NASA Astrophysics Data System (ADS)
McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.
2005-03-01
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Paul F.; Gryko, Jan; Bull, Craig
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less
Complex impedance analyses and magnetoelectric effect in ferrite ferroelectric composite ceramics
NASA Astrophysics Data System (ADS)
Patankar, K. K.; Kanade, S. A.; Padalkar, D. S.; Chougule, B. K.
2007-02-01
Magnetoelectric (ME) composites yBa0.8Pb0.2TiO3 (1-y)CuFe2O4 are prepared by ceramic method. The component phases are prepared from two different routes, viz. CuFe2O4 (ferrite phase) is prepared by oxalate precursor route and Ba0.8Pb0.2TiO3 (ferroelectric phase) by solid-state reaction route. No intermediate phases are observed in the composites containing these ferrite and ferroelectric phases. ME conversion factor (measure of ME effect) is found to be enhanced compared to those reported in the composites, in which the component phases were prepared by only one route, i.e. solid-state reaction route. The results on ME conversion are well accounted by measuring the complex impedance and analyzing their Nyquist plots.
Xu, Jiao; Zhao, Yang; Chen, Jingjing; Mao, Zhiyong; Yang, Yanfang; Wang, Dajian
2017-09-01
Two synthesis routes, solid-state reaction and precipitation reaction, were employed to prepare BaSiO 3 :Eu 2+ phosphors in this study. Discrepancies in the luminescence green emission at 505 nm for the solid-state reaction method sample and in the yellow emission at 570 nm for the sample prepared by the precipitation reaction method, were observed respectively. A detail investigation about the discrepant luminescence of BaSiO 3 :Eu 2+ phosphors was performed by evaluation of X-ray diffraction (XRD), photoluminescence (PL)/photoluminescence excitation (PLE), decay time and thermal quenching properties. The results showed that the yellow emission was generated from the BaSiO 3 :Eu 2+ phosphor, while the green emission was ascribed to a small amount of Ba 2 SiO 4 :Eu 2+ compound that was present in the solid-state reaction sample. This work clarifies the luminescence properties of Eu 2+ ions in BaSiO 3 and Ba 2 SiO 4 hosts. Copyright © 2017 John Wiley & Sons, Ltd.
Fabrication, characterization and applications of iron selenide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan
This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less
Setting the Record Straight: Bottom-Up Carbon Nanostructures via Solid-State Reactions
NASA Astrophysics Data System (ADS)
Jordan, Robert Stanley
Chapter 1 describes the development and spectroscopic investigation of a novel synthetic route to N = 8 armchair graphene nanoribbons from polydiacetylene polymers. Four distinct diphenyl polydiacetylene polymers are produced from the crystal-phase topochemical polymerization of their corresponding diphenyl-1,4-butadiynes. These polydiacetylene polymers are transformed into spectroscopically indistinguishable N = 8 armchair graphene nanoribbons via simple heating in the bulk, solid-state. The stepwise transformation of polydiacetylenes to graphene nanoribbons is examined in detail by the use of complementary spectroscopic methods, namely solid-state nuclear magnetic resonance, infrared, Raman and X-ray photoelectron spectroscopy. The final morphology and width of the nanoribbons is established through the use of high-resolution transmission electron microscopy. Chapter 2 chronicles the implementation of a similar approach to N = 12 armchair graphene nanoribbons from a dinaphthyl substituted polydiacetylene polymer. The mild nature of the process and pristine structure of the nanoribbons is again confirmed with the use of spectroscopic and microscopic methods. The chapter concludes with preliminary electrical measurements of the nanoribbons confirming that they are indeed conductive. Chapter 3 details the development of a synthetic route to diaryl trans-enediynes as structural models of individual reactive units within a polydiacetylene polymer. The trans-enediynes described are found to undergo three distinct annulation reactions depending on reaction conditions. Finally, the synthetic routes developed are utilized to access diethynyl [5]helicenes and phenanthrenes which fueled studies on the mechanism of the Bergman polymerization reaction.
Simple synthetic route to manganese-containing nanowires with the spinel crystal structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Lei; Zhang, Yan; Hudak, Bethany M.
This report describes a new route to synthesize single-crystalline manganese-containing spinel nanowires (NWs) by a two-step hydrothermal and solid-state synthesis. Interestingly, a nanowire or nanorod morphology is maintained during conversion from MnO{sub 2}/MnOOH to CuMn{sub 2}O{sub 4}/Mg{sub 2}MnO{sub 4}, despite the massive structural rearrangement this must involve. Linear sweep voltammetry (LSV) curves of the products give preliminary demonstration that CuMn{sub 2}O{sub 4} NWs are catalytically active towards the oxygen evolution reaction (OER) in alkaline solution, exhibiting five times the magnitude of current density found with pure carbon black. - Highlights: • Synthesis of single-crystalline manganese-containing spinel nanowires. • Binary oxidemore » nanowire converted to ternary oxide wire through solid state reaction. • Approach to structure conversion with shape retention could be generally applicable. • Copper and Manganese display multiple oxidation states with potential for catalysis. • CuMn{sub 2}O{sub 4} nanowires show promise as catalysts for the oxygen evolution reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo
The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperaturemore » solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.« less
Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.
Prakash, B Shri; Varma, K B R
2008-11-01
Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.
Reduction in the Band Gap of Manganese-Doped Zinc Oxide: Role of the Oxidation State
NASA Astrophysics Data System (ADS)
Sharma, Sonia; Ramesh, Pranith; Swaminathan, P.
2015-12-01
Manganese-doped zinc oxide powders were synthesized by solid state reaction of the respective oxides. The high-temperature conditions were chosen such that multiple valence states of manganese were doped in the host zinc oxide lattice. Structural characterization was carried out to confirm the doping and to find the maximum amount of manganese that can be incorporated. Diffuse reflectance spectroscopy was used to measure the optical band gap of the doped sample and the lowering with respect to pure ZnO was attributed to the presence of higher oxidation states of manganese. The presence of these oxidation states was confirmed using x-ray photoelectron spectroscopy. The study shows that a solid state reaction is a viable route for synthesizing doped metal oxides with desired optical properties.
Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum
NASA Technical Reports Server (NTRS)
Rodriguez, Marc (Inventor); Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor)
2014-01-01
Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.
A new route for the synthesis of submicron-sized LaB{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lihong, Bao; Wurentuya,; Wei, Wei
Submicron crystalline LaB{sub 6} has been successfully synthesized by a solid-state reaction of La{sub 2}O{sub 3} with NaBH{sub 4} at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation ofmore » LaB{sub 6} cubic structure. - Highlights: • Single-phased LaB{sub 6} have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature.« less
Multiferroic properties in NdFeO3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder
2018-05-01
The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.
Sun, Jiangman; Dong, Xiao; Wang, Yajie; ...
2017-05-02
Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Moreover, following this route produces a pure cis-isomer and more surprisingly, predictsmore » that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure.« less
LiCoPO4 cathode from a CoHPO4·xH2O nanoplate precursor for high voltage Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daiwon; Li, Xiaolin; Henderson, Wesley A.
2016-02-01
Highly crystalline LiCoPO4/C cathode has been synthesized without any impurities via single step solid-state reaction using CoHPO4xH2O nanoplates as a precursor obtained by simple precipitation route. The electrochemical test shows specific capacity as high as 125mAh/g at charge/discharge rate of C/10. Synthesis approach for obtaining CoHPO4xH2O nanoplate precursor and final LiCoPO4/C cathode using single step solid-state reaction have been characterized using X-ray diffraction, thermos gravimetric analyses (TGA) – differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The electrochemical test and cycling stability using different electrolytes, additive and separator have been investigated.
Hu, Pengfei; Cao, Yali
2012-08-07
The room-temperature solid-state chemical reaction technique has been used to synthesize the silver nanoparticle-loaded semiconductor silver@silver chloride for the first time. It has the advantages of convenient operation, lower cost, less pollution, and mass production. This simple technique created a wide array of nanosized silver particles which had a strong surface plasmon resonance effect in the visible region, and built up an excellent composite structure of silver@silver chloride hybrid which exhibited high photocatalytic activity and stability towards decomposition of organic methyl orange under visible-light illumination. Moreover, this work achieved the control of composition of the silver@silver chloride composite simply by adjusting the feed ratio of reactants. It offers an alternative method for synthesising metal@semiconductor composites.
Li, Shuai; Zhu, Jinlong; Wang, Yonggang; ...
2015-12-10
Lithium-rich Anti-perovskite (LiRAP), with general formula Li 3OX (X = Cl, Br, I), and recently reported as superionic conductors with 3-dimensional Li + migrating channels, is emerging as a promising candidate for solid electrolyte of all-solid-state LIBs. But, it is still difficult to fabricate pure LiRAP due to the difficulty of the phase formation and moisture-sensitive nature of the products. In this work, we thoroughly studied the formation mechanism of Li 3OCl and Li 3OBr in various solid state reaction routes. We developed different experimental strategies in order to improve the syntheses, in purposes of improved phase stability and large-scalemore » production of LiRAP. One feasible method is to use strongly reductive agents Li metal or LiH to eliminate OH species. The results show that LiH is more effective than Li metal because of negatively charged H - and uniform reaction. The other well-established method is using Li 2O and LiX mixture as reagents to preventing OH phase at the beginning, and using protected ball milling to make fine powders and hence active the reaction. Finally, IR spectroscopy, thermal analyses and first-principle calculation were performed to give indications on the reaction pathway.« less
Separation of uranium from (U, Th)O 2 and (U, Pu)O 2 by solid state reactions route
NASA Astrophysics Data System (ADS)
Keskar, Meera; Mudher, K. D. Singh; Venugopal, V.
2005-01-01
Solid state reactions of UO 2, ThO 2, PuO 2 and their mixed oxides (U, Th)O 2 and (U, Pu)O 2 were carried out with sodium nitrate upto 900 °C, to study the formation of various phases at different temperatures, which are amenable for easy dissolution and separation of the actinide elements in dilute acid. Products formed by reacting unsintered as well as sintered UO 2 with NaNO 3 above 500 °C were readily soluble in 2 M HNO 3, whereas ThO 2 and PuO 2 did not react with NaNO 3 to form any soluble products. Thus reactions of mixed oxides (U, Th)O 2 and (U, Pu)O 2 with NaNO 3 were carried out to study the quantitative separation of U from (U, Th)O 2 and (U, Pu)O 2. X-ray diffraction, X-ray fluorescence, thermal analysis and chemical analysis techniques were used for the characterization of the products formed during the reactions.
Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won
2017-12-13
Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.
Sun, Jiangman; Dong, Xiao; Wang, Yajie; Li, Kuo; Zheng, Haiyan; Wang, Lijuan; Cody, George D; Tulk, Christopher A; Molaison, Jamie J; Lin, Xiaohuan; Meng, Yufei; Jin, Changqing; Mao, Ho-Kwang
2017-06-01
Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting
NASA Astrophysics Data System (ADS)
Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.
2011-10-01
YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.
New chemistry of transition metal oxyhydrides
Kobayashi, Yoji; Hernandez, Olivier; Tassel, Cédric; Kageyama, Hiroshi
2017-01-01
Abstract In this review we describe recent advances in transition metal oxyhydride chemistry obtained by topochemical routes, such as low temperature reduction with metal hydrides, or high-pressure solid-state reactions. Besides the crystal chemistry, magnetic and transport properties of the bulk powder and epitaxial thin film samples, the remarkable lability of the hydride anion is particularly highlighted as a new strategy to discover unprecedented mixed anion materials. PMID:29383042
Rojas-Hernandez, Rocío Estefanía; Rubio-Marcos, Fernando; Gonçalves, Ricardo Henrique; Rodriguez, Miguel Ángel; Véron, Emmanuel; Allix, Mathieu; Bessada, Catherine; Fernandez, José Francisco
2015-10-19
SrAl2O4:Eu(2+), Dy(3+) has been extensively studied for industrial applications in the luminescent materials field, because of its excellent persistent luminescence properties and chemical stability. Traditionally, this strontium aluminate material is synthesized in bulk form and/or fine powder by the classic solid-state method. Here, we report an original synthetic route, a molten salt assisted process, to obtain highly crystalline SrAl2O4 powder with nanometer-scale crystals. The main advantages of salt addition are the increase of the reaction rate and the significant reduction of the synthesis temperature because of much higher mobility of reactants in the liquid medium than in the solid-state method. In particular, the formation mechanism of SrAl2O4, the role of the salt, and the phase's evolution have been explored as a function of temperature and time. Phosphorescent powders based on SrAl2O4:Eu(2+), Dy(3+) with high crystallinity are obtained after 1 h treatment at 900 °C. This work could promote further interest in adopting the molten salt strategy to process high-crystallinity materials with enhanced luminescence to design technologically relevant phosphors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jiangman; Dong, Xiao; Wang, Yajie
Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Moreover, following this route produces a pure cis-isomer and more surprisingly, predictsmore » that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure.« less
Effect of processing route for preparation of mullite from kaolinite and alumina
NASA Astrophysics Data System (ADS)
Behera, Pallavi Suhasinee; Bhattacharyya, Sunipa
2018-05-01
In current work, two different types of mullite ceramic powder were prepared using kaolinite and alumina by solid state and chemical precipitation route. The phases, bond types and microstructural evolution of the mullite powders were investigated by X-ray diffraction, infrared analysis, and field emission scanning electron microscopy to study the mullitisation behavior. The solid state method evident a pure mullite phase formation at 1550 °C. In case of chemical precipitation route small amount of alumina peak was noticed along with major phase of mullite which was also clearly apprehended from FESEM micrographs and IR spectra. Densification was more for the samples prepared by solid state process which may be correlated to the delayed mullitization process in chemical precipitation route.
Synthesis and superconductivity of highly underdoped HgBa2CuO4+δ
NASA Astrophysics Data System (ADS)
Edwards, P. P.; Gameson, I.; Fletcher, A.; Peacock, G. B.
1998-05-01
The highest transition temperature superconductors are found within the complex homologous series HgBa2Can-1CunO2n+2+δ (n=1-7), with the third member, HgBa2Ca2Cu3O8+δ possessing the record-high transition temperature (Tc) of 135 K at room pressure. The first member of this family, HgBa2CuO4+δ having a Tc of up to 97 K, displays the highest transition temperature for any analogous compounds with a single copper-layer. The chemical reaction for the formation of this material is intrinsically complex due to the natural high volatility of mercury-bearing compounds; chemical synthesis has been postulated to proceed via a solid-vapour reaction. With this in mind, we have developed a mixed solid/vapour phase synthesis for HgBa2CuO4+δ using what one might term a `remote' source of mercury, in this case elemental Hg itself. Interestingly, because of the zero oxidation state of elemental mercury in the reagent mixture, the synthesis reaction proceeds under reducing conditions. By this route, a highly underdoped state (Tc<=35 K) of the superconducting phase HgBa2CuO4+δ is readily obtained. This level of underdoping is extremely difficult to achieve by more conventional synthetic routes. We comment on the unusually high oxygen affinity of the resulting underdoped compound, in relation to other cuprate superconductors, and the implied mobility of oxygen defects within the crystal structure.
Zhao, Yufeng; Ma, Hongnan; Huang, Shifei; Zhang, Xuejiao; Xia, Meirong; Tang, Yongfu; Ma, Zi-Feng
2016-09-07
The emergence of atomically thick nanolayer materials, which feature a short ion diffusion channel and provide more exposed atoms in the electrochemical reactions, offers a promising occasion to optimize the performance of supercapacitors on the atomic level. In this work, a novel monolayer Ni-Co hydroxyl carbonate with an average thickness of 1.07 nm is synthesized via an ordinary one-pot hydrothermal route for the first time. This unique monolayer structure can efficiently rise up the exposed electroactive sites and facilitate the surface dependent electrochemical reaction processes, and thus results in outstanding specific capacitance of 2266 F g(-1). Based on this material, an all-solid-state asymmetric supercapacitor is developed adopting alkaline PVA (poly(vinyl alcohol)) gel (PVA/KOH) as electrolyte, which performs remarkable cycling stability (no capacitance fade after 19 000 cycles) together with promising energy density of 50 Wh kg(-1) (202 μWh cm(-2)) and high power density of 8.69 kW kg(-1) (35.1 mW cm(-2)). This as-assembled all-solid-state asymmetric supercapacitor (AASC) holds great potential in the field of portable energy storage devices.
Rapid solid-state metathesis route to transition-metal doped titanias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G., E-mail: edward-gillan@uiowa.edu
2015-12-15
Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M–TiO{sub 2}). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M–TiO{sub 2} samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganesemore » doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO{sub 2} was observed in all cases. The M–TiO{sub 2} samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M–TiO{sub 2} powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.« less
Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2
Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C.; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J.; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J.
2017-01-01
Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. PMID:28233864
Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.
Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J
2017-02-24
Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se 2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu 2 ZnSnS 4 ) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.
Li, Liang; Han, Qiutong; Tang, Lanqin; Zhang, Yuan; Li, Ping; Zhou, Yong; Zou, Zhigang
2018-01-25
Herein, orthorhombic regular Bi 4 TaO 8 Cl square nanoplates with an edge length of about 500 nm and a thickness of about 100 nm were successfully synthesized using a facile molten salt route. The as-prepared square nanoplates have been proven to be of {001} crystal facets as two dominantly exposed surfaces. The density functional theory calculation and photo-deposition of noble metal experiment demonstrate the electron and hole separation on different crystal facets and reveal that {001} crystal facets are in favor of the reduction reaction. Since the square nanoplate structure exhibits dominant exposure surfaces of the {001} facets, the molten salt route-based samples basically possess an obviously higher photocatalytic activity than those prepared by the solid state reaction (SSR) method. This study may provide inspiration for fabricating efficient photocatalysts.
Synthesis of ternary oxide for efficient photo catalytic conversion of CO2
NASA Astrophysics Data System (ADS)
Wan, Lijuan
2018-01-01
Zn2GeO4 Nan rods were prepared by solution phase route. The morphology and structure of the as-prepared products were characterized by scanning electron microscopy (SEM) and Bruner-Emmett-Teller (BET) surface area measurements. The results revealed that Zn2GeO4 Nan rods with higher surface area have higher photo catalytic activity in photo reduction of CO2 than Zn2GeO4 prepared through solid-state reaction.
Properties of Poly- and Oligopentacenes Synthesized from Modular Building Blocks
Kumarasamy, Elango; Sanders, Samuel N.; Pun, Andrew B.; ...
2016-02-09
Here, we describe a facile route to well-defined, solution-processable pentacene oligomers (2 to 7) and homopolymer using Suzuki–Miyaura cross-coupling reactions. This synthetic strategy leads to regioisomers, regiopure syn- and anti-trimers were also synthesized, revealing minimal changes in solution properties but significant changes in the solid state arising from differing levels of crystallinity. The materials were characterized by steady state absorption spectroscopy and cyclic voltammetry to study their electronic structure. The steady state absorption spectra exhibit a new high-energy transition in the oligomers, which intensifies as a function of oligomer length, thus increasing the range of absorption to include the entiremore » visible spectrum. Density functional theory calculations indicate that the new peak results directly from the oligomerization. Solid state UV–vis suggests that while the monomer is amorphous, bricklayer packing in the higher oligomers significantly alters the solid state absorption relative to solution. The effect of oligomerization on packing was corroborated by GIWAXS analysis, which revealed crystalline domains in the oligomers. These domains, which are most evident in anti-trimer, become more pronounced upon thermal annealing. Photodegradation studies revealed considerable stability enhancement of oligomers toward oxygen and cycloaddition reactions relative to monomer. The synthesis and characterization of the first higher oligomers and homopolymer of pentacene should pave the way to applications in singlet fission, organic field-effect transistors, and organic photovoltaics.« less
Shock-induced reaction synthesis of cubic boron nitride
NASA Astrophysics Data System (ADS)
Beason, M. T.; Pauls, J. M.; Gunduz, I. E.; Rouvimov, S.; Manukyan, K. V.; Matouš, K.; Son, S. F.; Mukasyan, A.
2018-04-01
Here, we report ultra-fast (0.1-5 μs) shock-induced reactions in the 3B-TiN system, leading to the direct synthesis of cubic boron nitride, which is extremely rare in nature and is the second hardest material known. Composite powders were produced through high-energy ball milling to provide intimate mixing and subsequently shocked using an explosive charge. High-resolution transmission electron microscopy and X-ray diffraction confirm the formation of nanocrystalline grains of c-BN produced during the metathetical reaction between boron and titanium nitride. Our results illustrate the possibility of rapid reactions enabled by high-energy ball milling possibly occurring in the solid state on incredibly short timescales. This process may provide a route for the discovery and fabrication of advanced compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.
Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sitesmore » in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.« less
Solid state RF power: The route to 1W per euro cent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heid, Oliver
2013-04-19
In most particle accelerators RF power is a decisive design constraint due to high costs and relative inflexibility of current electron beam based RF sources, i.e. Klystrons, Magnetrons, Tetrodes etc. At VHF/UHF frequencies the transition to solid state devices promises to fundamentally change the situation. Recent progress brings 1 Watt per Euro cent installed cost within reach. We present a Silicon Carbide semiconductor solution utilising the Solid State Direct Drive technology at unprecedented efficiency, power levels and power densities. The proposed solution allows retrofitting of existing RF accelerators and opens the route to novel particle accelerator concepts.
NASA Astrophysics Data System (ADS)
Griffiths, Trevor R.; Volkovich, Vladimir A.
An extensive review of the literature on the high temperature reactions (both in melts and in the solid state) of uranium oxides (UO 2, U 3O 8 and UO 3) resulting in the formation of insoluble alkali metal (Li to Cs) uranates is presented. Their uranate(VI) and uranate(V) compounds are examined, together with mixed and oxygen-deficient uranates. The reactions of uranium oxides with carbonates, oxides, per- and superoxides, chlorides, sulfates, nitrates and nitrites under both oxidising and non-oxidising conditions are critically examined and systematised, and the established compositions of a range of uranate(VI) and (V) compounds formed are discussed. Alkali metal uranates(VI) are examined in detail and their structural, physical, thermodynamic and spectroscopic properties considered. Chemical properties of alkali metal uranates(VI), including various methods for their reduction, are also reported. Errors in the current theoretical treatment of uranate(VI) spectra are identified and the need to develop routes for the preparation of single crystals is stressed.
NASA Astrophysics Data System (ADS)
Vinaykumar, R.; Mazumder, R.; Bera, J.
2017-05-01
Co-Ti co-substituted SrM hexagonal ferrite (SrCo1.5Ti1.5Fe9O19) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δμ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route.
NASA Astrophysics Data System (ADS)
Liu, Jing; Liu, Zhaoyue; Zhang, Tierui; Zhai, Jin; Jiang, Lei
2013-06-01
TiO2 nanotubular arrays formed by electrochemical anodization have attracted significant attention for photoelectrochemical applications that utilize solar energy. However, the as-anodized TiO2 nanotubes are amorphous, and need to be crystallized by high-temperature thermal annealing. Herein, we describe a low-temperature hydrothermal solid-gas route to crystallize TiO2 nanotubes. In this process, the as-anodized TiO2 hydroxo nanotubes are dehydrated to yield anatase phase via solid-gas interface reaction in an autoclave at a temperature of less than 180 °C. The solid-gas interface reaction alleviates the collapse of as-anodized TiO2 nanotubes during hydrothermal process efficiently. Compared with the common thermal annealing at the same temperature but at atmospheric pressure, the hydrothermal route improves the photocurrent density of TiO2 nanotubes by ~10 times in KOH electrolyte. The duration of the hydrothermal reaction has a substantial effect on the photoelectrochemical properties of TiO2 nanotubes, which is ascribed to the synergetic effect between the crystallization and structural evolution. Electron donors can further suppress the charge recombination in the low-temperature crystallized TiO2 nanotubes and boost the photocurrent density by ~120%.TiO2 nanotubular arrays formed by electrochemical anodization have attracted significant attention for photoelectrochemical applications that utilize solar energy. However, the as-anodized TiO2 nanotubes are amorphous, and need to be crystallized by high-temperature thermal annealing. Herein, we describe a low-temperature hydrothermal solid-gas route to crystallize TiO2 nanotubes. In this process, the as-anodized TiO2 hydroxo nanotubes are dehydrated to yield anatase phase via solid-gas interface reaction in an autoclave at a temperature of less than 180 °C. The solid-gas interface reaction alleviates the collapse of as-anodized TiO2 nanotubes during hydrothermal process efficiently. Compared with the common thermal annealing at the same temperature but at atmospheric pressure, the hydrothermal route improves the photocurrent density of TiO2 nanotubes by ~10 times in KOH electrolyte. The duration of the hydrothermal reaction has a substantial effect on the photoelectrochemical properties of TiO2 nanotubes, which is ascribed to the synergetic effect between the crystallization and structural evolution. Electron donors can further suppress the charge recombination in the low-temperature crystallized TiO2 nanotubes and boost the photocurrent density by ~120%. Electronic supplementary information (ESI) available: Morphology images of TiO2 nanotubular arrays crystallized by hydrothermal solid-liquid reaction at 130 °C, 160 °C and 180 °C for 4 h. Cross-sectional image of TiO2 nanotubular arrays prepared by anodizing Ti foil at 20 V for 20 min in 0.5 wt% HF solution followed by drying in air at 100 °C for 1 h; Photocurrent density-potential curves of TiO2 nanotubular arrays crystallized by thermal annealing at 450 °C and atmospheric pressure for 4 h. See DOI: 10.1039/c3nr01286g
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-04-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
Study of conduction behavior in Pr0.67Sr0.03Ag0.30MnO3
NASA Astrophysics Data System (ADS)
Bhat, Masroor Ahmad; Modi, Anchit; Pandey, Devendra K.; Gaur, N. K.
2018-05-01
In this paper, we report the conduction mechanism in Pr0.67Sr0.03Ag0.30MnO3 system synthesized via conventional solid state reaction route. The structural information was carried by X - Ray diffraction using Rietveld refinement which confirms the secondary phase of the sample. The SEM image shows the formation of double phase composite because of limited reaction of silver with parent compound. The resistivity behavior indicates the semiconducting behavior. The electronic nature can be estimated by means of variable range hopping (VRH) and small polaron hopping (SPH) model showing that the enhancement of double exchange interaction suppress the band gap and boost the carrier delocalization of charge carriers.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809
NASA Astrophysics Data System (ADS)
Yang, Ting
Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.
Samuvel, K; Ramachandran, K
2015-07-05
This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Samuvel, K.; Ramachandran, K.
2015-07-01
This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples.
Li, Zhanjun; Zhang, Yuanwei; Wu, Xiang; ...
2015-04-02
Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), possessing unique NIR PL properties, have recently emerged as important materials for a wide variety of applications in chemistry and biology, for which they must endure high-temperature solid-state annealing reactions and subsequent complicated physical post-treatments. Herein, we report on a first direct aqueous-phase chemical synthesis route to NIR PLNPs and present their enhanced in vivo renewable NIR PL. Our method leads to monodisperse PLNPs as small as ca. 8 nm. Such sub-10 nm nanocrystals are readily dispersed and functionalized, and can form stable colloidal solutions in aqueous solution and cell culture medium for biologicalmore » applications. Under biotissue-penetrable red-light excitation, we found that such nanocrystals possess superior renewable PL photoluminescence in vitro and in vivo compared to their larger counterparts currently made by existing methods. In conclusion, we believe that this solid-state-reaction-free chemical approach overcomes the current key roadblock in regard to PLNP development, and thus will pave the way to broad use of these advanced miniature “luminous pearls” in photonics and biophotonics.« less
Structural transformation in nano-structured CuAl{sub x}Cr{sub x}Fe{sub 2-2x}O{sub 4} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehta, D. K., E-mail: daxabjoshi@gmail.com; Chhantbar, M. C.; Joshi, H. H.
Polycrystalline spinel ferrite system CuAl{sub x}Cr{sub x}Fe{sub 2-2x}O{sub 4} (x=0.2, 0.6) was synthesized by solid-state reaction route. Nanoparticles of the samples have been prepared by using high energy ball milling technique with different milling durations and characterized by X-ray Diffraction and Tunneling Electron Microscope. It is observed that the structural transformation occurred from Cubic to tetragonal and particle size varied between 29 nm -14 nm with increase of milling time.
Dielectric properties of rare earth (Sm and La) substituted lead zirconate titanate (PZT) ceramics
NASA Astrophysics Data System (ADS)
Dipti, Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Prakash, Chandra
2013-06-01
In the present paper, we are reporting the studies on dielectric properties of Lanthanum (La) and Samarium (Sm) substituted Lead Zirconate Titanate with compositional formula Pb(1.02-x)SmxZr0.55Ti0.45O3 and Pb(1.02-x)LaxZr0.55Ti0.45O3 with x = 0.00, 0.01, 0.02, 0.03. The materials were synthesized by solid state reaction route. XRD analysis shows that all the samples be in single phase with tetragonal structure. Dielectric properties were studied as a function of temperature.
Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Li, Shuai; Zhang, Yi
Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less
Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte
Zhu, Jinlong; Li, Shuai; Zhang, Yi; ...
2016-09-07
Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Ioppolo, S.; Zhao, D.; Lamberts, T.; Linnartz, H.
2015-01-01
Solid-state astrochemical reaction pathways have the potential to link the formation of small nitrogen-bearing species, like NH3 and HNCO, and prebiotic molecules, specifically amino acids. To date, the chemical origin of such small nitrogen-containing species is still not well understood, despite the fact that ammonia is an abundant constituent of interstellar ices towards young stellar objects and quiescent molecular clouds. This is mainly because of the lack of dedicated laboratory studies. The aim of this work is to experimentally investigate the formation routes of NH3 and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant temperatures. This study focuses on the formation of NH3 and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in dark interstellar cloud regions, well before thermal and energetic processing start to become relevant. We demonstrate and discuss the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH3 upon sequential hydrogenation of N atoms. The importance of HNCO for astrobiology is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rounaghi, S.A., E-mail: s.a.rounaghi@gmail.com; Kiani Rashid, A.R.; Eshghi, H., E-mail: heshghi@ferdowsi.um.ac.ir
Decomposition of melamine was studied by solid state reaction of melamine and aluminum powders during high energy ball-milling. The milling procedure performed for both pure melamine and melamine/Al mixed powders as the starting materials for various times up to 48 h under ambient atmosphere. The products were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that Al causes melamine deammoniation at the first stages of milling and further milling process leads to the s-triazine ring degradation while nano-crystallite hexagonal aluminum nitride (h-AlN) was the main solid product. Comparison to milling process, the possibility ofmore » the reaction of melamine with Al was also investigated by thermal treatment method using differential scanning calorimeter (DSC) and thermo gravimetric analyzer (TGA). Melamine decomposition occurred by thermal treatment in the range of 270-370 Degree-Sign C, but no reaction between melamine and aluminum was observed. - Graphical Abstract: Mechanochemical reaction of melamine with Al resulted in the formation of nanocrystalline AlN after 7 h milling time Highlights: Black-Right-Pointing-Pointer High energy ball milling of melamine and aluminum results decomposition of melamine with elimination of ammonia. Black-Right-Pointing-Pointer Nano-crystalline AlN was synthesized by the mechanochemical route. Black-Right-Pointing-Pointer Milling process has no conspicuous effect on pure melamine degradation. Black-Right-Pointing-Pointer No reaction takes place by heating melamine and aluminum powder mixture in argon.« less
Skating on thin ice: surface chemistry under interstellar conditions
NASA Astrophysics Data System (ADS)
Fraser, H.; van Dishoeck, E.; Tielens, X.
Solid CO2 has been observed towards both active star forming regions and quiescent clouds (Gerakines et. al. (1999)). The high abundance of CO2 in the solid phase, and its low abundance in the gas phase, support the idea that CO2 is almost exclusively formed in the solid state. Several possible formation mechanisms have been postulated (Ruffle &Herbst (2001): Charnley &Kaufman (2000)), and the detection of CO2 towards quiescent sources such as Elias 16 (Whittet et. al. (1998)) clearly suggests that CO2 can be produced in the absence of UV or electron mediated processes. The most likely route is via the surface reactions between O atoms, or OH radicals, and CO. The tools of modern surface- science offer us the potential to determine many of the physical and chemical attributes of icy interstellar grain mantles under highly controlled conditions, that closely mimic interstellar environments. The Leiden Surface Reaction Simulation Device ( urfreside) combines UHV (UltraS High Vacuum) surface science techniques with an atomic beam to study chemical reactions occurring on the SURFACE and in the BULK of interstellar ice grain mimics. By simultaneously combining two or more surface analysis techniques, the chemical kinetics, reaction mechanisms and activation energies can be determined directly. The experiment is aimed at identifying the key barrierless reactions and desorption pathways on and in H2 O and CO ices under interstellar conditions. The results from traditional HV (high vacuum) and UHV studies of the CO + O and CO + OH reactions will be presented in this paper. Charnley, S.B., & Kaufman, M.J., 2000, ApJ, 529, L111 Gerakines, P.A., 1999, ApJ, 522, 357 Ruffle, D.P., & Herbst, E., 2001, MNRAS, 324, 1054 Whittet, D.C.B., et.al., 1998, ApJ, 498, L159
NASA Astrophysics Data System (ADS)
Chen, Lingyun; Shen, Yongming; Bai, Junfeng; Wang, Chunzhao
2009-08-01
We describe here a one-step solid-state process for the synthesis of metal three-dimensional (3D) superstructures from a metal-organic framework (MOF). Novel symmetrical coralloid Cu 3D superstructures with surface interspersed with clusters of Cu nanoparticles were successfully synthesized by thermolysis of the [Cu 3( btc) 2] ( btc=benzene-1,3,5-tricarboxylato) MOF in a one-end closed horizontal tube furnace (OCTF). The obtained products were characterized by TGA, FT-IR, XRD, EDX, SEM, TEM, HRTEM and SAED. Different reaction conditions were discussed. Furthermore, the synthesized Cu samples were converted into CuO microstructures by in-situ calcination in the air. In addition, the possible formation mechanism was also proposed. This method is a simple and facile route, which builds a direct linkage between metal-carboxylate MOF crystals and metal nano- or microstructures and also opens a new application field of MOFs.
NASA Astrophysics Data System (ADS)
Aanchal, Kaur, Kiranpreet; Singh, Anupinder; Singh, Mandeep
2018-05-01
Ba(1-x) Mgx Ti O3 (BMT) samples were synthesised using solid state reaction route with `x' varying from 0.025 to 0.10. The structural and ferroelectric properties of the bulk samples were investigated. The XRD analysis shows the presence of two phases, the first phase being magnesium doped BT (space group P4mm) and the second phase being Ba2TiO4 (space group Pna21). The tetragonal phase was found to be the major phase in the samples. The double phase Rietveld refinement was done and the weight percentage of orthorhombic phase was found to vary from 3.43% to 6.96% for x varying from 0.025≤x≤0.10. The P - E measurements reveal that all the samples exhibit lossy behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongkun; Tang, Kaibin, E-mail: kbtang@ustc.edu.cn; Zhu, Baichuan
2015-05-15
Highlights: • A new oxyfluoride compound Sr{sub 2}ScO{sub 3}F was prepared by a solid state route. • The structure of this compound was determined by GSAS program based on XRD data. • The photocatalytic property was investigated under UV irradiation. - Abstract: A new Ruddlesden–Popper type scandium oxyfluoride, Sr{sub 2}ScO{sub 3}F, was synthesized by a conventional solid state reaction route. The detailed structure of Sr{sub 2}ScO{sub 3}F was investigated using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The disorder distribution pattern of fluorine anions was determined by the {sup 19}F nuclear magnetic resonance (NMR) spectrum. The compound crystallizesmore » in a K{sub 2}NiF{sub 4}-type tetragonal structure (space group I4/mmm) with O/F anions disordered over the apical sites of the perovskite-type Sc(O,F){sub 6} octahedron layers interleaved with strontium cations. Ultraviolet–visible (UV–vis) diffuse reflection spectrum of the prepared Sr{sub 2}ScO{sub 3}F indicates that it has an absorption in the UV–vis region. The photocatalytic activity of Sr{sub 2}ScO{sub 3}F was further investigated, showing an effective photodegradation of Rhodamine-B (RB) within 2 h under UV light irradiation.« less
Chemical degradation of proteins in the solid state with a focus on photochemical reactions.
Mozziconacci, Olivier; Schöneich, Christian
2015-10-01
Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light. Copyright © 2014 Elsevier B.V. All rights reserved.
Study of x CNFO + (1-x) PLZT magnetoelectric composites
NASA Astrophysics Data System (ADS)
Dipti, Singh, Sangeeta; Juneja, J. K.; Pant, R. P.; Raina, K. K.; Prakash, Chandra
2014-04-01
In the present paper, we are reporting the studies on structural, dielectric, ferroelectric and magnetic properties of Lanthanum (La) substituted Lead Zirconate Titanate (PZT) and Cobalt Nickel ferrite (CNFO) composites with compositional formula x(Co0.80Ni0.20Fe2O4)+(1-x)(Pb1.01625La0.0025Zr0.55Ti0.45O3) (x = 0.00,0.10). The materials were synthesized by solid state reaction route. XRD analysis confirms the presence of both ferrite and ferroelectric phases. Dielectric properties were studied as a function of frequency and temperature. Ferroelectric P-E and Magnetic M-H hysteresis loops were measured at room temperature.
Mn2- x Y x (MoO4)3 Phosphor Excited by UV GaN-Based Light-Emitting Diode for White Emission
NASA Astrophysics Data System (ADS)
Chen, Lung-Chien; Tseng, Zong-Liang; Hsu, Ting-Chun; Yang, Shengyi; Chen, Yuan-Bin
2017-04-01
One option for low-cost white light-emitting diodes (LEDs) is the combination of a near-ultraviolet (UV) LED chip (382 nm) and a single phosphor. Such Mn2- x Y x (MoO4)3 single phosphors have been fabricated by a simple solid-state reaction route and their emission color tuned by controlling the Mn doping amount. The chromaticity coordinates of the white light emitted by the UV GaN LED with the MnY(MoO4)3 phosphor were x = 0.5204 and y = 0.4050 [correlated color temperature (CCT) = 7958 K].
Effect of stoichiometry on magnetic and transport properties in polycrystalline Y2Ir2O7
NASA Astrophysics Data System (ADS)
Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik
2018-05-01
In this paper we discuss synthesis of polycrystalline Y2Ir2O7 by solid state reaction route. XRD analysis shows deviation from stoichiometry which is also confirmed by SEM-EDX analysis. SEM analysis indicates average particle size ranging from 100 nm to 800 µm. EDX analysis gives clear evidence for deviation of stoichiometry of the product. Magnetic analysis is indicating effect of stoichiometry and showing ferromagnetic interaction unlike antiferromagnetic feature. Electrical resistivity is showing similar behavior as reported earlier and reveals no effect of different size of grains or grain boundaries from room temperature to 125 K.
Zhou, Chao; Zhao, Yufei; Bian, Tong; Shang, Lu; Yu, Huijun; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui
2013-10-28
Hierarchical Sn2Nb2O7 hollow spheres were prepared for the first time via a facile hydrothermal route using bubbles generated in situ from the decomposition of urea as soft templates. The as-obtained hollow spheres with a large specific surface area of 58.3 m(2) g(-1) show improved visible-light-driven photocatalytic H2 production activity in lactic acid aqueous solutions, about 4 times higher than that of the bulk Sn2Nb2O7 sample prepared by a conventional high temperature solid state reaction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi
Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less
NASA Astrophysics Data System (ADS)
Hartatiek; Yudyanto; Ratnasari, S. D.; Windari, R. Y.; Hidayat, N.
2017-05-01
In recent years, one of the most prominently investigated materials is hydroxyapatite (HA). It is because of its excellent properties for medical applications, essentially related to orthopedic. Also, the introduction of other materials to HA becomes another research focus of many leading scientists. In this present study, silicon with various concentrations was introduced, by means of solid state reaction route, to HA forming Si-HA. The crystal structure properties of the as-prepared samples were evaluated by X-ray diffractometer (XRD). Fourier Transform Infra Red (FTIR) spectroscopy data collection and analysis were done to investigate the functional groups within the samples. The microstructural characteristics as well as elemental mapping of the samples were captured by scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM-EDX). Vickers hardness test was also conducted to investigate the hardness properties of the samples. Furthermore, in vitro characterization-based bio resorbability of the samples in a simulated body fluid were also described. This study revealed that Indonesian limestone can be utilized as the raw material for synthesizing HA. The silicon has been successfully incorporated into phosphate site of the HA crystal. Conclusively, the Si-HA reported in this study shows good bioresorbability characteristic.
NASA Astrophysics Data System (ADS)
Palos, A. Ibarra; Anne, M.; Strobel, P.
2001-08-01
The composition Li2Mn4O9, reported as a spinel oxide containing vacancies on both tetrahedral and octahedral sites [A. de Kock et al., Mater. Res. Bull. 25, 657 (1990)], was approached using three different preparation routes: low-temperature solid state reaction (A), chemical delithiation (B), and electrochemical delithiation (C). Rietveld refinements from neutron diffraction data confirmed the double-vacancy scheme proposed previously for product A, but with more tetrahedral and fewer octahedral vacancies than in the ideal Li2Mn4O9 formula. Low-temperature solid state reactions systematically result in broad reflections. Sample B, which was obtained topotactically, exhibits much narrower reflections. But chemical analyses, thermogravimetry, and neutron diffraction show that the acid treatment introduces significant amounts of protons, resulting in a formula close to Li0.92HMn4O9. Samples A and B were cycled electrochemically in lithium cells at 3 V with better stability than LiMn2O4, probably due to their higher initial manganese oxidation state. No separate electrochemical step linked to the filling of vacancies is observed in A, whereas B gives an additional redox step ca. 200 mV above the main plateau. This feature is not observed on compounds A or C; it is reversible, and seems to be a specific property of this spinel with a low initial cell parameter (8.09 Å). Sample A2 with double cation vacancies is especially stable on cycling at 3 V, and shows a very small volume variation on lithium intercalation.
Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties
2014-10-31
H. Gocmez, Hydrothermal synthesis and properties of Ce1-xGdxO2-δ solid solutions // Solid State Sciences. – 2002. – Vol. 4. – P. 585-590. 19. E...J. Kilner, Ionic conductivity in the CeO2-Gd2O3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation // Solid State Ionics. - 2002. – Vol
Medishetty, Raghavender; Zhang, Zongji; Sadlo, Alexander; Cwik, Stefan; Peeters, Daniel; Henke, Sebastian; Mangayarkarasi, Nagarathinam; Devi, Anjana
2018-05-17
Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx; Reyes-Carmona, F.; Jaramillo-Vigueras, D.
2011-10-15
Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature.more » Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.« less
Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling
Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku
2017-01-01
The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30–40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures. PMID:28387324
Investigation of transport properties of FeTe compound
NASA Astrophysics Data System (ADS)
Lodhi, Pavitra Devi; Solanki, Neha; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Transport properties of FeTe parent compound has been investigated by measurements of electrical resistivity, magnetic susceptibility and Seebeck coefficient. The sample was synthesized through a standard solid state reaction route via vacuum encapsulation and characterized by x-ray diffraction, which indicated a tetragonal phase with space group P4/nmm. The parent FeTe compound does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 67 K, which corresponds to a structural phase transition along with in the vicinity of a magnetic phase transition. In the low temperature regime, Seebeck coefficient, S(T), exhibited an anomalous dip feature and negative throughout the temperature range, indicating electron-like charge carrier conduction mechanism.
Ferroelectric and Piezoelectric Properties of Gd3+ and Y3+ Modified Pkn Electroceramics
NASA Astrophysics Data System (ADS)
Rao, K. Sambasiva; Prasad, D. Madhava; Krishna, P. Murali; Lee, Joon Hyung
Ceramics with the composition Pb1-xK2x-3yMyNb2O6 (PKMN) with x = 0.29, y = 0.145 and M = Gd3+, Y3+ were synthesized by the solid-state reaction route between the corresponding oxides and carbonates. The crystal structure was confirmed by X-ray diffraction (XRD). The temperature dependence of dielectric properties were measured from 35 to 595°C. Well-developed P-E (polarization-electric field) hysteresis loops were observed in the materials. Determining the piezoelectric constants, Kp = 20%, Kt = 49%, d33 = 110, and quality factor, Qm = 33, reveals that the material Y3+-modified PKN can be useful for transducer applications.
NASA Technical Reports Server (NTRS)
Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; Mcgrath, J. E.
1987-01-01
A series of amine terminal amorphous poly(arylene ether ketone) oligomers of controlled molecular weights (2-15 K) were synthesized. These oligomers have been found to undergo 'self-crosslinking' reactions upon heating above 220 C, via the reaction of the terminal amine groups with the in-chain keto carbonyl functionalities. The resulting networks are ductile, chemically resistant, and nonporous. The networks obtained via generated ketimine functionality were characterized by solid state NMR. They have also been found to be remarkably stable toward hydrolysis. Ketimine functional bishalide monomers have also been synthesized. Such monomers have been utilized to synthesize a wide variety of amorphous poly(arylene ether) ketimine polymers. A high molecular weight hydroquinone functional poly(arylene ether) ketimine has been acid treated to regenerate a poly(arylene ether ketone) backbone in solution. This novel procedure thus allows for the synthesis of important matrix resins under relatively mild conditions.
NASA Astrophysics Data System (ADS)
Sun, Xiaodong; Zhang, Le
2018-05-01
In this work, the MWCNTs-decorated LiFePO4 microspheres (LiFePO4@MWCNTs) with a 3D network structure have been synthesized by a facile and efficient spray-drying approach followed by solid-state reaction in a reduction atmosphere. In the as-prepared composite, the MWCNTs around LiFePO4 nanoparticles can provide 3D conductive networks which greatly facilitate the transport of Li+-ion and electron during the electrochemical reaction. Compared to the pure LiFePO4 material, the LiFePO4@MWCNTs composite as cathode for lithium-ion batteries exhibits significantly improved Li-storage performance in terms of rate capability and cyclic stability. Therefore, we can speculate that the spray-drying approach is a promising route to prepare the high-performance electrode materials with 3D network structure for electrochemical energy storage.
Modelling of c-C2H4O Formation on Grain-Surfaces
NASA Astrophysics Data System (ADS)
Occhiogrosso, Angela; Viti, S.; Ward, M. D.; Price, S. D.
2013-01-01
Ethylene oxide (c-C2H4O) is a ring-shaped organic compound that may lead to the synthesis of amino acids and the early metabolic pathways in the interstellar medium (ISM) (Cleaves 2003; Miller & Schlesinger 1993). This molecule has been detected towards several high-mass star forming regions (Ikeda et al. 2001) but to date, its observational abundances cannot be reproduced by chemical models. We include new experimental results in the UCL_CHEM chemical model with the aim of reproducing the abundances of ethylene oxide across high-mass sources. In particular, we focused on the solid state reaction investigated by Ward & Price (2011). By comparing our theoretical column densities with those from the observations we found that the reaction between atomic oxygen and ethylene on grains is a viable route of formation for ethylene oxide (Occhiogrosso et al., accepted by MNRAS).
Compression selective solid-state chemistry
NASA Astrophysics Data System (ADS)
Hu, Anguang
Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.
Saxena, Mandvi; Maiti, Tanmoy
2017-05-09
Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency. In the present work, environmentally friendly non-toxic double perovskite La x Sr 2-x TiMoO 6 (LSTM) ceramics were synthesized using a solid-state reaction route by optimizing the sintering temperature and atmosphere for high temperature thermoelectric applications. Rietveld refinement of XRD data confirmed a single-phase solid solution with a cubic structure in these double perovskites with the space-group Pm3[combining macron]m. SEM studies showed a highly dense microstructure in these ceramics. High electrical conductivity on the order of 10 5 S m -1 and large carrier concentration (∼10 22 cm -3 ) were obtained in these materials. The temperature-dependent electrical conductivity measurement showed that the LSTM ceramics exhibit a semiconductor to metal transition. Thermopower (S) measurements demonstrated the conductivity switching from a p-type to n-type behavior at higher temperature. A temperature dependent Seebeck coefficient was further explained using a model for coexistence of both types of charge carriers in these oxides. A conductivity mechanism of these double perovskites was found to be governed by a small polaron hopping model.
Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films
NASA Astrophysics Data System (ADS)
Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.
2018-03-01
It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.
NASA Astrophysics Data System (ADS)
Harabuchi, Yu; Ono, Yuriko; Maeda, Satoshi; Taketsugu, Tetsuya
2015-07-01
A global reaction route map is generated for Au5 by the anharmonic downward distortion following method in which 5 minima and 14 transition states (TSs) are located. Through vibrational analyses in the 3N - 7 (N = 5) dimensional space orthogonal to the intrinsic reaction coordinate (IRC), along all the IRCs, four IRCs are found to have valley-ridge transition (VRT) points on the way where a potential curvature changes its sign from positive to negative in a direction orthogonal to the IRC. The detailed mechanisms of bifurcations related to the VRTs are discussed by surveying a landscape of the global reaction route map, and the connectivity of VRT points and minima is clarified. Branching of the products through bifurcations is confirmed by ab initio molecular dynamics simulations starting from the TSs. A new feature of the reaction pathways, unification, is found and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi
Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt.more » %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp
2013-10-15
A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less
Addition of a Second Metal (Co) to Molybdenum Carbide: Effect of the Doping Route.
Araujo, C P B; Frota, A V V M; Souza, C P de; Souto, M V M; Barbosa, C M
2018-03-01
Molybdenum carbide is an interesting and versatile material, which has important applications in the metal matrix industry as a reinforcement material, as well as in the catalytic field. Though many papers suggest different methodologies for adding cobalt to the carbide structure aiming either to increase catalytic activity or enhancing mechanical proprieties such as ductility, etc. no straightforward evaluation is available. In the present paper two doping methodologies were studied: via solid state mixture of powders and via wet impregnation. Ammonium molybdate [(NH4)2MoO4] and cobalt nitrate [Co(NO3)2·6H2O] were used as starting materials and the doping process was carried out before carburization reaction. Those materials were characterized by FT-IR, SEM, XRF and XRD. The carbo-reduction products' were evaluated on XRD and XRF basis. Doped precursors' evaluation showed that the wet impregnated doped materials presented smaller particle sizes, were more homogeneous and retained more cobalt than the solid state doped ones. However, final products' assessment indicated that the solid state methodology was able to retain a greater dopant percentage according to XRF evaluation, and XRD data indicated a more intrinsic addition of the dopant to the carbide structure. In addition, no significant changes on particle size could be attributed to any of the methodologies, both producing Mo2C of approximately 30 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Kuhn, Erik M.; Tucker, Melvin P.
In this study, the reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165 °C formore » 10 min and with 1% H 2SO 4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80 kg/h m 2 and cake permeability of 15 x 10 -15.« less
Antibody-mediated cofactor-driven reactions
Schultz, Peter G.
1993-01-01
Chemical reactions capable of being rate-enhanced by auxiliary species which interact with the reactants but do not become chemically bound to them in the formation of the final product are performed in the presence of antibodies which promote the reactions. The antibodies contain regions within their antigen binding sites which recognize the auxiliary species in a conformation which promotes the reaction. The antigen binding site frequently recognizes a particular transition state complex or other high energy complex along the reaction coordinate, thereby promoting the progress of the reaction along the desired route as opposed to other less favorable routes. Various classes of reaction together with appropriate antigen binding site specificities tailored for each are disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Yahia, Hamdi, E-mail: benyahia.hamdi@voila.fr; Rodewald, Ute Ch.; Boulahya, Khalid
Graphical abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. - Highlights: • We discovered the series of RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) compounds. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl single crystals were grown using NaCl/KCl flux. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl structures were solved using single crystal X-ray diffraction data. • The layered RE{sub 4}O{sub 4}[AsO{sub 4}]Cl compounds were further characterized using HRTEMmore » and SAED. • We observed an alternation of ordered-[RE{sub 4}O{sub 4}]{sup 4+} and disordered-[ClAsO{sub 4}]{sup 4–} layers. - Abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. The samples crystallise with a tetragonal cell, space group P4{sub 2}/mnm and Z = 2. Their crystal structure consists of an alternation of [RE{sub 4}O{sub 4}]{sup 4+} and [ClAsO{sub 4}]{sup 4–} layers. The [RE{sub 4}O{sub 4}]{sup 4+} layer contains ORE{sub 4/4} tetrahedra which share common edges. The anions AsO{sub 4}{sup 3–} and Cl{sup –} are located between these layers in disordered manner. SAED and HRTEM experiments confirmed this structural model and enabled us to propose an ordered model for the [ClAsO{sub 4}]{sup 4–} layers.« less
Fabrication of high-k dielectric Calcium Copper Titanate (CCTO) target by solid state route
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2016-02-01
CaCu3Ti4O12 (CCTO) ceramic pellet of 10mm diameter has been synthesized by adopting solid state route. The structural and morphological characterization of the ceramics sample was carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. XRD pattern revealed the CCTO phase formation, where as SEM micrograph shows the sample consisting of well defined grain and grain boundaries. The room temperature dielectric constant of the sample was found to be ∼ 5000 at 1kHz. After successful preparation of CCTO pellet, a 2 inch diameter CCTO sputtering target is also fabricated in order to deposit CCTO thin films for microelectronic applications.
Kopylov, Arthur T; Myasoedov, Nikolay F; Dadayan, Alexander K; Zgoda, Victor G; Medvedev, Alexei E; Zolotarev, Yurii A
2016-06-15
Studies of molecular biodegradation by mass spectrometry often require synthetic compounds labeled with stable isotopes as internal standards. However, labeling is very expensive especially when a large number of compounds are needed for analysis of biotransformation. Here we describe an approach for qualitative and quantitative analysis using bradykinin (BK) and its in vitro degradation metabolites as an example. Its novelty lies in the use of deuterated peptides which are obtained by a high-temperature solid-state exchange (HSCIE) reaction. Deuterated and native BK were analyzed by positive electrospray ionization high-resolution mass spectrometry (ESI-HRMS) using an Orbitrap Fusion mass spectrometer. High-energy collision-induced dissociation (HCD) experiments were performed on [M+H](+) and [M+2H](2+) ions in targeted-MS(2) mode with adjusted normalized HCD value. After the HSCIE reaction, each amino acid residue of the deuterated peptide contained deuterium atoms and the average degree of substitution was 5.5 atoms per the peptide molecule. The deuterated peptide demonstrated the same chromatographic mobility as the unlabeled counterpart, and lack of racemization during substitution with deuterium. Deuterium-labeled and unlabeled BKs were incubated with human plasma and their corresponding fragments BK(1-5) and BK(1-7), well known as the major metabolites, were detected. Quantitative assays demonstrated applicability of the heavy peptide for both sequencing and quantification of generated fragments. Applicability of the HSCIE deuterated peptide for analysis of routes of its degradation has been shown in in vitro experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3
NASA Astrophysics Data System (ADS)
Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.
2017-04-01
The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.
Organometallic Routes into the Nanorealms of Binary Fe-Si Phases
Kolel-Veetil, Manoj K.; Keller, Teddy M.
2010-01-01
The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, α-FeSi2 and β-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR). The silicon-rich β-FeSi2 is a direct band gap material usable in light emitting diode (LED) applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM) of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe)-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.
Innovative processing of dense LSGM electrolytes for IT-SOFC's
NASA Astrophysics Data System (ADS)
Rambabu, B.; Ghosh, Samrat; Zhao, Weichang; Jena, Hrudananda
This paper reports for the first time the attempted synthesis of SrO- and MgO-doped LaGaO 3 (La 1- xSr xGa 1- yMg yO 3-0.5(x+ y), LSGM) perovskite by an aqueous 'regenerative' solution route. This novel technique enabled recycling of the undesired product and subsequently yielded product with much better phase purity and density than that obtained from the solid-state route. La 0.8Sr 0.2Ga 0.85Mg 0.15O 2.825 (LSGM-2015) and LaGaO 3 were prepared using both the regenerative sol-gel (RSG) and conventional solid-state route at 1400 °C. Series of La 0.8Sr 0.2Ga 0.83Mg 0.17O 2.815 (LSGM-2017) pellets were also prepared by the RSG method at different sintering temperature (1200-1500 °C) and time. The effect of conventional and microwave sintering of samples obtained from both solid-state and regenerative route was also investigated. Microwave heating was carried out using SiC as a microwave susceptor. The LSGM pellets prepared by using different synthetic methods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and pellet density was determined by pycnometry. The LSGM-2015 prepared by RSG route exhibited conductivity σ t = 0.066 and 0.029 S cm -1 at 800 and 700 °C, respectively, and activation energy of the bulk, grain-boundary, and total are E b = 0.97 eV, E gb = 1.03 eV and E t = 1.01 eV, respectively. The sintering temperature severely affected the grain size (<0.1-10 μm) and also the grain-boundary resistance (3-175 kΩ). The unique aspect of this RSG technique is that the final product can be recycled which makes the process cost effective and time saving compared to the solid-state ceramic technique and this technique would allow optimization of processing parameters in a cost effective and time saving manner for obtaining well sintered LSGM as an electrolyte for IT-SOFC's.
Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang
2013-01-01
The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.
Morphology and conductivity study of solid electrolyte Li{sub 3}PO{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prayogi, Lugas Dwi, E-mail: ldprayodi@gmail.com; Faisal, Muhamad; Kartini, Evvy, E-mail: kartini@batan.go.id
2016-02-08
The comparison between two different methods of synthesize of solid electrolyte Li{sub 3}PO{sub 4} as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li{sub 3}PO{sub 4} prepared by wet chemical reaction from LiOH and H{sub 3}PO{sub 4} which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li{sub 2}CO{sub 3} and NH{sub 4}H{sub 2}PO{sub 4.} In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound ofmore » Li{sub 3}PO{sub 4} powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li{sub 3}PO{sub 4} powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li{sub 3}PO{sub 4} prepared by wet chemical reaction is 2.238 gr/cm{sup 3}, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm{sup 3}. The EIS measurement result shows that the conductivity of Li{sub 3}PO{sub 4} is 1.7 x 10{sup −9} S.cm{sup −1} for wet chemical reaction and 1.8 x 10{sup −10} S.cm{sup −1} for solid state reaction. The conductivity of Li{sub 3}PO{sub 4} is not quite different between those two samples even though they were prepared by different method of synthesize.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, Faria K.; Beg, Saba, E-mail: profsababeg@gmail.com; Al-Areqi, Niyazi A. S.
Samples of BIPBVOX.x (Bi{sub 2}V{sub 1–x}Pb{sub x}O{sub 5.5–x/2}) in the composition range 0.05 ≤ x ≤ 0.20 were prepared by ethylene glycol– citric acid sol–gel synthesis route. Structural investigations were carried out by X–ray diffraction, DTA. The highly conducting γ′– phase was effectively stabilized at room temperature for compositions with x ≥ 0.17. Cyclic voltammetric measurements showed reversible redox reactions of vanadium and irreversible redox reaction of Bi{sup 3+} in the BIPBVOX system during the first cathodic and anodic sweep. However, a higher stability against the reduction of Bi{sup 3+} to metallic bismuth was seen for x=0.20.
Dhiman, Saurabh Sudha; Shrestha, Namita; David, Aditi; Basotra, Neha; Johnson, Glenn R; Chadha, Bhupinder S; Gadhamshetty, Venkataramana; Sani, Rajesh K
2018-06-01
Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ± 7 L methane kg -1 volatile solid with an overall energy efficiency of 12.9 ± 1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa
2017-02-08
All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Innovative Sol-Gel Routes for the Bottom-up Preparation of Heterogeneous Catalysts.
Debecker, Damien P
2017-12-11
Heterogeneous catalysts can be prepared by different methods offering various levels of control on the final properties of the solid. In this account, we exemplify bottom-up preparation routes that are based on the sol-gel chemistry and allow to tailor some decisive properties of solid catalysts. First, an emulsion templating strategy is shown to lead to macrocellular self-standing monoliths with a macroscopic 3D structure. The latter can be used as catalyst or catalyst supports in flow chemistry, without requiring any subsequent shaping step. Second, the aerosol-assisted sol-gel process allows for the one-step and continuous production of porous mixed oxides. Tailored textural properties can be obtained together with an excellent control on composition and homogeneity. Third, the application of non-hydrolytic sol-gel routes, in the absence of water, leads to mixed oxides with outstanding textural properties and with peculiar surface chemistry. In all cases, the resulting catalytic performance can be correlated with the specificities of the preparation routes presented. This is exemplified in catalytic reactions in the fields of biomass conversion, petro chemistry, enantioselective organic synthesis, and air pollution mitigation. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.
Abbasi, Mojtaba; Hashemi, Babak
2014-04-01
Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Influence of Mn doping on structural, dielectric and optical properties of neodymium orthoferrite
NASA Astrophysics Data System (ADS)
Somvanshi, Anand; Manzoor, Samiya; Husain, Shahid
2018-05-01
We report the study of structural, dielectric and optical properties of nanocrystalline samples of NdFe1-xMnxO3 (x=0, 0.1 and 0.2) synthesized using solid state reaction route. X-ray diffraction (XRD) patterns are recorded to confirm phase purity. These samples conform in orthorhombic crystal symmetry with Pbnm space group. The lattice parameters are determined using Rietveld refinement. The crystallite size is calculated using Scherrer formula and that is found to lie in the range of 40-50 nm. The dielectric constant (ɛ') decreases with the increase in frequency as well as Mn doping concentration. Energy bandgap (Eg) as determined using UV-Vis. absorption spectra, is found to decrease with the increase in Mn doping.
NASA Astrophysics Data System (ADS)
Dipti; Juneja, J. K.; Singh, Sangeeta; Raina, K. K.; Prakash, Chandra
2013-12-01
The perovskite Pb(1-x)BaxZr0.55Ti0.45O3 material (x=0.00, 0.01, 0.02, 0.03, 0.05, and 0.07) was synthesized by solid state reaction route. Green bodies were sintered at 1250 °C. All samples were subjected to X-ray diffraction analysis and they were found to be in single phase. Dielectric properties were studied as a function of temperature and frequency. Ferroelectric properties were studied as a function of temperature. Remnant polarization, saturation polarization and coercive field were determined for all the samples using ferroelectric loops. Piezoelectric properties such as d33 and electromechanical coupling factor (kp) were also measured at room temperature for all samples.
NASA Astrophysics Data System (ADS)
Suthar, Lokesh; Bhadala, Falguni; Roy, M.; Jha, V. K.
2018-05-01
The electrical transport behaviour of polycrystalline Calcium doped Yttrium orthoferrite (Y1-xCaxFeO3, where x = 0.03 and 0.05) have been synthesized by high temperature Solid state reaction route. The I-V characteristics have been measured which revels that Y1-xCaxFeO3 (where x = 0.03 and 0.05), behaves like semiconductor and its conductivity increases with increase in doping concentration. The thermal analysis experiment shows no phase change with the minor weight loss which reflects the high temperature thermal stability of the materials. The surface morphology was analyzed using the AFM. The results are discussed in detail.
Lou, Zhengsong; He, Minglong; Wang, Ruikun; Qin, Weiwei; Zhao, Dejian; Chen, Changle
2014-02-17
Sub-micrometer-sized magnesium ferrite spheres consisting of uniform small particles have been prepared using a facile, large-scale solid-state reaction employing a molten salt technique. Extensive structural characterization of the as-prepared samples has been performed using scanning electron microscope, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction. The yield of the magnesium ferrite sub-micrometer spheres is up to 90%, and these sub-micrometer spheres are made up of square and rectangular nanosheets. The magnetic properties of magnesium ferrite sub-micrometer spheres are investigated, and the magnetization saturation value is about 24.96 emu/g. Moreover, the possible growth mechanism is proposed based on the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suharta, W. G., E-mail: wgsuharta@gmail.com; Wendri, N.; Ratini, N.
The synthesis of B{sub 2}O{sub 3} flux substituted NLBCO superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} has been done using solid state reaction and wet-mixing methods in order to obtain homogeneous crystals and single phase. From DTA/TGA characteritations showed the synthesis process by wet-mixing requires a lower temperature than the solid state reaction in growing the superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂}. Therefore, in this research NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} sample calcinated at 650°C for wet-mixing method and 820°C for solid state reaction methods. The all samples was sintered at 950°C for ten hours. Crystallinity of the sample was confirmedmore » using X-ray techniques and generally obtained sharp peaks that indicates the sample already well crystallized. Search match analyses for diffraction data gave weight fractions of impurity phase of the solid state reaction method higher than wet-mixing method. In this research showed decreasing the price of the lattice parameter about 1% with the addition of B{sub 2}O{sub 3} flux for the both synthesis process and 2% of wet mixing process for all samples. Characterization using scanning electron microscopy (SEM) showed the distribution of crystal zise for wet-mixing method more homogeneous than solid state reaction method, with he grain size of samples is around 150–250 nm. The results of vibrating sample magnetometer (VSM) showed the paramagnetic properties for all samples.« less
Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi
2009-07-06
Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.
Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Kuhn, Erik M.; Tucker, Melvin P.
In this study, the reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165 °C formore » 10 min and with 1% H 2SO 4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80 kg/h m 2 and cake permeability of 15 x 10 -15.« less
Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate
Sievers, David A.; Kuhn, Erik M.; Tucker, Melvin P.; ...
2017-06-28
In this study, the reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165 °C formore » 10 min and with 1% H 2SO 4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80 kg/h m 2 and cake permeability of 15 x 10 -15.« less
NASA Astrophysics Data System (ADS)
Jarabana, Kanaka M.; Mishra, Ashutosh; Bisen, Supriya
2016-10-01
Polycrystalline BaTiO3 (BTO) and SrTiO3 (STO) were synthesized by solid state route method and properties of made polycrystalline were characterized by X-Ray diffraction (XRD), Raman Spectroscopy & FTIR Spectroscopy. XRD analysis shows that samples are crystalline in nature. In Raman Spectroscopy measurement, the experiment has been done with the help of JOBIN-YOVN HORIBA LABRAM HR800 single monochromator, which is coupled with a “peltier cooled” charge coupled device (CCD). Raman Spectroscopy at low temperature measurement shows the phase transition above & below the curie temperature in samples. Fourier transform Infrared spectroscopy was used to determine the Ti-O bond length position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhananjaya, N., E-mail: ndhananjayas@gmail.com; Shivakumara, C.; Saraf, Rohit
Highlights: • Red-emitting LaOF:Eu{sup 3+} phosphors were synthesized via facile solid state route. • Judd–Ofelt intensity parameters and radiative properties were determined from PL data. • CIE color coordinates of LaOF:Eu{sup 3+} phosphor is close to the commercial red phosphors. • Eu{sup 3+}-activated LaOF phosphor is a potential candidate for the production of red component in white LEDs. - Abstract: In the present study, we have synthesized a series of La{sub 1−x}Eu{sub x}OF (0.01 ≤ x ≤ 0.09) phosphors by the conventional solid-state reaction route at relatively low temperature (500 °C) and shorter duration of 2 h. The compounds weremore » crystallized in the rhombohedral structure with the space group R-3m (No. 166). Upon UV excitation (254 nm), the photoluminescence spectra exhibit characteristic luminescence {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 1, 2, 3, and 4) intra-4f shell Eu{sup 3+} ion transitions. An intense red emission peak at 610 nm was observed due to electric dipole ({sup 5}D{sub 0} → {sup 7}F{sub 2}) transition. Judd–Ofelt theory was employed to evaluate various radiative parameters such as radiative emission rates, lifetime, branching and asymmetry ratios. CIE color coordinates confirmed the red emission of the phosphors. The luminescent results reveal that LaOF:Eu{sup 3+} phosphor can be used as potential candidate for developing red component in white LED applications.« less
Ferroelectric and optical properties of `Ba-doped' new double perovskites
NASA Astrophysics Data System (ADS)
Parida, B. N.; Panda, Niranjan; Padhee, R.; Parida, R. K.
2018-06-01
Solid solution of Pb1.5Ba0.5BiNbO6 ceramic is explored here to obtain its ferroelectric and optical properties. The polycrystalline sample was prepared by a standard solid state reaction route. Room temperature XRD and FTIR spectra of the compound exhibit an appreciable change in its crystal structure of Pb2BiNbO6 on addition of 'Ba' in A site. The surface morphology of the gold-plated sintered pellet sample recorded by SEM exhibits a uniform distribution of small grains with well-defined grain boundaries. Detailed studies on the nature of polarization and variation of dielectric constant, tangent loss with temperature as well as frequency indicate the existence of Ferro-electricity in the sample. Using UV-Vis spectroscopy, the optical band gap of the studied sample has been estimated as 2.1 eV, which is useful for photo catalytic devices. Photoluminescence analysis of the powder sample shows a strong red photoluminescence with blue excitation, which is basically useful for LED.
NASA Astrophysics Data System (ADS)
Kaur, Randeep; Singh, Anupinder
2018-05-01
The influence of Nd3+ and Fe3+ substitution on Pb(Zr0.45Ti0.55)O3 composition prepared via solid state reaction route have been studied. The structural evolution was investigated using an X-ray diffraction (XRD). Non perovskite Pb2Ti2O7, ZrO2 and PbO phases were observed along with the rhombohedral phase. The SEM micrograph shows the surface morphology of the samples. The density of the sample was calculated by using Archimedes principle and found to be 8.45g/cm3. The magnetic data depicts the presence of both the ferromagnetic as well as antiferromagnetic character in the solid solution. In ferroelectric studies, the values of remnant polarization (Pr) and coercive field (Ec) enhanced from 2.60 μC/cm2 - 3.44 µC/cm2 and 15.82kV/cm - 22.91kV/cm respectively.
Synthesis and Characterization of LaTiO2N
NASA Astrophysics Data System (ADS)
Rugen, Evan E.
Photocatalysts offer an excellent opportunity to shift the global energy landscape from a fossil fuel-dependent paradigm to sustainable and carbon-neutral solar fuels. Oxynitride materials such as LaTiO2N are potential photocatalysts for the water splitting reaction due to their high oxidative stability and their narrow band gaps, which are suitable for visible light absorption. However, facile synthetic routes to metal oxynitrides with controlled morphologies are rare, and the local structures of these materials are under-characterized. Ultrasonic spray synthesis (USS) offers a facile method toward complex metal oxides which can potentially be converted to oxynitrides with preservation of the microsphere structures that typify the products from such aerosol routes. Here, La-Ti-O microspheres were facilely produced by USS and converted by ammonolysis to LaTiO2N microspheres with porous shells and hollow interiors. This particle architecture is accounted for by coupling suitable combustion chemistry with the aerosol technique, producing precursor particles where the La3+ and Ti4+ are well-mixed at small length scales; this feature enables preservation of the microsphere morphology during nitridation despite the crystallographic changes that occur. The LaTiO2N microspheres are comparable oxygen evolving photocatalysts to samples produced by conventional solid state methods. Pair distribution function (PDF) analysis is a local probe designed to examine the structure of disordered crystalline materials, and is an ideal technique for characterizing the ordering of anions in oxynitrides. Preliminary studies using PDF analysis to determine the presence of anion ordering and local structure in LaTiO2N produced by solid state methods are presented here. Future experiments are proposed that will grant detailed insight into the factors driving the degree of anion ordering in these types of materials. These results demonstrate the utility of USS as a facile, potentially scalable route to complex photocatalytic materials and their precursors, and the feasibility of PDF analysis for the determination of local structures in complex oxynitrides.
Direct characterization of cotton fabrics treated with di-epoxide by nuclear magnetic resonance.
Xiao, Min; Chéry, Joronia; Keresztes, Ivan; Zax, David B; Frey, Margaret W
2017-10-15
A non-acid-based, di-functional epoxide, neopentyl glycol diglycidyl ether (NPGDGE), was used to modify cotton fabrics. Direct characterization of the modified cotton was conducted by Nuclear Magnetic Resonance (NMR) without grinding the fabric into a fine powder. NaOH and MgBr 2 were compared in catalyzing the reaction between the epoxide groups of NPGDGE and the hydroxyl groups of cellulose. Possible reaction routes were discussed. Scanning electron microscopy (SEM) images showed that while the MgBr 2 -catalyzed reaction resulted in self-polymerization of NPGDGE, the NaOH-catalyzed reaction did not. Fourier transform infrared spectroscopy (FTIR) showed that at high NaOH concentration cellulose restructures from allomorph I to II. NMR studies verified the incorporation of NPGDGE into cotton fabrics with a clear NMR signal, and confirmed that at higher NaOH concentration the efficiency of grafting of NPGDGE was increased. This demonstrates that use of solid state NMR directly on woven fabric samples can simultaneously characterize chemical modification and crystalline polymorph of cotton. No loss of tensile strength was observed for cotton fabrics modified with NPGDGE. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular ways to nanoscale particles and films
NASA Astrophysics Data System (ADS)
Shen, H.; Mathur, S.
2002-06-01
Chemical routes for the synthesis of nanoparticles and films are proving to be highly efficient and versatile in tailoring the elemental combination and intrinsic properties of the target materials. The use of molecular compounds allows a controlled interaction of atoms or molecules, when compared to the solid-state methods, resulting in the formation of compositionally homogeneous deposits or uniform solid particles. Assembling all the elements forming the material in a single molecular compound, the so-called single-source approach augments the formation of nanocrystalline phases at low temperatures with atomically precise structures. To this end, we have shown that predefined reaction (decomposition) chemistry of precursors enforces a molecular level homogeneity in the obtained materials. Following the single-step conversions of appropriate molecular sources, we have obtained films and nanoparticles of oxides (Fe3O4, BaTiO3, ZnAl2O4, CoAl2O4), metal/oxide composites (Ge/GeO2) and ceramic-ceramic composites (LnAIO3/AI2O3; Ln = Pr, Nd). For a comparative evaluation, CoAl2O4 nanoparticles were prepared by both single- and multi-component routes; whereas the single-source approach yielded monophasic high purity spinels, phase contamination, due to monometal phases, was observed in the ceramic obtained from multicomponent mixture. An account of the size-controlled synthesis and characterisation of the new ceramics and composites is presented.
Zhao, Meihua; Zhang, Chaosheng; Zeng, Guangming; Huang, Danlian; Xu, Piao; Cheng, Min
2015-11-01
This study examines the growth, metabolism of Phanerochaete chrysosporium (P. chrysosporium) and route of lignin degradation in response to cadmium (Cd) stress in solid-state fermentation of rice straw. Less living fungi biomass was found under Cd exposure, suggesting that Cd had strong toxicity to P. chrysosporium. The maximum values of lignin peroxidase and manganese peroxidase were 0.34 and 5.21 U g(-1) at the Cd concentration of 32 mg kg(-1), respectively, lower than that in control, which indicated Cd stress would inhibit ligninolytic enzymes. The production of reactive oxygen species (ROS) including hydroxyl radicals (OH), superoxide anion radical (O2(-)) and hydrogen peroxide (H2O2) increased after Cd exposure. Higher concentration of oxalate was detected at high Cd concentrations. Cd stress also had influence on the rates of lignocelluloses degradation and the route of lignin degradation. Partial Cd could be removed by P. chrysosporium. Copyright © 2015 Elsevier Ltd. All rights reserved.
End-Member Formulation of Solid Solutions and Reactive Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtner, Peter C.
2015-09-01
A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less
Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh
2018-05-01
SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.
Enhanced thermoelectric figure-of-merit in environmentally benign BaxSr2-xTiCoO6 double perovskites
NASA Astrophysics Data System (ADS)
Saxena, Mandvi; Roy, Pinku; Acharya, Megha; Bose, Imon; Tanwar, Khagesh; Maiti, Tanmoy
2016-12-01
Environmental friendly, non-toxic double perovskite BaxSr2-xTiCoO6 compositions with 0 ≤ x ≤ 0.2 were synthesized using solid-state reaction route for high temperature thermoelectric (TE) applications. XRD and SEM studies confirmed the presence of single-phase solid solution with highly dense microstructure for all the oxide compositions. Temperature dependent electrical conductivity measurement showed semiconductor to metal (M-S) transition in these double perovskites. Incorporation of barium in Sr2TiCoO6 pushed M-S transition to higher temperature making it a potential candidate for high temperature TE applications. Conductivity behaviors of these oxides were explained by small polaron model. Furthermore, these oxides exhibit a glass like behavior resulting in low thermal conductivity. Low temperature dielectric measurement revealed relaxor ferroelectric behavior in these oxides below room temperature. Transition of these relaxors into a glassy state beyond Burns temperature (TD) was found responsible for having low thermal conductivity in these oxides. Maximum dimensionless TE figure-of-merit ZT = 0.29 at 1223 K was achieved for BaxSr2-xTiCoO6 composition with x = 0.2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Lingyun, E-mail: lychen@cqu.edu.c; Shen Yongming; Bai Junfeng, E-mail: bjunfeng@nju.edu.c
2009-08-15
We describe here a one-step solid-state process for the synthesis of metal three-dimensional (3D) superstructures from a metal-organic framework (MOF). Novel symmetrical coralloid Cu 3D superstructures with surface interspersed with clusters of Cu nanoparticles were successfully synthesized by thermolysis of the [Cu{sub 3}(btc){sub 2}] (btc=benzene-1,3,5-tricarboxylato) MOF in a one-end closed horizontal tube furnace (OCTF). The obtained products were characterized by TGA, FT-IR, XRD, EDX, SEM, TEM, HRTEM and SAED. Different reaction conditions were discussed. Furthermore, the synthesized Cu samples were converted into CuO microstructures by in-situ calcination in the air. In addition, the possible formation mechanism was also proposed. Thismore » method is a simple and facile route, which builds a direct linkage between metal-carboxylate MOF crystals and metal nano- or microstructures and also opens a new application field of MOFs. - Graphical abstract: Novel symmetrical coralloid Cu 3D superstructures were synthesized by thermolysis of the [Cu{sub 3}(btc){sub 2}] (btc=benzene-1,3,5-tricarboxylato) MOF microcrystals in a one-end closed horizontal tube furnace (OCTF).« less
Synthesis and Characterization of Potassium Aryl- and Alkyl-Substituted Silylchalcogenolate Salts
Brown, Jessica Lynn; Montgomery, Ashley C.; Samaan, Christopher A.; ...
2016-02-23
Treatment of either triphenyl(chloro)silane or tert-butyldiphenyl(chloro)silane with potassium metal in THF, followed by addition of 18-crown-6, affords [K(18-crown-6)][SiPh 3] (1) and [K(18-crown-6)][SiPh 2 tBu] (2), respectively, as the reaction products in high yield. Compounds 1 and 2 were fully characterized including by multi-nuclear NMR and IR spectroscopies. Addition of elemental chalcogen to either 1 or 2, results in facile chalcogen insertion into the potassium-silicon bond to afford the silylchalcogenolates, [K(18-crown-6)][E– SiPh2R] (E = S, R = Ph (3); Se, R = Ph (4); E = Te, R = Ph (5); E = S, R = tBu (6); E = Se,more » R = tBu (7); E = Te, R = tBu (8)), in moderate to good yield. The silylchalcogenolates reported herein were characterized by multi-nuclear NMR and IR spectroscopies, and their solid-state molecular structures were determined by single-crystal X-ray crystallography. Importantly, the reported compounds crystallize as discrete monomers in the solid-state, a structural feature not previously observed in silylchalcogenolates, providing well-defined access routes into systematic metal complexation studies.« less
NASA Astrophysics Data System (ADS)
Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.
2018-05-01
We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.
NASA Astrophysics Data System (ADS)
Rastogi, Sanjay
2013-03-01
Ultra High Molecular Weight Polyethylene (UHMWPE) having average molar mass greater than a million g/mol is an engineering polymer. Due to its light-weight, high abrasion resistance and biocompatibility it is used for demanding applications such as body armour, prostheses etc. At present, because of its high melt viscosity to achieve the uniaxial/biaxial properties in the form of fibers/films the polymer is processed via solution route where nearly 95wt% of the solvent is used to process 5wt% of the polymer. In past several attempts have been made to process the polymer without using any solvent. However, compared to the solvent processing route the achieved mechanical properties were rather poor. Here we show that by controlled synthesis it is feasible to obtain UHMWPE that could be processed free of solvent to make uniaxial tapes and biaxial films, having unprecedented mechanical properties, exceeding that of the solution spun fibers. We address some of the fundamental aspects of chemistry, physics, rheology and processing for the development of desired morphological features to achieve the ultimate mechanical properties in tapes and films. The paper will also address the metastable melt state obtained on melting of the disentangled crystals and its implication on rheology in linear and nonlinear viscoelastic region. Solid state NMR studies will be applied to establish disentangled state in solid state to the polymerisation conditions. References: Macromolecules 2011, 44(14), 5558-5568; Nature Materials 2005, 4, 635-641; Phys Rev Lett 2006, 96(21), 218303-218205. The authors acknowledge financial support by the Dutch Polymer Institute.
HIGH TEMPERATURE POLAMINE RESINS.
A literature search was conducted to investigate work done with aromatic amine-organic chloride reactions and organo- sodium amide preparations from...synthesized by the diamine/dichloride route. Extensive investigations of polyamine synthesis from sodium salts of amides and amines, and chlorides were...conducted. Apparently successful methods were found for preparing sodium derivatives of amides and amines from both solid sodium amide and sodium /ammonia
Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2
NASA Astrophysics Data System (ADS)
Ahmed, Jahangeer; Mao, Yuanbing
2016-10-01
Delafossite CuGaO2 has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO2 particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron-sized particles by a modified hydrothermal method at 190 °C for 60 h [1-3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed by powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO2 hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles.
NASA Astrophysics Data System (ADS)
Yang, Tao; Rodrigues de Almeida, Carlos Manuel; Ramasamy, Devaraj; Almeida Loureiro, Francisco José
2014-12-01
A facile co-reduction and annealing synthesis route of nanospheric particles of Au-Ni bimetal with adjustable composition was developed. In a typical synthesis, a direct co-reduction of HAuCl4.4H2O and NiCl2 in aqueous solution was performed with the assistance of reductive NaBH4 and an anionic surfactant sodium dodecyl sulfate (SDS) functioned as the structure-directing agent. Ultrasonic mixing was used at the same time to control the size of the particles. The morphology, microstructure and the state of the surface atoms were analyzed in detail. These nanospheres showed enhanced electrocatalytic activity towards oxygen reduction reaction than that of pure Au nanoparticles, demonstrated in the low temperature SOFC as cathode. The maximum power density generated is 810 mW cm-2 at 550 °C. This is a promising route of taking advantages the Phase Separation Mechanism to greatly reduce the use of noble metals in the ORR field without sacrificing the electrocatalytic activity.
NASA Astrophysics Data System (ADS)
Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming
2017-08-01
Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.
Synthesis, characterization and electrocatalytic properties of delafossite CuGaO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jahangeer; Department of Chemistry, College of Science, King Saud University, Riyadh 11451; Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu
2016-10-15
Delafossite CuGaO{sub 2} has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO{sub 2} particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron–sized particles by a modified hydrothermal method at 190 °C for 60 h [1–3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed bymore » powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO{sub 2} hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles. - Graphical abstract: Representative delafossite CuGaO2 samples with sub-micron sized plate and nanocrystalline hexagon morphologies accompanying with chronoamperometric voltammograms for oxygen evolution reaction and hydrogen evolution reaction in 0.5 M KOH electrolyte after purged with N{sub 2} gas. - Highlights: • Delafossite CuGaO{sub 2} with three morphologies has been synthesized. • Phase purity of the synthesized samples was confirmed. • Comparison on their electrocatalytic properties was made for the first time. • Their use as electrodes for oxygen and hydrogen evolution reactions was evaluated. • Nanocrystalline CuGaO{sub 2} hexagons show highest electrocatalytic activity.« less
40 CFR 256.63 - Requirements for public participation in the permitting of facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE... solid waste disposal facility the State shall hold a public hearing to solicit public reaction and...
Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A
2016-10-24
The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Chun; Zhang, Jin; Snaith, Henry J; Grant, Patrick S
2016-08-17
This paper investigates the effect of adding a 450 nm layer based on porous TiO2 at the interface between a 4.5 μm carbon/TiO2 nanoparticle-based electrode and a polymer electrolyte membrane as a route to improve energy storage performance in solid-state supercapacitors. Electrochemical characterization showed that adding the interface layer reduced charge transfer resistance, promoted more efficient ion transfer across the interface, and significantly improved charge/discharge dynamics in a solid-state supercapacitor, resulting in an increased areal capacitance from 45.3 to 111.1 mF cm(-2) per electrode at 0.4 mA cm(-2).
Solid-state NMR study of geopolymer prepared by sol-gel chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Yi-Ling; Hanna, John V.; Lee, Yuan-Ling, E-mail: yuanlinglee@ntu.edu.t
2010-12-15
Geopolymers are a new class of materials formed by the condensation of aluminosilicates and silicates obtained from natural minerals or industrial wastes. In this work, the sol-gel method is used to synthesize precursor materials for the preparation of geopolymers. The geopolymer samples prepared by our synthetic route have been characterized by a series of physical techniques, including Fourier-transform infrared, X-ray diffraction, and multinuclear solid-state NMR. The results are very similar to those obtained for the geopolymers prepared from natural kaolinite. We believe that our synthetic approach can offer a good opportunity for the medical applications of geopolymer. -- Graphical abstract:more » Geopolymer prepared by the sol-gel route has the same spectroscopic properties as the sample prepared from the natural kaolinite. Display Omitted« less
Triptycene: A Nucleic Acid Three-Way Junction Binder Scaffold
NASA Astrophysics Data System (ADS)
Yoon, Ina
Nucleic acids play a critical role in many biological processes such as gene regulation and replication. The development of small molecules that modulate nucleic acids with sequence or structure specificity would provide new strategies for regulating disease states at the nucleic acid level. However, this remains challenging mainly because of the nonspecific interactions between nucleic acids and small molecules. Three-way junctions are critical structural elements of nucleic acids. They are present in many important targets such as trinucleotide repeat junctions related to Huntington's disease, a temperature sensor sigma32 in E. coli, Dengue virus, and HIV. Triptycene-derived small molecules have been shown to bind to nucleic acid three-way junctions, resulting from their shape complementary. To develop a better understanding of designing molecules for targeting different junctions, a rapid screening of triptycene-based small molecules is needed. We envisioned that the installation of a linker at C9 position of the bicyclic core would allow for a rapid solid phase diversification. To achieve this aim, we synthesized 9-substituted triptycene scaffolds by using two different synthetic routes. The first synthetic route installed the linker from the amidation reaction between carboxylic acid at C9 position of the triptycene and an amine linker, beta-alanine ethyl ester. This new 9-substituted triptycene scaffold was then attached to a 2-chlorotrityl chloride resin for solid-phase diversification. This enabled a rapid diversification and an easy purification of mono-, di-, and tri-peptide triptycene derivatives. The binding affinities of these compounds were investigated towards a (CAG)˙(CTG) trinucleotide repeat junction. In the modified second synthetic route, we utilized a combined Heck coupling/benzyne Diels-Alder strategy. This improved synthetic strategy reduced the number of steps and total reaction times, increased the overall yield, improved solubilities of intermediates, and provided a new regioisomer that was not observed in the previous synthesis. Through this investigation, we discovered new high-affinity lead compounds towards a d(CAG)·(CTG) trinucleotide repeat junction. In addition, we turned our attention to sigma 32 mRNA, which contains a RNA three-way junction in E. coli. We demonstrated that triptycene-based small molecules can modulate the heat shock response in E. coli..
Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.
2000-01-01
This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.
A global reaction route mapping-based kinetic Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Mitchell, Izaac; Irle, Stephan; Page, Alister J.
2016-07-01
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.
A global reaction route mapping-based kinetic Monte Carlo algorithm.
Mitchell, Izaac; Irle, Stephan; Page, Alister J
2016-07-14
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakshit, S.K.; Naik, Y.P.; Parida, S.C.
Three ternary oxides LiAl{sub 5}O{sub 8}(s), LiAlO{sub 2}(s) and Li{sub 5}AlO{sub 4}(s) in the system Li-Al-O were prepared by solid-state reaction route and characterized by X-ray powder diffraction method. Equilibrium partial pressure of CO{sub 2}(g) over the three-phase mixtures {l_brace}LiAl{sub 5}O{sub 8}(s)+Li{sub 2}CO{sub 3}(s)+5Al{sub 2}O{sub 3}(s){r_brace}, {l_brace}LiAl{sub 5}O{sub 8}(s)+5LiAlO{sub 2}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} and {l_brace}LiAlO{sub 2}(s)+Li{sub 5}AlO{sub 4}(s)+2Li{sub 2}CO{sub 3}(s){r_brace} were measured using Knudsen effusion quadrupole mass spectrometry (KEQMS). Solid-state galvanic cell technique based on calcium fluoride electrolyte was used to determine the standard molar Gibbs energies of formations of these aluminates. The standard molar Gibbs energies of formation of thesemore » three aluminates calculated from KEQMS and galvanic cell measurements were in good agreement. Heat capacities of individual ternary oxides were measured from 127 to 868 K using differential scanning calorimetry. Thermodynamic tables representing the values of {delta}{sub f}H{sup 0}(298.15 K), S{sup 0}(298.15 K) S{sup 0}(T), C{sub p}{sup 0}(T), H{sup 0}(T), {l_brace}H{sup 0}(T)-H{sup 0}(298.15 K){r_brace}, G{sup 0}(T), {delta}{sub f}H{sup 0}(T), {delta}{sub f}G{sup 0}(T) and free energy function (fef) were constructed using second law analysis and FACTSAGE thermo-chemical database software. - Graphical abstract: Comparison of {delta}{sub f}G{sub m}{sup 0} of ternary oxides determined from KEQMS and solid-state galvanic cell techniques. (O) KEQMS, (9632;) solid-state galvanic cell and solid line: combined fit of both the experimental data.« less
Improved Properties of Pb Based BLZT Ferroelectric Ceramics
NASA Astrophysics Data System (ADS)
Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Prakash, Chandra
2011-11-01
Present report is concerning with investigation of effect of different sintering profiles on Pb based BLZT ceramics. The material powder of selected composition (Ba0.795La0.005Pb0.20Ti0.90Zr0.10O3) was prepared by solid state reaction route and then powder was compacted in the form of circular discs. The discs were then sintered at different temperatures (1325 °C for 4h, 1325 °C for 15min+1200 °C for 4h). Improved dielectric and ferroelectric properties were observed for samples sintered at 1200 °C. Shifting in Tc to higher temperature could be related to enhanced tetragonality, which was further confirmed by X-ray diffraction analysis. All these improvements evidences that there is less Pb loss in case of modified sintering profile.
NASA Astrophysics Data System (ADS)
Bhuiyan, Md. Tofajjol Hossen; Rahman, Md. Afjalur; Rahman, Md. Atikur; Sultana, Rajia; Mostafa, Md. Rakib; Tania, Asmaul Husna; Sarker, Md. Abdur Razzaque
2016-12-01
High-quality cobalt vanadate crystals have been synthesized by solid-state reaction route. Structure and morphology of the synthesized powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. The XRD patterns revealed that the as prepared materials are of high crystallinity and high quality. The SEM images showed that the crystalline CoV2O6 material is very uniform and well separated, with particle (of) area 252 μm. The electronic and optical properties were investigated by impedance analyzer and UV-visible spectrophotometer. Temperature-dependent electrical resistivity was measured using four-probe technique. The crystalline CoV2O6 material is a semiconductor and its activation energy is 0.05 eV.
Shukla, Rakesh; Grover, Vinita; Srinivasu, Kancharlapalli; Paul, Barnita; Roy, Anushree; Gupta, Ruma; Tyagi, Avesh Kumar
2018-05-15
Rare earth indates are an interesting class of compounds with rich crystallography. The present study explores the crystallographic phases observed in REInO3 (RE: La-Yb) systems and their dependence on synthesis routes and annealing temperature. All REInO3 compositions were synthesized by a solid state route as well as gel-combustion synthesis (GC) followed by annealing at different temperatures. The systems were well characterized by powder XRD studies and were analysed by Rietveld refinement for the structural parameters. The cell parameters were observed to decrease in accordance with the trend in ionic radii on proceeding from lighter to heavier rare earth ions. Interestingly, the synthesis route and the annealing temperature had a profound bearing on the phase relationships observed in the REInO3 series. The solid state synthesized samples depicted an orthorhombic phase (Pbnm) field for LaInO3 to SmInO3, followed by a hexagonal-type phase (P63cm) for GdInO3 to DyInO3. However, the phase field distribution was greatly influenced upon employing gel-combustion (GC) wherein both single-phasic hexagonal and orthorhombic phase fields were found to shrink. Annealing the GC-synthesized compositions to still higher temperatures (1250 °C) further evolved the phase boundaries. An important outcome of the study is observance of polymorphism in SmInO3 which crystallized in the hexagonal phase when synthesized by GC and orthorhombic phase by solid state synthesis. This reveals the all-important role played by synthesis conditions. The existence and energetics of the two polymorphs have been elucidated and discussed with the aid of theoretical studies.
Singh, V; Alam, S Q
2000-11-20
Synthesis of 11-methyl-3-oxa-tricyclo[5.2.2.0(1,5)]undecenones by intramolecular Diels-Alder reaction of highly labile spiroepoxycyclohexa-2,4-dienones and its photochemical reactions upon triplet (3T) and singlet (1S) excitation leading to a stereoselective route to oxa-triquinane and oxa-sterpurane, respectively, is described.
NASA Astrophysics Data System (ADS)
George, Russ
2005-03-01
Nano-lattices of deuterium loving metals exhibit coherent behavior by populations of deuterons (d's) occupying a Bloch state. Therein, coherent d-overlap occurs wherein the Bloch condition reduces the Coulomb barrier.Overlap of dd pairs provides a high probability fusion will/must occur. SEM photo evidence showing fusion events is now revealed by laboratories that load or flux d into metal nano-domains. Solid-state dd fusion creates an excited ^4He nucleus entangled in the large coherent population of d's.This contrasts with plasma dd fusion in collision space where an isolated excited ^4He nucleus seeks the ground state via fast particle emission. In momentum limited solid state fusion,fast particle emission is effectively forbidden.Photographed nano-explosive events are beyond the scope of chemistry. Corroboration of the nuclear nature derives from photographic observation of similar events on spontaneous fission, e.g. Cf. We present predictive theory, heat production, and helium isotope data showing reproducible e14 to e16 solid-state fusion reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Xiaofeng; Luo Qiong; GlobalFoundries Singapore Pte Ltd, 60 Woodlands Industrial Park D Street 2, Singapore 738406
2012-05-15
A series of nanostructure Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} (STFx, x=0.4, 0.6, 0.8) solid-solution powders were synthesized by mechanochemical approach milling from the mixture of SrO, Fe{sub 2}O{sub 3} and TiO{sub 2} metal oxides at room temperature. The XRD results revealed that the perovskite STFx nanoparticles were finally formed with few residual {alpha}-Fe{sub 2}O{sub 3} detected dependent on the milling conditions. The structure evolution suggested that the mechanochemical synthesis underwent via a solid-state reaction route to initially form Ti-rich perovskite and then incorporate with the residual {alpha}-Fe{sub 2}O{sub 3} to achieve the estimated composition. The synthesized STF08 powders exhibited the significantmore » Surface Photovoltage (SPV) spectrum response both in UV and in visible-light region with p-type semiconductor behavior. This finding suggested that the synthesized STF nanopowders could potentially utilize more solar spectrum energy effectively for photo-oxidation and photo-catalysis applications. - Graphical abstract: It is demonstrated that Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} perovskite nanopowders were successfully synthesized by mechanochemical reaction approach at room temerpature, and the synthesized STF08 powders showed the significant SPV response in UV-VIS region with p-type semiconductor behaviors. Highlights: Black-Right-Pointing-Pointer Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-{delta}} nanopowders synthesized by mechanochemical reaction approach. Black-Right-Pointing-Pointer The reaction process was shorten by introduce high impact energy. Black-Right-Pointing-Pointer Synthesized STF08 powders show the significant SPV response in UV-VIS region. Black-Right-Pointing-Pointer Synthesized STFx powders show p-type semiconductor behaviors.« less
Applying green chemistry to the photochemical route to artemisinin
NASA Astrophysics Data System (ADS)
Amara, Zacharias; Bellamy, Jessica F. B.; Horvath, Raphael; Miller, Samuel J.; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W.
2015-06-01
Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else—solvents, photocatalyst and aqueous acid—can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.
Applying green chemistry to the photochemical route to artemisinin.
Amara, Zacharias; Bellamy, Jessica F B; Horvath, Raphael; Miller, Samuel J; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W
2015-06-01
Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else-solvents, photocatalyst and aqueous acid-can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.
Prakesch, Michael; Srivastava, Stuti; Leek, Donald M; Arya, Prabhat
2006-01-01
With the goal of rapidly accessing tetrahydroquinoline-based natural-product-like polycyclic architectures, herein, we report an unprecedented, in situ, stereocontrolled Aza Michael approach in solution and on the solid phase. The mild reaction conditions required to reach the desired target are highly attractive for the use of this method in library generation. To our knowledge, this approach has not been used before, and it opens a novel route leading to a wide variety of tetrahydroquinoline-derived bridged tricyclic derivatives.
Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom
2017-11-17
Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.
Combinatorial synthesis of phosphors using arc-imaging furnace
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-01-01
We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432
Combinatorial synthesis of phosphors using arc-imaging furnace
NASA Astrophysics Data System (ADS)
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-10-01
We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.
Monazami, Ehsan; McClimon, John B; Rondinelli, James; Reinke, Petra
2016-12-21
The understanding and control of molecule-metal interfaces is critical to the performance of molecular electronics and photovoltaics devices. We present a study of the interface between C 60 and W, which is a carbide-forming transition metal. The complex solid-state reaction at the interface can be exploited to adjust the electronic properties of the molecule layer. Scanning tunneling microscopy/spectroscopy measurements demonstrate the progression of this reaction from wide band gap (>2.5 eV) to metallic molecular surface during annealing from 300 to 800 K. Differential conduction maps with 10 4 scanning tunneling spectra are used to quantify the transition in the density of states and the reduction of the band gap during annealing with nanometer spatial resolution. The electronic transition is spatially homogeneous, and the surface band gap can therefore be adjusted by a targeted annealing step. The modified molecules, which we call nanospheres, are quite resistant to ripening and coalescence, unlike any other metallic nanoparticle of the same size. Densely packed C 60 and isolated C 60 molecules show the same transition in electronic structure, which confirms that the transformation is controlled by the reaction at the C 60 -W interface. Density functional theory calculations are used to develop possible reaction pathways in agreement with experimentally observed electronic structure modulation. Control of the band gap by the choice of annealing temperature is a unique route to tailoring molecular-layer electronic properties.
Ema, Tadashi; Nanjo, Yoshiko; Shiratori, Sho; Terao, Yuta; Kimura, Ryo
2016-11-04
The intermolecular or intramolecular asymmetric benzoin reaction was catalyzed by a small amount of N-heterocyclic carbene (NHC) (0.2-1 mol %) under solvent-free conditions. The solvent-free intramolecular asymmetric Stetter reaction also proceeded efficiently with NHC (0.2-1 mol %). In some cases, even solid-to-solid or solid-to-liquid conversions took place with low catalyst loading (0.2-1 mol %).
Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D
2014-12-22
Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.
Solid State Pathways towards Molecular Complexity in Space
NASA Astrophysics Data System (ADS)
Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng
2011-12-01
It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.
Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones.
Lee, Byeongno; Lee, Kyu Hyung; Cho, Jaeheung; Nam, Wonwoo; Hur, Nam Hwi
2011-12-16
Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.
Design of a miniature solid state NIR spectrometer
NASA Astrophysics Data System (ADS)
Zhang, Hanyi; Wang, Xiaolu L.; Soos, Jolanta I.; Crisp, Joy A.
1995-06-01
For aerospace applications a miniature, solid-state near infrared (NIR) spectrometer based on an acousto-optic tunable filter (AOTF) has been developed and built at Brimrose Corp. of America. In this spectrometer a light emitting diode (LED) array as light source, a set of optical fibers as the lightwave transmission route, and a miniature AOTF as a tunable filter were adopted. This approach makes the spectrometer very compact, light-weight, rugged and reliable, with low operating power and long lifetime.
ORGANIC REACTIONS IN THE SOLID STATE AND IN SOLID SOLUTIONS.
on the reactions of phthalic acid and acetanilide , various acyl anilides, and ring-substituted acetanilides . Exploratory experiments were also...performed between ring-substituted acetanilides and succinic, glutaric, maleic and fumaric acids. The influence of imidazole as a catalyst of the...transacylation reaction of phthalic anhydride and acetanilide is also reported. (Author)
Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho
2018-05-27
A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes.
Li, Yan-Hui; Zhao, Yi Min; Ma, Ren Zhi; Zhu, Yan Qiu; Fisher, Niles; Jin, Yi Zheng; Zhang, Xin Ping
2006-09-21
WO(x) (2 < x < 3) and WS(2) nanostructures have been widely praised due to applications as catalysts, solid lubricants, field emitters, and optical components. Many methods have been developed to fabricate these nanomaterials; however, most attention was focused on the same dimensional transformation from WO(x) nanoparticles or nanorods to WS(2) nanoparticles or nanotubes. In a solid-vapor reaction, by simply controlling the quantity of water vapor and reaction temperature, we have realized the transformation from quasi-zero-dimensional WS(2) nanoparticles to one-dimensional W(18)O(49) nanorods, and subsequent sulfuration reactions have further converted these W(18)O(49) nanorods into WS(2) nanotubes. The reaction temperature, quantity of water vapor, and pretreatment of the WS(2) nanoparticle precursors are important process parameters for long, thin, and homogeneous W(18)O(49) nanorods growth. The morphologies, crystal structures, and circling transformation mechanisms of sulfide-oxide-sulfide are discussed, and the photoluminescence properties of the resulting nanorods are investigated using a Xe lamp under an excitation of 270 nm.
Yancey, Benjamin; Vyazovkin, Sergey
2015-04-21
This study highlights the effect of the aggregate state of a reactant on the reaction kinetics under the conditions of nanoconfinement. Our previous work (Phys. Chem. Chem. Phys., 2014, 16, 11409) has demonstrated considerable deceleration of the solid state trimerization of sodium dicyanamide in organically modified silica nanopores. In the present study we use FTIR, NMR, pXRD, TGA and DSC to analyze the kinetics and mechanism of the liquid state trimerization of potassium and rubidium dicyanamide under similar conditions of nanoconfinement. It is found that nanoconfinement accelerates dramatically the kinetics of the liquid state trimerization, whereas it does not appear to affect the reaction mechanism. Kinetic analysis indicates that the acceleration is associated with an increase in the preexponential factor. Although nanoconfinement has the opposite effects on the respective kinetics of solid and liquid state trimerization, both effects are linked to a change in the preexponential factor. The results obtained are consistent with our hypothesis that the effects differ because nanoconfinement may promote disordering of the solid and ordering of the liquid reaction media.
Goszczyński, Tomasz M; Kowalski, Konrad; Leśnikowski, Zbigniew J; Boratyński, Janusz
2015-02-01
Boron clusters represent a vast family of boron-rich compounds with extraordinary properties that provide the opportunity of exploitation in different areas of chemistry and biology. In addition, boron clusters are clinically used in boron neutron capture therapy (BNCT) of tumors. In this paper, a novel, in solid state (solvent free), thermal method for protein modification with boron clusters has been proposed. The method is based on a cyclic ether ring opening in oxonium adduct of cyclic ether and a boron cluster with nucleophilic centers of the protein. Lysozyme was used as the model protein, and the physicochemical and biological properties of the obtained conjugates were characterized. The main residues of modification were identified as arginine-128 and threonine-51. No significant changes in the secondary or tertiary structures of the protein after tethering of the boron cluster were found using mass spectrometry and circular dichroism measurements. However, some changes in the intermolecular interactions and hydrodynamic and catalytic properties were observed. To the best of our knowledge, we have described the first example of an application of cyclic ether ring opening in the oxonium adducts of a boron cluster for protein modification. In addition, a distinctive feature of the proposed approach is performing the reaction in solid state and at elevated temperature. The proposed methodology provides a new route to protein modification with boron clusters and extends the range of innovative molecules available for biological and medical testing. Copyright © 2014 Elsevier B.V. All rights reserved.
A global reaction route mapping-based kinetic Monte Carlo algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Izaac; Page, Alister J., E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au; Irle, Stephan, E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au
2016-07-14
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculatedmore » on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.« less
On the formation of molecules and solid-state compounds from the AGB to the PN phases
NASA Astrophysics Data System (ADS)
García-Hernández, D. A.; Manchado, A.
2016-07-01
During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.
Solid state laser media driven by remote nuclear powered fluorescence
Prelas, Mark A.
1992-01-01
An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.
Luminescence properties of Sm3+-doped alkaline earth ortho-stannates
NASA Astrophysics Data System (ADS)
Stanulis, Andrius; Katelnikovas, Artūras; Enseling, David; Dutczak, Danuta; Šakirzanovas, Simas; Bael, Marlies Van; Hardy, An; Kareiva, Aivaras; Jüstel, Thomas
2014-05-01
A series of Sm3+ doped M2SnO4 (M = Ca, Sr and Ba) samples were prepared by a conventional high temperature solid-state reaction route. All samples were characterized by powder X-ray diffraction (XRD) analysis, photoluminescence (PL), photoluminescence thermal quenching (TQ) and fluorescence lifetime (FL) measurements. The morphology of synthesized phosphor powders was examined by scanning electron microscopy (SEM). Moreover, luminous efficacies (LE) and color points of the CIE 1931 color space diagram were calculated and discussed. Synthesized powders showed bright orange-red emission under UV excitation. Based on the results obtained we demonstrate that Sm3+ ions occupy Ca and Sr sites in the Ca2SnO4 and Sr2SnO4 ortho-stannate structures, respectively. In contrast, Sm3+ substitutes Sn in the barium ortho-stannate Ba2SnO4 structure.
Ennajeh, Ines; Zid, Mohamed Faouzi; Driss, Ahmed
2013-01-01
The title compound, lithium/aluminium dimagnesium tetrakis[orthomolybdate(VI)], was prepared by a solid-state reaction route. The crystal structure is built up from MgO6 octahedra and MoO4 tetrahedra sharing corners and edges, forming two types of chains running along [100]. These chains are linked into layers parallel to (010) and finally linked by MoO4 tetrahedra into a three-dimensional framework structure with channels parallel to [001] in which lithium and aluminium cations equally occupy the same position within a distorted trigonal–bipyramidal coordination environment. The title structure is isotypic with LiMgIn(MoO4)3, with the In site becoming an Mg site and the fully occupied Li site a statistically occupied Li/Al site in the title structure. PMID:24426975
Aza-Bambusurils En Route to Anion Transporters.
Singh, Mandeep; Solel, Ephrath; Keinan, Ehud; Reany, Ofer
2016-06-20
Previous calculations of anion binding with various bambusuril analogs predicted that the replacement of oxygen by nitrogen atoms to produce semiaza-bambus[6]urils would award these new cavitands with multiple anion binding properties. This study validates the hypothesis by efficient synthesis, crystallography, thermogravimetric analysis and calorimetry. These unique host molecules are easily accessible from the corresponding semithio-bambusurils in a one-pot reaction, which converts a single anion receptor into a potential anion channel. Solid-state structures exhibit simultaneous accommodation of three anions, linearly positioned within the cavity along the main symmetry axis. The ability to hold anions at a short distance of about 4 Å is reminiscent of natural chloride channels in E. coli, which exhibit similar distances between their adjacent anion binding sites. The calculated transition-state energy for double-anion movement through the channel suggests that although these host-guest complexes are thermodynamically stable they enjoy high kinetic flexibility to render them efficient anion channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sol-gel analogous aminolysis-ammonolysis of chlorosilanes to chlorine-free Si/(C)/N-materials.
Wiltzsch, Conny; Wagler, Jörg; Roewer, Gerhard; Kroke, Edwin
2009-07-28
Large amounts of chlorosilanes, especially SiCl4 and CH3SiCl3, are produced as side-products of the industrial fabrication of solar or electronic grade silicon and the Müller-Rochow process. It was a goal of the present study to transform these compounds into useful chlorine-free precursors for Si/(C)/N ceramics via a sol-gel analogous liquid processing route. Chlorine substitution of the chlorosilanes (mixtures) with diethylamine did not yield chlorine-free products, complete reactions are only possible with lithium diethylamide. However, aminolyses with n-propylamine were successful. Transamination with ammonia was not possible with diethylaminosilanes but was with n-propylaminosilanes in various solvents. This result was attributed to steric reasons and polar interactions of the N-H groups. Colourless solid or liquid polysilazanes were obtained, depending on the silane (mixture) and the solvent. Transamination reactions of CH3Si(NH-n-Pr)3 in chloroform reproducibly yielded a cage-like oligosilazane of the composition (CH3)9Si9(NH)12N. Single crystal X-ray structure analysis revealed a seven-cyclic cluster containing four six- and three ten-membered silazane rings. This unique silazane cage as well as the other aminosilanes and the silazanes were comprehensively characterised using multi-nuclear solid state and solution NMR, elemental analyses and thermal gravimetry (TGA).
Zhang, Gen; Tsujimoto, Masahiko; Packwood, Daniel; Duong, Nghia Tuan; Nishiyama, Yusuke; Kadota, Kentaro; Kitagawa, Susumu; Horike, Satoshi
2018-02-21
Covalent organic frameworks (COFs) represent an emerging class of crystalline porous materials that are constructed by the assembly of organic building blocks linked via covalent bonds. Several strategies have been developed for the construction of new COF structures; however, a facile approach to fabricate hierarchical COF architectures with controlled domain structures remains a significant challenge, and has not yet been achieved. In this study, a dynamic covalent chemistry (DCC)-based postsynthetic approach was employed at the solid-liquid interface to construct such structures. Two-dimensional imine-bonded COFs having different aromatic groups were prepared, and a homogeneously mixed-linker structure and a heterogeneously core-shell hollow structure were fabricated by controlling the reactivity of the postsynthetic reactions. Solid-state nuclear magnetic resonance (NMR) spectroscopy and transmission electron microscopy (TEM) confirmed the structures. COFs prepared by a postsynthetic approach exhibit several functional advantages compared with their parent phases. Their Brunauer-Emmett-Teller (BET) surface areas are 2-fold greater than those of their parent phases because of the higher crystallinity. In addition, the hydrophilicity of the material and the stepwise adsorption isotherms of H 2 O vapor in the hierarchical frameworks were precisely controlled, which was feasible because of the distribution of various domains of the two COFs by controlling the postsynthetic reaction. The approach opens new routes for constructing COF architectures with functionalities that are not possible in a single phase.
Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide.
Kirkegaard, Marie C; Miskowiec, Andrew; Ambrogio, Michael W; Anderson, Brian B
2018-05-21
We have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novel UP formation mechanism.
NASA Astrophysics Data System (ADS)
Kareiva, Simonas; Klimavicius, Vytautas; Momot, Aleksandr; Kausteklis, Jonas; Prichodko, Aleksandra; Dagys, Laurynas; Ivanauskas, Feliksas; Sakirzanovas, Simas; Balevicius, Vytautas; Kareiva, Aivaras
2016-09-01
Aqueous sol-gel chemistry route based on ammonium-hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as source of calcium ions, and 1,2-ethylendiaminetetraacetic acid (EDTA), or 1,2-diaminocyclohexanetetracetic acid (DCTA), or tartaric acid (TA), or ethylene glycol (EG), or glycerol (GL) as complexing agents have been used to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHAp). The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). The local short-range (nano- and mezo-) scale effects in CHAp were studied using solid-state NMR spectroscopy. The spatial 3D data from the SEM images of CHAp samples obtained by TA, EG and GL sol-gel routes were recovered for the first time to our knowledge.
Luo, Chao; Ji, Xiao; Chen, Ji; Gaskell, Karen J; He, Xinzi; Liang, Yujia; Jiang, Jianjun; Wang, Chunsheng
2018-05-23
Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li 3 PS 4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar
2018-03-01
Solution processability of the precursor molecules is a major issue owing to their limited solubility for the synthesis of conjugated polymers. Therefore, we favour the solvent free solid state chemical oxidative polymerization route for the synthesis of diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) type conjugated polymers. D-A type polymer Poly(S-OD-EDOT) which contains DPP coupled with EDOT donor units is synthesized via solid state polymerization method. The polymer is employed as an active layer for organic field-effect transistors to measure charge transport properties. The Polymer shows good hole mobility 3.1 × 10-2 cm2 V-1 s-1, with a on/off ratio of 1.1 × 103.
Moving bed reactor setup to study complex gas-solid reactions.
Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih
2007-08-01
A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Andrew J.; Iglesia, Enrique
Mechanistic interpretations of rates and in situ IR spectra combined with density functionals that account for van der Waals interactions of intermediates and transition states within confining voids show that associative routes mediate the formation of dimethyl ether from methanol on zeolitic acids at the temperatures and pressures of practical dehydration catalysis. Methoxy-mediated dissociative routes become prevalent at higher temperatures and lower pressures, because they involve smaller transition states with higher enthalpy, but also higher entropy, than those in associative routes. These enthalpy–entropy trade-offs merely reflect the intervening role of temperature in activation free energies and the prevalence of moremore » complex transition states at low temperatures and high pressures. This work provides a foundation for further inquiry into the contributions of H-bonded methanol and methoxy species in homologation and hydrocarbon synthesis reactions from methanol.« less
NASA Astrophysics Data System (ADS)
Zheng, Huifeng; Wang, Weiqi; Liu, Yangqiao; Sun, Jing
2017-03-01
Compact, pinhole-free and PbI2-free perovskite films, are desirable for high-performance perovskite solar cells (PSCs), especially if large columnar grains are obtained in which the adverse effects of grain boundaries will be minimized. However, the conventional solid-state reaction methods, originated from the two-step method, failed to grow columnar grains of CH3NH3PbI3 in a facile way. Here, we demonstrate a strategy for growing large columnar grains of CH3NH3PbI3, by less-crystallized nanoporous PbI2 (ln-PbI2) film enhanced solid-state reaction method. We demonstrated columnar grains were obtainable only when ln-PbI2 films were applied. Therefore, the replacement of compact PbI2 by ln-PbI2 in the solid-sate reaction, leads to higher power conversion efficiency, better reproducibility, better stability and less hysteresis. Furthermore, by systematically investigating the effects of annealing temperature and duration, we found that an annealing temperature ≥120 °C was also critical for growing columnar grains. With the optimal process, a champion efficiency of 16.4% was obtained and the average efficiency reached 14.2%. Finally, the mechanism of growing columnar grains was investigated, in which a VPb″ -assisted hooping model was proposed. This work reveals the origins of grain growth in the solid-state reaction method, which will contribute to preparing high quality perovskite films with much larger columnar grains.
NASA Astrophysics Data System (ADS)
Ye, Yin; Yu, Shuhui; Huang, Haitao; Zhou, Limin
2007-07-01
Polyethylene glycol (PEG)-assisted solid state reaction route is employed to prepare the relaxor-type ferroelectric powders and ceramics of (1-x)Pb(Ni 1/3Nb 2/3)O 3-xPbTiO 3 (PNN-PT) with the morphotropic phase boundary (MPB) composition at x=0.36 (0.64PNN-0.36PT). PEG additive with the molecular weight of 200 is introduced into PNN-PT oxide precursors in order to obtain the perovskite phase. The XRD and TG/DSC results demonstrate that the interactions between PbO and PEG favor the transformation from the lead-rich pyrochlore to the lead-deficient pyrochlore, thus facilitating the formation of the perovskite. Consequently, nearly pure perovskite 0.64PNN-0.36PT powders are synthesized at a relatively low temperature of 850 °C. A significant improvement of electric properties of the ceramics sintered at 1200 °C is achieved by PEG modification. The dielectric constant at room temperature and the maximum dielectric constant at T c reach 4987 and 24307, respectively, at a frequency of 1 kHz. The piezoelectric constant d 33 is 460 pC/N.
Ezeh, Collins I; Yang, Xiaogang; He, Jun; Snape, Colin; Cheng, Xiao Min
2018-04-01
The thermal characteristics of Cu-based catalysts for CO 2 utilization towards the synthesis of methanol were analysed and discussed in this study. The preparation process were varied by adopting ultrasonic irradiation at various impulses for the co-precipitation route and also, by introducing ZnO promoters using the solid-state reaction route. Prepared catalysts were characterised using XRD, TPR, TPD, SEM, BET and TG-DTA-DSC. In addition, the CO 2 conversion and CH 3 OH selectivity of these samples were assessed. Calcination of the catalysts facilitated the interaction of the Cu catalyst with the respective support bolstering the thermal stability of the catalysts. The characterisation analysis clearly reveals that the thermal performance of the catalysts was directly related to the sonication impulse and heating rate. Surface morphology and chemistry was enhanced with the aid of sonication and introduction of promoters. However, the impact of the promoter outweighs that of the sonication process. CO 2 conversion and methanol selectivity showed a significant improvement with a 270% increase in methanol yield. Copyright © 2017 Elsevier B.V. All rights reserved.
A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications.
Wang, Shanmin; Ge, Hui; Sun, Shouli; Zhang, Jianzhong; Liu, Fangming; Wen, Xiaodong; Yu, Xiaohui; Wang, Liping; Zhang, Yi; Xu, Hongwu; Neuefeind, Joerg C; Qin, Zhangfeng; Chen, Changfeng; Jin, Changqin; Li, Yongwang; He, Duanwei; Zhao, Yusheng
2015-04-15
Nitrogen-rich transition-metal nitrides hold great promise to be the next-generation catalysts for clean and renewable energy applications. However, incorporation of nitrogen into the crystalline lattices of transition metals is thermodynamically unfavorable at atmospheric pressure; most of the known transition metal nitrides are nitrogen-deficient with molar ratios of N:metal less than a unity. In this work, we have formulated a high-pressure route for the synthesis of a nitrogen-rich molybdenum nitride through a solid-state ion-exchange reaction. The newly discovered nitride, 3R-MoN2, adopts a rhombohedral R3m structure, isotypic with MoS2. This new nitride exhibits catalytic activities that are three times more active than the traditional catalyst MoS2 for the hydrodesulfurization of dibenzothiophene and more than twice as high in the selectivity to hydrogenation. The nitride is also catalytically active in sour methanation of syngas with >80% CO and H2 conversion at 723 K. Our formulated route for the synthesis of 3R-MoN2 is at a moderate pressure of 3.5 GPa and, thus, is feasible for industrial-scale catalyst production.
Copper-containing ceramic precursor synthesis: Solid-state transformations and materials technology
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Eckles, William E.; Duraj, Stan A.; Andras, Maria T.; Fanwick, Phillip E.; Richman, Robert M.; Sabat, Michael L.; Power, Michael B.; Gordon, Edward M.; Barron, Andrew
1994-01-01
Three copper systems with relevance to materials technology are discussed. In the first, a CuS precursor, Cu4S1O (4-methylpyridine)(sub 4)- (4-MePy), was prepared by three routes: reaction of Cu2S, reaction of CuBr-SMe2, and oxidation of copper powder with excess sulfur in 4-methylpyridine by sulfur. In the second, copper powder was found to react with excess thiourea (H2NC(S)NH2) in 4-methylpyridine to produce thiocyanate (NCS(-)) complexes. Three isolated and characterized compounds are: Cu(NCS)(4-MePy)(sub 2), a polymer, (4-MePy-H)(Cu(NCS)(sub 3)(4-MePy)(sub 2)), a salt, and t-Cu(NCS)(sub 2)(4-MePy)(sub 4). Finally, an attempt to produce a mixed-metal sulfide precursor of Cu and Ga in N-methylimidazole (N-MeIm) resulted in the synthesis of a Cu-containing polymer, Cu(SO4)(N-MeIm). The structures are presented; the chemistry will be briefly discussed in the context of preparation and processing of copper-containing materials for aerospace applications.
Solid state synthesis of poly(dichlorophosphazene)
Allen, Christopher W.; Hneihen, Azzam S.; Peterson, Eric S.
2001-01-01
A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.
NASA Astrophysics Data System (ADS)
Mencos, Alejandro; Krim, Lahouari
2018-06-01
We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.
Prebiotic significance of the Maillard reaction
NASA Astrophysics Data System (ADS)
Kolb, Vera M.; Bajagic, Milica; Zhu, William; Cody, George D.
2005-09-01
The Maillard reaction was studied from a prebiotic point of view. We have shown that the Maillard reaction between ribose and common amino acids occurs readily in the solid state at 65°C. The C-13 NMR spectra of the solid insoluble Maillard products of ribose and serine, or alanine or isoleucine were compared to the spectrum of the insoluble organic carbon on Murchison.
Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P
2007-08-01
Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.
Liu, Qiunan; Yang, Tingting; Du, Congcong; Tang, Yongfu; Sun, Yong; Jia, Peng; Chen, Jingzhao; Ye, Hongjun; Shen, Tongde; Peng, Qiuming; Zhang, Liqiang; Huang, Jianyu
2018-06-13
We report real time imaging of the oxygen reduction reactions (ORRs) in all solid state sodium oxygen batteries (SOBs) with CuO nanowires (NWs) as the air cathode in an aberration-corrected environmental transmission electron microscope under an oxygen environment. The ORR occurred in a distinct two-step reaction, namely, a first conversion reaction followed by a second multiple ORR. In the former, CuO was first converted to Cu 2 O and then to Cu; in the latter, NaO 2 formed first, followed by its disproportionation to Na 2 O 2 and O 2 . Concurrent with the two distinct electrochemical reactions, the CuO NWs experienced multiple consecutive large volume expansions. It is evident that the freshly formed ultrafine-grained Cu in the conversion reaction catalyzed the latter one-electron-transfer ORR, leading to the formation of NaO 2 . Remarkably, no carbonate formation was detected in the oxygen cathode after cycling due to the absence of carbon source in the whole battery setup. These results provide fundamental understanding into the oxygen chemistry in the carbonless air cathode in all solid state Na-O 2 batteries.
Non-hydrolytic Sol-gel Synthesis of Tin Sulfides
NASA Astrophysics Data System (ADS)
Kaur, Rajvinder
The non-hydrolytic sol-gel (NHSG) process is an effective low temperature route well known for preparing homogeneous metal oxides. Thermodynamically as well as kinetically favored products, which cannot be prepared with the traditional solid-state routes, can be produced using NHSG. This project is focused on the exploration of NHSG synthesis of binary tin sulfides. In the past few years, metal sulfides have been the subject of significant interest. Much effort has been devoted to understand these materials because of their potential applications in electronic, optical, and superconductor devices.4 Among these materials, tin sulfides are materials of technological importance, which are being explored as semiconductors, anode materials for Li ion batteries, photoconductors, photocatalysts and absorber layer materials in photovoltaic solar cell devices. All of these applications depend upon features like homogeneity, oxidation state, high surface area and purity of the materials. These properties can be difficult to achieve by employing traditional synthetic routes, which require high temperatures due to slow diffusion, limiting the products to thermodynamically stable phases and prohibiting control over properties like particle size and surface area. A variety of low temperature methods are being explored due to the increased demand for such advanced materials. This project is focused on exploring the NHSG approach to synthesize binary tin sulfides, with the main goal of establishing conditions for the targeted synthesis of different tin sulfide polymorphs with controlled particle size. Being non-oxide materials, tin sulfides can be air sensitive, which requires special attention in handling. All reactions were carried out in absence of oxygen. This project explores the reaction of tin halides with thioethers in a dry solvent medium, leading to the formation of tin sulfides. There are a number of synthetic parameters that can be varied for the NHSG approach. A systematic study was carried out to understand the influence of all reaction variables, which include tin halides, thioethers, solvents, time, temperature, stoichiometry and concentration. Fine tuning of all reaction variables was carried out. The crystallization and phase stability of the as-recovered products was further studied by heat treatments of the samples. A detailed investigation of synthetic variables during NHSG reactions resulted in controlled synthesis of two crystalline tin sulfide polymorphs, SnS and SnS2. A third polymorph, Sn2S3, could be obtained after heat treatments in the temperature range of 400 to 500 °C. Conditions for the targeted synthesis of particles with various sizes and morphologies were established. Samples were characterized by powder X-ray diffraction, electron microscopy in combination with EDS, CHNS analysis and thermo gravimetric/differential thermal analysis.
NASA Astrophysics Data System (ADS)
Nourry, Sendres; Krim, Lahouari
2015-07-01
We have characterized the CH4 + N(4S) reaction in solid phase, at very low temperature, under non-energetic conditions and where the CH4 and N reactants are in their ground states. A microwave-driven atomic source has been used to generate ground-state nitrogen atoms N(4S), and experiments have been carried out at temperatures as low as 3 K to reduce the mobility of the trapped species in solid phase and hence to freeze the first step of the CH4 + N reaction pathway. Leaving the formed solid sample in the dark for a while allows all trapped reactants to relax to the ground state, specifically radicals and excited species streaming from the plasma discharge. Such a method could be the only possibility of proving that the CH4 + N reaction occurs between CH4 and N reactants in their ground states without any additional energy to initiate the chemical process. The appearance of the CH3 reaction product, just by inducing the mobility of N atoms between 3 and 11 K, translates that a hydrogen abstraction reaction from methane, under non-energetic conditions, will start occurring at very low temperature. The formation of methyl radical, under these experimental conditions, is due to recombination processes N(4S)-N(4S) of ground-state nitrogen atoms without any contribution of cosmic ray particles or high-energy photons.
Theoretical and computer models of detonation in solid explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarver, C.M.; Urtiew, P.A.
1997-10-01
Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less
NASA Astrophysics Data System (ADS)
Kabbani, Mohamad A.
In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).
Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.
Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less
Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide
Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.; ...
2018-05-10
Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less
Samuvel, K; Ramachandran, K
2015-02-05
A comparative study of the surface morphology, dielectric and magnetic properties of the BaTi0.5Fe0.5O3 (BTFO) ceramics materials. This has been carried out by synthesizing the samples in different routes. BTFO samples have shown single phased 12R type hexagonal structure with R3m, P4mm space group. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. It has been identified that huge dielectric constant (10(3)-10(6)) at lower frequencies is largely contributed by the heterogeneous electronic microstructure at the interfaces of grains. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in chemical routed samples. The order of grain boundary resistivity suggests the semiconductor/insulator class of the material. The grain boundary resistivity of the mechanical alloyed samples is remarkably lower than the solid state and chemical routed samples. Few samples have of the samples have exhibited signature of ferromagnetism at the room temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.
Zhao, Kunpeng; Duan, Haozhi; Raghavendra, Nunna; Qiu, Pengfei; Zeng, Yi; Zhang, Wenqing; Yang, Jihui; Shi, Xun; Chen, Lidong
2017-11-01
High-performance thermoelectric materials require ultralow lattice thermal conductivity typically through either shortening the phonon mean free path or reducing the specific heat. Beyond these two approaches, a new unique, simple, yet ultrafast solid-state explosive reaction is proposed to fabricate nanoporous bulk thermoelectric materials with well-controlled pore sizes and distributions to suppress thermal conductivity. By investigating a wide variety of functional materials, general criteria for solid-state explosive reactions are built upon both thermodynamics and kinetics, and then successfully used to tailor material's microstructures and porosity. A drastic decrease in lattice thermal conductivity down below the minimum value of the fully densified materials and enhancement in thermoelectric figure of merit are achieved in porous bulk materials. This work demonstrates that controlling materials' porosity is a very effective strategy and is easy to be combined with other approaches for optimizing thermoelectric performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deep eutectic-solvothermal synthesis of nanostructured ceria
Hammond, Oliver S.; Edler, Karen J.; Bowron, Daniel T.; Torrente-Murciano, Laura
2017-01-01
Ceria is a technologically important material with applications in catalysis, emissions control and solid-oxide fuel cells. Nanostructured ceria becomes profoundly more active due to its enhanced surface area to volume ratio, reactive surface oxygen vacancy concentration and superior oxygen storage capacity. Here we report the synthesis of nanostructured ceria using the green Deep Eutectic Solvent reline, which allows morphology and porosity control in one of the less energy-intensive routes reported to date. Using wide Q-range liquid-phase neutron diffraction, we elucidate the mechanism of reaction at a molecular scale at considerably milder conditions than the conventional hydrothermal synthetic routes. The reline solvent plays the role of a latent supramolecular catalyst where the increase in reaction rate from solvent-driven pre-organization of the reactants is most significant. This fundamental understanding of deep eutectic-solvothermal methodology will enable future developments in low-temperature synthesis of nanostructured ceria, facilitating its large-scale manufacturing using green, economic, non-toxic solvents. PMID:28120829
NASA Astrophysics Data System (ADS)
Liu, Chengsong; Yang, Shufeng; Li, Jingshe; Ni, Hongwei; Zhang, Xueliang
2017-04-01
The aim of this study was to control the physicochemical characteristics of inclusions in steel through appropriate heat treatment. Using a confocal scanning laser microscope (CSLM) and pipe furnace, the solid-state reactions between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide during heat treatment at 1473 K (1200 °C) and the influence of these reactions on the compositions of and phases in the alloy and oxide were investigated by the diffusion couple method. Suitable pretreatment of the oxide using a CSLM and production of the diffusion couple of Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide gave good contact between the alloy and oxide. The diffusion couple was then sealed in a quartz tube with a piece of Ti foil to lower oxygen partial pressure and a block of Fe-Al-Ca alloy was introduced to conduct heat treatment experiments. Solid-state reactions between the alloy and oxide during heat treatment at 1473 K (1200 °C) were analyzed and discussed. A dynamic model to calculate the width of the particle precipitation zone based on the Wagner model of internal oxidation of metal was proposed. This model was helpful to understand the solid-state reaction mechanism between Fe-Al-Ca alloy and Al2O3-CaO-FeO oxide.
ERIC Educational Resources Information Center
Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki
2014-01-01
An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…
Synthesis, microstructure and dielectric properties of zirconium doped barium titanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rohtash; School of Physical Sciences, Jawaharlal Nehru University, New Delhi; Asokan, K.
2016-05-23
We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti{sub 1-x}Zr{sub x})O{sub 3} (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequencymore » dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO{sub 3} are discussed.« less
Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei
2017-10-26
Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.
Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites
NASA Astrophysics Data System (ADS)
Sahu, Truptimayee; Behera, Banarji
2018-02-01
In this study, samarium (Sm)-doped multiferroic composites of 0.8BiSmxFe1-xO3-0.2PbTiO3 where x = 0.05, 0.10, 0.15, and 0.20 were prepared via the conventional solid state reaction route. The electrical properties of these composites were analyzed using an impedance analyzer over a wide range of temperatures and frequencies (102-106 Hz). The impedance and modulus analyses confirmed the presence of both bulk and grain boundary effects in the materials. The temperature dependence of impedance and modulus spectrum indicated the negative temperature coefficient of resistance behavior. The dielectric relaxation exhibited non-Debye type behavior and it was temperature dependent. The relaxation time (τ) and DC conductivity followed an Arrhenius type behavior. The frequency-dependent AC conductivity obeyed Jonscher's power law. The correlated barrier hopping model was appropriate to understand the conduction mechanism in the composites considered.
MW-assisted synthesis of SVO for ICD primary batteries
NASA Astrophysics Data System (ADS)
Beninati, Sabina; Fantuzzi, Matteo; Mastragostino, Marina; Soavi, Francesca
An Ag 2V 4O 11 (SVO) cathode material prepared by microwave (MW)-assisted solid-state synthesis (MW-SVO) was developed for lithium primary batteries for implantable cardioverter/defibrillators (ICDs). This paper presents the results of physical-chemical and electrochemical characterizations of MW-SVO as well as those of SVO prepared by conventional thermal route (T-SVO). A specific effect of MWs which accelerates the synthesis reaction and contributes to yield a material of different morphology and degree of crystallinity compared with those of T-SVO was observed. The results of pulsed electrochemical tests carried out at 37 °C in operative conditions of ICDs on Li/MW-SVO batteries with cathode mass loading sized for practical use are also reported. These tests demonstrated that MW-SVO can be used for high performing lithium primary battery delivering in few seconds the specific energy values required by ICD application.
He, Bo; Dai, Jing; Zherebetskyy, Danylo; ...
2015-03-31
Combining core annulation and peripheral group modification, we have demonstrated a divergent synthesis of a family of highly functionalized coronene derivatives from a readily accessible dichlorodiazaperylene intermediate. Various reactions, such as aromatic nucleophilic substitution, Kumada coupling and Suzuki coupling proceed effectively on α-positions of the pyridine sites, giving rise to alkoxy, thioalkyl, alkyl or aryl substituted polycyclic aromatic hydrocarbons. In addition to peripheral group modulation, the aromatic core structures can be altered by annulation with thiophene or benzene ring systems. Corresponding single crystal X-ray diffraction and optical studies indicate that the heteroatom linkages not only impact the solid state packing,more » but also significantly influence the optoelectronic properties. Moreover, these azacoronene derivatives display significant acid-induced spectroscopic changes, suggesting their great potential as colorimetric and fluorescence proton sensors.« less
Bauers, Sage R; Wood, Suzannah R; Jensen, Kirsten M Ø; Blichfeld, Anders B; Iversen, Bo B; Billinge, Simon J L; Johnson, David C
2015-08-05
Homogeneous reaction precursors may be used to form several solid-state compounds inaccessible by traditional synthetic routes, but there has been little development of techniques that allow for a priori prediction of what may crystallize in a given material system. Here, the local structures of FeSbx designed precursors are determined and compared with the structural motifs of their crystalline products. X-ray total scattering and atomic pair distribution function (PDF) analysis are used to show that precursors that first nucleate a metastable FeSb3 compound share similar local structure to the product. Interestingly, precursors that directly crystallize to thermodynamically stable FeSb2 products also contain local structural motifs of the metastable phase, despite their compositional disagreement. While both crystalline phases consist of distorted FeSb6 octahedra with Sb shared between either two or three octahedra as required for stoichiometry, a corner-sharing arrangement indicative of AX3-type structures is the only motif apparent in the PDF of either precursor. Prior speculation was that local composition controlled which compounds nucleate from amorphous intermediates, with different compositions favoring different local arrangements and hence different products. This data suggests that local environments in these amorphous intermediates may not be very sensitive to overall composition. This can provide insight into potential metastable phases which may form in a material system, even with a precursor that does not crystallize to the kinetically stabilized product. Determination of local structure in homogeneous amorphous reaction intermediates from techniques such as PDF can be a valuable asset in the development of systematic methods to prepare targeted solid-state compounds from designed precursors.
Titration of a Solid Acid Monitored by X-Ray Diffraction
ERIC Educational Resources Information Center
Dungey, Keenan E.; Epstein, Paul
2007-01-01
An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…
Skrdla, Peter J; Robertson, Rebecca T
2005-06-02
Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.
He, Xiangming; Wang, Jixian; Dai, Zhongjia; Wang, Li; Tian, Guangyu
2016-01-01
LiMnxFe1−xPO4/C material has been synthesized through a facile solid-state reaction under the condition of carbon coating, using solvothermal-prepared LiMnPO4 and LiFePO4 as precursors and sucrose as a carbon resource. XRD and element distribution analysis reveal completed solid-state reaction of precursors. LiMnxFe1−xPO4/C composites inherit the morphology of precursors after heat treatment without obvious agglomeration and size increase. LiMnxFe1−xPO4 solid solution forms at low temperature around 350 °C, and Mn2+/Fe2+ diffuse completely within 1 h at 650 °C. The LiMnxFe1−xPO4/C (x < 0.8) composite exhibits a high-discharge capacity of over 120 mAh·g−1 (500 Wh·kg−1) at low C-rates. This paves a way to synthesize the crystal-optimized LiMnxFe1−xPO4/C materials for high performance Li-ion batteries. PMID:28773887
A novel solid state photocatalyst for living radical polymerization under UV irradiation
NASA Astrophysics Data System (ADS)
Fu, Qiang; McKenzie, Thomas G.; Ren, Jing M.; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G.
2016-02-01
This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-“click” reactions, permitting high yielding conjugations under photochemical control.
Acevedo, Nuria C; Schebor, Carolina; Buera, Pilar
2008-06-01
Non-enzymatic browning (NEB) development was studied in dehydrated potato at 70°C. It was related to the macroscopic and molecular properties and to water-solid interactions over a wide range of water activities. Time resolved (1)H NMR, thermal transitions and water sorption isotherms were evaluated. Although non-enzymatic browning could be detected in the glassy state; colour development was higher in the supercooled state. The reaction rate increased up to a water content of 26g/100g of solids (aw=0.84) and then decreased at higher water contents, concomitantly with the increase of water proton mobility. The joint analyses of NEB kinetics, water sorption isotherm and proton relaxation behaviour made it evident that the point at which the reaction rate decreased, after a maximum value, could be related to the appearance of highly mobile water. The results obtained in this work indicate that the prediction of chemical reaction kinetics can be performed through the integrated analysis of water sorption, water and solids mobility and the physical state of the matrix. Copyright © 2007 Elsevier Ltd. All rights reserved.
Hu, Michael Z.; Zhu, Ting
2015-12-04
This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.
A Networks Approach to Modeling Enzymatic Reactions.
Imhof, P
2016-01-01
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.
Dy3+ doped cubic zirconia nanostructures prepared via ultrasound route for display applications
NASA Astrophysics Data System (ADS)
Yadav, H. J. Amith; Eraiah, B.; Nagabhushana, H.; Basavaraj, R. B.; Deepthi, N. H.
2017-05-01
White light emitting dysprosium (Dy) doped Zirconia (ZrO2) nanostructures were prepared first time via ultrasound assisted sonochemical synthesis route using cetyltrimethylammonium bromide (CTAB) surfactant. The obtained product was well characterized. The powder X-ray diffraction (PXRD) profiles confirmed that the product was highly crystalline in nature with cubic phase. Various reaction parameters such as, effect of sonication time, concentration of the surfactant was studied in detail. Diffuse reflectance spectroscopy (DRS) was studied to evaluate the band gap energy of the products and the values were found in the range of 4.13 - 4.53 eV. The particle size was estimated by transmission electron microscope (TEM) and it was found in the range of 10-20 nm. Photoluminescence (PL) properties were studied in detail by recording emission spectra of all the Dy doped Zirconia nanostructures at an excitation wavelength of 350 nm. The emission peaks were observed at 480, 574 and 666 nm which corresponds to Dy3+ ion transitions. The 3 mol% Dy3+ doped ZrO2 nanostructures showed maximum intensity. Further photometric measurements were done by evaluating, Commission International De I-Eclairage (CIE) and correlated color temperature (CCT). From CIE it was observed that the color coordinates lies in white region. The color purity and quantum efficiency were also estimated and the results indicate that the nanophosphor obtained in this route can be used in preparing solid state lighting application.
Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics.
Jin, Yongdong; Honig, Tal; Ron, Izhar; Friedman, Noga; Sheves, Mordechai; Cahen, David
2008-11-01
Interfacing functional proteins with solid supports for device applications is a promising route to possible applications in bio-electronics, -sensors, and -optics. Various possible applications of bacteriorhodopsin (bR) have been explored and reviewed since the discovery of bR. This tutorial review discusses bR as a medium for biomolecular optoelectronics, emphasizing ways in which it can be interfaced, especially as a thin film, solid-state current-carrying electronic element.
Tang, Xiaohui; Lui, Yu Hui; Merhi, Abdul Rahman; Chen, Bolin; Ding, Shaowei; Zhang, Bowei; Hu, Shan
2017-12-27
To enhance the energy density of solid-state supercapacitors, a novel solid-state cell, made of redox-active poly(vinyl alcohol) (PVA) hydrogel electrolytes and functionalized carbon nanotube-coated cellulose paper electrodes, was investigated in this work. Briefly, acidic PVA-[BMIM]Cl-lactic acid-LiBr and neutral PVA-[BMIM]Cl-sodium acetate-LiBr hydrogel polymer electrolytes are used as catholyte and anolyte, respectively. The acidic condition of the catholyte contributes to suppression of the undesired irreversible reaction of Br - and extension of the oxygen evolution reaction potential to a higher value than that of the redox potential of Br - /Br 3 - reaction. The observed Br - /Br 3 - redox activity at the cathode contributes to enhance the cathode capacitance. The neutral condition of the anolyte helps extend the operating voltage window of the supercapacitor by introducing hydrogen evolution reaction overpotential to the anode. The electrosorption of nascent H on the negative electrode also increases the anode capacitance. As a result, the prepared solid-state hybrid supercapacitor shows a broad voltage window of 1.6 V, with a high Coulombic efficiency of 97.6% and the highest energy density of 16.3 Wh/kg with power density of 932.6 W/kg at 2 A/g obtained. After 10 000 cycles of galvanostatic charge and discharge tests at the current density of 10 A/g, it exhibits great cyclic stability with 93.4% retention of the initial capacitance. In addition, a robust capacitive performance can also be observed from the solid-state supercapacitor at different bending angles, indicating its great potential as a flexible energy storage device.
Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh; ...
2017-05-30
Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlova, Ihor; Goldston, Jennifer F.; Gupta, Shalabh
Solid-state mechanochemical synthesis of alane (AlH 3) starting from sodium hydride (NaH) and aluminum chloride (AlCl 3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl 3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl 3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH 3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction,more » which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl 3 system presents some subtle differences compared to LiH–AlCl 3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. As a result, complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.« less
Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M.; Bucio, Lauro; Villafuerte-Castrejón, María-Elena
2017-01-01
Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate–titanate for actuators is that of Bi0.50Na0.50TiO3 (BNT) based solid solutions. The pseudo-binary (1 − x)Bi0.50Na0.50TiO3–xBa1 − yCayTiO3 system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route. PMID:28773096
Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M; Bucio, Lauro; Villafuerte-Castrejón, María-Elena
2017-07-01
Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate-titanate for actuators is that of Bi 0.50 Na 0.50 TiO₃ (BNT) based solid solutions. The pseudo-binary (1 - x )Bi 0.50 Na 0.50 TiO₃- x Ba 1 - y Ca y TiO₃ system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route.
NASA Astrophysics Data System (ADS)
Serena, S.; Caballero, A.; Turrillas, X.; Martin, D.; Sainz, M. A.
2009-05-01
Calcium zirconate-magnesium oxide material was obtained by solid-state reaction from mixed dolomite (CaMg(CO3)2) and zirconia (m-ZrO2) nanopowders. The nanopowders were obtained by high-energy milling, which produced an increase of the superficial free energy of the particles. The role of nanoparticles in the reaction process of monoclinic-zirconia and dolomite was analysed for the first time using neutron thermodiffraction and differential thermal analysis-thermogravimetric techniques. The neutron thermodiffraction of this mixture provides a clear description in situ of the different decomposition and reaction processes that occur in the nanopowders mixture. The results make it possible to analyze the effect of the nanoparticles on the reaction behaviour of these materials.
Observation of multiple dielectric relaxations in BaTiO3-Bi(Li1/3Ti2/3)O3 ceramics
NASA Astrophysics Data System (ADS)
Zhou, Changrong; Feteira, Antonio
2017-11-01
Dense (1 - x)BaTiO3- xBi(Li1/3Ti2/3)O3 ceramics were fabricated by the solid state reaction route. Powder X-ray diffraction analyses revealed an increase in the unit cell volume with increasing x and a change on the average crystal structure from tetragonal (space group P4mm) to cubic ( Pm\\bar{3}m ) at x > 0.10. Raman spectroscopy analyses corroborated a change of symmetry, but also showed the local structure for x > 0.10 to be inconsistent with the centrosymmetric ( Pm\\bar{3}m ) space group. The dielectric measurements revealed for the first time, to our knowledge, a double relaxor behaviour in a BaTiO3-based solid solution. Basically, with increasing x, the sharp ferroelectric anomaly at the Curie temperature ( T c) shifts towards lower temperatures until a relaxor-type response is observed, but simultaneously, another relaxation emerges above T c. The first arises from poor coupling between polar nanoregions, whereas the later obeys the Arrhenius Law and may be associated either with a defect-dipole reorientation or a Skanavi-type mechanism.
Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy.
Blasco, Teresa
2010-12-01
This tutorial review intends to show the possibilities of in situ solid state NMR spectroscopy in the elucidation of reaction mechanisms and the nature of the active sites in heterogeneous catalysis. After a brief overview of the more usual experimental devices used for in situ solid state NMR spectroscopy measurements, some examples of applications taken from the recent literature will be presented. It will be shown that in situ NMR spectroscopy allows: (i) the identification of stable intermediates and transient species using indirect methods, (ii) to prove shape selectivity in zeolites, (iii) the study of reaction kinetics, and (iv) the determination of the nature and the role played by the active sites in a catalytic reaction. The approaches and methodology used to get this information will be illustrated here summarizing the most relevant contributions on the investigation of the mechanisms of a series of reactions of industrial interest: aromatization of alkanes on bifunctional catalysts, carbonylation reaction of methanol with carbon monoxide, ethylbenzene disproportionation, and the Beckmann rearrangement reaction. Special attention is paid to the research carried out on the role played by carbenium ions and alkoxy as intermediate species in the transformation of hydrocarbon molecules on solid acid catalysts.
NASA Astrophysics Data System (ADS)
Chen, Hongsheng; Zheng, Zhong; Chen, Zhiwei; Yu, Wenzhou; Yue, Junrong
2017-04-01
The reduction kinetics of Brazilian hematite by CO is investigated in a Micro Fluidized Bed Reaction Analyzer (MFBRA) using an analyzing method based on Johnson-Mehl-Avrami (JMA) model at temperatures of 973 K (700 °C), 1023 K (750 °C), 1073 K (800 °C), and 1123 K (850 °C). The solid products at different reduction stages are evaluated by SEM/EDS and XRD technologies. Results indicate that the reduction process is better to be discussed in terms of a parallel reaction model that consists of the reactions of hematite to wüstite and wüstite to iron, rather than a stepwise route. Meanwhile, the controlling mechanism of the reduction process is found to vary with temperature and the degree of conversion. The overall process is controlled by the gas-solid reaction occurring at the iron/wüstite interface in the initial stages, and then is limited by the nucleation of wüstite, and finally shifts to diffusion control. Moreover, the reactions of hematite to wüstite and wüstite to iron take place simultaneously but with different time dependences, and the apparent activation energies of hematite to wüstite and wüstite to iron are determined as 83.61 and 80.40 KJ/mol, respectively.
Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2
Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing
2016-01-01
Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850
Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2.
Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing
2016-05-11
Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru-Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry.
Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions
Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM
2004-12-14
The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.
Duddu, S P; Grant, D J
1992-08-01
Physical mixtures (conglomerates) of the two enantiomers of ephedrine base, each containing 0.5% (w/w) of water, were observed to be converted to the 1:1 racemic compound in the solid, liquid, solution, or vapor state. From a geometrically mixed racemic conglomerate of particle size 250-300 microns (50-60 mesh), the formation of the racemic compound follows second-order kinetics (first order with respect to each enantiomer), with a rate constant of 392 mol-1 hr-1 at 22 degrees C. The reaction appears to proceed via the vapor phase as indicated by the growth of the crystals of the racemic compound between diametrically separated crystals of the two enantiomers in a glass petri dish. The observed kinetics of conversion in the solid state are explained by a homogeneous reaction model via the vapor and/or liquid states. Formation of the racemic compound from the crystals of ephedrine enantiomers in the solution state may explain why Schmidt et al. (Pharm. Res. 5:391-395, 1988) observed a consistently lower aqueous solubility of the mixture than of the pure enantiomers. The solid phase in equilibrium with the solution at the end of the experiment was found to be the racemic compound, whose melting point and heat of fusion are higher than those of the enantiomers. An association reaction, of measurable rate, between the opposite enantiomers in a binary mixture in the solid, liquid, solution, or vapor state to form the racemic compound may be more common than is generally realized.
Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.
Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J
2016-03-14
Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.
Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond
NASA Astrophysics Data System (ADS)
Zhu, Hongzheng; Liu, Jian
2018-07-01
Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.
Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin
2018-01-01
Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Chen, Yan; Hood, Zachary D.
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brgoch, Jakoah; Klob, Simon D.; Denault, Kristin A.
The preparation of Eu 2+-substituted barium aluminum silicates is achieved using a rapid microwave-assisted preparation. The phase evolution of two BaAl 2Si 2O 8:Eu 2+ polymorphs, the higher temperature hexagonal phase (hexacelsian), and the lower temperature monoclinic phase (celsian), is explored by varying the ramp time and soak time. This preparation method significantly reduces the reaction time needed to form these phases compared to conventional solid state routes. The luminescent properties of the two phases are identified under UV excitation with the hexagonal phase emitting in the UV region (λ em = 372 nm) and the monoclinic phase emitting inmore » the blue region (λ em = 438 nm). The differences in optical properties of the two polymorphs are correlated to the coordination number and arrangement of the alkali earth site. The optical properties of the monoclinic phase can be further tuned through the substitution of Sr 2+, forming the solid solution (Ba 1–xSr x)Al 2Si 2O 8:Eu 2+. Changes in the crystal structure due to Sr 2+ substitution produce a surprising blue-shift in the emission spectrum, which is explained by a greater dispersion of bond lengths in the (Ba/Sr)–O polyhedra. The entire monoclinic solid solution exhibits excellent quantum yields of nearly 90 %, owing to the structural rigidity provided by the highly connected tetrahedral network.« less
Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films
Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...
2017-07-31
Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pązik, Robert, E-mail: R.Pazik@int.pan.wroc.pl; Zawisza, Katarzyna; Wroclaw University, Faculty of Chemistry, F. Joliot-Curie 14, 50-338 Wroclaw
Graphical abstract: Display Omitted Highlights: ► Convenient citric route was used for preparation of the Ca{sub 9}Al(PO{sub 4}){sub 7}:Eu{sup 3+} powders. ► We found that the thermal dependency of the Eu{sup 3+} emission shows two different temperature ranges. ► 80% of Eu{sup 3+} luminescence intensity is kept at 430 K. ► The possible quenching pathways were constructed using simplified one coordinate energy diagram. -- Abstract: The citric route was employed for synthesis of the pure phase Ca{sub 9}Al(PO{sub 4}){sub 7}:Eu{sup 3+} (CAlP:Eu{sup 3+}) powders as an attractive alternative to the solid state reaction (no need of multistep and long thermalmore » treatment). Structural properties of the final product were studied by means of X-ray diffraction as well as Rietveld refinement was conducted in order to calculate the cell parameters. The thermal behavior of the emission was studied using excitation line well matched with the {sup 7}F{sub 0} → {sup 5}D{sub 4} absorption band covering broad range of temperature. Activation energy was estimated to be equal to 10,550 cm{sup −1}. The thermal behavior of the Eu{sup 3+} luminescence in CAlP crystal lattice shown that the almost 80% of intensity is kept up to 430 K.« less
Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review
Arafat, M. M.; Dinan, B.; Akbar, Sheikh A.; Haseeb, A. S. M. A.
2012-01-01
Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research. PMID:22969344
An acetate precursor process for BSCCO (2223) thin films and coprecipitated powders
NASA Technical Reports Server (NTRS)
Haertling, Gene H.
1992-01-01
Since the discovery of high temperature superconducting oxides much attention has been paid to finding better and useful ways to take advantage of the special properties exhibited by these materials. One such process is the development of thin films for engineering applications. Another such process is the coprecipitation route to producing superconducting powders. An acetate precursor process for use in thin film fabrication and a chemical coprecipitation route to Bismuth based superconducting materials has been developed. Data obtained from the thin film process were inconclusive to date and require more study. The chemical coprecipitation method of producing bulk material is a viable method, and is preferred over the previously used solid state route. This method of powder production appears to be an excellent route to producing thin section tape cast material and screen printed devices, as it requires less calcines than the oxide route to produce quality powders.
Khan, D; Samadder, S R
2016-07-01
Collection of municipal solid waste is one of the most important elements of municipal waste management and requires maximum fund allocated for waste management. The cost of collection and transportation can be reduced in comparison with the present scenario if the solid waste collection bins are located at suitable places so that the collection routes become minimum. This study presents a suitable solid waste collection bin allocation method at appropriate places with uniform distance and easily accessible location so that the collection vehicle routes become minimum for the city Dhanbad, India. The network analyst tool set available in ArcGIS was used to find the optimised route for solid waste collection considering all the required parameters for solid waste collection efficiently. These parameters include the positions of solid waste collection bins, the road network, the population density, waste collection schedules, truck capacities and their characteristics. The present study also demonstrates the significant cost reductions that can be obtained compared with the current practices in the study area. The vehicle routing problem solver tool of ArcGIS was used to identify the cost-effective scenario for waste collection, to estimate its running costs and to simulate its application considering both travel time and travel distance simultaneously. © The Author(s) 2016.
Valentín, J L; López-Manchado, M A; Posadas, P; Rodríguez, A; Marcos-Fernández, A; Ibarra, L
2006-06-15
The mechanism of the reaction between a silica sample coming from acid treatment of sepiolite (denominated Silsep) and an organosilane, namely bis(triethoxysilylpropyl)tetrasulfane (TESPT), has been evaluated by solid state NMR spectroscopy, being compared with the silanization reaction of a commercial silica. The effect of the silane concentration and temperature on the course of the reaction was considered. Experimental results indicate that the silanization reaction is more effective in the case of Silsep, favoring both the reaction of silane molecules with the filler surface and the reaction between neighboring silane molecules. This different behavior is attributed to structural factors, moisture, and number of acid centers on silica surface. Environmental scanning electron microscopy (ESEM) was used to deposit micrometric water drops on the surface of these samples and to evaluate the proportion and distribution of the organophylization process.
NASA Astrophysics Data System (ADS)
Sagdeo, P. R.; Anwar, Shahid; Lalla, N. P.; Patil, S. I.
2006-11-01
In the present study we report the precise resistivity measurements for the polycrystalline bulk sample as well as highly oriented thin-films of La 0.8Ca 0.2MnO 3. The poly crystalline sample was prepared by standard solid-state reaction route and the oriented thin film was prepared by pulsed laser deposition (PLD). The phase purity of these samples was confirmed by X-ray diffraction and the back-scattered electron imaging using scanning electron microscopy (SEM). The oxygen stoichiometry analysis was done by iodimetry titration. The resistivities of these samples were carried out with four-probe resistivity measurement setup. The observed temperature dependence of resistivity data for both the samples was fitted using the polaron model. We have found that polaronic model fits well with the experimental data of both polycrystalline and single crystal samples. A new phenomenological model is proposed and used to estimate contribution to the resistivity due to grain boundary in the ferromagnetic state of polycrystalline manganites and it has been shown that the scattering of electrons from the grain boundary (grain surface) is a function of temperature and controlled by the effective grain resistance at that temperature.
Goel, Alok; Zhao, Zhicheng; Sørensen, Dan; Zhou, Jay; Zhang, Fa
2016-09-10
Esterification of pseudoephedrine hydrochloride (PSE) by citric acid was observed in a solid dose pharmaceutical preparation at room temperature and accelerated stability condition (40°C/75% relative humidity). The esterification of PSE with citric acid was confirmed by a solid-state binary reaction in the presence of minor level of water at elevated temperature to generate three isomeric esters. The structures of the pseudoephedrine citric acid esters were elucidated using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy (NMR). Occurrence of esterification in solid state, instead of amidation which is generally more favorable than esterification, is likely due to remaining HCl salt form of solid pseudoephedrine hydrochloride to protect its amino group from amidation with citric acid. In contrast, the esterification was not observed from solution reaction between PSE and citric acid. Copyright © 2016 Elsevier B.V. All rights reserved.
Feng, Xingli; Ma, Houyi; Huang, Shaoxin; Pan, Wei; Zhang, Xiaokai; Tian, Fang; Gao, Caixia; Cheng, Yingwen; Luo, Jingli
2006-06-29
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.
Guan, Zixuan; Chen, Di; Chueh, William C
2017-08-30
The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.
Tan, Davin; Loots, Leigh; Friščić, Tomislav
2016-06-14
This overview highlights the emergent area of mechanochemical reactions for making active pharmaceutical ingredients (APIs), and covers the latest advances in the recently established area of mechanochemical screening and synthesis of pharmaceutical solid forms, specifically polymorphs, cocrystals, salts and salt cocrystals. We also provide an overview of the most recent developments in pharmaceutical uses of mechanochemistry, including real-time reaction monitoring, techniques for polymorph control and approaches for continuous manufacture using twin screw extrusion, and more. Most importantly, we show how the overlap of previously unrelated areas of mechanochemical screening for API solid forms, organic synthesis by milling, and mechanochemical screening for molecular recognition, enables the emergence of a new research discipline in which different aspects of pharmaceutical and medicinal chemistry are addressed through mechanochemistry rather than through conventional solution-based routes. The emergence of such medicinal mechanochemistry is likely to have a strong impact on future pharmaceutical and medicinal chemistry, as it offers not only access to materials and reactivity that are sometimes difficult or even impossible to access from solution, but can also provide a general answer to the demands of the pharmaceutical industry for cleaner, safer and efficient synthetic solutions.
Phase locking route behind complex periodic windows in a forced oscillator
NASA Astrophysics Data System (ADS)
Jan, Hengtai; Tsai, Kuo-Ting; Kuo, Li-wei
2013-09-01
Chaotic systems have complex reactions against an external driving force; even in cases with low-dimension oscillators, the routes to synchronization are diverse. We proposed a stroboscope-based method for analyzing driven chaotic systems in their phase space. According to two statistic quantities generated from time series, we could realize the system state and the driving behavior simultaneously. We demonstrated our method in a driven bi-stable system, which showed complex period windows under a proper driving force. With increasing periodic driving force, a route from interior periodic oscillation to phase synchronization through the chaos state could be found. Periodic windows could also be identified and the circumstances under which they occurred distinguished. Statistical results were supported by conditional Lyapunov exponent analysis to show the power in analyzing the unknown time series.
Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus
2016-01-01
Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner.
Komljenovic, Dorde; Wiessler, Manfred; Waldeck, Waldemar; Ehemann, Volker; Pipkorn, Ruediger; Schrenk, Hans-Hermann; Debus, Jürgen; Braun, Klaus
2016-01-01
Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner. PMID:26722379
Two dimensional, transient catalytic combustion of CO-air on platinum
NASA Technical Reports Server (NTRS)
Sinha, N.; Bruno, C.; Bracco, F. V.
1985-01-01
The light off transient of catalytic combustion of lean CO-air mixtures in a platinum coated channel of a honeycomb monolith is studied with a model that resolves transient radial and axial gradients in both the gas and the solid. For the conditions studied it is concluded that: the initial heat release occurs near the entrance at the gas-solid interface and is controlled by heterogeneous reactions; large spatial and temporal temperature gradients occur in the solid near the entrance controlled mostly by the availability of fuel; the temperature of the solid near the entrance achieves almost its steady state value before significant heating of the back; heterogeneous reactions and the gas heated up front and flowing downstream heat the back of the solid; the overall transient time is controlled by the thermal inertia of the solid and by forced convection; radiation significantly influences both transient and steady state particularly near the entrance; the oxidation of CO occurs mostly on the catalyst and becomes diffusion controlled soon into the transient.
Brunner, Henri; Tsuno, Takashi
2018-05-01
Invited for this month's cover picture are Prof. Dr. Henri Brunner from the University of Regensburg (Germany) and Prof. Dr. Takashi Tsuno from Nihon University (Japan). The cover picture shows the conformational reaction of JIDLUD→FIHTUL. The order of sample points of solid-state structures reveals information concerning low-energy, directed, and coupled movements in molecules. Read the full text of their Communication at https://doi.org/10.1002/open.201800007.
Surface-mediated nucleation in the solid-state polymorph transformation of terephthalic acid.
Beckham, Gregg T; Peters, Baron; Starbuck, Cindy; Variankaval, Narayan; Trout, Bernhardt L
2007-04-18
A molecular mechanism for nucleation for the solid-state polymorph transformation of terephthalic acid is presented. New methods recently developed in our group, aimless shooting and likelihood maximization, are employed to construct a model for the reaction coordinate for the two system sizes studied. The reaction coordinate approximation is validated using the committor probability analysis. The transformation proceeds via a localized, elongated nucleus along the crystal edge formed by fluctuations in the supramolecular synthons, suggesting a nucleation and growth mechanism in the macroscopic system.
Challenges and issues facing lithium metal for solid-state rechargeable batteries
NASA Astrophysics Data System (ADS)
Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K.
2017-06-01
The commercial use of lithium metal batteries was delayed because of dendrite formation on the surface of the lithium electrode, and the difficulty finding a suitable electrolyte that has both the mechanical strength and ionic conductivity required for solid electrolytes. Recently, strategies have developed to overcome these difficulties, so that these batteries are currently an option for different applications, including electric cars. In this work, we review these strategies, and discuss the different routes that are promising for progress in the near future.
Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system
Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol; ...
2017-01-20
Internal interfaces in the Li 3N/[LiNH 2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.
Template-assisted mineral formation via an amorphous liquid phase precursor route
NASA Astrophysics Data System (ADS)
Amos, Fairland F.
The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was implemented in calcium phosphate. Spherulitic crystals and films, seemingly formed from a molten state, were produced. These structures served as nucleating surfaces for the radial formation of calcium oxalate minerals. The composite calcium phosphate-calcium oxalate assemblies are similar to the core-shell structures found in certain kidney stones.
NASA Astrophysics Data System (ADS)
Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang
2018-03-01
A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.
NASA Astrophysics Data System (ADS)
Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.
2016-05-01
A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.
A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Zhong, Zheng
2017-10-01
To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.
Weiße, Maik; Zille, Markus; Jacob, Katharina; Schmidt, Robert; Stolle, Achim
2015-04-20
It was demonstrated that ortho-substituted anilines are prone to undergo hydroamination reactions with diethyl acetylenedicarboxylate in a planetary ball mill. A sequential coupling of the intermolecular hydroamination reaction with intramolecular ring closure was utilized for the syntheses of benzooxazines, quinoxalines, and benzothiazines from readily available building blocks, that is, electrophilic alkynes and anilines with OH, NH, or SH groups in the ortho position. For the heterocycle formation, it was shown that several stress conditions were able to initiate the reaction in the solid state. Processing in a ball mill seemed to be advantageous over comminution with mortar and pestle with respect to process control. In the latter case, significant postreaction modification occurred during solid-state analysis. Cryogenic milling proved to have an adverse effect on the molecular transformation of the reagents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical looping fluidized-bed concentrating solar power system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen
A concentrated solar power (CSP) plant comprises a receiver configured to contain a chemical substance for a chemical reaction and an array of heliostats. Each heliostat is configured to direct sunlight toward the receiver. The receiver is configured to transfer thermal energy from the sunlight to the chemical substance in a reduction reaction. The CSP plant further comprises a first storage container configured to store solid state particles produced by the reduction reaction and a heat exchanger configured to combine the solid state particles and gas through an oxidation reaction. The heat exchanger is configured to transfer heat produced inmore » the oxidation reaction to a working fluid to heat the working fluid. The CSP plant further comprises a power turbine coupled to the heat exchanger, such that the heated working fluid turns the power turbine, and a generator coupled to and driven by the power turbine to generate electricity.« less
Comparing Ultrasound and Mechanical Steering in a Biodiesel Production Process
NASA Astrophysics Data System (ADS)
Costa-Felix, Rodrigo P. B.; Ferreira, Jerusa R. L.
The analysis of the kinetics of the transesterification reaction is crucial to compare different routes or routes with different catalysts or reaction accelerators. The use of ultrasound is considereda method for accelerating the biodiesel production. However, little effort has been done and is reported in the literature about how and under what conditions the use of ultrasound really speeds up the process, or the conditions under which its use is unnecessary or even harmful, burdening the process. Two dissimilar energy injections into a typical route were tested: ultrasound (@ 1 MHz and no heating) and mechanical steering (with heating), both applied in an 8:1 ratio of soybean oil and methanol, adding 1% of KOH as catalyzer. As results, during the first 10 minutes of reaction ultrasound showed unbearable effect on the transesterification, whilst mechanical steering and heating achieved almost 70% of conversion ratio. However, during the following 10 minutes, the mechanical steering and heating got nothing more than 80% of conversion, a considerable less efficient process than ultrasound assisted one, which achieved more than 90%. The straightforward explanation is that ultrasound continually inserts energy in a slower rate, what can result in a more stable conversion scenario. On the other hand, mechanical steering and heating provides more energy at a glance, but cannot push the final conversion rate beyond a limit, as the transesterification is a double-way chemical process. The instability mechanical steering and heating settles in the reaction medium pulls the components back to their original states more than pushes than to the converted equilibrium state of the matter.
Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Liu, Xin; Xu, Xiaoxiong; Li, Hong; Hu, Yong-Sheng; Yao, Xiayin
2018-03-27
High ionic conductivity electrolyte and intimate interfacial contact are crucial factors to realize high-performance all-solid-state sodium batteries. Na 2.9 PS 3.95 Se 0.05 electrolyte with reduced particle size of 500 nm is first synthesized by a simple liquid-phase method and exhibits a high ionic conductivity of 1.21 × 10 -4 S cm -1 , which is comparable with that synthesized with a solid-state reaction. Meanwhile, a general interfacial architecture, that is, Na 2.9 PS 3.95 Se 0.05 electrolyte uniformly anchored on Fe 1- x S nanorods, is designed and successfully prepared by an in situ liquid-phase coating approach, forming core-shell structured Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 nanorods and thus realizing an intimate contact interface. The Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 /Na 2.9 PS 3.95 Se 0.05 /Na all-solid-state sodium battery demonstrates high specific capacity and excellent rate capability at room temperature, showing reversible discharge capacities of 899.2, 795.5, 655.1, 437.9, and 300.4 mAh g -1 at current densities of 20, 50, 100, 150, and 200 mA g -1 , respectively. The obtained all-solid-state sodium batteries show very high energy and power densities up to 910.6 Wh kg -1 and 201.6 W kg -1 based on the mass of Fe 1- x S at current densities of 20 and 200 mA g -1 , respectively. Moreover, the reaction mechanism of Fe 1- x S is confirmed by means of ex situ X-ray diffraction techniques, showing that partially reversible reaction occurs in the Fe 1- x S electrode after the second cycle, which gives the obtained all-solid-state sodium battery an exceptional cycling stability, exhibiting a high capacity of 494.3 mAh g -1 after cycling at 100 mA g -1 for 100 cycles. This contribution provides a strategy for designing high-performance room temperature all-solid-state sodium battery.
Hot atoms in cosmic chemistry.
Rossler, K; Jung, H J; Nebeling, B
1984-01-01
High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.
Ghosh, Kalyan; Yue, Chee Yoon; Sk, Md Moniruzzaman; Jena, Rajeeb Kumar
2017-05-10
We have fabricated high-energy-density all-solid-state flexible asymmetric supercapacitor by using a facile novel 3D hollow urchin-shaped coaxial manganese dioxide@polyaniline (MnO 2 @PANI) composite as positive electrode and 3D graphene foam (GF) as negative electrode materials with polyvinyl alcohol (PVA)/KOH gel electrolyte. The coaxial MnO 2 @PANI composite was fabricated by hydrothermal route followed by oxidation without use of an external oxidant. The formation mechanism of the 3D hollow MnO 2 @PANI composite occurs first by nucleation and growth of the MnO 2 crystal species via dissolution-recrystallization and oriented attachment mechanisms followed by the oxidation of aniline monomers on the MnO 2 crystalline template. The self-assembled 3D graphene block was synthesized by hydrothermal route using vitamin C as a reducing agent. The microstructures of the composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The morphology is characterized by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), which clearly showed the formation of urchin-shaped coaxial MnO 2 @PANI composite. The electrochemical studies are explored by cyclic voltammetry, electrochemical impedance spectrometry, and cyclic charge-discharge tests. The symmetric all-solid-state flexible MnO 2 @PANI//MnO 2 @PANI and GF//GF supercapacitors exhibit the specific capacitance of 129.2 and 82.1 F g -1 at 0.5 A/g current density, respectively. The solid-state asymmetric supercapacitor shows higher energy density (37 Wh kg -1 ) with respect to the solid-state symmetric supercapacitors MnO 2 @PANI//MnO 2 @PANI and GF//GF, where the obtained energy density are found to be 17.9 and 11.4 Wh kg -1 , respectively, at 0.5 A/g current density. Surprisingly, the asymmetric supercapacitor shows a high energy density of 22.3 Wh kg -1 at a high current density of 5 A g -1 . The solid-state asymmetric supercapacitor shows a good cyclic stability in which ∼11% capacitance loss was observed after 5000 cycles.
Takayanagi, Toshiyuki; Nakatomi, Taiki; Yonetani, Yoshiteru
2018-04-20
We performed reaction path search calculations for the NaCl·(H 2 O) 6 cluster using the global reaction route mapping (GRRM) code to understand the atomic-level mechanisms of the NaCl → Na + + Cl - ionic dissociation induced by water solvents. Low-lying minima, transition states connecting two local minima and corresponding intrinsic reaction coordinates on the potential energy surface are explored. We found that the NaCl distances at the transitions states for the dissociation pathways were distributed in a relatively wide range of 2.7-3.7 Å and that the NaCl distance at the transition state did not correlate with the commonly used solvation coordinates. This suggests that the definition of the transition states with specific structures as well as good reaction coordinate is very difficult for the ionic dissociation process even in a small water cluster. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Assaf, Ramiz; Saleh, Yahya
2017-09-01
Municipalities are responsible for solid waste collectiont for environmental, social and economic purposes. Practices of municipalities should be effective and efficient, with the objectives of reducing the total incurred costs in the solid waste collection network concurrently achieving the highest service level. This study aims at finding the best routes of solid waste collection network in Nablus city-Palestine. More specifically, the study seeks the optimal route that minimizes the total travelled distance by the trucks and hence the resulted costs. The current situation is evaluated and the problem is modelled as a Vehicle Routing Problem (VRP). The VRP is then optimized via a genetic algorithm. Specifically, compared to the current situation, the trucks total travelled distance was reduced by 66%, whereas the collection time was reduced from 7 hours per truck-trip to 2.3 hours. The findings of this study is useful for all municipality policy makers that are responsible for solid waste collection.
Solid electrolyte: The key for high-voltage lithium batteries
Li, Juchuan; Ma, Cheng; Chi, Miaofang; ...
2014-10-14
A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.
Solvent-free iodination of organic molecules using the I(2)/urea-H(2)O(2) reagent system.
Pavlinac, Jasminka; Zupan, Marko; Stavber, Stojan
2007-02-21
Introduction of iodine under solvent-free conditions into several aromatic compounds activated toward electrophilic functionalization was found to proceed efficiently using elemental iodine in the presence of a solid oxidizer, the urea-H(2)O(2) (UHP) adduct. Two types of iodo-functionalization through an electrophilic process were observed: iodination of an aromatic ring, and side-chain iodo-functionalization in the case of arylalkyl ketones. Two reaction routes were established based on the required substrate : iodine : oxidizer ratio for the most efficient iodo-transformation, and the role of UHP was elucidated in each route. The first, requiring a 1 : 0.5 : 0.6 stoichiometric ratio of substrate to iodine to UHP, followed the atom economy concept in regard to iodine and was valid in the case of aniline, 4-t-Bu-phenol, 1,2-dimethoxy benzene, 1,3-dimethoxy benzene, 1,2,3-trimethoxy benzene, 1,2,4-trimethoxy benzene, 1,3,5-trimethoxy benzene, 1-indanone and 1-tetralone. The second reaction route, where a 1 : 1 : 1 stoichiometric ratio of substrate : I(2) : UHP was needed for efficient iodination, was suitable for side-chain iodo-functionalization of acetophenone and methoxy-substituted acetophenones. Moreover, addition of iodine to 1-octene and some phenylacetylenic derivatives was found to proceed efficiently without the presence of any oxidizer and solvent at room temperature.
Kinetic concepts of thermally stimulated reactions in solids
NASA Astrophysics Data System (ADS)
Vyazovkin, Sergey
Historical analysis suggests that the basic kinetic concepts of reactions in solids were inherited from homogeneous kinetics. These concepts rest upon the assumption of a single-step reaction that disagrees with the multiple-step nature of solid-state processes. The inadequate concepts inspire such unjustified anticipations of kinetic analysis as evaluating constant activation energy and/or deriving a single-step reaction mechanism for the overall process. A more adequate concept is that of the effective activation energy, which may vary with temperature and extent of conversion. The adequacy of this concept is illustrated by literature data as well as by experimental data on the thermal dehydration of calcium oxalate monohydrate and thermal decomposition of calcium carbonate, ammonium nitrate and 1,3,5,7- tetranitro-1,3,5,7-tetrazocine.
Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
Martí-Rujas, Javier; Kawano, Masaki
2013-02-19
Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific disciplines in coordination networks, especially porous coordination networks, the ability to determine crystal structures when the crystals are not suitable for single crystal X-ray analysis is of paramount importance. In this Account, we report the potential of kinetic control to synthesize new coordination networks and we describe ab initio XRPD structure determination to characterize these networks' crystal structures. We describe our recent work on selective instant synthesis to yield kinetically controlled porous coordination networks. We demonstrate that instant synthesis can selectively produce metastable networks that are not possible to synthesize by conventional solution chemistry. Using kinetic products, we provide mechanistic insights into thermally induced (573-723 K) (i.e., annealing method) structural transformations in porous coordination networks as well as examples of guest exchange/inclusion reactions. Finally, we describe a memory effect that allows the transfer of structural information from kinetic precursor structures to thermally stable structures through amorphous intermediate phases. We believe that ab initio XRPD structure determination will soon be used to investigate chemical processes that lead intrinsically to microcrystalline solids, which up to now have not been fully understood due to the unavailability of single crystals. For example, only recently have researchers used single-crystal X-ray diffraction to elucidate crystal-to-crystal chemical reactions taking place in the crystalline scaffold of coordination networks. The potential of ab initio X-ray powder diffraction analysis goes beyond single-crystal-to-single-crystal processes, potentially allowing members of this field to study intriguing in situ reactions, such as reactions within pores.
Residual thermal stresses in a solid sphere cast from a thermosetting material
NASA Technical Reports Server (NTRS)
Levitsky, M.; Shaffer, B. W.
1975-01-01
Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.
NASA Astrophysics Data System (ADS)
Lamberts, T.; Fedoseev, G.; Kästner, J.; Ioppolo, S.; Linnartz, H.
2017-03-01
We present a combined experimental and theoretical study focussing on the quantum tunneling of atoms in the reaction between CH4 and OH. The importance of this reaction pathway is derived by investigating isotope substituted analogs. Quantitative reaction rates needed for astrochemical models at low temperature are currently unavailable both in the solid state and in the gas phase. Here, we study tunneling effects upon hydrogen abstraction in CH4 + OH by focusing on two reactions: CH4 + OD → CH3 + HDO and CD4 + OH → CD3 + HDO. The experimental study shows that the solid-state reaction rate RCH4 + OD is higher than RCD4 + OH at 15 K. Experimental results are accompanied by calculations of the corresponding unimolecular and bimolecular reaction rate constants using instanton theory taking into account surface effects. For the work presented here, the unimolecular reactions are particularly interesting as these provide insight into reactions following a Langmuir-Hinshelwood process. The resulting ratio of the rate constants shows that the H abstraction (kCH4 + OD) is approximately ten times faster than D-abstraction (kCD4 + OH) at 65 K. We conclude that tunneling is involved at low temperatures in the abstraction reactions studied here. The unimolecular rate constants can be used by the modeling community as a first approach to describe OH-mediated abstraction reactions in the solid phase. For this reason we provide fits of our calculated rate constants that allow the inclusion of these reactions in models in a straightforward fashion.
An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure
Wang, Hui; Chen, Yan; Hood, Zachary D.; ...
2016-01-01
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxing; Lu, Dongping; Bowden, Mark
Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less
Jouini, Raja; Bouzidi, Chahira; Zid, Mohamed Faouzi; Driss, Ahmed
2013-01-01
The title compound, potassium sodium dioxidomolybdenum(VI) arsenate, K0.78Na0.22MoO2AsO4, was synthesized by a solid-state reaction route. The structure is built up from corner-sharing MoO6 octahedra and AsO4 tetrahedra, creating infinite [MoAsO8]∞ chains running along the b-axis direction. As, Mo and all but one O atom are on special positions (4c) with m symmetry and K (occupancy 0.78) is on a position (4a) of -1 in the tunnels. The possible motion of the alkali cations has been investigated by means of the bond-valance sum (BVS) model. The simulation shows that the Na+ motion appears to be easier mainly along the b-axis direction. Structural relationships between the different compounds of the AMoO2AsO4 (A = Ag, Li, Na, K, Rb) series and MXO8 (M = V; X = P, As) chains are discussed. PMID:24109253
Origin of colossal permittivity in (In1/2Nb1/2)TiO2via broadband dielectric spectroscopy.
Zhao, Xiao-gang; Liu, Peng; Song, Yue-Chan; Zhang, An-ping; Chen, Xiao-ming; Zhou, Jian-ping
2015-09-21
(In1/2Nb1/2)TiO2 (IN-T) ceramics were prepared via a solid-state reaction route. X-ray diffraction (XRD) and Raman spectroscopy were used for the structural and compositional characterization of the synthesized compounds. The results indicated that the sintered ceramics have a single phase of rutile TiO2. Dielectric spectroscopy (frequency range from 20 Hz to 1 MHz and temperature range from 10 K to 270 K) was performed on these ceramics. The IN-T ceramics showed extremely high permittivities of up to ∼10(3), which can be referred to as colossal permittivity, with relatively low dielectric losses of ∼0.05. Most importantly, detailed impedance data analyses of IN-T demonstrated that electron-pinned defect-dipoles, interfacial polarization and polaron hopping polarization contribute to the colossal permittivity at high temperatures (270 K); however, only the complexes (pinned electron) and polaron hopping polarization are active at low temperatures (below 180 K), which is consistent with UDR analysis.
Microstructural development of cobalt ferrite ceramics and its influence on magnetic properties
NASA Astrophysics Data System (ADS)
Kim, Gi-Yeop; Jeon, Jae-Ho; Kim, Myong-Ho; Suvorov, Danilo; Choi, Si-Young
2013-11-01
The microstructural evolution and its influence on magnetic properties in cobalt ferrite were investigated. The cobalt ferrite powders were prepared via a solid-state reaction route and then sintered at 1200 °C for 1, 2, and 16 h in air. The microstructures from sintered samples represented a bimodal distribution of grain size, which is associated with abnormal grain growth behavior. And thus, with increasing sintering time, the number and size of abnormal grains accordingly increased but the matrix grains were frozen with stagnant grain growth. In the sample sintered for 16 h, all of the matrix grains were consumed and the abnormal grains consequently impinged on each other. With the appearance of abnormal grains, the magnetic coercivity significantly decreased from 586.3 Oe (1 h sintered sample) to 168.3 Oe (16 h sintered sample). This is due to the magnetization in abnormal grains being easily flipped. In order to achieve high magnetic coercivity of cobalt ferrite, it is thus imperative to fabricate the fine and homogeneous microstructure.
Low-temperature sintered Li2(MnxTi1-x)O3 microwave dielectric ceramics with adjustable τf
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhang, Huaiwu; Su, Hua; Li, Jie; Liao, Yulong; Jia, Lijun; Li, Yuanxun
2017-12-01
B2O3-Bi2O3-SiO2-ZnO (BBSZ) glass-modified Li2(MnxTi1-x)O3 ceramics were fabricated via a solid-state reaction route. Pure phase and dense crystal morphology were obtained at 900∘C. Suitable amount of Mn4+-ion substitution could adjust the τf value of the Li2(MnxTi1-x)O3 system to near zero. Among all of the Li2(MnxTi1-x)O3 samples, the sample with x = 0.9 (marked as BL9 in this paper) possessed good microwave dielectric properties: 𝜀r = 18, Q × f = 14,056 GHz (9.58 GHz) and τf = (+)2.43 ppm/∘C. It is suggested that the Li2(MnxTi1-x)O3 ceramic with BBSZ glass is a suitable low-temperature co-fired ceramic (LTCC) candidate for microwave applications.
Structural, electrical, magnetic and magnetoelectric properties of composites
NASA Astrophysics Data System (ADS)
Rani, Renu; Juneja, J. K.; Singh, Sangeeta; Prakash, Chandra; Raina, K. K.
2013-11-01
The magnetoelectric (ME) composites with composition (y)Ni0.8Zn0.2Fe2O4+(1-y) Ba0.90Sr0.10Zr0.04Ti0.96O3 ((y)NZF+(1-y)BSZT) (where y=0.00-0.15 in wt%) were prepared by the conventional solid state reaction route. The existence of both phases was confirmed by the X-Ray diffraction technique and the lattice parameters for all samples were calculated. The dielectric properties such as dielectric constant and dielectric loss were measured as a function of temperature at different frequencies. P-E hysteresis loops and M-H hysteresis loops confirm the ferroelectric and ferrimagnetic nature of the composite samples. M-H loops for electrically poled and un-poled samples were compared to prove ME evidences. Variation of ME coefficient (α) with dc magnetic field was also studied for all composite samples. The maximum value of α (1.6 mV/cm Oe) was observed for y=0.10 at 750 Oe.
NASA Technical Reports Server (NTRS)
Tyson, Daniel S.; Ilhan, Faysal; Meador, Mary Ann B.; Smith, Dee Dee; Scheiman, Daniel A.; Meador, Michael A.
2004-01-01
Photolysis of o-methylphenyl ketones generates bis-o-quinodimethane intermediates that can be trapped in situ by dienophiles through Diels-Alder cycloadditions. This well-known photochemical process is applied to a series of six new photoreactive monomers containing bis-(o-methylphenyl ketone) functionalities combined with diacrylate and triacrylate ester monomers for the development of acrylic ester copolymer blends. Irradiation of cyclohexanone solutions of the bis-(o-methylphenyl ketone)s and acrylate esters produce thin polymer films. Solid state 13C NMR data indicated 47- 100% reaction of the bis-(o-methylphenyl ketone)s, depending on experimental conditions, to yield the desired products. DSC and TGA analyses were performed to determine the glass transition temperature, T,, and onset of decomposition, Td, of the resulting polymer films. A statistical Design of Experiments approach was used to obtain a systematic understanding of the effects of experimental variables on the extent of polymerization and the final polymer properties.
Structural analysis and ferroelectric properties of Fe doped BaTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Ashutosh, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Mansuri, Amantulla, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Dwivedi, J. P.
2016-05-23
The polycrystalline samples of Fe doped BaTiO{sub 3} (BTO) with compositional formula BaTi{sub 1-x}Fe{sub x}O{sub 3} (x = 0, 0.03, 0.04 and 0.05) were prepared by solid-state reaction route. The influence of the Fe content on the structural, vibrational and electric properties of BaTiO{sub 3} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and Polarization techniques. XRD analysis indicates the formation of single-phase tetragonal structure for all the prepared samples. Tetragonal cubic structure with space group P4mm of all samples is further approved by Rietveld refinement. Room temperature Raman spectra of pure BaTiO{sub 3} show four active modes ofmore » vibration whose intensity decreases with increasing Fe doping. Small shift in Raman modes and increment in the line width has been observed with the doping ions. The hysteresis loop is very well performed with regular sharp characteristic of ferroelectric materials.« less
MW-assisted synthesis of LiFePO 4 for high power applications
NASA Astrophysics Data System (ADS)
Beninati, Sabina; Damen, Libero; Mastragostino, Marina
LiFePO 4/C was prepared by solid-state reaction from Li 3PO 4, Fe 3(PO 4) 2·8H 2O, carbon and glucose in a few minutes in a scientific MW (microwave) oven with temperature and power control. The material was characterized by X-ray diffraction, scanning electron microscopy and by TGA analysis to evaluate carbon content. The electrochemical characterization as positive electrode in EC (ethylene carbonate)-DMC (dimethylcarbonate) 1 M LiPF 6 was performed by galvanostatic charge-discharge cycles at C/10 to evaluate specific capacity and by sequences of 10 s discharge-charge pulses, at different high C-rates (5-45C) to evaluate pulse-specific power in simulate operative conditions for full-HEV application. The maximum pulse-specific power and, particularly, pulse efficiency values are quite high and make MW synthesis a very promising route for mass production of LiFePO 4/C for full-HEV batteries at low energy costs.
Impedance Spectroscopy Study of the Ferroelectric Pb0.8K0.1Dy0.1Nb2O6 Ceramics
NASA Astrophysics Data System (ADS)
Rao, K. Sambasiva; Latha, T. Swarna; Krishna, P. Murali; Prasad, D. Madhava
Polycrystalline Dy-modified Pb1-xK2xNb2O6 (PKN) ferroelectric ceramic with a general formula Pb1-xK2x-3yMyNb2O6 for x=0.20, y=0.10 and M=Dy, have been prepared by the solid-state reaction route. The X-ray diffraction (XRD) studies of the material at room temperature revealed orthorhombic structure with lattice parameters a=17.701 Å, b=17.958 Å and c=3.883 Å. The dielectric anomaly with a sharp peak is observed at 430°C. The impedance plots are used as a tool to analyze the sample behavior as a function of frequency. The grain and grain boundary contributions are estimated. The modulus mechanism indicates the non-Debye type relaxation. The activation energy value near the phase transition temperature has been found to be different in the above TC from AC conductivity measurements.
Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics
NASA Astrophysics Data System (ADS)
Samantaray, S.; Mishra, D. K.; Pradhan, S. K.; Mishra, P.; Sekhar, B. R.; Behera, Debdhyan; Rout, P. P.; Das, S. K.; Sahu, D. R.; Roul, B. K.
2013-08-01
This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO3. Room temperature dielectric constant (ɛr) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO3 at room temperature as multifunctional materials.
Structural, dielectric and magnetic studies of Mn doped Y-type barium hexaferrite (Ba2Mg2Fe12O22)
NASA Astrophysics Data System (ADS)
Abdullah, Md. F.; Pal, P.; Mohapatra, S. R.; Yadav, C. S.; Kaushik, S. D.; Singh, A. K.
2018-04-01
The polycrystalline single phase Ba2Mg2Fe12O22 (BMF) and Ba2Mg2Fe11.52Mn0.48O22 (BMFM) were prepared using conventional solid state reaction route. We report the modification in structural, dielectric and magnetic properties of BMF due to 4% Mn doping at Fe site. Phase purity of both sample are confirmed by the Reitveld refinement of XRD data. Temperature dependent dielectric study shows decrease in dielectric constant (ɛ') and dielectric loss (tan δ) due to 4% Mn doping in parent sample. The ferrimagnetic to paramagnetic transition temperature (Tc) in doped sample decreases from 277°C to 150°C. Room temperature magnetization measurement shows ferrimagnetic behavior for both the samples. We have fitted the saturation magnetization data at 300 K by using least square method which confirms the enhancement of saturation magnetization and magnetic anisotropy constant in doped sample.
Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2
NASA Astrophysics Data System (ADS)
Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias
2018-04-01
The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.
Puebla-Hellmann, Gabriel; Mayor, Marcel; Lörtscher, Emanuel
2016-01-01
On the road towards the long-term goal of the NCCR Molecular Systems Engineering to create artificial molecular factories, we aim at introducing a compartmentalization strategy based on solid-state silicon technology targeting zeptoliter reaction volumes and simultaneous electrical contact to ensembles of well-oriented molecules. This approach allows the probing of molecular building blocks under a controlled environment prior to their use in a complex molecular factory. Furthermore, these ultra-sensitive electrical conductance measurements allow molecular responses to a variety of external triggers to be used as sensing and feedback mechanisms. So far, we demonstrate the proof-of-concept by electrically contacting self-assembled mono-layers of alkane-dithiols as an established test system. Here, the molecular films are laterally constrained by a circular dielectric confinement, forming a so-called 'nanopore'. Device yields above 85% are consistently achieved down to sub-50 nm nanopore diameters. This generic platform will be extended to create distributed, cascaded reactors with individually addressable reaction sites, including interconnecting micro-fluidic channels for electrochemical communication among nanopores and sensing sites for reaction control and feedback. In this scientific outlook, we will sketch how such a solid-state nanopore concept can be used to study various aspects of molecular compounds tailored for operation in a molecular factory.
Matthes, Jochen; Pery, Tal; Gründemann, Stephan; Buntkowsky, Gerd; Sabo-Etienne, Sylviane; Chaudret, Bruno; Limbach, Hans-Heinrich
2004-07-14
Some transition metal complexes are known to catalyze ortho/para hydrogen conversion, hydrogen isotope scrambling, and hydrogenation reactions in liquid solution. Using the example of Vaska's complex, we present here evidence by NMR that the solvent is not necessary for these reactions to occur. Thus, solid frozen solutions or polycrystalline powdered samples of homogeneous catalysts may become heterogeneous catalysts. Comparative liquid- and solid-state studies provide novel insight into the reaction mechanisms.
Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose.
Li, Guangyi; Li, Ning; Wang, Zhiqiang; Li, Changzhi; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao
2012-10-01
Hydroxyalkylation-alkylation (HAA) coupled with hydrodeoxygenation is a promising route for the synthesis of renewable high-quality diesel or jet fuel. In this work, a series of solid-acid catalysts were firstly used for HAA between lignocellulose-derived furan and carbonyl compounds. Among the investigated catalysts, Nafion-212 resin demonstrated the highest activity and stability. Owing to the high activity of the reactants and the advantage in industrial integration, the HAA of 2-methylfuran (2-MF) and furfural can be considered as a prospective route in future applications. Catalyst loading, reaction temperature, and time had evident effects on the HAA of 2-MF and furfural over Nafion-212 resin. Finally, the HAA product of 2-MF and furfural was hydrogenated over a Pd/C catalyst and hydrodeoxygenated over Pt-loaded solid-acid catalysts. Pt/zirconium phosphate (Pt/ZrP) was found to be the best catalyst for hydrodeoxygenation. Over the 4 % Pt/ZrP catalyst, a 94 % carbon yield of diesel and 75 % carbon yield of C15 hydrocarbons (with 6-butylundecane as the major component) was achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2011-01-01
A facile synthesis of azabicycloadducts is described by 1,3-dipolar cycloaddition reactions of thioisatin with thiazolidine-2-carboxylic acid in the presence of various electron rich and electron deficient dipolarophiles. Theoritical calculations have been performed to study the regioselectivity of products. The geometrical and energetic properties have been analyzed for the different reactants, transition states and cycloadducts formed. PMID:22373364
Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang
2014-10-22
Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.
Molecular Structure of Humin and Melanoidin via Solid State NMR
Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena
2011-01-01
Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simplified by relying exclusively on hydronium for catalysis. The results for polymers derived from ribose, deoxyribose and fructose indicate diverse pathways to furans, suggest a simple route to pyrroles in the presence of amines, and reveal a heterogenous network-type polymer in which sugar molecules cross-link the heterocycles. PMID:21456563
Prabhavathi Devi, B L A; Vijai Kumar Reddy, T; Vijaya Lakshmi, K; Prasad, R B N
2014-02-01
Simultaneous esterification and transesterification method is employed for the preparation of biodiesel from 7.5% free fatty acid (FFA) containing karanja (Pongamia glabra) oil using water resistant and reusable carbon-based solid acid catalyst derived from glycerol in a single step. The optimum reaction parameters for obtaining biodiesel in >99% yield by simultaneous esterification and transesterification are: methanol (1:45 mole ratio of oil), catalyst 20wt.% of oil, temperature 160°C and reaction time of 4h. After the reaction, the catalyst was easily recovered by filtration and reused for five times with out any deactivation under optimized conditions. This single-step process could be a potential route for biodiesel production from high FFA containing oils by simplifying the procedure and reducing costs and effluent generation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd
2009-01-01
Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries.
Photodegradation routes of the herbicide bromoxynil in solution and sorbed on silica nanoparticles.
Escalada, Juan P; Arce, Valeria B; Carlos, Luciano; Porcal, Gabriela V; Biasutti, M Alicia; Criado, Susana; García, Norman A; Mártire, Daniel O
2014-04-01
Some organic contaminants dissolved in natural waters tend to adsorb on suspended particles and sediments. In order to mimic the photodegradation routes in natural waters of bromoxynil (BXN) adsorbed on silica, we here prepare and characterize silica nanoparticles modified with BXN (NP-BXN). We measure the direct photolysis quantum yield of aqueous BXN at 307 nm (0.064 ± 0.001) and detect the formation of bromide ions as a reaction product. Under similar conditions the photolysis quantum yield of BXN bonded to NP-BXN is much lower (0.0021 ± 0.0004) and does not lead to formation of bromide ions. The rate constant of the reaction of NP-BXN with the excited triplet states of riboflavin, a molecule employed as a proxy of chromophore dissolved organic matter (DOM) was measured in laser flash-photolysis experiments. The rate constants for the overall (kt) and chemical interaction (kr) of singlet oxygen with NP-BXN were also measured. Kinetic computer simulations show that the relevance of the direct and indirect (through reactions with reactive species generated in photoinduced processes) photodegradation routes of BXN is very much affected by sorption on silica. Immobilization of the herbicide on the particles, on one hand, affects the photolysis mechanism and lowers its photolysis quantum yield. On the other hand, the results obtained in aqueous suspensions indicate that immobilization also lowers the rate of collisional encounter, which affects the quenching rate constants of excited triplet states and singlet oxygen with the herbicide.
Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions
NASA Astrophysics Data System (ADS)
Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.
2018-02-01
The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.
Jin, Qiu; Chen, Biaohua; Ren, Zhibo; ...
2018-02-10
In the present study, thiophene hydrodesulphurization (HDS) over the Mo-edge, the S-edge, and the Mo-S connection edge of MoS 2 catalyst with 50% sulfur coverage was studied using first-principles based microkinetic modeling. Two parallel HDS routes, i.e., direct desulfurization (DDS) and hydrogenation (HYD) were taken into account. It has been found that the major reaction route of thiophene HDS on the Mo- and the Mo-S edges is temperature dependent. In the low temperature range of 500–600 K, the HYD route is dominant, leading to the C 4H 8 formation. As the temperature increases, the DDS route becomes competitive with themore » HYD route. At the temperature above 650 K, the DDS route will be the dominant HDS reaction route on the Mo- and the Mo-S edges. The DDS route leading to the formation of C 4H 6 is the major thiophene HDS reaction route on the S-edge in the entire temperature range of 500–750 K. The microkinetic modeling results show the overall HDS activity on the S-edge is lower than it on the Mo- and the Mo-S edges. The Mo-S edge also provides a preferential reaction pathway, which facilitates 2-hydrothiophene migration from the Mo-edge to the S-edge, followed by remaining elementary steps with lower activation barriers in the DDS route.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Qiu; Chen, Biaohua; Ren, Zhibo
In the present study, thiophene hydrodesulphurization (HDS) over the Mo-edge, the S-edge, and the Mo-S connection edge of MoS 2 catalyst with 50% sulfur coverage was studied using first-principles based microkinetic modeling. Two parallel HDS routes, i.e., direct desulfurization (DDS) and hydrogenation (HYD) were taken into account. It has been found that the major reaction route of thiophene HDS on the Mo- and the Mo-S edges is temperature dependent. In the low temperature range of 500–600 K, the HYD route is dominant, leading to the C 4H 8 formation. As the temperature increases, the DDS route becomes competitive with themore » HYD route. At the temperature above 650 K, the DDS route will be the dominant HDS reaction route on the Mo- and the Mo-S edges. The DDS route leading to the formation of C 4H 6 is the major thiophene HDS reaction route on the S-edge in the entire temperature range of 500–750 K. The microkinetic modeling results show the overall HDS activity on the S-edge is lower than it on the Mo- and the Mo-S edges. The Mo-S edge also provides a preferential reaction pathway, which facilitates 2-hydrothiophene migration from the Mo-edge to the S-edge, followed by remaining elementary steps with lower activation barriers in the DDS route.« less
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi
2016-02-01
Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.
Solid-state reaction of iron on β-SiC
NASA Astrophysics Data System (ADS)
Kaplan, R.; Klein, P. H.; Addamiano, A.
1985-07-01
The solid-state reaction between Fe and β-SiC has been studied using Auger-electron and electron-energy-loss spectroscopies and ion sputter profiling. Fe films from submonolayer coverage to 1000 Å thickness were grown in ultrahigh vacuum, and annealed at temperatures up to 550 °C. Auger line-shape changes occurred even for initial Fe coverage at 190 °C, indicating substantial bond alteration in the SiC substrate. A 1000-Å film was largely consumed by reaction with Si and C diffused from the substrate during a 500 °C anneal, and exhibited both Fe silicide and carbide throughout most of its original volume and free C present as graphite primarily at the surface. As an aid in identifying the reaction products studied in this work, Auger line shapes were first determined for the SiLVV peak in Fe silicide and for the CKLL transition in Fe carbide.
Quantum chemistry-assisted synthesis route development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hori, Kenji; Sumimoto, Michinori; Murafuji, Toshihiro
2015-12-31
We have been investigating “quantum chemistry-assisted synthesis route development” using in silico screenings and applied the method to several targets. Another example was conducted to develop synthesis routes for a urea derivative, namely 1-(4-(trifluoromethyl)-2-oxo-2H-chromen-7-yl)urea. While five synthesis routes were examined, only three routes passed the second in silico screening. Among them, the reaction of 7-amino-4-(trifluoromethyl)-2H-chromen-2-one and O-methyl carbamate with BF{sub 3} as an additive was ranked as the first choice for synthetic work. We were able to experimentally obtain the target compound even though its yield was as low as 21 %. The theoretical result was thus consistent with thatmore » observed. The summary of transition state data base (TSDB) is also provided. TSDB is the key to reducing time of in silico screenings.« less
Surface-Activated Coupling Reactions Confined on a Surface.
Dong, Lei; Liu, Pei Nian; Lin, Nian
2015-10-20
Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density-functional theory (DFT) transition-state calculations have been used to shed light on reaction mechanisms and to unravel the trends of different surface materials. In this Account, we discuss recent progress made in two widely studied surface-confined coupling reactions, aryl-aryl (Ullmann-type) coupling and alkyne-alkyne (Glaser-type) coupling, and focus on surface activation effects. Combined experimental and theoretical studies on the same reactions taking place on different metal surfaces have clearly demonstrated that different surfaces not only reduce the reaction barrier differently and render different reaction pathways but also control the morphology of the reaction products and, to some degree, select the reaction products. We end the Account with a list of questions to be addressed in the future. Satisfactorily answering these questions may lead to using the surface-confined coupling reactions to synthesize predefined products with high yield.
Lin, Pao-Chung; Huang, Cheng-Wei; Hsiao, Ching-Ta; Teng, Hsisheng
2008-04-15
Magnesium hydroxide extracted from magnesium-bearing minerals is considered a promising agent for binding CO2 as a carbonate mineral in a gas-solid reaction. An efficient extraction route consisting of hydrothermal treatment on serpentine in HCl followed by NaOH titration for Mg(OH)2 precipitation was demonstrated. The extracted Mg(OH)2 powder had a mean crystal domain size as small as 12 nm and an apparent surface area of 54 m2/g. Under one atmosphere of 10 vol% CO2/N2, carbonation of the serpentine-derived Mg(OH)2 to 26% of the stoichiometric limit was achieved at 325 degrees C in 2 h; while carbonation of a commercially available Mg(OH)2, with a mean crystal domain size of 33 nm and an apparent surface area of 3.5 m2/g, reached only 9% of the stoichiometric limit. The amount of CO2 fixation was found to be inversely proportional to the crystal domain size of the Mg(OH)2 specimens. The experimental data strongly suggested that only a monolayer of carbonates was formed on the crystal domain boundary in the gas-solid reaction, with little penetration of the carbonates into the crystal domain.
Electrolytic Production of Ti5Si3/TiC Composites by Solid Oxide Membrane Technology
NASA Astrophysics Data System (ADS)
Zheng, Kai; Zou, Xingli; Xie, Xueliang; Lu, Changyuan; Chen, Chaoyi; Xu, Qian; Lu, Xionggang
2017-12-01
This paper investigated the electrolytic production of Ti5Si3/TiC composites from TiO2/SiO2/C in molten CaCl2. The solid-oxide oxygen-ion-conducting membrane tube filled with carbon-saturated liquid tin was served as the anode, and the pressed spherical TiO2/SiO2/C pellet was used as the cathode. The electrochemical reduction process was carried out at 1273 K and 3.8 V. The characteristics of the obtained cathode products and the reaction mechanism of the electroreduction process were studied by a series of time-dependent electroreduction experiments. It was found that the electroreduction process generally proceeds through the following steps: TiO2/SiO2/C → Ti2O3, CaTiO3, Ca2SiO4, SiC → Ti5Si3, TiC. The morphology observation and the elemental distribution analysis indicate that the reaction routes for Ti5Si3 and TiC products are independent during the electroreduction process.
Electrolytic Production of Ti5Si3/TiC Composites by Solid Oxide Membrane Technology
NASA Astrophysics Data System (ADS)
Zheng, Kai; Zou, Xingli; Xie, Xueliang; Lu, Changyuan; Chen, Chaoyi; Xu, Qian; Lu, Xionggang
2018-02-01
This paper investigated the electrolytic production of Ti5Si3/TiC composites from TiO2/SiO2/C in molten CaCl2. The solid-oxide oxygen-ion-conducting membrane tube filled with carbon-saturated liquid tin was served as the anode, and the pressed spherical TiO2/SiO2/C pellet was used as the cathode. The electrochemical reduction process was carried out at 1273 K and 3.8 V. The characteristics of the obtained cathode products and the reaction mechanism of the electroreduction process were studied by a series of time-dependent electroreduction experiments. It was found that the electroreduction process generally proceeds through the following steps: TiO2/SiO2/C → Ti2O3, CaTiO3, Ca2SiO4, SiC → Ti5Si3, TiC. The morphology observation and the elemental distribution analysis indicate that the reaction routes for Ti5Si3 and TiC products are independent during the electroreduction process.
ERIC Educational Resources Information Center
Ma, Yan-Zi; Jia, Li; Ma, Kai-Guo; Wang, Hai-Hong; Jing, Xi-Ping
2017-01-01
An integrated and inquiry-based experiment on solid state chemistry is applied to an inorganic chemistry lab course to provide insight into the characteristics of the solid phase reaction. In this experiment, students have the opportunity to synthesize long-lasting phosphors with formula xSrO·yAl[subscript 2]O[subscript 3]:Eu[superscript 2+],…
Charge and discharge characteristics of lithium-ion graphite electrodes in solid-state cells
NASA Astrophysics Data System (ADS)
Lemont, S.; Billaud, D.
Lithium ions have been electrochemically intercalated into graphite in solid-state cells operating with solid polymer electrolytes based on poly(ethylene oxide) (PEO) complexed with lithium perchlorate (LiClO 4). The working composite electrode is composed of active-divided natural graphite associated with P(EO) 8-LiClO 4 acting as a binder and a Li + ionic conductor. Intercalation and de-intercalation of Li + were performed using galvanostatic or voltammetry techniques. The curves obtained in our solid-state cells were compared with those performed in liquid ethylene carbonate-LiClO 4 electrolyte. It is shown that in solid-state cells, side reactions occur both in the reduction and in the oxidation processes which leads to some uncertainty in the determination of the maximum reversible capacity of the graphite material.
Low Energy Nuclear Reactions: A Millennium Status Report
NASA Astrophysics Data System (ADS)
Mallove, Eugene F.
2000-03-01
This talk will summarize some of the more convincing recent experiments that show that helium-4, nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available elsewhere (http://www.infinite-energy.com). abstract document
Regeneration of sulfated metal oxides and carbonates
Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.
1978-03-28
Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.
Song, Myoung Geun; Han, Jun Young; Bark, Chung Wung
2015-10-01
The wide band gap of complex oxides is one of the major obstacles limiting their use in photovoltaic cells. To identify an effective route for tailoring the band gap of complex oxides, this study examined the effects of cobalt and iron doping on lanthanum-modified Bi4Ti3O2-based oxides synthesized using a solid reaction. The structural and optical properties were analyzed by X-ray diffraction and ultraviolet-visible absorption spectroscopy. As a result, the optimal iron to cobalt doping ratio in bismuth titanate powder resulted in an ~1.8 eV decrease in the optical band gap. This new route to reduce the optical bandgap can be adapted to the synthesis of other complex oxides.
The Barium Hydroxide-Ammonium Thiocyanate Reaction: A Titrimetric Continuous Variations Experiment.
ERIC Educational Resources Information Center
Harris, Arlo D.
1979-01-01
Presents an experiment for inorganic, organic, or physical chemistry students utilizing acid-base titrimetry to study the stoichiometric of a solid state reaction. Time involved ranges from one to three, three-hour lab periods. (Author/SA)
Conventional and Microwave Joining of Silicon Carbide Using Displacement Reactions
NASA Technical Reports Server (NTRS)
Kingsley, J.; Yiin, T.; Barmatz, M.
1995-01-01
Microwave heating was used to join Silicon Carbide rods using a thin TiC /Si tape interlayer . Microwaves quickly heated the rods and tape to temperatures where solid-state displacement reactions between TiC and Si occurred.
NASA Astrophysics Data System (ADS)
Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong
2017-09-01
A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.
Stern, L.A.; Kirby, S.H.; Durham, W.B.
1996-01-01
Slow, constant-volume heating of water ice plus methane gas mixtures forms methane clathrate hydrate by a progressive reaction that occurs at the nascent ice/liquid water interface. As this reaction proceeds, the rate of melting of metastable water ice may be suppressed to allow short-lived superheating of ice to at least 276 kelvin. Plastic flow properties measured on clathrate test specimens are significantly different from those of water ice; under nonhydrostatic stress, methane clathrate undergoes extensive strain hardening and a process of solid-state disproportionation or exsolution at conditions well within its conventional hydrostatic stability field.
Synthesisofc-lifepo4 composite by solid state reaction method
NASA Astrophysics Data System (ADS)
Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.
2017-02-01
In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.
Maestri, Matteo; Iglesia, Enrique
2018-06-01
Density functional theory methods that include dispersive forces are used to show how voids of molecular dimensions enhance reaction rates by the mere confinement of transition states analogous to those involved in homogeneous routes and without requiring specific binding sites or structural defects within confining voids. These van der Waals interactions account for the observed large rate enhancements for NO oxidation in the presence of purely siliceous crystalline frameworks. The minimum free energy paths for NO oxidation within chabazite (CHA) and silicalite (SIL) frameworks involve intermediates similar in stoichiometry, geometry, and kinetic relevance to those involved in the homogeneous route. The termolecular transition state for the kinetically-relevant cis-NOO2NO isomerization to trans-NOO2NO is strongly stabilized by confinement within CHA (by 36.3 kJ mol-1 in enthalpy) and SIL (by 39.2 kJ mol-1); such enthalpic stabilization is compensated, in part, by concomitant entropy losses brought forth by confinement (CHA: 44.9; SIL: 45.3, J mol-1 K-1 at 298 K). These enthalpy and entropy changes upon confinement agree well with those measured and combine to significantly decrease activation free energies and are consistent with the rate enhancements that become larger as temperature decreases because of the more negative apparent activation energies in confined systems compared with homogeneous routes. Calculated free energies of confinement are in quantitative agreement with measured rate enhancements and with their temperature sensitivity. Such quantitative agreements reflect preeminent effects of geometry in determining the van der Waals contributions from contacts between the transition states (TS) and the confining walls and the weak effects of the level of theory on TS geometries. NO oxidation reactions are chosen here to illustrate these remarkable effects of confinement because detailed kinetic analysis of rate data are available, but also because of their critical role in the treatment of combustion effluents and in the synthesis of nitric acid and nitrates. Similar effects are evident from rate enhancements by confinement observed for Diels-Alder and alkyne oligomerization reactions. These reactions also occur in gaseous media at near ambient temperatures, for which enthalpic stabilization upon confinement of their homogeneous transition states becomes the preeminent component of activation free energies.
Nims, Robert J.; Maas, Steve; Weiss, Jeffrey A.
2014-01-01
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio (www.febio.org). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions. PMID:24558059
Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A
2014-10-01
Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions.
NASA Astrophysics Data System (ADS)
Iriyama, Yasutoshi; Wadaguchi, Masaki; Yoshida, Koki; Yamamoto, Yuta; Motoyama, Munekazu; Yamamoto, Takayuki
2018-05-01
Composite electrodes (∼9 μm in thickness) composed of 5V-class electrode of LiNi0.5Mn1.5O4 (LNM) and high Li+ conductive crystalline-glass solid electrolyte (LATP, Ohara Inc.) were prepared at room temperature by aerosol deposition (AD) on platinum sheets. The resultant LNM-LATP composite electrodes were combined with LiPON and Li, and 5V-class bulk-type all-solid-state rechargeable lithium batteries (SSBs) were prepared. The crystallnity of the LNM in the LNM-LATP composite electrode was improved by annealing. Both thermogravimetry-mass spectroscopy analysis and XRD analysis clarified that the side reactions between the LNM and the LATP occurred over 500 °C with oxygen release. From these results, annealing temperature of the LNM-LATP composite electrode system was optimized at 500 °C due to the improved crystallinity of the LNM with avoiding the side-reactions. The SSBs with the composite electrodes (9 μm in thickness, 40 vol% of the LNM) annealed at 500 °C delivered 100 mAh g-1 at 10 μA cm-2 at 100 °C. Degradation of the discharge capacity with the repetition of the charge-discharge reactions was observed, which will originate from large volume change of the LNM (∼6.5%) during the reactions.
Huckaba, Aron J; Cao, Bei; Hollis, T Keith; Valle, Henry U; Kelly, John T; Hammer, Nathan I; Oliver, Allen G; Webster, Charles Edwin
2013-06-28
The recently reported metallation/transmetallation route for the synthesis of CCC-bis(NHC) pincer ligand architectures was extended to 1,3-bis(3'-(trimethylsilylmethyl)-benzimidizol-1'-yl)benzene. The precursor was metallated with Zr(NMe2)4 and transmetallated to Pt using [Pt(COD)Cl2]. This Pt complex was found to resist photobleaching under UV irradiation in ambient conditions. Density functional theory (DFT) computations were used to generate the emission spectrum of the complex and reveal that this spectrum is the result of a transition from the triplet excited state (T1) to the ground state (S0). The Pt complex's molecular structure was determined by X-ray crystallography. The UV-vis absorption and emission spectra in solution and the solid-state emission spectra are reported. The solid-state photostability data and the radiative lifetime is also reported.
NASA Astrophysics Data System (ADS)
Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C.; Birjega, Ruxandra; Ene, Ramona; Carp, Oana
2013-06-01
A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N2 adsorption-desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... chemical state and their catalytic activity in various chemical reactions, by investigating solid... instrument. The unique features of this instrument include its small volume (0.045 L) reaction cell in which...
Direct ink write fabrication of transparent ceramic gain media
NASA Astrophysics Data System (ADS)
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; Duoss, Eric B.; Payne, Stephen A.
2018-01-01
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y2.97Nd0.03Al5.00O12.00 (Nd:YAG) and an undoped cladding region of Y3Al5O12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Fully-dense transparent optical ceramics in a "top hat" geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scatter at 1064 nm of <3%/cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Huajun; Gao, Tao; Li, Xiaogang
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less
High power rechargeable magnesium/iodine battery chemistry
Tian, Huajun; Gao, Tao; Li, Xiaogang; ...
2017-01-10
Rechargeable magnesium batteries have attracted considerable attention because of their potential high energy density and low cost. However, their development has been severely hindered because of the lack of appropriate cathode materials. Here we report a rechargeable magnesium/iodine battery, in which the soluble iodine reacts with Mg 2+ to form a soluble intermediate and then an insoluble final product magnesium iodide. The liquid–solid two-phase reaction pathway circumvents solid-state Mg 2+ diffusion and ensures a large interfacial reaction area, leading to fast reaction kinetics and high reaction reversibility. As a result, the rechargeable magnesium/iodine battery shows a better rate capability (180more » mAh g –1 at 0.5 C and 140 mAh g –1 at 1 C) and a higher energy density (~400 Wh kg –1) than all other reported rechargeable magnesium batteries using intercalation cathodes. As a result, this study demonstrates that the liquid–solid two-phase reaction mechanism is promising in addressing the kinetic limitation of rechargeable magnesium batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven,more » entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.« less
NASA Astrophysics Data System (ADS)
Fei, Yiyan; Landry, James P.; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi; Zhu, X. D.
2013-11-01
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.
Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin
2010-03-25
Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.
Wu, Guangjun; Zhang, Nan; Dai, Weili; Guan, Naijia; Li, Landong
2018-04-27
Bifunctional Co/H-ZSM-5 zeolites were prepared by surface organometallic chemistry grafting route, namely by the stoichiometric reaction between cobaltocene and the Brønsted acid sites in zeolites, and applied to the model reaction of stearic acid catalytic hydrodeoxygenation. Cobalt species existed in the form of isolated Co2+ ions at exchange positions after grafting, transformed to CoO species on the surface of zeolite and stabilized inside zeolite channels upon calcination in air, and finally reduced to metallic cobalt species of homogeneous clusters of ca. 1.5 nm by hydrogen. During this process, the Brønsted acid sites of H-ZSM-5 zeolites could be preserved with acid strength slightly reduced. The as-prepared bifunctional catalyst exhibited a ~16 times higher activity in stearic acid hydrodeoxygenation (2.11 gSAgcat-1h-1) than the reference catalyst (0.13 gSAgcat-1h-1) prepared by solid-state ion exchange, and a high C18/C17 ratio of ~24 was achieved as well. The remarkable hydrodeoxygenation performance of bifunctional Co/H-ZSM-5 could be explained from the effective synergy between the uniformed metallic cobalt clusters and the Brønsted acid sites in H-ZSM-5 zeolite. The simplified reaction network and kinetics of stearic acid hydrodeoxygenation catalyzed by the as-prepared bifunctional Co/H-ZSM-5 zeolites were also investigated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gupta, Rupal; Stringer, John; Struppe, Jochem; Rehder, Dieter; Polenova, Tatyana
2018-07-01
Electronic and structural properties of short-lived metal-peroxido complexes, which are key intermediates in many enzymatic reactions, are not fully understood. While detected in various enzymes, their catalytic properties remain elusive because of their transient nature, making them difficult to study spectroscopically. We integrated 17 O solid-state NMR and density functional theory (DFT) to directly detect and characterize the peroxido ligand in a bioinorganic V(V) complex mimicking intermediates non-heme vanadium haloperoxidases. 17 O chemical shift and quadrupolar tensors, measured by solid-state NMR spectroscopy, probe the electronic structure of the peroxido ligand and its interaction with the metal. DFT analysis reveals the unusually large chemical shift anisotropy arising from the metal orbitals contributing towards the magnetic shielding of the ligand. The results illustrate the power of an integrated approach for studies of oxygen centers in enzyme reaction intermediates. Copyright © 2018 Elsevier Inc. All rights reserved.
New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki
Primordial {sup 7}Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is {sup 7}Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X{sup −}. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X{sup −} capture by {sup 7}Be nuclei followed by proton capture of the bound state of {sup 7}Be and X{sup −} ({sup 7}Be{sub x}) is a possible {sup 7}Be destructionmore » reaction. Since the primordial abundance of {sup 7}Li originates mainly from {sup 7}Li produced via the electron capture of {sup 7}Be after BBN, the {sup 7}Be destruction provides a solution to the {sup 7}Li problem. We suggest a new route of {sup 7}Be{sub x} formation, that is the {sup 7}Be charge exchange at the reaction of {sup 7}Be{sup 3+} ion and X{sup −}. The formation rate depends on the ionization fraction of {sup 7}Be{sup 3+} ion, the charge exchange cross section of {sup 7}Be{sup 3+}, and the probability that excited states {sup 7}Be{sub x}* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of {sup 7}Be and X{sup −}. The effect of this new route is shown in a nuclear reaction network calculation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobo, Raul F
2010-09-20
Recently, two groups separately reported what amounts to a synthetic version of glycolysis. The sum of these two reactions is equivalent to what is accomplished in living organisms by glycolysis in terms of the redistribution of oxidation states of the carbon, and is an important step in reproducing using chemical routes that living organisms accomplish daily.
NASA Astrophysics Data System (ADS)
Heinrich, Julie L.; Sokol, Jennifer J.; Hee, Allan G.; Long, Jeffrey R.
2001-07-01
As part of an ongoing effort to design new single-molecule magnets, we are exploring synthetic routes to high-nuclearity metal-cyanide clusters. Here, we report the results of solution assembly reactions between [(Me3tacn)Cr(CN)3] (Me3tacn= N,N‧,N″-trimethyl-1,4,7-triazacyclononane) and selected manganese(II) salts. Reaction with the perchlorate salt in the presence of AClO4 (A=Na, K) gives A[(Me3tacn)6MnCr6(CN)18] (ClO4)3, featuring a heptanuclear cluster in which six [(Me3tacn)Cr(CN)3] units surround a central MnII ion. The Mn coordination geometry closely approaches a trigonal prism, with triangular faces twisted away from a fully eclipsed position by an angle of 12.8° and 11.3° for A=Na and K, respectively. The magnetic behavior of both compounds indicates weak antiferromagnetic coupling between neighboring MnII and CrIII centers (J=-3.0 and -3.1 cm-1, respectively) to give an S={13}/{2}; ground state. Alternatively, addition of sodium tetraphenylborate to the reaction solution yields [(Me3tacn)6(H2O)6Mn3Cr6(CN)18] (BPh4)6·12H2O, in which attachment of two MnII ions to the preceding cluster generates a new species with two trigonal bipyramids sharing a common vertex. This compound displays magnetic behavior consistent with weak antiferromagnetic coupling and an S={3}/{2} ground state. Finally, a reaction employing manganese(II) triflate is found to produce the one-dimensional solid [(Me3tacn)3MnCr3(CN)9](CF3SO3)2, exhibiting a closely related chain structure, and, again, weak antiferromagnetic coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimani, Martin M., E-mail: kimani@g.clemson.edu; Chen, Hongyu, E-mail: hongyuc@g.clemson.edu; McMillen, Colin D., E-mail: cmcmill@g.clemson.edu
2015-03-15
The synthesis and upconversion properties of trigonal glaserite-type K{sub 3}Y(VO{sub 4}){sub 2} co-doped with Er{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+}, or Tm{sup 3+}/Yb{sup 3+} were studied. Powder samples were synthesized by solid state reactions at 1000 °C for 48 h, while well-formed hexagonal single crystals of the same were grown hydrothermally using 10 M K{sub 2}CO{sub 3} at 560–650 °C. Infrared-to-visible upconversion by Er{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+}, or Tm{sup 3+}/Yb{sup 3+} codoped-K{sub 3}Y(VO{sub 4}){sub 2} glaserite powder and single crystals was observed, and the upconversion spectral properties were studied as a function of different Er{sup 3+}, Tm{sup 3+},more » Ho{sup 3+}, and Yb{sup 3+} ion concentrations. The process is observed under 980 nm laser diode excitation and leads to strong green (552 nm) and red (659 nm) emission for Er{sup 3+}/Yb{sup 3+}, green (549 nm) and red (664 nm) emission for Ho{sup 3+}/Yb{sup 3+}, and blue (475 nm) and red (647 nm) emission for Tm{sup 3+}/Yb{sup 3+}. The main mechanism that allows for up-conversion is attributed the energy transfer among Yb{sup 3+} and the various Er{sup 3+}/Ho{sup 3+}/Tm{sup 3+} ions in excited states. These results illustrate the large potential of co-doped alkali double vanadates for photonic applications involving optoelectronics devices. - Graphical abstract: Synthesis and upconversion in vanadate glaserites. - Highlights: • K{sub 3}Y(VO{sub 4}){sub 2} codoped with Er, Tm, or Ho:Yb were synthesized via solid-state and hydrothermal routes. • Upconversion properties are investigated. • The codoped compounds revealed efficient infrared-to-visible upconversion. • The presented compounds are potential host for solid state lighting.« less
Porous Organic Nanolayers for Coating of Solid-state Devices
2011-01-01
Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579
Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan
2017-01-01
Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832
Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier
2017-04-01
Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.
Vega-Teijido, Mauricio Angel; Kieninger, Martina; Ventura, Oscar N
2017-12-05
The formation of selenium species in some biological processes involves the generation of ionic and radical intermediates such as RSe ● , RSe - , RSeO ● , and RSeO - , among others. We performed a theoretical study of the possible mechanisms for the reaction of the two simplest Se radicals-the hydroselenyl (HSe ● ) and selenenic (HSeO ● ) radicals, in which the possible products, intermediates, and transition-state structures were investigated. Density functional theory (DFT) was applied at the B3LYP/6-311++G(3df,3pd) level and the Ahlrichs Coulomb fitting basis sets were employed with an effective core potential (ECP) for both Se atoms. The same procedure was used to calculate the electronic density. All calculations were also performed using the M06-2X functional, which describes weaker bonds better than B3LYP does. In the reaction of interest, the so-called CR complex (HSe····SeOH) is formed initially. After passing through the transition state TS1, cis-HSeSeOH is obtained as a product. If a low barrier is then overcome (passing through the transition state TS32), the trans-HSeSeOH species is obtained. The CR complex can also rearrange into the intermediate INT after overcoming the barrier presented by the transition state TS2. Additionally, the decomposition of INT to H 2 O and 1 Se 2 is possible through another transition state. This reaction is not included in this study. We also observed a second possible route for the conversion of INT to one of the HSeSeOH species; this route occurs through two pathways (with transition states TS31 and TS32). A comparison of some of the results with those obtained for sulfur analogs along the same pathways is also presented in this work. Graphical abstract Electronic envelopes for HSeO ● and HSe ● radicals.
NASA Astrophysics Data System (ADS)
Anga, Srinivas; Kottalanka, Ravi K.; Pal, Tigmansu; Panda, Tarun K.
2013-05-01
We report the full characterization of two glyoxal-based ligands N,N bis(diphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh2, 1) and more bulky N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh3, 2) by the condensation reaction of glyoxal and diphenylmethanamine and triphenyl-methanamine respectively. The copper (I) complex of composition [Cu(DADPh2)2]PF6 (3) having two neutral bidentate N,N bis(diphenyl-methyl)-1,4-diaza-1,3-butadiene ligand was prepared by the reaction of [Cu(CH3CN)4]PF6 and 1 in 1:2 ratio in dichloromethane. In a similar reaction with N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (2) and [Cu(CH3CN)4]PF6 in dichloromethane yielded corresponding heteroleptic copper (I) complex [Cu(DADPh3)(CH3CN)2]PF6 (4). Another copper (I) complex [Cu(DADPh2)(PPh3)]PF6 (5) can also be obtained by the one pot reaction involving ligand 1, [Cu(CH3CN)4]PF6 and triphenylphosphine. Solid state structures of all the five compounds were established by single crystal X-ray diffraction analysis. The solid state structures of the copper complexes 3-5 reveal a distorted tetrahedral geometry around the copper (I) centers. The copper complexes 3-5 were tested as catalysts for the coupling reaction of o-iodophenol and phenyl acetylene and it was observed that complex 4 exhibits the highest catalytic activity.
NASA Astrophysics Data System (ADS)
Hadef, Fatma
2016-12-01
The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.
NASA Astrophysics Data System (ADS)
Boyes, Edward D.; Gai, Pratibha L.
2014-02-01
Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"
Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels
Chen, Renjie; Jungjohann, Katherine L.; Mook, William M.; ...
2017-03-23
In the alloyed and compound contacts between metal and semiconductor transistor channels we see that they enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. We report on the dynamics of the solid-state reaction between metal (Ni) and semiconductor (In 0.53Ga 0.47As), along the cross-section of nanowires that are 15 nm in width. Unlike planar structures where crystalline nickelide readily forms at conventional, low alloying temperatures, nanowires exhibit amore » solid-state amorphization step that can undergo a crystal regrowth step at elevated temperatures. Here, we capture the layer-by-layer reaction mechanism and growth rate anisotropy using in situ transmission electron microscopy (TEM). Our kinetic model depicts this new, in-plane contact formation which could pave the way for engineered nanoscale transistors.« less
Chu, Qianli; Duncan, Andrew J E; Papaefstathiou, Giannis S; Hamilton, Tamara D; Atkinson, Manza B J; Mariappan, S V Santhana; MacGillivray, Leonard R
2018-04-11
Enlargement of a self-assembled metal-organic rhomboid is achieved via the organic solid state. The solid-state synthesis of an elongated organic ligand was achieved by a template directed [2 + 2] photodimerization in a cocrystal. Initial cocrystals obtained of resorcinol template and reactant alkene afforded a 1:2 cocrystal with the alkene in a stacked yet photostable geometry. Cocrystallization performed in the presence of excess template resulted in a 3:2 cocrystal composed of novel discrete 10-component hydrogen-bonded "superassemblies" wherein the alkenes undergo a head-to-head [2 + 2] photodimerization. Isolation and reaction of elongated photoproduct with Cu(II) ions afforded a metal-organic rhomboid of nanoscale dimensions that hosts small molecules in the solid state as guests.
A new channel for the formation of hydrogen cyanide in CH2-N2 systems
NASA Technical Reports Server (NTRS)
Laufer, A. H.; Bass, A. M.
1978-01-01
The reaction between N2 and either the singlet or the triplet electronic state of CH2 is investigated in order to shed light on the formation of NO in fuel-rich hydrocarbon flames. For the reaction of N2 and the triplet CH2, a rate constant less than or equal to 10 to the minus 16th power cu cm/molecule-sec is obtained. The time history of hydrogen cyanide production from the CH2-N2 systems is discussed as a basis for understanding the possible reaction routes from HCN to NO.
A thermodynamic framework for thermo-chemo-elastic interactions in chemically active materials
NASA Astrophysics Data System (ADS)
Zhang, XiaoLong; Zhong, Zheng
2017-08-01
In this paper, a general thermodynamic framework is developed to describe the thermo-chemo-mechanical interactions in elastic solids undergoing mechanical deformation, imbibition of diffusive chemical species, chemical reactions and heat exchanges. Fully coupled constitutive relations and evolving laws for irreversible fluxes are provided based on entropy imbalance and stoichiometry that governs reactions. The framework manifests itself with a special feature that the change of Helmholtz free energy is attributed to separate contributions of the diffusion-swelling process and chemical reaction-dilation process. Both the extent of reaction and the concentrations of diffusive species are taken as independent state variables, which describe the reaction-activated responses with underlying variation of microstructures and properties of a material in an explicit way. A specialized isothermal formulation for isotropic materials is proposed that can properly account for volumetric constraints from material incompressibility under chemo-mechanical loadings, in which inhomogeneous deformation is associated with reaction and diffusion under various kinetic time scales. This framework can be easily applied to model the transient volumetric swelling of a solid caused by imbibition of external chemical species and simultaneous chemical dilation arising from reactions between the diffusing species and the solid.
Sanyal, Udishnu; Jagirdar, Balaji R
2012-12-03
A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.
NASA Astrophysics Data System (ADS)
Krim, Lahouari; Nourry, Sendres
2015-06-01
In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step towards complex organic molecules production in the interstellar medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Anthuvan John, E-mail: quantajohn@gmail.com; Banu, I. B. Shameem
2015-06-24
Optically efficient europium activated alkaline earth metal tungstate nano phosphor (SrWO{sub 4}) with different doping concentrations have been synthesized by mechanochemically assisted solid state metathesis reaction at room temperature for the first time. The XRD and Raman spectra results indicated that the prepared powders exhibit a scheelite-type tetragonal structure. FTIR spectra exhibited a high absorption band situated at around 854 cm{sup −1}, which was ascribed to the W–O antisymmetric stretching vibrations into the [WO{sub 4}]{sup 2−} tetrahedron groups. Analysis of the emission spectra with different Eu{sup 3+} concentrations revealed that the optimum dopant concentration for SrWO{sub 4}: x Eu{sup 3+} phosphormore » is about 8 mol% of Eu{sup 3+}.The red emission intensity of the SSM prepared SrWO{sub 4}: 0.08Eu{sup 3+} phosphors are 2 times greater than that of the commercial Y{sub 2}O{sub 2}S: Eu{sup 3+} red phosphor prepared by the conventional solid state reaction method. All the results indicate that the phosphor is a promising red phosphor pumped by NUV InGaN chip for fabricating WLED.« less
Jones, Matthew D; Beezer, Anthony E; Buckton, Graham
2008-10-01
Knowledge of the kinetics of solid state reactions is important when considering the stability of many medicines. Potentially, such reactions could follow different kinetics on the surface of particles when compared with their interior, yet solid state processes are routinely followed using only bulk characterisation techniques. Atomic force microscopy (AFM) has previously been shown to be a suitable technique for the investigation of surface processes, but has not been combined with bulk techniques in order to analyse surface and bulk kinetics separately. This report therefore describes the investigation of the outer layer and bulk kinetics of the dehydration of trehalose dihydrate at ambient temperature and low humidity, using AFM, dynamic vapour sorption (DVS) and near infrared spectroscopy (NIR). The use of AFM enabled the dehydration kinetics of the outer layers to be determined both directly and from bulk data. There were no significant differences between the outer layer dehydration kinetics determined using these methods. AFM also enabled the bulk-only kinetics to be analysed from the DVS and NIR data. These results suggest that the combination of AFM and bulk characterisation techniques should enable a more complete understanding of the kinetics of certain solid state reactions to be achieved. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Saw, Eaden
A novel powder-metallurgical route was used to fabricate near net-shaped hydroxyapatite, Ca10(PO4)6(OH)2 (HA) and HA+Co-C-Mo composite bodies. Ca and beta-Ca2P 2O7 with Ca/P ˜ 1.67 was intimately mixed by high-energy mechanical alloying, formed into desired shapes by pressing and machining, and then converted into HA with a series of heat treatments: a 600°C annealing in dry O2 completely oxidized calcium within 3 h, and a subsequent annealing at ≤1150°C in moist O2 yielded phase-pure HA. The reduction in solid volume associated with the oxidation of calcium (Vm[CaO] < Vm[Ca]) was offset by the increase in solid volume associated with the conversion of CaO and Ca2P2O7 into HA. Thus, the overall dimensional changes upon transformation of Ca+beta-Ca2P 2O7 precursors into HA can be relatively small. A mixture of Co-Cr-Mo powder with the precursor prepared from Ca and beta-Ca 2P2O7, targeted to yield a 75 to 25 volume ratio of Co-Cr-Mo to stoichiometric HA were prepared with the same method but different annealing cycles: annealing at 1150°C in de-oxygenized, flowing Ar resulted in partial densification of the composite bodies, and subsequent annealing at 850°C in a moist O2 atmosphere yielded a composite of Co-Cr-Mo alloy with phase-pure HA. The overall dimensional changes upon transformation of Ca+beta-Ca2P2O7+CO-Cr-Mo precursors into HA/Co-Cr-Mo composite were relatively small. In this thesis, the phase and microstructural evolution at various stages of transformation to monolithic HA and to HA/Co-Cr-Mo alloy composites are discussed. Planar reaction couples and powder compacts of CaO-TCP were prepared to study the kinetics for HA formation from CaO+TCP. Pt strips were used in the planar reaction couples as inert markers. These reaction couples were heated at 1150°C for various times in moist O2. The results of powder compact analyses fits Carter's model, which indicated that the rate of HA conversion from CaO and TCP is limited by solid state diffusion of Ca 2+ and/or OH- through the HA layer.
Cooper, Christine J; Jones, Matthew D; Brayshaw, Simon K; Sonnex, Benjamin; Russell, Mark L; Mahon, Mary F; Allan, David R
2011-04-14
In this paper we report the synthesis and solid-state structures for a series of pyridine based Cu(II) complexes and preliminary data for the asymmetric Henry reaction. Interestingly, the solid-state structures indicate the incorporation of an alcohol into one of the imine groups of the ligand, forming a rare α-amino ether group. The complexes have been studied via single crystal X-ray diffraction, EPR spectroscopy and mass spectrometry. Intriguingly, it has been observed that the alcohol only adds to one of the imine moieties. Density functional theory (DFT) calculations have also been employed to rationalise the observed structures. The Cu(II) complexes have been tested in the asymmetric Henry reaction (benzaldehyde + nitromethane or nitroethane) with ee's up to 84% being achieved as well as high conversions and modest diastereoselectivities. © The Royal Society of Chemistry 2011
Low Energy Nuclear Reactions: Status at the Beginning of the New Millenium
NASA Astrophysics Data System (ADS)
Mallove, Eugene F.
2001-03-01
This talk will summarize some of the more convincing recent experiments that show that ^4He,^3He (including impossible to explain changes in the ^4He/^3He isotopic ratio), nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. But progress is being made. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available
Chung, Tim S; Ayitou, Anoklase J-L; Park, Jin H; Breslin, Vanessa M; Garcia-Garibay, Miguel A
2017-04-20
Aqueous nanocrystalline suspensions provide a simple and efficient medium for performing transmission spectroscopy measurements in the solid state. In this Letter we describe the use of laser flash photolysis methods to analyze the photochemistry of 2-azidobiphenyl and several aryl-substituted derivatives. We show that all the crystalline compounds analyzed in this study transform quantitatively into carbazole products via a crystal-to-crystal reconstructive phase transition. While the initial steps of the reaction cannot be followed within the time resolution of our instrument (ca. 8 ns), we detected the primary isocarbazole photoproducts and analyzed the kinetics of their formal 1,5-H shift reactions, which take place in time scales that range from a few nanoseconds to several microseconds. It is worth noting that the high reaction selectivity observed in the crystalline state translates into a clean and simple kinetic process compared to that in solution.
ERIC Educational Resources Information Center
Esteb, John J.; Hohman, Nathan J.; Schlamandinger, Diana E.; Wilson, Anne M.
2005-01-01
The solvent-free or solid-state reaction systems like the Baeyer-Villiger rearrangement have become popular in the synthetic organic community and viable option for undergraduate laboratory series to reduce waste and cost and simplify reaction process. The reaction is an efficient method to transform ketones to esters and lactones.
The Mechanochemical Reaction of Palladium(II) Chloride with a Bidentate Phosphine
ERIC Educational Resources Information Center
Berry, David E.; Carrie, Philippa; Fawkes, Kelli L.; Rebner, Bruce; Xing, Yao
2010-01-01
This experiment describes the reaction of palladium(II) chloride with 1,5-bis(diphenylphosphino)pentane by grinding the two powders together in the solid state. The product is the precursor for the metalation reaction at one of the methylene carbon atoms of the ligand's backbone. The final product is known to be a catalyst for Suzuki-Miyaura…
A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride
ERIC Educational Resources Information Center
White, Lori L.; Kittredge, Kevin W.
2005-01-01
The reduction of carbonyl groups by sodium borohydride though is a well-known reaction in most organic lab texts, a difficulty for an instructor adopting this reaction in a student lab is that it is too long. Using a microwave assisted organic synthesis solves this difficulty and one such reaction, which is the microwave-assisted reduction of…
Direct ink write fabrication of transparent ceramic gain media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less
Direct ink write fabrication of transparent ceramic gain media
Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; ...
2018-11-06
Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y 2.97Nd 0.03Al 5.00O 12.00 (Nd:YAG) and an undoped cladding region of Y 3Al 5O 12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Lastly, fully-dense transparent optical ceramics in a “top hat” geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scattermore » at 1064 nm of <3%/cm.« less
Yoshimura, Takayoshi; Taketsugu, Tetsuya; Sawamura, Masaya
2017-01-01
We explored the reaction mechanism of the cationic rhodium(i)–BINAP complex catalysed isomerisation of allylic amines using the artificial force induced reaction method with the global reaction route mapping strategy, which enabled us to search for various reaction paths without assumption of transition states. The entire reaction network was reproduced in the form of a graph, and reasonable paths were selected from the complicated network using Prim’s algorithm. As a result, a new dissociative reaction mechanism was proposed. Our comprehensive reaction path search provided rationales for the E/Z and S/R selectivities of the stereoselective reaction. PMID:28970877
Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste
2011-01-01
Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885
Rechargeable quasi-solid state lithium battery with organic crystalline cathode
Hanyu, Yuki; Honma, Itaru
2012-01-01
Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655
Kim, Se-Hee; Choi, Keun-Ho; Cho, Sung-Ju; Choi, Sinho; Park, Soojin; Lee, Sang-Young
2015-08-12
Forthcoming flexible/wearable electronic devices with shape diversity and mobile usability garner a great deal of attention as an innovative technology to bring unprecedented changes in our daily lives. From the power source point of view, conventional rechargeable batteries (one representative example is a lithium-ion battery) with fixed shapes and sizes have intrinsic limitations in fulfilling design/performance requirements for the flexible/wearable electronics. Here, as a facile and efficient strategy to address this formidable challenge, we demonstrate a new class of printable solid-state batteries (referred to as "PRISS batteries"). Through simple stencil printing process (followed by ultraviolet (UV) cross-linking), solid-state composite electrolyte (SCE) layer and SCE matrix-embedded electrodes are consecutively printed on arbitrary objects of complex geometries, eventually leading to fully integrated, multilayer-structured PRISS batteries with various form factors far beyond those achievable by conventional battery technologies. Tuning rheological properties of SCE paste and electrode slurry toward thixotropic fluid characteristics, along with well-tailored core elements including UV-cured triacrylate polymer and high boiling point electrolyte, is a key-enabling technology for the realization of PRISS batteries. This process/material uniqueness allows us to remove extra processing steps (related to solvent drying and liquid-electrolyte injection) and also conventional microporous separator membranes, thereupon enabling the seamless integration of shape-conformable PRISS batteries (including letters-shaped ones) into complex-shaped objects. Electrochemical behavior of PRISS batteries is elucidated via an in-depth analysis of cell impedance, which provides a theoretical basis to enable sustainable improvement of cell performance. We envision that PRISS batteries hold great promise as a reliable and scalable platform technology to open a new concept of cell architecture and fabrication route toward flexible power sources with exceptional shape conformability and aesthetic versatility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranieri, M.G.A., E-mail: gabi.ranieri@ig.com.br; Aguiar, E.C.; Cilense, M.
Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} thick films were obtained by SSR and PPM methods. • Both systems crystallize in an orthorhombic structure. • Textured characteristics were evidenced. • Grain morphology affects the P–E loops. - Abstract: Bismuth titanate powders (Bi{sub 4}Ti{sub 3}O{sub 12}-BIT) were fabricated by solid state reaction (SSR) and polymeric precursor method (PPM). From these powders, Bi{sub 4}Ti{sub 3}O{sub 12} pellets were obtained by tape-casting using plate-like templates particles prepared by a molten salt method. The BIT phase crystallizes in an orthorhombic structure type with space group Fmmm. Agglomeration of the particles, which affects the densification ofmore » the ceramic, electrical conduction and leakage current at high electric fields, was monitored by transmission electronic microscopy (TEM) analyses. FEG-SEM indicated that different shape of grains of BIT ceramics was influenced by the processing route. Both SSR and PPM methods lead to unsaturated P–E loops of BIT ceramics originating from the highly c-axis orientation and high conductivity which was affected by charge carriers flowing normally to the grain boundary of the crystal lattice.« less
Autoclave growth, magnetic, and optical properties of GdB6 nanowires
NASA Astrophysics Data System (ADS)
Han, Wei; Wang, Zhen; Li, Qidong; Liu, Huatao; Fan, Qinghua; Dong, Youzhong; Kuang, Quan; Zhao, Yanming
2017-12-01
High-quality single crystalline gadolinium hexaboride (GdB6) nanowires have been successfully prepared at very low temperatures of 200-240 °C by a high pressure solid state (HPSS) method in an autoclave with a new chemical reaction route, where Gd, H3BO3, Mg and I2 were used as raw materials. The crystal structure, morphology, valence, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, XPS, SQUID magnetometry and optical measurements. HRTEM images and SAED patterns reveal that the GdB6 nanowires are single crystalline with a preferred growth direction along [001]. The XPS spectrum suggests that the valence of Gd ion in GdB6 is trivalent. The effective magnetic momentum per Gd3+ in GdB6 is about 6.26 μB. The optical properties exhibit weak absorption in the visible light range, but relatively strong absorbance in the NIR and UV range. Low work function and high NIR absorption can make GdB6 nanowires a potential solar radiation shielding material for solar cells or other NIR blocking applications.
NASA Astrophysics Data System (ADS)
Daniel, D. Joseph; Ramasamy, P.; Ramaseshan, R.; Kim, H. J.; Kim, Sunghwan; Bhagavannarayana, G.; Cheon, Jong-Kyu
2017-10-01
Polycrystalline compounds of LiBaF3 were synthesized using conventional solid state reaction route and the phase purity was confirmed using powder X-ray diffraction technique. Using vertical Bridgman technique single crystal was grown from melt. Rocking curve measurements have been carried out to study the structural perfection of the grown crystal. The single peak of diffraction curve clearly reveals that the grown crystal was free from the structural grain boundaries. The low temperature thermoluminescence of the X-ray irradiated sample has been analyzed and found four distinguishable peaks having maximum temperatures at 18, 115, 133 and 216 K. Activation energy (E) and frequency factor (s) for the individual peaks have been studied using Peak shape method and the computerized curve fitting method combining with the Tmax- TStop procedure. Nanoindentation technique was employed to study the mechanical behaviour of the crystal. The indentation modulus and Vickers hardness of the grown crystal have values of 135.15 GPa and 680.81 respectively, under the maximum indentation load of 10 mN.
Structural studies of a green-emitting terbium doped calcium zinc phosphate phosphor
NASA Astrophysics Data System (ADS)
Ramesh, B.; Dillip, G. R.; Rambabu, B.; Joo, S. W.; Raju, B. Deva Prasad
2018-03-01
In this study, a new green emitting CaZn2(PO4)2:Tb3+ phosphors were synthesized through solid-state reaction route. The phosphors were characterized structurally by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). All the synthesized phosphors were crystallized in triclinic crystal structure with P 1 bar space group. The phosphate groups in the phosphors were confirmed by FTIR analysis. The surface elements O 1s, P 2p, Ca 2p, Zn 2p and Tb 3d were studied by high-resolution XPS spectra. Upon excitation at 378 nm, the dominant green emission of CaZn2(PO4)2:Tb3+ phosphors at 542 nm were noticed in the emission spectra. For various emission wavelengths (at 435 and 489 nm) and constant excitation wavelength (at 378 nm), the decay curves have shown two different decay dynamics of phosphors. The lighting properties such as Commission International de l'Eclairage (x = 0.319, y = 0.398) and color temperature (5995 K) were calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dar, Mashkoor Ahmad, E-mail: darmashkoor.phst@gmail.com; Dar, Hilal Ahmad; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com
2016-05-06
Structural and dielectric properties of polycrystalline YMnO{sub 3} (x = 0.0, 0.10 and 0.20) which was prepared by solid-state reaction route, have been investigated. The X-ray diffraction pattern reveals that all the samples are in single phase and show hexagonal structure with P63cm space group. The particle size decreases with increase in Sm doping while to that X-ray density increases with increasing x. The dielectric constant (ε’) of Y{sub 1-x}Sm{sub x}MnO{sub 3} measured in the frequency range 10 Hz to 1MHz is much higher at lower frequencies (≤ 1KHz) and its value decreases with enhanced frequency. At very high frequencies, ε’more » becomes frequency independent and is attributed to Maxwell Wagner type of interfacial polarization model. A very high value of dielectric constant ∼18642 is observed for x = 10%. The dielectric loss (tan δ) decreases wit increase in Sm doping.« less
Chromium doping effects on structural and dielectric properties of Mn-Zn cobaltites
NASA Astrophysics Data System (ADS)
Yadav, A.; Dar, Mashkoor A.; Choudhary, P.; Shah, P.; Varshney, Dinesh
2016-05-01
The effect of transition metal Cr2+ ion as a dopant of Zn2+ in Mn0.5Zn0.5Co2O4 is investigated. Co-doped Mn0.5Zn0.5-xCrxCo2O4 (x = 0, 0.3 and 0.5) cobaltites were prepared by solid-state reaction route. X-ray powder diffraction (XRD) analysis reveals that the samples prepared are polycrystalline single-phase cubic spinel in structure having a space group Fd3m. An increase in average particle size observed with Cr2+ doping. However other structural parameters such as X-ray density, micro strain and dislocation density shows almost a similar decreasing trend with increase in Cr2+. High value of permittivity ˜105 is observed for the parent Mn0.5Zn0.5Co2O4 and shows a substantial decrease with increase in the Cr2+ doping. Higher doping of Cr2+ also increases the dielectric loss and hence limits its technological importance. At lower frequencies ac conductivity has been found to increase with increase in Cr2+ content.
Mechanically activated synthesis of PZT and its electromechanical properties
NASA Astrophysics Data System (ADS)
Liu, X.; Akdogan, E. K.; Safari, A.; Riman, R. E.
2005-08-01
Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead zirconium titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ˜110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.
Effect of oxygen vacancies on magnetic and transport properties of Sr2IrO4
NASA Astrophysics Data System (ADS)
Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik
2018-05-01
Iridates have recently attracted growing interest because of their potential for realizing various interesting phases like interaction driven Mott-type insulator and magnetically driven Slater-type. In this paper, we present the magnetic and electrical transport properties of polycrystalline Sr2IrO4 synthesized by solid state reaction route. We find a ferromagnetic transition at 240 K. The Curie-Weiss law behavior hold good above the magnetic transition temperature TMag = 240 K with a small effective paramagnetic magnetic moment μeff = 0.25 µB/f.u. and a Curie-Weiss temperature, θCW = +100 K. Zero field cooled (ZFC) magnetization shows a gradual dcrease below 150 K, while same for field cooled (FC) below 50 K. Interestingly, below temperatures, ⁓ 10 K, a sharp increase in ZFC and FC magnetization can be seen. A temperature dependent resistivity reveals insulating behavior followed by power law mechanism. The sintering of sample in air leads to the very low value of resistivity is likely related to Sr or oxygen vacancies.
NASA Astrophysics Data System (ADS)
Patel, Vinay Kumar; Bhattacharya, Shantanu
2017-09-01
The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15-20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.
Cooper pair splitter realized in a two-quantum-dot Y-junction.
Hofstetter, L; Csonka, S; Nygård, J; Schönenberger, C
2009-10-15
Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein-Podolsky-Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state-the Fermi sea-which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons 'repel' each other by Coulomb interaction. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.
State of the art in video system performance
NASA Technical Reports Server (NTRS)
Lewis, Michael J.
1990-01-01
The closed circuit television (CCTV) system that is onboard the Space Shuttle has the following capabilities: camera, video signal switching and routing unit (VSU); and Space Shuttle video tape recorder. However, this system is inadequate for use with many experiments that require video imaging. In order to assess the state-of-the-art in video technology and data storage systems, a survey was conducted of the High Resolution, High Frame Rate Video Technology (HHVT) products. The performance of the state-of-the-art solid state cameras and image sensors, video recording systems, data transmission devices, and data storage systems versus users' requirements are shown graphically.
Wang, Fudong; Buhro, William E
2017-12-26
Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.
In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less
Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds
Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.; ...
2017-05-17
In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less
Global distribution of secondary organic aerosol particle phase state
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.
2016-12-01
Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.
Complex deformation routes for direct recycling aluminium alloy scrap via industrial hot extrusion
NASA Astrophysics Data System (ADS)
Paraskevas, Dimos; Kellens, Karel; Kampen, Carlos; Mohammadi, Amirahmad; Duflou, Joost R.
2018-05-01
This paper presents the final results of an industrial project, aiming for direct hot extrusion of wrought aluminium alloy scrap at an industrial scale. Two types of complex deformation/extrusion routes were tested for the production of the same profile, starting from AA6060 scrap in form of machining chips. More specifically scrap-based billets were extruded through: a 2-porthole and a 4-porthole die-set, modified for enhanced scrap consolidation and grain refinement. For comparison reasons, cast billets of the same alloy were extruded through the modified 2-porthole die set. The tensile testing results as well as microstructural investigations show that the 4-porthole extrusion route further improves scrap consolidation compared to the 2-porthole die output. The successful implementation of solid state recycling, directly at industrial level, indicates the technological readiness level of this research.
A chlorine precursor route (CPR) to poly(p-phenylene vinylene) light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heieh, B.R.; Antoniadis, H.; Bland, D.C.
1995-12-01
We use a chlorine precursor route (CPR) to fabricate PPV based electroluminescent (EL) devices. 1,4- Bis(chloromethyl)-2,3-diphenylbenzene was polymerized with one equivalent amount of potassium t-butoxide (t-BuOK) to give the corresponding chlorine precursor polymer with very high molecular weights. This polymer is soluble in common organic solvents and is highly stable in the solid state and in solution. Thin films of the precursor polymer were spin cast on indiumtin-oxide (ITO) coated glass substrates followed by thermal conversion at 300{degrees}C for 2 h to give DP-PPV thin films. We found that CPR is more convenient and reliable than sulfonium precursor route formore » the fabrication of PPV thin film EL devices. Efficient emission of green light (500 nm) was observed for Mg/DP-PPV/ITO and Al/DP-PPV/ITO single layer devices.« less
Karg, M; Scholz, G; König, R; Kemnitz, E
2012-02-28
The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.
NASA Astrophysics Data System (ADS)
Anguita, J. V.; Sharma, P.; Henley, S. J.; Silva, S. R. P.
2009-11-01
The solid-liquid-solid method (also known as the solid-state method) is used to produce silicon nanowires at the core of silica nanowires with a support catalyst layer structure of nickel and titanium layers sputtered on oxide-coated silicon wafers. This silane-free process is low cost and large-area compatible. Using electron microscopy and Raman spectroscopy we deduce that the wires have crystalline silicon cores. The nanowires show photoluminescence in the visible range (orange), and we investigate the origin of this band. We further show that the nanowires form a random mesh that acts as an efficient optical trap, giving rise to an optically absorbing medium.
Analysis of the gas phase reactivity of chlorosilanes.
Ravasio, Stefano; Masi, Maurizio; Cavallotti, Carlo
2013-06-27
Trichlorosilane is the most used precursor to deposit silicon for photovoltaic applications. Despite of this, its gas phase and surface kinetics have not yet been completely understood. In the present work, it is reported a systematic investigation aimed at determining what is the dominant gas phase chemistry active during the chemical vapor deposition of Si from trichlorosilane. The gas phase mechanism was developed calculating the rate constant of each reaction using conventional transition state theory in the rigid rotor-harmonic oscillator approximation. Torsional vibrations were described using a hindered rotor model. Structures and vibrational frequencies of reactants and transition states were determined at the B3LYP/6-31+G(d,p) level, while potential energy surfaces and activation energies were computed at the CCSD(T) level using aug-cc-pVDZ and aug-cc-pVTZ basis sets extrapolating to the complete basis set limit. As gas phase and surface reactivities are mutually interlinked, simulations were performed using a microkinetic surface mechanism. It was found that the gas phase reactivity follows two different routes. The disilane mechanism, in which the formation of disilanes as reaction intermediates favors the conversion between the most stable monosilane species, and the radical pathway, initiated by the decomposition of Si2HCl5 and followed by a series of fast propagation reactions. Though both mechanisms are active during deposition, the simulations revealed that above a certain temperature and conversion threshold the radical mechanism provides a faster route for the conversion of SiHCl3 into SiCl4, a reaction that favors the overall Si deposition process as it is associated with the consumption of HCl, a fast etchant of Si. Also, this study shows that the formation of disilanes as reactant intermediates promotes significantly the gas phase reactivity, as they contribute both to the initiation of radical chain mechanisms and provide a catalytic route for the conversion between the most stable monosilanes.
Chatterjee, Pabitra B; Crans, Debbie C
2012-09-03
Visible light facilitates a solid-to-solid photochemical aerobic oxidation of a hunter-green microcrystalline oxidovanadium(IV) compound (1) to form a black powder of cis-dioxidovanadium(V) (2) at ambient temperature. The siderophore ligand pyridine-2,6-bis(thiocarboxylic acid), H(2)L, is secreted by a microorganism from the Pseudomonas genus. This irreversible transformation of a metal monooxo to a metal dioxo complex in the solid state in the absence of solvent is unprecedented. It serves as a proof-of-concept reaction for green chemistry occurring in solid matrixes.
Science Update: Inorganic Chemistry.
ERIC Educational Resources Information Center
Rawls, Rebecca
1981-01-01
Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)
ERIC Educational Resources Information Center
Eyring, LeRoy
1980-01-01
Describes methods for using the high-resolution electron microscope in conjunction with other tools to reveal the identity and environment of atoms. Problems discussed include the ultimate structure of real crystalline solids including defect structure and the mechanisms of chemical reactions. (CS)
Gamez-Garcia, Victoria G; Galano, Annia
2017-10-05
A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.
NASA Astrophysics Data System (ADS)
Ponce, Jilberto; Ríos, Edmundo; Rehspringer, Jean-Luc; Poillerat, Gérard; Chartier, Pierre; Gautier, Juan Luis
1999-06-01
Two different procedures were used to prepare spinel-type NixAl1-xMn2O4 (0≤x≤1) compounds to study the effects of solid state properties of mixed oxides on their electrocatalytic properties. The oxalic route, coprecipitation of metal oxalates dissolved in propanol or ethanol, and the propionic route, hydrolysis of metal carboxylates in propionic acid, have been used. In both routes, thermal decomposition produces the corresponding oxides. X-ray diffraction patterns showed that the oxides crystallize in a cubic spinel phase with a unit cell parameter a that increases as aluminum is replaced by nickel. At low x values, compounds prepared by the propionic route showed a larger variation for parameter a than compounds prepared by the oxalic route, probably due to oxygen stoichiometric deficiency. This effect was estimated from the tetrahedral force constant (kt) values, which showed a fast decrease as x varied from 0 to 1. Electrical conductivity, conduction activation energy, hole mobility, and pHz of oxides prepared by the propionic route were also higher than those from oxides prepared by the oxalic route. Crystallinity grade and particle size were nearly 50‧ higher in propionic-route samples than in oxalic-route samples. The apparent and real electrocatalytic activities of both types of oxides were compared for O2 evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasankar, M.; Ananthakumar, S.; Mukundan, P.
A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and themore » observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 {mu}m. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route.« less
The low temperature synthesis, characterization and properties of ferroelectrics
NASA Astrophysics Data System (ADS)
Xu, Jie
2000-10-01
PZT 50:50 xerogels prepared by two different sol-gel routes crystallized in a similar fashion to give a mixture of tetragonal and rhombohedral at high temperature (1000°C). Both the diffraction and EXAFS data suggest that the compositional inhomogeneity of the samples prepared by the two routes is similar. The crystallization of CZT gels is complicated. Crystalline CaCO 3 was always detected in the dry gels regardless of the sample composition and preparation methods. At intermediate temperatures a fluorite related phase was always formed and it transformed to perovskite at higher temperatures. The EXAFS data suggest that perovskite CZT samples prepared using alkoxide sol-gel chemistry may not be random solid solutions. All the solution processed ZrTiO4 materials crystallized in the range 600--700°C. The KTN samples prepared using a conventional alkoxide sol-gel route crystallized completely to perovskite at lower temperatures than those prepared using prehydrolyzed precursors. The EXAFS data for the KTN samples prepared using a conventional alkoxide sol-gel route are consistent with a random distribution of tantalum and niobium in the solid solution. However, materials prepared using the inhomogeneous sol-gel route and by the direct reaction of mixed oxides were shown to be compositionally inhomogeneous. The heterogeneity could not be removed by regrinding and heating the mixed oxide samples several times. K2Ta4-xNbxO11 (x = 0, 2, 4) samples were prepared using alkoxide sol-gel chemistry and their crystallization was examined by powder X-ray diffraction. A Rietveld structure analysis of the pyrochlore formed from a gel with bulk composition K2Ta 2Nb2O11 indicated that it was rich in potassium relative to the bulk sample. On heating to high temperatures tetragonal tungsten bronzes were formed. A Rietveld analysis was also performed for K2Ta 2Nb2O11 with tetragonal tungsten bronze structure. The defect pyrochlores "AgTaO3" and GaTaO 3 were synthesized by ion-exchange using pyrochlore KTaO3 as a starting material. The structures of the pyrochlores were examined using the Rietveld method. The pyrochlore-to-perovskite transformations were also explored.
An advanced model framework for solid electrolyte intercalation batteries.
Landstorfer, Manuel; Funken, Stefan; Jacob, Timo
2011-07-28
Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011
High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon.
Notohara, Hiroo; Urita, Koki; Yamamura, Hideyuki; Moriguchi, Isamu
2018-06-08
Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO 2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO 2 -embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO 2 -based anode and a LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 -based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.
NASA Astrophysics Data System (ADS)
Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua
2018-06-01
Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.
Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda
2016-10-27
Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.
Jian, Jiwen; Lin, Hailu; Luo, Mingbiao; Chen, Mohua; Zhou, Mingfei
2016-07-11
A ground-state boron atom inserts into the C=C bond of ethylene to spontaneously form the allene-like compound H2 CBCH2 on annealing in solid neon. This compound can further isomerize to the propyne-like HCBCH3 isomer under UV light excitation. The observation of this unique spontaneous C=C bond insertion reaction is consistent with theoretical predictions that the reaction is thermodynamically exothermic and kinetically facile. This work demonstrates that the stronger C=C bond, rather than the less inert C-H bond, can be broken to form organoboron species from the reaction of a boron atom with ethylene even at cryogenic temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fan-out Estimation in Spin-based Quantum Computer Scale-up.
Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R
2017-10-17
Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.
Sanjeevi, V; Shahabudeen, P
2016-01-01
Worldwide, about US$410 billion is spent every year to manage four billion tonnes of municipal solid wastes (MSW). Transport cost alone constitutes more than 50% of the total expenditure on solid waste management (SWM) in major cities of the developed world and the collection and transport cost is about 85% in the developing world. There is a need to improve the ability of the city administrators to manage the municipal solid wastes with least cost. Since 2000, new technologies such as geographical information system (GIS) and related optimization software have been used to optimize the haul route distances. The city limits of Chennai were extended from 175 to 426 km(2) in 2011, leading to sub-optimum levels in solid waste transportation of 4840 tonnes per day. After developing a spatial database for the whole of Chennai with 200 wards, the route optimization procedures have been run for the transport of solid wastes from 13 wards (generating nodes) to one transfer station (intermediary before landfill), using ArcGIS. The optimization process reduced the distances travelled by 9.93%. The annual total cost incurred for this segment alone is Indian Rupees (INR) 226.1 million. Savings in terms of time taken for both the current and shortest paths have also been computed, considering traffic conditions. The overall savings are thus very meaningful and call for optimization of the haul routes for the entire Chennai. © The Author(s) 2015.
A study of various synthetic routes to produce a halogen-labeled traction fluid
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Zimmer, H.
1978-01-01
Several synthetic routes were studied for the synthesis of the compound 1, 1, 3-trimethyl-1, 3-dicyclohexyl-2 chloropropane. This halogen-labeled fluid would be of use in the study of high traction lubricants under elastohydrodynamic lubrication conditions using infrared emission spectroscopy. The synthetic routes included: dimerization of alpha-methylstyrene, methanol addition to alpha-methylstyrene, a Wittig reaction, and an organometallic approach. Because of steric hindrance and competing reactions, none of these routes were successful.
NO ICE HYDROGENATION: A SOLID PATHWAY TO NH{sub 2}OH FORMATION IN SPACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congiu, Emanuele; Dulieu, Francois; Chaabouni, Henda
2012-05-01
Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine-NH{sub 2}OH-a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH{sub 2}OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas-grain model proves the importance of a solid-state NO+H reaction channel as amore » starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.« less
Pihlajaniemi, Ville; Sipponen, Satu; Sipponen, Mika H; Pastinen, Ossi; Laakso, Simo
2014-02-01
In the enzymatic hydrolysis of lignocellulose materials, the recycling of the solid residue has previously been considered within the context of enzyme recycling. In this study, a steady state investigation of a solids-recycling process was made with pretreated wheat straw and compared to sequential and batch hydrolysis at constant reaction times, substrate feed and liquid and enzyme consumption. Compared to batch hydrolysis, the recycling and sequential processes showed roughly equal hydrolysis yields, while the volumetric productivity was significantly increased. In the 72h process the improvement was 90% due to an increased reaction consistency, while the solids feed was 16% of the total process constituents. The improvement resulted primarily from product removal, which was equally efficient in solids-recycling and sequential hydrolysis processes. No evidence of accumulation of enzymes beyond the accumulation of the substrate was found in recycling. A mathematical model of solids-recycling was constructed, based on a geometrical series. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Xiaojie; Chen, Mohua; Zhou, Mingfei
2013-07-03
Reactions of vanadium dioxide molecules with acetylene have been studied by matrix isolation infrared spectroscopy. Reaction intermediates and products are identified on the basis of isotopic substitutions as well as density functional frequency calculations. Ground state vanadium dioxide molecule reacts with acetylene in forming the side-on-bonded VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes spontaneously on annealing in solid neon. The VO2(η(2)-C2H2) complex is characterized to have a (2)B2 ground state with C2v symmetry, whereas the VO2(η(2)-C2H2)2 complex has a (2)A ground state with C2 symmetry. The VO2(η(2)-C2H2) and VO2(η(2)-C2H2)2 complexes are photosensitive. The VO2(η(2)-C2H2) complex rearranges to the OV(OH)CCH molecule upon UV-vis light excitation.
NASA Astrophysics Data System (ADS)
Parlett, Christopher M. A.; Isaacs, Mark A.; Beaumont, Simon K.; Bingham, Laura M.; Hondow, Nicole S.; Wilson, Karen; Lee, Adam F.
2016-02-01
The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol-gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous-mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.
Exploring the microbial biodegradation and biotransformation gene pool.
Galvão, Teca Calcagno; Mohn, William W; de Lorenzo, Víctor
2005-10-01
Similar to the New World explorers of the 16th and 17th century, microbiologists today find themselves at the edge of unknown territory. It is estimated that only 0.1-1% of microorganisms can be cultivated using current techniques; the vastness of microbial lifestyles remains to be explored. Because the microbial metagenome is the largest reservoir of genes that determine enzymatic reactions, new techniques are being developed to identify the genes that underlie many valuable chemical biotransformations carried out by microbes, particularly in pathways for biodegradation of recalcitrant and xenobiotic molecules. Our knowledge of catabolic routes built on research during the past 40 years is a solid basis from which to venture on to the little-explored pathways that might exist in nature. However, it is clear that the vastness of information to be obtained requires astute experimental strategies for finding novel reactions.
Chalcogenide and pnictide nanocrystals from the silylative deoxygenation of metal oxides
Lin, Chia-Cheng; Tan, Shannon J.; Vela, Javier
2017-09-11
Transition metal chalcogenide and pnictide nanocrystals are of interest for optoelectronic and catalytic applications. In this paper, we present a generalized route to the synthesis of these materials from the silylative deoxygenation of metal oxides with trimethylsilyl reagents. Specific nanophases produced in this way include Ni 3S 2, Ni 5Se 5, Ni 2P, Co 9S 8, Co 3Se 4, CoP, Co 2P, and heterobimetallic (Ni/Co) 9S 8. The resulting chalcogenide nanocrystals are hollow, likely due to differential rates of ion diffusion during the interfacial phase transformation reaction (Kirkendall-type effect). In contrast, the phosphide nanocrystals are solid, likely because they formmore » at higher reaction temperatures. Finally, in all cases, simultaneous partial decomposition of the deoxygenating silyl reagent produces a coating of amorphous silica around the newly formed nanocrystals, which could impact their stability and recyclability.« less
Xu, Hua-Neng; Liu, Huan-Huan; Zhang, Lianfu
2015-08-25
The stability of cyclodextrin (CD)-based emulsions is attributed to the formation of a solid film of oil-CD complexes at the oil/water interface. However, competitive interactions between CDs and other components at the interface still need to be understood. Here we develop two different routes that allow the incorporation of a model protein (sodium caseinate, SC) into emulsions based on β-CD. One route is the components adsorbed simultaneously from a mixed solution to the oil/water interface (route I), and the other is SC was added to a previously established CD-stabilized interface (route II). The adsorption mechanism of β-CD modified by SC at the oil/water interface is investigated by rheological and optical methods. Strong sensitivity of the rheological behavior to the routes is indicated by both steady-state and small-deformation oscillatory experiments. Possible β-CD/SC interaction models at the interface are proposed. In route I, the protein, due to its higher affinity for the interface, adsorbs strongly at the interface with blocking of the adsorption of β-CD and formation of oil-CD complexes. In route II, the protein penetrates and blends into the preadsorbed layer of oil-CD complexes already formed at the interface. The revelation of interfacial assembly is expected to help better understand CD-based emulsions in natural systems and improve their designs in engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Nannan; College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108; He, Zhangzhen, E-mail: hcz1988@hotmail.com
2015-08-15
Two vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesized by a high-temperature solid-state reaction. The compounds are found to crystallize in the cubic system with a space group Ia-3d, which exhibit a typical garnet structural framework. Magnetic measurements show that Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) exhibit similar magnetic behaviors, in which Ca{sub 5}Co{sub 4}V{sub 6}O{sub 24} possesses an antiferromagnetic ordering at T{sub N}=~6 K while Ca{sub 5}Ni{sub 4}V{sub 6}O{sub 24} shows an antiferromagnetic ordering at T{sub N}=~7 K. - Graphical abstract: Garnet vanadate compounds Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) have been synthesizedmore » by a high-temperature solid-state reaction. Structural features and magnetic behaviors are also investigated. - Highlights: • New type of garnet vanadates Ca{sub 5}M{sub 4}V{sub 6}O{sub 24} (M=Co, Ni) are synthesized by a high-temperature solid-state reaction. • Structural features are confirmed by single crystal samples. • Magnetic behaviors are firstly investigated in the systems.« less
On the Maillard reaction of meteoritic amino acids
NASA Astrophysics Data System (ADS)
Kolb, Vera M.; Bajagic, Milica; Liesch, Patrick J.; Philip, Ajish; Cody, George D.
2006-08-01
We have performed the Maillard reaction of a series of meteoritic amino acids with sugar ribose under simulated prebiotic conditions, in the solid state at 65°C and at the room temperature. Many meteoritic amino acids are highly reactive with ribose, even at the room temperature. We have isolated high molecular weight products that are insoluble in water, and have studied their structure by the IR (infrared) and solid-state C-13 NMR (nuclear magnetic resonance) spectroscopic methods. The functional groups and their distribution were similar among these products, and were comparable to the previously isolated insoluble organic materials from the Maillard reaction of the common amino acids with ribose. In addition, there were some similarities with the insoluble organic material that is found on Murchison. Our results suggest that the Maillard products may contribute to the composition of the part of the insoluble organic material that is found on Murchison. We have also studied the reaction of sodium silicate solution with the Maillard mixtures, to elucidate the process by which the organic compounds are preserved under prebiotic conditions.
Direct single-molecule dynamic detection of chemical reactions.
Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng
2018-02-01
Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.
Direct single-molecule dynamic detection of chemical reactions
Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N.; Zhang, Deqing; Guo, Xuefeng
2018-01-01
Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry. PMID:29487914
Novel solar light driven photocatalyst, zinc indium vanadate for photodegradation of aqueous phenol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahapure, Sonali A.; Rane, Vilas H.; Ambekar, Jalindar D.
2011-05-15
Graphical abstract: Novel photocatalyst, zinc indium vanadate (ZnIn{sub 2}V{sub 2}O{sub 9}) demonstrated and showed an excellent photocatalytic activity for phenol degradation under visible light. Research highlights: {yields} Designing and identification of a photocatalyst having prospective potential application to be used in visible light (400-800 nm). {yields} Successful synthesis of novel ZnIn{sub 2}V{sub 2}O{sub 9} by solid state route. {yields} Confirmation of the designed product using characterization techniques. {yields} Application study comprising photodegradation of aqueous phenol at visible light despite of UV radiations. -- Abstract: In the present investigation, we have demonstrated the synthesis of novel photocatalyst, zinc indium vanadate (ZIV)more » by solid-solid state route using respective oxides of zinc, indium and vanadium. This novel photocatalyst was characterized using XRD, FESEM, UV-DRS and FTIR in order to investigate its structural, morphological and optical properties. XRD clearly shows the formation of phase pure ZIV of triclinic crystal structure with good crystallinity. FESEM micrographs showed the clustered morphology having particle size between 0.5 and 1 {mu}m. Since, optical study showed the band gap around 2.8 eV, i.e. in visible region, we have performed the photocatalytic activity of phenol degradation under visible light irradiation. The photodecomposition of phenol by ZIV is studied for the first time and an excellent photocatalytic activity was obtained using this novel photocatalyst. Considering the band gap of zinc indium vanadate in visible region, it will also be the potential candidate for water splitting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Long; Alamillo, Ricardo; Elliott, William A.
Liquid-phase processing of molecules using heterogeneous catalysts – an important strategy for obtaining renewable chemicals sustainably from biomass – involves reactions that occur at solid-liquid interfaces. In glucose isomerization catalyzed by basic faujasite zeolites, the catalytic activity depends strongly on the solvent composition: initially, it declines precipitously when water is mixed with a small amount of the organic co-solvent γ-valerolactone (GVL), then recovers as the GVL content increases. Using solid-state 13C NMR spectroscopy, we observed glucose isomers located inside the zeolite pores directly, and followed their transformations into fructose and mannose in real time. At low GVL concentrations, glucose ismore » depleted in the zeolite pores relative to the liquid phase, while higher GVL concentrations in solution drive glucose inside the pores, resulting in up to a 32 enhancement in the local glucose concentration. Although their populations exchange rapidly, molecules present at the reactive interface experience a significantly different environment from the bulk solution.« less
ERIC Educational Resources Information Center
Thananatthanachon, Todsapon
2016-01-01
In this experiment, the students explore the synthesis of a crystalline solid-state material, barium zirconate (BaZrO3) by two different synthetic methods: (a) the wet chemical method using BaCl[subscript 2]·2H[subscript 2]O and ZrOCl[subscript 2]·8H[subscript 2]O as the precursors, and (b) the solid-state reaction from BaCO[subscript 3] and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, Natércia C.T.; Rajesh, Surendran; Marques, Fernando M.B.
2015-10-15
Highlights: • Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} prepared for the first time through solid state reaction. • High energy milling needed to assist the ceramic route. • Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} is oxide-ion conductor in air and n-type conductor at low pO{sub 2}. • Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} decomposes slightly when exposed to alkaline carbonates. • Composites based on Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} show standard electrical performance. - Abstract: Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} was prepared for the first time through high temperature (1600 °C for 5 h) solid state reaction, after high energy milling to enhance the mechano-chemical interaction of precursormore » oxides (CeO{sub 2} and Yb{sub 2}O{sub 3}). Single phase formation was confirmed by powder X-ray diffraction. Impedance spectroscopy data obtained under wide temperature (300–800 °C) and oxygen partial pressure (0.21 to about 10{sup −25} atm) ranges indicates that this material exhibits predominant oxide-ion conductivity under oxidizing conditions while n-type electronic conductivity prevails at low oxygen partial pressure. The mixed oxide shows modest ionic conductivity (1.1 × 10{sup −3} S cm{sup −1} at 800 °C) with activation energy of 1.3 eV in the 600–800 °C temperature range. When combined with molten carbonates (Li{sub 2}CO{sub 3} + Na{sub 2}CO{sub 3}, 1:1 molar ratio) to produce composite electrolytes, Ce{sub 0.5}Yb{sub 0.5}O{sub 1.75} slightly decomposed. However, the composite electrical performance is still acceptable and closely matches the conductivity of similar materials (>0.1 S cm{sup −1} immediately above 500 °C)« less
NASA Astrophysics Data System (ADS)
Hodgson, Murray; Wareing, Andrew
2008-01-01
A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.
Energy-saving approaches to solid state street lighting
NASA Astrophysics Data System (ADS)
Vitta, Pranciškus; Stanikūnas, Rytis; Tuzikas, Arūnas; Reklaitis, Ignas; Stonkus, Andrius; Petrulis, Andrius; Vaitkevičius, Henrikas; Žukauskas, Artūras
2011-10-01
We consider the energy-saving potential of solid-state street lighting due to improved visual performance, weather sensitive luminance control and tracking of pedestrians and vehicles. A psychophysical experiment on the measurement of reaction time with a decision making task was performed under mesopic levels of illumination provided by a highpressure sodium (HPS) lamp and different solid-state light sources, such as daylight and warm-white phosphor converted light-emitting diodes (LEDs) and red-green-blue LED clusters. The results of the experiment imply that photopic luminances of road surface provided by solid-state light sources with an optimized spectral power distribution might be up to twice as low as those provided by the HPS lamp. Dynamical correction of road luminance against road surface conditions typical of Lithuanian climate was estimated to save about 20% of energy in comparison with constant-level illumination. The estimated energy savings due to the tracking of pedestrians and vehicles amount at least 25% with the cumulative effect of intelligent control of at least 40%. A solid-state street lighting system with intelligent control was demonstrated using a 300 m long test ground consisting of 10 solid-state street luminaires, a meteorological station and microwave motion sensor network operated via power line communication.
NASA Astrophysics Data System (ADS)
Shinozaki, Kenji; Akai, Tomoko
2017-09-01
Eu3+-doped fluoroborate crystals of BaMgBO3F were synthesized by a solid-state reaction using a glassy precursor material, and their photoluminescence (PL) was investigated. To compensate for the incorporation of Eu3+ into Ba2+ sites, samples codoped with alkali ions (Li+, Na+, K+, Rb+) were also prepared. The Eu3+-doped sample showed red PL with a quantum yield (QY) of 65% caused by near-UV excitation (λ = 393 nm), and PL intensity and QY increased with the codoping of Eu3+ and alkali ions. It was found that the Eu3+,Li+-codoped sample showed the highest PL intensity and a QY of 83%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Langli; Liu, Bin; Song, Shidong
The capacity, Coulombic efficiency, rate, and cyclability of a Li-O2 battery critically depend on the electrode reaction mechanism and the structure/morphology of the reaction product as well as their spatial and temporal evolution1-8, which are all further complicated by the choice of different electrolyte. For the case of aprotic cell, the discharge product, Li2O2, is formed through solution and surface mechanisms9,10, but little is known on the formation mechanism of the perplexing morphology of the reaction product11-15. For the case of Li-O2 battery using solid electrolyte, neither electrode reaction mechanism nor the nature of the reaction production is known. Herein,more » we reveal the full cycle reaction pathway for Li-O2 batteries and its correlation with the nature of the reaction product. Using an aberration-corrected environmental TEM under oxygen environment, we captured, for the first time, the morphology and phase evolution on the carbon nanotube (CNT) cathode of a working solid-state Li-O2 nano-battery16 and directly correlated these features with electrochemical reaction. We found that the oxygen reduction reaction on CNTs initially produces LiO2, which subsequently evolves to Li2O2 and O2 through disproportionation reaction. Surprisingly it is just the releasing of O2 that inflates the particles to a hollow structure with a Li2O outer surface layer and Li2O2 inner-shell, demonstrating that, in general, accommodation of the released O2 coupled with the Li+ ion diffusion and electron transport paths across both spatial and temporal scales critically governs the morphology of the discharging/charging product in Li-O2 system. We anticipate that the direct observation of Li-O2 reaction mechanisms and their correlation with the morphology of the reaction product set foundation for quantitative understanding/modeling of the electrochemical processes in the Li-O2 system, enabling rational design of both solid-state and aprotic Li-O2 batteries.« less
Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S
2017-08-01
Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] (NBA = norbornane; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(alkene) x ][BAr F 4 ] are formed. The ethene ( x = 2) complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Oct , has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Hex , that has a hexagonal microporous structure ( P 6 3 22). The propene complex ( x = 1) [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene)][BAr F 4 ] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H 3 C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d 3 -propene, H 2 C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CHCD 3 , using [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] scrambles the D-label into all possible positions of the propene, as shown by isotopic perturbation of equilibrium measurements for the agostic interaction. Periodic DFT calculations show a low barrier to H/D exchange (10.9 kcal mol -1 , PBE-D3 level), and GIPAW chemical shift calculations guide the assignment of the experimental data. When synthesized using solution routes a bis-propene complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene) 2 ][BAr F 4 ] , is formed. [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(butene)][BAr F 4 ] ( x = 1) is characterized as having 2-butene bound as the cis -isomer and a single Rh···H 3 C agostic interaction. In the solid-state two low-energy fluxional processes are proposed. The first is a simple libration of the 2-butene that exchanges the agostic interaction, and the second is a butene isomerization process that proceeds via an allyl-hydride intermediate with a low computed barrier of 14.5 kcal mol -1 . [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] and the polymorphs of [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ] are shown to be effective in solid-state molecular organometallic catalysis (SMOM-Cat) for the isomerization of 1-butene to a mixture of cis - and trans -2-butene at 298 K and 1 atm, and studies suggest that catalysis is likely dominated by surface-active species. [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] is also shown to catalyze the transfer dehydrogenation of butane to 2-butene at 298 K using ethene as the sacrificial acceptor.
Fast Photochemistry of Prototypical Phytochromes—A Species vs. Subunit Specific Comparison
Ihalainen, Janne A.; Takala, Heikki; Lehtivuori, Heli
2015-01-01
Phytochromes are multi-domain red light photosensor proteins, which convert red light photons to biological activity utilizing the multitude of structural and chemical reactions. The steady increase in structural information obtained from various bacteriophytochromes has increased understanding about the functional mechanism of the photochemical processes of the phytochromes. Furthermore, a number of spectroscopic studies have revealed kinetic information about the light-induced reactions. The spectroscopic changes are, however, challenging to connect with the structural changes of the chromophore and the protein environment, as the excited state properties of the chromophores are very sensitive to the small structural and chemical changes of their environment. In this article, we concentrate on the results of ultra-fast spectroscopic experiments which reveal information about the important initial steps of the photoreactions of the phytochromes. We survey the excited state properties obtained during the last few decades. The differences in kinetics between different research laboratories are traditionally related to the differences of the studied species. However, we notice that the variation in the excited state properties depends on the subunit composition of the protein as well. This observation illustrates a feedback mechanism from the other domains to the chromophore. We propose that two feedback routes exist in phytochromes between the chromophore and the remotely located effector domain. The well-known connection between the subunits is the so-called tongue region, which changes its secondary structure while changing the light-activated state of the system. The other feedback route which we suggest is less obvious, it is made up of several water molecules ranging from the dimer interface to the vicinity of the chromophore, allowing even proton transfer reactions nearby the chromophore. PMID:26779488
Subnanosecond measurements of detonation fronts in solid high explosives
NASA Astrophysics Data System (ADS)
Sheffield, S. A.; Bloomquist, D. D.; Tarver, C. M.
1984-04-01
Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity-interferometer system, experiments were conducted on three explosives—a TATB (1,3,5-triamino-trinitrobenzene)-based explosive called PBX-9502, TNT (2,4,6-Trinitrotoluene), and CP (2-{5-cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation-front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low-pressure unreacted Hugoniot data for both TNT and PBX-9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich-von Neumann-Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs-1 for CP, 60 μs-1 for TNT, and 80 μs-1 for PBX-9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.
Bates, A.L.; Hatcher, P.G.
1989-01-01
A series of samples taken from the cross section of a 3-m-diameter fossilized gymnospermous log (Araucariaceae) in the Yallourn Seam of the Australian brown coals was examined by solid state 13C nuclear magnetic resonance to delineate chemical changes related to the combined processes of peatification and coalification. The results show that cellulosic materials were degraded and lost on the periphery of the log, however, the degree of such degradation in the central core is substantially less. The lignin is uniformly altered by coalification reactions to a macromolecular substance displaying decreased aryl ether linkages but significantly greater amounts of carbon linkages compared to modern lignin. Changes in the methoxyl carbon contents of lignin in cross section reveal demethylation reactions, but these do not appear to be related to degree of carbon linking. Both the degredation of cellulosic materials and demethylation of lignin appear to be early diagenetic processes occurring during peatification independently of the coalification reactions. ?? 1989.
Chen, Wei; Rosser, Ethan W.; Zhang, Di; ...
2015-05-11
Hydrogen polysulfides (H 2S n, n>1) have been recently suggested to be the actual signalling molecules that involved in sulfur-related redox biology. However the exact mechanisms of H 2S n are still poorly understood and a major hurdle in this field is the lack of reliable and convenient methods for H 2S n detection. In this work we report a unique ring-opening reaction of N-sulfonylaziridine by Na 2S 2 under mild conditions. Based on this reaction a novel H 2S n-specific fluorescent probe (AP) was developed. The probe showed high sensitivity and selectivity for H 2S n. Notably, the fluorescentmore » turn-on product, i.e. compound 1, exhibited excellent two-photon photophysical properties and a large Stokes shift. Moreover, the high solid state luminescent efficiency of compound 1 makes it a potential candidate for organic emitters and solid-state lighting devices.« less
NASA Astrophysics Data System (ADS)
Gao, Shaokai; Zhang, Yang; Meng, Junwang; Shu, Jinian
The reaction products of ozone with pyrene and benz[ a]anthracene absorbed on azelaic acid particles under the pseudo-first-order reaction conditions have been investigated with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The pyrene and benz[ a]anthracene particles with the initial concentrations of ˜1 mg m -3 are respectively exposed to ˜22 ppm ozone in a reaction chamber with a volume of ˜180 L. The time-of-flight mass spectra of the particulate ozonides are obtained. The assignments of the mass spectra reveal that 4-carboxy-5-phenanthrene-carboxyaldehyde (71%) and hydroxypyrene (23%) are the main solid state ozonides of pyrene, while 2-(2-formyl)phenyl-3-naphthoic acid (35%), hydroxybenz[ a]anthrone (30%), and benz[ a]anthracene-7,12-dione (18%) are the main solid state ozonides of benz[ a]anthracene. The pathways of the ozonations are proposed in the paper.
Hsu, Hsun-Feng; Huang, Wan-Ru; Chen, Ting-Hsuan; Wu, Hwang-Yuan; Chen, Chun-An
2013-05-10
This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation.
2013-01-01
This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726
Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M
2015-01-01
Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, J.; Rios, E.; Gautier, J.L.
Two different procedures were used to prepare spinel-type Ni{sub x}Al{sub 1{minus}x}Mn{sub 2}O{sub 4} (0 {le} x {le} 1) compounds to study the effects of solid state properties of mixed oxides on their electrocatalytic properties. The oxalic route, coprecipitation of metal oxalates dissolved in propanol or ethanol, and the propionic route, hydrolysis of metal carboxylates in propionic acid, have been used. In both routes, thermal decomposition produces the corresponding oxides. X-ray diffraction patterns showed that the oxides crystallize in a cubic spinel phase with a unit cell parameter a that increases as aluminum is replaced by nickel. At low x values,more » compounds prepared by the propionic route showed a larger variation for parameter a than compounds prepared by the oxalic route, probably due to oxygen stoichiometric deficiency. This effect was estimated from the tetrahedral force constant (k{sub 1}) values, which showed a fast decrease as x varied from 0 to 1. Electrical conductivity, conduction activation energy, hole mobility, and pHz of oxides prepared by the propionic route were also higher than those from oxides prepared by the oxalic route. Crystallinity grade and particle size were nearly 50% higher in propionic-route samples than in oxalic-route samples. The apparent and real electrocatalytic activities of both types of oxides were compared for O{sub 2} evolution. 42 refs., 6 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Viazzi, Céline; Rouessac, Vincent; Lenormand, Pascal; Julbe, Anne; Ansart, Florence; Guizard, Christian
2011-03-01
Sol-gel routes are often investigated and adapted to prepare, by suitable chemical modifications, submicronic powders and derived materials with controlled morphology, which cannot be obtained by conventional solid state chemistry paths. Wet chemistry methods provide attractive alternative routes because mixing of species occurs at the atomic scale. In this paper, ultrafine powders were prepared by a novel synthesis method based on the sol-gel process and were dispersed into suspensions before processing. This paper presents new developments for the preparation of functional materials like yttria-stabilized-zirconia (YSZ, 8% Y2O3) used as electrolyte for solid oxide fuel cells. YSZ thick films were coated onto porous Ni-YSZ substrates using a suspension with an optimized formulation deposited by either a dip-coating or a spin-coating process. The suspension composition is based on YSZ particles encapsulated by a zirconium alkoxide which was added with an alkoxide derived colloidal sol. The in situ growth of these colloids increases significantly the layer density after an appropriated heat treatment. The derived films were continuous, homogeneous and around 20 μm thick. The possible up-scaling of this process has been also considered and the suitable processing parameters were defined in order to obtain, at an industrial scale, homogeneous, crack-free, thick and adherent films after heat treatment at 1400 °C.
Beyond the Compositional Threshold of Nanoparticle-Based Materials.
Portehault, David; Delacroix, Simon; Gouget, Guillaume; Grosjean, Rémi; Chan-Chang, Tsou-Hsi-Camille
2018-04-17
The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion, great promise. We will span methods of low temperature "chimie douce" aqueous synthesis coupled to microwave heating, sol-gel chemistry and processing coupled to solid state reactions, and then molten salt synthesis. These protocols pave the way to metastable low valence oxyhydroxides, vanadates, perovskite oxides, boron carbon nitrides, and metal borides, all obtained at the nanoscale with structural and morphological features differing from "usual" nanomaterials. These nano-objects show original properties, from sensing, thermoelectricity, charge and spin transports, photoluminescence, and catalysis, which require advanced characterization of surface states. We then identify future trends of synthetic methodologies that will merit further attention in this burgeoning field, by emphasizing the importance of unveiling reaction mechanisms and coupling experiments with modeling.
Rethinking early Earth phosphorus geochemistry
Pasek, Matthew A.
2008-01-01
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373
Rethinking early Earth phosphorus geochemistry.
Pasek, Matthew A
2008-01-22
Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.
Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher
2016-01-30
Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR. Copyright © 2015 Elsevier B.V. All rights reserved.
Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant
NASA Technical Reports Server (NTRS)
Dynys, F.; Sayir, A.; Heimann, P. J.
2004-01-01
The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.
Samal, Alaka; Das, Dipti P; Madras, Giridhar
2018-02-13
The same copper phosphate catalysts were synthesized by obtaining the methods involving solid state as well as liquid state reactions in this work. And then the optimised p-n hybrid junction photocatalysts have been synthesized following the same solid/liquid reaction pathways. The synthesized copper phosphate photocatalyst has unique rod, flower, caramel-treat-like morphology. The Mott-Schottky behavior is in accordance with the expected behavior of n-type semiconductor and the carrier concentration was calculated using the M-S analysis for the photocatalyst. And for the p-n hybrid junction of 8RGO-Cu 3 (PO 4 ) 2 -PA (PA abbreviated for photoassisted synthesis method), 8RGO-Cu 3 (PO 4 ) 2 -EG(EG abbreviated for Ethylene Glycol based synthesis method), 8RGO-Cu 3 (PO 4 ) 2 -PEG (PEG abbreviated for Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol based synthesis method)the amount of H 2 synthesized was 7500, 6500 and 4500 µmol/h/g, respectively. The excited electrons resulting after the irradiation of visible light on the CB of p-type reduced graphene oxide (RGO) migrate easily to n-type Cu 3 (PO 4 ) 2 via. the p-n junction interfaces and hence great charge carrier separation was achieved.
A stochastic model of solid state thin film deposition: Application to chalcopyrite growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.
Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstratemore » the modeling approach with the example of chalcopyrite Cu(InGa)(SeS){sub 2} thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS){sub 2} thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less
A stochastic model of solid state thin film deposition: Application to chalcopyrite growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.
Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less
A stochastic model of solid state thin film deposition: Application to chalcopyrite growth
Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.; ...
2016-04-01
Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less
Zhu, Zhiqiang; Hong, Meiling; Guo, Dongsheng; Shi, Jifu; Tao, Zhanliang; Chen, Jun
2014-11-26
The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.
Transesterification of diethyl oxalate with phenol over sol-gel MoO(3)/TiO(2) catalysts.
Kotbagi, Trupti; Nguyen, Duy Luan; Lancelot, Christine; Lamonier, Carole; Thavornprasert, Kaew-Arpha; Wenli, Zhu; Capron, Mickaël; Jalowiecki-Duhamel, Louise; Umbarkar, Shubhangi; Dongare, Mohan; Dumeignil, Franck
2012-08-01
The transesterification of diethyl oxalate (DEO) with phenol to form diphenyl oxalate (DPO) has been carried out in the liquid phase over very efficient MoO(3)/TiO(2) solid-acid sol-gel catalysts. A selectivity of 100 % with a remarkable maximum yield of 88 % were obtained, which opens the route to downstream phosgene-free processes for the synthesis of polycarbonates. Interpretation of the results of various acidity measurements (NH(3) and pyridine desorption, methanol oxidation as a probe reaction) allowed us to identify the catalytic sites as Lewis acid sites. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Bo; School of Mechanical Engineering, Gui Zhou University, Guiyang 550000; Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn
2015-06-15
The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Displaymore » Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.« less
Tibben, J G; Massuger, L F; Boerman, O C; Borm, G F; Claessens, R A; Corstens, F H
1994-11-01
The effect of the route administration on the distribution of radioiodinated OV-TL 3 F(ab')2 was studied in Balb/c female mice with intraperitoneal or subcutaneous ovarian carcinoma xenografts. In the intraperitoneal tumour model in which both ascites and solid tumour deposits were present, intraperitoneal administration resulted in a lower estimated radiation dose to blood as compared with intravenous administration. In this model normalization to equal estimated radiation doses to blood for both routes of administration indicated that a twice as high estimated radiation dose can be guided to solid intraperitoneal tumour deposits following intraperitoneal administration. Evacuation of ascitic tumour cells prior to monoclonal antibody injection further increased the estimated radiation dose to solid intraperitoneal tumour deposits following intraperitoneal delivery. Following simultaneous intravenous and intraperitoneal injection of the monoclonal antibody, tissue uptake showed no relevant differences in the subcutaneous tumour model. Overall, the intraperitoneal route of administration was found to be the best choice for therapeutic delivery of iodine-131 labelled monoclonal antibodies.
The effect of dynamic scheduling and routing in a solid waste management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansson, Ola M.
2006-07-01
Solid waste collection and hauling account for the greater part of the total cost in modern solid waste management systems. In a recent initiative, 3300 Swedish recycling containers have been fitted with level sensors and wireless communication equipment, thereby giving waste collection operators access to real-time information on the status of each container. In this study, analytical modeling and discrete-event simulation have been used to evaluate different scheduling and routing policies utilizing the real-time data. In addition to the general models developed, an empirical simulation study has been performed on the downtown recycling station system in Malmoe, Sweden. From themore » study, it can be concluded that dynamic scheduling and routing policies exist that have lower operating costs, shorter collection and hauling distances, and reduced labor hours compared to the static policy with fixed routes and pre-determined pick-up frequencies employed by many waste collection operators today. The results of the analytical model and the simulation models are coherent, and consistent with experiences of the waste collection operators.« less
A study on production of biodiesel using a novel solid oxide catalyst derived from waste.
Majhi, Samrat; Ray, Srimanta
2016-05-01
The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.
Solid-state reduction of iron in olivine-planetary and meteoritic evolution.
Boland, J N; Duba, A
1981-11-12
Iron-nickel metallic particles have been reported in meteorites 1 and lunar 2-5 and terrestrial 6,7 rocks. The origin of these metallic particles is not unique as they may be formed by (1) condensation from a primordial solar nebula 8 ; (2) crystallization from a melt; and (3) subsolidus reduction reactions under low oxygen or sulphur fugacity. We report here an electron microscopy study of the solid-state microstructural development in olivine single crystals (Fo 92 ) in which half of the iron has been reduced to the metallic state by a gas-solid interaction in the temperature range 950-1,500 °C. The reaction, Fo 92 →Fo 96 +metallic Fe(Ni in solid solution)+pyroxene, begins with a homogeneous transformation involving fine-scale metallic precipitates resembling Guinier-Preston zones 9 . The microstructure develops by the growth of the first-formed precipitates during an Ostwald ripening process 9 in which the precipitates located in the dislocation sub-boundaries develop in preference to precipitates in the subgrains. On the other hand, pyroxene is first observed to nucleate heterogeneously at pre-existing dislocations and its coarsening rate is more than an order-of-magnitude faster than that of the metallic phase. Besides the textural similarity of the observed microstructures with that reported for some of the lunar materials 2 , these results have important implications for the physical models of accretion of terrestrial planets, planetesimals and meteorites 10 , especially with respect to the distribution of siderophile elements. The rate of reaction observed here places constraints on models for the formation of the Earth's core by segregation of a metallic phase with or without reduction.
Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan
2017-02-08
The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.
Consequences of acid strength for isomerization and elimination catalysis on solid acids.
Macht, Josef; Carr, Robert T; Iglesia, Enrique
2009-05-13
We address here the manner in which acid catalysis senses the strength of solid acids. Acid strengths for Keggin polyoxometalate (POM) clusters and zeolites, chosen because of their accurately known structures, are described rigorously by their deprotonation energies (DPE). Mechanistic interpretations of the measured dynamics of alkane isomerization and alkanol dehydration are used to obtain rate and equilibrium constants and energies for intermediates and transition states and to relate them to acid strength. n-Hexane isomerization rates were limited by isomerization of alkoxide intermediates on bifunctional metal-acid mixtures designed to maintain alkane-alkene equilibrium. Isomerization rate constants were normalized by the number of accessible protons, measured by titration with 2,6-di-tert-butylpyridine during catalysis. Equilibrium constants for alkoxides formed by protonation of n-hexene increased slightly with deprotonation energies (DPE), while isomerization rate constants decreased and activation barriers increased with increasing DPE, as also shown for alkanol dehydration reactions. These trends are consistent with thermochemical analyses of the transition states involved in isomerization and elimination steps. For all reactions, barriers increased by less than the concomitant increase in DPE upon changes in composition, because electrostatic stabilization of ion-pairs at the relevant transition states becomes more effective for weaker acids, as a result of their higher charge density at the anionic conjugate base. Alkoxide isomerization barriers were more sensitive to DPE than for elimination from H-bonded alkanols, the step that limits 2-butanol and 1-butanol dehydration rates; the latter two reactions showed similar DPE sensitivities, despite significant differences in their rates and activation barriers, indicating that slower reactions are not necessarily more sensitive to acid strength, but instead reflect the involvement of more unstable organic cations at their transition states. These compensating effects from electrostatic stabilization depend on how similar the charge density in these organic cations is to that in the proton removed. Cations with more localized charge favor strong electrostatic interactions with anions and form more stable ionic structures than do cations with more diffuse charges. Ion-pairs at elimination transition states contain cations with higher local charge density at the sp(2) carbon than for isomerization transition states; as a result, these ion-pairs recover a larger fraction of the deprotonation energy, and, consequently, their reactions become less sensitive to acid strength. These concepts lead us to conclude that the energetic difficulty of a catalytic reaction, imposed by gas-phase reactant proton affinities in transition state analogues, does not determine its sensitivity to the acid strength of solid catalysts.
Wenzel, Sebastian; Leichtweiss, Thomas; Weber, Dominik A; Sann, Joachim; Zeier, Wolfgang G; Janek, Jürgen
2016-10-05
The interfacial stability of solid electrolytes at the electrodes is crucial for an application of all-solid-state batteries and protected electrodes. For instance, undesired reactions between sodium metal electrodes and the solid electrolyte form charge transfer hindering interphases. Due to the resulting large interfacial resistance, the charge transfer kinetics are altered and the overvoltage increases, making the interfacial stability of electrolytes the limiting factor in these systems. Driven by the promising ionic conductivities of Na 3 PS 4 , here we explore the stability and viability of Na 3 PS 4 as a solid electrolyte against metallic Na and compare it to that of Na-β″-Al 2 O 3 (sodium β-alumina). As expected, Na-β″-Al 2 O 3 is stable against sodium, whereas Na 3 PS 4 decomposes with an increasing overall resistance, making Na-β″-Al 2 O 3 the electrolyte of choice for protected sodium anodes and all-solid-state batteries.
Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Xu, Xiaoxiong; Li, Hong; Zhang, Qiang; Cai, Liangting; Hu, Yong-Sheng; Yao, Xiayin
2018-04-18
Nanosized Na 3 PS 4 solid electrolyte with an ionic conductivity of 8.44 × 10 -5 S cm -1 at room temperature is synthesized by a liquid-phase reaction. The resultant all-solid-state FeS 2 /Na 3 PS 4 /Na batteries show an extraordinary high initial Coulombic efficiency of 95% and demonstrate high energy density of 611 Wh kg -1 at current density of 20 mA g -1 at room temperature. The outstanding performances of the battery can be ascribed to good interface compatibility and intimate solid-solid contact at FeS 2 electrode/nanosized Na 3 PS 4 solid electrolytes interface. Meanwhile, excellent cycling stability is achieved for the battery after cycling at 60 mA g -1 for 100 cycles, showing a high capacity of 287 mAh g -1 with the capacity retention of 80%.
Future Power Production by LENR with Thin-Film Electrodes
NASA Astrophysics Data System (ADS)
Miley, George H.; Hora, Heinz; Lipson, Andrei; Luo, Nie; Shrestha, P. Joshi
2007-03-01
PdD cluster reaction theory was recently proposed to explain a wide range of Low energy Nuclear Reaction (LENR) experiments. If understood and optimized, cluster reactions could lead to a revolutionary new power source of nuclear energy. The route is two-fold. First, the excess heat must be obtained reproducibly and over extended run times. Second, the percentage of excess must be significantly (order of magnitude or more) higher than the 20-50% typically today. The thin film methods described here have proven to be quite reproducible, e.g. providing excess heat of 20-30% in nine consecutive runs of several weeks each. However, mechanical separation of the films occurs over long runs due to the severe mechanical stresses created.. Techniques to overcome these problems are possible using graded bonding techniques similar to that used in high temperature solid oxide fuel cells. Thus the remaining key issue is to increase the excess heat. The cluster model provides import insight into this. G. H. Miley, H. Hora, et al., 233rd Amer Chem Soc Meeting, Chicago, IL, March 25-29, 2007.
A DIRECT ROUTE TO ACYLHYDROQUINONES FROM ALPHA-KETO ACIDS AND ALPHA-CARBOXAMIDO ACIDS. (R825330)
The reaction of quinones with in situ generated acyl- or carboxamido radicals provides a direct route to the synthesis of acylhydroquinones not accessible by the photochemical reaction of quinones with aldehydes.
A new route to the stable capture and final immobilization of radioactive cesium.
Yang, Jae Hwan; Han, Ahreum; Yoon, Joo Young; Park, Hwan-Seo; Cho, Yung-Zun
2017-10-05
Radioactive Cs released from damaged fuel materials in the event of nuclear accidents must be controlled to prevent the spreading of hazardous Cs into the environment. This study describes a simple and novel process to safely manage Cs gas by capturing it within ceramic filters and converting it into monolithic waste forms. The results of Cs trapping tests showed that CsAlSiO 4 was a reaction product of gas-solid reactions between Cs gas and our ceramic filters. Monolithic waste forms were readily prepared from the Cs-trapping filters by the addition of a glass frit followed by thermal treatment at 1000°C for 3h. Major findings revealed that the Cs-trapping filters could be added up to 50wt% to form durable monoliths. In 30-50wt% of waste fraction, CsAlSiO 4 was completely converted to pollucite (CsAlSi 2 O 6 ), which is a potential phase for radioactive Cs due to its excellent thermal and chemical stability. A static leaching test for 28 d confirmed the excellent chemical resistance of the pollucite structure, with a Cs leaching rate as low as 7.21×10 -5 gm -2 /d. This simple scheme of waste processing promises a new route for radioactive Cs immobilization by synthesizing pollucite-based monoliths. Copyright © 2017 Elsevier B.V. All rights reserved.
Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P
2003-03-24
The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).
Woelke, Anna Lena; Galstyan, Gegham; Knapp, Ernst-Walter
2014-12-01
The metabolism of aerobic life uses the conversion of molecular oxygen to water as an energy source. This reaction is catalyzed by cytochrome e oxidase (CeO) consuming four electrons and four protons, which move along specific routes. While all four electrons are transferred via the same cofactors to the binuclear reaction center (BNC), the protons take two different routes in the A-type CeO, i.e., two of the four chemical protons consumed in the reaction arrive via the D-channel in the oxidative first half starting after oxygen binding. The other two chemical protons enter via the K-channel in the reductive second half of the reaction cycle. To date, the mechanism behind these separate proton transport pathways has not been understood. In this study, we propose a model that can explain the reaction-step specific opening and closing of the K-channel by conformational and pKA changes of its central lysine 362. Molecular dynamics simulations reveal an upward movement of Lys362 towards the BNC, which had already been supposed by several experimental studies. Redox state-dependent pKA calculations provide evidence that Lys362 may protonate transiently, thereby opening the K-channel only in the reductive second half of the reaction cycle. From our results, we develop a model that assigns a key role to Lys362 in the proton gating between the two proton input channels of the A-type CeO.
NASA Astrophysics Data System (ADS)
Xu, S. C.; Man, B. Y.; Jiang, S. Z.; Chen, C. S.; Liu, M.; Yang, C.; Gao, S. B.; Feng, D. J.; Hu, G. D.; Huang, Q. J.; Chen, X. F.; Zhang, C.
2014-08-01
We present a novel method for the direct metal-free growth of graphene on quartz substrate. The direct-grown graphene yields excellent nonlinear saturable absorption properties and is demonstrated to be suitable as a saturable absorber (SA) for an ultrafast solid-state laser. Nearly Fourier-limited 367 fs was obtained at a central wavelength of 1048 nm with a repetition rate of 105.7 MHz. At a pump power of 7.95 W, the average output power was 1.93 W and the highest pulse energy reached 18.3 nJ, with a peak power of 49.8 kW. Our work opens an easy route for making a reliable graphene SA with a mode-locking technique and also displays an exciting prospect in making low-cost and ultrafast lasers.
New generation Li+ NASICON glass-ceramics for solid state Li+ ion battery applications
NASA Astrophysics Data System (ADS)
Sharma, Neelakshi; Dalvi, Anshuman
2018-04-01
Lithiumion conducting NASICON glass-ceramics have been prepared by a novel planetary ball milling assisted synthesis route. Structural, thermal and electrical investigations have been carried out on the novel composites composed of LiTi(PO4)3 (LTP) and 50[Li2SO4]-50[Li2O-P2O5] ionic glass reveal interesting results. Composites were prepared keeping the concentration of the ionic glass fixed at 20 wt%. X-ray diffraction and diffe rential thermal analysis confirm the glass-ceramic formation. Moreover, the structure of LTP remains intact during the glass -ceramic formation. Electrical conductivity of the glass-ceramic composite is found to be higher than that of the pristine glass (50LSLP) and LTP. The bulk and grain boundary conductivities of LTP exhibit improvement in composite. Owing to high ionic conductivity and thermal stability, novel glass -ceramic seems to be a promising candidate for all solid-state battery applications.
Design of free patterns of nanocrystals with ad hoc features via templated dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aouassa, M.; Berbezier, I.; Favre, L.
Design of monodisperse ultra-small nanocrystals (NCs) into large scale patterns with ad hoc features is demonstrated. The process makes use of solid state dewetting of a thin film templated through alloy liquid metal ion source focused ion beam (LMIS-FIB) nanopatterning. The solid state dewetting initiated at the edges of the patterns controllably creates the ordering of NCs with ad hoc placement and periodicity. The NC size is tuned by varying the nominal thickness of the film while their position results from the association of film retraction from the edges of the lay out and Rayleigh-like instability. The use of ultra-highmore » resolution LMIS-FIB enables to produce monocrystalline NCs with size, periodicity, and placement tunable as well. It provides routes for the free design of nanostructures for generic applications in nanoelectronics.« less
Pandit, Bidhan; Karade, Swapnil S; Sankapal, Babasaheb R
2017-12-27
Transition metal chalcogenides (TMCs) embedded with a carbon network are gaining much attention because of their high power capability, which can be easily integrated to portable electronic devices. Facile chemical route has been explored to synthesize hexagonal structured VS 2 nanoparticles onto multiwalled carbon nanotubes (MWCNTs) matrix. Such surface-modified VS 2 /MWCNTs electrode has boosted the electrochemical performance to reach high capacitance to 830 F/g and excellent stability to 95.9% over 10 000 cycles. Designed flexible solid-state symmetric supercapacitor device (FSSD) with a wide voltage window of 1.6 V exhibited maximum gain in specific capacitance value of 182 F/g at scan rate of 2 mV/s along with specific energy of 42 Wh/kg and a superb stability of 93.2% over 5000 cycles. As a practical approach, FSSD has lightened up "VNIT" panel consisting of 21 red LEDs.
Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru
2017-04-30
Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation concentration of a metastable drug from solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Jin H; Chung, Tim S; Hipwell, Vince M; Rivera, Edris A; Garcia-Garibay, Miguel A
2018-06-11
Recent work has shown that diarylmethyl radicals generated by pulsed laser excitation in nanocrystalline (NC) suspensions of tetraarylacetones constitute a valuable probe for the detailed mechanistic analysis of the solid-state photodecarbonylation reaction. Using a combination of reaction quantum yields and laser flash photolysis in nanocrystalline suspensions of ketones with different substituents on one of the α-carbons we are able to suggest with confidence that a significant fraction of the initial α-cleavage reaction takes place from the ketone singlet excited state, that the originally formed diarylmethyl-acyl radical pair loses CO in the crystal with time constants in the sub-nanosecond regime, and that the secondary bis(diarylmethyl) triplet radical pair has a lifetime limited by the rate of intersystem crossing of ca. 70 ns.
NASA Astrophysics Data System (ADS)
Babu, B.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.
2013-05-01
Cobalt ions doped zinc oxide nanopowder was prepared at room temperature by a novel and simple one step solid-state reaction method through sonication in the presence of a suitable surfactant Sodium Lauryl Sulphate (SLS). The prepared powder was characterized by various spectroscopic techniques. Powder XRD data revealed that the crystal structure belongs to hexagonal and its average crystallite size was evaluated. From optical absorption data, crystal fields (Dq), inter-electronic repulsion parameters (B, C) were evaluated. By correlating optical and EPR spectral data, the site symmetry of Co2+ ion in the host lattice was determined as octahedral. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions. The CIE chromaticity coordinates are also evaluated from the emission spectrum. FT-IR spectra showed the characteristic vibrational bands of Znsbnd O.
NASA Astrophysics Data System (ADS)
Ren, Fuqiang; Chen, Donghua
2010-02-01
Using urea, boric acid and polyethylene glycol (PEG) as auxiliary reagents, the novel red-emitting phosphors Ca 19Zn 2 (PO 4) 14:Eu 3+ have been successfully synthesized by a modified solid-state reaction. Thermogravimetric (TG) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The dependence of the photoluminescence properties of Ca 19Zn 2 (PO 4) 14:Eu 3+ phosphors upon urea, boric acid and PEG concentration and the quadric-sintered temperature were investigated. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs).
A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte.
Gao, Tao; Li, Xiaogang; Wang, Xiwen; Hu, Junkai; Han, Fudong; Fan, Xiulin; Suo, Liumin; Pearse, Alex J; Lee, Sang Bok; Rubloff, Gary W; Gaskell, Karen J; Noked, Malachi; Wang, Chunsheng
2016-08-16
Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite-free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg(-1) ) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx . Herein, we demonstrate the first reversible Al/S battery in ionic-liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid-state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid-state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ogasawara, Masamichi; Nagano, Takashi; Hayashi, Tamio
2005-07-08
[reaction: see text] A formal total synthesis of the sex attractant of male dried bean beetle, methyl (R,E)-(-)-tetradeca-2,4,5-trienoate, was achieved by a new efficient route utilizing the Pd-catalyzed asymmetric allene synthesis reaction. It was found that the atropisomeric biaryl bisphosphine (R)-segphos showed better enantioselectivity than (R)-binap in the Pd-catalyzed reaction for preparing alkyl-substituted axially chiral allenes.
Garai, Mousumi; Biradha, Kumar
2015-09-01
The homologous series of phenyl and pyridyl substituted bis(acrylamido)alkanes have been synthesized with the aim of systematic analysis of their crystal structures and their solid-state [2 + 2] reactivities. The changes in the crystal structures with respect to a small change in the molecular structure, that is by varying alkyl spacers between acrylamides and/or by varying the end groups (phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl) on the C-terminal of the amide, were analyzed in terms of hydrogen-bonding interference (N-H⋯Npy versus N-H⋯O=C) and network geometries. In this series, a greater tendency towards the formation of N-H⋯O hydrogen bonds (β-sheets and two-dimensional networks) over N-H⋯N hydrogen bonds was observed. Among all the structures seven structures were found to have the required alignments of double bonds for the [2 + 2] reaction such that the formations of single dimer, double dimer and polymer are facilitated. However, only four structures were found to exhibit such a solid-state [2 + 2] reaction to form a single dimer and polymers. The two-dimensional hydrogen-bonding layer via N-H⋯O hydrogen bonds was found to promote solid-state [2 + 2] photo-polymerization in a single-crystal-to-single-crystal manner. Such two-dimensional layers were encountered only when the spacer between acryl amide moieties is butyl. Only four out of the 16 derivatives were found to form hydrates, two each from 2-pyridyl and 4-pyridyl derivatives. The water molecules in these structures govern the hydrogen-bonding networks by the formation of an octameric water cluster and one-dimensional zigzag water chains. The trends in the melting points and densities were also analyzed.
Image routing via atomic spin coherence
Wang, Lei; Sun, Jia-Xiang; Luo, Meng-Xi; Sun, Yuan-Hang; Wang, Xiao-Xiao; Chen, Yi; Kang, Zhi-Hui; Wang, Hai-Hua; Wu, Jin-Hui; Gao, Jin-Yue
2015-01-01
Coherent storage of optical image in a coherently-driven medium is a promising method with possible applications in many fields. In this work, we experimentally report a controllable spatial-frequency routing of image via atomic spin coherence in a solid-state medium driven by electromagnetically induced transparency (EIT). Under the EIT-based light-storage regime, a transverse spatial image carried by the probe field is stored into atomic spin coherence. By manipulating the frequency and spatial propagation direction of the read control field, the stored image is transferred into a new spatial-frequency channel. When two read control fields are used to retrieve the stored information, the image information is converted into a superposition of two spatial-frequency modes. Through this technique, the image is manipulated coherently and all-optically in a controlled fashion. PMID:26658846
Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Hu, Tian-Hang; Yin, Zhong-Shu; Guo, Jian-Wei; Wang, Cheng
2014-12-01
Fe nanoparticles immobilized on polyaniline-covered carbon nanotube (CNT) surfaces (Fe NPs-PANI/CNT) are prepared by reducing FeCl3 in the mixing solution of aniline and CNT. Significantly, the structure of such composites can be effectively optimized by pretreating FeCl3 with sodium citrate (CA). In the absence of CNTs, we found these two routes have large differences in reduction behaviors and different PANI states with varied conductivities. Therefore, the self-assembly mechanism in the preparation is proposed and the controlled self-assembly manner in the pretreating route is disclosed. Under acid condition, both catalysts demonstrate high oxygen reduction reaction (ORR) activity with four-electron pathway, and high electrochemical durability, revealing a promising application in the proton exchange membrane fuel cells. However, the high Tafel slopes relating to the surface red-ox couple and porous conductivity are still the main obstacles to improve their ORR dynamic, and more efforts on these aspects are needed to drive non-noble catalyst application in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.
Nanoparticles, submicron-diameter tubes, and rods of Si{sub 3}N{sub 4} were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si{sub 3}N{sub 4} with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si{sub 3}N{sub 4}. In a two-step process, where pure SiC wasmore » produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si{sub 3}N{sub 4} combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.« less
NASA Astrophysics Data System (ADS)
Li, Xiaoyun; Hu, Haihua; Xu, Lingbo; Cui, Can; Qian, Degui; Li, Shuang; Zhu, Wenzhe; Wang, Peng; Lin, Ping; Pan, Jiaqi; Li, Chaorong
2018-05-01
Artificial Z-scheme system inspired by the natural photosynthesis in green plants has attracted extensive attention owing to its advantages such as simultaneously wide range light absorption, highly efficient charge separation and strong redox ability. In this paper, we report the synthesis of a novel all-solid-state direct Z-scheme photocatalyst of Ag3PO4/CeO2/TiO2 by depositing Ag3PO4 nanoparticles (NPs) on CeO2/TiO2 hierarchical branched nanowires (BNWs), where the CeO2/TiO2 BNWs act as a novel substrate for the well dispersed nano-size Ag3PO4. The Ag3PO4/CeO2/TiO2 photocatalyst exhibits excellent ability of photocatalytic oxygen evolution from pure water splitting. It is suggested that the Z-scheme charge transfer route between CeO2/TiO2 and Ag3PO4 improves the redox ability. On the other hand, the cascade energy level alignment in CeO2/TiO2 BNWs expedites the spatial charge separation, and hence suppresses photocatalytic backward reaction. However, it is difficult to realize a perfect excitation balance in Ag3PO4/CeO2/TiO2 and the composite still surfers photo-corrosion in photocatalysis reaction. Nevertheless, our results provide an innovative strategy of constructing a Z-scheme system from a type-II heterostructure and a highly efficient oxygen evolution catalyst.
Nanostructured silicon nitride from wheat and rice husks
NASA Astrophysics Data System (ADS)
Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Wollmershauser, J. A.; Feng, C. R.
2016-04-01
Nanoparticles, submicron-diameter tubes, and rods of Si3N4 were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si3N4 with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si3N4. In a two-step process, where pure SiC was produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si3N4 combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.
den Boer, Duncan; Li, Min; Habets, Thomas; Iavicoli, Patrizia; Rowan, Alan E; Nolte, Roeland J M; Speller, Sylvia; Amabilino, David B; De Feyter, Steven; Elemans, Johannes A A W
2013-07-01
Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.
Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics.
Sun, Zheng; Li, Lingxia; Yu, Shihui; Kang, Xinyu; Chen, Siliang
2017-10-24
Lead-free Ba 1-x Sm 2x/3 Zr 0.15 Ti 0.85 O 3 (BSZT) ceramics were synthesized by a solid state reaction route. The microstructure, dielectric relaxor behavior and energy storage properties of BSZT ceramics were studied. The growth of grain size was suppressed with the increase of Sm addition and kept in the submicrometer scale. Successive substitution of Sm 3+ for Ba 2+ disrupted the long-range dipole and promoted the increase of polar nano-region (PNR) size, resulting in the enhanced degree of relaxor behavior. The increasing PNR size also lead to the slimmer hysteresis loops and improved the energy storage efficiency. Furthermore, high saturated polarization (P max ) and low remnant polarization (P r ) were obtained due to the formation of defect dipoles, which facilitated the switch of PNRs and contributed to the enhancement of energy storage density. The x = 0.003 sample was found to exhibit a higher energy storage density of 1.15 J cm -3 and an energy storage efficiency of 92%. The result revealed that the BSZT ceramics may be a good candidate for energy storage application.
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-03-01
Sr(1-x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
Synthesis and structural characterization of bulk Sb2Te3 single crystal
NASA Astrophysics Data System (ADS)
Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.
2018-05-01
We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.
Structural study of Ti-doped CoFe{sub 2}O{sub 4} mixed spinel ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, P., E-mail: pankaj.7007@rediffmail.com; Sharma, P.; Dar, M. A.
2016-05-06
We present the results on atomic and lattice structure of the polycrystalline spinel ferrites system Co{sub 1-x} Ti{sub x}Fe{sub 2}O{sub 4} (x = 0.0, 0.25, 0.50) synthesized by following the conventional solid-state reaction route. The observed X-ray diffraction (XRD) data confirms that all the prepared samples are indexed in cubic crystal structure (space group Fd3m). Diffraction pattern showed TiO{sub 2} phase due to presence of Ti{sup +4} ions. Four Raman active phonon modes are observed for CoFe{sub 2}O{sub 4} sample existing around 295, 462, 585, 689, cm{sup −1} as Eg, T{sub 2g}(2), T{sub 2g}(3), and A{sub 1g}, respectively. With 25more » % Ti ion doping, the peak T{sub 2g}(3) disappears, while to that T{sub 2g}(1) emerges. This is an indication of presence of TiO{sub 2} phase in Co{sub 0.75}Ti{sub 0.25}Fe{sub 2}O{sub 4} and Co{sub 0.5}Ti{sub 0.5}Fe{sub 2}O{sub 4} ceramics.« less
Thermal Spray Deposition, Phase Stability and Mechanical Properties of La2Zr2O7/LaAlO3 Coatings
NASA Astrophysics Data System (ADS)
Lozano-Mandujano, D.; Poblano-Salas, C. A.; Ruiz-Luna, H.; Esparza-Esparza, B.; Giraldo-Betancur, A. L.; Alvarado-Orozco, J. M.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.
2017-08-01
This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness ( K IC) of the annealed coating was only 1.04 MPa m0.5.
Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics
NASA Astrophysics Data System (ADS)
Alkathy, Mahmoud. S.; James Raju, K. C.
2018-07-01
Sr(1- x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.
Energy band gap and spectroscopic studies in Mn{sub 1-x}Cu{sub x}WO{sub 4} (0 ≤ x ≤ 0.125)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mal, Priyanath; Rambabu, P.; Turpu, G. R.
2016-05-06
A study on the effect of nonmagnetic Cu{sup 2+} substitution at Mn{sup 2+} site on the structural and energy band gap of the MnWO{sub 4} is reported. Convenient solid state reaction route has been adopted for the synthesis of Mn{sub 1-x}Cu{sub x}WO{sub 4}. X-ray diffraction (XRD) pattern showed high crystalline quality of the prepared samples. Raman spectroscopic studies were carried out to understand the structural aspects of the doping. 15 Raman active modes were identified out of 18, predicted for wolframite type monoclinic structure of MnWO{sub 4}. UV-visible diffuse reflectance spectra were recorded and analyzed to get energy band gapmore » of the studied system and are found in the range of 2.5 eV to 2.04 eV with a systematic decrease with the increase in Cu{sup 2+} concentration. Energy band gap values are verified by Density Functional Theory calculations based on projector augmented wave (PAW) method. The calculated values are in good agreement with the experimental data.« less
NASA Astrophysics Data System (ADS)
Mahajan, Sandeep; Haridas, Divya; Ali, S. T.; Munirathnam, N. R.; Sreenivas, K.; Thakur, O. P.; Prakash, Chandra
2014-10-01
In present study we have prepared ferroelectric BaZrxTi1-xO3 (x=0.05) ceramic by conventional solid state reaction route and studied its electrical properties as a function of temperature and frequency. X-ray diffraction (XRD) analysis shows single-phase formation of the compound with orthorhombic crystal structure at room temperature. Impedance and electric modulus spectroscopy analysis in the frequency range of 40 Hz-1 MHz at high temperature (200-600 °C) suggests two relaxation processes with different time constant are involved which are attributed to bulk and grain boundary effects. Frequency dependent dielectric plot at different temperature shows normal variation with frequency while dielectric loss (tanδ) peak was found to obey an Arrhenius law with activation energy of 1.02 eV. The frequency-dependent AC conductivity data were also analyzed in a wide temperature range. In present work we have studied the role of grain and grain boundaries on the electrical behaviour of Zr-doped BaTiO3 and their dependence on temperature and frequency by complex impedance and modulus spectroscopy (CIS) technique in a wide frequency (40 Hz-1 MHz) and high temperature range.
Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics
NASA Astrophysics Data System (ADS)
Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.
2018-03-01
Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-10-06
First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kinetic stabilizations. The sluggish kinetics of the decomposition reactions cause a high overpotential leading to a nominally wide electrochemical window observed in many experiments. The decomposition products, similar to the solid-electrolyte-interphases, mitigate the extreme chemical potential from the electrodes and protect the solid electrolyte from further decompositions. With the aidmore » of the first-principles calculations, we revealed the passivation mechanism of these decomposition interphases and quantified the extensions of the electrochemical window from the interphases. We also found that the artificial coating layers applied at the solid electrolyte and electrode interfaces have a similar effect of passivating the solid electrolyte. Our newly gained understanding provided general principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries.« less
Escamilla-Pérez, Angel Manuel; Louvain, Nicolas; Boury, Bruno; Brun, Nicolas; Mutin, P Hubert
2018-04-03
Mesoporous TiO 2 -carbon nanocomposites were synthesized using an original non-hydrolytic sol-gel (NHSG) route, based on the reaction of simple ethers (diisopropyl ether or tetrahydrofuran) with titanium tetrachloride. In this atom-economic, solvent-free process, the ether acts not only as an oxygen donor but also as the sole carbon source. Increasing the reaction temperature to 180 °C leads to the decomposition of the alkyl chloride by-product and to the formation of hydrocarbon polymers, which are converted to carbon by pyrolysis under argon. The carbon-TiO 2 nanocomposites and their TiO 2 counterparts (obtained by calcination) were characterized by nitrogen physisorption, XRD, solid state 13 C NMR and Raman spectroscopies, SEM, and TEM. The nanocomposites are mesoporous with surface areas of up to 75 m 2 g -1 and pore sizes around 10 nm. They are composed of aggregated anatase nanocrystals coated by an amorphous carbon film. Playing on the nature of the ether and on the reaction temperature allows control over the carbon content in the nanocomposites. The nature of the ether also influences the size of the TiO 2 crystallites and the morphology of the nanocomposite. To further characterize the carbon coating, the behavior of the carbon-TiO 2 nanocomposites and bare TiO 2 samples toward lithium insertion-deinsertion was investigated in half-cells. This simple NHSG approach should provide a general method for the synthesis of a wide range of carbon-metal oxide nanocomposites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2. Aerial view northeast, State Route 92 bottom left and ...
2. Aerial view northeast, State Route 92 bottom left and State Route 100 center, Brandywine Creek State Park center right, duck pond and reservoir center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE
Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.
The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compoundmore » and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.« less
Linking high harmonics from gases and solids.
Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B
2015-06-25
When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.
Solvent-free, microwave-assisted synthesis of thiophene oligomers via Suzuki coupling.
Melucci, Manuela; Barbarella, Giovanna; Sotgiu, Giovanna
2002-12-13
The purpose of this study was to obtain a rapid, efficient, and environmentally friendly methodology for the synthesis of highly pure thiophene oligomers. The solvent-free, microwave-assisted coupling of thienyl boronic acids and esters with thienyl bromides, using aluminum oxide as the solid support, allowed us to rapidly check the reaction trends on changing times, temperature, catalyst, and base and easily optimize the experimental conditions to obtain the targeted product in fair amounts. This procedure offers a novel, general, and very rapid route to the preparation of soluble thiophene oligomers. Thus, for example, quaterthiophene was obtained in 6 min by reaction of 2-bromo-2,2'-bithiophene with bis(pinacolato)diboron (isolated yield 65%), whereas quinquethiophene was obtained in 11 min by reaction of dibromoterthiophene with thienylboronic acid (isolated yield 74%). The synthesis of new chiral 2,2'-bithiophenes is reported. The detailed analysis of the byproducts of some reactions allowed us to elucidate a few aspects of reaction mechanisms. While the use of microwaves proved to be very convenient for the coupling between conventional thienyl moieties, the same was not true for the coupling of thienyl rings to thienyl-S,S-dioxide moieties. Indeed, in this case, the targeted product was obtained in low yields because of the competitive, accelerated, Diels-Alder reaction that affords a variety of condensation products.
Chemical looping combustion: A new low-dioxin energy conversion technology.
Hua, Xiuning; Wang, Wei
2015-06-01
Dioxin production is a worldwide concern because of its persistence and carcinogenic, teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction, pyrolysis gas oxidized by seven common oxygen carriers, namely, CuO, NiO, CaSO4, CoO, Fe2O3, Mn3O4, and FeTiO3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers (CuO, NiO, Fe2O3, and FeTiO3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. Copyright © 2015. Published by Elsevier B.V.
5. Aerial view west, Adams Dam Road bottom center, State ...
5. Aerial view west, Adams Dam Road bottom center, State Route 100 center, duck pond and reservoir center, State Route 100 center right, State Route 92 below center right, Brandywine Creek State Park center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...
2018-02-15
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles
NASA Astrophysics Data System (ADS)
Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.
2014-04-01
ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.
Nuclear conversion theory: molecular hydrogen in non-magnetic insulators
NASA Astrophysics Data System (ADS)
Ilisca, Ernest; Ghiglieno, Filippo
2016-09-01
The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.
Nuclear conversion theory: molecular hydrogen in non-magnetic insulators
Ghiglieno, Filippo
2016-01-01
The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681
The size effect to O2- -Ce4+ charge transfer emission and band gap structure of Sr2 CeO4.
Wang, Wenjun; Pan, Yu; Zhang, Wenying; Liu, Xiaoguang; Li, Ling
2018-04-24
Sr 2 CeO 4 phosphors with different crystalline sizes were synthesized by the sol-gel method or the solid-state reaction. Their crystalline size, luminescence intensity of O 2- -Ce 4+ charge transfer and energy gaps were obtained through the characterization by X-ray diffraction, photoluminescence spectra, as well as UV-visible diffuse reflectance measurements. An inverse relationship between photoluminescence (PL) spectra and crystalline size was observed when the heating temperature was from 1000°C to 1300°C. In addition, band energy calculated for all samples showed that a reaction temperature of 1200°C for the solid-state method and 1100°C for sol-gel method gave the largest values, which corresponded with the smallest crystalline size. Correlation between PL intensity and crystalline size showed an inverse relationship. Band structure, density of states and partial density of states of the crystal were calculated to analyze the mechanism using the cambrige sequential total energy package (CASTEP) module integrated with Materials Studio software. Copyright © 2018 John Wiley & Sons, Ltd.
The resonant structure of ^18Ne and its relevance in the breakout of the Hot CNO cycle
NASA Astrophysics Data System (ADS)
Almaraz-Calderon, S.; Tan, W.; Aprahamian, A.; Bucher, B.; Gorres, J.; Roberts, A.; Villano, A.; Wiescher, M.; Brune, C.; Heinen, Z.; Massey, T.; Mach, H.; Guray, N.; Guray, R. T.
2009-10-01
In explosive hydrogen burning environments such as Novae and X-ray bursts, temperatures and densities achieved are sufficiently high to bypass the beta decay of the waiting points of the hot CNO cycle by alpha captures, leading to a thermonuclear runaway via the rp-process. One of the two paths to a breakout from the hot CNO cycle is the route starting from ^14O(α,p)^17F followed by ^17F(p,γ)^18Ne and ^18Ne(α,p). The ^14O(α,p) reaction proceeds through resonant states in ^18Ne, making the reaction rate dependent on the excitation energies and spins as well as partial and total widths of these resonances. We used the ^16O(^3He,n) reaction and charged particle-neutron coincidences to measure the structure details of levels in ^18Ne. In particular, the α and proton decay branching ratios via ground state and excited states in ^17F were measured. The analysis of the data will allow us to provide crucial information to be included in the reaction network calculations that could have great impact on the nuclear energy generation and nucleosynthesis that occur in these explosive environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
Pearse, Alexander J.; Schmitt, Thomas E.; Fuller, Elliot J.; ...
2017-04-10
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiO tBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li 2PO 2N between 250 and 300°C. The P/N ratio of the films is always 1, indicative of a particular polymorph ofmore » LiPON which closely resembles a polyphosphazene. Films grown at 300°C have an ionic conductivity of (6.51 ± 0.36)×10 -7 S/cm at 35°C, and are functionally electrochemically stable in the window from 0 to 5.3V vs. Li/Li +. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO 2 as the cathode and Si as the anode operating at up to 1 mA/cm 2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the fabrication and operation of thin film batteries with the thinnest (<40nm) solid state electrolytes yet reported. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.« less
1. Aerial view northnortheast, State Route 92 center left and ...
1. Aerial view north-northeast, State Route 92 center left and State Route 100 on right, duck pond, reservoir and farm complex buildings center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One systemmore » operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.« less
Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials
Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael
2015-07-14
Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.
NASA Astrophysics Data System (ADS)
Zhou, Bo; Zhu, Jun-Jie
2006-03-01
A general and template-free 'disproportionation and reversal' route was developed to synthesize one-dimensional (1D) nanostructures of Te, Se and Se-Te alloys directly from Te or/and Se powders. The products were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and scanning electron microscopy (SEM). Te nanorods and nanowires with a width varying from about 40 nm to about 300 nm, Se nanowires with a width of 60-100 nm and a length of 4-6 µm, and SexTe100-x alloy nanorods with x in a wide range, and with a width of 30-70 nm and an aspect ratio of three to five, were prepared. The mechanism of formation of the nanorods and nanowires and the effects of the experimental conditions, such as solution concentration, cooling rate, solvent nature and heating process, on the morphology and size of the products have been discussed. We believe that this general route and some other proper reversible processes between solid state and solution state can be extended to the transformations from various bulk materials into nanosized materials with various morphologies.
Variational transition state theory: theoretical framework and recent developments.
Bao, Junwei Lucas; Truhlar, Donald G
2017-12-11
This article reviews the fundamentals of variational transition state theory (VTST), its recent theoretical development, and some modern applications. The theoretical methods reviewed here include multidimensional quantum mechanical tunneling, multistructural VTST (MS-VTST), multi-path VTST (MP-VTST), both reaction-path VTST (RP-VTST) and variable reaction coordinate VTST (VRC-VTST), system-specific quantum Rice-Ramsperger-Kassel theory (SS-QRRK) for predicting pressure-dependent rate constants, and VTST in the solid phase, liquid phase, and enzymes. We also provide some perspectives regarding the general applicability of VTST.
Solid-phase synthesis and chemical space analysis of a 190-membered alkaloid/terpenoid-like library
Moura-Letts, Gustavo; DiBlasi, Christine M.; Bauer, Renato A.; Tan, Derek S.
2011-01-01
Alkaloid and terpenoid natural products display an extensive array of chemical frameworks and biological activities. However such scaffolds remain underrepresented in current screening collections and are, thus, attractive targets for the synthesis of natural product-based libraries that access underexploited regions of chemical space. Recently, we reported a systematic approach to the stereoselective synthesis of multiple alkaloid/terpenoid-like scaffolds using transition metal-mediated cycloaddition and cyclization reactions of enyne and diyne substrates assembled on a tert-butylsulfinamide lynchpin. We report herein the synthesis of a 190-membered library of alkaloid/terpenoid-like molecules using this synthetic approach. Translation to solid-phase synthesis was facilitated by the use of a tert-butyldiarylsilyl (TBDAS) linker that closely mimics the tert-butyldiphenysilyl protecting group used in the original solution-phase route development work. Unexpected differences in stereoselectivity and regioselectivity were observed in some reactions when carried out on solid support. Further, the sulfinamide moiety could be hydrolyzed or oxidized efficiently without compromising the TBDAS linker to provide additional amine and sulfonamide functionalities. Principal component analysis of the structural and physicochemical properties of these molecules confirmed that they access regions of chemical space that overlap with bona fide natural products and are distinct from areas addressed by conventional synthetic drugs and drug-like molecules. The influences of scaffolds and substituents were also evaluated, with both found to have significant impacts on location in chemical space and three-dimensional shape. Broad biological evaluation of this library will provide valuable insights into the abilities of natural product-based libraries to access similarly underexploited regions of biological space. PMID:21451137
1991-05-22
for understanding reaction mechanisms responsible for the steady-state behavior and determining the dispersion of rates in cases where inhomogeneities...derivatized by the following procedure. Three grams of the silica was placed in a dry reaction vessel consisting of a three neck flask, addition funnel...to the reaction vessel , taking care to avoid contact with the air. A five-fold molar equivalent excess of ODS (based on the silanol 8 density of the
Detonation Reaction Zones in Condensed Explosives
NASA Astrophysics Data System (ADS)
Tarver, Craig M.
2006-07-01
Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).
Dragulescu-Andrasi, Alina; Miller, L Zane; Chen, Banghao; McQuade, D Tyler; Shatruk, Michael
2016-03-14
Soluble polyphosphide anions were successfully generated in a number of organic solvents by the reaction between shelf-stable red phosphorus and potassium ethoxide. The species were identified by (31)P NMR spectroscopy in solution and by X-ray crystal-structure determination of (Bu4N)2P16 in the solid state. The reaction was scaled up to gram quantities by using a flow-chemistry process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Han, Hongliang; Duan, Dongping; Chen, Siming; Yuan, Peng
2015-10-01
In order to improve the efficiency of slag and iron separation, a new idea of "the separation of slag (solid state) and iron (molten state) in rotary hearth furnace process at lower temperature" is put forward. In this paper, the forming process of iron nuggets has been investigated. Based on those results, the forming mechanisms and influencing factors of iron nugget at low temperature are discussed experimentally using an electric resistance furnace simulating a rotary hearth furnace process. Results show that the reduction of iron ore, carburization of reduced iron, and the composition and quantity of slag are very important for producing iron nuggets at lower temperature. Reduction reaction of carbon-containing pellets is mainly at 1273 K and 1473 K (1000 °C and 1200 °C). When the temperature is above 1473 K (1200 °C), the metallization rate of carbon-containing pellets exceeds 93 pct, and the reduction reaction is substantially complete. Direct carburization is the main method for carburization of reduced iron. This reaction occurs above 1273 K (1000 °C), with carburization degree increasing greatly at 1473 K and 1573 K (1200 °C and 1300 °C) after particular holding times. Besides, to achieve the "slag (solid state) and iron (molten state) separation," the melting point of the slag phase should be increased. Slag (solid state) and iron (molten state) separation can be achieved below 1573 K (1300 °C), and when the holding time is 20 minutes, C/O is 0.7, basicity is less than 0.5 and a Na2CO3 level of 3 pct, the recovery rate of iron can reach 90 pct, with a proportion of iron nuggets more than 3.15 mm of nearly 90 pct. This study can provide theoretical and technical basis for iron nugget production.
Lowering the synthesis temperature of Y3Fe5O12 by surfactant assisted solid state reaction
NASA Astrophysics Data System (ADS)
Xue, Fenghua; Huang, Ju; Li, Tianrui; Wang, Zifan; Zhou, Xiaochao; Wei, Lujun; Gao, Baizhi; Zhai, Ya; Li, Qi; Xu, Qingyu; Du, Jun
2018-01-01
There is an urgent technical requirement of lowering the sintering temperature of Y3Fe5O12 (YIG) for its practical applications. In this paper, a modified solid state reaction method is reported by adding the surfactant of cetyltrimethylammonium bromide (CTAB). A high sintering temperature of 1200 °C is required for the formation of YIG phase without adding CTAB, which is effectively decreased to 1050 °C by adding CTAB. The morphology studies show that the sintering temperature plays the main role in the crystal growth and excludes the possible contribution of CTAB. The prepared YIG ceramic samples show soft ferromagnetic properties, with coercivity of only 21.2 Oe for the sample prepared with CTAB at 1050 °C, which decreases with increasing sintering temperature. The main role of adding CTAB is preventing the agglomeration of ball milled ultrafine source particles, which may facilitate the interdiffusion among them and promote the reaction at lower temperatures. Furthermore, the Gilbert damping constant is significantly reduced for YIG prepared by adding CTAB, which is one order smaller than that without CTAB.
Constales, Denis; Yablonsky, Gregory S.; Wang, Lucun; ...
2017-04-25
This paper presents a straightforward and user-friendly procedure for extracting a reactivity characterization of catalytic reactions on solid materials under non-steady-state conditions, particularly in temporal analysis of products (TAP) experiments. The kinetic parameters derived by this procedure can help with the development of detailed mechanistic understanding. The procedure consists of the following two major steps: 1) Three “Laplace reactivities” are first determined based on the moments of the exit flow pulse response data; 2) Depending on a select kinetic model, kinetic constants of elementary reaction steps can then be expressed as a function of reactivities and determined accordingly. In particular,more » we distinguish two calculation methods based on the availability and reliability of reactant and product data. The theoretical results are illustrated using a reverse example with given parameters as well as an experimental example of CO oxidation over a supported Au/SiO 2 catalyst. The procedure presented here provides an efficient tool for kinetic characterization of many complex chemical reactions.« less
Activities of the Solid State Physics Research Institute
NASA Technical Reports Server (NTRS)
1985-01-01
Topics addressed include: muon spin rotation; annealing problems in gallium arsenides; Hall effect in semiconductors; computerized simulation of radiation damage; single-nucleon removal from Mg-24; and He-3 reaction at 200 and 400 MeV.
The alcohol-sensing behaviour of SnO2 nanorods prepared by a facile solid state reaction
NASA Astrophysics Data System (ADS)
Gao, F.; Ren, X. P.; Wan, W. J.; Zhao, Y. P.; Li, Y. H.; Zhao, H. Y.
2017-02-01
SnO2 nanorods with the range of 12-85 nm in diameter were fabricated by a facile solid state reaction in the medium of NaCl-KCl mixture at room temperature and calcined at 600, 680, 760 and 840 oC, respectively. The XRD, TEM and XPS were employed to characterize the structure and morphology of the SnO2 nanorods. The influence of the calcination temperature on the gas sensing behaviour of the SnO2 nanorods with different diameter was investigated. The result showed that all the sensors had good response to alcohol. The response of the gracile nanorods prepared at a low calcined temperature demonstrated significantly better than the thick nanorods prepared at a high calcined temperature. The mechanism was attributed to the nonstoichiometric ratio of Sn/O and larger surface area of the gracile nanorods to enhance the oxygen surface adsorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei; Rosser, Ethan W.; Zhang, Di
Hydrogen polysulfides (H 2S n, n>1) have been recently suggested to be the actual signalling molecules that involved in sulfur-related redox biology. However the exact mechanisms of H 2S n are still poorly understood and a major hurdle in this field is the lack of reliable and convenient methods for H 2S n detection. In this work we report a unique ring-opening reaction of N-sulfonylaziridine by Na 2S 2 under mild conditions. Based on this reaction a novel H 2S n-specific fluorescent probe (AP) was developed. The probe showed high sensitivity and selectivity for H 2S n. Notably, the fluorescentmore » turn-on product, i.e. compound 1, exhibited excellent two-photon photophysical properties and a large Stokes shift. Moreover, the high solid state luminescent efficiency of compound 1 makes it a potential candidate for organic emitters and solid-state lighting devices.« less
Chapter 28: Nanomaterials for Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurst, Katherine E; Luther, Joseph M; Ban, Chunmei
2017-01-02
A wide variety of nanomaterials have been applied to energy related applications, including nanofibers, nanocrystalline materials, nanoparticles, and thin film nanocoatings. Solid-state lighting offers significant advantages in energy efficiency compared to traditional lighting technologies. The potential for nanostructured solid-state lighting devices is excellent as it enjoys significant economic drivers in energy efficiency. Fuel cells convert chemical energy to electrical energy through electrochemical reactions at an anode and cathode. The conversion of biomass to fuels and chemicals offers great potential to reduce energy dependence on petroleum and reduce green house gas emissions. Batteries involve the production and storage of electrical charge,more » the transfer of cations and electrical current, each based on electrochemical reactions and chemical reactants. Battery performance relies on the complex processes and factors that affect the transport of charge in the reactants, and across the interface between the chemical phases.« less