkentli, Fatih; Pumbo, Elena; Tang, Qinggong; Chen, Yu; Erzurumlu, Reha S; Papkovsky, Dmitri B
2017-04-01
Brain imaging methods are continually improving. Imaging of the cerebral cortex is widely used in both animal experiments and charting human brain function in health and disease. Among the animal models, the rodent cerebral cortex has been widely used because of patterned neural representation of the whiskers on the snout and relative ease of activating cortical tissue with whisker stimulation. We tested a new planar solid-state oxygen sensor comprising a polymeric film with a phosphorescent oxygen-sensitive coating on the working side, to monitor dynamics of oxygen metabolism in the cerebral cortex following sensory stimulation. Sensory stimulation led to changes in oxygenation and deoxygenation processes of activated areas in the barrel cortex. We demonstrate the possibility of dynamic mapping of relative changes in oxygenation in live mouse brain tissue with such a sensor. Oxygenation-based functional magnetic resonance imaging (fMRI) is very effective method for functional brain mapping but have high costs and limited spatial resolution. Optical imaging of intrinsic signal (IOS) does not provide the required sensitivity, and voltage-sensitive dye optical imaging (VSDi) has limited applicability due to significant toxicity of the voltage-sensitive dye. Our planar solid-state oxygen sensor imaging approach circumvents these limitations, providing a simple optical contrast agent with low toxicity and rapid application. The planar solid-state oxygen sensor described here can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo. Further, this approach allows visualization of local neural activity with high temporal and spatial resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Extended range chemical sensing apparatus
Hughes, R.C.; Schubert, W.K.
1994-01-18
An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.
NASA Astrophysics Data System (ADS)
Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.
2014-05-01
Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01
2012-08-15
Bragg grating ( FBG ) sensors within these composite structures allows one to correlate sensor response features to “critical damage events” within the...material. The unique capabilities of this identification strategy are due to the detailed information obtained from the FBG sensors and the... FBG sensors relate to damage states not merely strain amplitudes. The research objectives of this project were therefore to: demonstrate FBG
Pomerantsev, Alexey L; Kutsenova, Alla V; Rodionova, Oxana Ye
2017-02-01
A novel non-linear regression method for modeling non-isothermal thermogravimetric data is proposed. Experiments for several heating rates are analyzed simultaneously. The method is applicable to complex multi-stage processes when the number of stages is unknown. Prior knowledge of the type of kinetics is not required. The main idea is a consequent estimation of parameters when the overall model is successively changed from one level of modeling to another. At the first level, the Avrami-Erofeev functions are used. At the second level, the Sestak-Berggren functions are employed with the goal to broaden the overall model. The method is tested using both simulated and real-world data. A comparison of the proposed method with a recently published 'model-free' deconvolution method is presented.
Spatial effect of new municipal solid waste landfill siting using different guidelines.
Ahmad, Siti Zubaidah; Ahamad, Mohd Sanusi S; Yusoff, Mohd Suffian
2014-01-01
Proper implementation of landfill siting with the right regulations and constraints can prevent undesirable long-term effects. Different countries have respective guidelines on criteria for new landfill sites. In this article, we perform a comparative study of municipal solid waste landfill siting criteria stated in the policies and guidelines of eight different constitutional bodies from Malaysia, Australia, India, U.S.A., Europe, China and the Middle East, and the World Bank. Subsequently, a geographic information system (GIS) multi-criteria evaluation model was applied to determine new suitable landfill sites using different criterion parameters using a constraint mapping technique and weighted linear combination. Application of Macro Modeler provided in the GIS-IDRISI Andes software helps in building and executing multi-step models. In addition, the analytic hierarchy process technique was included to determine the criterion weight of the decision maker's preferences as part of the weighted linear combination procedure. The differences in spatial results of suitable sites obtained signifies that dissimilarity in guideline specifications and requirements will have an effect on the decision-making process.
Extended papers selected from ESSDERC 2015
NASA Astrophysics Data System (ADS)
Grasser, Tibor; Schmitz, Jurriaan; Lemme, Max C.
2016-11-01
This special issue of Solid State Electronics includes 28 papers which have been carefully selected from the best presentations given at the 45th European Solid-State Device Research Conference (ESSDERC 2015) held from September 14-18, 2015 in Graz, Austria. These papers cover a wide range of topics related to the research on solid-state devices. These topics are used also to organize the conference submissions and presentations into 7 tracks: CMOS Processes, Devices and Integration; Opto-, Power- and Microwave Devices; Modeling & Simulation; Characterization, Reliability & Yield; Advanced & Emerging Memories; MEMS, Sensors & Display Technologies; Emerging Non-CMOS Devices & Technologies.
NASA Astrophysics Data System (ADS)
Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.
2017-12-01
Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.
Wang, Hao; Jiang, Jie; Zhang, Guangjun
2017-04-21
The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters.
Wang, Hao; Jiang, Jie; Zhang, Guangjun
2017-01-01
The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters. PMID:28430132
Field comparison of optical and clark cell dissolved-oxygen sensors
Fulford, J.M.; Davies, W.J.; Garcia, L.
2005-01-01
Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinity <10 parts per thousand) environment to determine the sensitivity of the sensors to biofouling. The dissolved-oxygen sensors compared periodically to a hand-held dissolved oxygen sensor, but were not serviced or cleaned during the deployment. One of the Clark cell sensors and the optical sensor performed similarly during the deployment. The remaining Clark cell sensor was not aged correctly prior to deployment and did not perform as well as the other sensors. All sensors experienced substantial biofouling that gradually degraded the accuracy of the dissolved-oxygen measurement during the last half of the deployment period. Copyright ASCE 2005.
NASA Astrophysics Data System (ADS)
Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir
2018-03-01
A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.
NASA Astrophysics Data System (ADS)
Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen
2018-03-01
An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.
Ficken, James H.; Scott, Carl T.
1988-01-01
This manual describes the U.S. Geological Survey Minimonitor Water Quality Data Measuring and Recording System. Instructions for calibrating, servicing, maintaining, and operating the system are provided. The Survey Minimonitor is a battery-powered , multiparameter water quality monitoring instrument designed for field use. A watertight can containing signal conditioners is connected with cable and waterproof connectors to various water quality sensors. Data are recorded on a punched paper-tape recorder. An external battery is required. The operation and maintenance of various sensors and signal conditioners are discussed, for temperature, specific conductance, dissolved oxygen, and pH. Calibration instructions are provided for each parameter, along with maintenance instructions. Sections of the report explain how to connect the Minimonitor to measure direct-current voltages, such as signal outputs from other instruments. Instructions for connecting a satellite data-collection platform or a solid-state data recorder to the Minimonitor are given also. Basic information is given for servicing the Minimonitor and trouble-shooting some of its electronic components. The use of test boxes to test sensors, isolate component problems, and verify calibration values is discussed. (USGS)
High-fidelity projective read-out of a solid-state spin quantum register.
Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald
2011-09-21
Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved
Design and implementation of atmospheric multi-parameter sensor for UAVs
NASA Astrophysics Data System (ADS)
Yu, F.; Zhao, Y.; Chen, G.; Liu, Y.; Han, Y.
2017-12-01
With the rapid development of industry and the increase of cars in developing countries, air pollutants have caused a series of environmental issues such as haze and smog. However, air pollution is a process of surface-to-air mass exchange, and various kinds of atmospheric factors have close association with aerosol concentration, such as temperature, humidity, etc. Vertical distributions of aerosol in the region provide an important clue to reveal the exchange mechanism in the atmosphere between atmospheric boundary layer and troposphere. Among the various kinds of flying platforms, unmanned aerial vehicles (UAVs) shows more advantages in vertical measurement of aerosol owned to its flexibility and low cost. However, only few sensors could be mounted on the UAVs because of the limited size and power requirement. Here, a light-weight, low-power atmospheric multi-parameter sensor (AMPS) is proposed and could be mounted on several kinds of UAV platforms. The AMPS integrates multi-sensors, which are the laser aerosol particle sensor, the temperature probe, the humidity probe and the pressure probe, in order to simultaneously sample the vertical distribution characters of aerosol particle concentration, temperature, relative humidity and atmospheric pressure. The data from the sensors are synchronized by a proposed communication mechanism based on GPS. Several kinds of housing are designed to accommodate the different payload requirements of UAVs in size and weight. The experiments were carried out with AMPS mounted on three kinds of flying platforms. The results shows that the power consumption is less than 1.3 W, with relatively high accuracy in temperature (±0.1°C), relative humidity (±0.8%RH), PM2.5 (<20%) and PM10 (<20%). Vertical profiles of PM2.5 and PM10 concentrations were observed simultaneously by the AMPS three times every day in five days. The results revealed the significant correlation between the aerosol particle concentration and atmospheric parameters. With low cost and flexibility, AMPS for UAVs provides an effective way to explore the properties of aerosol vertical distribution, and to monitor air pollutants flexibly.
Dong, Qiuchen; Huang, Yikun; Song, Donghui; Wu, Huixiang; Cao, Fei; Lei, Yu
2018-07-30
Both pH-sensitive and glucose-responsive rhodium oxide nanocorals (Rh 2 O 3 NCs) were synthesized through electrospinning followed by high-temperature calcination. The as-prepared Rh 2 O 3 NCs were systematically characterized using various advanced techniques including scanning electron microscopy, X-ray powder diffraction and Raman spectroscopy, and then employed as a dual functional nanomaterial to fabricate a dual sensor for both non-enzymatic glucose sensing and solid-state pH monitoring. The sensing performance of the Rh 2 O 3 NCs based dual sensor toward pH and glucose was evaluated using open circuit potential, cyclic voltammetry and amperometric techniques, respectively. The results show that the as-prepared Rh 2 O 3 NCs not only maintain accurate and reversible pH sensitivity of Rh 2 O 3 , but also demonstrate a good electrocatalytic activity toward glucose oxidation in alkaline medium with a sensitivity of 11.46 μA mM -1 cm -2 , a limit of detection of 3.1 μM (S/N = 3), and a reasonable selectivity against various interferents in non-enzymatic glucose detection. Its accuracy in determining glucose in human serum samples was further demonstrated. These features indicate that the as-prepared Rh 2 O 3 NCs hold great promise as a dual-functional sensing material in the development of a high-performance sensor forManjakkal both solid-state pH and non-enzymatic glucose sensing. Copyright © 2018 Elsevier B.V. All rights reserved.
Multi-sensor data processing method for improved satellite retrievals
NASA Astrophysics Data System (ADS)
Fan, Xingwang
2017-04-01
Satellite remote sensing has provided massive data that improve the overall accuracy and extend the time series of environmental studies. In reflective solar bands, satellite data are related to land surface properties via radiative transfer (RT) equations. These equations generally include sensor-related (calibration coefficients), atmosphere-related (aerosol optical thickness) and surface-related (surface reflectance) parameters. It is an ill-posed problem to solve three parameters with only one RT equation. Even if there are two RT equations (dual-sensor data), the problem is still unsolvable. However, a robust solution can be obtained when any two parameters are known. If surface and atmosphere are known, sensor intercalibration can be performed. For example, the Advanced Very High Resolution Radiometer (AVHRR) was calibrated to the MODerate-resolution Imaging Spectroradiometer (MODIS) in Fan and Liu (2014) [Fan, X., and Liu, Y. (2014). Quantifying the relationship between intersensor images in solar reflective bands: Implications for intercalibration. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7727-7737.]. If sensor and surface are known, atmospheric data can be retrieved. For example, aerosol data were retrieved using tandem TERRA and AQUA MODIS images in Fan and Liu (2016a) [Fan, X., and Liu, Y. (2016a). Exploiting TERRA-AQUA MODIS relationship in the reflective solar bands for aerosol retrieval. Remote Sensing, 8(12), 996.]. If sensor and atmosphere are known, data consistency can be obtained. For example, Normalized Difference Vegetation Index (NDVI) data were intercalibrated among coarse-resolution sensors in Fan and Liu (2016b) [Fan, X., and Liu, Y. (2016b). A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 177-191.], and among fine-resolution sensors in Fan and Liu (2017) [Fan, X., and Liu, Y. (2017). A generalized model for intersensor NDVI calibration and its comparison with regression approaches. IEEE Transactions on Geoscience and Remote Sensing, 55(3), doi: 10.1109/TGRS.2016.2635802.]. These studies demonstrate the success of multi-sensor data and novel methods in the research domain of geoscience. These data will benefit remote sensing of terrestrial parameters in decadal timescales, such as soil salinity content in Fan et al. (2016) [Fan, X., Weng, Y., and Tao, J. (2016). Towards decadal soil salinity mapping using Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 52, 32-41.].
Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia
NASA Technical Reports Server (NTRS)
Ransom, K. J.; Sun, G.; Kharuk, V. I.; Howl, J.
2011-01-01
The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas.
Design Considerations For Imaging Charge-Coupled Device (ICCD) Star Sensors
NASA Astrophysics Data System (ADS)
McAloon, K. J.
1981-04-01
A development program is currently underway to produce a precision star sensor using imaging charge coupled device (ICCD) technology. The effort is the critical component development phase for the Air Force Multi-Mission Attitude Determination and Autonomous Navigation System (MADAN). A number of unique considerations have evolved in designing an arcsecond accuracy sensor around an ICCD detector. Three tiers of performance criteria are involved: at the spacecraft attitude determination system level, at the star sensor level, and at the detector level. Optimum attitude determination system performance involves a tradeoff between Kalman filter iteration time and sensor ICCD integration time. The ICCD star sensor lends itself to the use of a new approach in the functional interface between the attitude determination system and the sensor. At the sensor level image data processing tradeoffs are important for optimum sensor performance. These tradeoffs involve the sensor optic configuration, the optical point spread function (PSF) size and shape, the PSF position locator, and the microprocessor locator algorithm. Performance modelling of the sensor mandates the use of computer simulation programs. Five key performance parameters at the ICCD detector level are defined. ICCD error characteristics have also been isolated to five key parameters.
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X
2015-12-26
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X.
2015-01-01
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols. PMID:26712764
Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian
2017-01-01
The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Omega Design and FEA Based Coriolis Mass Flow Sensor (CMFS) Analysis Using Titanium Material
NASA Astrophysics Data System (ADS)
Patil, Pravin P.; Kumar, Ashwani; Ahmad, Faraz
2018-02-01
The main highlight of this research work is evaluation of resonant frequency for titanium omega type coriolis mass flow sensor. Coriolis mass flow sensor is used for measuring direct mass flow in pipe useful for various industrial applications. It works on the principle of Coriolis effect. Finite Element Analysis (FEA) simulation of omega flow sensor was performed using Ansys 14.5 and Solid Edge, Pro-E was used for modelling of omega tube. Titanium was selected as omega tube material. Experimental setup was prepared for omega tube coriolis flow sensor for performing different test. Experimental setup was used for investigation of different parameters effect on CMFS and validation of simulation results.
Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
Gao, Lei; Bourke, A K; Nelson, John
2014-06-01
Physical activity has a positive impact on people's well-being and it had been shown to decrease the occurrence of chronic diseases in the older adult population. To date, a substantial amount of research studies exist, which focus on activity recognition using inertial sensors. Many of these studies adopt a single sensor approach and focus on proposing novel features combined with complex classifiers to improve the overall recognition accuracy. In addition, the implementation of the advanced feature extraction algorithms and the complex classifiers exceed the computing ability of most current wearable sensor platforms. This paper proposes a method to adopt multiple sensors on distributed body locations to overcome this problem. The objective of the proposed system is to achieve higher recognition accuracy with "light-weight" signal processing algorithms, which run on a distributed computing based sensor system comprised of computationally efficient nodes. For analysing and evaluating the multi-sensor system, eight subjects were recruited to perform eight normal scripted activities in different life scenarios, each repeated three times. Thus a total of 192 activities were recorded resulting in 864 separate annotated activity states. The methods for designing such a multi-sensor system required consideration of the following: signal pre-processing algorithms, sampling rate, feature selection and classifier selection. Each has been investigated and the most appropriate approach is selected to achieve a trade-off between recognition accuracy and computing execution time. A comparison of six different systems, which employ single or multiple sensors, is presented. The experimental results illustrate that the proposed multi-sensor system can achieve an overall recognition accuracy of 96.4% by adopting the mean and variance features, using the Decision Tree classifier. The results demonstrate that elaborate classifiers and feature sets are not required to achieve high recognition accuracies on a multi-sensor system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-01
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777
Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-05
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.
Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition
NASA Astrophysics Data System (ADS)
Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.
2006-03-01
As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.
A CMOS-based large-area high-resolution imaging system for high-energy x-ray applications
NASA Astrophysics Data System (ADS)
Rodricks, Brian; Fowler, Boyd; Liu, Chiao; Lowes, John; Haeffner, Dean; Lienert, Ulrich; Almer, John
2008-08-01
CCDs have been the primary sensor in imaging systems for x-ray diffraction and imaging applications in recent years. CCDs have met the fundamental requirements of low noise, high-sensitivity, high dynamic range and spatial resolution necessary for these scientific applications. State-of-the-art CMOS image sensor (CIS) technology has experienced dramatic improvements recently and their performance is rivaling or surpassing that of most CCDs. The advancement of CIS technology is at an ever-accelerating pace and is driven by the multi-billion dollar consumer market. There are several advantages of CIS over traditional CCDs and other solid-state imaging devices; they include low power, high-speed operation, system-on-chip integration and lower manufacturing costs. The combination of superior imaging performance and system advantages makes CIS a good candidate for high-sensitivity imaging system development. This paper will describe a 1344 x 1212 CIS imaging system with a 19.5μm pitch optimized for x-ray scattering studies at high-energies. Fundamental metrics of linearity, dynamic range, spatial resolution, conversion gain, sensitivity are estimated. The Detective Quantum Efficiency (DQE) is also estimated. Representative x-ray diffraction images are presented. Diffraction images are compared against a CCD-based imaging system.
The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer
NASA Technical Reports Server (NTRS)
Davis, Anthony B.
2012-01-01
Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.
Compact, diode-pumped, solid-state lasers for next generation defence and security sensors
NASA Astrophysics Data System (ADS)
Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.
2015-06-01
Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.
Dual-core optical fiber based strain sensor for remote sensing in hard-to-reach areas
NASA Astrophysics Data System (ADS)
MÄ kowska, Anna; Szostkiewicz, Łukasz; Kołakowska, Agnieszka; Budnicki, Dawid; Bieńkowska, Beata; Ostrowski, Łukasz; Murawski, Michał; Napierała, Marek; Mergo, Paweł; Nasiłowski, Tomasz
2017-10-01
We present research on optical fiber sensors based on microstructured multi-core fiber. Elaborated sensor can be advantageously used in hard-to-reach areas by taking advantage of the fact, that optical fibers can play both the role of sensing elements and they can realize signal delivery. By using the sensor, it is possible to increase the level of the safety in the explosive endangered areas, e.g. in mine-like objects. As a base for the strain remote sensor we use dual-core fibers. The multi-core fibers possess a characteristic parameter called crosstalk, which is a measure of the amount of signal which can pass to the adjacent core. The strain-sensitive area is made by creating the tapered section, in which the level of crosstalk is changed. Due to this fact, we present broadened conception of fiber optic sensor designing. Strain measurement is realized thanks to the fact, that depending on the strain applied, the power distribution between the cores of dual-core fibers changes. Principle of operation allows realization of measurements both in wavelength and power domain.
ALLTEM UXO detection and discrimination
Asch, T.H.; Wright, D.L.; Moulton, C.W.; Irons, T.P.; Nabighian, M.N.
2008-01-01
ALLTEM is a multi-axis electromagnetic induction system designed for unexploded ordnance (UXO) applications. It uses a continuous triangle-wave excitation and provides good late-time signal-to-noise ratio (SNR) especially for ferrous targets. Multi-axis transmitter (Tx) and receiver (Rx) systems such as ALLTEM provide a richer data set from which to invert for the target parameters required to distinguish between clutter and UXO. Inversions of field data over the Army's UXO Calibration Grid and Blind Test Grid at the Yuma Proving Ground (YPG), Arizona in 2006 produced polarizability moment values for many buried UXO items that were reasonable and generally repeatable for targets of the same type buried at different orientations and depths. In 2007 a test stand was constructed that allows for collection of data with varying spatial data density and accurate automated position control. The behavior of inverted ALLTEM test stand data as a function of spatial data density, sensor SNR, and position error has been investigated. The results indicate that the ALLTEM inversion algorithm is more tolerant of sensor noise and position error than has been reported for single-axis systems. A high confidence level in inversion-derived target parameters is required when a target is declared to be harmless scrap metal that may safely be left in the ground. Unless high confidence can be demonstrated, state regulators will likely require that targets be dug regardless of any "no-dig" classifications produced from inversions, in which case remediation costs would not be decreased.
Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju
2010-01-01
Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased.
Advanced Integrated Multi-sensor Surveillance (AIMS). Mission, Function, Task Analysis
2007-06-01
flaps, elevators and rudder control surfaces are based on conventional mechanical systems, using dual hydraulic boosters. Trim tabs are provided for... dumping the solid waste overboard it is difficult to determine its source. When an oil slick has been detected, the crew attempts to discover the...NAVCOM advises helicopter of on-scene weather, elevation, flight conditions and salient terrain features which may impact hoisting requirements
Development of a Moisture-in-Solid-Insulation Sensor for Power Transformers
García, Belén; García, Diego; Robles, Guillermo
2015-01-01
Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements. PMID:25658393
Development of a moisture-in-solid-insulation sensor for power transformers.
García, Belén; García, Diego; Robles, Guillermo
2015-02-04
Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements.
Active chatter suppression with displacement-only measurement in turning process
NASA Astrophysics Data System (ADS)
Ma, Haifeng; Wu, Jianhua; Yang, Liuqing; Xiong, Zhenhua
2017-08-01
Regenerative chatter is a major hindrance for achieving high quality and high production rate in machining processes. Various active controllers have been proposed to mitigate chatter. However, most of existing controllers were developed on the basis of multi-states feedback of the system and state observers were usually needed. Moreover, model parameters of the machining process (mass, damping and stiffness) were required in existing active controllers. In this study, an active sliding mode controller, which employs a dynamic output feedback sliding surface for the unmatched condition and an adaptive law for disturbance estimation, is designed, analyzed, and validated for chatter suppression in turning process. Only displacement measurement is required by this approach. Other sensors and state observers are not needed. Moreover, it facilitates a rapid implementation since the designed controller is established without using model parameters of the turning process. Theoretical analysis, numerical simulations and experiments on a computer numerical control (CNC) lathe are presented. It shows that the chatter can be substantially attenuated and the chatter-free region can be significantly expanded with the presented method.
Shamwell, E Jared; Nothwang, William D; Perlis, Donald
2018-05-04
Aimed at improving size, weight, and power (SWaP)-constrained robotic vision-aided state estimation, we describe our unsupervised, deep convolutional-deconvolutional sensor fusion network, Multi-Hypothesis DeepEfference (MHDE). MHDE learns to intelligently combine noisy heterogeneous sensor data to predict several probable hypotheses for the dense, pixel-level correspondence between a source image and an unseen target image. We show how our multi-hypothesis formulation provides increased robustness against dynamic, heteroscedastic sensor and motion noise by computing hypothesis image mappings and predictions at 76⁻357 Hz depending on the number of hypotheses being generated. MHDE fuses noisy, heterogeneous sensory inputs using two parallel, inter-connected architectural pathways and n (1⁻20 in this work) multi-hypothesis generating sub-pathways to produce n global correspondence estimates between a source and a target image. We evaluated MHDE on the KITTI Odometry dataset and benchmarked it against the vision-only DeepMatching and Deformable Spatial Pyramids algorithms and were able to demonstrate a significant runtime decrease and a performance increase compared to the next-best performing method.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-10-15
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996
An inverse method to determine the mechanical properties of the iris in vivo
2014-01-01
Background Understanding the mechanical properties of the iris can help to have an insight into the eye diseases with abnormalities of the iris morphology. Material parameters of the iris were simply calculated relying on the ex vivo experiment. However, the mechanical response of the iris in vivo is different from that ex vivo, therefore, a method was put forward to determine the material parameters of the iris using the optimization method in combination with the finite element method based on the in vivo experiment. Material and methods Ocular hypertension was induced by rapid perfusion to the anterior chamber, during perfusion intraocular pressures in the anterior and posterior chamber were record by sensors, images of the anterior segment were captured by the ultrasonic system. The displacement of the characteristic points on the surface of the iris was calculated. A finite element model of the anterior chamber was developed using the ultrasonic image before perfusion, the multi-island genetic algorithm was employed to determine the material parameters of the iris by minimizing the difference between the finite element simulation and the experimental measurements. Results Material parameters of the iris in vivo were identified as the iris was taken as a nearly incompressible second-order Ogden solid. Values of the parameters μ1, α1, μ2 and α2 were 0.0861 ± 0.0080 MPa, 54.2546 ± 12.7180, 0.0754 ± 0.0200 MPa, and 48.0716 ± 15.7796 respectively. The stability of the inverse finite element method was verified, the sensitivity of the model parameters was investigated. Conclusion Material properties of the iris in vivo could be determined using the multi-island genetic algorithm coupled with the finite element method based on the experiment. PMID:24886660
Single stage AC-DC converter for Galfenol-based micro-power energy harvesters
NASA Astrophysics Data System (ADS)
Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James
2014-06-01
Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.
Characterization Techniques for a MEMS Electric-Field Sensor in Vacuum
2012-01-01
nected so that the noise contributions of the transimpedance amplifier and the digitizer may be determined. The raw voltage data, after processing...of Vrms/rtHz. The noise may be seen in terms of the device trans- duction physics, signal conditioning ( transimpedance amp), and DAQ. (right) Field...Sensor using Thermal Actua- tors with Mechanically Amplified Response,” Solid-State Sensors, Actuators and Microsystems Confer- ence, 2007. TRANSDUCERS
NASA Astrophysics Data System (ADS)
Hussein, I.; Wilkins, M.; Roscoe, C.; Faber, W.; Chakravorty, S.; Schumacher, P.
2016-09-01
Finite Set Statistics (FISST) is a rigorous Bayesian multi-hypothesis management tool for the joint detection, classification and tracking of multi-sensor, multi-object systems. Implicit within the approach are solutions to the data association and target label-tracking problems. The full FISST filtering equations, however, are intractable. While FISST-based methods such as the PHD and CPHD filters are tractable, they require heavy moment approximations to the full FISST equations that result in a significant loss of information contained in the collected data. In this paper, we review Smart Sampling Markov Chain Monte Carlo (SSMCMC) that enables FISST to be tractable while avoiding moment approximations. We study the effect of tuning key SSMCMC parameters on tracking quality and computation time. The study is performed on a representative space object catalog with varying numbers of RSOs. The solution is implemented in the Scala computing language at the Maui High Performance Computing Center (MHPCC) facility.
Application of gas sensor arrays in assessment of wastewater purification effects.
Guz, Łukasz; Łagód, Grzegorz; Jaromin-Gleń, Katarzyna; Suchorab, Zbigniew; Sobczuk, Henryk; Bieganowski, Andrzej
2014-12-23
A gas sensor array consisting of eight metal oxide semiconductor (MOS) type gas sensors was evaluated for its ability for assessment of the selected wastewater parameters. Municipal wastewater was collected in a wastewater treatment plant (WWTP) in a primary sedimentation tank and was treated in a laboratory-scale sequential batch reactor (SBR). A comparison of the gas sensor array (electronic nose) response to the standard physical-chemical parameters of treated wastewater was performed. To analyze the measurement results, artificial neural networks were used. E-nose-gas sensors array and artificial neural networks proved to be a suitable method for the monitoring of treated wastewater quality. Neural networks used for data validation showed high correlation between the electronic nose readouts and: (I) chemical oxygen demand (COD) (r = 0.988); (II) total suspended solids (TSS) (r = 0.938); (III) turbidity (r = 0.940); (IV) pH (r = 0.554); (V) nitrogen compounds: N-NO3 (r = 0.958), N-NO2 (r = 0.869) and N-NH3 (r = 0.978); (VI) and volatile organic compounds (VOC) (r = 0.987). Good correlation of the abovementioned parameters are observed under stable treatment conditions in a laboratory batch reactor.
Miniature piezoresistive solid state integrated pressure sensors
NASA Technical Reports Server (NTRS)
Kahng, S. K.
1980-01-01
The characteristics of silicon pressure sensors with an ultra-small diaphragm are described. The pressure sensors utilize rectangular diaphragm as small as 0.0127 x 0.0254 cm and a p-type Wheatstone bridge consisting of diffused piezoresistive elements, 0.000254 cm by 0.00254 cm. These sensors exhibit as high as 0.5 MHz natural frequency and 1 mV/V/psi pressure sensitivity. Fabrication techniques and high frequency results from shock tube testing and low frequency comparison with microphones are presented.
Navigation in Difficult Environments: Multi-Sensor Fusion Techniques
2010-03-01
Hwang , Introduction to Random Signals and Applied Kalman Filtering, 3rd ed., John Wiley & Sons, Inc., New York, 1997. [17] J. L. Farrell, “GPS/INS...nav solution Navigation outputs Estimation of inertial errors ( Kalman filter) Error estimates Core sensor Incoming signal INS Estimates of signal...the INS drift terms is performed using the mechanism of a complementary Kalman filter. The idea is that a signal parameter can be generally
Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes
NASA Astrophysics Data System (ADS)
Cervone, G.; Kafatos, M.; Napoletani, D.; Singh, R. P.
2004-05-01
Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes. The proposed methodology has been employed using Surface Latent Heat Flux (SLHF) data to study the earthquakes which occurred on 14 August 2003 and on 1 March 2004 in Greece. A single prominent SLHF anomaly has been found about two weeks prior to each of the earthquakes.
Transparent SiO2-Ag core-satellite nanoparticle assembled layer for plasmonic-based chemical sensors
NASA Astrophysics Data System (ADS)
Chen, Tsung-Han; Jean, Ren-Der; Chiu, Kuo-Chuang; Chen, Chun-Hua; Liu, Dean-Mo
2012-05-01
We discovered a promising sensing capability of SiO2@Ag core-satellite nanoparticles with respect to organic melamine when they were consolidated into a solid-type thin-film entity. A series of theoretical models were proposed which provided calculation outcomes superior to those of existing models for the localized surface plasmon resonance spectra of the solid-state assemblies. We envisioned not only that such a SiO2@Ag film is a potential candidate for a transparent solid-state optical nanosensor for the detection of organic molecules but also that the resulting plasmonic resonance model facilitates a better understanding of such a solid-state nanosensor used for a number of sensory applications.
A data base of ASAS digital imagery. [Advanced Solid-state Array Spectroradiometer
NASA Technical Reports Server (NTRS)
Irons, James R.; Meeson, Blanche W.; Dabney, Philip W.; Kovalick, William M.; Graham, David W.; Hahn, Daniel S.
1992-01-01
The Advanced Solid-State Array Spectroradiometer (ASAS) is an airborne, off-nadir tilting, imaging spectroradiometer that acquires digital image data for 29 spectral bands in the visible and near-infrared. The sensor is used principally for studies of the bidirectional distribution of solar radiation scattered by terrestial surfaces. ASAS has acquired data for a number of terrestial ecosystem field experiments and investigators have received over 170 radiometrically corrected, multiangle, digital image data sets. A database of ASAS digital imagery has been established in the Pilot Land Data System (PLDS) at the NASA/Goddard Space Flight Center to provide access to these data by the scientific community. ASAS, its processed data, and the PLDS are described, together with recent improvements to the sensor system.
An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor
NASA Astrophysics Data System (ADS)
Staderini, Enrico Maria; Castellano, Alfredo
1986-02-01
An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.
Mapping of submerged vegetation using remote sensing technology
NASA Technical Reports Server (NTRS)
Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.
1981-01-01
Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan
The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants
Generalized Grueneisen tensor from solid nonlinearity parameters
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1980-01-01
Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.
NASA Astrophysics Data System (ADS)
Hassanabadi, Amir Hossein; Shafiee, Masoud; Puig, Vicenc
2018-01-01
In this paper, sensor fault diagnosis of a singular delayed linear parameter varying (LPV) system is considered. In the considered system, the model matrices are dependent on some parameters which are real-time measurable. The case of inexact parameter measurements is considered which is close to real situations. Fault diagnosis in this system is achieved via fault estimation. For this purpose, an augmented system is created by including sensor faults as additional system states. Then, an unknown input observer (UIO) is designed which estimates both the system states and the faults in the presence of measurement noise, disturbances and uncertainty induced by inexact measured parameters. Error dynamics and the original system constitute an uncertain system due to inconsistencies between real and measured values of the parameters. Then, the robust estimation of the system states and the faults are achieved with H∞ performance and formulated with a set of linear matrix inequalities (LMIs). The designed UIO is also applicable for fault diagnosis of singular delayed LPV systems with unmeasurable scheduling variables. The efficiency of the proposed approach is illustrated with an example.
Integrated photonics for fiber optic based temperature sensing
NASA Astrophysics Data System (ADS)
Evenblij, R. S.; van Leest, T.; Haverdings, M. B.
2017-09-01
One of the promising space applications areas for fibre sensing is high reliable thermal mapping of metrology structures for effects as thermal deformation, focal plane distortion, etc. Subsequently, multi-point temperature sensing capability for payload panels and instrumentation instead of, or in addition to conventional thermo-couple technology will drastically reduce electrical wiring and sensor materials to minimize weight and costs. Current fiber sensing technologies based on solid state ASPIC (Application Specific Photonic Integrated Circuits) technology, allow significant miniaturization of instrumentation and improved reliability. These imperative aspects make the technology candidate for applications in harsh environments such as space. One of the major aspects in order to mature ASPIC technology for space is assessment on radiation hardness. This paper describes the results of radiation hardness experiments on ASPIC including typical multipoint temperature sensing and thermal mapping capabilities.
Solid-state Bonding of Superplastic Aluminum Alloy 7475 Sheet
NASA Technical Reports Server (NTRS)
Byun, T. D. S.; Vastava, R. B.
1985-01-01
Experimental works were carried out to study the feasibility of solid state bonding of superplastic aluminum 7475 sheet. Amount of deformation, bonding time, surface cleaning method and intermediate layer were the process parameters investigated. Other parameters, held constant by the superplastic forming condition which is required to obtain a concurrent solid state bonding, are bonding temperature, bonding pressure and atmosphere. Bond integrity was evaluated through metallographic examination, X-ray line scan analysis, SEM fractographic analysis and lap shear tests. The early results of the development program indicated that sound solid state bonding was accomplished for this high strength 7475 alloy with significant amounts of deformation. A thin intermediate layer of the soft 5052 aluminum alloy aided in achieving a solid state bonding by reducing the required amount of plastic deformation at the interface. Bond strength was substantially increased by a post bond heat treatment.
A potential hyperspectral remote sensing imager for water quality measurements
NASA Astrophysics Data System (ADS)
Zur, Yoav; Braun, Ofer; Stavitsky, David; Blasberger, Avigdor
2003-04-01
Utilization of Pan Chromatic and Multi Spectral Remote Sensing Imagery is wide spreading and becoming an established business for commercial suppliers of such imagery like ISI and others. Some emerging technologies are being used to generate Hyper-Spectral imagery (HSI) by aircraft as well as other platforms. The commercialization of such technology for Remote Sensing from space is still questionable and depends upon several parameters including maturity, cost, market reception and many others. HSI can be used in a variety of applications in agriculture, urban mapping, geology and others. One outstanding potential usage of HSI is for water quality monitoring, a subject studied in this paper. Water quality monitoring is becoming a major area of interest in HSI due to the increase in water demand around the globe. The ability to monitor water quality in real time having both spatial and temporal resolution is one of the advantages of Remote Sensing. This ability is not limited only for measurements of oceans and inland water, but can be applied for drinking and irrigation water reservoirs as well. HSI in the UV-VNIR has the ability to measure a wide range of constituents that define water quality. Among the constituents that can be measured are the pigment concentration of various algae, chlorophyll a and c, carotenoids and phycocyanin, thus enabling to define the algal phyla. Other parameters that can be measured are TSS (Total Suspended Solids), turbidity, BOD (Biological Oxygen Demand), hydrocarbons, oxygen demand. The study specifies the properties of such a space borne device that results from the spectral signatures and the absorption bands of the constituents in question. Other parameters considered are the repetition of measurements, the spatial aspects of the sensor and the SNR of the sensor in question.
Predictive sensor method and apparatus
NASA Technical Reports Server (NTRS)
Nail, William L. (Inventor); Koger, Thomas L. (Inventor); Cambridge, Vivien (Inventor)
1990-01-01
A predictive algorithm is used to determine, in near real time, the steady state response of a slow responding sensor such as hydrogen gas sensor of the type which produces an output current proportional to the partial pressure of the hydrogen present. A microprocessor connected to the sensor samples the sensor output at small regular time intervals and predicts the steady state response of the sensor in response to a perturbation in the parameter being sensed, based on the beginning and end samples of the sensor output for the current sample time interval.
Multiparameter Estimation in Networked Quantum Sensors
NASA Astrophysics Data System (ADS)
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
2018-02-01
We introduce a general model for a network of quantum sensors, and we use this model to consider the following question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. This immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or nonlinear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.
High-Sensitivity GaN Microchemical Sensors
NASA Technical Reports Server (NTRS)
Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas
2009-01-01
Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.
Solid-state Distributed Temperature Control for International Space Station
NASA Technical Reports Server (NTRS)
Holladay, Jon B.; Reagan, Shawn E.; Day, Greg
2004-01-01
A newly developed solid-state temperature controller will offer greater flexibility in the thermal control of aerospace vehicle structures. A status of the hardware development along with its implementation on the Multi- Purpose Logistics Module will be provided. Numerous advantages of the device will also be discussed with regards to current and future flight vehicle implementations.
NASA Astrophysics Data System (ADS)
Estuar, Maria Regina Justina; Victorino, John Noel; Coronel, Andrei; Co, Jerelyn; Tiausas, Francis; Señires, Chiara Veronica
2017-09-01
Use of wireless sensor networks and smartphone integration design to monitor environmental parameters surrounding plantations is made possible because of readily available and affordable sensors. Providing low cost monitoring devices would be beneficial, especially to small farm owners, in a developing country like the Philippines, where agriculture covers a significant amount of the labor market. This study discusses the integration of wireless soil sensor devices and smartphones to create an application that will use multidimensional analysis to detect the presence or absence of plant disease. Specifically, soil sensors are designed to collect soil quality parameters in a sink node from which the smartphone collects data from via Bluetooth. Given these, there is a need to develop a classification model on the mobile phone that will report infection status of a soil. Though tree classification is the most appropriate approach for continuous parameter-based datasets, there is a need to determine whether tree models will result to coherent results or not. Soil sensor data that resides on the phone is modeled using several variations of decision tree, namely: decision tree (DT), best-fit (BF) decision tree, functional tree (FT), Naive Bayes (NB) decision tree, J48, J48graft and LAD tree, where decision tree approaches the problem by considering all sensor nodes as one. Results show that there are significant differences among soil sensor parameters indicating that there are variances in scores between the infected and uninfected sites. Furthermore, analysis of variance in accuracy, recall, precision and F1 measure scores from tree classification models homogeneity among NBTree, J48graft and J48 tree classification models.
The Present State of Amperometric Nanowire Sensors for Chemical and Biological Detection
2006-10-01
reported for a multi(nano)wire carbon monoxide 6 sensor (17). A single gallium oxide nanowire ethanol sensor with a 2.5 second response time has also...Covington, J. A.; Gardner, J. W.; Bartlett, P. N.; Toh, C-S. Conductive polymer gate FET devices for vapour sensing. IEE Proceedings - Circuits...detecting organic vapours . Sensors and Actuators B 2001, 77 (1–2), 155–162. 48. Malliaras G.; Friend, R. An organic electronics primer. Physics
Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.
Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef
2015-09-30
This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.
A Solid-State Modulator for High Speed Kickers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Cook, E G; Chen, Y J
2001-06-11
An all solid-state modulator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high-speed beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. It provides a nominal 18kV pulse with {+-} 10% amplitude modulation on the order of several MHz, rise times on the order of 10nS, and can be configured for either positive or negative polarity. The presentation will include measured performance data.
Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu
2016-08-10
The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.
NASA Astrophysics Data System (ADS)
Dougherty, Andrew W.
Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor responses in the time, gas and temperature domains, and the dual representation of the support vector regression solution is shown to provide insight into the sensor's sensitivity and potential orthogonality. Finally, the dual weights of the support vector regression solution to the sensor's response are suggested as a fitness function for a genetic algorithm, or some other method for efficiently searching large parameter spaces.
Applying a particle filtering technique for canola crop growth stage estimation in Canada
NASA Astrophysics Data System (ADS)
Sinha, Abhijit; Tan, Weikai; Li, Yifeng; McNairn, Heather; Jiao, Xianfeng; Hosseini, Mehdi
2017-10-01
Accurate crop growth stage estimation is important in precision agriculture as it facilitates improved crop management, pest and disease mitigation and resource planning. Earth observation imagery, specifically Synthetic Aperture Radar (SAR) data, can provide field level growth estimates while covering regional scales. In this paper, RADARSAT-2 quad polarization and TerraSAR-X dual polarization SAR data and ground truth growth stage data are used to model the influence of canola growth stages on SAR imagery extracted parameters. The details of the growth stage modeling work are provided, including a) the development of a new crop growth stage indicator that is continuous and suitable as the state variable in the dynamic estimation procedure; b) a selection procedure for SAR polarimetric parameters that is sensitive to both linear and nonlinear dependency between variables; and c) procedures for compensation of SAR polarimetric parameters for different beam modes. The data was collected over three crop growth seasons in Manitoba, Canada, and the growth model provides the foundation of a novel dynamic filtering framework for real-time estimation of canola growth stages using the multi-sensor and multi-mode SAR data. A description of the dynamic filtering framework that uses particle filter as the estimator is also provided in this paper.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources.
García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco
2018-03-22
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources
García, Emilio; Morant, Francisco
2018-01-01
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions. PMID:29565823
Impact on enzyme activity as a new quality index of wastewater.
Balestri, Francesco; Moschini, Roberta; Cappiello, Mario; Del-Corso, Antonella; Mura, Umberto
2013-03-15
The aim of this study was to define a new indicator for the quality of wastewaters that are released into the environment. A quality index is proposed for wastewater samples in terms of the inertness of wastewater samples toward enzyme activity. This involves taking advantage of the sensitivity of enzymes to pollutants that may be present in the waste samples. The effect of wastewater samples on the rate of a number of different enzyme-catalyzed reactions was measured, and the results for all the selected enzymes were analyzed in an integrated fashion (multi-enzymatic sensor). This approach enabled us to define an overall quality index, the "Impact on Enzyme Function" (IEF-index), which is composed of three indicators: i) the Synoptic parameter, related to the average effect of the waste sample on each component of the enzymatic sensor; ii) the Peak parameter, related to the maximum effect observed among all the effects exerted by the sample on the sensor components; and, iii) the Interference parameter, related to the number of sensor components that are affected less than a fixed threshold value. A number of water based samples including public potable tap water, fluids from urban sewage systems, wastewater disposal from leather, paper and dye industries were analyzed and the IEF-index was then determined. Although the IEF-index cannot discriminate between different types of wastewater samples, it could be a useful parameter in monitoring the improvement of the quality of a specific sample. However, by analyzing an adequate number of waste samples of the same type, even from different local contexts, the profile of the impact of each component of the multi-enzymatic sensor could be typical for specific types of waste. The IEF-index is proposed as a supplementary qualification score for wastewaters, in addition to the certification of the waste's conformity to legal requirements. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Balle, Frank; Magin, Jens
Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.
Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film
NASA Astrophysics Data System (ADS)
Wang, He-lin; Yang, Ai-jun; Sui, Cheng-hua
2013-11-01
A high temperature sensor based on the multi-parameter temperature dependent characteristic of photoluminescence (PL) of quantum dot (QD) thin film is demonstrated by depositing the CdSe/ZnS core/shell QDs on the SiO2 glass substrates. The variations of the intensity, the peak wavelength and the full width at half maximum (FWHM) of PL spectra with temperature are studied experimentally and theoretically. The results indicate that the peak wavelength of the PL spectra changes linearly with temperature, while the PL intensity and FWHM vary exponentially for the temperature range from 30 °C to 180 °C. Using the obtained temperature dependent optical parameters, the resolution of the designed sensor can reach 0.1 nm/°C.
Development of SPR temperature sensor using Au/TiO2 on hetero-core optical fiber
NASA Astrophysics Data System (ADS)
Kitagawa, Sho; Yamazaki, Hiroshi; Hosoki, Ai; Nishiyama, Michiko; Watanabe, Kazuhiro
2016-03-01
This paper describes a novel temperature sensor based on a hetero-core structured fiber optic surface plasmon resonance (SPR) sensor with multi-layer thin film of gold (Au) and titanium dioxide (TiO2). Temperature condition is an essential parameter in chemical plants for avoiding fire accident and controlling qualities of chemical substances. Several fiber optic temperature sensors have been developed for some advantages such as immunity to electromagnetic interference, corrosion resistance and no electrical leakage. The proposed hetero-core fiber optic SPR sensor detects temperature condition by measuring slight refractive index changes of TiO2 which has a large thermo-optic coefficient. We experimentally confirmed that the SPR resonant wavelength in the hetero-core SPR sensor with coating an Au film which slightly depended on temperature changes in the range from 20 °C to 80 °C. In addition, it was experimentally shown that the proposed SPR temperature sensor with multi-layer film of Au and TiO2 had the SPR resonant wavelength shift of 1.6 nm due to temperature change from -10 °C to 50 °C. As a result, a series of experiments successfully demonstrated that the proposed sensor was able to detect temperature directly depending on the thermo-optic effect of TiO2.
Foong, Shaohui; Sun, Zhenglong
2016-08-12
In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.
Fiber Optic Based Thermometry System for Superconducting RF Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochergin, Vladimir
2013-05-06
Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During themore » course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.« less
Lee, Chi-Yuan; Chan, Pin-Cheng; Lee, Chung-Ju
2010-01-01
Temperature, voltage and fuel flow distribution all contribute considerably to fuel cell performance. Conventional methods cannot accurately determine parameter changes inside a fuel cell. This investigation developed flexible and multi-functional micro sensors on a 40 μm-thick stainless steel foil substrate by using micro-electro-mechanical systems (MEMS) and embedded them in a proton exchange membrane fuel cell (PEMFC) to measure the temperature, voltage and flow. Users can monitor and control in situ the temperature, voltage and fuel flow distribution in the cell. Thereby, both fuel cell performance and lifetime can be increased. PMID:22163545
A scale space feature based registration technique for fusion of satellite imagery
NASA Technical Reports Server (NTRS)
Raghavan, Srini; Cromp, Robert F.; Campbell, William C.
1997-01-01
Feature based registration is one of the most reliable methods to register multi-sensor images (both active and passive imagery) since features are often more reliable than intensity or radiometric values. The only situation where a feature based approach will fail is when the scene is completely homogenous or densely textural in which case a combination of feature and intensity based methods may yield better results. In this paper, we present some preliminary results of testing our scale space feature based registration technique, a modified version of feature based method developed earlier for classification of multi-sensor imagery. The proposed approach removes the sensitivity in parameter selection experienced in the earlier version as explained later.
NASA Technical Reports Server (NTRS)
Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.
2013-01-01
In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.
ERIC Educational Resources Information Center
Smith, Merry K.; Martin-Peralta, Daphnie G.; Pivak, Polina A.; Mirica, Katherine A.
2017-01-01
Carbon nanomaterials have promising utility in chemical sensing including applications in preserving occupational safety, monitoring of environmental pollution, and human health. While recent advances in device fabrication and molecular design of functional materials have enabled rapid fabrication of chemical sensors from carbon nanomaterials,…
Mixed H2/H∞-Based Fusion Estimation for Energy-Limited Multi-Sensors in Wearable Body Networks
Li, Chao; Zhang, Zhenjiang; Chao, Han-Chieh
2017-01-01
In wireless sensor networks, sensor nodes collect plenty of data for each time period. If all of data are transmitted to a Fusion Center (FC), the power of sensor node would run out rapidly. On the other hand, the data also needs a filter to remove the noise. Therefore, an efficient fusion estimation model, which can save the energy of the sensor nodes while maintaining higher accuracy, is needed. This paper proposes a novel mixed H2/H∞-based energy-efficient fusion estimation model (MHEEFE) for energy-limited Wearable Body Networks. In the proposed model, the communication cost is firstly reduced efficiently while keeping the estimation accuracy. Then, the parameters in quantization method are discussed, and we confirm them by an optimization method with some prior knowledge. Besides, some calculation methods of important parameters are researched which make the final estimates more stable. Finally, an iteration-based weight calculation algorithm is presented, which can improve the fault tolerance of the final estimate. In the simulation, the impacts of some pivotal parameters are discussed. Meanwhile, compared with the other related models, the MHEEFE shows a better performance in accuracy, energy-efficiency and fault tolerance. PMID:29280950
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1984-01-01
The purpose of Modification No. 5 of this contract is to expand the scope of work (Task C) of this research study effort to develop pressure instrumentation for the SSME. The objective of this contract (Task C) is to direct Honeywell's Solid State Electronics Division's (SSED) extensive experience and expertise in solid state sensor technology to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. SSED's basic approach is to effectively utilize the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. More specifically, integration of multiple functions on a single chip is the key attribute of this technology which will be exploited during this research study.
Sensor fusion for antipersonnel landmine detection: a case study
NASA Astrophysics Data System (ADS)
den Breejen, Eric; Schutte, Klamer; Cremer, Frank
1999-08-01
In this paper the multi sensor fusion results obtained within the European research project GEODE are presented. The layout of the test lane and the individual sensors used are described. The implementation of the SCOOP algorithm improves the ROC curves, as the false alarm surface and the number of false alarms both are taken into account. The confidence grids, as produced by the sensor manufacturers, of the sensors are used as input for the different sensor fusion methods implemented. The multisensor fusion methods implemented are Bayes, Dempster-Shafer, fuzzy probabilities and rules. The mapping of the confidence grids to the input parameters for fusion methods is an important step. Due to limited amount of the available data the entire test lane is used for training and evaluation. All four sensor fusion methods provide better detection results than the individual sensors.
NASA Astrophysics Data System (ADS)
Xu, Yuanhong; Liu, Jingquan; Zhang, Jizhen; Zong, Xidan; Jia, Xiaofang; Li, Dan; Wang, Erkang
2015-05-01
A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips.A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips. Electronic supplementary information (ESI) available: Experimental section; Fig. S1. XPS spectra of the as-prepared CNDs after being dialyzed for 72 hours; Fig. S2. LSCM images showing time-dependent fluorescence signals of HeLa cells treated by the as-prepared CNDs; Tripropylamine analysis using the Nafion/CNDs modified ECL sensor. See DOI: 10.1039/c5nr01765c
Electron-rich triphenylamine-based sensors for picric acid detection.
Chowdhury, Aniket; Mukherjee, Partha Sarathi
2015-04-17
This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.
Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen
2018-03-15
An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN - with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN - on the vinyl CC bond has been successfully confirmed by the optical measurements, 1 H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19μM, which is much lower than the maximum permission concentration in drinking water (1.9μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN - in field measurements. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-Sensor Based State Prediction for Personal Mobility Vehicles
Gupta, Pankaj; Umata, Ichiro; Watanabe, Atsushi; Even, Jani; Suyama, Takayuki; Ishii, Shin
2016-01-01
This paper presents a study on multi-modal human emotional state detection while riding a powered wheelchair (PMV; Personal Mobility Vehicle) in an indoor labyrinth-like environment. The study reports findings on the habituation of human stress response during self-driving. In addition, the effects of “loss of controllability”, change in the role of the driver to a passenger, are investigated via an autonomous driving modality. The multi-modal emotional state detector sensing framework consists of four sensing devices: electroencephalograph (EEG), heart inter-beat interval (IBI), galvanic skin response (GSR) and stressor level lever (in the case of autonomous riding). Physiological emotional state measurement characteristics are organized by time-scale, in terms of capturing slower changes (long-term) and quicker changes from moment-to-moment. Experimental results with fifteen participants regarding subjective emotional state reports and commercial software measurements validated the proposed emotional state detector. Short-term GSR and heart signal characterizations captured moment-to-moment emotional state during autonomous riding (Spearman correlation; ρ = 0.6, p < 0.001). Short-term GSR and EEG characterizations reliably captured moment-to-moment emotional state during self-driving (Classification accuracy; 69.7). Finally, long-term GSR and heart characterizations were confirmed to reliably capture slow changes during autonomous riding and also of emotional state during participant resting state. The purpose of this study and the exploration of various algorithms and sensors in a structured framework is to provide a comprehensive background for multi-modal emotional state prediction experiments and/or applications. Additional discussion regarding the feasibility and utility of the possibilities of these concepts are given. PMID:27732589
Multi-Sensor Based State Prediction for Personal Mobility Vehicles.
Abdur-Rahim, Jamilah; Morales, Yoichi; Gupta, Pankaj; Umata, Ichiro; Watanabe, Atsushi; Even, Jani; Suyama, Takayuki; Ishii, Shin
2016-01-01
This paper presents a study on multi-modal human emotional state detection while riding a powered wheelchair (PMV; Personal Mobility Vehicle) in an indoor labyrinth-like environment. The study reports findings on the habituation of human stress response during self-driving. In addition, the effects of "loss of controllability", change in the role of the driver to a passenger, are investigated via an autonomous driving modality. The multi-modal emotional state detector sensing framework consists of four sensing devices: electroencephalograph (EEG), heart inter-beat interval (IBI), galvanic skin response (GSR) and stressor level lever (in the case of autonomous riding). Physiological emotional state measurement characteristics are organized by time-scale, in terms of capturing slower changes (long-term) and quicker changes from moment-to-moment. Experimental results with fifteen participants regarding subjective emotional state reports and commercial software measurements validated the proposed emotional state detector. Short-term GSR and heart signal characterizations captured moment-to-moment emotional state during autonomous riding (Spearman correlation; ρ = 0.6, p < 0.001). Short-term GSR and EEG characterizations reliably captured moment-to-moment emotional state during self-driving (Classification accuracy; 69.7). Finally, long-term GSR and heart characterizations were confirmed to reliably capture slow changes during autonomous riding and also of emotional state during participant resting state. The purpose of this study and the exploration of various algorithms and sensors in a structured framework is to provide a comprehensive background for multi-modal emotional state prediction experiments and/or applications. Additional discussion regarding the feasibility and utility of the possibilities of these concepts are given.
An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS.
Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu
2015-12-04
With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller.
A real-time multi-channel monitoring system for stem cell culture process.
Xicai Yue; Drakakis, E M; Lim, M; Radomska, A; Hua Ye; Mantalaris, A; Panoskaltsis, N; Cass, A
2008-06-01
A novel, up to 128 channels, multi-parametric physiological measurement system suitable for monitoring hematopoietic stem cell culture processes and cell cultures in general is presented in this paper. The system aims to measure in real-time the most important physical and chemical culture parameters of hematopoietic stem cells, including physicochemical parameters, nutrients, and metabolites, in a long-term culture process. The overarching scope of this research effort is to control and optimize the whole bioprocess by means of the acquisition of real-time quantitative physiological information from the culture. The system is designed in a modular manner. Each hardware module can operate as an independent gain programmable, level shift adjustable, 16 channel data acquisition system specific to a sensor type. Up to eight such data acquisition modules can be combined and connected to the host PC to realize the whole system hardware. The control of data acquisition and the subsequent management of data is performed by the system's software which is coded in LabVIEW. Preliminary experimental results presented here show that the system not only has the ability to interface to various types of sensors allowing the monitoring of different types of culture parameters. Moreover, it can capture dynamic variations of culture parameters by means of real-time multi-channel measurements thus providing additional information on both temporal and spatial profiles of these parameters within a bioreactor. The system is by no means constrained in the hematopoietic stem cell culture field only. It is suitable for cell growth monitoring applications in general.
[Progress in industrial bioprocess engineering in China].
Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin
2015-06-01
The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.
NASA Astrophysics Data System (ADS)
Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.
2018-05-01
This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.
Cellular telephone-based radiation detection instrument
Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA
2011-06-14
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
Cellular telephone-based wide-area radiation detection network
Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA
2009-06-09
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
NASA Astrophysics Data System (ADS)
He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu
2014-11-01
Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.
Robust Multi Sensor Classification via Jointly Sparse Representation
2016-03-14
rank, sensor network, dictionary learning REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...with ultrafast laser pulses, Optics Express, (04 2015): 10521. doi: Xiaoxia Sun, Nasser M. Nasrabadi, Trac D. Tran. Task-Driven Dictionary Learning...in dictionary design, compressed sensors design, and optimization in sparse recovery also helps. We are able to advance the state of the art
Assessment of all-solid-state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Braun, P.; Uhlmann, C.; Weiss, M.; Weber, A.; Ivers-Tiffée, E.
2018-07-01
All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.
Mu, Wenying; Cui, Baotong; Li, Wen; Jiang, Zhengxian
2014-07-01
This paper proposes a scheme for non-collocated moving actuating and sensing devices which is unitized for improving performance in distributed parameter systems. By Lyapunov stability theorem, each moving actuator/sensor agent velocity is obtained. To enhance state estimation of a spatially distributes process, two kinds of filters with consensus terms which penalize the disagreement of the estimates are considered. Both filters can result in the well-posedness of the collective dynamics of state errors and can converge to the plant state. Numerical simulations demonstrate that the effectiveness of such a moving actuator-sensor network in enhancing system performance and the consensus filters converge faster to the plant state when consensus terms are included. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Self-correcting electronically scanned pressure sensor
NASA Technical Reports Server (NTRS)
Gross, C. (Inventor)
1983-01-01
A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.
Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P
2013-03-04
Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.
Garzon, Fernando H.; Brosha, Eric L.
1997-01-01
A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.
Garzon, F.H.; Brosha, E.L.
1997-12-09
A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.
Bio-Benchmarking of Electronic Nose Sensors
Berna, Amalia Z.; Anderson, Alisha R.; Trowell, Stephen C.
2009-01-01
Background Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it has been described in detail only for the fly antenna. Methodology Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type, samples odorant space and compare it with what is known about fly odorant receptors (ORs). Principal Findings Compared with a fly's odorant receptors, MOx sensors from an electronic nose are on average more narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also highlights some important questions about the molecular nature of fly ORs. Conclusions The comparative approach generates practical learnings that may be taken up by solid-state physicists or engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the performance of the biological system. PMID:19641604
Cyclic-Voltammetry-Based Solid-State Gas Sensor for Methane and Other VOC Detection.
Gross, Pierre-Alexandre; Jaramillo, Thomas; Pruitt, Beth
2018-05-15
We present the fabrication, characterization, and testing of an electrochemical volatile organic compound (VOC) sensor operating in gaseous conditions at room temperature. It is designed to be microfabricated and to prove the sensing principle based on cyclic voltammetry (CV). It is composed of a working electrode (WE), a counter electrode (CE), a reference electrode (RE), and a Nafion solid-state electrolyte. Nafion is a polymer that conducts protons (H + ) generated from redox reactions from the WE to the CE. The sensor needs to be activated prior to exposure to gases, which consists of hydrating the Nafion layer to enable its ion conduction properties. During testing, we have shown that our sensor is not only capable of detecting methane, but it can also quantify its concentration in the gas flow as well as differentiate its signal from carbon monoxide (CO). These results have been confirmed by exposing the sensor to two different concentrations of methane (50% and 10% of methane diluted in N 2 ), as well as pure CO. Although the signal is positioned in the H ads region of Pt, because of thermodynamic reasons it cannot be directly attributed to methane oxidation into CO 2 . However, its consistency suggests the presence of a methane-related oxidation process that can be used for detection, identification, and quantification purposes.
NASA Astrophysics Data System (ADS)
Husnayaen; Rimba, A. Besse; Osawa, Takahiro; Parwata, I. Nyoman Sudi; As-syakur, Abd. Rahman; Kasim, Faizal; Astarini, Ida Ayu
2018-04-01
Research has been conducted in Semarang, Indonesia, to assess coastal vulnerability under enhanced land subsidence using multi-sensor satellite data, including the Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR), Landsat TM, IKONOS, and TOPEX/Poseidon. A coastal vulnerability index (CVI) was constructed to estimate the level of vulnerability of a coastline approximately 48.68 km in length using seven physical variables, namely, land subsidence, relative sea level change, coastal geomorphology, coastal slope, shoreline change, mean tidal range, and significant wave height. A comparison was also performed between a CVI calculated using seven parameters and a CVI using six parameters, the latter of which excludes the land subsidence parameter, to determine the effects of land subsidence during the coastal vulnerability assessment. This study showed that the accuracy of coastal vulnerability was increased 40% by adding the land subsidence factor (i.e., CVI 6 parameters = 53%, CVI 7 parameters = 93%). Moreover, Kappa coefficient indicated very good agreement (0.90) for CVI 7 parameters and fair agreement (0.3) for CVI 6 parameters. The results indicate that the area of very high vulnerability increased by 7% when land subsidence was added. Hence, using the CVI calculation including land subsidence parameters, the very high vulnerability area is determined to be 20% of the total coastline or 9.7 km of the total 48.7 km of coastline. This study proved that land subsidence has significant influence on coastal vulnerability in Semarang.
Sensing of single electrons using micro and nano technologies: a review
NASA Astrophysics Data System (ADS)
Jalil, Jubayer; Zhu, Yong; Ekanayake, Chandima; Ruan, Yong
2017-04-01
During the last three decades, the remarkable dynamic features of microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), and advances in solid-state electronics hold much potential for the fabrication of extremely sensitive charge sensors. These sensors have a broad range of applications, such as those involving the measurement of ionization radiation, detection of bio-analyte and aerosol particles, mass spectrometry, scanning tunneling microscopy, and quantum computation. Designing charge sensors (also known as charge electrometers) for electrometry is deemed significant because of the sensitivity and resolution issues in the range of micro- and nano-scales. This article reviews the development of state-of-the-art micro- and nano-charge sensors, and discusses their technological challenges for practical implementation.
NASA Astrophysics Data System (ADS)
Balakrishnan, Vivekananthan; Dinh, Toan; Phan, Hoang-Phuong; Kozeki, Takahiro; Namazu, Takahiro; Viet Dao, Dzung; Nguyen, Nam-Trung
2017-07-01
This paper reports an analytical model and its validation for a released microscale heater made of 3C-SiC thin films. A model for the equivalent electrical and thermal parameters was developed for the two-layer multi-segment heat and electric conduction. The model is based on a 1D energy equation, which considers the temperature-dependent resistivity and allows for the prediction of voltage-current and power-current characteristics of the microheater. The steady-state analytical model was validated by experimental characterization. The results, in particular the nonlinearity caused by temperature dependency, are in good agreement. The low power consumption of the order of 0.18 mW at approximately 310 K indicates the potential use of the structure as thermal sensors in portable applications.
Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors
NASA Astrophysics Data System (ADS)
Xenides, D.; Vlachos, D. S.; Simos, T. E.
2007-12-01
The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.
Analysis of electrical tomography sensitive field based on multi-terminal network and electric field
NASA Astrophysics Data System (ADS)
He, Yongbo; Su, Xingguo; Xu, Meng; Wang, Huaxiang
2010-08-01
Electrical tomography (ET) aims at the study of the conductivity/permittivity distribution of the interested field non-intrusively via the boundary voltage/current. The sensor is usually regarded as an electric field, and finite element method (FEM) is commonly used to calculate the sensitivity matrix and to optimize the sensor architecture. However, only the lumped circuit parameters can be measured by the data acquisition electronics, it's very meaningful to treat the sensor as a multi terminal network. Two types of multi terminal network with common node and common loop topologies are introduced. Getting more independent measurements and making more uniform current distribution are the two main ways to minimize the inherent ill-posed effect. By exploring the relationships of network matrixes, a general formula is proposed for the first time to calculate the number of the independent measurements. Additionally, the sensitivity distribution is analyzed with FEM. As a result, quasi opposite mode, an optimal single source excitation mode, that has the advantages of more uniform sensitivity distribution and more independent measurements, is proposed.
Heterogeneous Multi-Robot Multi-Sensor Platform for Intruder Detection
2009-09-15
propagation model, with variance τi: si ~ N(b0i + b1i *logDi, τ i). The initial parameters (b0i, b1i, τ i ) of the model are unknown, and the training...that the advantage of MOO-learned mode would become more significant over time compared with the other mode. 1 2 3 4 5 6 7 0 0.05 0.1 0.15 0.2...nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II,” in Parallel Problem Solving from Nature (PPSN VI), M. Schoenauer
Time-resolved fluorescence spectroscopy for chemical sensors
NASA Astrophysics Data System (ADS)
Draxler, Sonja; Lippitsch, Max E.
1996-07-01
A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.
Optically powered remote gas monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubaniewicz, T.H. Jr.; Chilton, J.E.
1995-12-31
Many mines rely on toxic gas sensors to help maintain a safe and healthy work environment. This report describes a prototype monitoring system developed by the US Bureau of Mines (USBM) that uses light to power and communicate with several remote toxic gas sensors. The design is based on state-of-art optical-to-electrical power converters, solid-state diode lasers, and fiber optics. This design overcomes several problems associated with conventional wire-based systems by providing complete electrical isolation between the remote sensors and the central monitor. The prototype performed well during a 2-week field trial in the USBM Pittsburgh Research Center Safety Research Coalmore » Mine.« less
An optimal state estimation model of sensory integration in human postural balance
NASA Astrophysics Data System (ADS)
Kuo, Arthur D.
2005-09-01
We propose a model for human postural balance, combining state feedback control with optimal state estimation. State estimation uses an internal model of body and sensor dynamics to process sensor information and determine body orientation. Three sensory modalities are modeled: joint proprioception, vestibular organs in the inner ear, and vision. These are mated with a two degree-of-freedom model of body dynamics in the sagittal plane. Linear quadratic optimal control is used to design state feedback and estimation gains. Nine free parameters define the control objective and the signal-to-noise ratios of the sensors. The model predicts statistical properties of human sway in terms of covariance of ankle and hip motion. These predictions are compared with normal human responses to alterations in sensory conditions. With a single parameter set, the model successfully reproduces the general nature of postural motion as a function of sensory environment. Parameter variations reveal that the model is highly robust under normal sensory conditions, but not when two or more sensors are inaccurate. This behavior is similar to that of normal human subjects. We propose that age-related sensory changes may be modeled with decreased signal-to-noise ratios, and compare the model's behavior with degraded sensors against experimental measurements from older adults. We also examine removal of the model's vestibular sense, which leads to instability similar to that observed in bilateral vestibular loss subjects. The model may be useful for predicting which sensors are most critical for balance, and how much they can deteriorate before posture becomes unstable.
NASA Astrophysics Data System (ADS)
Ozel, Oguz; Guralp, Cansun; Tunc, Suleyman; Yalcinkaya, Esref; Meral Ozel, Nurcan
2015-04-01
The main objective of this study is to install a multi-parameter borehole system and surface array consisting of eight broadband sensors as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change which may occur before earthquakes by making use of the data from these arrays. The multi-parameter borehole system is composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate 3-D strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. All these sensors are installed in 146m-deep borehole. All the sensor outputs are digitized; total of 11*24 bit-channels and 6*20 bit-channels. Real-time data transmission to the main server of the Marsite Project at Kandilli Observatory in Istanbul is accomplished. The multi-parameter borehole seismic station uses the latest update technologies and design ideas to record "Earth tides" signals to the smallest magnitude -3 events, as the innovative part of the Marsite Project. Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is obvious from the studies on the nucleation process of the 1999 earthquake that tens of minutes before the major rupture initiate noteworthy microearthquake activity happened. The starting point of the 1999 rupture was a site of swarm activity noticed a few decades prior the main shock. Nowadays, analogous case is probable in western Marmara Sea region, prone to a major event in near future where the seismic activity is prevailing along the impending rupture zone. Having deployed a borehole system at the eastern end of the Ganos fault zone will yield invaluable data to closely inspect and monitor the last stages of the preparation stage of major rupture.
Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael
2015-01-01
At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general conclusion multi-center studies would be helpful. PMID:26509448
NASA Astrophysics Data System (ADS)
Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.
2016-05-01
Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.
Bayesian paradox in homeland security and homeland defense
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Forrester, Thomas; Wang, Wenjian
2011-06-01
In this paper we discuss a rather surprising result of Bayesian inference analysis: performance of a broad variety of sensors depends not only on a sensor system itself, but also on CONOPS parameters in such a way that even an excellent sensor system can perform poorly if absolute probabilities of a threat (target) are lower than a false alarm probability. This result, which we call Bayesian paradox, holds not only for binary sensors as discussed in the lead author's previous papers, but also for a more general class of multi-target sensors, discussed also in this paper. Examples include: ATR (automatic target recognition), luggage X-ray inspection for explosives, medical diagnostics, car engine diagnostics, judicial decisions, and many other issues.
Multi-Dimensional Sensors and Sensing Systems
NASA Technical Reports Server (NTRS)
Stetter, Joseph R. (Inventor); Shirke, Amol G. (Inventor)
2014-01-01
A universal microelectromechanical (MEMS) nano-sensor platform having a substrate and conductive layer deposited in a pattern on the surface to make several devices at the same time, a patterned insulation layer, wherein the insulation layer is configured to expose one or more portions of the conductive layer, and one or more functionalization layers deposited on the exposed portions of the conductive layer to make multiple sensing capability on a single MEMS fabricated device. The functionalization layers are adapted to provide one or more transducer sensor classes selected from the group consisting of: radiant, electrochemical, electronic, mechanical, magnetic, and thermal sensors for chemical and physical variables and producing more than one type of sensor for one or more significant parameters that need to be monitored.
The Shale Hills Critical Zone Observatory for Embedded Sensing and Simulation
NASA Astrophysics Data System (ADS)
Duffy, C.; Davis, K.; Kane, T.; Boyer, E.
2009-04-01
The future of environmental observing systems will utilize embedded sensor networks with continuous real-time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models deployed and coordinated at a testbed within the Penn State Experimental Forest. The NSF-funded CZO is designed to observe the detailed space and time complexities of the water and energy cycle for a watershed and ultimately the river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. (PIHM; http://sourceforge.net/projects/pihmmodel/; http://sourceforge.net/projects/pihmgis/ ) The CZO sensor and simulation system is being developed to have the following elements: 1) extensive, spatially-distributed smart sensor networks to gather intensive soil, geologic, hydrologic, geochemical and isotopic data; 2) spatially-explicit multiphysics models/solutions of the land-subsurface-vegetation-atmosphere system; and 3) parallel/distributed, adaptive algorithms for rapidly simulating the states of the watershed at high resolution, and 4) signal processing tools for data mining and parameter estimation. The prototype proposed sensor array and simulation system proposed is demonstrated with preliminary results from our first year.
Clinical measurements analysis of multi-spectral photoplethysmograph biosensors
NASA Astrophysics Data System (ADS)
Asare, Lasma; Kviesis-Kipge, Edgars; Spigulis, Janis
2014-05-01
The developed portable multi-spectral photoplethysmograph (MS-PPG) optical biosensor device, intended for analysis of peripheral blood volume pulsations at different vascular depths, has been clinically verified. Multi-spectral monitoring was performed by means of a four - wavelengths (454 nm, 519 nm, 632 nm and 888 nm) light emitted diodes and photodiode with multi-channel signal output processing. Two such sensors can be operated in parallel and imposed on the patient's skin. The clinical measurements confirmed ability to detect PPG signals at four wavelengths simultaneously and to record temporal differences in the signal shapes (corresponding to different penetration depths) in normal and pathological skin. This study analyzed wavelengths relations between systole and diastole peak difference at various tissue depths in normal and pathological skin. The difference between parameters of healthy and pathological skin at various skin depths could be explain by oxy- and deoxyhemoglobin dominance at different wavelengths operated in sensor. The proposed methodology and potential clinical applications in dermatology for skin assessment are discussed.
Great prospects for fiber optics sensors
NASA Technical Reports Server (NTRS)
Hansen, T. E.
1983-01-01
Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.
Automatic 3D virtual scenes modeling for multisensors simulation
NASA Astrophysics Data System (ADS)
Latger, Jean; Le Goff, Alain; Cathala, Thierry; Larive, Mathieu
2006-05-01
SEDRIS that stands for Synthetic Environment Data Representation and Interchange Specification is a DoD/DMSO initiative in order to federate and make interoperable 3D mocks up in the frame of virtual reality and simulation. This paper shows an original application of SEDRIS concept for research physical multi sensors simulation, when SEDRIS is more classically known for training simulation. CHORALE (simulated Optronic Acoustic Radar battlefield) is used by the French DGA/DCE (Directorate for Test and Evaluation of the French Ministry of Defense) to perform multi-sensors simulations. CHORALE enables the user to create virtual and realistic multi spectral 3D scenes, and generate the physical signal received by a sensor, typically an IR sensor. In the scope of this CHORALE workshop, French DGA has decided to introduce a SEDRIS based new 3D terrain modeling tool that enables to create automatically 3D databases, directly usable by the physical sensor simulation CHORALE renderers. This AGETIM tool turns geographical source data (including GIS facilities) into meshed geometry enhanced with the sensor physical extensions, fitted to the ray tracing rendering of CHORALE, both for the infrared, electromagnetic and acoustic spectrum. The basic idea is to enhance directly the 2D source level with the physical data, rather than enhancing the 3D meshed level, which is more efficient (rapid database generation) and more reliable (can be generated many times, changing some parameters only). The paper concludes with the last current evolution of AGETIM in the scope mission rehearsal for urban war using sensors. This evolution includes indoor modeling for automatic generation of inner parts of buildings.
Advanced Integrated Multi-Sensor Surveillance (AIMS): Mission, Function, Task Analysis
2007-06-01
hydraulic boosters. Trim tabs are provided for the ailerons, elevators, and rudder surfaces. The wing flap is a high lift flowler type, and the flap...crew is able to observe and record a vessel dumping the solid waste overboard it is difficult to determine its source. When an oil slick has been...features which may impact hoisting requirements, as well as closest hospital facilities with helicopter access (North Battleford, SK). NAVCOM also
United states national land cover data base development? 1992-2001 and beyond
Yang, L.
2008-01-01
An accurate, up-to-date and spatially-explicate national land cover database is required for monitoring the status and trends of the nation's terrestrial ecosystem, and for managing and conserving land resources at the national scale. With all the challenges and resources required to develop such a database, an innovative and scientifically sound planning must be in place and a partnership be formed among users from government agencies, research institutes and private sectors. In this paper, we summarize major scientific and technical issues regarding the development of the NLCD 1992 and 2001. Experiences and lessons learned from the project are documented with regard to project design, technical approaches, accuracy assessment strategy, and projecti imiplementation.Future improvements in developing next generation NLCD beyond 2001 are suggested, including: 1) enhanced satellite data preprocessing in correction of atmospheric and adjacency effect and the topographic normalization; 2) improved classification accuracy through comprehensive and consistent training data and new algorithm development; 3) multi-resolution and multi-temporal database targeting major land cover changes and land cover database updates; 4) enriched database contents by including additional biophysical parameters and/or more detailed land cover classes through synergizing multi-sensor, multi-temporal, and multi-spectral satellite data and ancillary data, and 5) transform the NLCD project into a national land cover monitoring program. ?? 2008 IEEE.
Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors
Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef
2015-01-01
This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407
Abouzar, M H; Poghossian, A; Razavi, A; Williams, O A; Bijnens, N; Wagner, P; Schöning, M J
2009-01-01
The feasibility of a capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) platform for multi-parameter sensing is demonstrated by realising EDIS sensors with an O-terminated nanocrystalline-diamond (NCD) film as transducer material for the detection of pH and penicillin concentration as well as for the label-free electrical monitoring of adsorption and binding of charged macromolecules, like polyelectrolytes. The NCD films were grown on p-Si-SiO(2) substrates by microwave plasma-enhanced chemical vapour deposition. To obtain O-terminated surfaces, the NCD films were treated in an oxidising medium. The NCD-based field-effect sensors have been characterised by means of constant-capacitance method. The average pH sensitivity of the O-terminated NCD film was 40 mV/pH. A low detection limit of 5 microM and a high penicillin G sensitivity of 65-70 mV/decade has been obtained for an EDIS penicillin biosensor with the adsorptively immobilised enzyme penicillinase. Alternating potential changes, having tendency to decrease with increasing the number of adsorbed polyelectrolyte layers, have been observed after the layer-by-layer deposition of polyelectrolyte multilayers, using positively charged PAH (poly (allylamine hydrochloride)) and a negatively charged PSS (poly (sodium 4-styrene sulfonate)) as a model system. The response mechanism of the developed EDIS sensors is discussed.
Multiparameter Estimation in Networked Quantum Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less
Multiparameter Estimation in Networked Quantum Sensors
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
2018-02-21
We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less
On uncertainty quantification in hydrogeology and hydrogeophysics
NASA Astrophysics Data System (ADS)
Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud
2017-12-01
Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.
Ji, Chongke; Zhao, Chun-Liu; Kang, Juan; Dong, Xinyong; Jin, Shangzhong
2012-05-01
A simple method to work out the multiplexing of tapered fiber based sensors is proposed and demonstrated. By cascading a tapered fiber with a fiber Bragg grating (FBG), the sensor head is provided with a wavelength identification, different FBGs provide the sensor heads with different reflective peaks and they can be distinguished in optical spectrum. By compositing several such sensor heads with a multi-channel beam splitter, a star-style topological structure sensor for multipoint sensing is achieved. At the same time, the output intensity at the peak wavelength is sensitive to one external physical parameter applied on the related FBG-cascaded tapered fiber and the central wavelength of the peak is only sensitive to temperature, so that that parameter and temperature can be measured simultaneously. A sensor for dual-point measurement of the displacement and temperature simultaneously is experimentally demonstrated by using a 2 × 2 coupler in this paper. Experiment results show that the sensor works well and the largest sensitivities reach to 0.11 dB/μm for displacement in the range of 0-400 μm, and ∼0.0097 nm/°C for temperature between 20 °C and 70 °C.
Solid-state turn coordinator display
NASA Technical Reports Server (NTRS)
Meredith, B. D.; Crouch, R. K.; Kelly, W. L., IV
1975-01-01
A solid state turn coordinator display which employs light emitting diodes (LED's) as the display medium was developed to demonstrate the feasibility of such displays for aircraft applications. The input to the display is supplied by a fluidic inertial rate sensor used in an aircraft wing leveler system. The display is composed of the LED radial display face and the electronics necessary to address and drive the individual lines of LED's. Three levels of brightness are provided to compensate for the different amounts of ambient light present in the cockpit.
REPORT ON AN ORBITAL MAPPING SYSTEM.
Colvocoresses, Alden P.; ,
1984-01-01
During June 1984, the International Society for Photogrammetry and Remote Sensing accepted a committee report that defines an Orbital Mapping System (OMS) to follow Landsat and other Earth-sensing systems. The OMS involves the same orbital parameters of Landsats 1, 2, and 3, three wave bands (two in the visible and one in the near infrared) and continuous stereoscopic capability. The sensors involve solid-state linear arrays and data acquisition (including stereo) designed for one-dimensional data processing. It has a resolution capability of 10-m pixels and is capable of producing 1:50,000-scale image maps with 20-m contours. In addition to mapping, the system is designed to monitor the works of man as well as nature and in a cost-effective manner.
A study of timing properties of Silicon Photomultipliers
NASA Astrophysics Data System (ADS)
Avella, Paola; De Santo, Antonella; Lohstroh, Annika; Sajjad, Muhammad T.; Sellin, Paul J.
2012-12-01
Silicon Photomultipliers (SiPMs) are solid-state pixelated photodetectors. Lately these sensors have been investigated for Time of Flight Positron Emission Tomography (ToF-PET) applications, where very good coincidence time resolution of the order of hundreds of picoseconds imply spatial resolution of the order of cm in the image reconstruction. The very fast rise time typical of the avalanche discharge improves the time resolution, but can be limited by the readout electronics and the technology used to construct the device. In this work the parameters of the equivalent circuit of the device that directly affect the pulse shape, namely the quenching resistance and capacitance and the diode and parasitic capacitances, were calculated. The mean rise time obtained with different preamplifiers was also measured.
NASA Technical Reports Server (NTRS)
Billings, W. W.
1981-01-01
Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.
Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode.
Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik
2016-08-23
Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C-800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction.
Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode
Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik
2016-01-01
Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C–800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction. PMID:27563893
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan
2016-01-01
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
Heideklang, René; Shokouhi, Parisa
2016-01-01
This article focuses on the fusion of flaw indications from multi-sensor nondestructive materials testing. Because each testing method makes use of a different physical principle, a multi-method approach has the potential of effectively differentiating actual defect indications from the many false alarms, thus enhancing detection reliability. In this study, we propose a new technique for aggregating scattered two- or three-dimensional sensory data. Using a density-based approach, the proposed method explicitly addresses localization uncertainties such as registration errors. This feature marks one of the major of advantages of this approach over pixel-based image fusion techniques. We provide guidelines on how to set all the key parameters and demonstrate the technique’s robustness. Finally, we apply our fusion approach to experimental data and demonstrate its capability to locate small defects by substantially reducing false alarms under conditions where no single-sensor method is adequate. PMID:26784200
Modular compact solid-state modulators for particle accelerators
NASA Astrophysics Data System (ADS)
Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.
2017-12-01
The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.
A statistical approach to the brittle fracture of a multi-phase solid
NASA Technical Reports Server (NTRS)
Liu, W. K.; Lua, Y. I.; Belytschko, T.
1991-01-01
A stochastic damage model is proposed to quantify the inherent statistical distribution of the fracture toughness of a brittle, multi-phase solid. The model, based on the macrocrack-microcrack interaction, incorporates uncertainties in locations and orientations of microcracks. Due to the high concentration of microcracks near the macro-tip, a higher order analysis based on traction boundary integral equations is formulated first for an arbitrary array of cracks. The effects of uncertainties in locations and orientations of microcracks at a macro-tip are analyzed quantitatively by using the boundary integral equations method in conjunction with the computer simulation of the random microcrack array. The short range interactions resulting from surrounding microcracks closet to the main crack tip are investigated. The effects of microcrack density parameter are also explored in the present study. The validity of the present model is demonstrated by comparing its statistical output with the Neville distribution function, which gives correct fits to sets of experimental data from multi-phase solids.
Vandenberghe, Bart; Corpas, Livia; Bosmans, Hilde; Yang, Jie; Jacobs, Reinhilde
2011-08-01
The aim of this study was the determination of image accuracy and quality for periodontal diagnosis using various X-ray generators with conventional and digital radiographs. Thirty-one in vitro periodontal defects were evaluated on intraoral conventional (E-, F/E-speed) and digital images (three indirect, two direct sensors). Standardised radiographs were made with an alternating current (AC), a high-frequency (HF) and a direct current (DC) X-ray unit at rising exposure times (20-160 ms with 20-ms interval) with a constant kV of 70. Three observers assessed bone levels for comparison to the gold standard. Lamina dura, contrast, trabecularisation, crater and furcation involvements were evaluated. Irrespective X-ray generator-type, measurement deviations increased at higher exposure times for solid-state, but decreased for photostimulable storage phosphor (PSP) systems. Accuracy for HF or DC was significantly higher than AC (p < 0.0001), especially at low exposure times. At 0.5- to 1-mm clinical deviation, 27-53% and 32-55% dose savings were demonstrated when using HF or DC generators compared to AC, but only for PSP. No savings were found for solid-state sensors, indicating their higher sensitivity. The use of digital sensors compared to film allowed 15-90% dose savings using the AC tube, whilst solid-state sensors allowed approximately 50% savings compared to PSP, depending on tube type and threshold level.. Accuracy of periodontal diagnosis increases when using HF or DC generators and/or digital receptors with adequate diagnostic information at lower exposure times.
NASA Astrophysics Data System (ADS)
Ramadan, A. B. A.
Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.
Acoustic Sensors for Air and Surface Navigation Applications
Kapoor, Rohan; Ramasamy, Subramanian; Schyndel, Ron Van
2018-01-01
This paper presents the state-of-the-art and reviews the state-of-research of acoustic sensors used for a variety of navigation and guidance applications on air and surface vehicles. In particular, this paper focuses on echolocation, which is widely utilized in nature by certain mammals (e.g., cetaceans and bats). Although acoustic sensors have been extensively adopted in various engineering applications, their use in navigation and guidance systems is yet to be fully exploited. This technology has clear potential for applications in air and surface navigation/guidance for intelligent transport systems (ITS), especially considering air and surface operations indoors and in other environments where satellite positioning is not available. Propagation of sound in the atmosphere is discussed in detail, with all potential attenuation sources taken into account. The errors introduced in echolocation measurements due to Doppler, multipath and atmospheric effects are discussed, and an uncertainty analysis method is presented for ranging error budget prediction in acoustic navigation applications. Considering the design challenges associated with monostatic and multi-static sensor implementations and looking at the performance predictions for different possible configurations, acoustic sensors show clear promises in navigation, proximity sensing, as well as obstacle detection and tracking. The integration of acoustic sensors in multi-sensor navigation systems is also considered towards the end of the paper and a low Size, Weight and Power, and Cost (SWaP-C) sensor integration architecture is presented for possible introduction in air and surface navigation systems. PMID:29414894
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2010-01-01
A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy
Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip
NASA Technical Reports Server (NTRS)
Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.
2012-01-01
A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.
HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays
NASA Technical Reports Server (NTRS)
Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.
1993-01-01
The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.
NASA Technical Reports Server (NTRS)
Liu, Zhong; Heo, Gil
2015-01-01
Data quality (DQ) has many attributes or facets (i.e., errors, biases, systematic differences, uncertainties, benchmark, false trends, false alarm ratio, etc.)Sources can be complicated (measurements, environmental conditions, surface types, algorithms, etc.) and difficult to be identified especially for multi-sensor and multi-satellite products with bias correction (TMPA, IMERG, etc.) How to obtain DQ info fast and easily, especially quantified info in ROI Existing parameters (random error), literature, DIY, etc.How to apply the knowledge in research and applications.Here, we focus on online systems for integration of products and parameters, visualization and analysis as well as investigation and extraction of DQ information.
Method and system for diagnostics of apparatus
NASA Technical Reports Server (NTRS)
Gorinevsky, Dimitry (Inventor)
2012-01-01
Proposed is a method, implemented in software, for estimating fault state of an apparatus outfitted with sensors. At each execution period the method processes sensor data from the apparatus to obtain a set of parity parameters, which are further used for estimating fault state. The estimation method formulates a convex optimization problem for each fault hypothesis and employs a convex solver to compute fault parameter estimates and fault likelihoods for each fault hypothesis. The highest likelihoods and corresponding parameter estimates are transmitted to a display device or an automated decision and control system. The obtained accurate estimate of fault state can be used to improve safety, performance, or maintenance processes for the apparatus.
GNSS-based multi-sensor system for structural monitoring applications
NASA Astrophysics Data System (ADS)
Bogusz, Janusz; Figurski, Mariusz; Nykiel, Grzegorz; Szolucha, Marcin; Wrona, Maciej
2012-03-01
In 2007 the Centre of Applied Geomatics of the Military University of Technology started measurements aimed at the monitoring of the dynamic state of the engineering structures using GNSS. The complexity of the problem forced us to apply an integrated system architecture. This concept is based on simultaneous measuring some selected elements of the structure using various types of sensors. Measurement information from numerous instruments is numerically integrated for determining the investigated parameter, e.g., the displacement vector. The CAG team performed the tests using such a system on the two permanent 500-meters long bridges, the temporary bridge crossing for military purposes and the 300-meters high chimney of the CHP station. The information about displacement vector together with the characteristic frequencies of the structure were determined using different techniques for increasing of its reliability. This paper presents the results of such tests, gives description of the integrated system designed in the CAG and brings forward with the plans for the future.
Surveillance and reconnaissance ground system architecture
NASA Astrophysics Data System (ADS)
Devambez, Francois
2001-12-01
Modern conflicts induces various modes of deployment, due to the type of conflict, the type of mission, and phase of conflict. It is then impossible to define fixed architecture systems for surveillance ground segments. Thales has developed a structure for a ground segment based on the operational functions required, and on the definition of modules and networks. Theses modules are software and hardware modules, including communications and networks. This ground segment is called MGS (Modular Ground Segment), and is intended for use in airborne reconnaissance systems, surveillance systems, and U.A.V. systems. Main parameters for the definition of a modular ground image exploitation system are : Compliance with various operational configurations, Easy adaptation to the evolution of theses configurations, Interoperability with NATO and multinational forces, Security, Multi-sensors, multi-platforms capabilities, Technical modularity, Evolutivity Reduction of life cycle cost The general performances of the MGS are presented : type of sensors, acquisition process, exploitation of images, report generation, data base management, dissemination, interface with C4I. The MGS is then described as a set of hardware and software modules, and their organization to build numerous operational configurations. Architectures are from minimal configuration intended for a mono-sensor image exploitation system, to a full image intelligence center, for a multilevel exploitation of multi-sensor.
NASA Astrophysics Data System (ADS)
Wan, Shunping; Tian, Qian; Sun, Liqun; Yao, Minyan; Mao, Xianhui; Qiu, Hongyun
2004-05-01
This paper reports an experimental research on the stability of bidirectional outputs and multi-longitudinal mode interference of laser diode end-pumped Nd:YVO4 solid-state ring laser (DPSSL). The bidirectional, multi-longitudinal and TEM00 mode continuous wave outputs are obtained and the output powers are measured and their stabilities are analyzed respectively. The spectral characteristic of the outputs is measured. The interfering pattern of the bidirectional longitudinal mode outputs is obtained and analyzed in the condition of the ring cavity with rotation velocity. The movement of the interfering fringe of the multi-longitudinal modes is very sensitive to the deformation of the setup base and the fluctuation of the intracavity air, but is stationary or randomly dithers when the stage is rotating.
Quasiparticle-continuum level repulsion in a quantum magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plumb, K. W.; Hwang, Kyusung; Qiu, Y.
2015-11-30
When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here,more » we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu 2PO 6.« less
Fluoride-selective optical sensor based on the dipyrrolyl-tetrathiafulvalene chromophore.
Rivadehi, Shadi; Reid, Ellen F; Hogan, Conor F; Bhosale, Sheshanath V; Langford, Steven J
2012-01-28
A chemosensor bearing dipyrrolyl motifs as recognition sites and a tetrathiafulvalene redox tag has been evaluated as an optical and redox sensor for a series of anions (F(-), Cl(-), Br(-), HSO(4)(-), CH(3)COO(-), and H(2)PO(4)(-)) in DCM solution. The receptor shows specific optical signaling for fluoride but little electrochemical effect in solution. The solid-state performance of the sensor leads to measurable changes in water. Design implications towards better systems based on these results and other examples are discussed.
Solid-State, High Energy 2-Micron Laser Development for Space-Based Remote Sensing
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2010-01-01
Lidar (light detection and ranging) remote sensing enjoys the advantages of excellent vertical and horizontal resolution; pointing capability; a signal source independent from natural light; and control and knowledge of transmitted wavelength, pulse shape, and polarization and received polarization. Lidar in space is an emerging technology now being developing to fit applications where passive sensors cannot meet current measurement requirements. Technical requirements for space lidar are more demanding than for ground-based or airborne systems. Perhaps the most distinguishing characteristics of space lidars are the environmental requirements. Space lidar systems must be specially designed to survive the mechanical vibration loads of launch and operate in the vacuum of space where exposure to ionizing radiation limits the electronic components available. Finally, space lidars must be designed to be highly reliable because they must operate without the need for repair or adjustment. Lifetime requirements tend to be important drivers of the overall system design. The maturity of the required technologies is a key to the development of any space lidar system. NASA entered a new era in the 1990 s with the approval of several space-based remote sensing missions employing laser radar (lidar) techniques. Following the steps of passive remote sensing and then active radar remote sensing, lidar sensors were a logical next step, providing independence from natural light sources, and better spatial resolution and smaller sensor size than radar sensors. The shorter electromagnetic wavelengths of laser light also allowed signal reflectance from air molecules and aerosol particles. The smaller receiver apertures allowed the concept of scanning the sensor field of view. However, technical problems with several space-based lidar missions during that decade led to concern at NASA about the risk of lidar missions. An external panel was convened to make recommendations to NASA. Their report in 2000 strongly advocated that NASA maintain in-house laser and lidar capability, and that NASA should work to lower the technology risk for all future lidar missions. A multi-Center NASA team formulated an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the Earth's atmosphere. In 2002 the NASA Earth Science Enterprise (ESE) and Office of Aerospace Technology (OAT) created the Laser Risk Reduction Program (LRRP) and directed NASA Langley Research Center (LaRC) and Goddard Space Flight Center to carry out synergistic and complementary research towards solid-state lasers/lidars developments for space-based remote sensing applications.
NASA Astrophysics Data System (ADS)
Hua, H.; Wilson, B. D.; Manipon, G.; Pan, L.; Fetzer, E.
2011-12-01
Multi-decadal climate data records are critical to studying climate variability and change. These often also require merging data from multiple instruments such as those from NASA's A-Train that contain measurements covering a wide range of atmospheric conditions and phenomena. Multi-decadal climate data record of water vapor measurements from sensors on A-Train, operational weather, and other satellites are being assembled from existing data sources, or produced from well-established methods published in peer-reviewed literature. However, the immense volume and inhomogeneity of data often requires an "exploratory computing" approach to product generation where data is processed in a variety of different ways with varying algorithms, parameters, and code changes until an acceptable intermediate product is generated. This process is repeated until a desirable final merged product can be generated. Typically the production legacy is often lost due to the complexity of processing steps that were tried along the way. The data product information associated with source data, processing methods, parameters used, intermediate product outputs, and associated materials are often hidden in each of the trials and scattered throughout the processing system(s). We will discuss methods to help users better capture and explore the production legacy of the data, metadata, ancillary files, code, and computing environment changes used during the production of these merged and multi-sensor data products. By leveraging existing semantic and provenance tools, we can capture sufficient information to enable users to track, perform faceted searches, and visualize the provenance of the products and processing lineage. We will explore if sufficient provenance information can be captured to enable science reproducibility of these climate data records.
Forest height Mapping using the fusion of Lidar and MULTI-ANGLE spectral data
NASA Astrophysics Data System (ADS)
Pang, Y.; Li, Z.
2016-12-01
Characterizing the complexity of forest ecosystem over large area is highly complex. Light detection and Ranging (LIDAR) approaches have demonstrated a high capacity to accurately estimate forest structural parameters. A number of satellite mission concepts have been proposed to fuse LiDAR with other optical imagery allowing Multi-angle spectral observations to be captured using the Bidirectional Reflectance Distribution Function (BRDF) characteristics of forests. China is developing the concept of Chinese Terrestrial Carbon Mapping Satellite. A multi-beam waveform Lidar is the main sensor. A multi-angle imagery system is considered as the spatial mapping sensor. In this study, we explore the fusion potential of Lidar and multi-angle spectral data to estimate forest height across different scales. We flew intensive airborne Lidar and Multi-angle hyperspectral data in Genhe Forest Ecological Research Station, Northeast China. Then extended the spatial scale with some long transect flights to cover more forest structures. Forest height data derived from airborne lidar data was used as reference data and the multi-angle hyperspectral data was used as model inputs. Our results demonstrate that the multi-angle spectral data can be used to estimate forest height with the RMSE of 1.1 m with an R2 approximately 0.8.
Guo, Xiaoting; Sun, Changku; Wang, Peng
2017-08-01
This paper investigates the multi-rate inertial and vision data fusion problem in nonlinear attitude measurement systems, where the sampling rate of the inertial sensor is much faster than that of the vision sensor. To fully exploit the high frequency inertial data and obtain favorable fusion results, a multi-rate CKF (Cubature Kalman Filter) algorithm with estimated residual compensation is proposed in order to adapt to the problem of sampling rate discrepancy. During inter-sampling of slow observation data, observation noise can be regarded as infinite. The Kalman gain is unknown and approaches zero. The residual is also unknown. Therefore, the filter estimated state cannot be compensated. To obtain compensation at these moments, state error and residual formulas are modified when compared with the observation data available moments. Self-propagation equation of the state error is established to propagate the quantity from the moments with observation to the moments without observation. Besides, a multiplicative adjustment factor is introduced as Kalman gain, which acts on the residual. Then the filter estimated state can be compensated even when there are no visual observation data. The proposed method is tested and verified in a practical setup. Compared with multi-rate CKF without residual compensation and single-rate CKF, a significant improvement is obtained on attitude measurement by using the proposed multi-rate CKF with inter-sampling residual compensation. The experiment results with superior precision and reliability show the effectiveness of the proposed method.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-12-22
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.
Childs, Charmaine; Wang, Li; Neoh, Boon Kwee; Goh, Hok Liok; Zu, Mya Myint; Aung, Phyo Wai; Yeo, Tseng Tsai
2014-10-01
The objective was to investigate sensor measurement uncertainty for intracerebral probes inserted during neurosurgery and remaining in situ during neurocritical care. This describes a prospective observational study of two sensor types and including performance of the complete sensor-bedside monitoring and readout system. Sensors from 16 patients with severe traumatic brain injury (TBI) were obtained at the time of removal from the brain. When tested, 40% of sensors achieved the manufacturer temperature specification of 0.1 °C. Pressure sensors calibration differed from the manufacturers at all test pressures in 8/20 sensors. The largest pressure measurement error was in the intraparenchymal triple sensor. Measurement uncertainty is not influenced by duration in situ. User experiences reveal problems with sensor 'handling', alarms and firmware. Rigorous investigation of the performance of intracerebral sensors in the laboratory and at the bedside has established measurement uncertainty in the 'real world' setting of neurocritical care.
Zhou, Jie; Liang, Yan; Shen, Qiang; Feng, Xiaoxue; Pan, Quan
2018-04-18
A biomimetic distributed infection-immunity model (BDIIM), inspired by the immune mechanism of an infected organism, is proposed in order to achieve a high-efficiency wake-up control strategy based on multi-sensor fusion for target tracking. The resultant BDIIM consists of six sub-processes reflecting the infection-immunity mechanism: occurrence probabilities of direct-infection (DI) and cross-infection (CI), immunity/immune-deficiency of DI and CI, pathogen amount of DI and CI, immune cell production, immune memory, and pathogen accumulation under immunity state. Furthermore, a corresponding relationship between the BDIIM and sensor wake-up control is established to form the collaborative wake-up method. Finally, joint surveillance and target tracking are formulated in the simulation, in which we show that the energy cost and position tracking error are reduced to 50.8% and 78.9%, respectively. Effectiveness of the proposed BDIIM algorithm is shown, and this model is expected to have a significant role in guiding the performance improvement of multi-sensor networks.
NASA Technical Reports Server (NTRS)
Baxter, W. J., Jr.; Frant, M. S.; West, S. J.
1978-01-01
Solid-state sensing unit developed for use with NASA's Water-Quality Monitoring System can detect small velocity changes in slow moving fluid. Nonprotruding sensor is applicable to numerous other uses requiring sensitive measurement of slow flows.
High piezoelectric performance of poly(lactic acid) film manufactured by solid-state extrusion
NASA Astrophysics Data System (ADS)
Yoshida, Mitsunobu; Onogi, Takayuki; Onishi, Katsuki; Inagaki, Takuma; Tajitsu, Yoshiro
2014-09-01
Recently, the application of uniaxially stretched poly(l-lactic acid) (PLLA) films to speakers, actuators, and pressure sensors has been attempted, taking advantage of their piezoelectric performance. However, the shear piezoelectric constant d14 of uniaxially stretched PLLA film is conventionally 6-10 pC N-1. To realize a high sensitivity of pressure sensors, compact speakers, and actuators, and a low driving voltage, further improvement of the piezoelectric performance is desired. In this study, we carried out solid-state extrusion (SSE) to stretch and orient poly(d-lactic acid) (PDLA) and verified its effects on piezoelectric performance. By SSE, we were able to improve the mechanical strength and elastic modulus of PDLA samples. Furthermore, the d14 of the samples was significantly increased to approximately 20 pC N-1.
Multi-Modalities Sensor Science
2015-02-28
enhanced multi-mode sensor science. bio -sensing, cross-discipling, multi-physics, nano-technology sailing He +46-8790 8465 1 Final Report for SOARD Project...spectroscopy, nano-technology, biophotonics and multi-physics modeling to produce adaptable bio -nanostructure enhanced multi-mode sensor science. 1...adaptable bio -nanostructure enhanced multi-mode sensor science. The accomplishments includes 1) A General Method for Designing a Radome to Enhance
Study on the multi-sensors monitoring and information fusion technology of dangerous cargo container
NASA Astrophysics Data System (ADS)
Xu, Shibo; Zhang, Shuhui; Cao, Wensheng
2017-10-01
In this paper, monitoring system of dangerous cargo container based on multi-sensors is presented. In order to improve monitoring accuracy, multi-sensors will be applied inside of dangerous cargo container. Multi-sensors information fusion solution of monitoring dangerous cargo container is put forward, and information pre-processing, the fusion algorithm of homogenous sensors and information fusion based on BP neural network are illustrated, applying multi-sensors in the field of container monitoring has some novelty.
Li, Ying-Jun; Yang, Cong; Wang, Gui-Cong; Zhang, Hui; Cui, Huan-Yong; Zhang, Yong-Liang
2017-09-01
This paper presents a novel integrated piezoelectric six-dimensional force sensor which can realize dynamic measurement of multi-dimensional space load. Firstly, the composition of the sensor, the spatial layout of force-sensitive components, and measurement principle are analyzed and designed. There is no interference of piezoelectric six-dimensional force sensor in theoretical analysis. Based on the principle of actual work and deformation compatibility coherence, this paper deduces the parallel load sharing principle of the piezoelectric six-dimensional force sensor. The main effect factors which affect the load sharing ratio are obtained. The finite element model of the piezoelectric six-dimensional force sensor is established. In order to verify the load sharing principle of the sensor, a load sharing test device of piezoelectric force sensor is designed and fabricated. The load sharing experimental platform is set up. The experimental results are in accordance with the theoretical analysis and simulation results. The experiments show that the multi-dimensional and heavy force measurement can be realized by the parallel arrangement of the load sharing ring and the force sensitive element in the novel integrated piezoelectric six-dimensional force sensor. The ideal load sharing effect of the sensor can be achieved by appropriate size parameters. This paper has an important guide for the design of the force measuring device according to the load sharing mode. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
System approach to distributed sensor management
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Miller, Gordon; Harrell, John; Hepp, Jared; Self, Mid
2010-04-01
Since 2003, the US Army's RDECOM CERDEC Night Vision Electronic Sensor Directorate (NVESD) has been developing a distributed Sensor Management System (SMS) that utilizes a framework which demonstrates application layer, net-centric sensor management. The core principles of the design support distributed and dynamic discovery of sensing devices and processes through a multi-layered implementation. This results in a sensor management layer that acts as a System with defined interfaces for which the characteristics, parameters, and behaviors can be described. Within the framework, the definition of a protocol is required to establish the rules for how distributed sensors should operate. The protocol defines the behaviors, capabilities, and message structures needed to operate within the functional design boundaries. The protocol definition addresses the requirements for a device (sensors or processes) to dynamically join or leave a sensor network, dynamically describe device control and data capabilities, and allow dynamic addressing of publish and subscribe functionality. The message structure is a multi-tiered definition that identifies standard, extended, and payload representations that are specifically designed to accommodate the need for standard representations of common functions, while supporting the need for feature-based functions that are typically vendor specific. The dynamic qualities of the protocol enable a User GUI application the flexibility of mapping widget-level controls to each device based on reported capabilities in real-time. The SMS approach is designed to accommodate scalability and flexibility within a defined architecture. The distributed sensor management framework and its application to a tactical sensor network will be described in this paper.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements.
Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements
NASA Astrophysics Data System (ADS)
Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory
2010-01-01
Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.
Electropolymerized Conducting Polymer as Actuator and Sensor Device
ERIC Educational Resources Information Center
Cortes, Maria T.; Moreno, Juan C.
2005-01-01
A study demonstrates the potential application of conducting polymers to convert electrical energy into mechanical energy at low voltage or current. The performance of the device is explained using electrochemistry and solid-state chemistry.
A Spectralon BRF Data Base for MISR Calibration Application
NASA Technical Reports Server (NTRS)
Bruegge, C.; Chrien, N.; Haner, D.
1999-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) is an Earth observing sensor which will provide global retrievals of aerosols, clouds, and land surface parameters. Instrument specifications require high accuracy absolute calibration, as well as accurate camera-to-camera, band-to-band and pixel-to-pixel relative response determinations.
Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory
2011-01-01
Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance I quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and CalipsoCALIOP satellite instruments.
Fusion or confusion: knowledge or nonsense?
NASA Astrophysics Data System (ADS)
Rothman, Peter L.; Denton, Richard V.
1991-08-01
The terms 'data fusion,' 'sensor fusion,' multi-sensor integration,' and 'multi-source integration' have been used widely in the technical literature to refer to a variety of techniques, technologies, systems, and applications which employ and/or combine data derived from multiple information sources. Applications of data fusion range from real-time fusion of sensor information for the navigation of mobile robots to the off-line fusion of both human and technical strategic intelligence data. The Department of Defense Critical Technologies Plan lists data fusion in the highest priority group of critical technologies, but just what is data fusion? The DoD Critical Technologies Plan states that data fusion involves 'the acquisition, integration, filtering, correlation, and synthesis of useful data from diverse sources for the purposes of situation/environment assessment, planning, detecting, verifying, diagnosing problems, aiding tactical and strategic decisions, and improving system performance and utility.' More simply states, sensor fusion refers to the combination of data from multiple sources to provide enhanced information quality and availability over that which is available from any individual source alone. This paper presents a survey of the state-of-the- art in data fusion technologies, system components, and applications. A set of characteristics which can be utilized to classify data fusion systems is presented. Additionally, a unifying mathematical and conceptual framework within which to understand and organize fusion technologies is described. A discussion of often overlooked issues in the development of sensor fusion systems is also presented.
An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS
Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu
2015-01-01
With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154
Ion conduction in crystalline superionic solids and its applications
NASA Astrophysics Data System (ADS)
Chandra, Angesh
2014-06-01
Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.
Hand-arm vibration exposure monitoring with wearable sensor module.
Austad, Hanne O; Røed, Morten H; Liverud, Anders E; Dalgard, Steffen; Seeberg, Trine M
2013-01-01
Vibration exposure is a serious risk within work physiology for several work groups. Combined with cold artic climate, the risk for permanent harm is even higher. Equipment that can monitor the vibration exposure and warn the user when at risk will provide a safer work environment for these work groups. This study evaluates whether data from a wearable wireless multi-parameter sensor module can be used to estimate vibration exposure and exposure time. This work has been focused on the characterization of the response from the accelerometer in the sensor module and the optimal location of the module in the hand-arm configuration.
ISTP SBIR phase 1 Full-Sky Scanner: A feasibility study
NASA Technical Reports Server (NTRS)
1986-01-01
The objective was to develop a Full-Sky Sensor (FSS) to detect the Earth, Sun and Moon from a spinning spacecraft. The concept adopted has infinitely variable resolution. A high-speed search mode is implemented on the spacecraft. The advantages are: (1) a single sensor determines attitude parameters from Earth, Sun and Moon, thus eliminating instrument mounting errors; (2) the bias between the actual spacecraft spin axis and the intended spin axis can be determined; (3) cost is minimized; and (4) ground processing is straightforward. The FSS is a modification of an existing flight-proven sensor. Modifications to the electronics are necessary to accommodate the amplitude range and signal width range of the celestial bodies to be detected. Potential applications include ISTP missions, Multi-Spacecraft Satellite Program (MSSP), dual-spin spacecraft at any altitude, spinning spacecraft at any altitude, and orbit parameter determination for low-Earth orbits.
ISTP SBIR phase 1 Full-Sky Scanner: A feasibility study
NASA Astrophysics Data System (ADS)
1986-08-01
The objective was to develop a Full-Sky Sensor (FSS) to detect the Earth, Sun and Moon from a spinning spacecraft. The concept adopted has infinitely variable resolution. A high-speed search mode is implemented on the spacecraft. The advantages are: (1) a single sensor determines attitude parameters from Earth, Sun and Moon, thus eliminating instrument mounting errors; (2) the bias between the actual spacecraft spin axis and the intended spin axis can be determined; (3) cost is minimized; and (4) ground processing is straightforward. The FSS is a modification of an existing flight-proven sensor. Modifications to the electronics are necessary to accommodate the amplitude range and signal width range of the celestial bodies to be detected. Potential applications include ISTP missions, Multi-Spacecraft Satellite Program (MSSP), dual-spin spacecraft at any altitude, spinning spacecraft at any altitude, and orbit parameter determination for low-Earth orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.
Interaction models were developed for moisture effects on room-temperature fluorescence (RTF) and room-temperature phosphorescence (RTP) of compounds adsorbed on filter paper. The models described both dynamic and matrix quenching and also related the Young modulus of filter paper to quenching of phosphor on moist filter paper. Photophysical parameters for lumiphors in solution and on solid matrices were compared. Results showed that for some compounds, solid-matrix luminescence has greater analytical potential than solution luminescence. Also, the solid-matrix systems into one of two categories depending on how the intersystem crossing rate constants change with temperature. The first study was carried out onmore » effects of heavy atom on solid-matrix luminescence. With some heavy atoms, maximum solid-matrix phosphorescence quantum yield was obtained at room temperature, and there was no need to use low temperature to obtain a strong phosphorescence signal. By studying solid-matrix luminescence properties of phosphors adsorbed on sodium acetate and deuterated sodium acetate, an interaction model was developed for p-aminobenzoic acid anion adsorbed on sodium acetate. It was shown that the energy-gap law was applicable to solid-matrix luminescence. Also, deuterated phenanthrene and undeuterated phenanthrene were used to study nonradiative transition of excited triplet state of adsorbed phosphors. Heat capacities of several solid matrices were obtained vs temperature and related to vibrational coupling of solid matrix with phosphor. Photophysical study was performed on the hydrolysis products of benzo(a)pyrene-DNA adducts. Also, an analytical method was developed for tetrols in human lung fractions. Work was initiated on the formation of room temperature glasses with glucose and trehalose. Also, work has begun for the development of an oxygen sensor by measuring the RTP quenching of triphenylene on filter paper.« less
NASA Technical Reports Server (NTRS)
Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.
2007-01-01
The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS. The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (1) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multi-sensor series of trajectories.
Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond
NASA Astrophysics Data System (ADS)
Zhu, Hongzheng; Liu, Jian
2018-07-01
Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.
Intelligent Melting Probes - How to Make the Most out of our Data
NASA Astrophysics Data System (ADS)
Kowalski, J.; Clemens, J.; Chen, S.; Schüller, K.
2016-12-01
Direct exploration of glaciers, ice sheets, or subglacial environments poses a big challenge. Different technological solutions have been proposed and deployed in the last decades, examples being hot-water drills or different melting probe designs. Most of the recent engineering concepts integrate a variety of different on-board sensors, e.g. temperature sensors, pressure sensors, or an inertial measurement unit. Not only do individual sensors provide valuable insight into the current state of the probe, yet often they also contain a wealth of additional information when analyzed collectively. This quite naturally raises the question: How can we make most out of our data? We find that it is necessary to implement intelligent data integration and sensor fusion strategies to retrieve a maximum amount of information from the observations. In this contribution, we are inspired by the engineering design of the IceMole, a minimally invasive, steerable melting probe. We will talk about two sensor integration strategies relevant to IceMole melting scenarios. At first, we will present a multi-sensor fusion approach to accurately retrieve subsurface position and attitude information. It uses an extended Kalman filter to integrate data from an on-board IMU, a differential magnetometer system, the screw feed, as well as the travel time of acoustic signals originating from emitters at the ice surface. Furthermore, an evidential mapping algorithm estimates a map of the environment from data of ultrasound phased arrays in the probe's head. Various results from tests in a swimming pool and in glacier ice will be shown during the presentation. A second block considers the fluid-dynamical state in the melting channel, as well as the ambient cryo-environment. It is devoted to retrieving information from on-board temperature and pressure sensors. Here, we will report on preliminary results from re-analysing past field test data. Knowledge from integrated sensor data likewise provides valuable input for the parameter identification and verification of data based models. Due to the concept of not focusing on the physical laws, this approach can still be used, if modifications are done. It is highly transferable and hasn't been exploited rigorously so far. This could be a potential future direction.
Energy-saving approaches to solid state street lighting
NASA Astrophysics Data System (ADS)
Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras
2011-10-01
We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.
A Low-Signal-to-Noise-Ratio Sensor Framework Incorporating Improved Nighttime Capabilities in DIRSIG
NASA Astrophysics Data System (ADS)
Rizzuto, Anthony P.
When designing new remote sensing systems, it is difficult to make apples-to-apples comparisons between designs because of the number of sensor parameters that can affect the final image. Using synthetic imagery and a computer sensor model allows for comparisons to be made between widely different sensor designs or between competing design parameters. Little work has been done in fully modeling low-SNR systems end-to-end for these types of comparisons. Currently DIRSIG has limited capability to accurately model nighttime scenes under new moon conditions or near large cities. An improved DIRSIG scene modeling capability is presented that incorporates all significant sources of nighttime radiance, including new models for urban glow and airglow, both taken from the astronomy community. A low-SNR sensor modeling tool is also presented that accounts for sensor components and noise sources to generate synthetic imagery from a DIRSIG scene. The various sensor parameters that affect SNR are discussed, and example imagery is shown with the new sensor modeling tool. New low-SNR detectors have recently been designed and marketed for remote sensing applications. A comparison of system parameters for a state-of-the-art low-SNR sensor is discussed, and a sample design trade study is presented for a hypothetical scene and sensor.
Multi-Parameter Scattering Sensor and Methods
NASA Technical Reports Server (NTRS)
Greenberg, Paul S. (Inventor); Fischer, David G. (Inventor)
2016-01-01
Methods, detectors and systems detect particles and/or measure particle properties. According to one embodiment, a detector for detecting particles comprises: a sensor for receiving radiation scattered by an ensemble of particles; and a processor for determining a physical parameter for the detector, or an optimal detection angle or a bound for an optimal detection angle, for measuring at least one moment or integrated moment of the ensemble of particles, the physical parameter, or detection angle, or detection angle bound being determined based on one or more of properties (a) and/or (b) and/or (c) and/or (d) or ranges for one or more of properties (a) and/or (b) and/or (c) and/or (d), wherein (a)-(d) are the following: (a) is a wavelength of light incident on the particles, (b) is a count median diameter or other characteristic size parameter of the particle size distribution, (c) is a standard deviation or other characteristic width parameter of the particle size distribution, and (d) is a refractive index of particles.
NASA Technical Reports Server (NTRS)
Teichman, M. A.; Marek, F. L.; Browning, J. J.; Parr, A. K.
1974-01-01
An RF phase interferometer has been integrated into the ATS-F spacecraft attitude control system. Laboratory measurements indicate that the interferometer is capable of determining spacecraft attitude in pitch and roll to an accuracy of 0.18 deg over a field-of-view of plus or minus 12.5 deg about the spacecraft normal axis with an angular resolution of 0.004 deg. The system is completely solid state, weighs 17 pounds, and consumes 12.5 W of DC power.
Software Would Largely Automate Design of Kalman Filter
NASA Technical Reports Server (NTRS)
Chuang, Jason C. H.; Negast, William J.
2005-01-01
Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.
Study on parallel and distributed management of RS data based on spatial database
NASA Astrophysics Data System (ADS)
Chen, Yingbiao; Qian, Qinglan; Wu, Hongqiao; Liu, Shijin
2009-10-01
With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.
Study on parallel and distributed management of RS data based on spatial data base
NASA Astrophysics Data System (ADS)
Chen, Yingbiao; Qian, Qinglan; Liu, Shijin
2006-12-01
With the rapid development of current earth-observing technology, RS image data storage, management and information publication become a bottle-neck for its appliance and popularization. There are two prominent problems in RS image data storage and management system. First, background server hardly handle the heavy process of great capacity of RS data which stored at different nodes in a distributing environment. A tough burden has put on the background server. Second, there is no unique, standard and rational organization of Multi-sensor RS data for its storage and management. And lots of information is lost or not included at storage. Faced at the above two problems, the paper has put forward a framework for RS image data parallel and distributed management and storage system. This system aims at RS data information system based on parallel background server and a distributed data management system. Aiming at the above two goals, this paper has studied the following key techniques and elicited some revelatory conclusions. The paper has put forward a solid index of "Pyramid, Block, Layer, Epoch" according to the properties of RS image data. With the solid index mechanism, a rational organization for different resolution, different area, different band and different period of Multi-sensor RS image data is completed. In data storage, RS data is not divided into binary large objects to be stored at current relational database system, while it is reconstructed through the above solid index mechanism. A logical image database for the RS image data file is constructed. In system architecture, this paper has set up a framework based on a parallel server of several common computers. Under the framework, the background process is divided into two parts, the common WEB process and parallel process.
Organic-Inorganic Hybrid Materials: Multi-Functional Solids for Multi-Step Reaction Processes.
Díaz, Urbano; Corma, Avelino
2018-03-15
The design of new hybrid materials with tailored properties at the nano-, meso-, and macro-scale, with the use of structural functional nanobuilding units, is carried out to obtain specific multi-functional materials. Organization into controlled 1D, 2D, and 3D architectures with selected functionalities is key for developing advanced catalysts, but this is hardly accomplished using conventional synthesis procedures. The use of pre-formed nanostructures, derived either from known materials or made with specific innovative synthetic methodologies, has enormous potential in the generation of multi-site catalytic materials for one-pot processes. The present concept article introduces a new archetype wherein self-assembled nanostructured builder units are the base for the design of multifunctional catalysts, which combine catalytic efficiency with fast reactant and product diffusion. The article addresses a new generation of versatile hybrid organic-inorganic multi-site catalytic materials for their use in the production of (chiral) high-added-value products within the scope of chemicals and fine chemicals production. The use of those multi-reactive solids for more nanotechnological applications, such as sensors, due to the inclusion of electron donor-acceptor structural arrays is also considered, together with the adsorption-desorption capacities due to the combination of hydrophobic and hydrophilic sub-domains. The innovative structured hybrid materials for multipurpose processes here considered, can allow the development of multi-stage one-pot reactions with industrial applications, using the materials as one nanoreactor systems, favoring more sustainable production pathways with economic, environmental and energetic advantages. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An adaptive tracking observer for failure-detection systems
NASA Technical Reports Server (NTRS)
Sidar, M.
1982-01-01
The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Chongke; Zhao Chunliu; Kang Juan
2012-05-15
A simple method to work out the multiplexing of tapered fiber based sensors is proposed and demonstrated. By cascading a tapered fiber with a fiber Bragg grating (FBG), the sensor head is provided with a wavelength identification, different FBGs provide the sensor heads with different reflective peaks and they can be distinguished in optical spectrum. By compositing several such sensor heads with a multi-channel beam splitter, a star-style topological structure sensor for multipoint sensing is achieved. At the same time, the output intensity at the peak wavelength is sensitive to one external physical parameter applied on the related FBG-cascaded taperedmore » fiber and the central wavelength of the peak is only sensitive to temperature, so that that parameter and temperature can be measured simultaneously. A sensor for dual-point measurement of the displacement and temperature simultaneously is experimentally demonstrated by using a 2 x 2 coupler in this paper. Experiment results show that the sensor works well and the largest sensitivities reach to 0.11 dB/{mu}m for displacement in the range of 0-400 {mu}m, and {approx}0.0097 nm/ deg. C for temperature between 20 deg. C and 70 deg. C.« less
Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies
NASA Astrophysics Data System (ADS)
Hamel, Caroline; Pinet, Éric
2006-02-01
We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.
Automatic Multi-sensor Data Quality Checking and Event Detection for Environmental Sensing
NASA Astrophysics Data System (ADS)
LIU, Q.; Zhang, Y.; Zhao, Y.; Gao, D.; Gallaher, D. W.; Lv, Q.; Shang, L.
2017-12-01
With the advances in sensing technologies, large-scale environmental sensing infrastructures are pervasively deployed to continuously collect data for various research and application fields, such as air quality study and weather condition monitoring. In such infrastructures, many sensor nodes are distributed in a specific area and each individual sensor node is capable of measuring several parameters (e.g., humidity, temperature, and pressure), providing massive data for natural event detection and analysis. However, due to the dynamics of the ambient environment, sensor data can be contaminated by errors or noise. Thus, data quality is still a primary concern for scientists before drawing any reliable scientific conclusions. To help researchers identify potential data quality issues and detect meaningful natural events, this work proposes a novel algorithm to automatically identify and rank anomalous time windows from multiple sensor data streams. More specifically, (1) the algorithm adaptively learns the characteristics of normal evolving time series and (2) models the spatial-temporal relationship among multiple sensor nodes to infer the anomaly likelihood of a time series window for a particular parameter in a sensor node. Case studies using different data sets are presented and the experimental results demonstrate that the proposed algorithm can effectively identify anomalous time windows, which may resulted from data quality issues and natural events.
Silicon sensors for catheters and guide wires
NASA Astrophysics Data System (ADS)
Goosen, Hans F.
2001-11-01
One area that can make use of the miniature size of present day micro electromechanical systems (MEMS) is that of the medical field of minimally invasive interventions. These procedures, used for both diagnosis and treatment, use catheters that are advanced through the blood vessels deep into the body, without the need for surgery. However, once inside the body, the doctor performing the procedure is completely reliant on the information the catheter(s) can provide in addition to the projection imaging of a fluoroscope. A good range of sensors for catheters is required for a proper diagnosis. To this end, miniature sensors are being developed to be fitted to catheters and guide wires. As the accurate positioning of these instruments is problematic, it is necessary to combine several sensors on the same guide wire or catheter to measure several parameters in the same location. This however, brings many special problems to the design of the sensors, such as small size, low power consumption, bio-compatibility of materials, robust design for patient safety, a limited number of connections, packaging, etc. This paper will go into both the advantages and design problems of micromachined sensors and actuators in catheters and guide wires. As an example, a multi parameter blood sensor, measuring flow velocity, pressure and oxygen saturation, will be discussed.
Adaptive driving beam headlights : visibility, glare and measurement considerations.
DOT National Transportation Integrated Search
2016-06-01
Recent developments in solid-state lighting, sensor and control technologies are making new : configurations for vehicle forward lighting feasible. Building on systems that automatically switch from : high- to low-beam headlights in the presence of o...
A/C Interface: The Electronic Toolbox. Part I.
ERIC Educational Resources Information Center
Dessy, Raymond E., Ed.
1985-01-01
Discusses new solid-state transducers, arrays of nonspecific detectors, hardware and firmware computational elements, and other devices that are transforming modern analytical chemistry. Examples in which microelectroic sensors are used to solve 14 problems are included. (JN)
Uniform competency-based local feature extraction for remote sensing images
NASA Astrophysics Data System (ADS)
Sedaghat, Amin; Mohammadi, Nazila
2018-01-01
Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.
Pillar-structured neutron detector based multiplicity system
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...
2017-10-04
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less
Pillar-structured neutron detector based multiplicity system
NASA Astrophysics Data System (ADS)
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.
2018-01-01
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.
Quantum 1/f Noise in Solid State Devices in Particular Hg(1-x)Cd(x)Te N(+)-P Diodes
1989-05-15
1 / f noise in pentodes. 3. A. van der Ziel, P. H. Handel, X. C. Zhu, and K. H. Duh, "A theory of the Hooge parameters of solid-state...the progress reports 12. P. H. Hardel and A. van der Ziel, "Relativistic correction of the Hooge parameter for Umklapp 1 / f noise ," Physica, vol. 141B... Hooge parameter and of fundamental 1 / f noise sources. As a side result many quantum 1 / f noise formulas are verified
NASA Astrophysics Data System (ADS)
Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.
2016-04-01
Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.
Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs.
Osborn, Luke; Nguyen, Harrison; Betthauser, Joseph; Kaliki, Rahul; Thakor, Nitish
2016-08-01
The human body offers a template for many state-of-the-art prosthetic devices and sensors. In this work, we present a novel, sensorized synthetic skin that mimics the natural multi-layered nature of mechanoreceptors found in healthy glabrous skin to provide tactile information. The multi-layered sensor is made up of flexible piezoresistive textiles that act as force sensitive resistors (FSRs) to convey tactile information, which are embedded within a silicone rubber to resemble the compliant nature of human skin. The top layer of the synthetic skin is capable of detecting small loads less than 5 N whereas the bottom sensing layer responds reliably to loads over 7 N. Finite element analysis (FEA) of a simplified human fingertip and the synthetic skin was performed. Results suggest similarities in behavior during loading. A natural tactile event is simulated by loading the synthetic skin on a prosthetic limb. Results show the sensors' ability to detect applied loads as well as the ability to simulate neural spiking activity based on the derivative and temporal differences of the sensor response. During the tactile loading, the top sensing layer responded 0.24 s faster than the bottom sensing layer. A synthetic biologically-inspired skin such as this will be useful for enhancing the functionality of prosthetic limbs through tactile feedback.
Single-Photon Detectors for Time-of-Flight Range Imaging
NASA Astrophysics Data System (ADS)
Stoppa, David; Simoni, Andrea
We live in a three-dimensional (3D) world and thanks to the stereoscopic vision provided by our two eyes, in combination with the powerful neural network of the brain we are able to perceive the distance of the objects. Nevertheless, despite the huge market volume of digital cameras, solid-state image sensors can capture only a two-dimensional (2D) projection, of the scene under observation, losing a variable of paramount importance, i.e., the scene depth. On the contrary, 3D vision tools could offer amazing possibilities of improvement in many areas thanks to the increased accuracy and reliability of the models representing the environment. Among the great variety of distance measuring techniques and detection systems available, this chapter will treat only the emerging niche of solid-state, scannerless systems based on the TOF principle and using a detector SPAD-based pixels. The chapter is organized into three main parts. At first, TOF systems and measuring techniques will be described. In the second part, most meaningful sensor architectures for scannerless TOF distance measurements will be analyzed, focusing onto the circuital building blocks required by time-resolved image sensors. Finally, a performance summary is provided and a perspective view for the near future developments of SPAD-TOF sensors is given.
Sainato, Michela; Strambini, Lucanos Marsilio; Rella, Simona; Mazzotta, Elisabetta; Barillaro, Giuseppe
2015-04-08
Surface doping of nano/mesostructured materials with metal nanoparticles to promote and optimize chemi-transistor sensing performance represents the most advanced research trend in the field of solid-state chemical sensing. In spite of the promising results emerging from metal-doping of a number of nanostructured semiconductors, its applicability to silicon-based chemi-transistor sensors has been hindered so far by the difficulties in integrating the composite metal-silicon nanostructures using the complementary metal-oxide-semiconductor (CMOS) technology. Here we propose a facile and effective top-down method for the high-yield fabrication of chemi-transistor sensors making use of composite porous silicon/gold nanostructures (cSiAuNs) acting as sensing gate. In particular, we investigate the integration of cSiAuNs synthesized by metal-assisted etching (MAE), using gold nanoparticles (NPs) as catalyst, in solid-state junction-field-effect transistors (JFETs), aimed at the detection of NO2 down to 100 parts per billion (ppb). The chemi-transistor sensors, namely cSiAuJFETs, are CMOS compatible, operate at room temperature, and are reliable, sensitive, and fully recoverable for the detection of NO2 at concentrations between 100 and 500 ppb, up to 48 h of continuous operation.
Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems
NASA Astrophysics Data System (ADS)
Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant
2004-08-01
The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.
Probabilistic teleportation via multi-parameter measurements and partially entangled states
NASA Astrophysics Data System (ADS)
Wei, Jiahua; Shi, Lei; Han, Chen; Xu, Zhiyan; Zhu, Yu; Wang, Gang; Wu, Hao
2018-04-01
In this paper, a novel scheme for probabilistic teleportation is presented with multi-parameter measurements via a non-maximally entangled state. This is in contrast to the fact that the measurement kinds for quantum teleportation are usually particular in most previous schemes. The detail implementation producers for our proposal are given by using of appropriate local unitary operations. Moreover, the total success probability and classical information of this proposal are calculated. It is demonstrated that the success probability and classical cost would be changed with the multi-measurement parameters and the entanglement factor of quantum channel. Our scheme could enlarge the research range of probabilistic teleportation.
Multi-objective optimization in quantum parameter estimation
NASA Astrophysics Data System (ADS)
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
NASA Tech Briefs, November 2011
NASA Technical Reports Server (NTRS)
2011-01-01
The topics include: 1) Flight Test Results from the Rake Airflow Gage Experiment on the F-15B; 2) Telemetry and Science Data Software System; 3) CropEx Web-Based Agricultural Monitoring and Decision Support; 4) High-Performance Data Analysis Tools for Sun-Earth Connection Missions; 5) Experiment in Onboard Synthetic Aperture Radar Data Processing; 6) Microfabrication of a High-Throughput Nanochannel Delivery/Filtration System; 7) Improved Design and Fabrication of Hydrated-Salt Pills; 8) Monolithic Flexure Pre-Stressed Ultrasonic Horns; 9) Cryogenic Quenching Process for Electronic Part Screening; 10) Broadband Via-Less Microwave Crossover Using Microstrip-CPW Transitions; 11) Wheel-Based Ice Sensors for Road Vehicles; 12) G-DYN Multibody Dynamics Engine; 13) Multibody Simulation Software Testbed for Small-Body Exploration and Sampling; 14) Propulsive Reaction Control System Model; 15) Licklider Transmission Protocol Implementation; 16) Core Recursive Hierarchical Image Segmentation; 17) Two-Stage Centrifugal Fan; 18) Combined Structural and Trajectory Control of Variable-Geometry Planetary Entry Systems; 19) Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options; 20) Temperature-Sensitive Coating Sensor Based on Hematite; 21) Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data Analysis; 22) Detection of Carbon Monoxide Using Polymer-Carbon Composite Films; 23) Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors; 24) Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer; 25) Integrated Lens Antennas for Multi-Pixel Receivers; 26) 180-GHz Interferometric Imager; 27) Maturation of Structural Health Management Systems for Solid Rocket Motors; 28) Validating Phasing and Geometry of Large Focal Plane Arrays; 29) Transverse Pupil Shifts for Adaptive Optics Non-Common Path Calibration; 30) Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments; 31) Solid-State Spectral Light Source System; 32) Multiple-Event, Single-Photon Counting Imaging Sensor; 33) Surface Modeling to Support Small-Body Spacecraft Exploration and Proximity Operations; and 34) Achieving Exact and Constant Turnaround Ratio in a DDS-Based Coherent Transponder.
Electronically scanned pressure sensor module with in SITU calibration capability
NASA Technical Reports Server (NTRS)
Gross, C. (Inventor)
1978-01-01
This high data rate pressure sensor module helps reduce energy consumption in wind tunnel facilities without loss of measurement accuracy. The sensor module allows for nearly a two order of magnitude increase in data rates over conventional electromechanically scanned pressure sampling techniques. The module consists of 16 solid state pressure sensor chips and signal multiplexing electronics integrally mounted to a four position pressure selector switch. One of the four positions of the pressure selector switch allows the in situ calibration of the 16 pressure sensors; the three other positions allow 48 channels (three sets of 16) pressure inputs to be measured by the sensors. The small size of the sensor module will allow mounting within many wind tunnel models, thus eliminating long tube lengths and their corresponding slow pressure response.
New Generation Lidar Technology and Applications
NASA Technical Reports Server (NTRS)
Spinhirne, James D.
1999-01-01
Lidar has been a tool for atmospheric research for several decades. Until recently routine operational use of lidar was not known. Problems have involved a lack of appropriate technology rather than a lack of applications. Within the last few years, lidar based on a new generation of solid state lasers and detectors have changed the situation. Operational applications for cloud and aerosol research applications are now well established. In these research applications, the direct height profiling capability of lidar is typically an adjunct to other types of sensing, both passive and active. Compact eye safe lidar with the sensitivity for ground based monitoring of all significant cloud and aerosol structure and the reliability to operate full time for several years is now in routine use. The approach is known as micro pulse lidar (MPL). For MPL the laser pulse repetition rate is in the kilohertz range and the pulse energies are in the micro-Joule range. The low pulse energy permits the systems to be eye safe and reliable with solid state lasers. A number of MPL systems have been deployed since 1992 at atmospheric research sites at a variety of global locations. Accurate monitoring of cloud and aerosol vertical distribution is a critical measurement for atmospheric radiation. An airborne application of lidar cloud and aerosol profiling is retrievals of parameters from combined lidar and passive sensing involving visible, infrared and microwave frequencies. A lidar based on a large pulse, solid state diode pumped ND:YAG laser has been deployed on the NASA ER-2 high altitude research aircraft along with multi-spectral visible/IR and microwave imaging radiometers since 1993. The system has shown high reliability in an extensive series of experimental projects for cloud remote sensing. The retrieval of cirrus radiation parameters is an effective application for combined lidar and passive sensing. An approved NASA mission will soon begin long term lidar observation of atmospheric structure from space. The Geoscience Laser Altimeter System (GLAS) of the Earth Observing System is scheduled for deployment in the 2001 time frame. GLAS is both a cloud and aerosol lidar and a surface altimeter, principally for monitoring of polar ice sheets. The GLAS instrument is based on all solid state lasers operating at 40 Hz and high efficiency, solid state detectors. The design lifetime is three to five years. Data from the GLAS mission is expected to revolutionize some aspects of our understanding of the global distribution of cloud and aerosols for global climate prediction.
Optimized sensitivity of Silicon-on-Insulator (SOI) strip waveguide resonator sensor
TalebiFard, Sahba; Schmidt, Shon; Shi, Wei; Wu, WenXuan; Jaeger, Nicolas A. F.; Kwok, Ezra; Ratner, Daniel M.; Chrostowski, Lukas
2017-01-01
Evanescent field sensors have shown promise for biological sensing applications. In particular, Silicon-on-Insulator (SOI)-nano-photonic based resonator sensors have many advantages for lab-on-chip diagnostics, including high sensitivity for molecular detection and compatibility with CMOS foundries for high volume manufacturing. We have investigated the optimum design parameters within the fabrication constraints of Multi-Project Wafer (MPW) foundries that result in the highest sensitivity for a resonator sensor. We have demonstrated the optimum waveguide thickness needed to achieve the maximum bulk sensitivity with SOI-based resonator sensors to be 165 nm using the quasi-TM guided mode. The closest thickness offered by MPW foundry services is 150 nm. Therefore, resonators with 150 nm thick silicon waveguides were fabricated resulting in sensitivities as high as 270 nm/RIU, whereas a similar resonator sensor with a 220 nm thick waveguide demonstrated sensitivities of approximately 200 nm/RIU. PMID:28270963
Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility
Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus
2013-01-01
This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-01-01
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight. PMID:28025524
A new disposable MEMS-based manometric catheter for in-vivo medical tests
NASA Astrophysics Data System (ADS)
Teng, Ming-Foey; Hariz, Alex J.; Hsu, Hung-Yao
2006-12-01
In this paper we report on the development of a new disposable manometric catheter for diagnosis of functional swallowing disorders. The function of this catheter is to measure the intrabolus and peak pressures occurring along the esophageal tract during the swallowing process. Traditionally, in hospitals the water perfusion technique is used to diagnose the disorder. Current manometric catheters developed elsewhere use a solid-state pressure sensor mounted directly on a thin catheter to measure the pressure changes. Both types of catheters are re-usable due to the high running cost, and this in turn increases the risk of contamination among patients, and creates hygiene problems. We have developed a new disposable manometric catheter which consists of a MEMS-based pressure sensor. Recent laboratory characterizations and hospital in-vivo tests show the new developed low cost disposable catheter prototype capable of measuring pressure ranges of 0 to 100mmHg. The in-vivo tests have also shown the new catheter prototype capable of measuring the peak pressure as well as the intrabolus pressure which is a very important parameter for doctors to carry out the required diagnosis.
Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory
NASA Technical Reports Server (NTRS)
Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.
2008-01-01
The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher information content). Implementation of this approach indicates good consistency in LAI values retrieved from NDVI (AVHRRmode) and spectral BRF (MODIS-mode). Specific details of the implementation and evaluation of the derived products are detailed in the second part of this two-paper series.
Motte, J-C; Escudié, R; Bernet, N; Delgenes, J-P; Steyer, J-P; Dumas, C
2013-09-01
Among all the process parameters of solid-state anaerobic digestion (SS-AD), total solid content (TS), inoculation (S/X ratio) and size of the organic solid particles can be optimized to improve methane yield and process stability. To evaluate the effects of each parameter and their interactions on methane production, a three level Box-Behnken experimental design was implemented in SS-AD batch tests degrading wheat straw by adjusting: TS content from 15% to 25%, S/X ratio (in volatile solids) between 28 and 47 and particle size with a mean diameter ranging from 0.1 to 1.4mm. A dynamic analysis of the methane production indicates that the S/X ratio has only an effect during the start-up phase of the SS-AD. During the growing phase, TS content becomes the main parameter governing the methane production and its strong interaction with the particle size suggests the important role of water compartmentation on SS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Downscaling Land Surface Temperature in an Urban Area: A Case Study for Hamburg, Germany
NASA Astrophysics Data System (ADS)
Bechtel, Benjamin; Zakšek, Klemen
2013-04-01
Land surface temperature (LST) is an important parameter for the urban radiation and heat balance and a boundary condition for the atmospheric urban heat island (UHI). The increase in urban surface temperatures compared to the surrounding area (surface urban heat island, SUHI) has been described and analysed with satellite-based measurements for several decades. Besides continuous progress in the development of new sensors, an operational monitoring is still severely limited by physical constraints regarding the spatial and temporal resolution of the satellite data. Essentially, two measurement concepts must be distinguished: Sensors on geostationary platforms have high temporal (several times per hour) and poor spatial resolution (~ 5 km) while those on low earth orbiters have high spatial (~ 100-1000 m) resolution and a long return period (one day to several weeks). To enable an observation with high temporal and spatial resolution, a downscaling scheme for LST from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard the geostationary meteorological Meteosat 9 to spatial resolutions between 100 and 1000 m was developed and tested for Hamburg in this case study. Therefore, various predictor sets (including parameters derived from multi-temporal thermal data, NDVI, and morphological parameters) were tested. The relationship between predictors and LST was empirically calibrated in the low resolution domain and then transferred to the high resolution domain. The downscaling was validated with LST data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) for the same time. Aggregated parameters from multi-temporal thermal data (in particular annual cycle parameters and principal components) proved particularly suitable. The results for the highest resolution of 100 m showed a high explained variance (R² = 0.71) and relatively low root mean square errors (RMSE = 2.2 K). Larger predictor sets resulted in higher errors, because they tended to overfit. As expected the results were better for coarser spatial resolutions (R² = 0.80, RMSE = 1.8 K for 500 m). These results are similar or slightly better than in previous studies, although we are not aware of any study with a comparably large downscaling factor. A considerable percentage of the error is systematic due to the different viewing geometry of the sensors (the high resolution LST was overestimated about 1.3 K). The study shows that downscaling of SEVIRI LST is possible up to a resolution of 100 m for urban areas and that multi-temporal thermal data are particularly suitable as predictors.
WE-E-18A-01: Large Area Avalanche Amorphous Selenium Sensors for Low Dose X-Ray Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheuermann, J; Goldan, A; Zhao, W
2014-06-15
Purpose: A large area indirect flat panel imager (FPI) with avalanche gain is being developed to achieve x-ray quantum noise limited low dose imaging. It uses a thin optical sensing layer of amorphous selenium (a-Se), known as High-Gain Avalanche Rushing Photoconductor (HARP), to detect optical photons generated from a high resolution x-ray scintillator. We will report initial results in the fabrication of a solid-state HARP structure suitable for a large area FPI. Our objective is to establish the blocking layer structures and defect suppression mechanisms that provide stable and uniform avalanche gain. Methods: Samples were fabricated as follows: (1) ITOmore » signal electrode. (2) Electron blocking layer. (3) A 15 micron layer of intrinsic a-Se. (4) Transparent hole blocking layer. (5) Multiple semitransparent bias electrodes to investigate avalanche gain uniformity over a large area. The sample was exposed to 50ps optical excitation pulses through the bias electrode. Transient time of flight (TOF) and integrated charge was measured. A charge transport simulation was developed to investigate the effects of varying blocking layer charge carrier mobility on defect suppression, avalanche gain and temporal performance. Results: Avalanche gain of ∼200 was achieved experimentally with our multi-layer HARP samples. Simulations using the experimental sensor structure produced the same magnitude of gain as a function of electric field. The simulation predicted that the high dark current at a point defect can be reduced by two orders of magnitude by blocking layer optimization which can prevent irreversible damage while normal operation remained unaffected. Conclusion: We presented the first solid state HARP structure directly scalable to a large area FPI. We have shown reproducible and uniform avalanche gain of 200. By reducing mobility of the blocking layers we can suppress defects and maintain stable avalanche. Future work will optimize the blocking layers to prevent lag and ghosting.« less
Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers
NASA Technical Reports Server (NTRS)
Hwang, In H.; Lee, Ja H.
1991-01-01
The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.
Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test
NASA Astrophysics Data System (ADS)
Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.
2017-11-01
Fibre Bragg Grating (FBG) sensor systems based on optical fibres are gaining interest in space applications. Studies on Structural Health Monitoring (SHM) of the reusable launchers using FBG sensors have been carried out in the Future European Space Transportation Investigations Programme (FESTIP). Increasing investment in the development on FBG sensor applications is foreseen for the Future Launchers Preparatory Programme (FLPP). TNO has performed different SHM measurements with FBGs including on the VEGA interstage [1, 2] in 2006. Within the current project, a multi-parameter FBG sensor array demonstrator system for temperature and strain measurements is designed, fabricated and tested under ambient as well as Thermal Vacuum (TV) conditions in a TV chamber of the European Space Agency (ESA), ESTEC site. The aim is the development of a multi-parameters measuring system based on FBG technology for space applications. During the TV tests of a Space Craft (S/C) or its subsystems, thermal measurements, as well as strain measurements are needed by the engineers in order to verify their prediction and to validate their models. Because of the dimensions of the test specimen and the accuracy requested to the measurement, a large number of observation/measuring points are needed. Conventional sensor systems require a complex routing of the cables connecting the sensors to their acquisition unit. This will add extra weight to the construction under test. FBG sensors are potentially light-weight and can easily be multiplexed in an array configuration. The different tasks comply of a demonstrator system design; its component selection, procurement, manufacturing and finally its assembly. The temperature FBG sensor is calibrated in a dedicated laboratory setup down to liquid nitrogen (LN2) temperature at TNO. A temperature-wavelength calibration curve is generated. After a test programme definition a setup in thermal vacuum is realised at ESA premises including a mechanical strain transducer to generate strain via a dedicated feed through in the chamber. Thermocouples are used to log the temperature for comparison to the temperature FBG sensor. Extreme temperature ranges from -150°C and +70°C at a pressure down to 10-4 Pa (10-6 mbar) are covered as well as testing under ambient conditions. In total five thermal cycles during a week test are performed. The FBG temperature sensor test results performed in the ESA/ESTEC TV chamber reveal high reproducibility (within 1 °C) within the test temperature range without any evidence of hysteresis. Differences are detected to the previous calibration curve. Investigation is performed to find the cause of the discrepancy. Differences between the test set-ups are identified. Equipment of the TNO test is checked and excluded to be the cause. Additional experiments are performed. The discrepancy is most likely caused by a 'thermal shock' due to rapid cooling down to LN2 temperature, which results in a wavelength shift. Test data of the FBG strain sensor is analysed. The read-out of the FBG strain sensor varies with the temperature during the test. This can be caused by temperature induced changes in the mechanical setup (fastening of the mechanical parts) or impact of temperature to the mechanical strain transfer to the FBG. Improvements are identified and recommendations given for future activities.
High average power diode pumped solid state laser
NASA Astrophysics Data System (ADS)
Gao, Yue; Wang, Yanjie; Chan, Amy; Dawson, Murray; Greene, Ben
2017-03-01
A new generation of high average power pulsed multi-joule solid state laser system has been developed at EOS Space Systems for various space related tracking applications. It is a completely diode pumped, fully automated multi-stage system consisting of a pulsed single longitudinal mode oscillator, three stages of pre-amplifiers, two stages of power amplifiers, completely sealed phase conjugate mirror or stimulated Brillouin scattering (SBS) cell and imaging relay optics with spatial filters in vacuum cells. It is capable of generating pulse energy up to 4.7 J, a beam quality M 2 ~ 3, pulse width between 10-20 ns, and a pulse repetition rate between 100-200 Hz. The system has been in service for more than two years with excellent performance and reliability.
A solid-state NMR method to determine domain sizes in multi-component polymer formulations
NASA Astrophysics Data System (ADS)
Schlagnitweit, Judith; Tang, Mingxue; Baias, Maria; Richardson, Sara; Schantz, Staffan; Emsley, Lyndon
2015-12-01
Polymer domain sizes are related to many of the physical properties of polymers. Here we present a solid-state NMR experiment that is capable of measuring domain sizes in multi-component mixtures. The method combines selective excitation of carbon magnetization to isolate a specific component with proton spin diffusion to report on domain size. We demonstrate the method in the context of controlled release formulations, which represents one of today's challenges in pharmaceutical science. We show that we can measure domain sizes of interest in the different components of industrial pharmaceutical formulations at natural isotopic abundance containing various (modified) cellulose derivatives, such as microcrystalline cellulose matrixes that are film-coated with a mixture of ethyl cellulose (EC) and hydroxypropyl cellulose (HPC).
NASA Astrophysics Data System (ADS)
Duffy, C.
2008-12-01
The future of environmental observing systems will utilize embedded sensor networks with continuous real- time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models, and state-of-the-art visualization deployed and coordinated at a testbed within the Penn State Experimental Forest. The Shale Hills Hydro_Sensorium prototype proposed here is designed to observe land-atmosphere interactions in four-dimensional (space and time). The term Hydro_Sensorium implies the totality of physical sensors, models and visualization tools that allow us to perceive the detailed space and time complexities of the water and energy cycle for a watershed or river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). This research will ultimately catalyze the study of complex interactions between the land surface, subsurface, biological and atmospheric systems over a broad range of scales. The sensor array would be real-time and fully controllable by remote users for "computational steering" and data fusion. Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. The sensor and simulation system has the following elements: 1) extensive, spatially-distributed, non- invasive, smart sensor networks to gather massive geologic, hydrologic, and geochemical data; 2) stochastic information fusion methods; 3) spatially-explicit multiphysics models/solutions of the land-vegetation- atmosphere system; and 4) asynchronous, parallel/distributed, adaptive algorithms for rapidly simulating the states of a basin at high resolution, 5) signal processing tools for data mining and parameter estimation, and 6) visualization tools. The prototype proposed sensor array and simulation system proposed here will offer a coherent new approach to environmental predictions with a fully integrated observing system design. We expect that the Shale Hills Hydro_Sensorium may provide the needed synthesis of information and conceptualization necessary to advance predictive understanding in complex hydrologic systems.
Carbon-Nanotube Schottky Diodes
NASA Technical Reports Server (NTRS)
Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter
2006-01-01
Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid-state Schottky diodes.
Priority design parameters of industrialized optical fiber sensors in civil engineering
NASA Astrophysics Data System (ADS)
Wang, Huaping; Jiang, Lizhong; Xiang, Ping
2018-03-01
Considering the mechanical effects and the different paths for transferring deformation, optical fiber sensors commonly used in civil engineering have been systematically classified. Based on the strain transfer theory, the relationship between the strain transfer coefficient and allowable testing error is established. The proposed relationship is regarded as the optimal control equation to obtain the optimal value of sensors that satisfy the requirement of measurement precision. Furthermore, specific optimization design methods and priority design parameters of the classified sensors are presented. This research indicates that (1) strain transfer theory-based optimization design method is much suitable for the sensor that depends on the interfacial shear stress to transfer the deformation; (2) the priority design parameters are bonded (sensing) length, interfacial bonded strength, elastic modulus and radius of protective layer and thickness of adhesive layer; (3) the optimization design of sensors with two anchor pieces at two ends is independent of strain transfer theory as the strain transfer coefficient can be conveniently calibrated by test, and this kind of sensors has no obvious priority design parameters. Improved calibration test is put forward to enhance the accuracy of the calibration coefficient of end-expanding sensors. By considering the practical state of sensors and the testing accuracy, comprehensive and systematic analyses on optical fiber sensors are provided from the perspective of mechanical actions, which could scientifically instruct the application design and calibration test of industrialized optical fiber sensors.
Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Perez, Hector Eduardo
This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.
Development of a 750x750 pixels CMOS imager sensor for tracking applications
NASA Astrophysics Data System (ADS)
Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali
2017-11-01
Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on-chip control and timing function) enabling a high flexibility architecture, make this imager a good candidate for high performance tracking applications.
The multi-parameter remote measurement of rainfall
NASA Technical Reports Server (NTRS)
Atlas, D.; Ulbrich, C. W.; Meneghini, R.
1982-01-01
The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution (DSD), i.e., representative raindrop size and number concentration. A generalized rain parameter diagram is developed which includes a third distribution parameter, the breadth of the DSD, to better specify rain rate and all possible remote variables. Simulations show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation.
NASA Astrophysics Data System (ADS)
Miao, Yinping; Zhang, Hao; Lin, Jichao; Song, Binbin; Zhang, Kailiang; Lin, Wei; Liu, Bo; Yao, Jianquan
2015-03-01
A dual-parameter measurement scheme based on a long-period fiber grating (LPFG) concatenated with a multimode fiber (MMF) has been proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. Splicing the LPFG with the etched MMF enables the coupling between the core modes and different cladding modes of the LPFG as well as the interferences between higher-order modes in the MMF. Due to different transmission mechanisms of the LPFG and mode interference, the proposed sensor shows transmission dip wavelength sensitivities of 0.02878 nm/Oe and -0.04048 nm/°C for multi-mode interference (MMI) and -0.0024 nm/Oe and 0.03929 nm/°C for the LPFG, respectively. By monitoring the opposite behaviors of resonance wavelength shift corresponding to the LPFG and MMI, the magnetic field and environmental temperature can be simultaneously measured. The spectral characteristics of the proposed sensor that could be tuned through control of both environmental temperature and applied magnetic field, which would provide a promising candidate for dual-channel filtering applications as well as multi-parameter measurement applications.
Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning
2012-01-01
In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464
Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning
2012-01-01
In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.
ERIC Educational Resources Information Center
Arnold, Mark A.; Meyerhoff, Mark E.
1984-01-01
Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…
Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning
2016-12-09
Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.
Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning
2016-01-01
Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705
Remote measurements of water pollution with a lidar polarimeter
NASA Technical Reports Server (NTRS)
Sheives, T. C.; Rouse, J. W., Jr.; Mayo, W. T., Jr.
1974-01-01
This paper examines a dual polarization laser backscatter system as a method for remote measurements of certain water quality parameters. Analytical models for describing the backscatter from turbid water and oil on turbid water are presented and compared with experimental data. Laser backscatter field measurements from natural waterways are presented and compared with simultaneous ground observations of the water quality parameters: turbidity, suspended solids, and transmittance. The results of this study show that the analytical models appear valid and that the sensor investigated is applicable to remote measurements of these water quality parameters and oil spills on water.-
Analysis of signal-dependent sensor noise on JPEG 2000-compressed Sentinel-2 multi-spectral images
NASA Astrophysics Data System (ADS)
Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K.
2017-10-01
The processing chain of Sentinel-2 MultiSpectral Instrument (MSI) data involves filtering and compression stages that modify MSI sensor noise. As a result, noise in Sentinel-2 Level-1C data distributed to users becomes processed. We demonstrate that processed noise variance model is bivariate: noise variance depends on image intensity (caused by signal-dependency of photon counting detectors) and signal-to-noise ratio (SNR; caused by filtering/compression). To provide information on processed noise parameters, which is missing in Sentinel-2 metadata, we propose to use blind noise parameter estimation approach. Existing methods are restricted to univariate noise model. Therefore, we propose extension of existing vcNI+fBm blind noise parameter estimation method to multivariate noise model, mvcNI+fBm, and apply it to each band of Sentinel-2A data. Obtained results clearly demonstrate that noise variance is affected by filtering/compression for SNR less than about 15. Processed noise variance is reduced by a factor of 2 - 5 in homogeneous areas as compared to noise variance for high SNR values. Estimate of noise variance model parameters are provided for each Sentinel-2A band. Sentinel-2A MSI Level-1C noise models obtained in this paper could be useful for end users and researchers working in a variety of remote sensing applications.
A Low-Power Thermal-Based Sensor System for Low Air Flow Detection
Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.
2016-01-01
Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186
Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks
Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo
2012-01-01
Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190
First demonstration of an all-solid-state optical cryocooler
Hehlen, Markus P.; Meng, Junwei; Albrecht, Alexander R.; ...
2018-06-06
Solid-state optical refrigeration uses anti-Stokes fluorescence to cool macroscopic objects to cryogenic temperatures without vibrations. Crystals such as Yb 3+-doped YLiF 4 (YLF:Yb) have previously been laser-cooled to 91 K. In this study, we show for the first time laser cooling of a payload connected to a cooling crystal. A YLF:Yb crystal was placed inside a Herriott cell and pumped with a 1020-nm laser (47 W) to cool a HgCdTe sensor that is part of a working Fourier Transform Infrared (FTIR) spectrometer to 135 K. This first demonstration of an all-solid-state optical cryocooler was enabled by careful control of themore » various desired and undesired heat flows. Fluorescence heating of the payload was minimized by using a single-kink YLF thermal link between the YLF:Yb cooling crystal and the copper coldfinger that held the HgCdTe sensor. The adhesive-free bond between YLF and YLF:Yb showed excellent thermal reliability. This laser-cooled assembly was then supported by silica aerogel cylinders inside a vacuum clamshell to minimize undesired conductive and radiative heat loads from the warm surroundings. Our structure can serve as a baseline for future optical cryocooler devices.« less
First demonstration of an all-solid-state optical cryocooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hehlen, Markus P.; Meng, Junwei; Albrecht, Alexander R.
Solid-state optical refrigeration uses anti-Stokes fluorescence to cool macroscopic objects to cryogenic temperatures without vibrations. Crystals such as Yb 3+-doped YLiF 4 (YLF:Yb) have previously been laser-cooled to 91 K. In this study, we show for the first time laser cooling of a payload connected to a cooling crystal. A YLF:Yb crystal was placed inside a Herriott cell and pumped with a 1020-nm laser (47 W) to cool a HgCdTe sensor that is part of a working Fourier Transform Infrared (FTIR) spectrometer to 135 K. This first demonstration of an all-solid-state optical cryocooler was enabled by careful control of themore » various desired and undesired heat flows. Fluorescence heating of the payload was minimized by using a single-kink YLF thermal link between the YLF:Yb cooling crystal and the copper coldfinger that held the HgCdTe sensor. The adhesive-free bond between YLF and YLF:Yb showed excellent thermal reliability. This laser-cooled assembly was then supported by silica aerogel cylinders inside a vacuum clamshell to minimize undesired conductive and radiative heat loads from the warm surroundings. Our structure can serve as a baseline for future optical cryocooler devices.« less
High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.
Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte
2017-10-01
The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Design, fabrication, and testing of energy-harvesting thermoelectric generator
NASA Astrophysics Data System (ADS)
Jovanovic, Velimir; Ghamaty, Saeid
2006-03-01
An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.
A solid state source of photon triplets based on quantum dot molecules
Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed
2017-01-01
Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705
NASA Astrophysics Data System (ADS)
Yakunin, A. G.
2018-01-01
The article deals with issues related to increasing the efficiency of the system of automatic maintenance of the temperature of liquid media entering the pipes to the place of consumption. For this purpose, a flowing water heater model is proposed, made in the SolidWorks environment, the construction parameters of which can be changed using the appropriate macro and screen form. It is shown that the choice of the location of the temperature sensor has a significant effect on such parameters of the device as the accuracy of maintaining a given temperature regime and the duration of the transient process caused by a change in the temperature of the liquid entering the heater. On a concrete example, it is shown that by changing the distance between the sensor and the heating module, it is possible to achieve minimum temperature fluctuations of the heat-transfer-agent at the heater outlet.
NASA Astrophysics Data System (ADS)
Assamoi, Antoine A.; Destain, Jacqueline; Delvigne, Frank; Lognay, Georges; Thonart, Philippe
Xylanase is produced by Penicillium canescens 10-10c from soya oil cake in static conditions using solid-state fermentation. The impact of several parameters such as the nature and the size of inoculum, bed-loading, and aeration is evaluated during the fermentation process. Mycelial inoculum gives more production than conidial inoculum. Increasing the quantity of inoculum enhances slightly xylanase production. Forced aeration induces more sporulation of strain and reduces xylanase production. However, forced moistened air improves the production compared to production obtained with forced dry air. In addition, increasing bed-loading reduces the specific xylanase production likely due to the incapacity of the Penicillium strain to grow deeply in the fermented soya oil cake mass. Thus, the best cultivation conditions involve mycelial inoculum form, a bed loading of 1-cm height and passive aeration. The maximum xylanase activity is obtained after 7 days of fermentation and attains 10,200 U/g of soya oil cake. These levels are higher than those presented in the literature and, therefore, show all the potentialities of this stock and this technique for the production of xylanase.
Structural damage detection-oriented multi-type sensor placement with multi-objective optimization
NASA Astrophysics Data System (ADS)
Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong
2018-05-01
A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.
Automatic low-order aberration compensator for solid-state slab lasers
NASA Astrophysics Data System (ADS)
Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Kong, Qingfeng; Yang, Kangjian; Liu, Yong; Tang, Guomao; Xu, Bing
2016-09-01
Slab geometry is a promising architecture for power scaling of solid-state lasers. By propagating the laser beams along zigzag path in the gain medium, the thermal effects can be well compensated. However, in the non-zigzag direction, the thermal effects are not compensated. Among the overall aberrations in the slab lasers, the major contributors are two low-order aberrations: astigmatism and defocus, which can range up to over 100 microns (peak to valley), leading to detracted beam quality. Another problem with slab lasers is that the output beams are generally in a rectangular aperture with high aspect ratio (normally 1:10), where square beams are favorable for many applications. In order to solve these problems, we propose an automatic low-order aberration compensation system. This system is composed of three lenses fixed on a motorized rail, one is a spherical lens and the others are cylindrical lenses. Astigmatism and defocus can be compensated by merely adjusting the distances between the lenses. Two wave-front sensors are employed in this compensation system, one is used for detecting the initial parameters of the beams, and the other one is used for detecting the remaining aberrations after correction. The adjustments of the three lenses are directly calculated based on beam parameters using ray tracing method. The initial size of the beam is 3.2mm by 26mm, and peak to valley(PV) value of the wave-front is 33.07λ(λ=1064nm). After correction, the dimension becomes 40mm by 40mm, and peak to valley (PV) value of the wave-front is less than 2 microns.
Solid state image sensing arrays
NASA Technical Reports Server (NTRS)
Sadasiv, G.
1972-01-01
The fabrication of a photodiode transistor image sensor array in silicon, and tests on individual elements of the array are described along with design for a scanning system for an image sensor array. The spectral response of p-n junctions was used as a technique for studying the optical-absorption edge in silicon. Heterojunction structures of Sb2S3- Si were fabricated and a system for measuring C-V curves on MOS structures was built.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.P.
Sensors for the determination of pH have been developed which are based on the immobilization of direct dyes at hydrolyzed cellulosic films. The performance and structural characteristics of the sensors were investigated by a variety of spectroscopic methods, and applications for remote sensing were developed. Films of cellulose acetate were base hydrolyzed in 0.07 M KOH to yield a porous support structure. The structural changes resulting from the hydrolysis on cellulose acetate were probed with infrared internal reflectance spectroscopy. The progress of the hydrolysis reaction was monitored by the changes in vibrational modes of the acetyl group, and other spectralmore » changes indicated changes in film thickness as a result of solvent incorporation. Direct dyes, including Congo Red and C. I. Direct Blue 8, were then immobilized at these porous cellulosic films. The optical response characteristics of the Congo Red pH sensor were characterized, including the UV-visible absorption spectra as a function of pH, the response time as a function of ionic strength and ionic size of electrolyte, the long-term stability of the sensor, the effects of metal-ion interference, and the concentration of Congo Red in the polymer film. The structural characteristics of the sensor were investigated by internal reflectance spectroscopy and resonance-enhanced Raman spectroscopy, and the protonation sites were identified as the two azo groups of Congo Red. Infrared internal reflection spectra of immobilized Congo Red led to the development of a sensor for pH based on infrared spectroscopy. Finally, a two-wavelength fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic photometer, which is based on solid-state sources and detectors, and a fiber-optic probe were developed for pH determinations using Congo Red and C. I. Direct Blue 8 pH sensors.« less
NASA Astrophysics Data System (ADS)
Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu
2018-03-01
All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.
All solid-state SBS phase conjugate mirror
Dane, Clifford B.; Hackel, Lloyd A.
1999-01-01
A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.
All solid-state SBS phase conjugate mirror
Dane, C.B.; Hackel, L.A.
1999-03-09
A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.
NASA Astrophysics Data System (ADS)
Li, Feng; Li, Hongren; Cui, Tianfang
2017-11-01
Fluorescent carbon-based nanomaterials(CNs) with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. Despite the successes in preparing strongly fluorescent CNs, preserving the luminescence in solid materials is still challenging because of the serious emission quenching of CNs in solid state materials. In this work, fluorescent carbon and silica nanohybrids (SiCNHs) were synthesized via a simple one-step hydrothermal approach by carbonizing sodium citrate and (3-aminopropyl)triethoxysilane(APTES), and hydrolysis of tetraethyl orthosilicate(TEOS). The resultant SiCNs were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The SiCNs exhibited strong fluorescence in both aqueous and solid states. The luminescent solid state SiCNs power were successfully used as a fluorescent labeling material for enhanced imaging of latent fingerprints(LFPs) on single background colour and multi-coloured surfaces substrates in forensic science for individual identification.
A plant-inspired robot with soft differential bending capabilities.
Sadeghi, A; Mondini, A; Del Dottore, E; Mattoli, V; Beccai, L; Taccola, S; Lucarotti, C; Totaro, M; Mazzolai, B
2016-12-20
We present the design and development of a plant-inspired robot, named Plantoid, with sensorized robotic roots. Natural roots have a multi-sensing capability and show a soft bending behaviour to follow or escape from various environmental parameters (i.e., tropisms). Analogously, we implement soft bending capabilities in our robotic roots by designing and integrating soft spring-based actuation (SSBA) systems using helical springs to transmit the motor power in a compliant manner. Each robotic tip integrates four different sensors, including customised flexible touch and innovative humidity sensors together with commercial gravity and temperature sensors. We show how the embedded sensing capabilities together with a root-inspired control algorithm lead to the implementation of tropic behaviours. Future applications for such plant-inspired technologies include soil monitoring and exploration, useful for agriculture and environmental fields.
Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review.
Budinski, Vedran; Donlagic, Denis
2017-02-23
Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper.
Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review †
Budinski, Vedran; Donlagic, Denis
2017-01-01
Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation. PMID:28241510
Moon-based Earth Observation for Large Scale Geoscience Phenomena
NASA Astrophysics Data System (ADS)
Guo, Huadong; Liu, Guang; Ding, Yixing
2016-07-01
The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.
A humidity sensing organic-inorganic composite for environmental monitoring.
Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S
2013-03-14
In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.
A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring
Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S.
2013-01-01
In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ∼200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ∼31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved. PMID:23493124
Liu, Guo-hai; Jiang, Hui; Xiao, Xia-hong; Zhang, Dong-juan; Mei, Cong-li; Ding, Yu-han
2012-04-01
Fourier transform near-infrared (FT-NIR) spectroscopy was attempted to determine pH, which is one of the key process parameters in solid-state fermentation of crop straws. First, near infrared spectra of 140 solid-state fermented product samples were obtained by near infrared spectroscopy system in the wavelength range of 10 000-4 000 cm(-1), and then the reference measurement results of pH were achieved by pH meter. Thereafter, the extreme learning machine (ELM) was employed to calibrate model. In the calibration model, the optimal number of PCs and the optimal number of hidden-layer nodes of ELM network were determined by the cross-validation. Experimental results showed that the optimal ELM model was achieved with 1040-1 topology construction as follows: R(p) = 0.961 8 and RMSEP = 0.104 4 in the prediction set. The research achievement could provide technological basis for the on-line measurement of the process parameters in solid-state fermentation.
Environmental performance evaluation of an advanced-design solid-state television camera
NASA Technical Reports Server (NTRS)
1979-01-01
The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.
Do Reuss and Voigt Bounds Really Bound in High-Pressure Rheology Experiments?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen,J.; Li, L.; Yu, T.
2006-01-01
Energy dispersive synchrotron x-ray diffraction is carried out to measure differential lattice strains in polycrystalline Fe{sub 2}SiO{sub 4} (fayalite) and MgO samples using a multi-element solid state detector during high-pressure deformation. The theory of elastic modeling with Reuss (iso-stress) and Voigt (iso-strain) bounds is used to evaluate the aggregate stress and weight parameter, {alpha} (0{le}{alpha}{le}1), of the two bounds. Results under the elastic assumption quantitatively demonstrate that a highly stressed sample in high-pressure experiments reasonably approximates to an iso-stress state. However, when the sample is plastically deformed, the Reuss and Voigt bounds are no longer valid ({alpha} becomes beyond 1).more » Instead, if plastic slip systems of the sample are known (e.g. in the case of MgO), the aggregate property can be modeled using a visco-plastic self-consistent theory.« less
On the predictions of the 11B solid state NMR parameters
NASA Astrophysics Data System (ADS)
Czernek, Jiří; Brus, Jiří
2016-07-01
The set of boron containing compounds has been subject to the prediction of the 11B solid state NMR spectral parameters using DFT-GIPAW methods properly treating the solid phase effects. The quantification of the differences between measured and theoretical values has been presented, which is directly applicable in structural studies involving 11B nuclei. In particular, a simple scheme has been proposed, which is expected to provide for an estimate of the 11B chemical shift within ±2.0 ppm from the experimental value. The computer program, INFOR, enabling the visualization of concomitant Euler rotations related to the tensorial transformations has been presented.
Integrated monitoring of wind plant systems
NASA Astrophysics Data System (ADS)
Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong
2008-03-01
Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.
Novel multichannel surface plasmon resonance photonic crystal fiber biosensor
NASA Astrophysics Data System (ADS)
Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, A. A.; El Deeb, Walid S.; Obayya, S. S. A.
2016-04-01
In this paper, a novel design of highly sensitive biosensor based on photonic crystal fiber is presented and analyzed using full vectorial finite element method. The suggested design depends on using silver layer as a plasmonic active material coated by a gold layer to protect silver oxidation. The reported sensor is based on the detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes which offers the possibility of multi-channel/multi-analyte sensing. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained for the quasi TM and quasi TE modes, respectively.
Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.
Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta
2010-01-01
This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.
Adaptation of ion beam technology to microfabrication of solid state devices and transducers
NASA Technical Reports Server (NTRS)
Topich, J. A.
1978-01-01
A number of areas were investigated to determine the potential uses of ion beam techniques in the construction of solid state devices and transducers and the packaging of implantable electronics for biomedical applications. The five areas investigated during the past year were: (1) diode-like devices fabricated on textured silicon; (2) a photolithographic technique for patterning ion beam sputtered PVC (polyvinyl chloride); (3) use of sputtered Teflon as a protective coating for implantable pressure sensors; (4) the sputtering of Macor to seal implantable hybrid circuits; and (5) the use of sputtered Teflon to immobilize enzymes.