Sample records for solid-state sintering process

  1. Effect of Process Parameter on Barium Titanate Stannate (BTS) Materials Sintered at Low Sintering

    NASA Astrophysics Data System (ADS)

    Shukla, Alok; Bajpai, P. K.

    2011-11-01

    Ba(Ti1-xSnx)O3 solid solutions with (x = 0.15, 0.20, 0.30 and 0.40) are synthesized using conventional solid state reaction method. Formation of solid solutions in the range 0 ≤ x ≤0.40 is confirmed using X-ray diffraction technique. Single phase solid solutions with homogeneous grain distribution are observed at relatively low sintering by controlling process parameters viz. sintering time. Composition at optimized temperature (1150 °C) sintered by varying the sintering time, stabilize in cubic perovskite phase. The % experimental density increase with increasing the time of sintering instead of increasing sintering temperature. The lattice parameter increases by increasing the tin composition in the material. This demonstrates that process parameter optimization can lead to single phase at relatively lower sintering-a major advantage for the materials used as capacitor element in MLCC.

  2. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond

    NASA Astrophysics Data System (ADS)

    Zhu, Hongzheng; Liu, Jian

    2018-07-01

    Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.

  3. 2D all-solid state fabric supercapacitor fabricated via an all solution process for use in smart textiles

    NASA Astrophysics Data System (ADS)

    Jang, Yunseok; Jo, Jeongdai; Woo, Kyoohee; Lee, Seung-Hyun; Kwon, Sin; Kim, Kwang-Young; Kang, Dongwoo

    2017-05-01

    We propose a method to fabricate a supercapacitor for smart textiles using silver (Ag) nanoparticle (NP) ink, simple spray patterning systems, and intense pulsed light (IPL) sintering systems. The Ag NP current collectors provided as high conductivity as the metal current collectors. The spray patterning technique is useful for fabricating supercapacitors because it is simple, fast, and cheap. IPL systems reduced the sintering temperature of Ag NPs and prevented thermal damage to the textiles during the Ag NP sintering process. The two-dimensional (2D) all-solid state fabric supercapacitor with an interdigitated configuration, developed here, exhibited a specific capacitance of 25.7 F/g and an energy density of 1.5 Wh/kg at a power density of 64.3 W/kg. These results support the utility of our proposed method in the development of energy textiles.

  4. The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xialu; Rechtin, Jack; Olevsky, Eugene

    Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less

  5. The Fabrication of All-Solid-State Lithium-Ion Batteries via Spark Plasma Sintering

    DOE PAGES

    Wei, Xialu; Rechtin, Jack; Olevsky, Eugene

    2017-09-14

    Spark plasma sintering (SPS) has been successfully used to produce all-solid-state lithium-ion batteries (ASSLibs). Both regular and functionally graded electrodes are implemented into novel three-layer and five-layer battery designs together with solid-state composite electrolyte. The electrical capacities and the conductivities of the SPS-processed ASSLibs are evaluated using the galvanostatic charge-discharge test. Experimental results have shown that, compared to the three-layer battery, the five-layer battery is able to improve energy and power densities. Scanning electron microscopy (SEM) is employed to examine the microstructures of the batteries especially at the electrode–electrolyte interfaces. It reveals that the functionally graded structure can eliminate themore » delamination effect at the electrode–electrolyte interface and, therefore, retains better performance.« less

  6. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  7. Optimal Design of Material and Process Parameters in Powder Injection Molding

    NASA Astrophysics Data System (ADS)

    Ayad, G.; Barriere, T.; Gelin, J. C.; Song, J.; Liu, B.

    2007-04-01

    The paper is concerned with optimization and parametric identification for the different stages in Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders part by solid state diffusion. In the first part, one describes an original methodology to optimize the process and geometry parameters in injection stage based on the combination of design of experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometeric curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization of material and process parameters for manufacturing a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  8. Process for making dense thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  9. A Fully Coupled Simulation and Optimization Scheme for the Design of 3D Powder Injection Molding Processes

    NASA Astrophysics Data System (ADS)

    Ayad, G.; Song, J.; Barriere, T.; Liu, B.; Gelin, J. C.

    2007-05-01

    The paper is concerned with optimization and parametric identification of Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders parts by solid state diffusion. In the first part, one describes an original methodology to optimize the injection stage based on the combination of Design Of Experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometer curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization for manufacturing of a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  10. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process

    NASA Astrophysics Data System (ADS)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-01

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  11. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  12. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  13. Sintering of Lead-Free Piezoelectric Sodium Potassium Niobate Ceramics

    PubMed Central

    Malič, Barbara; Koruza, Jurij; Hreščak, Jitka; Bernard, Janez; Wang, Ke; Fisher, John G.; Benčan, Andreja

    2015-01-01

    The potassium sodium niobate, K0.5Na0.5NbO3, solid solution (KNN) is considered as one of the most promising, environment-friendly, lead-free candidates to replace highly efficient, lead-based piezoelectrics. Since the first reports of KNN, it has been recognized that obtaining phase-pure materials with a high density and a uniform, fine-grained microstructure is a major challenge. For this reason the present paper reviews the different methods for consolidating KNN ceramics. The difficulties involved in the solid-state synthesis of KNN powder, i.e., obtaining phase purity, the stoichiometry of the perovskite phase, and the chemical homogeneity, are discussed. The solid-state sintering of stoichiometric KNN is characterized by poor densification and an extremely narrow sintering-temperature range, which is close to the solidus temperature. A study of the initial sintering stage revealed that coarsening of the microstructure without densification contributes to a reduction of the driving force for sintering. The influences of the (K + Na)/Nb molar ratio, the presence of a liquid phase, chemical modifications (doping, complex solid solutions) and different atmospheres (i.e., defect chemistry) on the sintering are discussed. Special sintering techniques, such as pressure-assisted sintering and spark-plasma sintering, can be effective methods for enhancing the density of KNN ceramics. The sintering behavior of KNN is compared to that of a representative piezoelectric lead zirconate titanate (PZT). PMID:28793702

  14. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  15. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  16. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  17. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  18. Electric-Loading Enhanced Kinetics in Oxide Ceramics: Pore Migration, Sintering and Grain Growth: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, I-Wei

    Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully densemore » ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding of flash sintering, which is a rapid sintering process initiated by a large electrical loading.« less

  19. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process.

    PubMed

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-25

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  20. Innovative processing of dense LSGM electrolytes for IT-SOFC's

    NASA Astrophysics Data System (ADS)

    Rambabu, B.; Ghosh, Samrat; Zhao, Weichang; Jena, Hrudananda

    This paper reports for the first time the attempted synthesis of SrO- and MgO-doped LaGaO 3 (La 1- xSr xGa 1- yMg yO 3-0.5(x+ y), LSGM) perovskite by an aqueous 'regenerative' solution route. This novel technique enabled recycling of the undesired product and subsequently yielded product with much better phase purity and density than that obtained from the solid-state route. La 0.8Sr 0.2Ga 0.85Mg 0.15O 2.825 (LSGM-2015) and LaGaO 3 were prepared using both the regenerative sol-gel (RSG) and conventional solid-state route at 1400 °C. Series of La 0.8Sr 0.2Ga 0.83Mg 0.17O 2.815 (LSGM-2017) pellets were also prepared by the RSG method at different sintering temperature (1200-1500 °C) and time. The effect of conventional and microwave sintering of samples obtained from both solid-state and regenerative route was also investigated. Microwave heating was carried out using SiC as a microwave susceptor. The LSGM pellets prepared by using different synthetic methods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and pellet density was determined by pycnometry. The LSGM-2015 prepared by RSG route exhibited conductivity σ t = 0.066 and 0.029 S cm -1 at 800 and 700 °C, respectively, and activation energy of the bulk, grain-boundary, and total are E b = 0.97 eV, E gb = 1.03 eV and E t = 1.01 eV, respectively. The sintering temperature severely affected the grain size (<0.1-10 μm) and also the grain-boundary resistance (3-175 kΩ). The unique aspect of this RSG technique is that the final product can be recycled which makes the process cost effective and time saving compared to the solid-state ceramic technique and this technique would allow optimization of processing parameters in a cost effective and time saving manner for obtaining well sintered LSGM as an electrolyte for IT-SOFC's.

  1. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12.

    PubMed

    Sakamoto, Jeff; Rangasamy, Ezhiylmurugan; Kim, Hyunjoung; Kim, Yunsung; Wolfenstine, Jeff

    2013-10-25

    A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.

  2. Microstructural optimization of solid-state sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These parts exhibited higher density and finer microstructure than a commercially-available sintered SiC from Saint-Gobain (Hexoloy Enhanced, 3.153 g/cm3 and d50 = 4.837 mum). Due to the optimized microstructure, Verco SiC parts exhibited the highest Vickers (2628.30 +/- 44.13 kg/mm 2) and Knoop (2098.50 +/- 24.8 kg/mm2) hardness values of any SiC ceramic, and values equal to those of the "gold standard" hot-pressed boron carbide (PAD-B4C). While the fracture toughness of hot-pressed SiC materials (˜4.5 MPa m ) are almost double that of Verco SiC (2.4 MPa m ), Verco SiC is a better performing ballistic product, implying that the higher hardness of the theoretically-dense, clean-grain boundary, fine-grained SiC is the defining mechanical property for optimization of ballistic behavior.

  3. Sintering Theory and Practice

    NASA Astrophysics Data System (ADS)

    German, Randall M.

    1996-01-01

    Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about--both in theory and in practice What is sintering? We see the end product of this thermal process all around us--in manufactured objects from metals, ceramics, polymers, and many compounds. From a vast professional literature, Sintering Theory and Practice emerges as the only comprehensive, systematic, and self-contained volume on the subject. Covering all aspects of sintering as a processing topic, including materials, processes, theories, and the overall state of the art, the book Offers numerous examples, illustrations, and tables that detail actual processing cycles, and that stress existing knowledge in the field Uses the specifics of various consolidation cycles to illustrate the basics Leads the reader from the fundamentals to advanced topics, without getting bogged down in various mathematical disputes over treatments and measurements Supports the discussion with critically selected references from thousands of sources Examines the sintering behavior of a wide variety of engineered materials--metals, alloys, oxide ceramics, composites, carbides, intermetallics, glasses, and polymers Guides the reader through the sintering processes for several important industrial materials and demonstrates how to control these processes effectively and improve present techniques Provides a helpful reference for specific information on materials, processing problems, and concepts For practitioners and researchers in ceramics, powder metallurgy, and other areas, and for students and faculty in materials science and engineering, this book provides the know-how and understanding crucial to many industrial operations, offers many ideas for further research, and suggests future applications of this important technology. This book offers an unprecedented opportunity to explore sintering in both practical and theoretical terms, whether at the lab or in real-world applications, and to acquire a broad, yet thorough, understanding of this important technology.

  4. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    PubMed

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  5. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  6. Mechanochemical stabilization and sintering of nanocrystalline the (ZrO2)0.97 (Y2O3)0.03 solid solution from pure oxides

    NASA Astrophysics Data System (ADS)

    Rendtorff, N. M.; Suárez, G.; Sakka, Y.; Aglietti, E. F.

    2011-10-01

    The mechanochemical activation processing has proved to be an effective technique to enhance a solid-state reaction at relatively low temperatures. In such a process, the mechanical effects of milling, such as reduction of particle size and mixture homogenization, are accompanied by chemical effects, such as partial decomposition of salts or hydroxides resulting in very active reactants. The objective of the present work is to obtain (ZrO2)0.97(Y2O3)0.03 nanocrystalline tetragonal solid solution powders directly using a high energy milling on a mixture of the pure oxides. A second objective is to evaluate the efficiency of the processing proposed and to characterize both textural and structural evolution of the mixtures during the milling processes and throughout posterior low temperature treatments. The Textural and structural evolution were studied by XRD analysis, specific area measurements (BET) and SEM. Firstly a decrease of the crystallinity of the reactants was observed, followed by the disappearance of Y2O3 diffraction peaks and the partial appearance of the tetragonal phase at room temperature. The solid solution proportion was increased with the high energy milling time, obtaining complete stabilization of the tetragonal solid solution with long milling treatments (60 min).The obtained powders were uniaxially pressed and sintered at different temperatures (600-1400°C) the influence of the milling time was correlated with the sinterization degree and final crystalline composition of the materials. Finally, fully stabilized nanocrystalline zirconia materials were obtained satisfactorily by the proposed method.

  7. Effect of Starch on Sintering Behavior for Fabricating Porous Cordierite Ceramic

    NASA Astrophysics Data System (ADS)

    Li, Ye; Cao, Wei; Gong, Lunlun; Zhang, Ruifang; Cheng, Xudong

    2016-10-01

    Porous cordierite ceramics were prepared with starch as pore-forming agent by solid-state method. The green bodies were sintered at 1,100-1,400 °C for 2 h. The characterization was focused on thermal analysis, phase evolution, sintering behavior, porosity and micro-structural changes. The results show that cordierite becomes the main crystallization phase at 1,200 °C. The shrinkage behavior shows the most obvious dependence on the sintering temperature and starch content, and it can be divided into three stages. Moreover, the open porosity increases with the increase of starch content, but the pore-forming effectivity decreases. Nevertheless, compared with the open porosity curves, the bulk density curves are more in line with the linear rule. The microphotographs show the densification process with the sintering temperature and the variation of pore connectivity with the starch content.

  8. Sintered Intermetallic Reinforced 434L Ferritic Stainless Steel Composites

    NASA Astrophysics Data System (ADS)

    Upadhyaya, A.; Balaji, S.

    2009-03-01

    The present study examines the effect of aluminide (Ni3Al, Fe3Al) additions on the sintering behavior of ferritic 434L stainless steels during solid-state sintering (SSS) and supersolidus liquid-phase sintering (SLPS). 434L stainless steel matrix composites containing 5 and 10 wt pct of each aluminide were consolidated at 1200 °C (SSS) and 1400 °C (SLPS). The effects of sintering and aluminide additions on the densification, microstructural evolution, mechanical, tribological, and corrosion behavior of sintered ferritic (434L) stainless steels were investigated. The performances of the 434L-aluminide composites were compared with the straight 434L stainless steels processed at similar conditions. Supersolidus sintering resulted in significant improvement in densification, mechanical, wear, and corrosion resistance in both straight 434L and 434L-aluminide composites. Fe3Al additions to 434L stainless steels result in improved wear resistance without significant degradation of corrosion resistance in 3.56 wt pct NaCl solution.

  9. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  10. Fabrication of Ce3+ doped Gd3Ga3Al2O12 ceramics by reactive sintering method

    NASA Astrophysics Data System (ADS)

    Ye, Yong; Liu, Peng; Yan, Dongyue; Xu, Xiaodong; Zhang, Jian

    2017-09-01

    Ce3+ doped Gd3Ga3Al2O12 (Ce:GGAG) ceramics were fabricated by solid state reactive sintering method in this study. The ceramics were pre-sintered in normal muffle furnace in air at various temperature range from 1410 °C to 1550 °C for 10 h and post-treated by hot isostatic press at 1400 °C/2 h in 200 MPa Ar. The phase and microstructure evolution of Ce: GGAG samples during the densification process were investigated by X-ray diffraction and scanning electron microscope. Pure GGAG phase appeared with the temperature increased to 1200 °C. The fully dense and translucent GGAG ceramics were fabricated by pre-sintering at 1450 °C and followed by HIP treatment.

  11. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  12. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Warner, K.A.

    1999-06-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  13. Fabrication and thermoelectric properties of n-type (Sr0.9Gd0.1)TiO3 oxides

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Qin, Xiaoying; Liu, Yongfei; Xin, Hongxing; Zhang, Jian; Li, Di; Song, Chunjun; Guo, Guanglei; Dou, Yunchen; Zou, Tianhua

    2014-02-01

    The n-type oxides (Sr0.9Gd0.1)TiO3 (SGTO) have been successfully prepared via a sol-gel process followed by solid-state sintering. The effects of sintering temperature on the thermoelectric (TE) properties of the SGTO samples have been investigated. The Seebeck coefficient showed no obvious difference, while the electrical conductivity increased with increasing sintering temperature, benefiting from an enhancement of densification. The maximum power factor (PF) value, 20.5μW/K2cm at 370 K in the metallic region, was observed for the sample sintered at 1748 K. As a result, the peak figure of merit (ZT) values for the samples sintered at higher than 1673 K were in the range of 0.28-0.30. All the results indicate that such synthetic method provides a simple and effective way to prepare TE oxides.

  14. Influence of the sintering temperature on the electrical properties of Ce-doped WO3 ceramics prepared from nano-powders

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Chen, Han-Jun; Wang, Yu; Li, De-Zhu; Li, Tong-Ye; Zhao, Yong

    2007-04-01

    Using a nm-level powder fabricated by a wet chemical method as precursor, the CeO2-doped WO3 ceramics were prepared by the conventional solid state reaction at sintering temperatures from 600 to 1100 °C. The x-ray diffraction analysis reveals the coexistence of different WO3 phases in the samples sintered at temperatures below 900 °C, whereas a single phase appears in the samples sintered above 1000 °C. No new Ce-W compound appears. As the sintering temperature increases, the electrical properties of the samples display an interesting transformation from linear to nonlinear behaviour. The measurements of scanning electron microscope, complex impedance and electrical stability indicate that a lot of grain boundary regions in the samples sintered at low temperatures strongly influences the electrical transportation. Therefore, the electrical nonlinearity is due to a basic process controlled by the back-to-back Schottky barriers at grain boundaries with suitable thickness as well as the coexistence of phases.

  15. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the chromium site, we could sinter the materials below 1400 C. The doping concentrations were adjusted so that the thermal expansion coefficient matched that of the zirconia electrolyte. Also, the investigation was focused on stoichiometric compositions so that the materials would have better stability. Co-sintering and chemical compatibility with zirconia electrolyte were examined by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy (line scanning and dot map). The results showed that the materials bond well, but do not react, with zirconia electrolyte. The electric conductivity of the materials measured at 900 C in air was about 20 S/cm.

  16. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC showed signs of liquid phase sintering and were shown to be largely solid solutions. Pre-compaction of mixed carbide powders prior to sintering was shown to be necessary to achieve high densities. Hypostoichiometric, samples processed at 2500 K exhibited only the initial stage of sintering and solid solution formation. Based on these findings, a suggested processing methodology is proposed for producing high density, solid solution, mixed carbide fuels. Pseudo-binary, refractory carbide samples hot pressed at 3100 K and 6 MPa showed comparable densities (approximately 85% of the theoretical value) to samples processed by cold pressing and sintering at temperatures of 2800 K.

  17. Effect of microwave-assisted sintering on dielectric properties of CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Rani, Suman; Ahlawat, Neetu; Punia, R.; Kundu, R. S.; Ahlawat, N.

    2016-05-01

    In this present work, CaCu3Ti4O12 (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It was observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.

  18. On the microstructure analysis of FSW joints of aluminium components made via direct metal laser sintering

    NASA Astrophysics Data System (ADS)

    Scherillo, Fabio; Astarita, Antonello; di Martino, Daniela; Contaldi, Vincenzo; di Matteo, Luca; di Petta, Paolo; Casarin, Renzo; Squillace, Antonino; Langella, Antonio

    2017-10-01

    Additive Manufacturing (AM), applied to metal industry, is a family of processes that allow complex shape components to be realized from raw materials in the form of powders. The compaction of the powders can be achieved by local melting of the powder bed or by solid state sintering. Direct Metal Laser Sintering (DMLS) is an additive manufacturing process in which a focalized laser beam is the heat source that allows the powders to be compacted. By DMLS it is possible to realize complex shape components. One of the limits of DMLS, as for every additive layer manufacturing techniques, is the unfeasibility to realize large dimension parts. Due to this limit the study of joining process of parts made via ALM is of great interest. One of the most promising options is the Friction Stir Welding (FSW), a solid state welding technique that has been proven to be very effective in the welding of metals difficult to weld, above all aluminium alloys. Since FSW is a solid-state technique, the microstructure of the various zone of the weld bead depends not only by the process itself but also by the parent microstruct ure of the parts to be welded. Furthermore, parts made of aluminium alloy via DMLS have a particular microstructure that is the result of repeated severe thermal cycles. In the present work the authors, starting from the description of the parent microstructure of parts made of AlSi10Mg aluminium alloy, study the microstructure evolution occurred within the joint made by Friction Stir Welding, analysing in details the microstructure of the main well recognized zone of the weld bead. The structure of the parent material is characterized by the presence of melting pools with a very fine microstructure. In the joint the recrystallization, the grain refinement and, above all, the redistribution of intermetallic phases occurs, resulting in an homogenization of the microstructure and in an increase of micro hardness.

  19. Irradiation resistance of silicon carbide joint at light water reactor–relevant temperature

    DOE PAGES

    Koyanagi, T.; Katoh, Y.; Kiggans, J. O.; ...

    2017-03-10

    We fabricated and irradiated monolithic silicon carbide (SiC) to SiC plate joints with neutrons at 270–310 °C to 8.7 dpa for SiC. The joining methods included solid state diffusion bonding using titanium and molybdenum interlayers, SiC nanopowder sintering, reaction sintering with a Ti-Si-C system, and hybrid processing of polymer pyrolysis and chemical vapor infiltration (CVI). All the irradiated joints exhibited apparent shear strength of more than 84 MPa on average. Significant irradiation-induced cracking was found in the bonding layers of the Ti and Mo diffusion bonds and Ti-Si-C reaction sintered bond. Furthermore, the SiC-based bonding layers of the SiC nanopowdermore » sintered and hybrid polymer pyrolysis and CVI joints all showed stable microstructure following the irradiation.« less

  20. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation

    PubMed Central

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R.

    2014-01-01

    Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach. PMID:28788153

  1. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation.

    PubMed

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R

    2014-08-06

    Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

  2. Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte

    NASA Astrophysics Data System (ADS)

    Yu, Shicheng; Mertens, Andreas; Gao, Xin; Gunduz, Deniz Cihan; Schierholz, Roland; Benning, Svenja; Hausen, Florian; Mertens, Josef; Kungl, Hans; Tempel, Hermann; Eichel, Rüdiger-A.

    2016-09-01

    A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a sol-gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77gṡcm-3) with an ionic conductivity of 1.88×10-4 Sṡcm-1 (at 30∘C) was reached at a sintering temperature of 1100∘C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000∘C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.

  3. SINTERING AND SULFATION OF CALCIUM SILICATE-ALUMINATE

    EPA Science Inventory

    The effect of sintering on the reactivity of solids at high temperature was studied. The nature of the interaction was studied with calcium silicate-aluminate reacting with SO2 between 665 and 800 C. The kinetics of the sintering and sulfation processes were measured independentl...

  4. Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Heimann, P. J.

    2004-01-01

    The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.

  5. Effects of the addition of municipal solid waste incineration fly ash on the behavior of polychlorinated dibenzo-p-dioxins and furans in the iron ore sintering process.

    PubMed

    Min, Yi; Liu, Chengjun; Shi, Peiyang; Qin, Chongda; Feng, Yutao; Liu, Baichen

    2018-04-11

    Raw materials were co-sintered with municipal solid waste incineration (MSWI) fly ash through iron ore sintering to promote the safe treatment and utilization of MSWI fly ash. To assess the feasibility of this co-sintering method, in this study, the effects of the addition of MSWI fly ash on the formation and emission of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) were estimated via iron ore sintering pot experiments. During co-sintering, most of the PCDD/Fs in the added MSWI fly ash were decomposed and transformed into PCDD/Fs associated with iron sintering, and the concentrations of lower- and mid-chlorinated congeners increased. As there was a sufficient chlorine source and the sintering bed permeability was decreased by the addition of MSWI fly ash, the PCDD/F concentration in the exhaust gas increased. The mass emission of PCDD/Fs decreased; however, the emission of toxic PCDD/Fs increased beyond the total emissions from the independent MSW incineration and iron ore sintering processes due to the transformation of PCDD/F congeners. The co-sintering may be an important solution after technological improvements in the flue gas cleaning system and PCDD/F formation inhibition procedures. Copyright © 2018. Published by Elsevier Ltd.

  6. Synthesis and photocatalytic activity of sepiolite supportednano-TiO2 composites prepared by a mild solid-state sintering process

    NASA Astrophysics Data System (ADS)

    Liao, L. M.; Wang, Z. Q.; Liang, H.; Feng, J.; Zhang, D.

    2016-08-01

    Supported nano-TiO2photocatalysts play an important role in water environment restoration because of their potential application to photocatalytic degradation of organic contaminants in waste water. With sepiolite as the support, the nano-TiO2/sepiolite composite photocatalysts were synthesized by an easily operated and mild solid-state sintering process.The microstructureand photocatalytic property of the sepiolite supportednano-TiO2 composites were characterized and analyzed by X-ray diffraction spectroscopy, UV-Visible spectroscopy and fluorescence spectroscopy. In addition, the influences of calcination temperature and load ratios on the photocatalytic activity of sepiolite supported nano-TiO2 composites were studied.The results indicated that appropriate ratios of sepiolite supports to nano-TiO2contributed to uniform dispersion of nanoparticles, and enhanced the absorption ability within the UV-Vis range, and consequently increased the photocatalytic activity of the composites.Under the preparation conditions of 90 wt. % TiO2 loading and calcinated at 400 °C, a maximum in photocatalytic activity ofnano-TiO2 sepiolite composite was obtained.

  7. A new ferroelectric solid solution system of LaCrO 3-BiCrO 3

    NASA Astrophysics Data System (ADS)

    Chen, J. I. L.; Kumar, M. Mahesh; Ye, Z.-G.

    2004-04-01

    A new perovskite solid solution system of (1- x)LaCrO 3- xBiCrO 3 has been prepared by conventional solid-state reaction and sintering processes at 1200°C in a sealed Pt tube or a Bi 2O 3-rich environment. A clean orthorhombic phase of LaCrO 3-type structure is established at room temperature for compositions with 0⩽ x⩽0.35. The relative density, lattice parameters, sintering mechanism, microstructure and ferroelectricity of the compounds are investigated. The substitution of Bi 2O 3 for La 2O 3 is found to decrease the unit cell volume and increase the grain size of the ceramics. The relative density of the ceramics sintered at 1200°C is significantly improved from 40% for LaCrO 3 up to about 90% for La 0.65Bi 0.35CrO 3 through a liquid phase sintering mechanism. The ferroelectricity is revealed in La 1- xBi xCrO 3 with 0.1⩽ x⩽0.35 by dielectric hysteresis loops displayed at 77 K. The remnant polarization is found to increase with increasing Bi 3+ content. The origin of the ferroelectricity is attributed to the structural distortion induced by the stereochemically active Bi 3+ ion on the A site.

  8. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Hallopeau, Leopold; Bregiroux, Damien; Rousse, Gwenaëlle; Portehault, David; Stevens, Philippe; Toussaint, Gwenaëlle; Laberty-Robert, Christel

    2018-02-01

    Li1.3Al0.3Ti1.7(PO4)3 (LATP) materials are made of a three-dimensional framework of TiO6 octahedra and PO4 tetrahedra, which provides several positions for Li+ ions. The resulting high ionic conductivity is promising to yield electrolytes for all-solid-state Li-ion batteries. In order to elaborate dense ceramics, conventional sintering methods often use high temperature (≥1000 °C) with long dwelling times (several hours) to achieve high relative density (∼90%). In this work, an innovative synthesis and processing approach is proposed. A fast and easy processing technique called microwave-assisted reactive sintering is used to both synthesize and sinter LATP ceramics with suitable properties in one single step. Pure and crystalline LATP ceramics can be achieved in only 10 min at 890 °C starting from amorphous, compacted LATP's precursors powders. Despite a relative density of 88%, the ionic conductivity measured at ambient temperature (3.15 × 10-4 S cm-1) is among the best reported so far. The study of the activation energy for Li+ conduction confirms the high quality of the ceramic (purity and crystallinity) achieved by using this new approach, thus emphasizing its interest for making ion-conducting ceramics in a simple and fast way.

  9. Fabrication of Fe1.1Se0.5Te0.5 bulk by a high energy ball milling technique

    NASA Astrophysics Data System (ADS)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2017-11-01

    Fe1.1Se0.5Te0.5 superconducting bulks were successfully synthesized by a high energy ball milling (HEBM) aided sintering technique. Two advantages of this new technique have been revealed compared with traditional solid state sintering method. One is greatly increased the density of sintered bulks. It is because the precursor powders with β-Fe(Se, Te) and δ-Fe(Se, Te) were obtained directly by the HEBM process and without formation of liquid Se (and Te), which could avoid the huge volume expansion. The other is the obvious decrease of sintering temperature and dwell time due to the effective shortened length of diffusion paths. The superconducting critical temperature Tc of 14.2 K in our sample is comparable with those in previous reports, and further optimization of chemical composition is on the way.

  10. Densification of LSGM electrolytes using activated microwave sintering

    NASA Astrophysics Data System (ADS)

    Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.

    Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).

  11. Effect of microwave-assisted sintering on dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Suman, E-mail: sumanranigju@gmail.com; Ahlawat, Neetu; Punia, R.

    2016-05-23

    In this present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It wasmore » observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Chen, Yan; Hood, Zachary D.

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less

  13. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?

    NASA Astrophysics Data System (ADS)

    de la Torre-Gamarra, Carmen; Appetecchi, Giovanni Battista; Ulissi, Ulderico; Varzi, Alberto; Varez, Alejandro; Passerini, Stefano

    2018-04-01

    Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.

  15. Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors

    NASA Astrophysics Data System (ADS)

    Yi, Eongyu; Wang, Weimin; Kieffer, John; Laine, Richard M.

    2017-06-01

    Cubic-Li7La3Zr2O12 (LLZO) is regarded as one of the most promising solid electrolytes for the construction of inherently safe, next generation all-solid-state Li batteries. Unfortunately, sintering these materials to full density with controlled grain sizes, mechanical and electrochemical properties relies on energy and equipment intensive processes. In this work, we elucidate key parameters dictating LLZO densification by tracing the compositional and structural changes during processing calcined and ball-milled Al3+ doped LLZO powders. We find that the powders undergo ion (Li+/H+) exchange during room temperature processing, such that on heating, the protonated LLZO lattice collapses and crystallizes to its constituent oxides, leading to reaction driven densification at < 1000 °C, prior to sintering of LLZO grains at higher temperatures. It is shown that small particle sizes and protonation cannot be decoupled, and actually aid densification. We conclude that using fully decomposed nanoparticle mixtures, as obtained by liquid-feed flame spray pyrolysis, provides an ideal approach to use high surface and reaction energy to drive densification, resulting in pressureless sintering of Ga3+ doped LLZO thin films (25 μm) at 1130 °C/0.3 h to ideal microstructures (95 ± 1% density, 1.2 ± 0.2 μm average grain size) normally accessible only by pressure-assisted sintering. Such films offer both high ionic conductivity (1.3 ± 0.1 mS cm-1) and record low ionic area specific resistance (2 Ω cm2).

  16. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibilitymore » of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.« less

  17. Monoclinic β-Li2TiO3 nanocrystalline particles employing novel urea assisted solid state route: Synthesis, characterization and sintering behavior

    NASA Astrophysics Data System (ADS)

    Tripathi, Biranchi M.; Mohanty, Trupti; Prakash, Deep; Tyagi, A. K.; Sinha, P. K.

    2017-07-01

    Pure phase monoclinic nano-crystalline Li2TiO3 powder was synthesized by a novel urea assisted solid state synthesis method using readily available and economical precursors. A single phase and well crystalline Li2TiO3 powder has been obtained at slightly lower temperature (600-700 °C) and shorter duration (2 h) as compared to the conventional solid state method. The proposed method has significant advantages in comparison to other viable methods mainly in terms of phase purity, powder properties and sinterability. Analysis of chemical composition using inductively coupled plasma atomic emission spectroscopy (ICP-AES) shows no loss of lithium from Li2TiO3 in the proposed method. The emergence of monoclinic Li2TiO3 phase was confirmed by X-ray diffraction (XRD) pattern of as-synthesized powder. The crystallite size of Li2TiO3 powder was calculated to be in the range of 15-80 nm, which varied as a function of urea composition and temperature. The morphology of as-prepared Li2TiO3 powders was examined by scanning electron microscope (SEM). The effect of urea composition on phase and morphology was investigated so as to delineate the role of urea. Upon sintering at < 1000 °C temperature, the Li2TiO3 powder compact attained about 98% of the theoretical density with fine grained (grain size: 2-3 μm) microstructure. It indicates excellent sinter-ability of Li2TiO3 powder synthesized by the proposed method. The fine grained structure is desirable for better tritium breeding performance of Li2TiO3. Electrochemical impedance spectroscopy at variable temperature showed good electrical properties of Li2TiO3. The proposed method is simple, anticipated to be cost effective and convenient to realise for large scale production of phase pure nanocrystalline and having significantly enhanced sinter-ability Li2TiO3 powder.

  18. Influence of sintering temperature on properties of BNKLLT-6 wt% BCTZ binary lead-free piezoelectric ceramic prepared through the solid-state combustion technique

    NASA Astrophysics Data System (ADS)

    Kornphom, Chittakorn; Laowanidwatana, Artid; Bongkarn, Theerachai

    2017-03-01

    In this work, a new binary 94 wt%[Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 + 0.10 wt% of La2O3]-6 wt% [(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3] [BNKLLT-6 wt% BCTZ] ceramic was fabricated by the solid-state combustion technique and glycine was used as the fuel. The effect of sintering temperature in the range of 1075-1175 °C for 2 h on phase evolution, microstructure and electrical properties was investigated. The phase formation exhibited a coexistence structure between rhombohedral and tetragonal at low sintering temperature. As the sintering temperature increased, the phase formation changed to pseudo-cubic phase. The average grain size of the ceramics was increased with the increasing sintering temperature. Density, ɛr, ɛSA and TFA of BNKLLT-6 wt% BCTZ ceramics increased while the TSA decreased when the sintering temperature increased up to 1125 °C, while after this temperature the opposite trends occurred. At a sintering temperature of 1125 °C, the BNKLLT-6 wt% BCTZ sample showed the highest theoretical density (95.8%), maximum dielectric constant ɛSA (5278), highest d33 (227 pC/N) and fair ferroelectric properties (Pr = 24.5 µC/cm2 and Ec = 15.45 kV/cm).

  19. Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.

    2018-06-01

    A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.

  20. Preparation and properties of a MnCo2O4 for ceramic interconnect of solid oxide fuel cell via glycine nitrate process

    NASA Astrophysics Data System (ADS)

    Yoon, Mi Young; Lee, Eun Jung; Song, Rak Hyun; Hwang, Hae Jin

    2011-12-01

    MnCo2O4 powder was prepared by a wet chemistry method using metal nitrates and glycine in an aqueous solution. The phase stability, sintering behavior, thermal expansion and electrical conductivity were examined to characterize powder suitability as an interconnect material in solid oxide fuel cells (SOFCs). X-ray diffraction indicated that the MnCo2O4 spinel synthesized by the glycine nitrate process was stable until 1100 °C and it was possible to obtain a fully densified single phase spinel. On the other hand, the MnCo2O4 synthesized by a solid state reaction decomposed into a cubic spinel and CoO after being sintered at 1100 °C. This might be associated with the reduction of Co3+ in the octahedral site of the cubic spinel phase. MnCo2O4 showed a thermal expansion coefficient comparable to that of other SOFCs components, as well as good electrical conductivity. Therefore, MnCo2O4 is a potential candidate for the ceramic interconnects in SOFCs, provided the phase instability under reducing environments can be improved.

  1. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  2. A comparative study of conventionally sintered and microwave sintered nickel zinc ferrite

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Juneja, J. K.; Raina, K. K.; Kotnala, R. K.; Prakash, Chandra

    2014-04-01

    For the present work, nickel zinc ferrite having compositional formula Ni0.8Zn0.2Fe2O4 was synthesized by conventional solid state method and sintered in conventional and microwave furnaces. Pellets were sintered with very short soaking time of 10 min at 1150 °C in microwave furnace whereas 4 hrs of soaking time was selected for conventional sintering at 1200 °C. Phase formation was confirmed by X-ray diffraction analysis technique. Scanning electron micrographs were taken for microstructural study. Dielectric properties were studied as a function of temperature. To study magnetic behavior, M-H hysteresis loops were recorded for both samples. It is observed that microwave sintered sample could obtain comparable properties to the conventionally sintered one in lesser soaking time at lower sintering temperature.

  3. Synthesisofc-lifepo4 composite by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.

    2017-02-01

    In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.

  4. Optimization of sintering conditions for cerium-doped yttrium aluminum garnet

    NASA Astrophysics Data System (ADS)

    Cranston, Robert Wesley McEachern

    YAG:Ce phosphors have become widely used as blue/yellow light converters in camera projectors, white light emitting diodes (WLEDs) and general lighting applications. Many studies have been published on the production, characterization, and analysis of this optical ceramic but few have been done on determining optimal synthesis conditions. In this work, YAG:Ce phosphors were synthesized through solid state mixing and sintering. The synthesized powders and the highest quality commercially available powders were pressed and sintered to high densities and their photoluminescence (PL) intensity measured. The optimization process involved the sintering temperature, sintering time, annealing temperature and the level of Ce concentration. In addition to the PL intensity, samples were also characterized using particle size analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PL data was compared with data produced from a YAG:Ce phosphor sample provided by Christie Digital. The peak intensities of the samples were converted to a relative percentage of this industry product. The highest value for the intensity of the commercial powder was measured for a Ce concentration of 0.3 mole% with a sintering temperature of 1540°C and a sintering dwell time of 7 hours. The optimal processing parameters for the in-house synthesized powder were slightly different from those of commercial powders. The optimal Ce concentration was 0.4 mole% Ce, sintering temperature was 1560°C and sintering dwell time was 10 hours. These optimal conditions produced a relative intensity of 94.20% and 95.28% for the in-house and commercial powders respectively. Polishing of these samples resulted in an increase of 5% in the PL intensity.

  5. An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure

    DOE PAGES

    Wang, Hui; Chen, Yan; Hood, Zachary D.; ...

    2016-01-01

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajgalik, P.; Sedlacek, J.; Lences, Z.

    Densification of silicon carbide without any sintering aids by hot-pressing and rapid hot pressing was investigated. Full density (>99% t.d.) has been reached at 1850 °C, a temperature of at least 150-200 °C lower compared to the up to now known solid state sintered silicon carbide powders. Silicon carbide was freeze granulated and heat treated prior the densification. Furthermore, evolution of microstructure, mechanical properties and creep behavior were evaluated and compared to reference ceramics from as received silicon carbide powder as well as those of commercial one. Novel method results in dense ceramics with Vickers hardness and indentation fracture toughnessmore » of 29.0 GPa and 5.25 MPam 1/2, respectively. Moreover, the creep rate of 3.8 x 10 –9 s –1 at 1450 °C and the load of 100 MPa is comparable to the commercial α-SiC solid state sintered at 2150 °C.« less

  7. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less

  8. Lowering the synthesis temperature of Y3Fe5O12 by surfactant assisted solid state reaction

    NASA Astrophysics Data System (ADS)

    Xue, Fenghua; Huang, Ju; Li, Tianrui; Wang, Zifan; Zhou, Xiaochao; Wei, Lujun; Gao, Baizhi; Zhai, Ya; Li, Qi; Xu, Qingyu; Du, Jun

    2018-01-01

    There is an urgent technical requirement of lowering the sintering temperature of Y3Fe5O12 (YIG) for its practical applications. In this paper, a modified solid state reaction method is reported by adding the surfactant of cetyltrimethylammonium bromide (CTAB). A high sintering temperature of 1200 °C is required for the formation of YIG phase without adding CTAB, which is effectively decreased to 1050 °C by adding CTAB. The morphology studies show that the sintering temperature plays the main role in the crystal growth and excludes the possible contribution of CTAB. The prepared YIG ceramic samples show soft ferromagnetic properties, with coercivity of only 21.2 Oe for the sample prepared with CTAB at 1050 °C, which decreases with increasing sintering temperature. The main role of adding CTAB is preventing the agglomeration of ball milled ultrafine source particles, which may facilitate the interdiffusion among them and promote the reaction at lower temperatures. Furthermore, the Gilbert damping constant is significantly reduced for YIG prepared by adding CTAB, which is one order smaller than that without CTAB.

  9. Enhanced Multiferroic Properties of YMnO3 Ceramics Fabricated by Spark Plasma Sintering Along with Low-Temperature Solid-State Reaction

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ravi, Muchakayala; Liu, Renchen; Ji, Shishan

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid-state reaction method, phase-pure YMnO3 ceramics are fabricated using spark plasma sintering (SPS). X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YMnO3 ceramics can be prepared by SPS at 1000 °C for 5 minutes with annealing at 800 °C for 2 h. The relative density of the sample is as high as 97%, which is much higher than those of the samples sintered by other methods. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods and SPS with ball-milling precursors, and the ferroelectric loops at room temperature can be detected. These findings indicate that the YMnO3 ceramics prepared by the low temperature solid reaction method and SPS possess excellent dielectric lossy ferroelectric properties at room temperature, and magnetic properties at low temperature (10 K), making them suitable for potential multiferroic applications. PMID:28772832

  10. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    NASA Astrophysics Data System (ADS)

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; Hu, Liangfa; Palasyuk, Andriy; Zhou, Lin; Anderson, Iver E.

    2017-09-01

    Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like "alnico," an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn- out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.

  11. Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties

    DTIC Science & Technology

    2014-10-31

    H. Gocmez, Hydrothermal synthesis and properties of Ce1-xGdxO2-δ solid solutions // Solid State Sciences. – 2002. – Vol. 4. – P. 585-590. 19. E...J. Kilner, Ionic conductivity in the CeO2-Gd2O3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation // Solid State Ionics. - 2002. – Vol

  12. Sintering activation energy MoSi2-WSi2-Si3N4 ceramic

    NASA Astrophysics Data System (ADS)

    Titov, D. D.; Lysenkov, A. S.; Kargin, Yu F.; Frolova, M. G.; Gorshkov, V. A.; Perevislov, S. N.

    2018-04-01

    The activation energy of sintering process was calculated based on dilatometric studies of shrinkage processes (Mo,W)Si2 + Si3N4 composite ceramic. (Mo,W)Si2 powders was obtained by solid-phase solutions of 70 wt% MoSi2 and 30 wt% WSi2 by SHS in the ISMAN RAS. The concentration rate Si3N4 was from 1 to 15 wt.%. The sintering was carried out to 1850°C in Ar atmosphere the heating rate of 5, 10, 12 and 15°C/min by the way of dilatometer tests. Based on the differential kinetic analysis method (Friedman’s method), the sintering process activation energy of (Mo,W)Si2 + Si3N4 were calculated. The two-stage sintering process and the dependence of the activation energy on the Si3N4 content was shown. Average value of 370 kJ/mol for Q was obtained.

  13. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  14. Gravitational Role in Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.

    1998-01-01

    To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.

  15. Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering

    NASA Astrophysics Data System (ADS)

    Knight, Travis W.; Anghaie, Samim

    2002-11-01

    Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.

  16. Oxide-Based Composite Electrolytes Using Na3Zr2Si2PO12/Na3PS4 Interfacial Ion Transfer.

    PubMed

    Noi, Kousuke; Nagata, Yuka; Hakari, Takashi; Suzuki, Kenji; Yubuchi, So; Ito, Yusuke; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-05-31

    All-solid-state sodium batteries using Na 3 Zr 2 Si 2 PO 12 (NASICON) solid electrolytes are promising candidates for safe and low-cost advanced rechargeable battery systems. Although NASICON electrolytes have intrinsically high sodium-ion conductivities, their high sintering temperatures interfere with the immediate development of high-performance batteries. In this work, sintering-free NASICON-based composites with Na 3 PS 4 (NPS) glass ceramics were prepared to combine the high grain-bulk conductivity of NASICON and the interfacial formation ability of NPS. Before the composite preparation, the NASICON/NPS interfacial resistance was investigated by modeling the interface between the NASICON sintered ceramic and the NPS glass thin film. The interfacial ion-transfer resistance was very small above room temperature; the area-specific resistances at 25 and 100 °C were 15.8 and 0.40 Ω cm 2 , respectively. On the basis of this smooth ion transfer, NASICON-rich (70-90 wt %) NASICON-NPS composite powders were prepared by ball-milling fine powders of each component. The composite powders were well-densified by pressing at room temperature. Scanning electron microscopy observation showed highly dispersed sub-micrometer NASICON grains in a dense NPS matrix to form closed interfaces between the oxide and sulfide solid electrolytes. The composite green (unfired) compacts with 70 and 80 wt % NASICON exhibited high total conductivities at 100 °C of 1.1 × 10 -3 and 6.8 × 10 -4 S cm -1 , respectively. An all-solid-state Na 15 Sn 4 /TiS 2 cell was constructed using the 70 wt % NASICON composite electrolyte by the uniaxial pressing of the powder materials, and its discharge properties were evaluated at 100 °C. The cell showed the reversible capacities of about 120 mAh g -1 under the current density of 640 μA cm -2 . The prepared oxide-based composite electrolytes were thus successfully applied in all-solid-state sodium rechargeable batteries without sintering.

  17. Understanding proton-conducting perovskite interfaces using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Clark, Daniel R.

    Proton-conducting ceramics are under intense scientific investigation for a number of exciting applications, including fuel cells, electrolyzers, hydrogen separation membranes, membrane reactors, and sensors. However, commercial application requires deeper understanding and improvement of proton conductivity in these materials. It is well-known that proton conductivity in these materials is often limited by highly resistive grain boundaries (GBs). While these conductivity-limiting GBs are still not well understood, it is hypothesized that their blocking nature stems from the formation of a positive (proton-repelling) space-charge zone. Furthermore, it has been observed that the strength of the blocking behavior can change dramatically depending on the fabrication process used to make the ceramic. This thesis applies laser-assisted atom probe tomography (LAAPT) to provide new insights into the GB chemistry and resulting space-charge behavior of BaZr0.9Y0.1O 3--delta (BZY10), a prototypical proton-conducting ceramic. LAAPT is an exciting characterization technique that allows for three-dimensional nm-scale spatial resolution and very high chemical resolution (up to parts-per-million). While it is challenging to quantitatively apply LAAPT to complex, multi-cation oxide materials, this thesis successfully develops a method to accurately quantify the stoichiometry of BZY10 and maintain minimal quantitative cationic deviation at a laser energies of approximately 10--20 pJ. With the analysis technique specifically optimized for BZY10, GB chemistry is then examined for BZY10 samples prepared using four differing processing methods: (1) spark plasma sintering (SPS), (2) conventional sintering using powder prepared by solid-state reaction followed by high-temperature annealing (HT), (3) conventional sintering using powder prepared by solid-state reaction with NiO used as a sintering aid (SSR-Ni), and (4) solid-state reactive sintering directly from BaCO3, ZrO2, and Y2O3 precursor powders with 1 wt. % NiO as a reactive sintering aid (SSRS-Ni). It is observed that oxygen depletion (oxygen-vacancy accumulation) occurs at all GBs. Segregation of the constituent cations, Ba, Zr, and Y, is found to be variable across all samples although zirconium depletion and yttrium accumulation are most prevalent. Additionally, impurities such as Al, Fe, Mg, Ni, Si, and Sr are shown to generally accumulate at the GBs. Finally, LAAPT-derived GB chemistry data is combined with electrostatic modeling to examine the electronic structure of a BZY10 GB, revealing significant non-uniformity in the space charge region at the GB with an average space-charge potential of approximately 580 mV, extending 5--7 nm in width from the GB core. This result demonstrates how LAAPT can not only be used to further understand the role of GB chemistry within oxide materials, but can also be used to examine the electronic structure, allowing for the possibility of engineering these interfaces to improve their electrochemical performance.

  18. Peridynamic Theory as a New Paradigm for Multiscale Modeling of Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silling, Stewart A.; Abdeljawad, Fadi; Ford, Kurtis Ross

    2017-09-01

    Sintering is a component fabrication process in which powder is compacted by pressing or some other means and then held at elevated temperature for a period of hours. The powder grains bond with each other, leading to the formation of a solid component with much lower porosity, and therefore higher density and higher strength, than the original powder compact. In this project, we investigated a new way of computationally modeling sintering at the length scale of grains. The model uses a high-fidelity, three-dimensional representation with a few hundred nodes per grain. The numerical model solves the peridynamic equations, in whichmore » nonlocal forces allow representation of the attraction, adhesion, and mass diffusion between grains. The deformation of the grains is represented through a viscoelastic material model. The project successfully demonstrated the use of this method to reproduce experimentally observed features of material behavior in sintering, including densification, the evolution of microstructure, and the occurrence of random defects in the sintered solid.« less

  19. Pulsed Laser Deposition of High Temperature Protonic Films

    NASA Technical Reports Server (NTRS)

    Dynys, Fred W.; Berger, M. H.; Sayir, Ali

    2006-01-01

    Pulsed laser deposition has been used to fabricate nanostructured BaCe(0.85)Y(0.15)O3- sigma) films. Protonic conduction of fabricated BaCe(0.85)Y(0.15)O(3-sigma) films was compared to sintered BaCe(0.85)Y(0.15)O(3-sigma). Sintered samples and laser targets were prepared by sintering BaCe(0.85)Y(0.15)O(3-sigma) powders derived by solid state synthesis. Films 1 to 8 micron thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 C at O2 pressures up to 200 mTorr using laser pulse energies of 0.45 - 0.95 J. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe(0.85)Y(0.15)O(3-sigma) films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C to 900 C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 oC; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied

  20. Synthesis of Y1BaCu3O(x) superconducting powders by intermediate phase reactions

    NASA Technical Reports Server (NTRS)

    Moure, C.; Fernandez, J. F.; Tartaj, J.; Recio, P.; Duran, P.

    1991-01-01

    A procedure for synthesizing Y1Ba2Cu3O(x) by solid state reactions was developed. The method is based on the use of barium compounds, previously synthesized, as intermediate phases for the process. The reaction kinetics of this procedure were established between 860 C and 920 C. The crystal structure and the presence of second phases were studied by means of XRD. The sintering behavior and ceramic parameters were also determined. The orthorhombic type-I structure was obtained on the synthesized bodies after a cooling cycle in an air atmosphere. Superconducting transition took place at 91 K. Sintering densities higher than 95 percent D sub th were attained at temperatures below 940 C.

  1. Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.

    PubMed

    Prakash, B Shri; Varma, K B R

    2008-11-01

    Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.

  2. Selective Laser Sintering of Nano Al2O3 Infused Polyamide

    PubMed Central

    Warnakula, Anthony; Singamneni, Sarat

    2017-01-01

    Nano Al2O3 polyamide composites are evaluated for processing by selective laser sintering. A thermal characterization of the polymer composite powders allowed us to establish the possible initial settings. Initial experiments are conducted to identify the most suitable combinations of process parameters. Based on the results of the initial trials, more promising ranges of different process parameters could be identified. The post sintering characterization showed evidence of sufficient inter-particle sintering and intra-layer coalescence. While the inter-particle coalescence gradually improved, the porosity levels slightly decreased with increasing laser power. The nano-filler particles tend to agglomerate around the beads along the solid tracks, possibly due to Van der Walls forces. The tensile stress results showed an almost linear increase with increasing nano-filler content. PMID:28773220

  3. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials

    PubMed Central

    Orrù, Roberto; Cao, Giacomo

    2013-01-01

    A wider utilization of ultra high temperature ceramics (UHTC) materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS) technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS), consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS) and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step. PMID:28809229

  4. Infiltration sintering properties of Ni-4B-4Si(wt.%) alloy powders

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Zhang, X. C.; Wang, F. L.; Zou, J. T.

    2018-01-01

    The Ni-4B-4Si(wt.%) alloy powders were infiltrated into the nickel skeletons, the effects of sintering temperatures (1050-1150 °C) and skeletons (loose and compact nickel powders) on the microstructures and hardness of the sintered alloys were investigated. The Ni-B-Si alloy sintered at 1100 °C consisted of γ-Ni and Ni3B, and Si mainly solid soluted in the γ-Ni. The loose nickel powders favored to the infiltration of Ni-B-Si liquid alloy into the nickel skeletons, the sintered alloys exhibited dense microstructures and good interfacial bonding with Ni substrates. The interfacial hardness was equal to that of the sintered alloys and Ni substrates. Loose nickel powders ensured the density and interfacial bonding of the sintered alloys, the infiltration sintering process can be simplified and easily applied to practice.

  5. The Development of a Ti-6Al-4V Alloy via Oxygen Solid Solution Strengthening for Aerospace and Defense Applications

    DTIC Science & Technology

    2013-03-01

    latter strategy. Mixtures of titanium powders and TiO2 particles were employed as starting materials and consolidated by spark - plasma sintering and...were consolidated in a carbon container installed in the spark - plasma sintering (SPS) equipment under vacuum condition (ɞ Pa) at a temperature of...evaluation of tensile properties of the wrought pure titanium materials consolidated by sintering and hot extrusion process, a theoretical approach using

  6. TOPICAL REVIEW: Sintering and microstructure of ice: a review

    NASA Astrophysics Data System (ADS)

    Blackford, Jane R.

    2007-11-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms—from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches.

  7. Effect of two-stage sintering on dielectric properties of BaTi0.9Zr0.1O3 ceramics

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Rani, Renu; Kumar, Parveen; Juneja, J. K.; Raina, K. K.; Prakash, Chandra

    2011-09-01

    The effect of two-stage sintering on the dielectric properties of BaTi0.9Zr0.1O3 ceramics prepared by solid state route was investigated and is presented here. It has been found that under suitable two-stage sintering conditions, dense BaTi0.9Zr0.1O3 ceramics with improved electrical properties can be synthesized. The density was found to have a value of 5.49 g cc-1 for normally sintered samples, whereas in the case of the two-stage sintered sample it was 5.85 g cc-1. Dielectric measurements were done as a function of frequency and temperature. A small decrease in the Curie temperature was observed with modification in dielectric loss for two-stage sintered ceramic samples.

  8. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12 (M = Ta, Nb) solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Mian; Shoji, Mao; Shen, Yang; Nan, Ce-Wen; Munakata, Hirokazu; Kanamura, Kiyoshi

    2014-09-01

    Li7La3Zr2O12 (LLZ) solid electrolytes with Zr site partially substituted by Ta and Nb elements were prepared via the conventional solid-state reaction. All the compositions could lead to the cubic garnet-type structure after sintering at 1150 °C. The use of γ-Al2O3 as a sintering aid in the preparation of doped LLZ was studied. It was shown that Al could help to improve the micro-structure for Nb doping, but not necessary for Ta doping. The Ta and Nb doping enhanced the ionic conductivity at 25 °C to 4.09 × 10-4 S cm-1 and 4.50 × 10-4 S cm-1, respectively. A conductivity as high as 1.23 × 10-3 S cm-1 was obtained when measured at 50 °C in air for the Nb-doped LLZ. All-solid-state batteries with LLZTa and LLZNb solid electrolytes were assembled and tested. The cyclic voltammetry (CV) measurement indicated the successful working of the batteries.

  9. Flash sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Dancer, C. E. J.

    2016-10-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sintering methods carried out to date, and compares the properties of the materials obtained to those produced by conventional sintering. The flash sintering process is described for oxides of zirconium, yttrium, aluminium, tin, zinc, and titanium; silicon and boron carbide, zirconium diboride, materials for solid oxide fuel applications, ferroelectric materials, and composite materials. While experimental observations have been made on a wide range of materials, understanding of the underlying mechanisms responsible for the onset and latter stages of flash sintering is still elusive. Elements of the proposed theories to explain the observed behaviour include extensive Joule heating throughout the material causing thermal runaway, arrested by the current limitation in the power supply, and the formation of defect avalanches which rapidly and dramatically increase the sample conductivity. Undoubtedly, the flash sintering process is affected by the electric field strength, furnace temperature and current density limit, but also by microstructural features such as the presence of second phase particles or dopants and the particle size in the starting material. While further experimental work and modelling is still required to attain a full understanding capable of predicting the success of the flash sintering process in different materials, the technique non-etheless holds great potential for exceptional control of the ceramic sintering process.

  10. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  11. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    DOE PAGES

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; ...

    2017-07-14

    We present economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like “alnico,” an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn-out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm 3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoidingmore » directional solidification that provides alignment in alnico 9. Lastly, successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.« less

  12. The effect of B{sub 2}O{sub 3} flux on growth NLBCO superconductor by solid state reaction and wet-mixing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharta, W. G., E-mail: wgsuharta@gmail.com; Wendri, N.; Ratini, N.

    The synthesis of B{sub 2}O{sub 3} flux substituted NLBCO superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} has been done using solid state reaction and wet-mixing methods in order to obtain homogeneous crystals and single phase. From DTA/TGA characteritations showed the synthesis process by wet-mixing requires a lower temperature than the solid state reaction in growing the superconductor NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂}. Therefore, in this research NdBa{sub 1.75}La{sub 0.25}Cu{sub 3}O{sub 7-∂} sample calcinated at 650°C for wet-mixing method and 820°C for solid state reaction methods. The all samples was sintered at 950°C for ten hours. Crystallinity of the sample was confirmedmore » using X-ray techniques and generally obtained sharp peaks that indicates the sample already well crystallized. Search match analyses for diffraction data gave weight fractions of impurity phase of the solid state reaction method higher than wet-mixing method. In this research showed decreasing the price of the lattice parameter about 1% with the addition of B{sub 2}O{sub 3} flux for the both synthesis process and 2% of wet mixing process for all samples. Characterization using scanning electron microscopy (SEM) showed the distribution of crystal zise for wet-mixing method more homogeneous than solid state reaction method, with he grain size of samples is around 150–250 nm. The results of vibrating sample magnetometer (VSM) showed the paramagnetic properties for all samples.« less

  13. Techno-Economic Assessment of Recycling BOF Offgas Cleaning System Solid Wastes by Using Zinc-Free Scrap

    NASA Astrophysics Data System (ADS)

    Ma, Naiyang

    High zinc concentration in basic oxygen furnace (BOF) steelmaking offgas (OG) cleaning system solid wastes is one of the main barriers for recycling of the solid wastes in sintering — blast furnace ironmaking process. One of the possible solutions is to utilize zinc-free scrap in BOF steelmaking so that the BOF OG solid wastes will not be contaminated with zinc and can be recycled through sintering — blast furnace ironmaking. This paper describes a model for helping to decide whether to use zinc-free scrap in a BOF process. A model computing marginal price increment of zinc-free scrap is developed. The marginal price increment is proportional to value change of the BOF OG solid wastes after and before using zinc-free scrap, to ratio of BOF solid waste rate to purchased galvanized scrap rate, and to price of galvanized scrap. Due to the variations of consumption rate of purchased galvanized scrap and home galvanized scrap, iron ore price, landfill cost, and price of purchased galvanized scrap, using zinc-free scrap in a BOF process might be economically feasible for some ironmaking and steelmaking plants or in some particular market circumstances.

  14. Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries

    DTIC Science & Technology

    2014-11-01

    Thangadurai V, Weppner W. Lithium lanthanum titanates: a review. Chemistry of Materials. 2003;15:3974–3990. 4. Knauth P. Inorganic solid Li ion conductors...an overview. Solid State Ionics. 2009;180:911–916. 5. Ban CW, Choi GM. The effect of sintering on the grain boundary conductivity of lithium ...lanthanum titanates. Solid State Ionics. 2001;140:285–292. 6. Inada R, Kimura K, Kusakabe K, Tojo T, Sakurai Y. Synthesis and lithium -ion conductivity

  15. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    NASA Astrophysics Data System (ADS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-05-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo1.5Ti1.5Fe9O19) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δμ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route.

  16. Al{sub 2}O{sub 3} - TiO{sub 2}-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and themore » observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 {mu}m. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route.« less

  17. Effects of Molar Ratios and Sintering Times on Crystal Structures and Surface Morphology of Nd1+xFeO3 Oxide Alloy Prepared by using Solid Reaction Method

    NASA Astrophysics Data System (ADS)

    Sujiono, E. H.; Agus, J.; Samnur, S.; Triyana, K.

    2018-05-01

    The effects of molar ratios and sintering times on crystal structures and surface morphology on NdFeO3 oxide alloy have been studied. NdFeO3 oxide alloy formed by chemical preparation with solid reaction method using raw oxide Fe2O3 (99.9 %) and Nd2O3 (99.9 %) powders. In this article we reported the effects of molar ratios x = (–0.1, –0.2 and –0.3) and sintering times for 15 h and 20 h on crystal structures and surface morphology of Nd1+xFeO3 synthesized by solid-state reaction method. The results indicate that variation of molar ratio and sintering time has influenced the FWHM, crystalline size and grain size. The Nd1+xFeO3 have a major phase is NdFeO3, and other minor phases are Fe2O3, Nd2O3 and Nd(OH)3. The dominant intensity of hkl (121) with a value in FWHM, crystallite size, and grain size an indication the results will be applied as a gas sensor material as the focus of the further study.

  18. Rapid Prototyping: State of the Art

    DTIC Science & Technology

    2003-10-23

    Rapid Prototyping SCS Solid Creation System SLM Selective Laser Melting SLP Solid Laser diode Plotter SLS Selective Laser Sintering SOAR State of the...121,000, respectively. SLP stands for Sold Laser Diode Plotter. The machines are relatively slow and parts are small, so, to date, the products have been...Gigerenzer, H., “Directed Laser Welding of Metal Matrix Composite Structures for Space Based Applications,“ Triton Systems Inc., Chelmsford, MA., 1

  19. Sintering of MSW fly ash for reuse as a concrete aggregate.

    PubMed

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  20. Constrained Sintering in Fabrication of Solid Oxide Fuel Cells

    PubMed Central

    Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook

    2016-01-01

    Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs. PMID:28773795

  1. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  2. Influence of Hydrogen on Atomized Titanium Powders Sintering

    NASA Astrophysics Data System (ADS)

    Senkevich, K. S.

    2018-07-01

    The aim of this work is to study the effect of hydrogen reversible alloying (thermohydrogen processing, THP) on low-temperature sintering of atomized titanium powders. It is stated that alloying with 0.2 to 0.8 wt pct of hydrogen beneficially affects titanium powders sintering. The effect is caused by phase transformations occurring upon hydrogen saturation of powders and dehydrogenation, which substantially intensifies sintering at temperatures from 800 °C to 900 °C. The role of certain THP stages (sintering in hydrogenated state and upon dehydrogenation) on formation of sintered contacts in porous materials is shown.

  3. Influence of Hydrogen on Atomized Titanium Powders Sintering

    NASA Astrophysics Data System (ADS)

    Senkevich, K. S.

    2018-05-01

    The aim of this work is to study the effect of hydrogen reversible alloying (thermohydrogen processing, THP) on low-temperature sintering of atomized titanium powders. It is stated that alloying with 0.2 to 0.8 wt pct of hydrogen beneficially affects titanium powders sintering. The effect is caused by phase transformations occurring upon hydrogen saturation of powders and dehydrogenation, which substantially intensifies sintering at temperatures from 800 °C to 900 °C. The role of certain THP stages (sintering in hydrogenated state and upon dehydrogenation) on formation of sintered contacts in porous materials is shown.

  4. Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Caruso, John J.

    1999-01-01

    Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal evolution of the solid particles during coarsening.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei

    We present economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like “alnico,” an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn-out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm 3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoidingmore » directional solidification that provides alignment in alnico 9. Lastly, successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.« less

  6. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.

  7. Effect of ca+2 addition on the properties of ce0.8gd0.2o2-δ for it-sofc

    NASA Astrophysics Data System (ADS)

    Koteswararao, P.; Buchi Suresh, M.; Wani, B. N.; Bhaskara Rao, P. V.; Varalaxmi, P.

    2018-03-01

    This paper reports the effect of Ca2+ addition on the structural and electrical properties of Ce0.8Gd0.2O2-δ(GDC) electrolyte for low temperature solid oxide fuel cell application. The Ca (0, 0.5, 1 and 2 mol %) doped GDC solid electrolytes have been prepared by solid state method. The sintered densities of the samples are greater than 95%. XRD study reveals the cubic fluorite structure. The microstructure of the samples sintered at 1400°C resulted into grain sizes in the range of 1.72 to 10.20 μm. Raman spectra show the presence of GDC single phase. AC impedance analysis is used to measure the ionic conductivity of the electrolyte. Among all the compositions, the highest conductivity is observed in the GDC sample with 0.5 mol% Ca addition. Nyquist plots resulted in multiple redoxation process such as grain and grain boundary conductions to final conductivity. Estimated blocking factor is lower for the GDC electrolyte with 0.5mol% Ca, indicating that Ca addition was promoted grain boundary conduction. Activation energies were calculated from Arrhenius plot and are found in the range of 1eV.

  8. Electrical conductivity and molten salt corrosion behavior of spinel nickel ferrite

    NASA Astrophysics Data System (ADS)

    Liu, Baogang; Zhang, Lei; Zhou, Kechao; Li, Zhiyou; Wang, Hao

    2011-08-01

    Nickel ferrite was prepared by solid-state reaction at 1300 °C as inert anode for aluminum electrolysis. DC conductivities and molten salt corrosion behavior of the samples were investigated in detail regarding the effects of different sintering atmospheres. X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis were used to analyse the phase compositions and microstructures. The DC conductivities of the samples sintered in nitrogen showed a drastic increase compared to those sintered in air, and at 960 °C they increased from 1.94 S/cm to 22.65 S/cm. The samples sintered in nitrogen showed much better corrosion resistance than those sintered in air, attributing to the formation of the dense protective layers in the anode surfaces during the electrolysis at 960 °C. The conductive mechanism and molten salt corrosion behavior were also discussed.

  9. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, M.

    1996-10-01

    The chemistry of a fuel ash is important to consider when ash behavior in combustion or gasification is studied. Four different types of thermal behavior based bed agglomeration and deposit foliation mechanisms have been proposed to be important, (1) partial melting, (2) viscous flow, (3) chemical reaction sintering, and (4) solid state sintering. In this paper we present data from a broader study in which we have quantified the four mechanisms more in detail. The ashes from 10 different types of fuels have been tested for their sintering tendency by a compression strength sintering test. The ashes were also subjectmore » to quantitative wet chemical analyses and combined differential thermal, thermogravimetric (DT/TG) analyses. These thermal behavior predictions were compared with multi-component multi-phase thermodynamic phase equilibrium calculations and further with full scale combustion experience. The results and their relevance to full scale conversion systems are discussed in the paper.« less

  10. Microstructural development of cobalt ferrite ceramics and its influence on magnetic properties

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Yeop; Jeon, Jae-Ho; Kim, Myong-Ho; Suvorov, Danilo; Choi, Si-Young

    2013-11-01

    The microstructural evolution and its influence on magnetic properties in cobalt ferrite were investigated. The cobalt ferrite powders were prepared via a solid-state reaction route and then sintered at 1200 °C for 1, 2, and 16 h in air. The microstructures from sintered samples represented a bimodal distribution of grain size, which is associated with abnormal grain growth behavior. And thus, with increasing sintering time, the number and size of abnormal grains accordingly increased but the matrix grains were frozen with stagnant grain growth. In the sample sintered for 16 h, all of the matrix grains were consumed and the abnormal grains consequently impinged on each other. With the appearance of abnormal grains, the magnetic coercivity significantly decreased from 586.3 Oe (1 h sintered sample) to 168.3 Oe (16 h sintered sample). This is due to the magnetization in abnormal grains being easily flipped. In order to achieve high magnetic coercivity of cobalt ferrite, it is thus imperative to fabricate the fine and homogeneous microstructure.

  11. Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics

    NASA Astrophysics Data System (ADS)

    Samantaray, S.; Mishra, D. K.; Pradhan, S. K.; Mishra, P.; Sekhar, B. R.; Behera, Debdhyan; Rout, P. P.; Das, S. K.; Sahu, D. R.; Roul, B. K.

    2013-08-01

    This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO3. Room temperature dielectric constant (ɛr) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO3 at room temperature as multifunctional materials.

  12. Improved Properties of Pb Based BLZT Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Prakash, Chandra

    2011-11-01

    Present report is concerning with investigation of effect of different sintering profiles on Pb based BLZT ceramics. The material powder of selected composition (Ba0.795La0.005Pb0.20Ti0.90Zr0.10O3) was prepared by solid state reaction route and then powder was compacted in the form of circular discs. The discs were then sintered at different temperatures (1325 °C for 4h, 1325 °C for 15min+1200 °C for 4h). Improved dielectric and ferroelectric properties were observed for samples sintered at 1200 °C. Shifting in Tc to higher temperature could be related to enhanced tetragonality, which was further confirmed by X-ray diffraction analysis. All these improvements evidences that there is less Pb loss in case of modified sintering profile.

  13. Thermoelectric properties of a doped LaNiO3 perovskite system prepared using a spark-plasma sintering process

    NASA Astrophysics Data System (ADS)

    Tak, Jang-Yeul; Choi, Soon-Mok; Seo, Won-Seon; Cho, Hyung Koun

    2013-07-01

    Both perovskites LaNiO3 and LaCuO3 have a limitation associated with phase transitions for high-temperature thermoelectric applications. The optimized conditions were investigated to obtain the LaNi1- x Cu x O3- δ perovskite single phase showing a Cu-doping effect into Ni sites against unintended deoxidized phases. Three advantages of synergetic effects due to the simultaneous presence of nickel and copper were investigated: a low melting temperature of CuO as compared to that of NiO, the absence of intermediated deoxidized phases in the LaCuO3 system, and the Cu doping effect, which suppresses the formation of intermediate secondary phases. A solid solution was also fabricated using a spark-plasma sintering (SPS) process for the purpose of sintering LaNi1- x Cu x O3- δ compositions at a low sintering temperature.

  14. Synthesis cathode material LiNi0.80Co0.15Al0.05O2 with two step solid-state method under air stream

    NASA Astrophysics Data System (ADS)

    Xia, Shubiao; Zhang, Yingjie; Dong, Peng; Zhang, Yannan

    2014-01-01

    A facile generic strategy of solid-state reaction under air atmosphere is employed to prepare LiNi0.8Co0.15Al0.05O2 layer structure micro-sphere as cathodes for Li-ion batteries. The impurity phase has been eliminated wholly without changing the R-3m space group of LiNi0.8Co0.15Al0.05O2. The electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathodes depend on the sintering step, temperature, particle size and uniformity. The sample pre-sintered at 540 °C for 12 h and then sintered at 720 °C for 28 h exhibits the best electrochemical performance, which delivers a reversible capacity of 180.4, 165.8, 154.7 and 135.6 mAhg-1 at 0.2 C, 1 C, 2 C and 5 C, respectively. The capacity retention keeps over 87% after 76 cycles at 1 C. This method is simple, cheap and mass-productive, and thus suitable to large scale production of NCA cathodes directly used for lithium ion batteries.

  15. Application of the Zero-Order Reaction Rate Model and Transition State Theory to predict porous Ti6Al4V bending strength.

    PubMed

    Reig, L; Amigó, V; Busquets, D; Calero, J A; Ortiz, J L

    2012-08-01

    Porous Ti6Al4V samples were produced by microsphere sintering. The Zero-Order Reaction Rate Model and Transition State Theory were used to model the sintering process and to estimate the bending strength of the porous samples developed. The evolution of the surface area during the sintering process was used to obtain sintering parameters (sintering constant, activation energy, frequency factor, constant of activation and Gibbs energy of activation). These were then correlated with the bending strength in order to obtain a simple model with which to estimate the evolution of the bending strength of the samples when the sintering temperature and time are modified: σY=P+B·[lnT·t-ΔGa/R·T]. Although the sintering parameters were obtained only for the microsphere sizes analysed here, the strength of intermediate sizes could easily be estimated following this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.

    2017-12-01

    The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  17. Average current per vacuum-arc cathode spot and spot velocity in a magnetic field on a CuCr50/50 nanocomposite

    NASA Astrophysics Data System (ADS)

    Zabello, K. K.; Poluyanova, I. N.; Yakovlev, V. V.; Shkol'nik, S. M.

    2017-11-01

    It has been shown that such cathode spot characteristics as the average current per spot and its dependence on tangential magnetic-field induction B t and the spot velocity and its dependence on B t for two CuCr50/50 specimens with very different structures (nanocomposite and "solid-state sintered" composite) almost coincide if the surface of contacts has been totally remelted before measurements with the use of moderate arc currents in the process of conditioning.

  18. Preparation and Properties of (YCa)(TiMn)O3−δ Ceramics Interconnect of Solid Oxide Fuel Cells

    PubMed Central

    Liou, Yi-Cheng; Tsai, Wen-Chou; Yen, Hao-Hsuan; Chang, Yung-Chia

    2015-01-01

    (YCa)(TiMn)O3–δ ceramics prepared using a reaction-sintering process were investigated. Without any calcination involved, the mixture of raw materials was pressed and sintered directly. Y2Ti2O7 instead of YTiO3 formed when a mixture of Y2O3 and TiO2 with Y/Ti ratio 1/1 were sintered in air. Y2Ti2O7, YTiO2.085 and some unknown phases were detected in Y0.6Ca0.4Ti0.6Mn0.4O3–δ. Monophasic Y0.6Ca0.4Ti0.4Mn0.6O3–δ ceramics were obtained after 1400–1500 °C sintering. Dense Y0.6Ca0.4Ti0.4Mn0.6O3–δ with a density 4.69 g/cm3 was observed after 1500 °C/4 h sintering. Log σ for Y0.6Ca0.4Ti0.6Mn0.4O3–δ increased from –3.73 Scm–1 at 350 °C to –2.14 Scm–1 at 700 °C. Log σ for Y0.6Ca0.4Ti0.4Mn0.6O3–δ increased from –2.1 Scm–1 at 350 °C to –1.36 Scm–1 at 700 °C. Increasing Mn content decreased activation energy Ea and increased electrical conductivity. Reaction-sintering process is proved to be a simple and effective method to obtain (YCa)(TiMn)O3–δ ceramics for interconnects in solid oxide fuel cells. PMID:28793436

  19. Advanced Ceramic Technology for Space Applications at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Alim, Mohammad A.

    2003-01-01

    The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.

  20. Pressureless sintered beta prime-Si3N4 solid solution: Fabrication, microstructure, and strength

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1977-01-01

    Si3N4, AlN, and Al2O3 were used as basic constituents in a study of the pressureless sintering of beta prime-Si3N4 solid solution as a function of temperature. Y2O3-SiO2 additions were used to promote liquid-phase sintering. The sintered specimens were characterized with respect to density, microstructure, strength, oxidation, and thermal shock resistance. Density greater than 98 percent of theoretical was achieved by pressureless sintering at 1750 C. The microstructure consisted essentially of fine-grained beta prime-Si3N4 solid solution as the major phase. Modulus of rupture strengths up to 483 MPa were achieved at moderate temperature (1000 C), but decreased to 228 MPa at 1380 C. This substantial strength loss was attributed to a glassy grain boundary phase formed during cooling from the sintering temperature. The best oxidation resistance was exhibited by a composition containing 3 mol % Y2O3-SiO2 additives. Water quench thermal shock resistance was equivalent to that of reaction sintered silicon nitride but lower than hot-pressed silicon nitride.

  1. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    PubMed Central

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  2. Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash.

    PubMed

    Wei, Na

    2015-05-07

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.

  3. Processing and properties of SiC whisker reinforced Si sub 3 N sub 4 ceramic matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunn, S.D.

    1991-01-01

    Silicon carbide whiskers reinforced silicon nitride ceramic matrix composites were pressureless sintered to high density by liquid phase sintering. Important processing parameters included: whisker dispersion by ultrasonic shear homogenization, particle refinement by attrition milling, pressure slip casting to obtain high greed densities, and sintering in a protective powder bed to limit decomposition. Composites with a {beta}20-Si{sub 3}N{sub 4} solid solution matrix containing 20 vol.% SiC whiskers were sintered to 98-100% theoretical density; composites having a Si{sub 3}N{sub 4} matrix containing YAG sintering aid were sintered to 98% of the theoretical density with 20 vol.% SiC whiskers, and 94% density withmore » 30 vol.% SiC whiskers. Analysis of the pressureless sintered composites revealed orientation of the SiC whiskers and the Si{sub 3}N{sub 4} matrix grains. The mechanical properties of hot pressed Si{sub 3}N{sub 4} composites reinforced with 20 vol.% SiC whiskers were shown to depend on the characteristics of the intergranular phase. Variations in the properties of the composites were analyzed in terms of the amount and morphology of the secondary phase, and the development of internal residual stresses due to the thermal expansion mismatch between the sintering aid phase at the grain boundaries.« less

  4. Pulsed Laser Deposition of BaCe(sub 0.85)Y(sub 0.15)0(sub 3) FILMS

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.; Sayir, A.

    2006-01-01

    Pulsed laser deposition has been used to grow nanostructured BaCe(sub 0.85)Y(sub 0.15)0(sub 3) films. The objective is to enhance protonic conduction by reduction of membrane thickness. Sintered samples and laser targets were prepared by sintering BaCe(sub 0.85)Y(sub 0.15)O(sub 3) powders derived by solid state synthesis. Films 2 to 6 m thick were deposited by KrF excimer laser on Si and porous Al2O3 substrates. Nanocrystalline films were fabricated at deposition temperatures of 600-800 C deg at O2 pressure of 30 mTorr and laser fluence of 1.2 J/cm square. Films were characterized by x-ray diffraction, scanning electron microscopy and electrical impedance spectroscopy. Dense single phase BaCe(sub 0.85)Y((sub 0.15) 0(sub 3) films with a columnar growth morphology is observed, preferred crystal growth was found to be dependent upon deposition temperature and substrate type. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 C deg to 900 C deg in moist argon. Electrical conduction of the fabricated films was 1 to 4 orders of magnitude lower than the sintered bulk samples. With respect to the film growth direction, activation energy for electrical conduction is 3 times higher in the perpendicular direction than the parallel direction.

  5. Rheological changes of polyamide 12 under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Mielicki, C.; Gronhoff, B.; Wortberg, J.

    2014-05-01

    Changes in material properties as well as process deviation prevent Laser Sintering (LS) technology from manufacturing of quality assured parts in a series production. In this context, the viscosity of Polyamide 12 (PA12) is assumed to possess the most significant influence, as it determines the sintering velocity, the resistance towards melt formation and the bonding strength of sintered layers. Moreover, the viscosity is directly related to the structure of the molten polymer. In particular, it has been recently reported that LS process conditions lead to structural changes of PA12 affecting viscosity and coalescence of adjacent polymer particles, i.e. melt formation significantly. Structural change of PA12 was understood as a post condensation. Its influence on viscosity was described by a time and temperature depending rheological model whereas time dependence was considered by a novel structural change shift factor which was derived from melt volume rate data. In combination with process data that was recorded using online thermal imaging, the model is suitable to control the viscosity (processability of the material) as result of material and process properties. However, as soon as laser energy is exposed to the powder bed PA12 undergoes a phase transition from solid to molten state. Above the melting point, structural change is expected to occur faster due to a higher kinetic energy and free volume of the molten polymer. Oscillatory shear results were used to study the influence of aging time and for validation of the novel structural change shift factor and its model parameters which were calibrated based on LS processing condition.

  6. Relationship between fabrication method and chemical stability of Ni-BaZr0.8Y0.2O3-δ membrane

    NASA Astrophysics Data System (ADS)

    Fang, Shumin; Wang, Siwei; Brinkman, Kyle S.; Su, Qing; Wang, Haiyan; Chen, Fanglin

    2015-03-01

    NiO effectively promotes the sintering of highly refractory Y-doped BaZrO3 (BZY) through the formation of BaY2NiO5, providing a simple and cost-effective method for the fabrication of dense BZY electrolyte and Ni-BZY hydrogen separation membrane at ∼1400 °C. Unfortunately, insulating BaCO3 and Y2O3 phases formed on the surface of BZY and Ni-BZY prepared by solid state reaction method with NiO after annealing in wet CO2. Ni-BZY membranes prepared from different methods suffered different degree of performance loss in wet H2 at 900 °C. The chemical instability of Ni-BZY is attributed to the formation of a secondary phase (BaY2O4) generated from the reduction of BaY2NiO5 in H2 during the sintering process. Both BaY2O4 and BaY2NiO5 react with H2O, and CO2 at elevated temperatures, generating insulating Ba(OH)2 and BaCO3 phases, respectively. The less BaY2O4 is formed in the fabrication process, the better chemical stability the Ni-BZY membranes possess. Therefore, a new Ni-BZY membrane is prepared through a judicial combination of BZY powders prepared from combined EDTA-citric and solid state reaction methods, and demonstrates exceptional chemical stability in H2O and CO2, enabling stable and even improved hydrogen flux in wet 50% CO2 at 900 °C.

  7. Effect of various sintering temperature on resistivity behaviour and magnetoresistance of La{sub 0.67}Ba{sub 0.33}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratama, R.; Kurniawan, B., E-mail: bkuru07@gmail.com; Manaf, A.

    2016-04-19

    A detail work was conducted in order to investigate effect of various sintering temperature on resistivity behavior and its relation with the magneto-resistance effect of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} (LBMO). The LBMO samples were synthesized using solid state reaction. Characterization using X-ray diffraction shows that all LBMO samples have a single phase for each variation. Variation of sintering temperature on the LBMO samples affects its lattice parameters. The resistivity measurement in an absence and under applied magnetic field resulted in a highly significant different values. In one of the sintering temperature variation of LBMO, an increasing resistivity had shown atmore » a low temperature and had reached its maximum value at a specific temperature, and then the resistivity decreases to the lowest value near the room temperature. Similar result observed at higher varieties of sintering temperature but with significant lower maximum resistivity.« less

  8. Fabrication and study of double sintered TiNi-based porous alloys

    NASA Astrophysics Data System (ADS)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  9. Direct observation of grain rotations during coarsening of a semisolid Al–Cu alloy

    PubMed Central

    Dake, Jules M.; Oddershede, Jette; Sørensen, Henning O.; Werz, Thomas; Shatto, J. Cole; Uesugi, Kentaro; Schmidt, Søren; Krill, Carl E.

    2016-01-01

    Sintering is a key technology for processing ceramic and metallic powders into solid objects of complex geometry, particularly in the burgeoning field of energy storage materials. The modeling of sintering processes, however, has not kept pace with applications. Conventional models, which assume ideal arrangements of constituent powders while ignoring their underlying crystallinity, achieve at best a qualitative description of the rearrangement, densification, and coarsening of powder compacts during thermal processing. Treating a semisolid Al–Cu alloy as a model system for late-stage sintering—during which densification plays a subordinate role to coarsening—we have used 3D X-ray diffraction microscopy to track the changes in sample microstructure induced by annealing. The results establish the occurrence of significant particle rotations, driven in part by the dependence of boundary energy on crystallographic misorientation. Evidently, a comprehensive model for sintering must incorporate crystallographic parameters into the thermodynamic driving forces governing microstructural evolution. PMID:27671639

  10. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics.

    PubMed

    Nilen, R W N; Richter, P W

    2008-04-01

    Biphasic calcium phosphate ceramics (BCP) comprising a mix of non-resorbable hydroxyapatite (HA) and resorbable beta-tricalcium phosphate (beta-TCP) are particularly suitable materials for synthetic bone substitute applications. In this study, HA synthesised by solid state reaction was mechanically mixed with beta-TCP, then sintered to form a suite of BCP materials with a wide range of HA/beta-TCP phase content ratios. The influence of sintering temperature and composition on the HA thermal stability was quantified by X-ray diffraction (XRD). The pre-sinter beta-TCP content was found to strongly affect the post-sinter HA/beta-TCP ratio by promoting the thermal decomposition of HA to beta-TCP, even at sintering temperatures as low as 850 degrees C. For BCP material with pre-sinter HA/beta-TCP = 40/60 wt%, approximately 80% of the HA decomposed to beta-TCP during sintering at 1000 degrees C. Furthermore, the HA content appeared to influence the reverse transformation of alpha-TCP to beta-TCP expected upon gradual cooling from sintering temperatures greater than 1125 degrees C. Because the HA/beta-TCP ratio dominantly determines the rate and extent of BCP resorption in vivo, the possible thermal decomposition of HA during BCP synthesis must be considered, particularly if high temperature treatments are involved.

  11. A Study of Photoluminiscence and UV-Vis in Enhanced GaN Nanofibers

    NASA Astrophysics Data System (ADS)

    Robles-Garcia, Joshua; Melendez-Zambrana, Anamaris; Ramos, Idalia

    2014-03-01

    The photoluminiscence (PL) and UV-Vis properties of Gallium Nitride (GaN) nanofibers were investigated for samples fabricated with a precursor solution containing Gallium Nitrate Hydrate, Cellulose Acetate, and Urea in the solvents Dimethylacetamide (DMA) and Acetone. GaN is a wide bandgap (3.4 eV) semiconductor that can be used in a variety of applications including solid-state lighting, high power, and high frequency devices. In previous work, we produced polycrystalline GaN nanofibers with wurtzite structure, using the electrospinning method and a thermal treatment in nitrogen and ammonia at 1000C. In this research we study the addition of urea to the precursor solution to enhance the crystallinity of the fibers at lower sintering temperatures. The molar ratios of urea added to the precursor range from 0 to 1.7 M. After electrospinning the fibers were sintered in Nitrogen at 450C for 3 hours and then, under ammonia gas flow at 900C for 5 hours. X-Ray Diffraction (XRD), UV-Vis spectroscopy, and PL measurements at room temperature were used to study the structural and optical properties of the fibers during the sintering process. This work was sponsored by UPRH PREM (NSF-DMR-0934195).

  12. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  13. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Phillips, Cynthia B.; Meirion-Griffith, Gareth

    2017-10-01

    The planned exploration of Europa by NASA’s Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa’s landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a “neck” between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa’s subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts.Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa’s surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa’s surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  14. A Novel Solid State Ultracapacitor

    NASA Technical Reports Server (NTRS)

    Cortes-Pena, A. Y.; Rolin, T. D.; Hill, C. W.

    2017-01-01

    Novel dielectric materials were researched to develop an internal barrier layer capacitor that is fully solid state. These materials included reduced nanoparticles of barium titanate that were coated with various atomic layer deposited oxides. The nanoparticle powders were then densified into pellets and characterized using a dielectric test fixture over a frequency range of 20 Hz to 2 MHz. Densification and sintering were evaluated using scanning electron microscopic techniques. Ultimately, the samples showing the most promising electrical characteristics of permittivity, dissipation factor and equivalent series resistance were chosen to manufacture devices for subsequent testing.

  15. Solid state neutron detector and method for use

    DOEpatents

    Doty, F. Patrick; Zwieback, Ilya; Ruderman, Warren

    2002-01-01

    Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.

  16. Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell

    DOEpatents

    Ruka, Roswell J.; Vora, Shailesh D.

    2001-01-01

    A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

  17. Phase transformations in the reaction cell of TiNi-based sintered systems

    NASA Astrophysics Data System (ADS)

    Artyukhova, Nadezhda; Anikeev, Sergey; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kaftaranova, Maria; Kang, Ji-Hoon; Kim, Ji-Soon

    2018-05-01

    The present work addresses the structural-phase state changes of porous TiNi-based compounds fabricated by reaction sintering (RS) of Ti and Ni powders with Co, Mo, and no additives introduced. The study also emphasizes the features of a reaction cell (RC) during the transition from the solid- to liquid-phase sintering. Mechanisms of phase transformations occurring in the solid phase, involving the low-melting Ti2Ni phase within the RC, have been highlighted. Also, the intermediate Ti2Ni phase had a crucial role to provide both the required RS behavior and modified phase composition of RS samples, and besides, it is found to be responsible for the near-equiatomic TiNi saturation of the melt. Both cobalt and molybdenum additives are shown to cause additional structuring of the transition zone (TZ) at the Ti2Ni‑TiNi interface and broadening of this zone. The impact of Co and Mo on the Ti2Ni phase is evident through fissuring of this phase layer, which is referred to solidified stresses increased in the layer due to post-alloying defects in the structure.

  18. Effect of fabrication parameters on coating properties of tubular solid oxide fuel cell electrolyte prepared by vacuum slurry coating

    NASA Astrophysics Data System (ADS)

    Son, Hui-Jeong; Song, Rak-Hyun; Lim, Tak-Hyoung; Lee, Seung-Bok; Kim, Sung-Hyun; Shin, Dong-Ryul

    The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm -2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.

  19. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.

    PubMed

    Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A

    2018-06-22

    High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.

  20. Solid state recycling of aluminium alloys via a porthole die hot extrusion process: Scaling up to production

    NASA Astrophysics Data System (ADS)

    Paraskevas, Dimos; Kellens, Karel; Deng, Yelin; Dewulf, Wim; Kampen, Carlos; Duflou, Joost R.

    2017-10-01

    Whereas industrial symbiosis has led to increased energy and resource efficiency in process industries, this concept has not yet been applied in discrete product manufacturing. Metal scrap is first conventionally recycled, for which substantial energy and resource efficiency losses have been reported. Recent research has however proven the feasibility of `meltless' recycling of light metal scrap, yielding a first glimpse of potential industrial symbiosis. Various solid state recycling techniques (such as recycling via hot extrusion or Spark Plasma Sintering) have been proposed for scrap consolidation directly into bulk products or semis by physical disruption and dispersion of the oxide surface film by imposing significant plastic and shear strain. Solid State Recycling (SSR) methods can omit substantial material losses as they bypass the metallurgical recycling step. In this context the case of direct production of bulk aluminium profiles via hot extrusion at industrial scale is demonstrated within this paper. The extrusion tests were performed directly into the production line, highlighting the scaling up potentials and the industrial relevance of this research. A significant amount of machining chips were collected, chemically cleaned and cold compacted into chip based billets with ˜80% relative density. Afterwards the scrap consolidation was achieved by imposing significant plastic and shear deformation into the material during hot extrusion through a modified 2-porthole extrusion die-set. The production process sequence along with microstructural investigations and mechanical properties comparison of the cast based profile used as reference versus the chip based profile are presented.

  1. Effect of structural phase transformation in FeGaO{sub 3} on its magnetic and ferroelectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lone, A. G., E-mail: agl221986@gmail.com; Bhowmik, R. N.

    2015-06-24

    We investigate the structural phase transformation from orthorhombic to rhombohedral structure in FeGaO{sub 3} by adopting a combined effect of mechanical alloying/milling and solid state sintering techniques. The structural phase formation of the FeGaO{sub 3} compound has been characterized by X-ray diffraction pattern. Mechanical milling played a significant role on the stabilization of rhombohedral phase in FeGaO{sub 3}, where as high temperature sintering stabilized the system in orthorhombic phase. A considerable difference has been observed in magnetic and ferroelectric properties of the system in two phases. The system in rhombohedral (R-3c) phase exhibited better ferromagnetic and of ferroelectric properties atmore » room temperature in comparison to orthorhombic (Pc2{sub 1}n) phase. The rhombohedral phase appears to be good for developing metal doped hematite system for spintronics applications and in that process mechanical milling played an important role.« less

  2. Method to fabricate high performance tubular solid oxide fuel cells

    DOEpatents

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  3. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    NASA Astrophysics Data System (ADS)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  4. Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles.

    PubMed

    Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji

    2017-09-20

    Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

  5. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOEpatents

    Brown, Jesse; Hirschfeld, Deidre; Liu, Dean-Mo; Yang, Yaping; Li, Tingkai; Swanson, Robert E.; Van Aken, Steven; Kim, Jin-Min

    1992-01-01

    Compositions having the general formula (Ca.sub.x Mg.sub.1-x)Zr.sub.4 (PO.sub.4).sub.6 where x is between 0.5 and 0.99 are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850.degree. C. for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200.degree. C. to 1350.degree. C. to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used.

  6. Ceramic materials with low thermal conductivity and low coefficients of thermal expansion

    DOEpatents

    Brown, J.; Hirschfeld, D.; Liu, D.M.; Yang, Y.; Li, T.; Swanson, R.E.; Van Aken, S.; Kim, J.M.

    1992-04-07

    Compositions, having the general formula (Ca[sub x]Mg[sub 1[minus]x])Zr[sub 4](PO[sub 4])[sub 6] where x is between 0.5 and 0.99, are produced by solid state and sol-gel processes. In a preferred embodiment, when x is between 0.5 and 0.8, the MgCZP materials have near-zero coefficients of thermal expansion. The MgCZPs of the present invention also show unusually low thermal conductivities, and are stable at high temperatures. Macrostructures formed from MgCZP are useful in a wide variety of high-temperature applications. In a preferred process, calcium, magnesium, and zirconium nitrate solutions have their pH adjusted to between 7 and 9 either before or after the addition of ammonium dihydrogen phosphate. After dehydration to a gel, and calcination at temperatures in excess of 850 C for approximately 16 hours, single phase crystalline MgCZP powders with particle sizes ranging from approximately 20 nm to 50 nm result. The MgCZP powders are then sintered at temperatures ranging from 1200 C to 1350 C to form solid macrostructures with near-zero bulk coefficients of thermal expansion and low thermal conductivities. Porous macrostructures of the MgCZP powders of the present invention are also formed by combination with a polymeric powder and a binding agent, and sintering at high temperatures. The porosity of the resulting macrostructures can be adjusted by varying the particle size of the polymeric powder used. 7 figs.

  7. 3D-Printing Electrolytes for Solid-State Batteries.

    PubMed

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optimum Conditions for Preparation of High-Performance (Ba0.97Ca0.03)(Ti0.94Sn0.06)O3 Ceramics by Solid-State Combustion

    NASA Astrophysics Data System (ADS)

    Chootin, Suphornphun; Bongkarn, Theerachai

    2017-08-01

    The effects of calcination conditions (950°C to 1200°C for 2 h to 6 h) and sintering temperature (1300°C to 1500°C for 2 h) on phase formation, microstructure, and electrical behavior of lead-free piezoelectric (Ba0.97Ca0.03)(Ti0.94Sn0.06)O3 (BCTS) ceramics produced by solid-state combustion using glycine as fuel have been investigated. BCTS powder with pure perovskite structure was obtained by calcination at 1100°C for 4 h. The microstructure of the BCTS powders showed almost spherical shape with average particle size increasing from 184 nm to 320 nm as the calcination temperature and soaking time were increased. The XRD patterns of all ceramics exhibited single perovskite structure. Rietveld refinement analysis indicated that the BCTS ceramics exhibited coexistence of orthorhombic and tetragonal phase in all samples with increased tetragonal phase content with increasing sintering temperature. The average grain size, density, dielectric constants at room ( ɛ r) and Curie temperature ( ɛ C), remanent polarization ( P r), and piezoelectric constant ( d 33) increased as the sintering temperature was increased up to 1400°C, then decreased. BCTS ceramic sintered at 1400°C exhibited the highest relative density (98%), highest dielectric response ( ɛ r = 4951, ɛ C = 19,185), good ferroelectric behavior ( P r = 12.74 μC/cm2 and coercive field E c = 1.60 kV/cm), and highest d 33 value (528 pC/N). The large piezoelectricity of BCTS ceramics makes them good candidates for use in lead-free applications to replace Pb-based ceramics.

  9. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  10. Thermal Test on Target with Pressed Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    A thorough test of the thermal performance of a target for Mo 99 production using solid Mo 100 target to produce the Mo 99 via a gamma-n reaction has previously been conducted at Argonne National Laboratory (ANL). The results are reported in “Zero Degree Line Mo Target Thermal Test Results and Analysis,” LANL report Number LA-UR-15-23134 dated 3/27/15. This target was comprised of 25 disks 1 mm thick and 12 mm in diameter, separated by helium coolant gaps 0.5 mm wide. The test reported in the above referenced report was conducted with natural Mo disks all cut from commercial rod.more » The production plant will have Mo 100 disks pressed and sintered using a process being developed at Oak Ridge National Laboratory (ORNL). The structural integrity of press-and-sinter disks is of some concern. The test reported herein included 4 disks made by the ORNL process and placed in the high heat, and therefore high thermal stress, region of the target. The electron beam energy was 23 MeV for these tests. Beam spot size was 3.5 mm horizontal and 3 mm vertical, FWHM. The thermal stress test of pressed-and-sintered disks resulted in no mechanical failures. The induced thermal stresses were below yield stress for natural Mo, indicating that up to that stress state no inherent deficiencies in the mechanical properties of the fabricated disks were evident.« less

  11. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve; Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo; Zambrano, J.C.

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock.more » High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and poor solid-state diffusion. - Graphical abstract: Display Omitted - Highlights: • We made NiCoCrAlYTa alloy by a conventional powder metallurgy route. • High densification and adequate strength were observed. • The presence of unexpected carbides found along γ/γ and γ/β grain boundaries was detected. • The effect of cold press and sintering processing parameters on the microstructure and mechanical properties were studied.« less

  12. Synthesis of transparent Lu3Al5O12 ceramic by solid-state reaction method

    NASA Astrophysics Data System (ADS)

    Basyrova, L. R.; Maksimov, R. N.; Shitov, V. A.; Aleksandrov, E. O.

    2017-09-01

    Transparent polycrystalline Lu3Al5O12 (LuAG) ceramic was fabricated by solid-state reactive sintering a mixture of Lu2O3 nanoparticles synthesized by laser ablation and commercial Al2O3 powder. The obtained Lu2O3 nanoparticles exhibited a metastable monoclinic phase and were fully converted into a main cubic phase after calcination at 1100 °C for 1 h in air. The powders were mixed in ethanol with the addition of 0.5 wt% tetraethoxysilane (TEOS), dried in a rotary evaporator, and uniaxially pressed into pellet at 200 MPa. Transparent 2 mm thick LuAG ceramic sample with an average grain size of 9.6 µm and an optical transmittance of 30 % at a wavelength of 1080 nm was obtained after sintering at 1780 °C for 20 h under vacuum. The average volume of the scattering centers (380 ppm) in the obtained LuAG ceramic and their distribution along the sample depth was evaluated by the direct count method using an optical microscope.

  13. Symmetrical, bi-electrode supported solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W. (Inventor); Cable, Thomas L. (Inventor)

    2009-01-01

    The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape.

  14. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene—The Influence of Spark Plasma Texturing Process

    PubMed Central

    Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej

    2017-01-01

    Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2–15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime. PMID:28796172

  15. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.

    PubMed

    Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.

  16. Long-Term Cr Poisoning Effect on LSCF-GDC Composite Cathodes Sintered at Different Temperatures

    DOE PAGES

    Xiong, Chunyan; Taillon, Joshua A.; Pellegrinelli, Christopher; ...

    2016-07-19

    Here, the impact of sintering temperature on Cr-poisoning of solid oxide fuel cell (SOFC) cathodes was systematically studied. La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ - Ce 0.9Gd 0.1O 2-δ symmetric cells were aged at 750°C in synthetic air with the presence of Crofer 22 APU, a common high temperature interconnect, over 200 hours and electrochemical impedance spectroscopy (EIS) was used to determine the degradation process. Both the ohmic resistance (R Ω) and polarization resistance (R P) of LSCF-GDC cells, extracted from EIS spectra, for different sintering temperatures increase as a function of aging time. Furthermore, the Cr-related degradation rate increasesmore » with decreased cathode sintering temperature. The polarization resistance of cathode sintered at lower temperature (950°C) increases dramatically while aging with the presence of Cr and also significantly decreases the oxygen partial pressure dependence after aging. The degradation rate shows a positive correlation to the concentration of Cr. The results indicate that decreased sintering temperature increases the total surface area, leading to more available sites for Sr-Cr-O nucleation and thus greater Cr degradation.« less

  17. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  18. Effect of sintering temperature on the microstructure, electrical and magnetic properties of Zn0.98 Mn0.02O material

    NASA Astrophysics Data System (ADS)

    Sebayang, K.; Aryanto, D.; Simbolon, S.; Kurniawan, C.; Hulu, S. F.; Sudiro, T.; Ginting, M.; Sebayang, P.

    2018-02-01

    Zn0.98Mn0.02O material was synthesized from ZnO and MnO2 powders using solid state reaction method. The microstructure, electrical and magnetic properties of Zn0.98Mn0.02O were studied as a function of sintering temperature. The X-ray diffraction analysis indicates that the main phase of synthesized sample is composed of hexagonal wurtzite ZnO phase. While the secondary phase of ZnMnO3 were found at the sintering temperature of 700°C and 900°C. The electrical properties measurement of Zn0.98Mn0.02O sample revealed that the resistivity and the dielectric constant of samples increase with the increase of sintering temperature. The ferromagnetic properties at room temperature were observed in the Zn0.98Mn0.02O samples sintered at 500°C and 700°C. It also found that the increase in sintering temperature leads to a tendency toward the changes in the magnetic properties into paramagnetic. The presence of ZnMnO3 secondary phases in Zn0.98Mn0.02O system is believed to be a factor that affects the decrease of the electrical and magnetic properties of the sample.

  19. Mechanical Properties of β-Ti-35Nb-2.5Sn Alloy Synthesized by Mechanical Alloying and Pulsed Current Activated Sintering

    NASA Astrophysics Data System (ADS)

    Omran, Abdel-Nasser; Woo, Kee-Do; Lee, Hyun Bom

    2012-12-01

    A developed Ti-35 pct Nb-2.5 pct Sn (wt pct) alloy was synthesized by mechanical alloying using high-energy ball-milled powders, and the powder consolidation was done by pulsed current activated sintering (PCAS). The starting powder materials were mixed for 24 hours and then milled by high-energy ball milling (HEBM) for 1, 4, and 12 hours. The bulk solid samples were fabricated by PCAS at 1073 K to 1373 K (800 °C to 1100 °C) for a short time, followed by rapid cooling to 773 K (500 °C). The relative density of the sintered samples was about 93 pct. The Ti was completely transformed from α to β-Ti phase after milling for 12 hours in powder state, and the specimen sintered at 1546 K (1273 °C) was almost transformed to β-Ti phase. The homogeneity of the sintered specimen increased with increasing milling time and sintering temperature, as did its hardness, reaching 400 HV after 12 hours of milling. The Young's modulus was almost constant for all sintered Ti-35 pct Nb-2.5 pct Sn specimens at different milling times. The Young's modulus was low (63.55 to 65.3 GPa) compared to that of the standard alloy of Ti-6Al-4V (100 GPa). The wear resistance of the sintered specimen increased with increasing milling time. The 12-hour milled powder exhibited the best wear resistance.

  20. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    DTIC Science & Technology

    2015-01-01

    Tojo T, Sakurai Y. Synthesis and lithium - ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering...battery performance is limited by the electrolytic membrane, which needs high Li-ionic conductivity. Lithium lanthanum titanate (Li3xLa(2/3)-xTiO3, or...of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11). Journal of Solid State Ionics. 1999;121

  1. High calcination of ferroelectric BaTiO₃ doped Fe nanoceramics prepared by a solid-state sintering method.

    PubMed

    Samuvel, K; Ramachandran, K

    2015-07-05

    This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. High calcination of ferroelectric BaTiO3 doped Fe nanoceramics prepared by a solid-state sintering method

    NASA Astrophysics Data System (ADS)

    Samuvel, K.; Ramachandran, K.

    2015-07-01

    This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples.

  3. Utilization of lignite power generation residues for the production of lightweight aggregates.

    PubMed

    Anagnostopoulos, Iason M; Stivanakis, Victor E

    2009-04-15

    A novel process is proposed for the utilization of lignite combustion solid residues in the production of inflammable lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering, and carbon contained in BA was used as the process fuel. The main residues bottom ash (BA) and fly ash (FA) from Megalopolis power plant were characterized, mixed in different proportions and treated through pelletization and sintering process. Sintering benefits from combustion of BA carbon content and the product is a hardened porous cake. The energy required for achievement of high temperatures, in the range of 1250 degrees C, was offered by carbon combustion and CO(2) evolution is responsible for porous structure formation. Selected physical properties of sintered material relevant to use as lightweight aggregates were determined, including bulk density, porosity and water absorption. Bulk density varies from 0.83 to 0.91 g/cm(3), porosity varies from 60% to 64% and water absorption varies from 66% to 80%. LWA formed is used for the production of lightweight aggregate concrete (LWAC). Thermal conductivity coefficient varies from 0.25 to 0.37 W/mK (lower than maximum limit 0.43 W/mK) and compressive strength varies from 19 to 23 MPa (higher than minimum limit 17 MPa). The results indicate that sintering of lignite combustion residues is an efficient method of utilization of carbon containing BA and production of LWA for structural and insulating purposes. Carbon content of BA is a key factor in LWA production. Finally, this research work comprises the first proposed application for utilization of BA in Greece.

  4. Fabrication of Li2TiO3 pebbles using PVA-boric acid reaction for solid breeding materials

    NASA Astrophysics Data System (ADS)

    Park, Yi-Hyun; Cho, Seungyon; Ahn, Mu-Young

    2014-12-01

    Lithium metatitanate (Li2TiO3) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li2TiO3 pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li2TiO3 green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li2TiO3 green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li2TiO3 pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.

  5. Prediction of La0.6Sr0.4Co0.2Fe0.8O3 cathode microstructures during sintering: Kinetic Monte Carlo (KMC) simulations calibrated by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Yan, Zilin; Kim, Yongtae; Hara, Shotaro; Shikazono, Naoki

    2017-04-01

    The Potts Kinetic Monte Carlo (KMC) model, proven to be a robust tool to study all stages of sintering process, is an ideal tool to analyze the microstructure evolution of electrodes in solid oxide fuel cells (SOFCs). Due to the nature of this model, the input parameters of KMC simulations such as simulation temperatures and attempt frequencies are difficult to identify. We propose a rigorous and efficient approach to facilitate the input parameter calibration process using artificial neural networks (ANNs). The trained ANN reduces drastically the number of trial-and-error of KMC simulations. The KMC simulation using the calibrated input parameters predicts the microstructures of a La0.6Sr0.4Co0.2Fe0.8O3 cathode material during sintering, showing both qualitative and quantitative congruence with real 3D microstructures obtained by focused ion beam scanning electron microscopy (FIB-SEM) reconstruction.

  6. Sintering in Ceramics and Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hunt, Clay Dale

    Nature's propensity to minimize energy, and the change in energy with respect to position, drives diffusion. Diffusion is a means by which mass transport resulting in the bonding of the particles of a powder compact can be achieved without melting. This phenomenon occurs in powdered materials near their melting temperature, and is referred to as "sintering". Because of the extreme melting temperature of some materials, sintering might be the only practical means of processing. The complexity and subtlety of sintering ceramics motivated the evaluation of empirical data and existing sintering models. This project examined polycrystalline cubic-zirconia sintering with and without transition-metal oxide additions that change sintering behavior. This study was undertaken to determine how sintering aids affect the driving force, and activation energy, the energy barrier that must be overcome in order for an atom or ion to diffuse, of the densification occurring during sintering. Examination of commercially-available cubic-zirconia powder sintering behavior was undertaken with dilatometry, which allows monitoring of the length change a material undergoes as it sinters, and with scanning electron microscopy, which facilitates the study of sintered-sample microstructure. MATLAB algorithms quantifying sintering results were developed. Results from this work include proposed definitions of a 26-year-old undefined function of density factor in a well-accepted mathematical model of sintering. These findings suggest activation energy is not changing with density, as is suggested by recent published results. The first numerical integration of the studied sintering model has been performed. With these tools, a measure of the activation energy of densification of cubic-zirconia with and without the addition of cobalt-oxide as a sintering aid has been performed. The resulting MATLAB algorithms can be used in future sintering studies. It is concluded that sintering enhancement achieved with cobalt-oxide addition comes from reduction in activation energy of densification of cubic-zirconia. Further, it is suggested that the activation energy of densification does not change with material density. This conclusion is supported by the sensitivity of the numerical integration of the aforementioned sintering model to changes in activation energy.

  7. Laser Sintered Porous Ti-6Al-4V Implants Stimulate Vertical Bone Growth.

    PubMed

    Cheng, Alice; Cohen, David J; Kahn, Adrian; Clohessy, Ryan M; Sahingur, Kaan; Newton, Joseph B; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi

    2017-08-01

    The objective of this study was to examine the ability of 3D implants with trabecular-bone-inspired porosity and micro-/nano-rough surfaces to enhance vertical bone ingrowth. Porous Ti-6Al-4V constructs were fabricated via laser-sintering and processed to obtain micro-/nano-rough surfaces. Male and female human osteoblasts were seeded on constructs to analyze cell morphology and response. Implants were then placed on rat calvaria for 10 weeks to assess vertical bone ingrowth, mechanical stability and osseointegration. All osteoblasts showed higher levels of osteocalcin, osteoprotegerin, vascular endothelial growth factor and bone morphogenetic protein 2 on porous constructs compared to solid laser-sintered controls. Porous implants placed in vivo resulted in an average of 3.1 ± 0.6 mm 3 vertical bone growth and osseointegration within implant pores and had significantly higher pull-out strength values than solid implants. New bone formation and pull-out strength was not improved with the addition of demineralized bone matrix putty. Scanning electron images and histological results corroborated vertical bone growth. This study indicates that Ti-6Al-4V implants fabricated by additive manufacturing to have porosity based on trabecular bone and post-build processing to have micro-/nano-surface roughness can support vertical bone growth in vivo, and suggests that these implants may be used clinically to increase osseointegration in challenging patient cases.

  8. Design and characterization of Yb and Nd doped transparent ceramics for high power laser applications: recent advancements

    NASA Astrophysics Data System (ADS)

    Lapucci, A.; Vannini, M.; Ciofini, M.; Pirri, A.; Nikl, M.; Li, J.; Esposito, L.; Biasini, V.; Hostasa, J.; Goto, T.; Boulon, G.; Maksimov, R.; Gizzi, L.; Labate, L.; Toci, G.

    2017-01-01

    We report a review on our recent developments in Yttebium and Neodymium doped laser ceramics, along two main research lines. The first is the design and development of Yb:YAG ceramics with non uniform doping distribution, for the management of thermo-mechanical stresses and for the mitigation of ASE: layered structures have been produced by solid state reactive sintering, using different forming processes (spray drying and cold press of the homogenized powders, tape cast of the slurry); samples have been characterized and compared to FEM analysis. The second is the investigation of Lutetium based ceramics (such as mixed garnets LuYAG and Lu2O3); this interest is mainly motivated by the favorable thermal properties of these hosts under high doping. We recently obtained for the first time high efficiency laser emission from Yb doped LuYAG ceramics. The investigation on sesquioxides has been focused on Nddoped Lu2O3 ceramics, fabricated with the Spark Plasma Sintering method (SPS). We recently achieved the first laser emission above 1 W from Nd doped Lu2O3 ceramics fabricated by SPS.

  9. [Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].

    PubMed

    Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng

    2015-12-01

    To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.

  10. Process Simulation of Cold Pressing and Sintering of Armstrong CP-Ti Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorti, Sarma B; Sabau, Adrian S; Peter, William H

    A computational methodology is presented for the process simulation of cold pressing and sintering of Armstrong CP-Ti powders. Since the powder consolidation is governed by specific pressure-dependent constitutive equations, solution algorithms were developed for the ABAQUS user material subroutine, UMAT, for computing the plastic strain increments based on an implicit integration of the nonlinear yield function, flow rule, and hardening equations. Sintering was simulated using a model based on diffusional creep using the user subroutine CREEP. The initial mesh, stress, and density for the simulation of sintering were obtained from the results of the cold pressing simulation, minimizing the errorsmore » from decoupling the cold pressing and sintering simulations. Numerical simulation results are presented for the cold compaction followed by a sintering step of the Ti powders. The numerical simulation results for the relative density were compared to those measured from experiments before and after sintering, showing that the relative density can be accurately predicted. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. ACKNOWLEDGEMENTS This research was sponsored by the U.S. DOE, and carried out at ORNL, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. This research was sponsored by the U.S. DOE, EERE Industrial Technology Program Office under CPS Agreement # 17881.« less

  11. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.

    PubMed

    Anagnostopoulos, I M; Stivanakis, V E; Angelopoulos, G N; Papamantellos, D C

    2010-02-15

    The present research study investigates the synergy of industrial solid by-products from lignite combustion (fly ash and bottom ash) and aluminum production (ferroalumina) in the production of lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering. Bottom ash (BA) is used as the principal raw material in mixtures while ferroalumina (FAL) is added in lower percentages (5-30 wt%). BA carbon content is used as the fuel of sintering process in high temperatures, around 1250 degrees C, and gas generation is responsible for porous structure formation. Physical properties such as porosity, water absorption and bulk density, of sintering products are measured. Increase of FAL percentage in sintering mixtures results in decrease of porosity from 61% to 35% and of water absorption from 61% to 21% and in increase of bulk density from 1.02 g/cm(3) to 1.80 g/cm(3) of the produced aggregates. Aggregates produced by FAL addition up to 20 wt% are characterized as LWA. Aggregates formed are used in the production of concrete specimens. Compressive strength of concrete increases by increasing FAL addition in aggregates from 5 wt% to 15 wt% (highest strength value), while decrease by increasing FAL addition from 20 wt% to 30 wt%. FAL addition in lignite ashes sintering mixtures (up to 15 wt%) is considered as an important parameter for enhancing aggregates strength.

  12. Effect of Dopants and Sintering Method on the Properties of Ceria-Based Electrolytes for IT-SOFCs Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Payal; Sharma, Chetan; Singh, Kanchan L.; Singh, Anirudh P.

    2018-05-01

    Doped and co-doped ceria ceramics are used as electrolyte materials in solid oxide fuel cells. In this work, ceria-based oxides, Ce0.90Gd0.06Y0.02M0.02O2-δ (M = Ca, Fe, La, and Sr) were prepared by conventional as well as microwave processing from the precursors prepared by the mixed oxide method. The consolidated calcined powders in pellet form were sintered in microwave energy at 1400°C for 20 min and in an electric furnace of IR radiation at 1400°C for 6 h. The x-ray diffraction analysis confirmed that all the compositions were crystallized into a cubic fluorite structure. Surface morphology of the sintered products was studied using scanning electron microscopy and the microhardness was investigated using the Vickers hardness test. The comparative results analysis shows that the microwave-sintered samples have uniform grain growth, higher density and higher microhardness than the corresponding conventionally sintered products. The microwave-sintered sample of composition Ce0.90Gd0.06Y0.02Sr0.02O2-δ was found to have the highest microhardness among the four compositions due to its high density and smallest grain size.

  13. Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof

    NASA Technical Reports Server (NTRS)

    Schroeder, James E. (Inventor); Anderson, Harlan U. (Inventor)

    1990-01-01

    An unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape.

  14. Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells

    NASA Technical Reports Server (NTRS)

    Schroeder, James E. (Inventor); Anderson, Harlan U. (Inventor)

    1991-01-01

    A unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape.

  15. Methods of flash sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Rishi; Cologna, Marco; Francis, John S.

    2016-05-10

    This disclosure provides methods of flash sintering and compositions created by these methods. Methods for sintering multilayered bodies are provided in which a sintered body is produced in less than one minute. In one aspect, each layer is of a different composition, and may be constituted wholly from a ceramic or from a combination of ceramic and metallic particles. When the body includes a layer of an anode composition, a layer of an electrolyte composition and a layer of a cathode composition, the sintered body can be used to produce a solid oxide fuel cell.

  16. Thermoelectric Properties of Hot-Pressed and PECS-Sintered Magnesium-Doped Copper Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Morelli, Donald T.

    2011-05-01

    Copper aluminum oxide (CuAlO2) is considered as a potential candidate for thermoelectric applications. Partially magnesium-doped CuAlO2 bulk pellets were fabricated using solid-state reactions, hot-pressing, and pulsed electric current sintering (PECS) techniques. X-ray diffraction and scanning electron microscopy were adopted for structural analysis. High-temperature transport property measurements were performed on hot-pressed samples. Electrical conductivity increased with Mg doping before secondary phases became significant, while the Seebeck coefficient displayed the opposite trend. Thermal conductivity was consistently reduced as the Mg concentration increased. Effects of Mg doping, preparation conditions, and future modification on this material's properties are discussed.

  17. One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.

  18. Effect of Sintering Temperature on Structural, Dielectric, and Magnetic Properties of Multiferroic YFeO₃ Ceramics Fabricated by Spark Plasma Sintering.

    PubMed

    Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen

    2017-03-07

    Based on precursor powders with a size of 200-300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO₃ ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO₃ ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe 3+ to Fe 2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO₃ ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage.

  19. Effects of different compositions from magnetic and nonmagnetic dopants on structural and electrical properties of ZnO nanoparticles-based varistor ceramics

    NASA Astrophysics Data System (ADS)

    Sendi, Rabab Khalid

    2018-03-01

    In the current study, 20 nm zinc oxide (ZnO) nanoparticles were used to manufacture high-density ZnO discs doped with Mn and Sn via the conventional ceramic processing method, and their properties were characterized. Results show that the dopants were found to have significant effects on the ZnO varistors, especially on the shape and size of grains, which are significantly different for both dopants. The strong solid-state reaction in the varistor from the 20 nm ZnO powder during the sintering process may be attributed to the high surface area of the 20 nm ZnO nanoparticles. Although Mn and Sn do not affect the well-known peaks related to the wurtzite structure of ZnO ceramics, a few of the additional peaks could be formed at high doping content (≥2.0) due to the formation of other unknown phases during the sintering process. Both additives also significantly affect the electrical properties of the varistor, with a marked changed in the breakdown voltage from 415 V to 460 V for Sn and from 400 V to 950 V for Mn. Interestingly, the electrical behaviors of the varistors, such as breakdown voltage, nonlinear coefficient, and barrier height, are higher for Mn- than Sn-doping samples, and the opposite behaviors hold for hardness, leakage currents, and electrical conductivities. Results show that the magnetic moment and valence state of the two additive dopants are responsible for all demonstrated differences in the electrical characteristics between the two dopants.

  20. Fabrication of Powder Metallurgy Pure Ti Material by Using Thermal Decomposition of TiH2

    NASA Astrophysics Data System (ADS)

    Mimoto, Takanori; Nakanishi, Nozomi; Umeda, Junko; Kondoh, Katsuyoshi

    Titanium (Ti) and titanium alloys have been interested as an engineering material because they are widely used across various industrial applications, for example, motorcycle, automotive and aerospace industries, due to their light weight, high specific strength and superior corrosion resistance. Ti materials are particularly significant for the aircraft using carbon/carbon (C/C) composites, for example, carbon fiber reinforced plastics (CFRP), because Ti materials are free from the problem of contact corrosion between C/C composites. However, the applications of Ti materials are limited because of their high cost. From a viewpoint of cost reduction, cost effective process to fabricate Ti materials is strongly required. In the present study, the direct consolidation of titanium hydride (TiH2) raw powders in solid-state was employed to fabricate pure Ti bulk materials by using thermal decomposition of TiH2. In general, the production cost of Ti components is expensive due to using commercially pure (CP) Ti powders after dehydrogenation. On the other hand, the novel process using TiH2 powders as starting materials is a promising low cost approach for powder metallurgy (P/M) Ti products. Furthermore, this new process is also attractive from a viewpoint of energy saving because the dehydrogenation is integrated into the sintering process. In this study, TiH2 raw powders were directly consolidated by conventional press technique at 600 MPa to prepare TiH2 powder compacted billets. To thermally decompose TiH2 and obtain sintered pure Ti billets, the TiH2 powder billets were heated in the integrated sintering process including dehydrogenation. The hot-extruded pure Ti material, which was heat treated at 1273 K for 180 min in argon gas atmosphere, showed tensile strength of 701.8 MPa and elongation of 27.1%. These tensile properties satisfied the requirements for JIS Ti Grade 4. The relationship between microstructures, mechanical properties response and heat treatment temperature is discussed in detail.

  1. Microstructure and Mechanical Behavior of Porous Ti–6Al–4V Processed by Spherical Powder Sintering

    PubMed Central

    Reig, Lucía; Tojal, Concepción; Busquets, David J.; Amigó, Vicente

    2013-01-01

    Reducing the stiffness of titanium is an important issue to improve the behavior of this material when working together with bone, which can be achieved by generating a porous structure. The aim of this research was to analyze the porosity and mechanical behavior of Ti–6Al–4V porous samples developed by spherical powder sintering. Four different microsphere sizes were sintered at temperatures ranging from 1300 to 1400 °C for 2, 4 and 8 h. An open, interconnected porosity was obtained, with mean pore sizes ranging from 54.6 to 140 µm. The stiffness of the samples diminished by as much as 40% when compared to that of solid material and the mechanical properties were affected mainly by powder particles size. Bending strengths ranging from 48 to 320 MPa and compressive strengths from 51 to 255 MPa were obtained. PMID:28788365

  2. Microstructure and Mechanical Behavior of Porous Ti-6Al-4V Processed by Spherical Powder Sintering.

    PubMed

    Reig, Lucía; Tojal, Concepción; Busquets, David J; Amigó, Vicente

    2013-10-23

    Reducing the stiffness of titanium is an important issue to improve the behavior of this material when working together with bone, which can be achieved by generating a porous structure. The aim of this research was to analyze the porosity and mechanical behavior of Ti-6Al-4V porous samples developed by spherical powder sintering. Four different microsphere sizes were sintered at temperatures ranging from 1300 to 1400 °C for 2, 4 and 8 h. An open, interconnected porosity was obtained, with mean pore sizes ranging from 54.6 to 140 µm. The stiffness of the samples diminished by as much as 40% when compared to that of solid material and the mechanical properties were affected mainly by powder particles size. Bending strengths ranging from 48 to 320 MPa and compressive strengths from 51 to 255 MPa were obtained.

  3. Hydrothermal Cold Sintering

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300 °C, respectively. Process variables were defined and effects of individual parameters were studied systematically through control variable method with Li2MoO4-water system. Crystalline structure, fractured surface morphology and chemical bonding information of the cold sintered pellets were studied with X-ray diffraction (XRD), field effect scanning electron microscopy (FE-SEM) and Raman spectroscopy, etc. Densification mechanism studies were conducted on ZnO. Through comparison experiments, it was found that the Zn2+ concentration in the solution is critical for densification, while dissolution of grains only serves as a means to the former. Through pressure dependent studies, a critical value was found, which correlated well with the hydrostatic pressure keeping liquid water from thermal expansion. These results confirmed establishment of hydrothermal condition that would be important for mass transport in densification. Densification rate variations with process time was estimated and similar time dependence to Kingery's model was found. The densification process was proposed to be consist of three consecutive stages, which are quick initial compaction, grain rearrangement and dissolution-reprecipitation events. Binary metal oxides with different acidities were subjected to cold sintering with various aqueous solutions in establishing a criteria for material selection. It was found that in general materials with high solubility at around neutral pH, high dissolution kinetics and similar free energy to their hydroxides or hydrates at ambient would be more likely for full densification with high phase purity. The anions in solution should also be wisely selected to avoid stable compound or complex formation. To extend the applicable material list for full densification, non-aqueous solvent of dimethyl sulfoxide (DMSO) based solution was studied for cold sintering. Both improvement of pellet density and suppression of hydroxide formation were achieved for MnO by using DMSO-HOAc solution. With this strategy, densification of other metal oxides with strong hydroxide formation may also be improved, for example oxides of alkaline earth and many transition metals. Finally, the author's previous work on Zn1-xMg xO thin films is included in Chapter 7.

  4. Recent analytical developments for powder characterization

    NASA Astrophysics Data System (ADS)

    Brackx, E.; Pages, S.; Dugne, O.; Podor, R.

    2015-07-01

    Powders and divided solid materials are widely represented as finished or intermediary products in industries as widely varied as foodstuffs, cosmetics, construction, pharmaceuticals, electronic transmission, and energy. Their optimal use requires a mastery of the transformation process based on knowledge of the different phenomena concerned (sintering, chemical reactivity, purity, etc.). Their modelling and understanding need a prior acquisition of sets of data and characteristics which are more or less challenging to obtain. The goal of this study is to present the use of different physico-chemical characterization techniques adapted to uranium-containing powders analyzed either in a raw state or after a specific preparation (ionic polishing). The new developments touched on concern dimensional characterization techniques for grains and pores by image analysis, chemical surface characterization and powder chemical reactivity characterization. The examples discussed are from fabrication process materials used in the nuclear fuel cycle.

  5. Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Sanders, W. A.; Fiyalko, J. L.

    1975-01-01

    Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior.

  6. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    NASA Astrophysics Data System (ADS)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  7. The microstructure-processing-property relationships in an aluminum matrix composite system reinforced by aluminum-copper-iron alloy particles

    NASA Astrophysics Data System (ADS)

    Tang, Fei

    Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the "low shear" consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that these strengthening mechanisms can be combined to predict accurately the strength of the composites. By neutron diffraction measurements, it also was found that the composites consolidated from Al and Al63Cu25Fe12 quasicrystal alloy reinforcement powders have compressive residual stress in the Al matrix, contrary to the tensile residual stress in typical Al/SiC composites. The composites made by the quasi-isostatic forging process exhibited higher tensile strengths and much higher compressive residual stresses than the composites made by the VHP process.

  8. Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen

    2018-05-01

    Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.

  9. Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batra, Uma; Kapoor, Seema; Sharma, J. D.

    2011-12-12

    Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work--fluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}-CaF{sub 2}) and unfluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm,more » respectively. The pellets were sintered at four different temperatures i.e. 1000 deg. C, 1150 deg. C, 1250 deg. C and 1350 deg. C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with {alpha}-TCP (tricalcium phosphate) and {beta}-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 deg. C and 1150 deg. C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 deg. C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 deg. C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 deg. C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the green pellets.« less

  10. Hot pressing and lithification of gouge during the Mount St. Helens 2004-2008 eruption: insights from high temperature deformation experiments

    NASA Astrophysics Data System (ADS)

    Ryan, Amy G.; Russell, James K.; Heap, Michael J.

    2017-04-01

    We present results from an experimental program designed to investigate the timescales, conditions and mechanisms responsible for the densification and lithification of volcanic gouge at Mount St. Helens (MSH). From 2004-2008, MSH produced a series of lava domes/spines that were mantled by thick layers of gouge resulting from fracturing and cataclasis at the conduit-wall rock interface. The gouge comprises fine crystal-rich rock powder containing little to no glass. The erupted gouge carapace is texturally diverse, and varies from loose granular material to moderately indurated coherent rock to fine-grained cataclasite within tens of centimeters. The spatial association of these materials suggests that the originally unconsolidated conduit-fault gouge is densified and lithified during ascent to the surface. At present the conditions, timescales and mechanisms for lithification of the glass-poor materials are unknown. Here, we present results from a series of high-temperature (T) uniaxial deformation experiments performed on natural gouge collected from MSH (spine 5). The experiments are intended to (1) establish the feasibility of experimentally densifying/lithifying natural gouge materials at laboratory conditions approximating those within the MSH conduit, and to (2) constrain the effects of T, load and time on the extents, rates and mechanisms of densification. Our experimental conditions include T up to 800°C (T

  11. Effect of Sintering Temperature on Structural, Dielectric, and Magnetic Properties of Multiferroic YFeO3 Ceramics Fabricated by Spark Plasma Sintering

    PubMed Central

    Wang, Meng; Wang, Ting; Song, Shenhua; Ma, Qing; Liu, Renchen

    2017-01-01

    Based on precursor powders with a size of 200–300 nm prepared by the low-temperature solid reaction method, phase-pure YFeO3 ceramics are fabricated using spark plasma sintering (SPS) at different temperatures. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that the high-purity YFeO3 ceramics can be prepared using SPS, while the results from X-ray photoelectron spectroscopy (XPS) show that the concentration of oxygen vacancies resulting from transformation from Fe3+ to Fe2+ is low. The relative density of the 1000 °C-sintered sample is as high as 97.7%, which is much higher than those of the samples sintered at other temperatures. The present dielectric and magnetic properties are much better than those of the samples fabricated by conventional methods. These findings indicate that the YFeO3 ceramics prepared by the low temperature solid reaction and SPS methods possess excellent dielectric and magnetic properties, making them suitable for potential applications involving magnetic storage. PMID:28772626

  12. Developing Cost-Effective Dense Continuous SDC Barrier Layers for SOFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hoang Viet P.; Hardy, John S.; Coyle, Christopher A.

    Significantly improved performance during electrochemical testing of a cell with a dense continuous pulsed laser deposited (PLD) samarium doped ceria (SDC) layer spurred investigations into the fabrication of dense continuous SDC barrier layers by means of cost-effective deposition using screen printing which is amenable to industrial production of SOFCs. Many approaches to improve the SDC density have been explored including the use of powder with reduced particle sizes, inks with increased solids loading, and doping with sintering aids (1). In terms of sintering aids, dopants like Mo or binary systems of Mo+Cu or Fe+Co greatly enhance SDC sinterability. In fact,more » adding dopants to a screen printed, prefired, porous SDC layer made it possible to achieve a dense continuous barrier layer atop the YSZ electrolyte without sintering above 1200°C. Although the objective of fabricating a dense continuous layer was achieved, additional studies have been initiated to improve the cell performance. Underlying issues with constrained sintering and dopant-enhanced ceria-zirconia solid solubility are also addressed in this paper.« less

  13. A major advance in powder metallurgy

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Stiglich, Jacob J., Jr.; Kaplan, Richard B.; Tuffias, Robert H.

    1991-01-01

    Ultramet has developed a process which promises to significantly increase the mechanical properties of powder metallurgy (PM) parts. Current PM technology uses mixed powders of various constituents prior to compaction. The homogeneity and flaw distribution in PM parts depends on the uniformity of mixing and the maintenance of uniformity during compaction. Conventional PM fabrication processes typically result in non-uniform distribution of the matrix, flaw generation due to particle-particle contact when one of the constituents is a brittle material, and grain growth caused by high temperature, long duration compaction processes. Additionally, a significant amount of matrix material is usually necessary to fill voids and create 100 percent dense parts. In Ultramet's process, each individual particle is coated with the matrix material, and compaction is performed by solid state processing. In this program, Ultramet coated 12-micron tungsten particles with approximately 5 wt percent nickel/iron. After compaction, flexure strengths were measured 50 percent higher than those achieved in conventional liquid phase sintered parts (10 wt percent Ni/Fe). Further results and other material combinations are discussed.

  14. A novel method for preparation of high dense tetragonal Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Wen, Yuehua; Cheng, Jie; Cao, Gaoping; Jin, Zhaoqing; Ming, Hai; Xu, Yan; Zhu, Xiayu

    2017-03-01

    For conventional preparation methods of Li7La3Zr2O12 (LLZO) solid state electrolytes, there is a stereotype that higher density always comes from higher pressure enforced upon the LLZO pellets. In this paper, a different way with an auto-consolidation mechanism is provided and discussed. No pressing operations are employed during the whole preparation process. Due to the surface tension of liquid melted Li2O at sintering temperature, LLZO particles could aggregate together freely and automatically. The preparation process for dense LLZO is greatly simplified. A dense tetragonal LLZO with high relative density about 93% has been prepared successfully by this auto-consolidation method. And there are no voids observed in the SEM images. At 30 °C, the total conductivity is about 5.67 × 10-5 S cm-1, which is the highest one for tetragonal LLZO in the reported issues, even two times higher than that prepared by hot-pressing method. The activation energy for total conductivity is ∼0.35 eV atom-1 at 30-120 °C, slightly lower than the previous reported values. This work sheds light on the understanding of the consolidation mechanism for solid electrolytes and suggests a reliable route to syhthesize cemanic solid electrolytes.

  15. High-temperature mechanical properties of a solid oxide fuel cell glass sealant in sintered forms

    NASA Astrophysics Data System (ADS)

    Chang, Hsiu-Tao; Lin, Chih-Kuang; Liu, Chien-Kuo; Wu, Szu-Han

    High-temperature mechanical properties of a silicate-based glass sealant (GC-9) for planar solid oxide fuel cell have been studied in sintered forms. Ring-on-ring biaxial flexural tests are carried out at room temperature to 800 °C for the sintered GC-9 glass. The results are also compared with those in cast bulk forms. From the force-displacement curves, the glass transition temperature (T g) of the non-aged, sintered GC-9 glass is estimated to be between 700 °C and 750 °C, while that of the aged one is between 750 °C and 800 °C. Due to a crack healing effect of the residual glass at high temperature, the flexural strength of the sintered GC-9 glass at temperature of 650 °C to T g point is greater than that at room temperature. At temperature above T g, the flexural strength and stiffness are considerably reduced to a level lower than the room-temperature one. The sintered GC-9 glass with pores and crystalline phases has a flexural strength lower than the cast bulk one at temperature of 650 °C and below. Due to a greater extent of crystallization, the flexural strength and stiffness of the sintered GC-9 glass are greater than those of the cast bulk one at 700-800 °C.

  16. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  17. Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty

    2016-07-01

    (1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.

  18. Fabrication and spectroscopic properties of Co:MgAl2O4 transparent ceramics by the HIP post-treatment

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Ma, Peng; Xie, Tengfei; Dai, Jiawei; Pan, Yubai; Kou, Huamin; Li, Jiang

    2017-07-01

    Cobalt-doped magnesium aluminate spinel (Co:MgAl2O4) is one of the most important saturable absorbers for the passive Q-switching of solid-state lasers operating at eye-safe wavelength of 1.5 μm. In this work, highly transparent Co:MgAl2O4 ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) post-treatment, using the mixture of the commercial spinel and the lab-made Co:MgAl2O4 powder as the raw materials. The densification mechanism of Co:MgAl2O4 transparent ceramics was discussed. The microstructure and optical properties of the samples were investigated. The ground state absorption cross section (σGSA) was calculated from the fitted curve of the absorption coefficient spectrum. The results show that Co:MgAl2O4 ceramics fabricated by vacuum sintering at 1500 °C for 5 h and then HIP post-treatment at 1650 °C for 3 h perform good transparency, whose in-line transmittance exceeds 80% at 2500 nm. Moreover, the ground state absorption cross section of 0.02 at.% Co:MgAl2O4 ceramics is calculated to be 3.35 × 10-19 cm2 at the wavelength of 1540 nm, which is promising for the application to the passive Q-switching of solid-state laser operating in the near infrared region (NIR).

  19. Temperature-dependent ac conductivity and dielectric response of vanadium doped CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Sen, A.; Maiti, U. N.; Thapa, R.; Chattopadhyay, K. K.

    2011-09-01

    Successful incorporation of vanadium dopant within the giant dielectric material CaCu 3Ti 4O12 (CCTO) through a conventional solid-state sintering process is achieved and its influence on the dielectric as well as electrical properties as a function of temperature and frequency is reported here. Proper crystalline phase formation together with dopant induced lattice constant shrinkage was confirmed through X-ray diffraction. The temperature dependence of the dielectric constant at different constant frequencies was investigated. We infer that the correlated barrier hopping (CBH) model is dominant in the conduction mechanism of the ceramic as per the temperature-dependent ac conductivity measurements. The electronic parameters such as density of the states at the Fermi level, N( E f) and hopping distance, R ω of the ceramic were also calculated using this model.

  20. Effects of K-Doping on Thermoelectric Properties of Bi1- x K x CuOTe

    NASA Astrophysics Data System (ADS)

    An, Tae-Ho; Lim, Young Soo; Seo, Won-Seon; Park, Cheol-Hee; Yoo, Mi Duk; Park, Chan; Lee, Chang Hoon; Shim, Ji Hoon

    2017-05-01

    The effects of K-doping on the thermoelectric properties of Bi1- x K x CuOTe ( x = 0 to 0.08) have been investigated. The compounds were synthesized by a one-step solid-state reaction method and consolidated by a spark plasma sintering process. As the amount of K-doping was increased, the electrical and thermal conductivities increased while the Seebeck coefficient decreased due to increasing hole concentration. A ZT value of 0.69 was obtained for the compound K0.01Bi0.99CuOTe at 700 K, to the best of our knowledge the highest value reported for this material system. The origin of this enhanced ZT is discussed in terms of the density of states effective mass estimated by a single parabolic band model and electronic structures calculated based on density functional theory.

  1. Effects of PbO-B2O3 Glass Doping on the Sintering Temperature and Piezoelectric Properties of 0.35Pb (Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 Ceramics

    NASA Astrophysics Data System (ADS)

    Yi, Jinqiao; Shen, Meng; Liu, Sisi; Jiang, Shenglin

    2015-12-01

    0.35Pb(Ni1/3Nb2/3)O3-0.65Pb(Zr0.41Ti0.59)O3 (PNN-PZT) ceramics doped with 0.5PbO-0.5B2O3 glass have been synthesized by the conventional solid-state sintering technique. The effects of 0.5PbO-0.5B2O3 glass on the sintering temperature and piezoelectric properties of PNN-PZT ceramics were studied. The results indicated that the sintering temperature of PNN-PZT was significantly reduced due to the incorporation of 0.5PbO-0.5B2O3 glass dopant. When the content of 0.5PbO-0.5B2O3 glass was 0.5 wt.%, the sintering temperature of PNN-PZT was observed to reduce from above 1200°C to 920°C while the samples maintained high density (7.91 g/cm3), excellent piezoelectric constant ( d 33 = 479 pC/N), large electromechanical coupling coefficient ( K p = 0.55), and relatively low electromechanical quality factor ( Q m = 79). Moreover, large dielectric constant ( ɛ 33 T / ɛ 0 = 2904) and low dielectric loss (tan δ = 0.0166) were obtained in this work.

  2. Microstructure, Hardness, and Corrosion Behavior of TiC-Duplex Stainless Steel Composites Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Han, Ying; Zhang, Wei; Sun, Shicheng; Chen, Hua; Ran, Xu

    2017-08-01

    Duplex stainless steel composites with various weight fractions of TiC particles are prepared by spark plasma sintering. Ferritic 434L and austenitic 316L stainless steel powders are premixed in a 50:50 weight ratio and added with 3-9 wt.% TiC. The compacts are sintered in the solid state under vacuum conditions at 1223 K for 5 min. The effects of TiC content on the microstructure, hardness, and corrosion resistance of duplex stainless steel composites fabricated by powder metallurgy are evaluated. The results indicate that the TiC particulates as reinforcements can be distributed homogeneously in the steel matrix. Densification of sintered composites decreases with increasing TiC content. M23C6 carbide precipitates along grain boundary, and its neighboring Cr-Mo-depleted region is formed in the sintered microstructure, which can be eliminated subsequently with appropriate heat treatment. With the addition of TiC, the hardness of duplex stainless steel fabricated by powder metallurgy can be markedly enhanced despite increased porosity in the composites. However, TiC particles increase the corrosion rate and degrade the passivation capability, particularly for the composite with TiC content higher than 6 wt.%. Weakened metallurgical bonding in the composite with high TiC content provides the preferred sites for pitting nucleation and/or dissolution.

  3. Transport, electronic, and structural properties of nanocrystalline CuAlO2 delafossites

    NASA Astrophysics Data System (ADS)

    Durá, O. J.; Boada, R.; Rivera-Calzada, A.; León, C.; Bauer, E.; de la Torre, M. A. López; Chaboy, J.

    2011-01-01

    This work reports on the effect of grain size on the electrical, thermal, and structural properties of CuAlO2 samples obtained by solid-state reaction combined with ball milling. Electrical characterization made in microcrystalline and nanocrystalline samples shows that the electrical conductivity decreases several orders of magnitude for the nanocrystalline samples, and, in addition, there is a large discrepancy between the activation energies associated to thermoelectric power ES. The study of the Cu K-edge x-ray absorption spectra of the CuAlO2 samples shows that the local structure around Cu is preserved after the sintering process, indicating that the observed behavior of the electrical conductivity is of intrinsic origin. Complex conductivity measurements as a function of frequency allow us to discard grain-boundaries effects on the electrical transport. Thus, the changes in σ(T) and S(T) are interpreted in terms of charge localization in the framework of small polarons. This is in agreement with the analysis of the near-edge region of the absorption spectra, which indicates that sintering favors the Cu-O hybridization. As a consequence, oxygen atoms progressively lose their capability of trapping holes, and the electrical conductivity is also enhanced.

  4. Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: Enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration

    NASA Astrophysics Data System (ADS)

    Nicollet, Clement; Waxin, Jenny; Dupeyron, Thomas; Flura, Aurélien; Heintz, Jean-Marc; Ouweltjes, Jan Pieter; Piccardo, Paolo; Rougier, Aline; Grenier, Jean-Claude; Bassat, Jean-Marc

    2017-12-01

    This paper reports the study of the densification of 20% Gd doped ceria (Ce0.8Gd0.2O1.9 (GDC)) interlayers in SOFC cathodes through two different routes: the well-known addition of sintering elements, and an innovative densification process by infiltration. First, Li, Cu, and Zn nitrates were added to GDC powders. The effect of these additives on the densification was studied by dilatometry on pellets, and show a large decrease of the sintering temperature from 1330 °C (pure GDC), down to 1080 °C, 950 °C, and 930 °C for Zn, Cu, and Li addition, respectively. However, this promising result does not apply to screen-printed layers, which are more porous than pellets and in which the shrinkage is constrained by the substrate. The second approach consists in preparing a pre-sintered GDC layer, which is subsequently infiltrated with Ce and Gd nitrates and sintered at 1250 °C to increase its density. Such an approach results in highly dense GDC interlayers. Using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as electrode, the influence of the interlayers on the cathode performance was studied. The addition of sintering aids dramatically increases the cell resistances, most likely because the additives increase the reactivity between GDC and either Yttria Stabilized Zirconia (YSZ) or LSCF, thus losing the expected benefit related to the decrease of sintering temperatures. The interlayers prepared by infiltration do not induce additional resistances in the cell, which results in power densities of single cells 40-50% higher than those of cells prepared with commercial GDC interlayers, making this approach a valuable alternative to sintering aids.

  5. Development of SiAlON materials

    NASA Technical Reports Server (NTRS)

    Layden, G. K.

    1977-01-01

    Cold pressing and sintering techniques were used to produce ceramic bodies in which the major phase was beta prime Si3-Al-O-N4 solid solution. A variety of foreign oxides were used to promote liquid phase sintering, and this resulted in the incorporation of additional solid phases in the ceramic bodies which controlled elevated temperature properties. None of the bodies studied to date exhibited both adequate high temperature mechanical properties and oxidation resistance. Criteria are suggested to guide the formulation of bodies with improved high temperature properties.

  6. Spark plasma sintering of highly dense fine-grained mineral aggregates

    NASA Astrophysics Data System (ADS)

    Koizumi, S.; Suzuki, T. S.; Sakka, Y.; Hiraga, T.

    2017-12-01

    To obtain highly dense and fine-grained mineral aggregates, which are suitable for laboratory measurements of their physical and chemical properties, we applied spark plasma sintering (SPS) to synthetic mineral powders and powders originated from naturally derived crystals. SPS is an emerging consolidation technique which has been applied to various metals and ceramics and rarely to geomaterials (e.g., Guignard et al., 2011). The technique uses spark plasma created by a pulse direct current during heat treatment of powders in a graphite die. It has been found that the technique provides better densification with little grain growth during sintering compared to a conventional sintering technique in many materials. To obtain ideal highly dense fine-grained materials, it is essential to prepare starting powders suitable for the sintering and also to find appropriate sintering conditions of applied uniaxial pressures, pulsed current patterns and heating rates. We prepared synthetic mineral powers through solid state reaction of source powders at high temperature well developed by our group (Koizumi et al. 2010). We also used jet milling at wet condition and subsequent elutriation to prepare olivine powders with sub-micron particle size and equiaxed particle shape. At heating rate of ≦10°C/min and an achievement of highest temperature of 1150°C, Fe-free olivine aggregate with average grain size of 200 nm with porosity of 0.003% was obtained. We also could obtain olivine aggregate, which was sintered from powders of Horoman peridotite, with average grain size of 500 nm and porosity of 0.2%. We will show results of other minerals including major rock forming minerals of the Earth's crust.

  7. Reactive sintering of ceramic lithium ion electrolyte membranes

    DOEpatents

    Badding, Michael Edward; Dutta, Indrajit; Iyer, Sriram Rangarajan; Kent, Brian Alan; Lonnroth, Nadja Teresia

    2017-06-06

    Disclosed herein are methods for making a solid lithium ion electrolyte membrane, the methods comprising combining a first reactant chosen from amorphous, glassy, or low melting temperature solid reactants with a second reactant chosen from refractory oxides to form a mixture; heating the mixture to a first temperature to form a homogenized composite, wherein the first temperature is between a glass transition temperature of the first reactant and a crystallization onset temperature of the mixture; milling the homogenized composite to form homogenized particles; casting the homogenized particles to form a green body; and sintering the green body at a second temperature to form a solid membrane. Solid lithium ion electrolyte membranes manufactured according to these methods are also disclosed herein.

  8. Layered method of electrode for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1991-07-30

    A process for fabricating a fuel electrode comprising: slurry dipping to form layers which are structurally graded from all or mostly all stabilized zirconia at a first layer, to an outer most layer of substantially all metal powder, such an nickel. Higher performaance fuel electrodes may be achieved if sinter active stabilized zirconia doped for electronic conductivity is used.

  9. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  10. Effects of sintering temperature on the microstructural evolution and wear behavior of WCp reinforced Ni-based coatings

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu

    2014-12-01

    This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.

  11. Recent developments in melt processed Gd-123 and MgB2 materials at RTRI

    NASA Astrophysics Data System (ADS)

    Muralidhar, M.; Fukumoto, Y.; Ishihara, A.; Suzuki, K.; Tomita, M.; Koblischka, M. R.; Yamamoto, A.; Kishio, K.

    2014-01-01

    In this contribution we will report on the current status, recent developments in GdBa2Cu3Oy "Gd-123" and MgB2 material processing, characterization, and applications at the Railway Technical Research Institute (RTRI). Batch-processing of Gd-123 bulk material grown in air was performed using novel thin film Nd-123 seeds grown on MgO crystals. In this way, we are able to fabricate materials with good quality, and uniform performance. We examined the technology of the uniform performance of the large 45 mm diameter, single grain Gd-123 bulks for use in application of NMR. For this purpose, four 5 mm thick pieces are cut vertically from a single grain Gd-123 material and the magnetic field distribution is measured using a scanning hall sensor. We found that all four pieces are single domain and exhibit a quite uniform field distribution. Furthermore, the batch-processed bulk materials are used for the construction of a chilled Maglev vehicle. On the other hand, to optimize the trapped field performance of bulk MgB2 material, several samples were prepared by solid state reaction at different temperatures ranging from 750 to 950 °C in pure argon atmosphere. X-ray diffraction results indicated that single phase and homogenous MgB2 bulks are produced when sintering them around 775 °C. Further, atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated that an uniform grain size results by controlling the processing temperature. So, higher trapped fields can be achieved in sintered MgB2 material.

  12. NiFe2O4 Spinel Protection Coating for High-Temperature Solid Oxide Fuel Cell Interconnect Application

    NASA Astrophysics Data System (ADS)

    Irankhah, Reza; Raissi, Babak; Maghsoudipour, Amir; Irankhah, Abdullah; Ghashghai, Sasan

    2016-04-01

    In the present study, Ni-Fe spinel powder was synthesized via a solid state reaction. In the next step, the electrophoretic deposition (EPD) method was used to apply the NiFe2O4 spinel, as an oxidation-resistant layer, on a commercially available stainless steel (SUS 430) in a potential range of 100 to 300 V. Microscopic studies of the deposited layers showed that crack-free NiFe2O4 films were obtained at 100 V. The coated and uncoated samples were then pre-sintered in air and 5% H2 bal Ar atmospheres at 900 °C for 3 h followed by cyclic oxidation at 800 °C for 500 h. The investigation of the oxidation resistance of the samples using Energy Dispersive Spectroscopy (EDS) revealed that the NiFe2O4 coating acted as an effective barrier against chromium migration into the coating. The oxidation resistance of 5% H2 bal Ar pre-sintered sample was enhanced with an oxidation rate constant ( K P) of 8.9 × 10-15 g2 cm-4 s-1.

  13. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  14. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie Guan; Atul Verma; Nguyen Minh

    2003-04-01

    This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimizationmore » is in progress.« less

  15. Structural and low temperature dielectric studies on Pb0.8Bi0.2Fe0.6Nb0.4O3 multiferroic solid solution

    NASA Astrophysics Data System (ADS)

    Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshapande, S. K.; Angadi, Basavaraj

    2018-05-01

    In this paper the structural and low temperature dielectric properties of Pb0.8Bi0.2Fe0.6Nb0.4O3 (PBFNO) multiferroic solid solution were reported. PBFNO multiferroic was synthesized by single step solid state reaction method. Calcination was carried out at 700 °/2hr with different sintering temperature (800 °C, 850 °C, 900 °C, 950 °C, 1000 °C and 1050 °C for 1 hr) and time duration (800 °C for 1 to 5 hr). Single phase was confirmed through room temperature (RT) X-ray Diffraction (XRD). It was found that sintering carried out at 800°C/3 hr gives single phase. Rietveld refined lattice parameters using monoclinic structure are: a = 5.6663(1) Å, b = 5.6694(1) Å, c = 4.0112(1) Å and β = 90.038(1)° with the average grain size as 2.987 µm. The dielectric properties studied over a wide range of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K). Dielectric constant and loss tangent exhibits frequency dispersion nature at low frequency region. AC conductivity increases with increase in temperature corresponds to negative temperature coefficient of resistance (NTCR) behaviour.

  16. Physical properties of inorganic PMW-PNN-PZT ceramics

    NASA Astrophysics Data System (ADS)

    Sin, Sang-Hoon; Yoo, Ju-hyun; Kim, Yong-Jin; Baek, Sam-ki; Ha, Jun-Soo; No, Chung-Han; Song, Hyun-Seon; Shin, Dong-Chan

    2015-07-01

    In this work, inorganic Pb(Mg1/2W1/2)0.03(Ni1/3Nb2/3)x(Zr0.5Ti0.5)0.97-xO3 (x = 0.02 ∼ 0.12) composition ceramics were fabricated by the conventional solid state reaction method. And then their micro structure and ferroelectric properties were investigated according to the amount of PNN substitution. Small amounts of Li2CO3 and CaCO3 were used in order to decrease the sintering temperature of the ceramics. The 0.10 mol PNN-substituted PMW-PNN- PZT ceramics sintered at 920°C showed the excellent physical properties of piezoelectric constant (d33), electromechanical coupling factor (kp), mechanical quality coefficient (Qm), and dielectric constant of 566 pC/N, 0.61, 73, and 2183, respectively.

  17. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  18. Grain boundary premelting and activated sintering in binary refractory alloys

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng

    Quasi-liquid intergranular film (IGF) which has been widely observed in ceramic systems can persist into sub-solidus region whereby an analogy to Grain boundary (GB) premelting can be made. In this work, a grain boundary (GB) premelting/prewetting model in a metallic system was firstly built based on the Benedictus' model and computational thermodynamics, predicting that GB disordering can start at 60-85% of the bulk solidus temperatures in selected systems. This model quantitatively explains the long-standing mystery of subsolidus activated sintering in W-Pd, W-Ni, W-Co, W-Fe and W-Cu, and it has broad applications for understanding GB-controlled transport kinetics and physical properties. Furthermore, this study demonstrates the necessity of developing GB phase diagrams as a tool for materials design. Subsequently, Grain boundary (GB) wetting and prewetting in Ni-doped Mo are systematically evaluated via characterizing well-quenched specimens and thermodynamic modeling. In contrast to prior reports, the delta-NiMo phase does not wet Mo GBs in the solid state. In the solid-liquid two-phase region, the Ni-rich liquid wets Mo GBs completely. Furthermore, high-resolution transmission electron microscopy demonstrates that nanometer-thick quasi-liquid IGFs persist at GBs into the single-phase region where the bulk liquid phase is no longer stable; this is interpreted as a case of GB prewetting. An analytical thermodynamic model is developed and validated, and this model can be extended to other systems. Furthermore, the analytical model was refined based upon Beneditus' model with correction in determining interaction contribution of interfacial energy. A calculation-based GB phase diagram for Ni-Mo binary system was created and validated by comparing with GB diffusivities determined through a series of controlled sintering experiments. The dependence of GB diffusivity on doping level and temperature was examined and compared with model-predicted GB phase diagram. The consistency between GB phase diagram and GB diffusivity was evidently observed. This study revealed the existence of quasi-liquid IGF in Ni-Mo and re-confirmed our prior hypothesis proposed through work in Ni-W system. It also demonstrated further the necessity of a GB phase diagram as a new tool to guide the materials processing or design, such as selection of sintering aid and heat-treatment.

  19. Method Using Water-Based Solvent to Prepare Li7La3Zr2O12 Solid Electrolytes.

    PubMed

    Huang, Xiao; Lu, Yang; Jin, Jun; Gu, Sui; Xiu, Tongping; Song, Zhen; Badding, Michael E; Wen, Zhaoyin

    2018-05-09

    Li-garnet Li 7 La 3 Zr 2 O 12 (LLZO) is a promising candidate of solid electrolytes for high-safety solid-state Li + ion batteries. However, because of its high reactivity to water, the preparation of LLZO powders and ceramics is not easy for large-scale amounts. Herein, a method applying water-based solvent is proposed to demonstrate a possible solution. Ta-doped LLZO, that is, Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO), and its LLZTO/MgO composite ceramics are made by attrition milling, followed by a spray-drying process using water-based slurries. The impacts of parameters of the method on the structure and properties of green and sintered pellets are studied. A relative density of ∼95%, a Li-ion conductivity of ∼3.5 × 10 -4 S/cm, and uniform grain size LLZTO/MgO garnet composite ceramics are obtained with an attrition-milled LLZTO/MgO slurry that contains 40 wt % solids and 2 wt % polyvinyl alcohol binder. Li-sulfur batteries based on these ceramics are fabricated and work under 25 °C for 20 cycles with a Coulombic efficiency of 100%. This research demonstrates a promising mass production method for the preparation of Li-garnet ceramics.

  20. Advancements in Binder Systems for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul (Technical Monitor)

    2002-01-01

    Paper will present recent developments in advanced material binder systems for solid freeform fabrication (SFF) technologies. The advantage of SFF is the capability to custom fabricate complex geometries directly from computer aided design data in layer- by-layer fashion, eliminated the need for traditional fixturing and tooling. Binders allow for the low temperature processing of 'green' structural materials, either metal, ceramic or composite, in traditional rapid prototyping machines. The greatest obstacle comes when green parts must then go through a sintering or burnout process to remove the binders and fully densify the parent material, without damaging or distorting the original part geometry. Critical issues and up-to-date assessments will be delivered on various material systems.

  1. Mathematical model of the stack region of a commercial lead blast furnace

    NASA Astrophysics Data System (ADS)

    Hussain, Mansoor M.; Morris, David R.

    1989-02-01

    A mathematical model of the stack region of a commercial lead blast furnace is presented. The mass and heat balance equations were solved in conjunction with the kinetic expression for the rate of re-duction of the solids based upon the grain model, utilizing the measured structural parameters of the sinter feed and the measured kinetic parameters. Satisfactory agreement has been achieved between the computed and experimental axial profiles of gas and solids temperature, pressure, gas composi-tion, and condensed phases composition. The model is used to predict the effects of changes of bed voidage, physical properties, and chemical constitution of the sinter and the effects of gas and solids flow maldistribution on the operation of the furnace. In particular, it is noted that for a sinter with the typical physical properties of a commercial sinter, improved conversion in the upper reaches of the furnace is predicted when lead is in the form of lead oxide rather than as the relatively unreac-tive lead calcium silicates. The improved conversion is accompanied by better utilization of carbon monoxide. Further, the model suggests that the formation of scaffolds in the furnace may be due to flow maldistribution causing high temperatures in the vicinity of the furnace wall.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxing; Yan, Pengfei; Xiao, Jie

    It is widely recognized that Al plays a dual role in the fabrication of garnet-type solid electrolytes, i.e., as a dopant that stabilizes the cubic structure and a sintering aid that facilitates the densification. However, the sintering effect of Al2O3 has not been well understood so far because Al is typically “unintentionally” introduced into the sample from the crucible during the fabrication process. In this study, we have investigated the sintering effect of Al on the phase composition, microstructure, and ionic conductivity of Li6.5La3Zr1.5Ta0.5O12 by using an Al-free crucible and intentionally adding various amounts of γ-Al2O3. It was found thatmore » the densification of Li6.5La3Zr1.5Ta0.5O12 occurred via liquid-phase sintering, with evidence of morphology change among different compositions. Among all of the compositions, samples with 0.05 mol of Al per unit formula of garnet oxide (i.e., 0.3 wt% Al2O3) exhibited the optimal microstructure and the highest total ionic conductivity of 5 10-4 S cm-1 at room temperature.« less

  3. The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds.

    PubMed

    Farhangdoust, S; Zamanian, A; Yasaei, M; Khorami, M

    2013-01-01

    The design and fabrication of macroporous hydroxyapatite scaffolds, which could overcome current bone tissue engineering limitations, have been considered in recent years. In the current study, controlled unidirectional freeze-casting at different cooling rates was investigated. In the first step, different slurries with initial hydroxyapatite concentrations of 7-37.5 vol.% were prepared. In the next step, different cooling rates from 2 to 14 °C/min were applied to synthesize the porous scaffold. Additionally, a sintering temperature of 1350 °C was chosen as an optimum temperature. Finally, the phase composition (by XRD), microstructure (by SEM), mechanical characteristics, and the porosity of sintered samples were assessed. The porosity of the sintered samples was in a range of 45-87% and the compressive strengths varied from 0.4 MPa to 60 MPa. The mechanical strength of the scaffolds increased as a function of initial concentration, cooling rate, and sintering temperature. With regards to mechanical strength and pore size, the samples with the initial concentration and the cooling rate of 15 vol.% and 5 °C/min, respectively, showed better results. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. SPS-RS technique for solid-phase “in situ” synthesis of biocompatible ZrO2 porous ceramics

    NASA Astrophysics Data System (ADS)

    Shichalin, O. O.; Medkov, M. A.; Grishchenko, D. N.; Mayorov, V. Yu; Fedorets, A. N.; Belov, A. A.; Golub, A. V.; Gridasova, E. A.; Papynov, E. K.

    2018-02-01

    The prospective method of spark plasma sintering-reaction synthesis (SPS-RS) for fabrication of ceramics based on ZrO2 and biocompatible with living tissue is presented. Nanostructured ceramics has high mechanical strength (more than 400 MPa) and controlled porosity depending on specified sintering conditions. Biocompatible phases Ca10(PO4)6(OH)2 are formed “in situ” during SPS sintering of ZrO2 powder due to chemical interaction of phosphate precursors preliminary introduced into the mixture. The effective method to improve (to develop) porous structure of bioceramics obtained by SPS or SPS-RS techniques using poreforming agent (carbon black) is proposed. Suggested original SPS-RS “in situ” technique provides fabrication of new ZrO2 ceramics containing biocompatible phosphate components and possessing unique structural and mechanical characteristics. Such ceramics is indispensable for bone-ceramic implants that are able to activate processes of osteogenesis during bone tissue recovery.

  5. Synthesis of solid solutions of perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.

    The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoreticalmore » value and showing zero apparent porosity and water absorption.« less

  6. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    PubMed

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.J.; Pask, J.A.

    The sintering of TiC-Ni particle compacts was studied with specific attention to effects of processing conditions. Densification was progressively inhibited with the increasing additions of free carbon to the system. These results are explained on the basis of changes in the eutectic reactions in the system, reduced solubility of TiC in the Ni-rich liquid, and decreased wetting of the solid by the liquid. Presintering hydrogen heat treatment reduced the carbon content of the TiC-Ni compacts and led to reduction in sintering rates and elevated temperatures of liquid-phase formation. Wetting experiments with hydrogen-treated materials showed a time-dependent wetting angle. These resultsmore » are discussed based on wetting theory and reactions predicted by the equilibrium ternary-phase diagram.« less

  8. Dense garnet-like Li5La3Nb2O12 solid electrolyte prepared by self-consolidation method

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Xiang, Yu; Xu, Yan; Wen, Yuehua; Zhang, Wenfeng; Zhu, Xiayu; Li, Meng; Zhang, Sontong; Ming, Hai; Jin, Zhaoqing; Cao, Gaoping

    2018-06-01

    Li5La3Nb2O12 (LLNO) is a typical garnet-like solid electrolyte with solitary cubic structure. However, its ionic conductivity is relatively low due to the low relative density when prepared by cold isostatic pressing method, which usually involves high-pressure machines, poor productivity, tedious pressing operations, and low density. In this paper, self-consolidation method is developed to sinter dense LLNO electrolyte. Although not any pressing operations are employed in the entire process, the relative density of LLNO is promoted up to 95%, which is much higher than the reported values of 45-80%. SEM images reveal that the sample is built by huge particles in size of 80 μm indicating that there are few boundaries in the sample. Moreover, a rich content of Li-Al-O compounds is detected out in the boundary areas, which may act as sintering aids for the sample to consolidate automatically. According to the highest density, the bulk ionic conductivity of LLNO sample reaches up to 1.61 × 10-4 S cm-1 at 30 °C, which is in the same order of magnitude as the value of cubic Li7La3Zr2O12 electrolyte. This work verifies the self-consolidation mechanism for the sintering of ceramic electrolytes and could significantly facilitate the development of LLNO membrane technology.

  9. Analysis of the compressive behaviour of the three-dimensional printed porous titanium for dental implants using a modified cellular solid model.

    PubMed

    Gagg, Graham; Ghassemieh, Elaheh; Wiria, Florencia E

    2013-09-01

    A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

  10. Process Development and Property Evaluation of Organosilicon Infiltrated Reaction Sintered Silicon Nitride (RSSN).

    DTIC Science & Technology

    1982-01-01

    Battelle) (5) Prepolymer based on methyltrichlorosilane and ammonia (Battelle) (6) Polysilastyrene (Professor West, University of Wisconsin) (7...These types of materials are not commercially available, but are produced from commercial intermediates (methyldichlorosilane and ammonia ) and have been...methyltrichlorosilane and ammonia is a low melting, solid resin which has been shown to yield 72 percent residue by thermogravimetric analysis (TGA) in our work

  11. Method of making an air electrode material having controlled sinterability

    DOEpatents

    Vasilow, Theodore R.; Kuo, Lewis J. H.; Ruka, Roswell J.

    1994-01-01

    A tubular, porous ceramic electrode structure (3) is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte (4), substantially surrounds the air electrode, and a porous outer fuel electrode (7) substantially surrounds the electrolyte, to form a fuel cell (1).

  12. Method of making an air electrode material having controlled sinterability

    DOEpatents

    Vasilow, T.R.; Kuo, L.J.H.; Ruka, R.J.

    1994-08-30

    A tubular, porous ceramic electrode structure is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte, substantially surrounds the air electrode, and a porous outer fuel electrode substantially surrounds the electrolyte, to form a fuel cell. 2 figs.

  13. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  14. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    NASA Astrophysics Data System (ADS)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only 60% of theoretical density. Microwave sintering also led to improvement in terms of uniform structure and electrical properties. Ba_{0.65}Sr _{0.35}TiO_3 was sintered using the microwave power at 1300 ^circC for 10 minutes. A density of 99% was achieved with small and uniform grain size. Superconducting powders have been successfully prepared by the sol-gel process and sintered and annealed using microwave power. Sintering and densification was achieved in a shorter time with microwave heating than with conventional heating and microwave heating appears to result in refined microstructure.

  15. High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling.

    PubMed

    Finsterbusch, Martin; Danner, Timo; Tsai, Chih-Long; Uhlenbruck, Sven; Latz, Arnulf; Guillon, Olivier

    2018-06-21

    The development of high-capacity, high-performance all-solid-state batteries requires the specific design and optimization of its components, especially on the positive electrode side. For the first time, we were able to produce a completely inorganic mixed positive electrode consisting only of LiCoO 2 and Ta-substituted Li 7 La 3 Zr 2 O 12 (LLZ:Ta) without the use of additional sintering aids or conducting additives, which has a high theoretical capacity density of 1 mAh/cm 2 . A true all-solid-state cell composed of a Li metal negative electrode, a LLZ:Ta garnet electrolyte, and a 25 μm thick LLZ:Ta + LiCoO 2 mixed positive electrode was manufactured and characterized. The cell shows 81% utilization of theoretical capacity upon discharging at elevated temperatures and rather high discharge rates of 0.1 mA (0.1 C). However, even though the room temperature performance is also among the highest reported so far for similar cells, it still falls far short of the theoretical values. Therefore, a 3D reconstruction of the manufactured mixed positive electrode was used for the first time as input for microstructure-resolved continuum simulations. The simulations are able to reproduce the electrochemical behavior at elevated temperature favorably, however fail completely to predict the performance loss at room temperature. Extensive parameter studies were performed to identify the limiting processes, and as a result, interface phenomena occurring at the cathode active material/solid-electrolyte interface were found to be the most probable cause for the low performance at room temperature. Furthermore, the simulations are used for a sound estimation of the optimization potential that can be realized with this type of cell, which provides important guidelines for future oxide based all-solid-state battery research and fabrication.

  16. Comparative study of phase transition and textural changes upon calcination of two commercial titania samples: A pure anatase and a mixed anatase-rutile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kordouli, Eleana; Dracopoulos, Vassileios; Vaimakis, Tiverios

    2015-12-15

    The effect of calcination temperature and time on structural and textural changes of two commercial TiO{sub 2} samples (pure anatase and a mixture of anatase and rutile) has been investigated using N{sub 2} physisorption, ex-situ and in-situ X-ray powder diffraction, differential scanning calorimetry and UV–vis diffuse reflectance spectroscopy. The increase of the calcination temperature (up to 700 °C) and time (up to 8 h) causes only textural changes in the pure anatase, whereas a transformation of the anatase to rutile takes place, in addition, in the mixed titania (containing anatase and rutile). The textural changes observed in pure anatase samplemore » were attributed to solid state diffusion leading to an increase in the size of anatase nanocrystals, through sintering. Thus, the mean pore diameter shifts to higher values and the pore volume and specific surface area decrease. The successful application of the Johnson–Mehl–Avrami–Kolmogorov model in the kinetic data concerning the pure anatase indicates a mass transfer control of sintering process. Similar textural changes were also observed upon calcination of the sample containing anatase and rutile. In this case not only sintering but the anatase to rutile transformation contributes also to the textural changes. Kinetic analysis showed that the rutile nanocrystals in the mixed titania served as seed for by-passing the high energy barrier nucleation step allowing/facilitating thus the anatase to rutile transformation. A fine control of the anatase to rutile ratio and thus of energy-gap and the population of hetero-junctions may be obtained by adjusting the calcination temperature and time. - Graphical Abstract: Dependence of anatase content of P25 on the calcination temperature (600 °C (■), 650 °C (●), 700 °C (▲)) and time. - Highlights: • Increase of calcination temperature up to 800 °C and time up to 8 h causes only textural changes in pure anatase • Progressive transformation of anatase to rutile with time takes place in the mixed titania above 600 °C • A high activation energy barrier inhibits the solid state transformation in pure anatase • Rutile nanocrystals in mixed titania serve as seeding for favouring transformation • Calcination temperature and time allow a fine control of E{sub g} and heterojunctions population in mixed titania.« less

  17. Investigation of consolidation kinetics and microstructure evolution of Al alloys in direct metal laser sintering using phase field simulation

    NASA Astrophysics Data System (ADS)

    Bimal Satpathy, Bubloom; Nandy, Jyotirmoy; Sahoo, Seshadev

    2018-03-01

    Direct metal laser sintering is one of the very efficient processes which comes under the field of additive manufacturing and is capable of producing products of good mechanical and physical properties. The process parameters affect the physical and mechanical properties of the final products. Rapid solidification plays an important role in the consolidation kinetics as the powdered material sinters and forms a polycrystalline structure. In the recent times, the enormous use of computational modeling has helped in examining the utility of final products in a wide range of applications. In this study, a phase field model has been implemented to foresee the consolidation kinetics during the liquid state sintering. Temperature profiles have been used to study the densification behavior and neck growth which is caused by the surface diffusion of particles at initial stage. Later, importance of grain boundary and the volume diffusion during densification process is analyzed. It is also found that with rise in temperature, neck growth also increases rapidly due to the interaction of adjacent grains through grain boundary diffusion and stabilization of grain growth.

  18. Effect of Mg(2+) doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics.

    PubMed

    Frasnelli, Matteo; Sglavo, Vincenzo M

    2016-03-01

    The beta to alpha transition in tricalcium phosphate (TCP) bioceramics containing different amount of magnesium was studied in the present work. Mg-doped TCP powder was obtained by solid-state reaction starting from pure calcium carbonate, ammonium phosphate dibasic and magnesium oxide powders. The β to α transformation temperature was identified by dilatometric and thermo-differential analyses. Small pellets produced by uniaxial pressing samples were employed to study the influence of Mg(2+) on the transition kinetic, after sintering at 1550°C and subsequent slow or fast cooling down to room temperature. The evolution of β- and α-TCP crystalline phases during each thermal treatment was determined by X-ray powder diffraction analysis combined with Rietveld method-based software An annealing treatment, suitable to reconvert metastable α phase to the more clinically suitable β phase, was also investigated. It is shown that the presence of magnesium within the TCP lattice strongly influences the kinetic of the β⇆α phase transition, promoting the spontaneous α→β reconversion even upon fast cooling, or slowing down the β→α transition during heating. Similarly, it allows the α→β transformation in TCP sintered components by optimized annealing treatment at 850°C. This work concerns the effect of Mg(2+) doping on the β→α phase reconstructive transition in tricalcium phosphate (TCP), one of the most important bio-resorbable materials for bone tissue regeneration. The transition occurs upon the sintering process and is has been shown to be strongly irreversible upon cooling, leading to technological issues such as poor mechanical properties and excessive solubility due to the presence of metastable α-phase. This paper points out the kinetic contribution of Mg(2+) on the spontaneous α→β reconversion also upon fast cooling (i.e. quenching). Moreover, an annealing treatment has been shown to be beneficial to remove the retained α-phase in sintered TCP components, the presence of Mg promoting the reconversion process. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Degradable and porous Fe-Mn-C alloy for biomaterials candidate

    NASA Astrophysics Data System (ADS)

    Pratesa, Yudha; Harjanto, Sri; Larasati, Almira; Suharno, Bambang; Ariati, Myrna

    2018-02-01

    Nowadays, degradable implants attract attention to be developed because it can improve the quality of life of patients. The degradable implant is expected to degrade easily in the body until the bone healing process already achieved. However, there is limited material that could be used as a degradable implant, polymer, magnesium, and iron. In the previous study, Fe-Mn-C alloys had succesfully produced austenitic phase. However, the weakness of the alloy is degradation rate of materials was considered below the expectation. This study aimed to produce porous Fe-Mn-C materials to improve degradation rate and reduce the density of alloy without losing it non-magnetic properties. Potassium carbonate (K2CO3) were chosen as filler material to produce foam structure by sintering and dissolution process. Multisteps sintering process under argon gas environment was performed to generate austenite phase. The product showed an increment of the degradation rate of the foamed Fe-Mn-C alloy compared with the solid Fe-Mn-C alloy without losing the Austenitic Structure

  20. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter partsmore » have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.« less

  1. Recent Advances and Research Status in Energy Conservation of Iron Ore Sintering in China

    NASA Astrophysics Data System (ADS)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-11-01

    For the ferrous burden of blast furnaces in China, sinter generally accounts for more than 70% and the sintering process accounts for approximately 6-10% of the total energy consumption of the iron and steel enterprise. Therefore, saving energy during the sintering process is important to reduce the energy consumption in the iron and steel industry. This paper aims to illustrate recent advances and the research status of energy conservation of iron ore sintering in China. It focuses on the development and application of energy-saving technologies such as the composite agglomeration process, sintering with high-proportion flue gas recirculation sintering, recovery of sensible heat from the sinter cooling process, homogeneous deep-bed sintering technology, and comprehensive treatment technology of leakage of sintering. Moreover, some suggestions for the future development of energy-saving technologies are put forward.

  2. Proposal for management and alkalinity transformation of bauxite residue in China.

    PubMed

    Xue, Shengguo; Kong, Xiangfeng; Zhu, Feng; Hartley, William; Li, Xiaofei; Li, Yiwei

    2016-07-01

    Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.

  3. Silicon carbide sintered products and a method for their manufacturing

    NASA Technical Reports Server (NTRS)

    Suzuki, K.

    1986-01-01

    SiC based sinters are produced by pressureless sintering from a SiC-AlN solid solution containing Al2 to 20, N 0.2 to 10, O 0.2 to 5, a Group IIIB element 0 to 15 percent, the remainder being Si and C. Thus, a 90:10 mixture of SiC and AlN powders were cold pressed at 2000 kg/sq cm and sintered for 5 hours at 2100 C in a nitrogen atmosphere. The resulting product had density of 3.11 g/cu cm and bending strength at ambient and 1400 C at 68.5 and 66.3 kg/sq mm.

  4. Study of Diffusion Bonding of 45 Steel through the Compacted Nickel Powder Layer

    NASA Astrophysics Data System (ADS)

    Zeer, G. M.; Zelenkova, E. G.; Temnykh, V. I.; Tokmin, A. M.; Shubin, A. A.; Koroleva, Yu. P.; Mikheev, A. A.

    2018-02-01

    The microstructure of the transition zone and powder spacer, the concentration distribution of chemical elements over the width of the diffusion-bonded joint, and microhardness of 45 steel-compacted Ni powder spacer-45 steel layered composites formed by diffusion bonding have been investigated. It has been shown that the relative spacer thickness χ < 0.06 is optimal for obtaining a high-quality joint has been formed under a compacting pressure of 500 MPa. The solid-state diffusion bonding is accompanied by sintering the nickel powder spacer and the formation of the transition zone between the spacer and steel. The transition zone consists of solid solution of nickel in the α-Fe phase and ordered solid solution of iron in nickel (FeNi3).

  5. Feasibility study of the welding of SiC

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1985-01-01

    In a brief study of the feasibility of welding sintered alpha-SiC, solid-state welding and brazing were investigated. Joint quality was determined solely by microstructural examination. Hot-pressure welding was shown to be feasible at 1950 C. Diffusion welding and brazing were also successful under hot isostatic pressure at 1950 C when boride, carbide, and silicide interlayers were used. Furnace brazing was accomplished at 1750 C when a TiSi2 interlayer was introduced.

  6. Liquid phase sintered compacts in space

    NASA Technical Reports Server (NTRS)

    Mookherji, T. K.; Mcanelly, W. B.

    1974-01-01

    A model that will explain the effect of gravity on liquid phase sintering was developed. Wetting characteristics and density segregation which are the two important phenomena in liquid phase sintering are considered in the model development. Experiments were conducted on some selected material combinations to study the gravity effects on liquid phase sintering, and to verify the validity of the model. It is concluded that: (1) The surface tension forces acting on solid particles in a one-g environment are not appreciably different from those anticipated in a 0.00001g/g sub 0 (or lower) environment. (2) The capillary forces are dependent on the contact angle, the quantity of the liquid phase, and the distance between solid particles. (3) The pores (i.e., bubbles) do not appear to be driven to the surface by gravity-produced buoyancy forces. (4) The length of time to produce the same degree of settling in a low-gravity environment will be increased significantly. (5) A low gravity environment would appear to offer a unique means of satisfactorily infiltrating a larger and/or complex shaped compact.

  7. Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750 °C

    NASA Astrophysics Data System (ADS)

    Molin, S.; Jasinski, P.; Mikkelsen, L.; Zhang, W.; Chen, M.; Hendriksen, P. V.

    2016-12-01

    In this study two materials, MnCo2O4 and MnCo1.8Fe0.2O4 are studied as potential protective coatings for Solid Oxide Fuel Cell interconnects working at 750 °C. First powder fabrication by a modified Pechini method is described followed by a description of the coating procedure. The protective action of the coating applied on Crofer 22 APU is evaluated by following the area specific resistance (ASR) of the scale/coating for 5500 h including several thermal cycles. The coating is prepared by brush painting and has a porous structure after deposition. Post mortem microstructural characterization performed on the coated samples shows good protection against chromium diffusion from the chromia scale ensured by a formation of a dense reaction layer. This study shows, that even without high temperature sintering and/or reactive sintering it is possible to fabricate protective coatings based on MnCo spinels.

  8. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro.

    PubMed

    Cheng, Alice; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.

  9. Study on the mechanism of liquid phase sintering (M-12)

    NASA Technical Reports Server (NTRS)

    Kohara, S.

    1993-01-01

    The objectives were to (1) obtain the data representing the growth rate of solid particles in a liquid matrix without the effect of gravity; and (2) reveal the growth behavior of solid particles during liquid phase sintering using the data obtained. Nickel and tungsten are used as the constituent materials in liquid phase sintering. The properties of the constituent metals are given. When a compact of the mixture of tungsten and nickel powders is heated and kept at 1550 C, nickel melts down but tungsten stays solid. As the density of tungsten is much greater than that of nickel, the sedimentation of tungsten particles occurs in the experiment on Earth. The difference between the experiments on Earth and in space is illustrated. The tungsten particles sink to the bottom and are brought into contact with each other. The resulting pressure at the contact point causes the accelerated dissolution of tungsten. Consequently, flat surfaces are formed at the contact sites. As a result of dissolution and reprecipitation of tungsten, the shape of particles changes to a polygon. This phenomenon is called 'flattening.' An example of flattening of tungsten particles is shown. Thus, the data obtained by the experiment on Earth may not represent the exact growth behavior of the solid particles in a liquid matrix. If the experiments were done in a microgravity environment, the data corresponding to the theoretical growth behavior of solid particles could be achieved.

  10. Microwave processing of a dental ceramic used in computer-aided design/computer-aided manufacturing.

    PubMed

    Pendola, Martin; Saha, Subrata

    2015-01-01

    Because of their favorable mechanical properties and natural esthetics, ceramics are widely used in restorative dentistry. The conventional ceramic sintering process required for their use is usually slow, however, and the equipment has an elevated energy consumption. Sintering processes that use microwaves have several advantages compared to regular sintering: shorter processing times, lower energy consumption, and the capacity for volumetric heating. The objective of this study was to test the mechanical properties of a dental ceramic used in computer-aided design/computer-aided manufacturing (CAD/CAM) after the specimens were processed with microwave hybrid sintering. Density, hardness, and bending strength were measured. When ceramic specimens were sintered with microwaves, the processing times were reduced and protocols were simplified. Hardness was improved almost 20% compared to regular sintering, and flexural strength measurements suggested that specimens were approximately 50% stronger than specimens sintered in a conventional system. Microwave hybrid sintering may preserve or improve the mechanical properties of dental ceramics designed for CAD/CAM processing systems, reducing processing and waiting times.

  11. Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders.

    PubMed

    Gronostajski, Zbigniew; Bandoła, P; Skubiszewski, T

    2010-01-01

    The paper presents the method of the argon - shielded hot pressing of titanium alloy (Ti6A14V) powder (used in medical industry). The powders produced in the GA (gas atomization) process and in the HDH (hydride - dehydride) process were used in the experiments. A pressing process was conducted at a temperature of 800-850 degrees C for different lengths of time. An unoxidized sintered material, nearly as dense as a solid material and having a lamellar structure (alpha+beta), was obtained from the titanium alloy powder produced in the HDH process.

  12. Electrical characterization of Mn doped-(Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, A.; Materials Research Laboratory, Institute of Physics & Electronics, University of Peshawar, 25120; Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD

    2015-12-15

    Highlights: • Solid state processing of the (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. • Mn incorporated on the Ti-site into the host lattice of (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3}. • NTCR behavior was observed in the sintered samples. - Abstract: (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} (x = 0.00, 0.013, 0.015 and 0.05) ceramics were prepared by solid state sintering route at the 1500 °C for 6 h in air. Effect of Mn substitution on the structure of Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} perovskite was investigated systematically. Dielectric and impedancemore » spectroscopic studies were conducted to understand the electronic microstructure of the Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. Sample with x = 0.05 showed the highest dielectric constant (ϵ{sub r} = 1826) and low dielectric loss (tanδ = 0.001) at 10 kHz, around the room temperature, while the sample with x = 0.00 showed good microwave (MW) dielectric properties (Qf{sub o} = 838 and ϵ{sub r} = 550). The impedance spectroscopic analysis confirmed the electrical homogeneity of the samples with x = 0.013, 0.015 and 0.05, where grain boundaries dominated the conduction mechanism. Similarly, the sample with x = 0.00 was found to possess both grain boundary and bulk resistive contributions.« less

  13. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    PubMed Central

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy. It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration. Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3. PMID:26327483

  14. Development of Dielectric Material with Ceramic Matrix Composite (CMC) Produced from Kaolinite and CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Wong Swee; Hassan, Jumiah; Hashim, Mansor

    Ceramic matrix composites (CMC) combine reinforcing ceramic phases, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) with a ceramic matrix, kaolinite to create materials with new and superior properties. 10% and 20% CCTO were prepared by using a conventional solid state reaction method. CMC samples were pre-sintered at 800 deg. C and sintered at 1000 deg. C. The dielectric properties of samples were measured using HP 4192A LF Impedance Analyzer. Microstructures of the samples were observed using an optical microscope. XRD was used to determine the crystalline structure of the samples. The AFM showed the morphology of the samples. The results showed thatmore » the dielectric constant and dielectric loss factor of both samples are frequency dependent. At 10 Hz, the dielectric constant is 10{sup 11} for both samples. The CMC samples were independent with temperature with low dielectric constant in the frequency range of 10{sup 4}-10{sup 6} Hz. Since the CMC samples consist of different amount of kaolinite, so each sample exhibit different defect mechanism. Different reaction may occur for different composition of material. The effects of processing conditions on the microstructure and electrical properties of CMC are also discussed.« less

  15. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties.

    PubMed

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N; Tritt, Terry M

    2015-08-15

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy. It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration. Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  16. High strength porous support tubes for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Rossing, Barry R.; Zymboly, Gregory E.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having an electrode and a solid electrolyte disposed on a porous, sintered support material containing thermally stabilized zirconia powder particles and from about 3 wt. % to about 45 wt. % of thermally stable oxide fibers.

  17. A promising red-emitting phosphor for white-light-emitting diodes prepared by a modified solid-state reaction

    NASA Astrophysics Data System (ADS)

    Ren, Fuqiang; Chen, Donghua

    2010-02-01

    Using urea, boric acid and polyethylene glycol (PEG) as auxiliary reagents, the novel red-emitting phosphors Ca 19Zn 2 (PO 4) 14:Eu 3+ have been successfully synthesized by a modified solid-state reaction. Thermogravimetric (TG) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The dependence of the photoluminescence properties of Ca 19Zn 2 (PO 4) 14:Eu 3+ phosphors upon urea, boric acid and PEG concentration and the quadric-sintered temperature were investigated. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a fluorescent material for ultraviolet light-emitting diodes (UV-LEDs).

  18. High resolution laser micro sintering / melting using q-switched and high brilliant laser radiation

    NASA Astrophysics Data System (ADS)

    Exner, H.; Streek, A.

    2015-03-01

    Since the discovery of selective laser sintering/melting, numerous modifications have been made to upgrade or customize this technology for industrial purposes. Laser micro sintering (LMS) is one of those modifications: Powders with particles in the range of a few micrometers are used to obtain products with highly resolved structures. Pulses of a q-switched laser had been considered necessary in order to generate sinter layers from the micrometer scaled metal powders. LMS has been applied with powders from metals as well as from ceramic and cermet feedstock's to generate micro parts. Recent technological progress and the application of high brilliant continuous laser radiation have now allowed an efficient laser sintering/melting of micrometer scaled metal powders. Thereby it is remarkable that thin sinter layers are generated using high continuous laser power. The principles of the process, the state of the art in LMS concerning its advantages and limitations and furthermore the latest results of the recent development of this technology will be presented. Laser Micro Sintering / Laser Micro Melting (LMM) offer a vision for a new dimension of additive fabrication of miniature and precise parts also with application potential in all engineering fields.

  19. An Investigation of Sintering Parameters on Titanium Powder for Electron Beam Melting Processing Optimization.

    PubMed

    Drescher, Philipp; Sarhan, Mohamed; Seitz, Hermann

    2016-12-01

    Selective electron beam melting (SEBM) is a relatively new additive manufacturing technology for metallic materials. Specific to this technology is the sintering of the metal powder prior to the melting process. The sintering process has disadvantages for post-processing. The post-processing of parts produced by SEBM typically involves the removal of semi-sintered powder through the use of a powder blasting system. Furthermore, the sintering of large areas before melting decreases productivity. Current investigations are aimed at improving the sintering process in order to achieve better productivity, geometric accuracy, and resolution. In this study, the focus lies on the modification of the sintering process. In order to investigate and improve the sintering process, highly porous titanium test specimens with various scan speeds were built. The aim of this study was to decrease build time with comparable mechanical properties of the components and to remove the residual powder more easily after a build. By only sintering the area in which the melt pool for the components is created, an average productivity improvement of approx. 20% was achieved. Tensile tests were carried out, and the measured mechanical properties show comparatively or slightly improved values compared with the reference.

  20. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur

    PubMed Central

    Cohen, David J.; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M.; Hopkins, Louis B.; Boyan, Barbara D.; Schwartz, Zvi

    2018-01-01

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, microCT and histomorphometry were conducted 10 weeks postoperatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants. PMID:28452335

  1. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    PubMed

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  2. Evolving microstructure, magnetic properties and phase transition in a mechanically alloyed Ni0.5Zn0.5Fe2O4 single sample

    NASA Astrophysics Data System (ADS)

    Ismail, Ismayadi; Hashim, Mansor; Kanagesan, Samikannu; Ibrahim, Idza Riati; Nazlan, Rodziah; Wan Ab Rahman, Wan Norailiana; Abdullah, Nor Hapishah; Mohd Idris, Fadzidah; Bahmanrokh, Ghazaleh; Shafie, Mohd Shamsul Ezzad; Manap, Masni

    2014-02-01

    We report on an investigation to unravel the dependence of magnetic properties on microstructure while they evolve in parallel under the influence of sintering temperature of a single sample of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying. A single sample, instead of the normally practiced approach of using multiple samples, was sintered at various sintering temperatures from 500 °C to 1400 °C. The morphology of the samples was studied by means of scanning electron microscopy (SEM) equipped with EDX; density measurement was conducted using the Archimedes principle; and hysteresis measurement was carried out using a B-H hysteresisgraph system. XRD data showed that the first appearance of a single phase was at 800 °C and an amorphous phase was traced at lower sintering temperatures. We correlated the microstructure and the magnetic properties and showed that the important grain-size threshold for the appearance of significant ordered magnetism (mainly ferromagnetism) was about ≥0.3 µm. We found that there were three stages of magnetic phase evolution produced via the sintering process with increasing temperatures. The first stage was dominated by paramagnetic states with some superparamagnetic behavior; the second stage was influenced by moderately ferromagnetic states and some paramagnetic states; and the third stage consisted of strongly ferromagnetic states with negligible paramagnetic states. We found that three factors sensitively influenced the sample's content of ordered magnetism—the ferrite-phase crystallinity degree, the number of grains above the critical grain size and the number of large enough grains for domain wall accommodation.

  3. The Scaled-Up Synthesis of Nanostructured Ultra-High-Temperature Ceramics and Resistance Sintering of Tantalum Carbide Nanopowders and Composites

    NASA Astrophysics Data System (ADS)

    Kelly, James P.

    Ultra-high temperature ceramics (UHTCs) are a unique class of materials with the potential to withstand harsh environments due to covalent bonding, which gives these materials high melting temperatures, although decomposition temperatures should also be considered. For example, the melting temperature of TaC is near 4000 K, but may vaporize at lower temperatures. The high melting temperatures also make them difficult to process without high pressures and temperatures and to achieve dense ceramics with a nanostructure. Such materials however are appealing for aerospace technologies. The ability to generate high density compacts and maintain a nanostructure could allow for unprecedented control and improvement to the mechanical properties. The goal of this work is to develop processes for the synthesis and consolidation of nanostructured UHTCs. A self-propagating solvothermal synthesis technique for making UHTC nanopowders is presented. The technique is fast, scalable, and requires minimal external energy input. Synthesis of transition metal boride, carbide, and nitride powders is demonstrated. TaC is synthesized using a range of synthesis conditions and characterized to determine the fundamental mechanisms controlling the nanopowder characteristics. Discussion on purification of the powders is also presented. The sintering of TaC nanopowders produced by the solvothermal synthesis method is performed by resistance sintering. The effects of temperature, heating rate, and dwell time on densification and grain growth is presented. Adequate powder processing, carbon content, volatilization, and additives are found to be critical factors affecting the densification, microstructure, and grain growth. The optimal range of carbon addition for minimizing oxygen content is determined. WC and ZrC are evaluated as additives for reducing grain growth of TaC. Secondary phases and/or solid solutions are capable of suppressing grain growth. A unified approach to solid solution chemistries to control the densification, microstructure, and properties of UHTCs in general is presented. This work has important consequences on advancing the properties of UHTCs.

  4. Piezoelectric Ceramics of the (1 − x)Bi0.50Na0.50TiO3–xBa0.90Ca0.10TiO3 Lead-Free Solid Solution: Chemical Shift of the Morphotropic Phase Boundary, a Case Study for x = 0.06

    PubMed Central

    Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M.; Bucio, Lauro; Villafuerte-Castrejón, María-Elena

    2017-01-01

    Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate–titanate for actuators is that of Bi0.50Na0.50TiO3 (BNT) based solid solutions. The pseudo-binary (1 − x)Bi0.50Na0.50TiO3–xBa1 − yCayTiO3 system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route. PMID:28773096

  5. Piezoelectric Ceramics of the (1 - x)Bi0.50Na0.50TiO₃-xBa0.90Ca0.10TiO₃ Lead-Free Solid Solution: Chemical Shift of the Morphotropic Phase Boundary, a Case Study for x = 0.06.

    PubMed

    Vivar-Ocampo, Rodrigo; Pardo, Lorena; Ávila, David; Morán, Emilio; González, Amador M; Bucio, Lauro; Villafuerte-Castrejón, María-Elena

    2017-07-01

    Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate-titanate for actuators is that of Bi 0.50 Na 0.50 TiO₃ (BNT) based solid solutions. The pseudo-binary (1 - x )Bi 0.50 Na 0.50 TiO₃- x Ba 1 - y Ca y TiO₃ system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route.

  6. PHASE EVOLUTION AND MICROWAVE DIELECTRIC PROPERTIES OF (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) CERAMICS WITH ULTRA-LOW SINTERING TEMPERATURES

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Guo, Jing; Yao, Xi; Pang, Li-Xia; Qi, Ze-Ming; Shao, Tao

    2012-11-01

    The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics were prepared via the solid state reaction method. The sintering temperature decreased almost linearly from 755°C for (Li0.5Bi0.5)WO4 to 560°C for (Li0.5Bi0.5)MoO4. When the x≤0.3, a wolframite solid solution can be formed. For x = 0.4 and x = 0.6 compositions, both the wolframite and scheelite phases can be formed from the X-ray diffraction analysis, while two different kinds of grains can be revealed from the scanning electron microscopy and energy-dispersive X-ray spectrometer results. High performance of microwave dielectric properties were obtained in the (Li0.5Bi0.5)(W0.6Mo0.4)O4 ceramic sintered at 620°C with a relative permittivity of 31.5, a Qf value of 8500 GHz (at 8.2 GHz), and a temperature coefficient value of +20 ppm/°C. Complex dielectric spectra of pure (Li0.5Bi0.5)WO4 ceramic gained from the infrared spectra were extrapolated down to microwave range, and they were in good agreement with the measured values. The (Li0.5Bi0.5)(W1-xMox)O4(0.0 ≤ x ≤ 1.0) ceramics might be promising for low temperature co-fired ceramic technology.

  7. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  8. Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives.

    PubMed

    Polettini, A; Pomi, R; Trinci, L; Muntoni, A; Lo Mastro, S

    2004-09-01

    An experimental work was carried out to investigate the feasibility of application of a sintering process to mixtures composed of Municipal Solid Waste Incinerator (MSWI) fly ash and low-cost additives (waste from feldspar production and cullet). The proportions of the three constituents were varied to adjust the mixture compositions to within the optimal range for sintering. The material was compacted in cylindrical specimens and treated at 1100 and 1150 degrees C for 30 and 60 min. Engineering and environmental characteristics including weight loss, dimensional changes, density, open porosity, mechanical strength, chemical stability and leaching behavior were determined for the treated material, allowing the relationship between the degree of sintering and both mixture composition and treatment conditions to be singled out. Mineralogical analyses detected the presence of neo-formation minerals from the pyroxene group. Estimation of the extent of metal loss from the samples indicated that the potential for volatilization of species of Pb, Cd and Zn is still a matter of major concern when dealing with thermal treatment of incinerator ash.

  9. Experimental and simulation studies on grain growth in TiC and WC-based cermets during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2000-06-01

    The grain growth behaviors of TiC and WC particles in TiC-Ni, TiC-Mo2C-Ni, WC-Co and WC-VC-Co alloys during liquid phase sintering were investigated for different Ni or Co contents and compared with the results of Monte Carlo simulations. In the experimental study, TiC-Ni and WC-Co alloys had a maximum grain size at a certain liquid volume fraction, while the grain size in TiC-Mo2C-Ni and WC-VC-Co alloys increased monotonically with an increasing liquid volume fraction. These results mean that the grain growth of these alloys cannot be explained by the conventional mechanisms for Ostwald ripening, namely diffusion or reaction controlled processes. Monte Carlo simulations with different energy relationships between solidliquid interfaces predicted the effect of the liquid volume fraction on grain size similar to the experimental results. The contiguous boundaries between solid (carbide) particles appear to influence the grain growth behavior in TiC- and WC-based alloys during liquid phase sintering.

  10. 40 CFR 63.1543 - Standards for process and process fugitive sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4) Dross furnace charging location; (5) Blast furnace and dross furnace tapping location; (6) Sinter machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) The...

  11. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando [Santa Fe, NM

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  12. Electrodes for solid state gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Rangachary; Brosha, Eric L; Garzon, Fernando

    2007-05-08

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within themore » die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.« less

  13. Electrodes for solid state gas sensor

    DOEpatents

    Mukundan, Rangachary; Brosha, Eric L.; Garzon, Fernando

    2003-08-12

    A mixed potential electrochemical sensor for the detection of gases has a ceria-based electrolyte with a surface for exposing to the gases to be detected, and with a reference wire electrode and a sensing wire electrode extending through the surface and fixed within the electrolyte as the electrolyte is compressed and sintered. The electrochemical sensor is formed by placing a wire reference electrode and a wire sensing electrode in a die, where each electrode has a first compressed planar section and a second section depending from the first section with the second section of each electrode extending axially within the die. The die is filled with an oxide-electrolyte powder and the powder is pressed within the die with the wire electrodes. The wire-electrodes and the pressed oxide-electrolyte powder are sintered to form a ceramic electrolyte base with a reference wire electrode and a sensing wire electrode depending therefrom.

  14. One step sintering of homogenized bauxite raw material and kinetic study

    NASA Astrophysics Data System (ADS)

    Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying

    2016-10-01

    A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.

  15. 3D-Printed Transparent Glass

    DOE PAGES

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.; ...

    2017-04-28

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  16. 3D-Printed Transparent Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  17. The Preparation and Characterization of Materials.

    ERIC Educational Resources Information Center

    Wold, Aaron

    1980-01-01

    Presents several examples illustrating different aspects of materials problems, including problems associated with solid-solid reactions, sintering and crystal growth, characterization of materials, preparation and characterization of stoichiometric ferrites and chromites, copper-sulfur systems, growth of single crystals by chemical vapor…

  18. Spray-formed tooling

    NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  19. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite.

    PubMed

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Mehrali, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2015-09-01

    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sandblasting nozzle

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)

    1981-01-01

    A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.

  1. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Maffei, N.; Kuriakose, A. K.

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.

  2. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  3. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  4. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul; ...

    2015-11-17

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  5. A method for phenomenological and chemical kinetics study of autocatalytic reactive dissolution by optical microscopy. The case of uranium dioxide dissolution in nitric acid media

    NASA Astrophysics Data System (ADS)

    Marc, Philippe; Magnaldo, Alastair; Godard, Jérémy; Schaer, Éric

    2018-03-01

    Dissolution is a milestone of the head-end of hydrometallurgical processes, as the stabilization rates of the chemical elements determine the process performance and hold-up. This study aims at better understanding the chemical and physico-chemical phenomena of uranium dioxide dissolution reactions in nitric acid media in the Purex process, which separates the reusable materials and the final wastes of the spent nuclear fuels. It has been documented that the attack of sintering-manufactured uranium dioxide solids occurs through preferential attack sites, which leads to the development of cracks in the solids. Optical microscopy observations show that in some cases, the development of these cracks leads to the solid cleavage. It is shown here that the dissolution of the detached fragments is much slower than the process of the complete cleavage of the solid, and occurs with no disturbing phenomena, like gas bubbling. This fact has motivated the measurement of dissolution kinetics using optical microscopy and image processing. By further discriminating between external resistance and chemical reaction, the "true" chemical kinetics of the reaction have been measured, and the highly autocatalytic nature of the reaction confirmed. Based on these results, the constants of the chemical reactions kinetic laws have also been evaluated.

  6. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by "wet" chemistry to sintering ceramics by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Potanina, Ekaterina; Golovkina, Ludmila; Orlova, Albina; Nokhrin, Aleksey; Boldin, Maksim; Sakharov, Nikita

    2016-05-01

    Complex oxide Y2.5Nd0.5Al5O12 with garnet structure and phosphates NdPO4 and GdPO4 with monazite structure were obtained by using precipitation methods. Ceramics Y2.5Nd0.5Al5O12 and NdPO4 were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330-1390 °C. Leaching rates of elements from ceramics were 10-6-10-7 g/(cm2 d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step-to the process of grain boundary diffusion and grain growth.

  7. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    NASA Astrophysics Data System (ADS)

    Kang, Jin Sung

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200°C in N 2 gas condition. The printed electrodes were made with various widths and thicknesses. Surface morphology of electrode was analyzed using scanning electron microscope (SEM) and atomic force microscope (AFM). Reliable dimensions for printed electronics were found from this study. Single-crystalline silicon solar cells were tested under four-point bending to find the feasibility of directly integrating them onto a carbon fiber/epoxy composite laminate. These solar cells were not able to withstand 0.2% strain. On the other hand, thin-film amorphous silicon solar cells were subjected to flexural fatigue loadings. The current density-voltage curves were analyzed at different cycles, and there was no noticeable degradation on its performance up to 100 cycles. A multifunctional composite laminate which can harvest and store solar energy was fabricated using printed electrodes. The integrated printed circuit board (PCB) was co-cured with a carbon/epoxy composite laminate by the vacuum bag molding process in an autoclave; an amorphous silicon solar cell and a thin-film solid state lithium-ion (Li-ion) battery were adhesively joined and electrically connected to a thin flexible PCB; and then the passive components such as resistors and diodes were electrically connected to the printed circuit board by silver pasting. Since a thin-film solid state Li-ion battery was not able to withstand tensile strain above 0.4%, thin Li-ion polymer batteries were tested under various mechanical loadings and environmental conditions to find the feasibility of using the polymer batteries for our multifunctional purpose. It was found that the Li-ion polymer batteries were stable under pressure and tensile loading without any noticeable degradation on its charge and discharge performances. Also, the active materials did not decompose at 80°C, and the battery was performing well under low temperature of -27°C. Lastly, the batteries were embedded inside a carbon fiber/epoxy composite laminate to characterize their performance under fatigue loading. Finally, an intense pulsed light (IPL) was used to sinter printed silver nanoink patterns. X-ray diffraction (XRD) was used to find grain size of printed silver nanoink patterns. From these analyses it was confirmed that IPL is able to adequately sinter silver nanoink patterns for printed electronics without degradation of the substrates in less than 30 ms.

  8. The study of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites

    NASA Astrophysics Data System (ADS)

    Yu, Peng

    Aluminum-based metal matrix composites (MMCs) have been widely used as structural materials in the automobile and aerospace industry due to their specific properties. In this thesis, we report the fabrication of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites by the displacement reactions between Al and selected metal oxides (NiO, CuO and ZnO). These MMCs were produced when the Al-20wt% NiO, Al-20wt% CuO and Al-10wt% ZnO green compacts were reaction sintered in the tube furnaces. In this work, differential thermal analysis (DTA) was performed on the green samples. The green samples were then sintered separately in different tube furnaces for 30 minutes. In order to study the reaction mechanisms, the x-ray diffractometry (XRD) was used to obtain diffraction patterns of these sintered samples, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to study the microstructures of these samples. The elemental quantitative compositions of samples were determined by the energy dispersive x-ray spectrometry (EDX). In order to study the effect of cooling rate on the samples, the green samples were further sintered to 1000°C and cooled down to room temperature in different conditions: by furnace-cooling, air-quenching, oil-quenching or NaCl-solution-quenching. The SEM, TEM and atomic force microscopy (AFM) were conducted to investigate their microstructures. A microhardness tester was used to measure the hardness values of these samples. It was found that during sintering of the Al-20wt% NiO green sample, displacement reaction between Al and NiO initially occurred in solid-solid form and was soon halted by its products that separated the NiO particles from the Al matrix. The reaction then resumed in solid-liquid form as the temperature increased to the eutectic temperature of Al3Ni-Al when liquid (Al, Ni) phase appeared in the sample. After cooling, Al2O 3 particles, Al3Ni proeutectic phase and fiber-like Al 3Ni-Al eutectic were found in the sintered Al-MMC sample. (Abstract shortened by UMI.)

  9. Composite ceramic superconducting wires for electric motor applications

    NASA Astrophysics Data System (ADS)

    Halloran, John W.

    1988-12-01

    This is the Second Quarterly report on a project to develop HTSC wire for an HTSC motor. The raw material for fiber production is an improved YBa2Cu3O(7-x) powder. Continuous spools of green YBa2Cu3O(7-x) fiber are being produced. The major effort in fiber spinning is aimed at improving fiber quality and reducing fiber. Binder burnout and sintering has been intensively investigated. Fiber sintering fibers is done by the rapid zone sintering method. A continuous furnace received near the end of this Quarter will be used for continuous sintering. Continuous silver coated green fiber are produced. We have made progress toward continuous cladding using the mechanical cladding concept. The melt spinning process was successfully applied to YBa2Cu3O(7-x) powders at 50 vol percent solids loadings. The cladding work centered on mechanical cladding of silver treated filaments by solder bonding to copper strips. Aluminum deposits on YBa2Cu3O(7-x) filament surfaces were produced by MOCVD at ATM, but the superconductivity was degraded. Electrical characterization work focused on methods of making low resistance contacts on YBa2Cu3O(7-x) filaments. Emerson Motor Division has begun work on DC heteropolar and homopolar motor designs. The mechanical stresses on conventional copper wires during winding have been characterized to determine the mechanical parameters of motor building.

  10. Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone

    PubMed Central

    Paulsen, Samantha J.; Hwang, Daniel H.; Ta, Anderson H.; Yalacki, David R.; Schmidt, Tim; Miller, Jordan S.

    2016-01-01

    Selective Laser Sintering (SLS) is an additive manufacturing process that uses a laser to fuse powdered starting materials into solid 3D structures. Despite the potential for fabrication of complex, high-resolution structures with SLS using diverse starting materials (including biomaterials), prohibitive costs of commercial SLS systems have hindered the wide adoption of this technology in the scientific community. Here, we developed a low-cost, open-source SLS system (OpenSLS) and demonstrated its capacity to fabricate structures in nylon with sub-millimeter features and overhanging regions. Subsequently, we demonstrated fabrication of polycaprolactone (PCL) into macroporous structures such as a diamond lattice. Widespread interest in using PCL for bone tissue engineering suggests that PCL lattices are relevant model scaffold geometries for engineering bone. SLS of materials with large powder grain size (~500 μm) leads to part surfaces with high roughness, so we further introduced a simple vapor-smoothing technique to reduce the surface roughness of sintered PCL structures which further improves their elastic modulus and yield stress. Vapor-smoothed PCL can also be used for sacrificial templating of perfusable fluidic networks within orthogonal materials such as poly(dimethylsiloxane) silicone. Finally, we demonstrated that human mesenchymal stem cells were able to adhere, survive, and differentiate down an osteogenic lineage on sintered and smoothed PCL surfaces, suggesting that OpenSLS has the potential to produce PCL scaffolds useful for cell studies. OpenSLS provides the scientific community with an accessible platform for the study of laser sintering and the fabrication of complex geometries in diverse materials. PMID:26841023

  11. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    PubMed

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  12. Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone.

    PubMed

    Kinstlinger, Ian S; Bastian, Andreas; Paulsen, Samantha J; Hwang, Daniel H; Ta, Anderson H; Yalacki, David R; Schmidt, Tim; Miller, Jordan S

    2016-01-01

    Selective Laser Sintering (SLS) is an additive manufacturing process that uses a laser to fuse powdered starting materials into solid 3D structures. Despite the potential for fabrication of complex, high-resolution structures with SLS using diverse starting materials (including biomaterials), prohibitive costs of commercial SLS systems have hindered the wide adoption of this technology in the scientific community. Here, we developed a low-cost, open-source SLS system (OpenSLS) and demonstrated its capacity to fabricate structures in nylon with sub-millimeter features and overhanging regions. Subsequently, we demonstrated fabrication of polycaprolactone (PCL) into macroporous structures such as a diamond lattice. Widespread interest in using PCL for bone tissue engineering suggests that PCL lattices are relevant model scaffold geometries for engineering bone. SLS of materials with large powder grain size (~500 μm) leads to part surfaces with high roughness, so we further introduced a simple vapor-smoothing technique to reduce the surface roughness of sintered PCL structures which further improves their elastic modulus and yield stress. Vapor-smoothed PCL can also be used for sacrificial templating of perfusable fluidic networks within orthogonal materials such as poly(dimethylsiloxane) silicone. Finally, we demonstrated that human mesenchymal stem cells were able to adhere, survive, and differentiate down an osteogenic lineage on sintered and smoothed PCL surfaces, suggesting that OpenSLS has the potential to produce PCL scaffolds useful for cell studies. OpenSLS provides the scientific community with an accessible platform for the study of laser sintering and the fabrication of complex geometries in diverse materials.

  13. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material

    PubMed Central

    Li, Weiyan

    2018-01-01

    Background Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. Material/Methods A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. Results Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. Conclusions PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin. PMID:29746449

  14. Surface structure and electrochemical characteristics of Ti-V-Cr bcc-type solid solution alloys sintered with Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Yoichiro; Yamamoto, Osamu; Matsuda, Hiromu

    2000-07-01

    Ti-V-Cr bcc-type solid solution alloys can absorb a large amount of hydrogen and be applied to active materials of the negative electrode in Ni-MH batteries. However, because of the insolubility of Ni into these alloys, the electrochemical characteristics like discharge capacity and cycle life were poor. In order to increase the discharge capacity of hydrogen absorbing alloy electrodes, Ti-V-Cr bcc-type alloy powders were sintered with Ni in order to form Ni contained surface layer on the alloy surface. As sintering temperature rose up, the surface composition changed from TiNi to Ti{sub 2}Ni. TiNi surface layer showed better electrochemical characteristics. Formore » the Ni adding method, Ni electroless plating was preferred because of good adhesion. As a result of optimized conditions, a discharge capacity of 570 mAh/g and an improvement of cycle life were achieved.« less

  15. Phase stability and processing of strontium and magnesium doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Zheng, Feng

    Fuel Cells are one of the most promising energy transformers with respect to ecological and environmental issues. Solid Oxide Fuel Cells (SOFC) are all solid-state devices. One of the challenges to improve a SOFC is to lower the operating temperature while maintaining or increasing its output voltage. Undoped LaGaO3 is an insulator, doping transforms it into an oxygen-ionic conductor. Sr and Mg doped LaGaO3 (LSGM) perovskite is a new oxygen-ionic conductor with higher conductivity than yttria-stabilized zirconia (YSZ). This material is a candidate for a wide variety of electrochemical devices. In order to realize this potential, the phase stability and processing of this material needs to be investigated in detail. In this study, a systematic investigation of the LSGM materials in terms of phase stability, phase transition, sintering, microstructure and electrical conductivity as functions of temperature, doping content and A/B cation ratio has been carried out. The generalized formula of the materials investigated is (La1--xSrx)A(Ga1--yMg y)BO3--delta. Optimized processing parameters have been obtained by investigating their impact on density change and microstructure. Consequently, a suitable compositional window of the LSGM perovskite has been identified for SOFC electrolyte applications. Based on detailed diffraction analysis, it is found that the undoped LaGaO3 takes on the orthorhombic (Pbnm) symmetry at room temperature. This structure changes to rhombohedral (R3c) at 147 +/- 2°C or changes to monoclinic (I2/a) when the doping level increases from 0.1 to 0.2 moles. We have optimized the compositional window to make the single perovskite phase with high oxygen ionic conductivity (x = 0.10 to 0.20 with A/B ratio between 0.98 to 1.02). The best processing condition, starting from glycine nitrate process (GNP) combustion synthesized ultra-fine LSGM powder, is sintering in air at 1500°C for 2 hours. The doped material has higher oxygen ionic conductivity than YSZ at all temperatures. In addition, based on the structure and phase relations, a high temperature phase diagram for this system has been proposed. Finally, a model has been proposed to account for the high ionic conductivity of this material and to explain the effect of the doping content and the stoichiometry on the ionic conductivity. (Abstract shortened by UMI.)

  16. Synthesis of One-Dimensional and Hyperbranched Nanomaterials for Lithium-Ion Battery Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Yang, Ting

    Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.

  17. The Effects of Bismuth Oxide on Microstructures and Magnetic Properties of Mn-Mg-Al Ferrites

    NASA Astrophysics Data System (ADS)

    Nekouee, Kh. A.; Rahimi, A. H.; Haghighi, M. Alineghad; Ehsani, N.

    2018-04-01

    In the present paper, the effects of bismuth oxide as an additive on microstructure and magnetic properties of Mg0.9Mn0.1Al0.4Fe1.6O4 were investigated. Mg-Mn-Al ferrite powders were prepared by the conventional solid state synthesis method. Two different amounts of bismuth oxide (2.5 wt.% and 5 wt.%) were utilized as the sintering aid and their microstructure and physical properties were compared to those of the sample without additives. X-ray diffraction (XRD) analysis indicated that crystal lattice distortion due to the microstructural constraints as the result from incorporation of bismuth oxide into the microstructure was developed by adding bismuth oxide. XRD Rietveld refinement was used to define the cation distribution and to refine the lattice parameter and oxygen parameter for the sample without bismuth oxide as (Mg0.16Mn0.02Al0.15Fe0.77)A(Mg0.74Mn0.08Al0.25Fe0.83)BO4 and 8.3308 Å and 0.2542, respectively. Microstructure studies show that a bismuth rich liquid phase forms during the sintering at 1250°C, which enhances the densification of sintered bodies up to 13% (a relative density of 93%). Magnetization of sintered samples were increased from 21.1 emu/g to 26.2 emu/g upon addition of 2.5 wt.% bismuth oxide and then decreased to 24.9 emu/g when 5 wt.% bismuth oxide was added.

  18. Heterotopic bone formation around sintered porous-surfaced Ti-6Al-4V implants coated with native bone morphogenetic proteins.

    PubMed

    Simon, Ziv; Deporter, Douglas A; Pilliar, Robert M; Clokie, Cameron M

    2006-09-01

    Coating endosseous dental implants with growth factors such as bone morphogenetic proteins (BMPs) may be one way to accelerate and/or enhance the quality of osseointegration. The purpose of this study was to investigate in the murine muscle pouch model whether sintered porous-surfaced titanium alloy implants coated with BMPs would lead to heterotopic bone formation around and within the implant surface geometry. Porous-surfaced dental implants were coated with partially purified native human BMPs, with or without a carrier of Poloxamer 407 (BASF Corp., Parsippany, NJ), placed in gelatin capsules and implanted into the hindquarter muscles of mice. Mice were euthanized after 28 days. Sections of retrieved specimens were subsequently prepared for morphometric analysis of bone formation using backscatter electron microscopic images. Human BMPs, either with or without the carrier of Poloxamer 407, led to bone formation within and outside of the sintered porous implant surface. When the sintered implant surface region was subdivided into inner and outer halves, similar levels of bone ingrowth and contact were seen in the 2 halves. Evidence of bone formation to the depth of the solid implant core (i.e., the deepest level possible) also was seen. Sintered porous-surfaced dental implants can be used as substrate for partially purified BMPs in the murine muscle pouch model. With the addition of these osteoinductive factors, the porous implant surface supported bone formation within the surface porosity provided, in some instances, all the way to the solid implant core. The addition of growth factors to a sintered porous surface may be an efficient method for altering locally the healing sequence and quality of bone associated with osseointegration of bone-interfacing implants.

  19. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    NASA Astrophysics Data System (ADS)

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20-110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process.

  20. A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering

    PubMed Central

    Liu, L. H.; Yang, C.; Kang, L. M.; Qu, S. G.; Li, X. Q.; Zhang, W. W.; Chen, W. P.; Li, Y. Y.; Li, P. J.; Zhang, L. C.

    2016-01-01

    It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications. PMID:27029858

  1. Solid oxide fuel cells with bi-layered electrolyte structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xinge; Robertson, Mark; Decès-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 μm SSZ and 4 μm SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm -2 at 650 °C and 0.85 W cm -2 at 700 °C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R el) and electrode polarization resistance (R p,a+c) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O 2- x during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R el value (0.32 Ω cm 2) at 650 °C, which is almost one order of magnitude higher than the calculated value.

  2. Impact of densification on microstructure and transport properties of CaFe5O7

    NASA Astrophysics Data System (ADS)

    Delacotte, C.; Hébert, S.; Hardy, V.; Bréard, Y.; Maki, R.; Mori, T.; Pelloquin, D.

    2016-04-01

    Monophasic CaFe5O7 ceramic has been synthesized by solid state route. Its microstructural features have been studied by diffraction techniques and electron microscopy images before and after Spark Plasma Sintering (SPS) annealings. This work is completed by measurements of electrical and thermal properties. Especially, attention is focused around the structural and electronic transition at 360 K for which specific heat measurements have revealed a sharp peak. Densification by SPS techniques led to a significant improvement of electrical conductivity above 360 K.

  3. The properties of LaSrМnO3 powders synthesized at various regimes

    NASA Astrophysics Data System (ADS)

    Mikhailov, M.; Sokolovskiy, A.; Vlasov, V.; Smolin, A.

    2017-09-01

    For the first time the concentration of ferromagnetic and paramagnetic phases in LaSrMnO3 compounds has been defined using diffuse reflection and absorption spectra in the visible and near-infrared regions. The compounds as powders were synthesized by heating La2O3/SrCO3/МnСO3 mixtures at 1200 °C which is less than their sintering temperature. The possibility to obtain LaSrMnO3 powders by solid state synthesis for smart coatings was shown.

  4. Oxidation resistant coatings for ceramic matrix composite components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaubert, V.M.; Stinton, D.P.; Hirschfeld, D.A.

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  5. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?

    PubMed

    Hansen, Thomas W; Delariva, Andrew T; Challa, Sivakumar R; Datye, Abhaya K

    2013-08-20

    Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental understanding of catalyst sintering is very important for achieving clean energy and a clean environment, and for efficient chemical conversion processes with atom selectivity. Scientists have proposed two mechanisms for sintering of nanoparticles: particle migration and coalescence (PMC) and Ostwald ripening (OR). PMC involves the mobility of particles in a Brownian-like motion on the support surface, with subsequent coalescence leading to nanoparticle growth. In contrast, OR involves the migration of adatoms or mobile molecular species, driven by differences in free energy and local adatom concentrations on the support surface. In this Account, we divide the process of sintering into three phases. Phase I involves rapid loss in catalyst activity (or surface area), phase II is where sintering slows down, and phase III is where the catalyst may reach a stable performance. Much of the previous work is based on inferences from catalysts that were observed before and after long term treatments. While the general phenomena can be captured correctly, the mechanisms cannot be determined. Advancements in the techniques of in situ TEM allow us to observe catalysts at elevated temperatures under working conditions. We review recent evidence obtained via in situ methods to determine the relative importance of PMC and OR in each of these phases of catalyst sintering. The evidence suggests that, in phase I, OR is responsible for the rapid loss of activity that occurs when particles are very small. Surprisingly, very little PMC is observed in this phase. Instead, the rapid loss of activity is caused by the disappearance of the smallest particles. These findings are in good agreement with representative atomistic simulations of sintering. In phase II, sintering slows down since the smallest particles have disappeared. We now see a combination of PMC and OR, but do not fully understand the relative contribution of each of these processes to the overall rates of sintering. In phase III, the particles have grown large and other parasitic phenomena, such as support restructuring, can become important, especially at high temperatures. Examining the evolution of particle size and surface area with time, we do not see a stable or equilibrium state, especially for catalysts operating at elevated temperatures. In conclusion, the recent literature, especially on in situ studies, shows that OR is the dominant process causing the growth of nanoparticle size. Consequently, this leads to the loss of surface area and activity. While particle migration could be controlled through suitable structuring of catalyst supports, it is more difficult to control the mobility of atomically dispersed species. These insights into the mechanisms of sintering could help to develop sinter-resistant catalysts, with the ultimate goal of designing catalysts that are self-healing.

  6. Numerical Simulation of Sintering Process in Ceramic Powder Injection Moulded Components

    NASA Astrophysics Data System (ADS)

    Song, J.; Barriere, T.; Liu, B.; Gelin, J. C.

    2007-05-01

    A phenomenological model based on viscoplastic constitutive law is presented to describe the sintering process of ceramic components obtained by powder injection moulding. The parameters entering in the model are identified through sintering experiments in dilatometer with the proposed optimization method. The finite element simulations are carried out to predict the density variations and dimensional changes of the components during sintering. A simulation example on the sintering process of hip implant in alumina has been conducted. The simulation results have been compared with the experimental ones. A good agreement is obtained.

  7. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-01-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874

  8. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Kun; Gong, Yunhui; Liu, Boyang

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less

  9. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    DOE PAGES

    Fu, Kun; Gong, Yunhui; Liu, Boyang; ...

    2017-04-07

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li 7La 3Zr 2O 12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10 -3 to 10 -4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnetmore » solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm 2 for the surface-engineered garnet/Li. Li 7La 2.75Ca 0.25Zr 1.75Nb 0.25O 12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.« less

  10. Fabrication Processes and Mechanical Behavior of CNT/Metal Nanocomposites

    DTIC Science & Technology

    2013-12-01

    process, were investigated and applied for fabrication of CNT/Cu and CNT/Ni nanocomposite powders. The spark plasma sintering process was applied... spark plasma sintering process to fabricate CNT/NiTi and CNT/Al-Cu nanocomposites. It is confirmed that the CNTs were homogeneously dispersed in NiTi...can be seen in Figure 1-1. The CNT/NiTi composite powders were consolidated by spark plasma sintering (SPS, Dr. Sinter Lab., Sumitomo). The CNT/NiTi

  11. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  12. Two-Step Reactive Aid Sintering of BaZr0.8Y0.2O3- δ Proton-Conducting Ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Siwei; Chen, Yan; Zhang, Lingling; Ren, Cong; Chen, Fanglin; Brinkman, Kyle S.

    2015-12-01

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr0.8Y0.2O3- δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. In this paper, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO3 and B2O3-Li2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. The bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.

  13. Two-Step Reactive Aid Sintering of BaZr 0.8Y 0.2O 3-δ Proton-Conducting Ceramics

    DOE PAGES

    Wang, Siwei; Chen, Yan; Zhang, Lingling; ...

    2015-10-14

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improvedmore » to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  14. Densification of Zirconia with Borates.

    DTIC Science & Technology

    1980-01-24

    solid electrolytes for fuel cell and oxygen sensor applications.1 ’ 2 The sintering temperatures for commercial quality stabilized zirconia powders are...in the temperature range 1450-1500C). A few studies were also made using a much coarser particle size (- 1-2 pm ave.) cubic stabilized zirconia ... powder , "Zircoa B" [Zirconia Corp. of America]. The additives used as sintering aids were reagent grade horic anhydride, calcium metaborate and calcium

  15. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  16. A Low Temperature Co-fired Ceramics Manufactured Power Inductor Based on A Ternary Hybrid Material System

    NASA Astrophysics Data System (ADS)

    Xie, Yunsong; Chen, Ru

    Low temperature co-fired ceramics (LTCC) is one of the most important techniques to produce circuits with high working frequency, multi-functionality and high integration. We have developed a methodology to enable a ternary hybrid material system being implemented into the LTCC manufacturing process. The co-firing sintering process can be divided into a densification and cooling process. In this method, a successful ternary hybrid material densification process is achieved by tuning the sintering profile of each material to match each other. The system integrity is maintained in the cooling process is obtained by develop a strong bonding at the interfaces of each materials. As a demonstration, we have construct a power inductor device made of the ternary material system including Ag, NiCuZn ferrite and non-magnetic ceramic. The power inductors well maintains its physical integrity after sintering. The microscopic images show no obvious sign of cracks or structural deformation. More importantly, despite the bonding between the ferrite and ceramic is enhanced by non-magnetic element diffusion, the undesired magnetic elements diffusion is effectively suppressed. The electric performance shows that the power handling capability is comparable to the current state of art device.

  17. Microstructural Control and Characterization of Bi2V0.9Cu0.1O5.35 (BICUVOX) Ceramics

    NASA Astrophysics Data System (ADS)

    Razmyar, Soheil

    2011-12-01

    The widespread commercialization of solid-oxide fuel cells (SOFCs) and solid-oxide electrolyte cells (SOECs) is primarily limited by material degradation issues related to the required high temperature operation (>800°C). Applications of stabilized zirconia based electrolytes, which are the most commonly used oxide ion conductors, have been limited to this high temperature regime due to its low oxygen ion conductivity below 800°C. Solid electrolytes made of the BIMEVOX compositional family of materials (Bi2MexV 1-xO5.5-delta where Me=Cu, Co, Mg, Ni, Fe...) exhibit high oxide ionic conductivity similar to YSZ at a low temperature (300--600°C). Among these materials copper-substituted bismuth vanadate (Bi2V0.9Cu0.1O5.35, BICUVOX), was reported to have the highest ionic conductivity at 400°C (0.02 S/cm). It's one of the most important drawbacks of using BICUVOX, as a SOFC electrolyte is the low mechanical strength, which makes it unusable for most electrolyte supported applications. This research aims at improving mechanical strength by careful control of synthesis processing and sintering processes, thus making BICUVOX a viable material option for intermediate temperature SOFC. A co-precipitation method was used to synthesize submicron BICUVOX powder. The powder was utilized to fabricate a thin (< 250 microm) BICUVOX electrolyte membrane, with 2.5 cm2 active area and high mechanical strength. The fabricated BICUVOX membranes were densified to 97% theoretical density at lower sintering temperature and shorter time (675°C/1 h), and shows fine grain size (<1.5microm) and high mechanical strength (159 MPa).

  18. Flash microwave synthesis and sintering of nanosized La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}o{sub 3-{delta}} for fuel cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combemale, L., E-mail: lionel.combemale@u-bourgogne.f; Caboche, G.; Stuerga, D.

    2009-10-15

    Perovskite-oxide nanocrystals of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} with a mean size around 10 nm were prepared by microwave flash synthesis. This reaction was performed in alcoholic solution using metallic salts, sodium ethoxide and microwave autoclave. The obtained powder was characterised after purification by energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), BET adsorption technique, photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM). The results show that integrated perovskite-type phase and uniform particle size were obtained in the microwave treated samples. At last the synthesised powder was directly used in a sintering process. A porous solid, inmore » accordance with the expected applications, was then obtained at low sintering temperature (1000 deg. C) without use of pore forming agent. - Graphical abstract: TEM photograph of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} obtained by microwave flash synthesis. This picture confirms the nanometric size of the ceramic particles.« less

  19. 40 CFR 63.1543 - Standards for process and process fugitive sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paragraphs (a)(1) through (9) of this section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4... machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) No owner or operator of any existing, new, or reconstructed primary lead...

  20. 40 CFR 63.1543 - Standards for process and process fugitive sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paragraphs (a)(1) through (9) of this section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4... machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) No owner or operator of any existing, new, or reconstructed primary lead...

  1. 40 CFR 63.1543 - Standards for process and process fugitive sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... paragraphs (a)(1) through (9) of this section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4... machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) No owner or operator of any existing, new, or reconstructed primary lead...

  2. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp; Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192; Kawamura, S.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. Themore » resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.« less

  3. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOEpatents

    McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.

    1999-01-01

    A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.

  4. Reactive solid surface morphology variation via ionic diffusion.

    PubMed

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  5. High surface area neodymium phosphate nano particles by modified aqueous sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, Sasidharan; Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in; Komban, Rajesh

    2011-12-15

    Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventionalmore » solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m.« less

  6. Effect of sintering process on the magnetic and mechanical properties of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Hu, Z. H.; Qu, H. J.; Zhao, J. Q.; Yan, C. J.; Liu, X. M.

    2014-11-01

    The magnetic and mechanical properties of sintered Nd-Fe-B magnets prepared by different sintering processes were investigated. The results showed that the intrinsic coercivity and fracture toughness of sintered Nd-Fe-B magnets first increased, and then declined with increasing annealing temperature. The optimum magnetic properties and fracture toughness of sintered Nd-Fe-B magnets were obtained at the annealing temperature of 540 °C. Sintering temperature increasing from 1047 °C to 1071 °C had hardly effect on the magnetic properties of sintered Nd-Fe-B magnets. The variation of Vickers hardness and fracture toughness was not the same with increasing sintering temperature, and the effect of sintering temperature on the mechanical properties was complex and irregular. The reasons for the variation on magnetic and mechanical properties were analyzed, and we presumed that the effect of microstructure on the mechanical properties was more sensitive than the magnetic properties through analyzing the microstructure of sintered Nd-Fe-B magnets.

  7. Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Zhigang Zak; Koopman, Mark; Xia, Yang; Paramore, James; Ravi Chandran, K. S.; Ren, Yang; Lu, Jun

    2015-12-01

    The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well established to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine α/α2 within coarse β grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of β → α + δ at approximately 473 K (200 °C).

  8. Production technology of an electrolyte for Na/S batteries

    NASA Astrophysics Data System (ADS)

    Heimke, G.; Mayer, H.; Reckziegel, A.

    1982-05-01

    The trend to develop a cheap electrochemical electric battery and the development of the Na/S system are discussed. The main element in this type of battery is the beta Al2O3 solid electrolyte. Characteristics for this material of first importance are: specific surface, density of green and of sintered material, absence of cracks, gas permeability, resistance to flexion, purity, electrical conductivity, crystal structure and dimensions. Influence of production method on all these characteristics were investigated, e.g., method of compacting powder, tunnel kiln sintering versus static chamber furnace sintering, sintering inside a container or not, and type of kiln material when sintering in a container. In the stationary chamber furnace, beta alumina ceramics were produced with a density of 3.2 g/cm3, a mechanical strength higher than 160 MPa, and an electrical conductivity of about 0.125 Ohm-1cm-1 at 300 C. The best kiln material proved to be MgO and MgAl2O3.MgO ceramics.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Siwei; Chen, Yan; Zhang, Lingling

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ(BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. In this paper, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering wasmore » improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. In conclusion, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Siwei; Chen, Yan; Zhang, Lingling

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improvedmore » to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  11. Metal-Intermetallic Laminate Ti-Al3Ti Composites Produced by Spark Plasma Sintering of Titanium and Aluminum Foils Enclosed in Titanium Shells

    NASA Astrophysics Data System (ADS)

    Lazurenko, Daria V.; Mali, Vyacheslav I.; Bataev, Ivan A.; Thoemmes, Alexander; Bataev, Anatoly A.; Popelukh, Albert I.; Anisimov, Alexander G.; Belousova, Natalia S.

    2015-09-01

    Metal-intermetallic laminate composites are considered as promising materials for application in the aerospace industry. In this study, Ti-Al3Ti composites enclosed in titanium cases were produced by reactive spark plasma sintering. Sintering was carried out at 1103 K and 1323 K (830 °C and 1050 °C) for 10 minutes. In both cases, high-quality Ti-Al3Ti composites containing thin transition layers at the interfaces were obtained. Al2Ti, AlTi, and AlTi3 intermetallic phases and a solid solution of aluminum in titanium were observed in the transition layers by scanning and transmission electron microscopy. The material sintered at 1323 K (1050 °C) had higher strength in comparison with the composite obtained at 1103 K (830 °C). However, the hardness of the intermetallic component in the sample sintered at higher temperature decreased due to the grain growth. The impact toughness values of both materials were approximately identical.

  12. Effects of pressure and temperature on sintering of Cr-doped Al2O3 by pulsed electric current sintering process

    NASA Astrophysics Data System (ADS)

    Dang, K. Q.; Nanko, M.

    2011-03-01

    The aluminium oxide crystal, Al2O3, which contains a small amount of chromium, Cr, is called ruby. Pulsed electric current sintering (PECS) was applied to sinter ruby polycrystals. Cr2O3-Al2O3 powder mixture prepared by drying an aqueous slurry containing amounts of Al2O3 and Cr(NO3)3 was consolidated by PECS process. The PECS process was performed in vacuum at sintering temperature raging from 1100 to 1300°C with heating rate of 2 K/min under applied uniaxial pressure varied from 40 to 100 MPa. This study found that highly densified and transparent Cr-doped Al2O3 can be obtained by the PECS process with the high applied pressure at sintering temperature of 1200°C.

  13. Heating Effect on Manufacturing Li4Ti5O12 Electrode Sheet with PTFE Binder on Battery Cell Performance

    NASA Astrophysics Data System (ADS)

    Priyono, S.; Lubis, B. M.; Humaidi, S.; Prihandoko, B.

    2018-05-01

    The synthesis of Li4Ti5O12 (LTO) and study of the heating effect on the manufacturing process of LTO sheet on the electrochemical performance have been investigated. LTO anode material composed with LiOH.H2O, TiO2 as raw materials were synthesized by the solid-state process. All raw materials were stoichiometrically mixed and milled with a planetary ball mill for 4 h to become the precursor of LTO. The precursor was characterized by Simultaneous Thermal Analyzer (STA) to determine sintering temperature. The STA analysis revealed that the minimum temperature to sinter the precursor was 600 °C. The precursor was sintered by using high-temperature furnace at 900 °C for 2 h in air atmosphere. The final product was ground and sieved with a screen to get finer and more homogenous particles. The final product was characterized by X-ray Diffraction (XRD) to determined crystal structure and phases. LTO sheet was prepared by mixing LTO powders with PTFE and AB in ratio 85:10:5 wt% by varrying heating process with 40 °C, 50 °C and 70 °C to become slurry. The slurry was coated on Cu foil with doctor blade method and dried at 80 °C for 1 h. LTO sheet was characterized by FTIR to analyze functional groups. LTO sheet was cut into circular discs with 16 mm in diameter. LTO sheet was arranged with a separator, metallic lithium and electrolyte become coin cell in a glove box. Automatic battery cycler was used to measure electrochemical performance and specific capacity of the cell. From the XRD analysis showed that single phase of LTO phase with a cubic crystal structure is formed. FTIR testing showed that there are stretching vibrations of Ti-O and H-F from tetrahedral TiO6 and PTFE respectively. Increasing temperature on LTO sheet manufacturing doesn’t change the structure of LTO. Cyclic voltammetry analysis showed that sample with heating of 40 °C showed better redox process than others. Charge-discharge test also showed that sample with heating of 40 °C has higher specific capacity than other samples with 53 mAh·g-1.

  14. Debinding and Sintering of an Injection-Moulded Hypereutectic Al⁻Si Alloy.

    PubMed

    Ni, Jiaqi; Yu, Muhuo; Han, Keqing

    2018-05-16

    Hypereutectic Al⁻Si (20 wt.%) alloy parts were fabricated by employing a powder injection moulding (PIM) technique with a developed multi-component binder system composed of high-density polyethylene (35 wt.%), carnauba wax (62 wt.%) and stearic acid (3 wt.%). The feedstocks contained 83 wt.% metal powders. The debinding process was carried out by a combination of solvent extraction and thermal decomposition. The effects of solvent debinding variables such as kind of solvents, debinding temperatures and time, and the bulk surface area to volume ratios on the debinding process were investigated. Thermal debinding and the subsequent sintering process were carried out in a heating sequence under a nitrogen atmosphere. The influences of sintering temperature and sintering time on the mechanical properties and structure were considered. Under the optimal sintering condition, sintering at 550 °C for 3 h, the final sintering parts were free of distortion and exhibited good mechanical properties. Relative sintered density, Brinell hardness, and tensile strength were ~95.5%, 58 HBW and ~154, respectively.

  15. Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing

    NASA Astrophysics Data System (ADS)

    Suárez, Gustavo; Sakka, Yoshio; Suzuki, Tohru S.; Uchikoshi, Tetsuo; Zhu, Xinwen; Aglietti, Esteban F.

    2009-04-01

    The effect of starting powders on the sintering of nanostructured tetragonal zirconia was evaluated. Suspensions were prepared with a concentration of 10 vol.% by mixing a bicomponent mixture of commercial powders (97 mol.% monoclinic zirconia with 3 mol.% yttria) and by dispersing commercially available tetragonal zirconia (3YTZ, Tosoh). The preparation of the slurry by bead-milling was optimized. Colloidal processing using 50 μm zirconia beads at 4000 rpm generated a fully deagglomerated suspension leading to the formation of high-density consolidated compacts (62% of the theoretical density (TD) for the bicomponent suspension). Optimum colloidal processing of the bicomponent suspension followed by the sintering of yttria and zirconia allowed us to obtain nanostructured tetragonal zirconia. Three different sintering techniques were investigated: normal sintering, two-step sintering and spark plasma sintering. The inhibition of grain growth in the bicomponent mixed powders in comparison with 3YTZ was demonstrated. The inhibition of the grain growth may have been caused by inter-diffusion of cations during the sintering.

  16. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    NASA Astrophysics Data System (ADS)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  17. Effects of Sintering Holding Time on the Structural, Electrical and Magnetic Properties of Zn0.95Ni0.05O

    NASA Astrophysics Data System (ADS)

    Ginting, M.; Aryanto, D.; Kurniawan, C.; Sari, A. Y.; Subhan, A.; Sudiro, T.; Sebayang, P.; Tarigan, E. R.; Nasruddin, M. N.; Sebayang, K.

    2017-05-01

    Zn0.95Ni0.05O has been synthesized by mixing 5% mol of NiO into ZnO using solid state reaction and high-speed shaker mill method. The samples were sintered at 900 °C with holding time for 2, 4 and 8 hours. Crystal structure, electrical and magnetic properties of Zn0.95Ni0.05O were characterized by using XRD, I-V, C-V and VSM. XRD results showed that variation of holding time does not change the structure of ZnO and no other secondary phase observed. The value of lattice parameters (a and c) tends to decrease proportionally to the holding time. The Intensity value changes and the peak shifted to a higher 2θ angle due to holding time variation. In general, the conductance of Zn0.95Ni0.05O decreases and the magnetic properties decrease also as the holding time is increased.

  18. Cu3Mo2O9: An Ultralow-Firing Microwave Dielectric Ceramic with Good Temperature Stability and Chemical Compatibility with Aluminum

    NASA Astrophysics Data System (ADS)

    Wen, Wangxi; Li, Chunchun; Sun, Yihua; Tang, Ying; Fang, Liang

    2018-02-01

    An ultralow-firing microwave dielectric ceramic Cu3Mo2O9 with orthorhombic structure has been fabricated via a solid-state reaction method. X-ray diffraction analysis, Rietveld refinement, Raman spectroscopy, energy-dispersive spectrometry, and scanning electron microscopy were employed to explore the phase purity, crystal structure, and microstructure. Pure and dense Cu3Mo2O9 ceramics could be obtained in the sintering temperature range from 580°C to 680°C. The sample sintered at 660°C for 4 h exhibited the highest relative density (˜ 97.2%) and best microwave dielectric properties with ɛ r = 7.2, Q × f = 19,300 GHz, and τ f = - 7.8 ppm/°C. Chemical compatibility with aluminum electrodes was also confirmed. All the results suggest that Cu3Mo2O9 ceramic is a promising candidate for use in ultralow-temperature cofired ceramic applications.

  19. Transport Properties of La- doped SrTiO3 Ceramics Prepared Using Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Tritt, Terry M.; Alshareef, Husam N.

    2012-02-01

    In this work, thermoelectric transport properties of La-doped SrTiO3 ceramics prepared using conventional solid state reaction and spark plasma sintering have been investigated. Room temperature power factor of single crystal strontium titanate (SrTiO3), comparable to that of Bi2Te3, has brought new attention to this perovskite-type transition metal-oxide as a potential n-type thermoelectric for high temperature applications. Electronic properties of this model complex oxide, SrTiO3 (ABO3), can be tuned in a wide range through different doping mechanisms. In addition to A site (La-doped) or B site (Nb-doped) substitutional doping, introducing oxygen vacancies plays an important role in electrical and thermal properties of these structures. Having multiple doping mechanisms makes the transport properties of these perovskites more dependent on preparation parameters. The effect of these synthesis parameters and consolidation conditions on the transport properties of these materials has been studied.

  20. Structural studies of TiC{sub 1−x}O{sub x} solid solution by Rietveld refinement and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo, E-mail: youqin5912@yahoo.com.cn; Hou, Na; Huang, Shanyan

    2013-08-15

    The lattice parameters, structural stability and electronic structure of titanium oxycarbides (TiC{sub 1−x}O{sub x}, 0≤x≤1) solid solution were investigated by Rietveld refinement and first-principles calculations. Series of TiC{sub 1−x}O{sub x} were precisely synthesized by sintering process under the vacuum. Rietveld refinement results of XRD patterns show the properties of continuous solid solution in TiC{sub 1−x}O{sub x} over the whole composition range. The lattice parameters vary from 0.4324 nm to 0.4194 nm decreasing with increasing oxygen concentration. Results of first-principles calculations reveal that the disorder C/O structure is stable than the order C/O structure. Further investigations of the vacancy in Ti{submore » 1−Va}(C{sub 1−x}O{sub x}){sub 1−Va} solid solution present that the structure of vacancy segregated in TiO-part is more stable than the disorder C/O structure, which can be ascribed to the Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy via the analysis of the electron density difference plots and PDOS. - Graphical abstract: XRD of series of titanium oxycarbides (TiC{sub 1−x}O{sub x}, 0≤x≤1) solid solution prepared by adjusting the proportion of TiO in the starting material. Highlights: • Titanium oxycarbides were obtained by sintering TiO and TiC under carefully controlled conditions. • Rietveld refinement results show continuous solid solution with FCC structure in TiC{sub 1−x}O{sub x}. • The disorder C/O structure is stable than the order C/O structure. • Introduction of vacancy segregated in TiO-part is more stable than disorder C/O structure. • Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy enhance structural stability.« less

  1. Sintering Kinetics of Inkjet Printed Conductive Silver Lines on Insulating Plastic Substrate

    DOE PAGES

    Zhou, Wenchao; List, III, Frederick Alyious; Duty, Chad E; ...

    2015-01-24

    This paper focuses on sintering kinetics of inkjet printed lines containing silver nanoparticles deposited on a plastic substrate. Upon heat treatment, the change of resistance in the printed lines was measured as a function of time and sintering temperatures from 150 to 200 C. A critical temperature was observed for the sintering process, beyond which there was no further reduction in resistance. Analysis shows the critical temperature correlates to the boiling point of the solvent, which is attributed to a liquid-mediated sintering mechanism. It is demonstrated that the sintering process shuts down after the solvent has completely evaporated.

  2. Phase transformation upon cooling path in Ca2SiO4: Possible geological implication

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Ting; Kung, Jennifer; Hsu, Han

    2016-04-01

    At the contact metamorphism zone two different Ca2SiO4 phases can be found; calcio-olivine (γ phase) and larnite (β phase). In-situ experiments illustrated the existence of five various polymorphs in Ca2SiO4, i.e., α, α'H, α'L, β and γ. The path of phase transformation and the transformation temperatures are shown as follows. γ → α'L(700° C) → α'H(1100° C) → α (1450° C) α'L → β (680° C) → γ (500° C) Experiments showed that the phase transitions at lower temperature is not reversible and seemed to be complicated; β phase is only stable from 500° C to 680° C upon cooling. To understand the possible mechanism of the β phase being metastable at room temperature, atmosphere condition, we were motivated to investigate the route of phase transition in Ca2SiO4 in different thermal process. Powder samples were synthesized by the solid-state reaction. Pure reagent oxides CaCO3 and SiO2 were mixed in 2:1 stoichiometric mole. Two control factors were designated in the experiments; the sintering temperature of starting materials and the cooling path. The sintering temperature was set within the range of stable phase field of α'L phase (˜900° C) and α'H phase (1300° C). The cooling process was designed in three different routes: 1) the quenched procedure from sintering temperature with rate of 900° C/min and 1300° C/min, 2) the furnace cooling procedure, 3) set a slow cooling rate (0.265 ° C/min). The products were examined for the crystal structure by X-ray powder diffraction. First-principle calculation was also applied to investigate the thermodynamic properties of α'H, β and γ phases. A major finding in this study showed that the γ phase presented in the final product when the sintering temperature was set at the stable field of α'H phase; on the other hand, the β phase would present when the sintering temperature was set within the field of α'L phase. It was noted that the existing phase in the product would be modified by the cooling procedures. Our calculation indicates the enthalpy of beta phase was slightly higher than that of the gamma phase at zero pressure, verifying the metastable β phase observed in the natural. In this meeting we present the detailed experimental results and discuss the potential implication for the thermal history of geological setting using the phase transition path upon cooling of Ca2SiO4.

  3. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications.

    PubMed

    Waseem, Owais Ahmed; Ryu, Ho Jin

    2017-05-16

    The W x TaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.

  4. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    NASA Astrophysics Data System (ADS)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  5. Numerical investigation of the effects of iron oxidation reactions on the fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Sanibondi, Paolo

    2015-09-01

    Fume formation during arc welding has been modelled using a stochastic approach taking into account iron oxidation reactions. The model includes the nucleation and condensation of Fe and FeO vapours, the reaction of gaseous O2 and O on the nanoparticle surface, the coagulation of the nanoparticles including a sintering time as a function of temperature and composition, assuming chemical equilibrium for species in the gaseous phase. Results suggest that fumes generated in gas metal arc welding with oxidizing shielding mixtures are composed of aggregates of primary particles that are nucleated from gas-phase FeO and further oxidized to Fe3O4 and Fe2O3 in the liquid and solid phase, respectively. The composition of the fumes at the end of the formation process depends on the relative initial concentration of Fe and O2 species in the gas mixture and on the diameter of the primary particles that compose the aggregates: as the oxidation reactions are driven by deposition of oxygen on nanoparticle surface, the oxidation of larger particles is slower than that of smaller particles because of their lower surface to volume ratio. Solid-state diffusion is limiting the oxidation process at temperatures lower than 1500 K, inducing the formation of not fully oxidized particles composed of Fe3O4.

  6. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    NASA Astrophysics Data System (ADS)

    Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.

    2011-06-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  7. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  8. Effects of thermal treatments on microstructure and mechanical properties of a Co-Cr-Mo-W biomedical alloy produced by laser sintering.

    PubMed

    Mengucci, P; Barucca, G; Gatto, A; Bassoli, E; Denti, L; Fiori, F; Girardin, E; Bastianoni, P; Rutkowski, B; Czyrska-Filemonowicz, A

    2016-07-01

    Direct Metal Laser Sintering (DMLS) technology based on a layer by layer production process was used to produce a Co-Cr-Mo-W alloy specifically developed for biomedical applications. The alloy mechanical response and microstructure were investigated in the as-sintered state and after post-production thermal treatments. Roughness and hardness measurements, and tensile and flexural tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate the microstructure in different conditions. Results showed an intricate network of ε-Co (hcp) lamellae in the γ-Co (fcc) matrix responsible of the high UTS and hardness values in the as-sintered state. Thermal treatments increase volume fraction of the ε-Co (hcp) martensite but slightly modify the average size of the lamellar structure. Nevertheless, thermal treatments are capable of producing a sensible increase in UTS and hardness and a strong reduction in ductility. These latter effects were mainly attributed to the massive precipitation of an hcp Co3(Mo,W)2Si phase and the contemporary formation of Si-rich inclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  10. Production of cerium dioxide microspheres by an internal gelation sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.

    An internal gelation sol-gel technique was used to prepare cerium dioxide microspheres with uniform diameters near 100 µm. In this process, chilled aqueous solutions containing cerium, hexamethylenetetramine (HMTA), and urea are transformed into a solid gel by heat addition and are subsequently washed, dried, and sintered to produce pure cerium dioxide. Cerous nitrate and ceric ammonium nitrate solutions were compared for their usefulness in microsphere production. Gelation experiments were performed with both cerous nitrate and ceric ammonium nitrate to determine desirable concentrations of cerium, HMTA, and urea in feed solutions as well as the necessary quantity of ammonium hydroxide addedmore » to cerium solutions. Analysis of the pH before and after sample gelation was found to provide a quantitative metric for optimal parameter selection along with subjective evaluations of gel qualities. The time necessary for chilled solutions to gel upon inserting into a hot water bath was determined for samples with a variety of parameters and also used to determine desirable formulations for microsphere production. A technique for choosing the optimal mixture of ceric ammonium nitrate, HMTA, and urea was determined using gelation experiments and used to produce microspheres by dispersion of the feed solution into heated silicone oil. Gelled spheres were washed to remove excess reactants and reaction products before being dried and sintered. X-ray diffraction of air-dried microspheres, sintered microspheres, and commercial CeO 2 powders indicated that air-dried and sintered spheres were pure CeO 2.« less

  11. 77 FR 51046 - Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2908] Certain Sintered Rare Earth Magnets, Methods of... Certain Sintered Rare Earth Magnets, Methods of Making Same and Products Containing Same, DN 2908; the... importation, and the sale within the United States after importation of certain sintered rare earth magnets...

  12. Rapid Sintering of Li₂O-Nb₂O₅-TiO₂ Solid Solution by Air Pressure Control and Clarification of Its Mechanism.

    PubMed

    Nakano, Hiromi; Kamimoto, Konatsu; Yamamoto, Takahisa; Furuta, Yoshio

    2018-06-11

    We first successfully synthesized Li 1+ x − y Nb 1− x −3 y Ti x +4 y O₃ (LNT) solid solutions (0.13 ≤ x ≤ 0.18, 0 ≤ y ≤ 0.06) rapidly at 1373 K for one hour under 0.35 MPa by the controlling of air pressure using an air-pressure control atmosphere furnace. The composition is a formation area of a superstructure for LNT, in which the periodical intergrowth layer was formed in the matrix, and where it can be controlled by Ti content. Therefore, the sintering time depended on Ti content, and annealing was repeated for over 24 h until a homogeneous structure was formed using a conventional electric furnace. We clarified the mechanism of the rapid sintering using various microscale to nanoscale characterization techniques: X-ray diffraction, a scanning electron microscope, a transmission electron microscope (TEM), a Cs-corrected scanning TEM equipped with electron energy-loss spectroscopy, and X-ray absorption fine structure spectroscopy.

  13. Verification of the Skorohod-Olevsky Viscous Sintering (SOVS) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Brian T.

    2017-11-16

    Sintering refers to a manufacturing process through which mechanically pressed bodies of ceramic (and sometimes metal) powders are heated to drive densification thereby removing the inherit porosity of green bodies. As the body densifies through the sintering process, the ensuing material flow leads to macroscopic deformations of the specimen and as such the final configuration differs form the initial. Therefore, as with any manufacturing step, there is substantial interest in understanding and being able to model the sintering process to predict deformation and residual stress. Efforts in this regard have been pursued for face seals, gear wheels, and consumer productsmore » like wash-basins. To understand the sintering process, a variety of modeling approaches have been pursued at different scales.« less

  14. Synthesized Li4Ti5O12 from Technical Grade Raw Material by Excess LiOH.H2O as Anode Lithium Ion Battery

    NASA Astrophysics Data System (ADS)

    Priyono, S.; Primasari, R. D.; Saptari, S. A.; Prihandoko, B.

    2017-07-01

    Li4Ti5O12 powder as anode lithium ion battery was synthesized via solid state reaction with excess LiOH.H2O. Technical grades raw materials like LiOH.H2O and TiO2 were used as starting materials. LiOH.H2O excess was varied from 0; 2.5; 5 and 7.5% to get higher optimum phases and capacity of Li4Ti5O12. All raw materials were mixed stoichiometry then followed by calcination and sintering process to get final products. The obtained products were characterized by XRD, SEM, and PSA to get properties of active materials and the electrochemical properties were done by cyclic voltametry and charge-discharge test. The XRD test showed that 5% excess have highest Li4Ti5O12 phases. All samples have same in morphology, agglomerate and same in particle size distribution. Sample with 5% excess showed good reversible process and chargedischarge test showed that increasing Li4Ti5O12 phase can improve specific capacity.

  15. Investigation of sample preparation on the moldability of ceramic injection molding feedstocks

    NASA Astrophysics Data System (ADS)

    Ide, Jared

    Ceramic injection molding is a desirable option for those who are looking to make ceramic parts with complex geometries. Formulating the feedstock needed to produce ideal parts is a difficult process. In this research a series of feedstock blends will be evaluated for moldability. This was done by investigating their viscosity, and how certain components affect the overall ability to flow. These feedstocks varied waxes, surfactants, and solids loading. A capillary rheometer was used to characterize some of the materials, which led to one batch being selected for molding trials. The parts were sintered and further refinements were made to the feedstock. Solids loading was increased from 77.5% to 82%, which required different ratios of organics to flow. Finally, the ceramic powders were treated to lower their specific surface area before being compounded, which resulted in materials that would process easily through an extruder and exhibit properties suitable for CIM.

  16. Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance

    NASA Astrophysics Data System (ADS)

    Cebollero, J. A.; Lahoz, R.; Laguna-Bercero, M. A.; Larrea, A.

    2017-08-01

    Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.

  17. Enhanced Densification and Hardness of Titanium Bodies Sintered by Advanced Hydrogen Sintering Process

    NASA Astrophysics Data System (ADS)

    Oh, Jung-Min; Koo, Ja-Geon; Lim, Jae-Won

    2018-05-01

    A new sintering technique for enhancing a densification and hardness of sintered titanium body by supplying hydrogen was developed (Hydrogen Sintering Process, HSP). The HSP was developed by only injecting hydrogen into an argon atmosphere during the core time. As a result, sound titanium sintered bodies with high density and hardness were obtained by the HSP. In addition, a pore size and number of the HSP specimens were smaller than those of the argon atmosphere specimen. It was found that the injecting hydrogen into the argon atmosphere by HSP can prevent the formation of oxide layers, resulting in enhanced densification and hardness.

  18. Rapid sintering of anisotropic, nanograined Nd-Fe-B by flash-spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Castle, Elinor; Sheridan, Richard; Grasso, Salvatore; Walton, Allan; Reece, Mike

    2016-11-01

    A Spark Plasma Sintering (SPS) furnace was used to Flash-Sinter (FS) Nd-Fe-Dy-Co-B-Ga melt spun permanent magnetic material. During the 10 s "Flash" process (heating rate 2660 K min-1), sample sintering (to theoretical density) and deformation (54% height reduction) occurred. This produced texturing and significant magnetic anisotropy, comparable to conventional die-upset magnets; yet with much greater coercivities (>1600 kA m-1) due to the nanoscale characteristics of the plate-like sintered grains. These preliminary results suggest that Flash-SPS could provide a new processing route for the mass production of highly anisotropic, nanocrystalline magnetic materials with high coercivity.

  19. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration.

    PubMed

    Brown, Justin L; Nair, Lakshmi S; Laurencin, Cato T

    2008-08-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter, and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from -8 to 41 degrees C and poly (lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1 mum, respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3 MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. (c) 2007 Wiley Periodicals, Inc.

  20. Solvent/Non-Solvent Sintering: A Novel Route to Create Porous Microsphere Scaffolds For Tissue Regeneration

    PubMed Central

    Brown, Justin L.; Nair, Lakshmi S.; Laurencin, Cato T.

    2009-01-01

    Solvent/non-solvent sintering creates porous polymeric microsphere scaffolds suitable for tissue engineering purposes with control over the resulting porosity, average pore diameter and mechanical properties. Five different biodegradable biocompatible polyphosphazenes exhibiting glass transition temperatures from −8°C to 41oC and poly(lactide-co-glycolide), (PLAGA) a degradable polymer used in a number of biomedical settings, were examined to study the versatility of the process and benchmark the process to heat sintering. Parameters such as: solvent/non-solvent sintering solution composition and submersion time effect the sintering process. PLAGA microsphere scaffolds fabricated with solvent/non-solvent sintering exhibited an interconnected porosity and pore size of 31.9% and 179.1µm respectively which was analogous to that of conventional heat sintered PLAGA microsphere scaffolds. Biodegradable polyphosphazene microsphere scaffolds exhibited a maximum interconnected porosity of 37.6% and a maximum compressive modulus of 94.3MPa. Solvent/non-solvent sintering is an effective strategy for sintering polymeric microspheres, with a broad spectrum of glass transition temperatures, under ambient conditions making it an excellent fabrication route for developing tissue engineering scaffolds and drug delivery vehicles. PMID:18161819

  1. Incorporating technetium in minerals and other solids: A review

    NASA Astrophysics Data System (ADS)

    Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael; Hrma, Pavel

    2015-11-01

    Technetium (Tc) can be incorporated into a number of different solids including spinel, sodalite, rutile, tin dioxide, pyrochlore, perovskite, goethite, layered double hydroxides, cements, and alloys. Synthetic routes are possible for each of these phases, ranging from high-temperature ceramic sintering to ball-milling of constituent oxides. However, in practice, Tc has only been incorporated into solid materials by a limited number of the possible syntheses. A review of the diverse ways in which Tc-immobilizing materials can be made shows the wide range of options available. Special consideration is given to hypothetical application to the Hanford Tank Waste and Vitrification Plant, such as adding a Tc-bearing mineral to waste glass melter feed. A full survey of solid Tc waste forms, the common synthesis routes to those waste forms, and their potential for application to vitrification processes are presented. The use of tin dioxide or ferrite spinel precursors to reduce Tc(VII) out of solution and into a durable form are shown to be of especially high potential.

  2. Low-temperature sintering and electrical properties of strontium- and magnesium-doped lanthanum gallate with V2O5 additive

    NASA Astrophysics Data System (ADS)

    Ha, Sang Bu; Cho, Yoon Ho; Ji, Ho-Il; Lee, Jong-Ho; Kang, Yun Chan; Lee, Jong-Heun

    2011-03-01

    The effects of a V2O5 additive on the low-temperature sintering and ionic conductivity of strontium- and magnesium-doped lanthanum gallate (LSGM: La0.8Sr0.2Ga0.8Mg0.2O2.8) are studied. The LSGM powders prepared by the glycine nitrate method are mixed with 0.5-2 at.% of VO5/2 and then sintered at 1100-1400 °C in air for 4 h. The apparent density and phase purity of the LSGM specimens are increased with increasing sintering temperature and VO5/2 concentration due to the enhanced sintering and mass transfer via the intergranular liquid phase. The 1 at.% VO5/2-doped LSGM specimen sintered at 1300 °C exhibits a high oxide ion conductivity of ∼0.027 S cm-1 at 700 °C over a wide range of oxygen partial pressure (PO2 =10-27 - 1 atm), thereby demonstrating its potential as a useful electrolyte for anode-supported solid oxide fuel cells (SOFCs) without the requirement for any buffer layer between the electrolyte and anode.

  3. Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Kai; Jia, Lichao; Zhang, Qian; Jiang, San Ping; Chi, Bo; Pu, Jian; Jian, Li; Yan, Dong

    2015-03-01

    Porous Ni-Fe anode supports for intermediate solid oxide fuel cells are prepared by reducing the sintered NiO-(0-50 wt. %) Fe2O3 composites in H2, their microstructure, redox and thermal expansion/cycling characteristics are systematically investigated. The sintered NiO-Fe2O3 composites are consisted of NiO and NiFe2O4, and are fully reducible to porous metallic Ni-Fe alloys in H2 at temperatures between 600 and 750 °C. The porous structure contains pores in bimodal distribution with larger pores between the sintered particles and smaller ones inside the particles. The oxidation resistance of the Ni-Fe alloy anode supports at 600 and 750 °C is increased by the addition of Fe, their oxidation kinetics obeys a multistage parabolic law in the form of (Percentageweightgain /Specificsurfacearea) 2 =kp · t , where kp is the rate constant and t the oxidation time. The dimension of the Ni-Fe anode supports is slightly changed without disintegrating their structure, and Fe addition is beneficial to the redox stability. The TEC of the Ni-Fe alloy anode supports decreases with the increase of Fe content. The anode supports containing Fe is less stable in dimension during thermal cycles due to the continuous sintering, but the dimension change after thermal cycles is within 1%.

  4. The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jinqiao; Zhang, Ling; Xie, Bing

    2015-09-28

    Anti-ferroelectric (AFE) composite ceramics of (Pb{sub 0.858}Ba{sub 0.1}La{sub 0.02}Y{sub 0.008})(Zr{sub 0.65}Sn{sub 0.3}Ti{sub 0.05})O{sub 3}-(Pb{sub 0.97}La{sub 0.02})(Zr{sub 0.9}Sn{sub 0.05} Ti{sub 0.05})O{sub 3} (PBLYZST-PLZST) were fabricated by the conventional solid-state sintering process (CS), the glass-aided sintering (GAS), and the spark plasma sintering (SPS), respectively. The influence of the temperature induced phase transition on the phase structure, hysteresis loops, and energy storage properties of the composite ceramics were investigated in detail. The measured results of X-ray diffraction demonstrate that the composite ceramics exhibit the perovskite phases and small amounts of non-functional pyrochlore phases. Compared with the CS process, the GAS and SPS processesmore » are proven more helpful to suppress the diffusion behaviors between the PBLYZST and PLZST phases according to the field emission scanning electron microscopy, thereby being able to improve the contribution of PBLYZST phase to the temperature stability of the orthogonal AFE phase. When the ambient temperature rises from 25 °C to 125 °C, CS and GAS samples have undergone a phase transition from orthorhombic AFE phase to tetragonal AFE phase, which results in a sharp decline in the energy storage density. However, the phase transition temperature of SPS samples is higher than 125 °C, and the energy storage density only slightly decreases due to the disorder of material microstructure caused by the high temperature. As a result, the SPS composite ceramics obtain a recoverable high energy storage density of 6.46 J/cm{sup 3} and the excellent temperature stability of the energy storage density of 1.16 × 10{sup −2} J/°C·cm{sup 3}, which is 1.29 × 10{sup −2} J/°C·cm{sup 3} lower than that of CS samples and about 0.43 times as that of GAS samples.« less

  5. Porous-electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1981-09-17

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  6. Porous electrode preparation method

    DOEpatents

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  7. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  8. New Polymer Materials for the Laser Sintering Process: Polypropylene and Others

    NASA Astrophysics Data System (ADS)

    Wegner, Andreas

    Laser sintering of polymers gets more and more importance for small series production. However, there is only a little number of materials available for the process. In most cases parts are build up using polyamide 12 or polyamide 11. Reasons for that are high prices, a restricted availability, poor mechanical part properties or an insufficient understanding of the processing of other materials. These problems result from the complex processing conditions in laser sintering with high requirements on the material's characteristics. Within this area, at the chair for manufacturing technology fundamental knowledge was established. Aim of the presented study was to qualify different polymers for the laser sintering process. Polyethylene, polypropylene, polyamide 6, polyoxymethylene as well as polybutylene terephthalate were analyzed. Within the study problems of qualifying new materials are discussed using some examples. Furthermore, the processing conditions as well as mechanical properties of a new polypropylene compound are shown considering also different laser sintering machines.

  9. Development of Bulk Nanocrystalline Tungsten Alloys for Fusion Reactor Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhigang Zak

    This project developed a technology for manufacturing bulk ultrafine tungsten materials that are at or near full density for fusion reactor structural applications, aiming to improve ductility and toughness of tungsten before and after irradiation. The project involved the development of fabrication processes for making bulk ultrafine grained W, the development of new alloys of ultrafine grained W and evaluations of properties of these specific materials. The goal of this fabrication process is to produce fully dense bulk W with ultrafine grain sizes, with uniform distributions of grain size and additives. To date there is no known process that couldmore » be used to make ultrafine grained tungsten in a fully dense state and in a cost-acceptable fashion. The specific technology described in this proposal for making ultrafine grained tungsten involves a suite of nano-particle processing and sintering techniques. The program also developed new alloys of ultrafine grained W, e.g. W-(Ta,V,Ti)-TiC alloys to improve ductility and toughness before and after irradiation. By completing this project, we achieved the following objectives: • Demonstrated experimentally the feasibility of producing bulk ultrafine grained tungsten alloys (at or near 100% dense, <1000 nm grain size) using the proposed process • Demonstrated the proposed ultrafine grained W alloys, namely, W-(Ta, V, Ti)-TiC, can indeed be made using the proposed process • Demonstrated that the properties of nano tungsten alloys meet the requirements for fusion reactor applications. The overall goal was to harness the potential of ultrafine grained W produced using the proposed processes as the core structural materials for future fusion reactors. The project was very successful overall, meeting all milestones and surpassing project goals in terms of process development and material’s blistering resistance properties. A novel process similar to the conventional press-and-sinter powder metallurgy method was developed for producing ultrafine grain tungsten from nanosize tungsten powders. Grain growth was significantly controlled during sintering by certain alloy compositions, particularly Ti, and most compositions sintered to maximum densification. To optimize this process, the effect of processing parameters on the densification and grain growth of nano-W powders was investigated. Near-fully densified tungsten was obtained at sintering temperatures between 1100 and 1300 °C, and both Ar and H2 sintering atmospheres were investigated. The Ar sintering atmosphere was determined to more favorably promote densification and minimize grain growth. The nanosized tungsten powder compacts were subjected to reduction in H2 as a part of the sintering cycle. The reduction temperature was found to have significant effects on the sintering of nano-W powder, primarily as a result of grain coarsening, which was seen at temperatures as low as 700 °C. In an effort to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this project. The addition of 1 wt.% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. Compared to conventional high temperature sintering, a lower temperature sintering cycle for a longer hold time resulted in both near-full density and fine grain size. The roles of the Ti additives include not only the inhibition of grain growth, but also the potential absorption of oxygen from W particles. The project has resulted in the publication; thus far, of six peer reviewed journal articles and seven conference presentations, as well as a master’s thesis. Two additional journal articles are currently in preparation. Presentations and articles were a particular focus of the second half of the project, once significant experimentation had been performed and analyzed. As part of our efforts to disseminate information of our results, the W research teams with Prof. Fang had a strong presence at multiple international conferences during 2015 and 2016. Several research groups in the US are now performing experiments using the ultrafine grained W materials.« less

  10. Phase transformation in the alumina-titania system during flash sintering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, S. K.; Lebrun, J. M.; Raj, R.

    2016-02-01

    We show that phase transformation in the alumina–titania system, which produces aluminum-titanate, follows an unusual trajectory during flash sintering. The experiments begin with mixed powders of alumina–titania and end in dense microstructures that are transformed into aluminum-titanate. The sintering and the phase transformation are separated in time, with the sintering occurs during Stage II, and phase transformation during Stage III of the flash sintering experiment. Stage III is the steady-state condition of flash activated state that is established under current control, while Stage II is the period of transition from voltage to current control. The extent of phase transformation increasesmore » with the current density and the hold time in Stage III.« less

  11. Energy-Saving Sintering of Electrically Conductive Powders by Modified Pulsed Electric Current Heating Using an Electrically Nonconductive Die

    NASA Astrophysics Data System (ADS)

    Ito, Mikio; Kawahara, Kenta; Araki, Keita

    2014-04-01

    Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.

  12. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.

    2001-01-01

    A gelcasting method of making an internally graded article includes the steps of: preparing at least two slurries, each of the slurries including a different gelcastable powder suspended in a gelcasting solution, the slurries characterized by having comparable shrinkage upon drying and sintering thereof; casting the slurries into a mold having a selected shape, wherein relative proportions of the slurries is varied in at least one direction within the selected shape; gelling the slurries to form a solid gel while preserving the variation in relative proportions of the slurries; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying because of the variation in relative proportions of the starting slurries. A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  13. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay

    2018-03-01

    Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness ( R a = 6.53 µm) compared to the sample sintered at 1500 °C ( R a = 0.66 µm) corroborating the abrasion wear test results.

  14. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl

    2017-12-01

    For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.

  15. New materials through a variety of sintering methods

    NASA Astrophysics Data System (ADS)

    Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.

    2018-03-01

    New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.

  16. Behavior of Oxide Film at Interface between Particles of Al-Mg Alloy Powder Compacts Prepared by Pulse Electric Current Sintering

    NASA Astrophysics Data System (ADS)

    Xie, Guoqiang; Ohashi, Osamu; Yamaguchi, Norio; Song, Minghui; Mitsuishi, Kazutaka; Furuya, Kazuo; Noda, Tetsuji

    2003-07-01

    Al-1.0 mass% Mg alloy powders were sintered using the pulse electric current sintering (PECS) process at various temperatures. The microstructure at the interfaces between powder particles and the effect of sintering temperature on interface characteristics were investigated using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The precipitates were observed at the interfaces between powder particles of the compacts. The amounts of the precipitates increased and the compositions changed with an increase in sintering temperature: MgO for the compact sintered at 613 K, MgAl2O4+MgO for those at 663 K and 713 K, and MgAl2O4 for those above 763 K. Comparing the results obtained by the PECS process with those of diffusion bonding experiments and thermodynamic calculation, it was suggested that the temperature at the interfaces between the particles was higher than that of the particles sintered by the PECS process.

  17. Enhancing the Hardness of Sintered SS 17-4PH Using Nitriding Process for Bracket Orthodontic Application

    NASA Astrophysics Data System (ADS)

    Suharno, B.; Supriadi, S.; Ayuningtyas, S. T.; Widjaya, T.; Baek, E. R.

    2018-01-01

    Brackets orthodontic create teeth movement by applying force from wire to bracket then transferred to teeth. However, emergence of friction between brackets and wires reduces load for teeth movement towards desired area. In order to overcome these problem, surface treatment like nitriding chosen as a process which could escalate efficiency of transferred force by improving material hardness since hard materials have low friction levels. This work investigated nitriding treatment to form nitride layer which affecting hardness of sintered SS 17-4PH. The nitride layers produced after nitriding process at various temperature i.e. 470°C, 500°C, 530°C with 8hr holding time under 50% NH3 atmosphere. Optical metallography was conducted to compare microstructure of base and surface metal while the increasing of surface hardness then observed using vickers microhardness tester. Hardened surface layer was obtained after gaseous nitriding process because of nitride layer that contains Fe4N, CrN and Fe-αN formed. Hardness layers can achieved value 1051 HV associated with varies thickness from 53 to 119 μm. The presence of a precipitation process occurring in conjunction with nitriding process can lead to a decrease in hardness due to nitrogen content diminishing in solid solution phase. This problem causes weakening of nitrogen expansion in martensite lattice.

  18. Processing Techniques Developed to Fabricate Lanthanum Titanate Piezoceramic Material for High-Temperature Smart Structures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.; Farmer, Serene C.; Sayir, Ali

    2004-01-01

    Piezoelectric ceramic materials are potential candidates for use as actuators and sensors in intelligent gas turbine engines. For piezoceramics to be applied in gas turbine engines, they will have to be able to function in temperatures ranging from 1000 to 2500 F. However, the maximum use temperature for state-of-the-art piezoceramic materials is on the order of 300 to 400 F. Research activities have been initiated to develop high-temperature piezoceramic materials for gas turbine engine applications. Lanthanum titanate has been shown to have high-temperature piezoelectric properties with Curie temperatures of T(sub c) = 1500 C and use temperatures greater than 1000 C. However, the fabrication of lanthanum titanate poses serious challenges because of the very high sintering temperatures required for densification. Two different techniques have been developed at the NASA Glenn Research Center to fabricate dense lanthanum titanate piezoceramic material. In one approach, lower sintering temperatures were achieved by adding yttrium oxide to commercially available lanthanum titanate powder. Addition of only 0.1 mol% yttrium oxide lowered the sintering temperature by as much as 300 C, to just 1100 C, and dense lanthanum titanate was produced by pressure-assisted sintering. The second approach utilized the same commercially available powders but used an innovative sintering approach called differential sintering, which did not require any additive.

  19. Effect of Thermochemical Synthetic Conditions on the Structure and Dielectric Properties of Ga1.9Fe0.1O3 Compounds.

    PubMed

    Roy, Swadipta; Ramana, C V

    2018-02-05

    We report on the tunable and controlled dielectric properties of iron (Fe)-doped gallium oxide (Ga 2 O 3 ; Ga 1.9 Fe 0.1 O 3 , referred to as GFO) inorganic compounds. The GFO materials were synthesized using a standard high-temperature, solid-state chemical reaction method by varying the thermochemical processing conditions, namely, different calcination and sintering environments. Structural characterization by X-ray diffraction revealed that GFO compounds crystallize in the β-Ga 2 O 3 phase. The Fe doping has induced slight lattice strain in GFO, which is evident in structural analysis. The effect of the sintering temperature (T sint ), which was varied in the range of 900-1200 °C, is significant, as revealed by electron microscopy analysis. T sint influences the grain size and microstructure evolution, which, in turn, influences the dielectric and electrical properties of GFO compounds. The energy-dispersive X-ray spectrometry and mapping data demonstrate the uniform distribution of the elemental composition over the microstructure. The temperature- and frequency-dependent dielectric measurements indicate the characteristic features that are specifically due to Fe doping in Ga 2 O 3 . The spreading factor and relaxation time, calculated using Cole-Cole plots, are in the ranges of 0.65-0.76 and 10 -4 s, respectively. The results demonstrate that densification and control over the microstructure and properties of GFO can be achieved by optimizing T sint .

  20. Preparation and characterization of 6-layered functionally graded nickel-alumina (Ni-Al2O3) composites

    NASA Astrophysics Data System (ADS)

    Latiff, M. I. A.; Nuruzzaman, D. M.; Basri, S.; Ismail, N. M.; Jamaludin, S. N. S.; Kamaruzaman, F. F.

    2018-04-01

    The present research study deals with the preparation of 6-layered functionally graded (FG) metal-ceramic composite materials through powder metallurgy technique. Using a cylindrical die-punch set made of steel, the nickel-alumina (Ni-Al2O3) graded composite structure was fabricated. The samples consist of four gradual inter layers of varied nickel composition (80wt.%, 60wt.%, 40wt.%, 20wt.%) sandwiched with pure Ni and Al2O3 powders at the ends (100wt.% and 0wt.% nickel) were fabricated under 30 ton compaction load using a hydraulic press. After that, two-step sintering was carried out at sintering temperature 1200ºC and soaking time 3 hours was maintained in a tube furnace. The properties of the prepared samples were characterized by radial shrinkage, optical microscopy and hardness testing. Results showed that larger shrinkage occurred within the ceramic phase which proves that more porosities were eliminated in the ceramic rich layers. From the microstructural analysis, it was observed that alumina particles are almost uniformly distributed in nickel matrix, so as nickel particles in the ceramic matrix of alumina-dominant layers. From interfacial analyses, it was observed that a smooth transition in microstructure from one layer to the next confirms a good interfacial solid state bonding between metal-ceramic constituents and good compaction process. On the other hand, microhardness test results suggest that there might be increasing percentage of porosities in the graded structure as the ceramic content rises.

  1. Sandwich-type electrode

    DOEpatents

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  2. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  3. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    NASA Astrophysics Data System (ADS)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  4. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan

    2016-05-11

    Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.

  5. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide

    PubMed Central

    Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.

    2016-01-01

    A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidation of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique. PMID:27624641

  6. Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide

    DOE PAGES

    Olevsky, Eugene A.; Rolfing, Stephen M.; Maximenko, Andrey L.

    2016-09-14

    A new ultra-rapid process of flash spark plasma sintering is developed. The idea of flash spark plasma sintering (or flash hot pressing - FHP) stems from the conducted theoretical analysis of the role of thermal runaway phenomena for material processing by flash sintering. The major purpose of the present study is to theoretically analyze the thermal runaway nature of flash sintering and to experimentally address the challenge of uncontrollable thermal conditions by the stabilization of the flash sintering process through the application of the external pressure. The effectiveness of the developed FHP technique is demonstrated by the few seconds–long consolidationmore » of SiC powder in an industrial spark plasma sintering device. Specially designed sacrificial dies heat the pre-compacted SiC powder specimens to a critical temperature before applying any voltage to the powder volume and allowing the electrode-punches of the SPS device setup to contact the specimens and pass electric current through them under elevated temperatures. The experimental results demonstrate that flash sintering phenomena can be realized using conventional SPS devices. The usage of hybrid heating SPS devices is pointed out as the mainstream direction for the future studies and utilization of the new flash hot pressing (ultra-rapid spark plasma sintering) technique.« less

  7. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOEpatents

    McPheeters, C.C.; Dees, D.W.; Myles, K.M.

    1999-03-16

    A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.

  8. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  9. Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor: The effect of air flow rate and solid percentage

    NASA Astrophysics Data System (ADS)

    Haryono, Didied; Harjanto, Sri; Wijaya, Rifky; Oediyani, Soesaptri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2018-04-01

    Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor is presented in this paper. The effect of air flow rate and solid percentage on column flotation process has been experimentally investigated. The purpose of this paper is to understand the capacitance signal characteristic affected by the air flow rate and the solid percentage which can be used to determine the metallurgical performance. Experiments were performed using a laboratory column flotation cell which has a diameter of 5 cm and the total height of 140 cm. The sintered ceramic sparger and wash water were installed at the bottom and above of the column. Two-electrode concave type capacitance sensor was also installed at a distance of 50 cm from the sparger. The sensor was attached to the outer wall of the column, connected to data acquisition system, manufactured by CTECH Labs Edwar Technology and personal computer for further data processing. Feed consisting ZnS and SiO2 with the ratio of 3:2 was mixed with some reagents to make 1 litre of slurry. The slurry was fed into the aerated column at 100 cm above the sparger with a constant rate and the capacitance signals were captured during the process. In this paper, 7.5 and 10% of solid and 2-4 L/min of air flow rate with 0.5 L/min intervals were used as independent variables. The results show that the capacitance signal characteristics between the 7.5 and 10% of solid are different at any given air flow rate in which the 10% solid produced signals higher than those of 7.5%. Metallurgical performance and capacitance signal exhibit a good correlation.

  10. Mechanical and microstructural characterization of W–Cu FGM fabricated by one-step sintering method through PM route

    NASA Astrophysics Data System (ADS)

    Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.

    2018-03-01

    Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.

  11. Effect of temperature on porosity of iron ore sinter with biochar derived from EFB

    NASA Astrophysics Data System (ADS)

    Purwanto, H.; Rozhan, A. N.; Zakiyuddin, A.; Mohamad, A. S.

    2018-01-01

    In this research, the replacement of fossil fuel energy (coke) with oil palm empty fruit bunch as a potential energy in sintering of iron ore was investigated. Carbon derived biomass has been produced by using oil palm empty fruit bunch by heat treatment process. In the present investigation, sintering process was carried out by heating the mixed iron ore and biochar at various temperatures. The apparent density and porosity for iron sinter show a significant increase and gradual decrement as the temperature increase, respectively. The porosity of iron sinter shows a gradual decrement from 950 °C to 1050 °C but up to 1150 °C it shows a significant decrement about 44%. Inferring to the micrograph, the agglomeration and assimilation of sinter at high temperature is better compared with low sintering temperature.

  12. Reflow-oven-processing of pressureless sintered-silver interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A.; Chen, Branndon R.; Oistad, Brian A.

    Here, a method was developed to pressurelessly fabricate strong and consistent sinterable-silver joints or interconnects using reflow oven heating. Circular sinterable-silver interconnects, having nominal diameter of 5 mm and 0.1 mm thickness were stencil printed, contact-dried, and then pressurelessly sinter-bonded to Au-plated direct copper bonded ceramic substrates at 250 °C in ambient air. That sintering was done in either a reflow oven or a convective oven (latter being a conventional heating source for processing sinterable-silver). Consistently strong (>40 MPa) interconnects were produced with reflow oven heating and were as strong as those produced with convective oven heating. This is significantmore » because reflow oven technology affords better potential for continuous mass production and it was shown that strong sintered-silver bonds can indeed be achieved with its use.« less

  13. Reflow-oven-processing of pressureless sintered-silver interconnects

    DOE PAGES

    Wereszczak, Andrew A.; Chen, Branndon R.; Oistad, Brian A.

    2018-01-04

    Here, a method was developed to pressurelessly fabricate strong and consistent sinterable-silver joints or interconnects using reflow oven heating. Circular sinterable-silver interconnects, having nominal diameter of 5 mm and 0.1 mm thickness were stencil printed, contact-dried, and then pressurelessly sinter-bonded to Au-plated direct copper bonded ceramic substrates at 250 °C in ambient air. That sintering was done in either a reflow oven or a convective oven (latter being a conventional heating source for processing sinterable-silver). Consistently strong (>40 MPa) interconnects were produced with reflow oven heating and were as strong as those produced with convective oven heating. This is significantmore » because reflow oven technology affords better potential for continuous mass production and it was shown that strong sintered-silver bonds can indeed be achieved with its use.« less

  14. Processing and Modeling of Porous Copper Using Sintering Dissolution Process

    NASA Astrophysics Data System (ADS)

    Salih, Mustafa Abualgasim Abdalhakam

    The growth of porous metal has produced materials with improved properties as compared to non-metals and solid metals. Porous metal can be classified as either open cell or closed cell. Open cell allows a fluid media to pass through it. Closed cell is made up of adjacent sealed pores with shared cell walls. Metal foams offer higher strength to weight ratios, increased impact energy absorption, and a greater tolerance to high temperatures and adverse environmental conditions when compared to bulk materials. Copper and its alloys are examples of these, well known for high strength and good mechanical, thermal and electrical properties. In the present study, the porous Cu was made by a powder metallurgy process, using three different space holders, sodium chloride, sodium carbonate and potassium carbonate. Several different samples have been produced, using different ratios of volume fraction. The densities of the porous metals have been measured and compared to the theoretical density calculated using an equation developed for these foams. The porous structure was determined with the removal of spacer materials through sintering process. The sintering process of each spacer material depends on the melting point of the spacer material. Processing, characterization, and mechanical properties were completed. These tests include density measurements, compression tests, computed tomography (CT) and scanning electron microscopy (SEM). The captured morphological images are utilized to generate the object-oriented finite element (OOF) analysis for the porous copper. Porous copper was formed with porosities in the range of 40-66% with density ranges from 3 to 5.2 g/cm3. A study of two different methods to measure porosity was completed. OOF (Object Oriented Finite Elements) is a desktop software application for studying the relationship between the microstructure of a material and its overall mechanical, dielectric, or thermal properties using finite element models based on real or simulated micrographs. OOF provides methods for segmenting images, creating meshes and solving of complex geometries using finite element models, and visualizing 2D results.

  15. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    PubMed Central

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-01-01

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285

  16. Dielectric and ferroelectric properties of Ba0.87Ca0.10La0.03Ti1-xSnxO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-hui; Li, Zhi-wei; Fang, Chang; Qiu, Jian-hua; Ding, Jian-ning; Zhu, Wei-qin; Xu, Jiu-jun

    2017-12-01

    Ba0.87Ca0.10La0.03Ti1-xSnxO3 (BCLTS) piezoelectric lead-free ceramics were fabricated by conventional solid-state sintering process at 1480 °C. The effects of Sn4+ substitution on microstructure and electrical properties of the ceramics were researched. All samples show a pure perovskite structure with no secondary phase, and the coexistence of orthorhombic phase and tetragonal phase in the composition range of x = 0.06-0.10 is identified in the XRD pattern. Average grain size decreases with the increase of Sn content in the BCLTS samples. The BCLTS ceramics exhibit excellent piezoelectric properties and ferroelectric properties with d33 = 501pC/N and kp = 45.6% at x = 0.10, and Pr = 9.87 μC/cm2 at x = 0.06. The analysis on the temperature dependence of dielectric permittivity approved the diffuse relaxor ferroelectric feature for all the BCLTS samples.

  17. High-Temperature Proton-Conducting Ceramics Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.

    2005-01-01

    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  18. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    PubMed

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  19. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO{sub 2} from rice husk by solid state reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmi, Dwi, E-mail: dwiasmi82@yahoo.com, E-mail: dwi.asmi@fmipa.unila.ac.id; Sulaiman, Ahmad, E-mail: ahmadsulaiman@yahoo.co.id; Oktavia, Irene Lucky, E-mail: ireneluckyo@gmail.com

    Effect of 10 wt% amorphous SiO{sub 2} from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO{sub 2} powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations,more » functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO{sub 2} composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO{sub 2}. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.« less

  20. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO2 from rice husk by solid state reaction

    NASA Astrophysics Data System (ADS)

    Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne

    2016-04-01

    Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  1. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    NASA Astrophysics Data System (ADS)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  2. Effect of the co-spun anode functional layer on the performance of the direct-methane microtubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Meng, Xiuxia; Gong, Xun; Yin, Yimei; Yang, Naitao; Tan, Xiaoyao; Ma, Zi-Feng

    2014-02-01

    NiO-YSZ/porous YSZ (NiO-YSZ/p-YSZ) dual-layer hollow fibers have been fabricated by a co-spinning-sintering method, on which a dense YSZ films has been formed by a dip-coating and sintering process. A LSM-YSZ ink has been dip-coated on the dense YSZ films as cathode, while the Cu-CeO2 carbon-resistant catalyst has been impregnated in the p-YSZ layer to form double-anode supported micro tubular fuel cells (MT-SOFCs). The thickness of the Ni-YSZ layer, so called anode functional layer (AFL), is controlled from 74 μm to 13 μm by varying the spinning rates of the NiO-YSZ dopes. The maximum power density of an MT-SOFC, which is fabricated based on a thin co-spun AFL, reaches 566 mW cm-2 operated at 850 °C fed with dry methane, and is stably operated for 85 h without power declination.

  3. Densification behavior, nanocrystallization, and mechanical properties of spark plasma sintered Fe-based bulk amorphous alloys

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar

    Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different temperatures ranging from 570 °C to 800 °C. Maximum compression strength (1.1+/-0.2 MPa) was obtained for the samples sintered in the supercooled region. Effects of crystallization on tribological behavior of sintered samples were also investigated where crystallization resulted in increase in wear resistance. Laser surface hardening of SPS sintered amorphous samples were performed. Depending on the processing parameters, the laser surface irradiation causes structural relaxation and nanocrystallization, resulting in surface hardening.

  4. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    NASA Astrophysics Data System (ADS)

    Wang, Fuliang; Tang, Zikai; He, Hu

    2018-04-01

    The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  5. Nondestructive evaluation of structural ceramics by photoacoustic microscopy

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1987-01-01

    A photoacoustic microscopy (PAM) digital imaging system was developed and utilized to characterize silicon nitride material at the various stages of the ceramic fabrication process. Correlation studies revealed that photoacoustic microscopy detected failure initiating defects in substantially more specimens than microradiography and ultrasonic techniques. Photoacoustic microscopy detected 10 to 100 micron size surface and subsurface pores and inclusions, respectively, up to 80 microns below the interrogating surface in machined sintered silicon nitride. Microradiography detected 50 micron diameter fracture controlling pores and inclusions. Subsurface holes were detected up to a depth of 570 microns and 1.00 mm in sintered silicon nitride and silicon carbide, respectively. Seeded voids of 20 to 30 micron diameters at the surface and 50 microns below the interrogating surface were detected by photoacoustic microscopy and microradiography with 1 percent X-ray thickness sensitivity. Tight surface cracks of 96 micron length x 48 micron depth were detected by photoacoustic microscopy. PAM volatilized and removed material in the green state which resulted in linear shallow microcracks after sintering. This significantly limits the use of PAM as an in-process NDE technique.

  6. Effect of surface oxide films on the properties of pulse electric-current sintered metal powders

    NASA Astrophysics Data System (ADS)

    Xie, Guoqiang; Ohashi, Osamu; Yamaguchi, Norio; Wang, Airu

    2003-11-01

    Metallic powders with various thermodynamic stability oxide films (Ag, Cu, and Al powders) were sintered using a pulse electric-current sintering (PECS) process. Behavior of oxide films at powder surfaces and their effect on the sintering properties were investigated. The results showed that the sintering properties of metallic powders in the PECS process were subject to the thermodynamic stability of oxide films at particles surfaces. The oxide films at Ag powder surfaces are decomposed during sintering with the contact region between the particles being metal/metal bond. The oxide films at Cu powder surfaces are mainly broken via loading pressure at a low sintering temperature. At a high sintering temperature, they are mainly dissolved in the parent metal, and the contact regions turn into the direct metal/metal bonding. Excellent sintering properties can be received. The oxide films at Al powder surfaces are very stable, and cannot be decomposed and dissolved, but broken by plastic deformation of particles under loading pressure at experimental temperatures. The interface between particles is partially bonded via the direct metal/metal bonding making it difficult to achieve good sintered properties.

  7. Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS)

    NASA Astrophysics Data System (ADS)

    Yeo, S.; Mckenna, E.; Baney, R.; Subhash, G.; Tulenko, J.

    2013-02-01

    Uranium dioxide (UO2)-10 vol% silicon carbide (SiC) composite fuel pellets were produced by oxidative sintering and Spark Plasma Sintering (SPS) at a range of temperatures from 1400 to 1600 °C. Both SiC whiskers and SiC powder particles were utilized. Oxidative sintering was employed over 4 h and the SPS sintering was employed only for 5 min at the highest hold temperature. It was noted that composite pellets sintered by SPS process revealed smaller grain size, reduced formation of chemical products, higher density, and enhanced interfacial contact compared to the pellets made by oxidative sintering. For given volume of SiC, the pellets with powder particles yielded a smaller grain size than pellets with SiC whiskers. Finally thermal conductivity measurements at 100 °C, 500 °C, and 900 °C revealed that SPS sintered UO2-SiC composites exhibited an increase of up to 62% in thermal conductivity compared to UO2 pellets, while the oxidative sintered composite pellets revealed significantly inferior thermal conductivity values. The current study points to the improved processing capabilities of SPS compared to oxidative sintering of UO2-SiC composites.

  8. Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature.

    PubMed

    Hui, Zhuang; Liu, Yangai; Guo, Wei; Li, Lihang; Mu, Nan; Jin, Chao; Zhu, Ying; Peng, Peng

    2017-07-14

    Transparent and flexible electrodes on cost effective plastic substrates for wearable electronics have attract great attention recently. Due to the conductivity and flexibility in network form, metal nanowire is regarded as one of the most promising candidates for flexible electrode fabrication. Prior to application, low temperature joining of nanowire processes are required to reduce the resistance of electrodes and simultaneously maintain the dimensionality and uniformity of those nanowires. In the present work, we presented an innovative, robust and cost effective method to minimize the heat effect to plastic substrate and silver nanowires which allows silver nanowire electrodes been directly written on polycarbonate substrate and sintered by different electrolyte solutions at room temperature or near. It has been rigorously demonstrated that the resistance of silver nanowire electrodes has been reduced by 90% after chemical sintering at room temperature due to the joining of silver nanowires at junction areas. After ∼1000 bending cycles, the measured resistance of silver nanowire electrode was stable during both up-bending and down-bending states. The changes of silver nanowires after sintering were characterized using x-ray photoelectron spectroscopy and transmission electron microscopy and a sintering mechanism was proposed and validated. This direct-written silver nanowire electrode with good performance has broad applications in flexible electronics fabrication and packaging.

  9. Estimation of Sintering Kinetics of Oxidized Magnetite Pellet Using Optical Dilatometer

    NASA Astrophysics Data System (ADS)

    Sandeep Kumar, T. K.; Viswanathan, Neelakantan Nurni; Ahmed, Hesham M.; Andersson, Charlotte; Björkman, Bo

    2015-04-01

    The quality of magnetite pellet is primarily determined by the physico-chemical changes the pellet undergoes as it makes excursion through the gaseous and thermal environment in the induration furnace. Among these physico-chemical processes, the oxidation of magnetite phase and the sintering of oxidized magnetite (hematite) and magnetite (non-oxidized) phases are vital. Rates of these processes not only depend on the thermal and gaseous environment the pellet gets exposed in the induration reactor but also interdependent on each other. Therefore, a systematic study should involve understanding these processes in isolation to the extent possible and quantify them seeking the physics. With this motivation, the present paper focusses on investigating the sintering kinetics of oxidized magnetite pellet. For the current investigation, sintering experiments were carried out on pellets containing more than 95 pct magnetite concentrate from LKAB's mine, dried and oxidized to completion at sufficiently low temperature to avoid sintering. The sintering behavior of this oxidized pellet is quantified through shrinkage captured by Optical Dilatometer. The extent of sintering characterized by sintering ratio found to follow a power law with time i.e., Kt n . The rate constant K for sintering was determined for different temperatures from isothermal experiments. The rate constant, K, varies with temperature as and the activation energy ( Q) and reaction rate constant ( K') are estimated. Further, the sintering kinetic equation was also extended to a non-isothermal environment and validated using laboratory experiments.

  10. [Application of sintered Ti powder to dental prostheses].

    PubMed

    Hikosaka, Tatsuya; Tanaka, Yoshinobu; Hoshiai, Kazumoto; Kanazawa, Takeshi; Nakamura, Yoshinori; Tsuda, Kenji; Ohasi, Hideya

    2005-04-01

    Powder metallurgy is a metal processing technology. Porous titanium produced from powder is widely used. The method is applied to titanium, which is not easy to cast as it sinters under melting point. In prosthetic dentistry, powder metallurgy can be applied to high fusing metal that is biocompatible. In this study, we examined the mechanical characteristics of the Ti sheet produced by sintering and discussed its application to dental prosthesis manufacturing. Ti sheets of 1-mm thickness, in which a binder was added to spherical Ti powder, were produced with the Doctor Blade Method. The sintering was carried out between 900-1150 degrees C at 6 temperatures. The sintered compact was evaluated by dimensional change rate, hardness test, bending strength, tensile strength and SEM observation. Another compact was sintered on the refractory cast. Mechanical strength significantly increased with sintering temperature. In addition, excellent mechanical strength was acquired by adding crushed powder and performing the de-binder process. In the sintering on the refractory cast, pre-baking for more than 100 minutes and sintering at over 1050 degrees C was needed for practical application. It thus seems possible to apply sintered titanium to dental prostheses. However, it will be necessary to examine the control of the shrinkage of the sintered compact in the future too.

  11. Production of superconductor/carbon bicomponent fibers

    NASA Technical Reports Server (NTRS)

    Wise, S. A.; Fain, C. C.; Leigh, H. D.; Sherrill, M.

    1990-01-01

    Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C-shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been demonstrated worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being investigated. Various organic and acrylic materials were investigated to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composites or cables. Additional research is necessary to evaluate quality of the barrier layer during long soakings at the peak temperature; adjust the firing schedule to avoid microcracking and improve densification; and increase the solids loading in the superconductive suspension to decrease porosity.

  12. Processing, Structural Characterization and Comparative Studies on Uniaxial Tensile Properties of a New Type of Porous Twisted Wire Material

    PubMed Central

    Wu, Fei; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2015-01-01

    A self-developed rotary multi-cutter device cuts stainless steel wire ropes into segments to fabricate twisted wires. Stainless steel porous twisted wire materials (PTWMs) with a spatial composite intertexture structure are produced by the compaction and subsequent vacuum solid-phase sintering of twisted wires. The stainless steel PTWMs show two types of typical uniaxial tensile failure modes, i.e., a 45° angle fracture mode and an auxetic failure mode (the PTWMs expand along the direction perpendicular to the tension). The effects of the sintering parameters, porosities, wire diameters, and sampling direction on the tensile properties of the PTWMs are carefully investigated. By increasing the sintering temperature from 1130 °C to 1330 °C, the tensile strength of the PTWMs with 70% target porosity increased from 7.7 MPa to 28.6 MPa and the total failure goes down to 50%. When increasing the sintering time from 90 min to 150 min, the tensile strength increases from 12.4 MPa to 19.1 MPa and the total failure elongation drops to 78.6%. The tensile strength of the PTWMs increases from 28.9 MPa to 112.7 MPa with decreasing porosity from 69.5% to 46.0%, and the total failure elongation also increases from 14.8% to 40.7%. The tensile strength and the failure strain of the PTWMs with fine wires are higher than those of the PTWMs with coarse wires under the same porosity. Sampling direction has a small influence on the tensile properties of the PTWMs. PMID:28793526

  13. Processing, Structural Characterization and Comparative Studies on Uniaxial Tensile Properties of a New Type of Porous Twisted Wire Material.

    PubMed

    Wu, Fei; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2015-08-27

    A self-developed rotary multi-cutter device cuts stainless steel wire ropes into segments to fabricate twisted wires. Stainless steel porous twisted wire materials (PTWMs) with a spatial composite intertexture structure are produced by the compaction and subsequent vacuum solid-phase sintering of twisted wires. The stainless steel PTWMs show two types of typical uniaxial tensile failure modes, i.e. , a 45° angle fracture mode and an auxetic failure mode (the PTWMs expand along the direction perpendicular to the tension). The effects of the sintering parameters, porosities, wire diameters, and sampling direction on the tensile properties of the PTWMs are carefully investigated. By increasing the sintering temperature from 1130 °C to 1330 °C, the tensile strength of the PTWMs with 70% target porosity increased from 7.7 MPa to 28.6 MPa and the total failure goes down to 50%. When increasing the sintering time from 90 min to 150 min, the tensile strength increases from 12.4 MPa to 19.1 MPa and the total failure elongation drops to 78.6%. The tensile strength of the PTWMs increases from 28.9 MPa to 112.7 MPa with decreasing porosity from 69.5% to 46.0%, and the total failure elongation also increases from 14.8% to 40.7%. The tensile strength and the failure strain of the PTWMs with fine wires are higher than those of the PTWMs with coarse wires under the same porosity. Sampling direction has a small influence on the tensile properties of the PTWMs.

  14. Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries.

    PubMed

    Jiang, Yetao; Zeng, Xianhai; Luque, Rafael; Tang, Xing; Sun, Yong; Lei, Tingzhou; Liu, Shijie; Lin, Lu

    2017-10-23

    Lignocellulosic biomass, a matrix of biopolymers including cellulose, hemicellulose, and lignin, has gathered increasing attention in recent years for the production of chemicals, fuels, and materials through biorefinery processes owing to its renewability and availability. The fractionation of lignocellulose is considered to be the fundamental step to establish an economical and sustainable lignocellulosic biorefinery. In this Minireview, we summarize a newly developed oxygen delignification for lignocellulose fractionation called cooking with active oxygen and solid alkali (CAOSA), which can fractionate lignocellulose into its constituents and maintain its processable form. In the CAOSA approach, environmentally friendly chemicals are applied instead of undesirable chemicals such as strong alkalis and sulfides. Notably, the alkali recovery for this process promises to be relatively simple and does not require causticizing or sintering. These features make the CAOSA process an alternative for both lignocellulose fractionation and biomass pretreatment. The advantages and challenges of CAOSA are also discussed to provide a comprehensive perspective with respect to existing strategies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Accelerated sintering in phase-separating nanostructured alloys

    PubMed Central

    Park, Mansoo; Schuh, Christopher A.

    2015-01-01

    Sintering of powders is a common means of producing bulk materials when melt casting is impossible or does not achieve a desired microstructure, and has long been pursued for nanocrystalline materials in particular. Acceleration of sintering is desirable to lower processing temperatures and times, and thus to limit undesirable microstructure evolution. Here we show that markedly enhanced sintering is possible in some nanocrystalline alloys. In a nanostructured W–Cr alloy, sintering sets on at a very low temperature that is commensurate with phase separation to form a Cr-rich phase with a nanoscale arrangement that supports rapid diffusional transport. The method permits bulk full density specimens with nanoscale grains, produced during a sintering cycle involving no applied stress. We further show that such accelerated sintering can be evoked by design in other nanocrystalline alloys, opening the door to a variety of nanostructured bulk materials processed in arbitrary shapes from powder inputs. PMID:25901420

  16. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanningmore » Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.« less

  17. Dielectric, Piezoelectric, and Vibration Properties of the LiF-Doped (Ba0.95Ca0.05)(Ti0.93Sn0.07)O₃ Lead-Free Piezoceramic Sheets.

    PubMed

    Cheng, Chien-Min; Chen, Kai-Huang; Lee, Da-Huei; Jong, Fuh-Cheng; Chen, Mei-Li; Chang, Jhih-Kai

    2018-01-24

    By the conventional solid state reaction method, a small amount of lithium fluoride (LiF) was used as the sintering promoter to improve the sintering and piezoelectric characteristics of (Ba 0.95 Ca 0.05 )(Ti 0.93 Sn 0.07 )O₃ (BCTS) lead-free piezoceramic sheets. Using X-ray diffraction (XRD) and a scanning electron microscope (SEM), the inferences of the crystalline and surface microstructures were obtained and analyzed. Then, the impedance analyzer and d 33 -meter were used to measure the dielectric and piezoelectric characteristics. In this study, the optimum sintering temperature of the BCTS sheets decreased from 1450 °C to 1390 °C due to LiF doping. For the 0.07 wt % LiF-doped BCTS sheets sintered at 1390 °C, the piezoelectric constant (d 33 ) is 413 pC/N, the electric-mechanical coupling coefficient (k p ) is 47.5%, the dielectric loss (tan δ) is 3.9%, and the dielectric constant (ε r ) is 8100, which are all close to or even better than that of the pure undoped BCTS ceramics. The Curie temperature also improved, from 85 °C for pure BCTS to 140 °C for BCTS-0.07 LiF sheets. Furthermore, by using the vibration system and fixing 1.5 g tip mass at the end of the sheets, as the vibration frequency is 20 Hz, the proposed piezoelectric ceramic sheets also reveal a good energy harvesting performance at the maximum output peak voltage of 4.6 V, which is large enough and can be applied in modern low-power electronic products.

  18. Effect of heating parameters on sintering behaviors and properties of mullite whisker frameworks

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Zeng, D. J.; Wang, B.; Yang, J. F.

    2018-04-01

    Mullite whisker frameworks were fabricated by vapor-solid reaction with SiO2, Al2O3 and AlF3 powders as the whisker forming agent at high temperatures. The effects of heating temperature and soaking time on the weight loss, liner shrinkage, porosity, microstructure and compressive strength were investigated. The results showed that with the increasing of the sintering temperature and soaking time, the weight loss and liner shrinkage of the samples increased and the porosities decreased due to the accelerated vapor-solid reaction, resulting in strong bonding and grain growth of the mullite frameworks. The compressive strength of the samples increased with increasing the sintering temperature from 1500 to 1650 °C, and decreased with the soaking time extended to more than 5 h for 1500 °C and 2 h for 1650 °C. A maximum compressive strength of 142 MPa at a porosity of 62.3% was obtained for the mullite whisker framework heated at 1500 °C for 5 h. The enhanced strength was attributed to the strong bonding strength and fine mullite grains resulting from a relative lower heating temperature and a modest soaking time.

  19. Optimization of Sinter Plant Operating Conditions Using Advanced Multivariate Statistics: Intelligent Data Processing

    NASA Astrophysics Data System (ADS)

    Fernández-González, Daniel; Martín-Duarte, Ramón; Ruiz-Bustinza, Íñigo; Mochón, Javier; González-Gasca, Carmen; Verdeja, Luis Felipe

    2016-08-01

    Blast furnace operators expect to get sinter with homogenous and regular properties (chemical and mechanical), necessary to ensure regular blast furnace operation. Blends for sintering also include several iron by-products and other wastes that are obtained in different processes inside the steelworks. Due to their source, the availability of such materials is not always consistent, but their total production should be consumed in the sintering process, to both save money and recycle wastes. The main scope of this paper is to obtain the least expensive iron ore blend for the sintering process, which will provide suitable chemical and mechanical features for the homogeneous and regular operation of the blast furnace. The systematic use of statistical tools was employed to analyze historical data, including linear and partial correlations applied to the data and fuzzy clustering based on the Sugeno Fuzzy Inference System to establish relationships among the available variables.

  20. Preparation of functional layers for anode-supported solid oxide fuel cells by the reverse roll coating process

    NASA Astrophysics Data System (ADS)

    Mücke, R.; Büchler, O.; Bram, M.; Leonide, A.; Ivers-Tiffée, E.; Buchkremer, H. P.

    The roll coating technique represents a novel method for applying functional layers to solid oxide fuel cells (SOFCs). This fast process is already used for mass production in other branches of industry and offers a high degree of automation. It was utilized for coating specially developed anode (NiO + 8YSZ, 8YSZ: 8 mol% yttria-stabilized zirconia) and electrolyte (8YSZ) suspensions on green and pre-sintered tape-cast anode supports (NiO + 8YSZ). The layers formed were co-fired in a single step at 1400 °C for 5 h. As a result, the electrolyte exhibited a thickness of 14-18 μm and sufficient gas tightness. Complete cells with a screen-printed and sintered La 0.65Sr 0.3MnO 3- δ (LSM)/8YSZ cathode yielded a current density of 0.9-1.1 A cm -2 at 800 °C and 0.7 V, which is lower than the performance of non-co-fired slip-cast or screen-printed Jülich standard cells with thinner anode and electrolyte layers. The contribution of the cell components to the total area-specific resistance (ASR) was calculated by analyzing the distribution function of the relaxation times (DRTs) of measured electrochemical impedance spectra (EIS) and indicates the potential improvement in the cell performance achievable by reducing the thickness of the roll-coated layers. The results show that the anode-supported planar half-cells can be fabricated cost-effectively by combining roll coating with subsequent co-firing.

  1. Radiation-Thermal Sintering of Zirconia Powder Compacts Under Conditions of Bilateral Heating Using Beams of Low-Energy Electrons

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Frangulyan, T. S.; Chernyavskii, A. V.; Goreev, A. K.; Naiden, E. P.

    2015-06-01

    Comparative experiments on sintering zirconia ceramics are performed using colliding beams of low-energy electrons and under conditions of thermal heating. The density and microhardness of ceramic materials manufactured via different processes are determined. The use of a regime of bilateral heating by high-intensity,low-energy electron beams is shown to intensify the sintering process and yield material specimens with improved characteristics compared to those formed by thermal sintering.

  2. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish

    2013-10-01

    Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilonmore » metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).« less

  3. In situ fabrication of high-performance Ni-GDC-nanocube core-shell anode for low-temperature solid-oxide fuel cells

    PubMed Central

    Yamamoto, Kazuhiro; Qiu, Nan; Ohara, Satoshi

    2015-01-01

    A core–shell anode consisting of nickel–gadolinium-doped-ceria (Ni–GDC) nanocubes was directly fabricated by a chemical process in a solution containing a nickel source and GDC nanocubes covered with highly reactive {001} facets. The cermet anode effectively generated a Ni metal framework even at 500 °C with the growth of the Ni spheres. Anode fabrication at such a low temperature without any sintering could insert a finely nanostructured layer close to the interface between the electrolyte and the anode. The maximum power density of the attractive anode was 97 mW cm–2, which is higher than that of a conventional NiO–GDC anode prepared by an aerosol process at 55 mW cm–2 and 600 °C, followed by sintering at 1300 °C. Furthermore, the macro- and microstructure of the Ni–GDC-nanocube anode were preserved before and after the power-generation test at 700 °C. Especially, the reactive {001} facets were stabled even after generation test, which served to reduce the activation energy for fuel oxidation successfully. PMID:26615816

  4. Epsilon metal waste form for immobilization of noble metals from used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac

    2013-10-01

    Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  5. Effect of Particle Morphology on Cold Spray Deposition of Chromium Carbide-Nickel Chromium Cermet Powders

    NASA Astrophysics Data System (ADS)

    Fernandez, Ruben; Jodoin, Bertrand

    2017-08-01

    Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.

  6. Organic Binder Developments for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Mobasher, Amir A.

    2003-01-01

    A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.

  7. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties

    PubMed Central

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-01-01

    P–type SnS compound and SnS1−xSex solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS–pressurizing direction in the temperature range 323–823 Κ. SnS compound and SnS1−xSex solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m−1 K−1 at 823 K for the composition SnS0.5Se0.5. With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS0.2Se0.8 along the parallel direction. PMID:28240324

  8. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties.

    PubMed

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-02-27

    P-type SnS compound and SnS 1-x Se x solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS 1-x Se x solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m -1  K -1 at 823 K for the composition SnS 0.5 Se 0.5 . With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS 0.2 Se 0.8 along the parallel direction.

  9. Hybrid processing and anisotropic sintering shrinkage in textured ZnO ceramics

    PubMed Central

    Keskinbora, Kahraman; Suzuki, Tohru S; Ozgur Ozer, I; Sakka, Yoshio; Suvaci, Ender

    2010-01-01

    We have studied the combined effects of the templated grain growth and magnetic alignment processes on sintering, anisotropic sintering shrinkage, microstructure development and texture in ZnO ceramics. Suspensions of 0–10 vol % ZnO template particles were slip cast in a 12 T rotating magnetic field. Sintering and texture characteristics were investigated via thermomechanical analysis and electron backscatter diffraction, respectively. Sintering as well as texture characteristics depend on template concentration. For the studied ZnO system, there is a critical template concentration (2 vol % in this study) above which densification is limited by the templates owing to constrained sintering. Below this limit, the densification is enhanced and the anisotropic shrinkage is reduced, which is attributed to densifying characteristics of the templates. PMID:27877373

  10. Effects of solar cell environment on contact integrity

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1993-01-01

    The III-V semiconductors react extremely rapidly with most commonly used contact metallizations. This precludes the use of elevated temperatures in the contact formation process for solar cells and other shallow junction devices. These devices must rely upon contact metallizations that are sufficiently conductive in their 'as-fabricated' state. However, while there are a number of non-sintered metallizations that have acceptable characteristics, the lack of a sintering step makes them vulnerable to a variety of environmentally induced degradation processes. The degrading effects resulting from the exposure of unsintered devices to a humid environment and to a vacuum (space) environment are described. It is shown, further, that these effects are magnified by the presence of mechanical damage in the contact metallization. The means to avoid or prevent these degrading interactions are presented.

  11. Synthesis, Processing and Properties of Calcium- and Nickel-Doped Yttrium Chromates(III) Y0.8Ca0.2Cr1-x Ni x O3 (x = 0-0.3) and Studies on Their Potential Application as Coatings for SOFC Interconnects

    NASA Astrophysics Data System (ADS)

    Stygar, M.; Tejchman, W.; Dąbrowa, J.; Kruk, A.; Brylewski, T.

    2018-05-01

    In the present study, a calcium- and nickel-doped yttrium chromates (YCCN)-based, conductive-protective layers for metallic interconnects used in the intermediate-temperature solid oxide fuel cells (IT-SOFCs) were investigated. Synthesis of Y0.8Ca0.2Cr1-x Ni x O3 (x = 0; 0.15 and 0.3) powders was performed using a wet chemistry method with two different complexing agents: ethylenediaminetetraacetic acid and glycine. Based on the result of thermal analysis of obtained precursors, optimal conditions of the calcination process were determined. Powders were then milled, compacted and sintered at different temperatures using free sintering method, into series of dense, polycrystalline sinters. The use of glycine precursor allowed obtaining a single-phase material in all cases. Based on the electrical and sintering properties, the Y0.8Ca0.2Cr0.85Ni0.15O3 material was selected for further studies. It was deposited using cost-effective screen-printing method on the Crofer 22APU ferritic stainless steel. To investigate properties and suitability of the resulting layer/steel system for IT-SOFCs applications, the high-temperature, dual-atmosphere studies were carried out for the first time for ceramic/metallic system, in conditions as close as possible to actual working conditions of the fuel cell. The layer exhibited high stability and good protective properties. The area-specific resistance of the studied ceramic layer/metallic substrate composite was determined, with the obtained value of 0.0366 Ω cm2 being within the arbitrary limit set for these materials (0.1 Ω cm2). The results show that the investigated materials are suitable for the projected application.

  12. The effect of processing and compositional changes on the tribology of PM212 in air

    NASA Technical Reports Server (NTRS)

    Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The effects of processing and compositional variations on the tribological performance of PM212 were studied. PM212 is a self lubricating powder metallurgy composite, comprised of a wear resistant metal bonded chromium carbide matrix, containing the solid lubricants barium fluoride/calcium fluoride eutectic and silver. Several composites were formulated which had lubricant, matrix, and processing variations. Processing variations included sintering and hot isostatic pressing. Pins fabricated from the composites were slid against superalloys disks in a pin-on-disk tribometer to study the tribological properties. Several composites exhibited low friction and wear in sliding against a nickel based superalloy. The tribological performance by several different composites showed that the composition of PM212 can be altered without dramatically affecting performance.

  13. Compositional inhomogeneityand segregation in (K 0.5Na 0.5)NbO 3 ceramics

    DOE PAGES

    Chen, Kepi; Tang, Jing; Chen, Yan

    2016-03-11

    The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less

  14. Formation of nickel and copper ferrites in ceramics: a potential reaction in the reuse of iron-rich sludge incineration ash.

    PubMed

    Shih, Kaimin

    2012-12-01

    This study investigates potential solid-state reactions for the stabilization of hazardous metals when reusing the incineration ash from chemically enhanced primary treatment (CEPT) sludge to fabricate ceramic products. Nickel and copper were used as examples of hazardous metals, and the iron content in the reaction system was found to play a major role in incorporating these hazardous metals into their ferrite phases (NiFe2O4 and CuFe2O4). The results from three-hour sintering experiments on NiO + Fe2O3 and CuO + Fe2O3 systems clearly demonstrate the potential for initiating metal incorporation mechanisms using an iron-containing precursor at attainable ceramic sintering temperatures (above 750 degrees C). Both ferrite phases were examined using a prolonged leaching experiment modified from the widely used toxicity characteristic leaching procedure (TCLP) to evaluate their long-term metal leachability. The leaching results indicate that both the NiFe2O4 and the CuFe2O4 products were significantly superior to their oxide forms in immobilizing hazardous metals.

  15. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics

    NASA Astrophysics Data System (ADS)

    Tanwar, Amit; Sreenivas, K.; Gupta, Vinay

    2009-04-01

    High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kepi; Tang, Jing; Chen, Yan

    The effects of the calcination temperature of (K 0.5Na 0.5)NbO 3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated in this report. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on themore » densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d 33=128.3 pC/N, planar electromechanical coupling coefficient k p=32.2%, mechanical quality factor Q m=88, and dielectric loss tan δ=2.1%.« less

  17. Solid-state synthesis of nano-sized Ba(Ti1- x Sn x )O3 powders and dielectric properties of corresponding ceramics

    NASA Astrophysics Data System (ADS)

    Ansaree, Md. Jawed; Kumar, Upendra; Upadhyay, Shail

    2017-06-01

    Powders of a few compositions of solid solution BaTi1- x Sn x O3 ( x = 0.0, 0.1, 0.2, 0.3 and 0.40) have been synthesized at 800 °C for 8 h using Ba(NO3)2, TiO2 and SnCl4·5H2O as starting materials. The thermogravimetric (TG) and differential scanning calorimetric (DSC) analysis of mixture in the stoichiometric proportion for sample BaTi0.80Sn0.20O3 have been carried out to understand the formation of solid solutions. Single-phase pure compounds (except x = 0.40) of the samples have been obtained at a lower calcination temperature (800 °C) than that of those reported in the literature for traditional solid-state synthesis making use of oxides and or carbonates as starting material (≥1200 °C). Tetragonal symmetry for compositions x = 0.0 and 0.10, cubic for x = 0.2 and 0.30 were found by X-ray diffraction (XRD) analysis. The transmission electron microscopic (TEM) analysis confirmed that calcined powders have a particle size between 30 and 50 nm. Ceramics of these powders were prepared by sintering at 1350 °C for 4 h. Properties of ceramics obtained in this work have been compared with properties reported in the literature.

  18. Recycling and utilisation of industrial solid waste: an explorative study on gold deposit tailings of ductile shear zone type in China.

    PubMed

    Liu, Rui; Huang, Fei; Du, Runxiang; Zhao, Chunming; Li, Yongli; Yu, Haoran

    2015-06-01

    Tailings are solid waste arising from mineral processing. This type of waste can cause severe damage to the environment during stockpiling as a result of the leaching of something harmful into the ecosystem. Gold deposit of ductile shear zone type is an important type of gold deposit, and the recycling of its tailings has been challenging researchers for a long time. In this article, the characteristics of this type of tailings were systematically studied by using modern technical means. Considering the characteristics of the tailings, clay was selected to make up for the shortcomings of the tailings and improve their performance. Water and raw materials were mixed to produce green bodies, which are subsequently sintered into ceramic bodies at 980 °C~1020 °C (sintering temperature). The results showed that some new kinds of mineral phases, such as mullite, anorthite and orthoclase, appear in ceramic bodies. Furthermore, the ceramic bodies have a surface hardness of 5 to 6 (Mohs scale), and their water absorption and modulus of rupture can meet some technical requirements of ceramic materials described in ISO 13006-2012 and GB 5001-1985. These gold mine tailings can be made into ceramic tiles, domestic ceramic bodies, and other kinds of ceramic bodies for commercial and industrial purposes after further improvements. © The Author(s) 2015.

  19. Monolithic translucent BaMgAl 10O 17:Eu 2+ phosphors for laser-driven solid state lighting

    DOE PAGES

    Cozzan, Clayton; Brady, Michael J.; O’Dea, Nicholas; ...

    2016-10-11

    With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl 10O 17, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). Lastly, the resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  20. Method for preparing boron-carbide articles

    DOEpatents

    Benton, S.T.; Masters, D.R.

    1975-10-21

    The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.

  1. Removable partial denture alloys processed by laser-sintering technique.

    PubMed

    Alageel, Omar; Abdallah, Mohamed-Nur; Alsheghri, Ammar; Song, Jun; Caron, Eric; Tamimi, Faleh

    2018-04-01

    Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p < 0.05). Co-Cr alloys processed by L-1 and L-2 showed higher (p < 0.05) hardness (14-19%), yield strength (10-13%), and fatigue resistance (71-72%) compared to CC alloys. This was probably due to their smaller grain size and higher microstructural homogeneity. All Co-Cr alloys exhibited low porosity (2.1-3.3%); however, pore distribution was more homogenous in L-1 and L-2 alloys when compared to CC alloys. Both laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018. © 2017 Wiley Periodicals, Inc.

  2. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-11-01

    Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the "external gelation" sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.

  3. Development and kinetic analysis of cobalt gradient formation in WC-Co composites

    NASA Astrophysics Data System (ADS)

    Guo, Jun

    2011-12-01

    Functionally graded cemented tungsten carbide (FG WC-Co) is one of the main research directions in the field of WC-Co over decades. Although it has long been recognized that FG WC-Co could outperform conventional homogeneous WC-Co owing to its potentially superior combinations of mechanical properties, until recently there has been a lack of effective and economical methods to make such materials. The lack of the technology has prevented the manufacturing and industrial applications of FG WC-Co from becoming a reality. This dissertation is a comprehensive study of an innovative atmosphere heat treatment process for producing FG WC-Co with a surface cobalt compositional gradient. The process exploited a triple phase field in W-C-Co phase diagram among three phases (solid WC, solid Co, and liquid Co) and the dependence of the migration of liquid Co on temperature and carbon content. WC-Co with a graded surface cobalt composition can be achieved by controlling the diffusion of carbon transported from atmosphere during sintering or during postsintering heat treatment. The feasibility of the process was validated by the successful preparations of FG WC-Co via both carburization and decarburization process following conventional liquid phase sintering. A study of the carburization process was undertaken to further understand and quantitatively modeled this process. The effects of key processing parameters (including heat treating temperature, atmosphere, and time) and key materials variables (involving Co content, WC grain size, and addition of grain growth inhibitors) on the formation of Co gradients were examined. Moreover, a carbon-diffusion controlled kinetic model was developed for simulating the formation of the gradient during the process. The parameters involved in this model were determined by thermodynamic calculations and regression-fit of simulation results with experimental data. In summary, this research first demonstrated the principle of the approach. Second, a model was developed to predict the gradients produced by the carbon-controlled atmosphere heat treatment process, which is useful for manufacturing WC-Co with designed gradients. FG WC-Co materials produced using this method are expected to exhibit superior performance in many applications and to have a profound impact on the manufacturing industries that use tungsten carbide tools.

  4. Thermal Conductive Heat Transfer and Partial Melting of Volatiles in Icy Moons, Asteroids, and Kuiper Belt Objects (Invited)

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Furfaro, R.

    2013-12-01

    Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of these processes result in transient thermal states and hence rapid evolution of icy body interiors. Interesting heat-flow phenomena (approximated as steady-state thermal states) have been modeled in volatile-rich main belt asteroids, Io, Europa, Enceladus, Titan, Pluto, and Makemake (2005 FY9). Thermal conditions can activate geologic processes, but the occurrence of geologic activity can fundamentally alter the thermal conductivity and elasticity of icy objects, which then further affects the distribution and type of subsequent geologic activity. For example, cryoclastic volcanism on Enceladus can increase solid-state greenhouse heating of the upper crust, reduce thermal conductivity, and increase retention of heat and spur further cryovolcanism. Sulfur extrusion on Io can produce low-thermal-conductivity flows, high thermal gradients, basal melting of the flows, and lateral extrusion and spreading of the flows or formation of solid-crusted lava lakes. Impact formation of regoliths and fine-grained dust deposits on large asteroids may generate local variations in thermal gradients. Interior heating and geologic activity can either (1) emplace low-conductivity materials on the surface and cause further interior heating, or (2) drive metamorphism, sintering, and volatile loss, and increase thermal conductivity and cool the object. Thus, the type and distribution of present-day geologic activity on icy worlds is dependent on geologic history. Geology begets geology.

  5. Frequency domain kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics

    NASA Astrophysics Data System (ADS)

    Fl'unt, Orest; Klym, Halyna; Ingram, Adam

    2018-03-01

    In this work, the kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics sintered at different temperatures (1100, 1200 and 1400 °C) has been calculated and analyzed in a frequency domain. The spectra of real (in-phase) and imaginary (quadrature) components of positron-electron annihilation kinetic have been obtained numerically from usual temporal characteristics using integral Fourier transform. The numerical calculations were carried out using cubic spline interpolation of the pulse characteristics of MgO-Al2O3 ceramics in time domain with following analytical calculations of integrals. The obtained spectra as real so imaginary part of MgO-Al2O3 ceramics in frequency domain almost good obey a Debye law denying correlation between elementary positron annihilation processes. Complex diagrams of frequency domain responses of as-prepared samples have a shape of semicircles with close characteristic frequencies. Some deviation on low-frequency side of the semicircles is observed confirming an availability of longer time kinetic processes. Sintering temperature dependencies of the relaxation times and characteristic frequencies of positron-electron annihilation processes have been obtained. It is shown that position of large maxima on the frequency dependencies of imaginary part corresponds to fast average relaxation lifetime representing the most intensive interaction process of positrons with small cavity traps in solids.

  6. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    NASA Astrophysics Data System (ADS)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  7. Fabrication of lanthanum-doped thorium dioxide by high-energy ball milling and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Scott, Spencer M.; Yao, Tiankai; Lu, Fengyuan; Xin, Guoqing; Zhu, Weiguang; Lian, Jie

    2017-03-01

    High-energy ball milling was used to synthesize Th1-xLaxO2-0.5x (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO2 powders. Dense La-doped ThO2 pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO2 pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C.

  8. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Seth, Brig B.

    2005-08-23

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.

  9. Si-Ca species modification and microwave sintering for NiZn ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yin-Ju; Sheu, Ching-Iuan; Cheng, Syh-Yuh; Chang, Horng-Yi

    2004-12-01

    NiZn ferrite particles were precoated with Si-Ca precursor by sol-gel method. Thus convention-sintered particles exhibited small grain size about 2 μm and lowered magnetic permeability as well as increased coercive magnetic field effectively. Microwave sintering could suppress grain growth as the same result of conventional sintering specimens with SiO2-CaO precoating. In microwave process, the grain growth inhibition expressed more obviously for the SiO2-CaO precoated specimens. The magnetic permeability (∼300) after SiO2-CaO precoating became lower than original ferrite (∼800) without SiO2-CaO precoating in conventional sintering. However, the magnetic permeability was lowered no matter whether SiO2-CaO precoating in microwave process. On the other hand, microwave sintering possessed short processing time, for example, 1250 °C/5 min, to prohibit ZnO volatilization in accompanied with grain size reduction. Therefore, such contribution increased resistivity to about 12×106 Ω cm compared to 3×106 Ω cm of original NiZn ferrite. The large coercive magnetic field (Hc) was ascribed to the superposition of small grain size and stress induced by microwave sintering.

  10. Enhancement in superconducting properties of Bi2Sr2Ca1Cu2O8+θ (Bi-2212) by means of boron oxide additive

    NASA Astrophysics Data System (ADS)

    Fallah-Arani, Hesam; Baghshahi, Saeid; Sedghi, Arman; Stornaiuolo, Daniela; Tafuri, Francesco; Riahi-Noori, Nastaran

    2018-05-01

    By using a solid state method, Bi2Sr2Ca1Cu2O8+θ (Bi-2212) polycrystalline samples were synthesized with the addition of boron oxide additive, with the aim of improving the performance of this compound for large scale applications. As the first step, the parameters for the solid state method, in particular sintering temperature, were optimized in order to obtain pure Bi-2212 samples with an optimal microstructure. Then, based on this optimization, the properties of the Bi2Sr2Ca1Cu2BxOy samples with x = 0.05, 0.1, and 0.2 were studied using several characterization techniques. It was found that the sample having x = 0.05 showed a magnetic hysteresis loop larger than that of the pure Bi-2212 sample and a critical current density value of 3.71 × 105 A/cm2, comparable to the best results found in the literature for Bi-2212, while preserving well-stacked and oriented grains.

  11. Separation of uranium from (U, Th)O 2 and (U, Pu)O 2 by solid state reactions route

    NASA Astrophysics Data System (ADS)

    Keskar, Meera; Mudher, K. D. Singh; Venugopal, V.

    2005-01-01

    Solid state reactions of UO 2, ThO 2, PuO 2 and their mixed oxides (U, Th)O 2 and (U, Pu)O 2 were carried out with sodium nitrate upto 900 °C, to study the formation of various phases at different temperatures, which are amenable for easy dissolution and separation of the actinide elements in dilute acid. Products formed by reacting unsintered as well as sintered UO 2 with NaNO 3 above 500 °C were readily soluble in 2 M HNO 3, whereas ThO 2 and PuO 2 did not react with NaNO 3 to form any soluble products. Thus reactions of mixed oxides (U, Th)O 2 and (U, Pu)O 2 with NaNO 3 were carried out to study the quantitative separation of U from (U, Th)O 2 and (U, Pu)O 2. X-ray diffraction, X-ray fluorescence, thermal analysis and chemical analysis techniques were used for the characterization of the products formed during the reactions.

  12. Improved carbon control in the sintering of structural PM parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowotarski, M.; Gaines, G.

    1981-12-01

    The use of a nitrogen-methanol atmosphere and a system of control of the atmosphere in furnace zones to provide improved control of carbon in sintering of sprockets are described.A new process has been developed by the Linde Div. of Union Carbide for the sintering of structural PM parts. The process is based on a nitrogen/methanol sintering atmosphere and features superior carbon control (/plus or minus/.03%), elimination of sooting due to lubricant decomposition, and significantly reduced furnace atmosphere gas flows as compared to typical endothermic atmosphere gas consumption.

  13. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  14. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis

    DOE PAGES

    Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie; ...

    2017-03-22

    Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less

  15. Processing and Characterization of Porous Ti2AlC with Controlled Porosity and Pore Size

    DTIC Science & Technology

    2012-09-11

    fabricated by spark plasma sintering , were also characterized. The effects of porosity and/or pore size on the room temperature elastic moduli...pressureless- sintered without NaCl pore former, or fabricated by spark plasma sintering , were also characterized. The effects of porosity and/or pore size...as well as several samples sintered using spark plasma sintering (SPS). Furthermore, we demon- strate that the developed methodology can be implemented

  16. Simulation of Patterned Glass Film Formation in the Evaporating Colloidal Liquid under IR Heating

    NASA Astrophysics Data System (ADS)

    Kolegov, K. S.

    2018-02-01

    The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.

  17. Ray tracing method for simulation of laser beam interaction with random packings of powders

    NASA Astrophysics Data System (ADS)

    Kovalev, O. B.; Kovaleva, I. O.; Belyaev, V. V.

    2018-03-01

    Selective laser sintering is a technology of rapid manufacturing of a free form that is created as a solid object by selectively fusing successive layers of powder using a laser. The motivation of this study is due to the currently insufficient understanding of the processes and phenomena of selective laser melting of powders whose time scales differ by orders of magnitude. To construct random packings from mono- and polydispersed solid spheres, the algorithm of their generation based on the discrete element method is used. A numerical method of ray tracing is proposed that is used to simulate the interaction of laser radiation with a random bulk packing of spherical particles and to predict the optical properties of the granular layer, the extinction and absorption coefficients, depending on the optical properties of a powder material.

  18. Solid freeform fabrication of biomaterials

    NASA Astrophysics Data System (ADS)

    Chu, Tien-Min Gabriel

    1999-12-01

    The biological performance of porous Hydroxyapatite (HA) is closely related to the pore architecture in the implants. The study on the effect of architecture to the biological performance of porous HA requires new manufacturing methods that can fabricate implants with controlled pores channels. In this thesis, four highly loaded HA and alumina suspensions were formulated and three different processes involving Solid Freeform Fabrication (SFF) were developed. An aqueous HA suspension in acrylamides was first formulated and the UV-curing properties were evaluated. With a medical grade HA powder, two non-aqueous HA suspensions were formulated: a 40 vol.% HA suspension in Hexanediol Diacrylate (HDDA) and a 40 vol.% HA suspension in 1:1 mix of Propoxylated Neopentyl Glycol Diacrylate (PNPGDA) and Isobomyl Acrylate (EBA). A 50 vol.% Alumina suspension in PNPGDA/IBA was also formulated. The effect of dispersant to the viscosity of the suspensions was characterized. In the Stereolithography (SL) method, the curing parameters of HA/HDDA and HA/PNPGDA/IBA were determined. Prototype HA implants with 1,700 mum internal channels were built directly on an SL Apparatus (SLA). The designed internal channel patterns were preserved after sintering. In the Ink-jet printing method, the high temperature flow behaviors of the suspensions were characterized. The effects of solids loading to the viscosity of the suspensions were modeled with Krieger-Dougherty equation. Leveling theory developed in paint industry was employed to analyze the self-leveling capability of the suspensions. In the indirect SL method, the thermal curing behavior of HA and alumina suspensions were characterized. The total cure time was measured and the curing kinetics was modeled. Negative molds for the implants were designed and built on SLA with epoxy resin. HA/PNPGDA/IBA was cast into the mold and cured in an oven. The binders and the epoxy mold were pyrolyzed and the green bodies sintered. Internal channels with sizes in the range of 420 to 968 gm with standard deviation less than 50 mum were successfully built. The formulation and characterization techniques developed in this thesis were useful for evaluating the suspensions for SFF process. The manufacturing process developed in this thesis have provided new methods for controlling the channel size in porous HA implants.

  19. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  20. Expansion during the formation of the magnesium aluminate spinel (MgAl(2)O(4)) from its basic oxide (MgO and Al(2)O(3)) powders

    NASA Astrophysics Data System (ADS)

    Duncan, Flavia Cunha

    The extraordinary expansion during the reaction sintering of the magnesium aluminate spinel (MgAl2O4) from its basic oxide (MgO and Al2O3) powders was studied. Experimental series of different size fractions of the reacting materials were formulated to produce the Mg-Al spinel. After batches were prepared, specimens were compacted and fired in air from 1200° to 1700°C for a fixed firing time. A separate set of specimens was fired as a function of time to determine the reaction kinetic parameters. Dimensional changes confirmed that extraordinary expansions of three to four times greater than the prediction from the reaction of solids occur. The solid-state reactions were monitored by X-ray diffraction. The activation energy of the spinel reaction formation was determined to be 280 +/- 20 kJ/mol. It is believed to be associated with the diffusivity of Mg 2+ in either magnesia or spinel during the development of the final spinel structure. New porosity developed in the compacts during the reaction formation of spinel. Scanning electron microscopy confirmed that the magnesia evaporated leaving behind porous magnesia grains, condensed on the alumina particles and reacted to form a shell of spinel. Hollow spinel particles resulted from the original particles of alumina. These porosities generated within the reacting materials influenced the expansions. Final volumetric expansion could potentially reach 56% as a result of the reaction of solids and the porosity generation within MgO and Al2O3. Models of a single alumina particle with and without development of internal porosity were developed. 3-D arrangements of particles showed additional porosity, influencing on the expansions. The decrease in porosity of some specimens fired at higher temperatures indicated that sintering and densification occur simultaneously with the reaction formation of spinel. The decrease in the interparticle porosity limits the full expansion of the particulates to levels lower than the predictions of the model. A term that accounts for this shrinkage should be a significant addition to the model of expansion. Although the spinel forming reaction for most of the particle systems reached near completion, the resulting porous specimens could be viewed as powder compacts in the early stages of sintering and densification.

  1. Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.

    PubMed

    Joshi, P B; Rehani, Bharati; Naik, Palak; Patel, Swati; Khanna, P K

    2012-03-01

    Oxide dispersion-strengthened copper-base composites are widely used for applications demanding high tensile strength, high hardness along with good electrical and thermal conductivity. Oxides of metals like aluminium, cerium, yttrium and zirconium are often used for this purpose as fine and uniformly distributed dispersoid particles in soft and ductile copper matrix. Such composites find applications as electrical contacts, resistance-welding tips, lead wires, continuous casting moulds, etc. In this investigation an attempt has been made to produce copper-yttria nanocomposites using two different morphologies of copper powder and two different processing routes namely, high-energy milling and in-situ chemical reduction. The synthesized powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for their phase identification and morphological study. The nanocomposite powders in each case were subsequently processed to obtain bulk solids by classical powder metallurgy route of press-sinter-repress. The resultant bulk solid compacts were subjected to property evaluation. The study revealed that the properties of Cu-Y2O3 nanocomposites depend on the processing route used and in turn on the resultant powder morphology.

  2. SEPARATION OF PLUTONIUM VALUES FROM URANIUM AND FISSION PRODUCT VALUES

    DOEpatents

    Maddock, A.G.; Booth, A.H.

    1960-09-13

    Separation of plutonium present in small amounts from neutron irradiated uranium by making use of the phenomenon of chemisorption is described. Plutonium in the tetravalent state is chemically absorbed on a fluoride in solid form. The steps for the separation comprise dissolving the irradiated uranium in nitric acid, oxidizing the plutonium in the resulting solution to the hexavalent state, adding to the solution a soluble calcium salt which by the common ion effect inhibits dissolution of the fluoride by the solution, passing the solution through a bed or column of subdivided calcium fluoride which has been sintered to about 8OO deg C to remove the chemisorbable fission products, reducing the plutonium in the solution thus obtained to the tetravalent state, and again passing the solution through a similar bed or column of calcium fluoride to selectively absorb the plutonium, which may then be recovered by treating the calcium fluoride with a solution of ammonium oxalate.

  3. Determining optimal operation parameters for reducing PCDD/F emissions (I-TEQ values) from the iron ore sintering process by using the Taguchi experimental design.

    PubMed

    Chen, Yu-Cheng; Tsai, Perng-Jy; Mou, Jin-Luh

    2008-07-15

    This study is the first one using the Taguchi experimental design to identify the optimal operating condition for reducing polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/ Fs) formations during the iron ore sintering process. Four operating parameters, including the water content (Wc; range = 6.0-7.0 wt %), suction pressure (Ps; range = 1000-1400 mmH2O), bed height (Hb; range = 500-600 mm), and type of hearth layer (including sinter, hematite, and limonite), were selected for conducting experiments in a pilot scale sinter pot to simulate various sintering operating conditions of a real-scale sinter plant We found that the resultant optimal combination (Wc = 6.5 wt%, Hb = 500 mm, Ps = 1000 mmH2O, and hearth layer = hematite) could decrease the emission factor of total PCDD/Fs (total EF(PCDD/Fs)) up to 62.8% by reference to the current operating condition of the real-scale sinter plant (Wc = 6.5 wt %, Hb = 550 mm, Ps = 1200 mmH2O, and hearth layer = sinter). Through the ANOVA analysis, we found that Wc was the most significant parameter in determining total EF(PCDD/Fs (accounting for 74.7% of the total contribution of the four selected parameters). The resultant optimal combination could also enhance slightly in both sinter productivity and sinter strength (30.3 t/m2/day and 72.4%, respectively) by reference to those obtained from the reference operating condition (29.9 t/m (2)/day and 72.2%, respectively). The above results further ensure the applicability of the obtained optimal combination for the real-scale sinter production without interfering its sinter productivity and sinter strength.

  4. Thermally stable, low resistance contact systems for use with shallow junction p(+) nn(+) and n(+)pp(+) InP solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Fatemi, N. S.; Hoffman, R. W.

    1995-01-01

    Two contact systems for use on shallow junction InP solar cells are described. The feature shared by these two contact systems is the absence of the metallurgical intermixing that normally takes place between the semiconductor and the contact metallization during the sintering process. The n(+)pp(+) cell contact system, consisting of a combination of Au and Ge, not only exhibits very low resistance in the as-fabricated state, but also yields post-sinter resistivity values of 1(exp -7) ohms-sq cm, with effectively no metal-InP interdiffusion. The n(+)pp(+)cell contact system, consisting of a combination of Ag and Zn, permits low resistance ohmic contact to be made directly to a shallow junction p/n InP device without harming the device itself during the contacting process.

  5. Machinability of Green Powder Metallurgy Components: Part I. Characterization of the Influence of Tool Wear

    NASA Astrophysics Data System (ADS)

    Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig

    2007-06-01

    The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.

  6. An experimental study on effect of coke ratio on SO2 and NOx emissions in sintering process

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Pu; Yang, Jingling

    2018-02-01

    By using the sinter cup experiment, the effects of different coke ratios of 0%, 25%, 50%, 75%, and 100% on the formation and total emissions of SO2 and NOx in the sintering process were studied with the Testo350 flue gas analyzer. The experimental results show that the emissions of SO2 and NOx are closely related to sintering process. With the increase of the coke proportion, the sintering temperature changes and the maximum peak time appears earlier. SO2 concentration has a bimodal distribution and NOx concentration has a triple peak. Besides, the both maximum peaks appear at the end of sintering. In addition, due to the increasing of the S and N contents in the fuel with the coke ratios from 0% to 100%, the amounts of SO2 and NOx emissions are raised respectively at 10.82 mg, 11.42 mg, 13.84 mg, 13.69 mg, 20.36 mg and 3.11 mg, 3.39 mg, 4.44 mg, 4.31 mg, 6.16 mg.

  7. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    PubMed

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.

  8. Synthesis and Characterization of Cu- and Co-Doped Bi4V2O11 for Intermediate-Temperature Solid Oxide Fuel Cell Electrolytes by Carbonate Coprecipitation

    NASA Astrophysics Data System (ADS)

    Lee, Jin Goo; Yoon, Hyon Hee

    2011-01-01

    Bi2MexV1-xO5.5-3x/2 (Me = Cu; 0≤x≤0.2) powders were prepared by the ammonium carbonate coprecipitation method. The starting salts were bismuth nitrate, copper nitrate, cobalt nitrate, and vanadium sulphate. The thermal decomposition of Bi2MexV1-xO5.5-3x/2 precursors was completed at about 500 °C. The crystallite structure, surface morphology, and ionic conductivity of the prepared powders and pellets were examined using X-ray diffractometry, field emission scanning electron microscopy, and an impedance analyzer, respectively. The average particle sizes of the Bi2Cu0.1V0.9O5.35 and Bi2Co0.1V0.9O5.35 powders were 10-50 nm. The tetragonal structure (γ-phase) appeared at sintering temperatures higher than 700 °C and the peak intensity increased at higher sintering temperatures. The ionic conductivities of the Bi2Cu0.1V0.9O5.35 and Bi2Co0.1V0.9O5.35 pellets sintered at 800 °C showed the highest values of 6.8×10-2 S cm-1 at 700 °C and 9.1×10-2 S cm-1 at 700 °C, respectively. The optimum concentration of the Cu and Co dopants in Bi2MexV1-xO5.5-3x/2 was determined to be 0.1. The results of this study demonstrated that the ammonium carbonate coprecipitation process could be used as an economical method for the preparation of Bi2MexV1-xO5.5-3x/2 electrolytes for intermediate-temperature solid oxide fuel cells.

  9. Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods.

    PubMed

    Curran, Declan J; Fleming, Thomas J; Towler, Mark R; Hampshire, Stuart

    2011-11-01

    The effects of ion substitution in hydroxyapatite (HA) on crystal structure and lattice stability is investigated in the green state and post sintering. The effects of ion incorporation on the biaxial flexural strength and hardness are also investigated. Sintering is carried out at 1200 °C using comparative conventional and microwave regimes. Post sintering, the effects of ion incorporation manifest as an increase in the lattice d-spacings and a reduction of the crystallite size. Some HA decomposition occurs with β-TCP stabilisation in conventional sintering (CS), but this phase is destabilised during microwave sintering (MS), generating α-TCP. Conventional sintering (CS) allows higher densification in the undoped samples. Overall, for the Sr-doped compositions, the MS samples retain higher amounts of HA and experience higher density levels compared to the CS samples. Published by Elsevier Ltd.

  10. Study of sintering behavior of vapor forms of 1-octanethiol coated copper nanoparticles for application to ink-jet printing technology.

    PubMed

    Kwon, Jinhyeong; Park, Shinyoung; Haque, Md Mominul; Kim, Young-Seok; Lee, Caroline Sunyong

    2012-04-01

    Sub-50 nm copper nanoparticles coated with sub-5 nm 1-octanethiol layer for oxidation inhibition were examined to confirm the 1-octanethiol removal temperature as the sub-50 nm copper nanoparticles are sintered. As a result, 1-octanethiol Self-Assembled Multi-layers (SAMs) on sub-50 nm copper nanoparticles were successfully removed before sintering of copper nanoparticles so that a high density of copper line could be obtained. Finally, the line resistivity was measured and compared to verify the effect of sintering in different atmospheres. As a result, electrical resistivity of the copper pattern sintered in hydrogen atmosphere was measured at 6.96 x 10(-6) ohm-cm whereas that of the copper pattern sintered in mixed gas atmosphere was measured at 2.62 x 10(-5) ohm-cm. Thus, sintering of copper patterns was successfully done to show low electrical resistivity values. Moreover, removal of 1-octanethiol coating after sintering process was confirmed using X-ray photoelectron spectroscopy (XPS) analysis. By showing no sulfur content, XPS results indicate that 1-octanethiol is completely removed. Therefore, the vapor form of 1-octanethiol coating layers can be safely used as an oxidation inhibition layer for low temperature sintering processes and ink-jet applications.

  11. Vacuum Pressureless Sintering of Ti-6Al-4V Alloy with Full Densification and Forged-Like Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Ce; Lu, Boxin; Wang, Haiying; Guo, Zhimeng; Paley, Vladislav; Volinsky, Alex A.

    2018-01-01

    Ti-6Al-4V ingots with a nearly 100% density, fine and homogeneous basket-weave microstructure, and better comprehensive mechanical properties (UTS = 935 MPa, Y.S. = 865 MPa, El. = 15.8%), have been manufactured by vacuum pressureless sintering of blended elemental powders. Coarse TiH2 powder, Al powder (2, 20 μm), V powder, and Al-V master alloy powder were used as raw materials to produce different powder mixtures ( D 50 = 10 μm). Then, the compacts made by cold isostatic pressing were consolidated by different sintering curves. A detailed investigation of different as-sintered samples revealed that a higher density can be obtained by generating transient molten Al in the sintering process. Coarse Al powder and a rapid heating rate under the melting point of Al contribute to molten Al formation. The presence of temporary liquid phase changes the sintering mechanism, accelerating the sintering neck formation, improving sinterability of the powder mixtures. Density of 99.5% was achieved at 1150 °C, which is markedly lower than the sintering temperatures reported for conventional blended elemental powder metallurgy routes. In addition, low interstitial content, especially for oxygen (0.17 wt.%), is obtained by strict process control.

  12. Preparation of Porous Stainless Steel Hollow-Fibers through Multi-Modal Particle Size Sintering towards Pore Engineering

    PubMed Central

    Allioux, Francois-Marie; Etxeberria Benavides, Miren

    2017-01-01

    The sintering of metal powders is an efficient and versatile technique to fabricate porous metal elements such as filters, diffusers, and membranes. Neck formation between particles is, however, critical to tune the porosity and optimize mass transfer in order to minimize the densification process. In this work, macro-porous stainless steel (SS) hollow-fibers (HFs) were fabricated by the extrusion and sintering of a dope comprised, for the first time, of a bimodal mixture of SS powders. The SS particles of different sizes and shapes were mixed to increase the neck formation between the particles and control the densification process of the structure during sintering. The sintered HFs from particles of two different sizes were shown to be more mechanically stable at lower sintering temperature due to the increased neck area of the small particles sintered to the large ones. In addition, the sintered HFs made from particles of 10 and 44 μm showed a smaller average pore size (<1 μm) as compared to the micron-size pores of sintered HFs made from particles of 10 μm only and those of 10 and 20 μm. The novel HFs could be used in a range of applications, from filtration modules to electrochemical membrane reactors. PMID:28777352

  13. Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials

    NASA Astrophysics Data System (ADS)

    De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge

    2007-08-01

    Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.

  14. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  15. Method of preparing a sintered lithium aluminate structure for containing electrolyte

    DOEpatents

    Sim, James W.; Kinoshita, Kimio

    1981-01-01

    A porous sintered tile is formed of lithium aluminate for retaining molten lectrolyte within a fuel cell. The tile is prepared by reacting lithium hydroxide in aqueous solution with alumina particles to form beta lithium aluminate particles. The slurry is evaporated to dryness and the solids dehydrated to form a beta lithium aluminate powder. The powder is compacted into the desired shape and sintered at a temperature in excess of 1200 K. but less than 1900 K. to form a porous integral structure that is subsequently filled with molten electrolyte. A tile of this type is intended for use in containing molten alkali metal carbonates as electolyte for use in a fuel cell having porous metal or metal oxide electrodes for burning a fuel gas such as hydrogen and/or carbon monoxide with an oxidant gas containing oxygen.

  16. Silver Oxalate Ink with Low Sintering Temperature and Good Electrical Property

    NASA Astrophysics Data System (ADS)

    Yang, Wendong; Wang, Changhai; Arrighi, Valeria

    2018-02-01

    Favorable conductivity at low temperature is desirable for flexible electronics technology, where formulation of a suitable ink material is very critical. In this paper, a type of silver organic decomposable ink (10 wt.% silver content) was formulated by using as-prepared silver oxalate and butylamine, producing silver films with good uniformity and conductivity on a polyimide substrate after sintering below 130°C (15.72 μΩ cm) and even at 100°C (36.29 μΩ cm). Silver oxalate powder with good properties and an appropriate solid amine complex with lower decomposition temperature were synthesized, both differing from those reported in the literature. The influence of the factors on the electrical properties of the produced silver films such as sintering temperature and time was studied in detail and the relationship between them was demonstrated.

  17. Electrical and dielectric properties of ZnO and CeO{sub 2} doped ZrTi{sub 2}O{sub 6} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Aneesh; Thomas, Jijimon K.; John, Annamma

    2014-01-28

    Zirconium oxide (ZrO{sub 2}) and titanium dioxide (TiO{sub 2}) are the important catalyst supports, since it has acidic and basic properties. The intermediate phase zirconium titanate ZrTi{sub 2}O{sub 6}, which is a solid solution with Zr:Ti ratio 1:2 has outstanding dielectric properties. The effects of doping of ZnO and CeO{sub 2} on the dielectric and electrical properties of ZrTi{sub 2}O{sub 6} ceramic are investigated. On adding 0.5 wt% ZnO, the dielectric constant is increased but, on adding CeO{sub 2}, the dielectric constant is decreased. The bulk density of pure sample sintered at 1530 °C is 91% of theoretical density whilemore » that of the doped samples sintered at 1450 °C is more than 94% of theoretical density. Scanning electron micrographs reveal that the samples are well sintered with minimum porosity. The semicircle behavior in the Cole-Cole plots at room temperature reveals that the samples are good ionic conductor. The induced impedance is reduced for doped samples and this can be used as a material for electrolyte in Solid Oxide Fuel Cell.« less

  18. Selective laser sintering: A qualitative and objective approach

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay

    2003-10-01

    This article presents an overview of selective laser sintering (SLS) work as reported in various journals and proceedings. Selective laser sintering was first done mainly on polymers and nylon to create prototypes for audio-visual help and fit-to-form tests. Gradually it was expanded to include metals and alloys to manufacture functional prototypes and develop rapid tooling. The growth gained momentum with the entry of commercial entities such as DTM Corporation and EOS GmbH Electro Optical Systems. Computational modeling has been used to understand the SLS process, optimize the process parameters, and enhance the efficiency of the sintering machine.

  19. 3D Printed Surgical Instruments: The Design and Fabrication Process.

    PubMed

    George, Mitchell; Aroom, Kevin R; Hawes, Harvey G; Gill, Brijesh S; Love, Joseph

    2017-01-01

    3D printing is an additive manufacturing process allowing the creation of solid objects directly from a digital file. We believe recent advances in additive manufacturing may be applicable to surgical instrument design. This study investigates the feasibility, design and fabrication process of usable 3D printed surgical instruments. The computer-aided design package SolidWorks (Dassault Systemes SolidWorks Corp., Waltham MA) was used to design a surgical set including hemostats, needle driver, scalpel handle, retractors and forceps. These designs were then printed on a selective laser sintering (SLS) Sinterstation HiQ (3D Systems, Rock Hill SC) using DuraForm EX plastic. The final printed products were evaluated by practicing general surgeons for ergonomic functionality and performance, this included simulated surgery and inguinal hernia repairs on human cadavers. Improvements were identified and addressed by adjusting design and build metrics. Repeated manufacturing processes and redesigns led to the creation of multiple functional and fully reproducible surgical sets utilizing the user feedback of surgeons. Iterative cycles including design, production and testing took an average of 3 days. Each surgical set was built using the SLS Sinterstation HiQ with an average build time of 6 h per set. Functional 3D printed surgical instruments are feasible. Advantages compared to traditional manufacturing methods include no increase in cost for increased complexity, accelerated design to production times and surgeon specific modifications.

  20. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  1. Factors Influencing Residual Stresses in Yttria Stabilized Zirconia Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    McGrann, Roy T. R.; Rybicki, Edmund F.; Shadley, John R.; Brindley, William J.

    1997-01-01

    To improve gas turbine and diesel engine performance using thermal barrier coatings (TBC's) requires an understanding of the factors that influence the in-service behavior of thermal barrier coatings. One of the many factors related to coating performance is the state of stress in the coating. The total stress state is composed of the stresses due to the in-service loading history and the residual stresses. Residual stresses have been shown to affect TBC life, the bond strength of thermal spray coatings, and the fatigue life of tungsten carbide coatings. Residual stresses are first introduced in TBC's by the spraying process due to elevated temperatures during processing and the difference in coefficients of thermal expansion of the top coat, bond coat, and substrate. Later, the residual stresses can be changed by the in-service temperature history due to a number of time and temperature dependent mechanisms, such as oxidation, creep, and sintering. Silica content has also been shown to affect sintering and the cyclic life of thermal barrier coatings. Thus, it is important to understand how the spraying process, the in-service thermal cycles, and the silica content can create and alter residual stresses in thermal barrier coatings.

  2. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    NASA Astrophysics Data System (ADS)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing without surface machining.

  3. Characteristics of iron ore sinter with EFB addition

    NASA Astrophysics Data System (ADS)

    Purwanto, H.; Rozhan, A. N.; Mohamad, A. S.; Zakiyuddin, A.

    2018-04-01

    Utilization of EFB-derived biochar in sintering of iron ore has been conducted in this work with regards to the porosity of iron sinter. EFB has been heated up in argon atmosphere to 450°C in order to produce biochar. In the present work, the sintering process was conducted at 1150°C with variations of biochar content from 5% to 10%. In this case, the apparent density for iron sinter shows significant decrease as the biochar addition increase. The porosity of iron sinter showed a gradual increment from 5% to 7.5% and escalated at 10% biochar content. The results of porosity and apparent density were in line with the micrograph of iron sinter.

  4. Improved electrochemical performances of LiSn2(PO4)3 anode material for lithium-ion battery prepared by solid-state method

    NASA Astrophysics Data System (ADS)

    Naren; Tian, Jianhua; Wang, Dongdong; Shan, Zhongqiang

    2017-09-01

    The rhombohedral LiSn2(PO4)3 was prepared by solid-state method for the anode material of lithium-ion battery. The effect of pH value of hydrothermal reaction system on the morphology of SnO2 as the precursor of LiSn2(PO4)3 and the influence of heat-treatment procedure and conditions, such as the sintering temperature and time, on the property of LiSn2(PO4)3 were investigated. The purity, morphology, structure and size distribution of prepared LiSn2(PO4)3 were characterized respectively by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) methods. The results demonstrate that the as-prepared LiSn2(PO4)3 particles exhibit rhombohedral single-crystal structure with an average particle size of 200 nm. The electrochemical measurement results reveal that the as-prepared LiSn2(PO4)3/C electrode exhibits the improved cycling stability and reversibility with a reversible discharge capacity of 448.6 mA h g-1 at 100 mA g-1 and better rate capability of 332.6 mA h g-1 at 500 mA g-1. The charge-discharge mechanism of LiSn2(PO4)3/C electrode was also investigated. According to the test results of cyclic voltammetry, the electrode process includes not only the intercalation and deintercalation of lithium ions in the LiSn2(PO4)3 particles, but also the surface pseudo-capacitive effect.

  5. Temperature Field Simulation of Powder Sintering Process with ANSYS

    NASA Astrophysics Data System (ADS)

    He, Hongxiu; Wang, Jun; Li, Shuting; Chen, Zhilong; Sun, Jinfeng; You, Ying

    2018-03-01

    Aiming at the “spheroidization phenomenon” in the laser sintering of metal powder and other quality problems of the forming parts due to the thermal effect, the finite element model of the three-dimensional transient metal powder was established by using the atomized iron powder as the research object. The simulation of the mobile heat source was realized by means of parametric design. The distribution of the temperature field during the sintering process under different laser power and different spot sizes was simulated by ANSYS software under the condition of fully considering the influence of heat conduction, thermal convection, thermal radiation and thermophysical parameters. The influence of these factors on the actual sintering process was also analyzed, which provides an effective way for forming quality control.

  6. Numerical study of the process parameters in spark plasma sintering (sps)

    NASA Astrophysics Data System (ADS)

    Chowdhury, Redwan Jahid

    Spark plasma sintering (SPS) is one of the most widely used sintering techniques that utilizes pulsed direct current together with uniaxial pressure to consolidate a wide variety of materials. The unique mechanisms of SPS enable it to sinter powder compacts at a lower temperature and in a shorter time than the conventional hot pressing, hot isostatic pressing and vacuum sintering process. One of the limitations of SPS is the presence of temperature gradients inside the sample, which could result in non-uniform physical and microstructural properties. Detailed study of the temperature and current distributions inside the sintered sample is necessary to minimize the temperature gradients and achieve desired properties. In the present study, a coupled thermal-electric model was developed using finite element codes in ABAQUS software to investigate the temperature and current distributions inside the conductive and non-conductive samples. An integrated experimental-numerical methodology was implemented to determine the system contact resistances accurately. The developed sintering model was validated by a series of experiments, which showed good agreements with simulation results. The temperature distribution inside the sample depends on some process parameters such as sample and tool geometry, punch and die position, applied current and thermal insulation around the die. The role of these parameters on sample temperature distribution was systematically analyzed. The findings of this research could prove very useful for the reliable production of large size sintered samples with controlled and tailored properties.

  7. Effect of Alloying Type and Lean Sintering Atmosphere on the Performance of PM Components

    NASA Astrophysics Data System (ADS)

    Sundaram, M. Vattur; Shvab, R.; Millot, S.; Hryha, E.; Nyborg, L.

    2017-12-01

    In order to be cost effective and to meet increasing performance demands, powder metallurgy steel components require continuous improvement in terms of materials and process development. This study demonstrates the feasibility of manufacturing structural components using two different alloys systems, i.e. lean Cr-prealloyed and diffusion bonded water atomised powders with different processing conditions. The components were sintered at two different temperatures, i.e. 1120 and 1250 °C for 30 minutes in three different atmospheres: vacuum, N2- 10%H2 atmosphere as well as lean N2-5%H2-0.5%CO-(0.1-0.4)%CH4 sintering atmosphere. Components after sintering were further processed by either low pressure carburizing, sinterhardening or case hardening. All trials were performed in the industrial furnaces to simulate the actual production of the components. Microstructure, fractography, apparent and micro hardness analyses were performed close to the surface and in the middle of the sample to characterize the degree of sintering (temperature and atmosphere) and the effect of heat treatment. In all cases, components possess mostly martensitic microstructure with a few bainitic regions. The fracture surface shows well developed sinter necks. Inter- and trans-granular ductile and cleavage fracture modes are dominant and their fraction is determined by the alloy and processing route.

  8. A comparative study on NbOx films reactively sputtered from sintered and cold gas sprayed targets

    NASA Astrophysics Data System (ADS)

    Lorenz, Roland; O'Sullivan, Michael; Fian, Alexander; Sprenger, Dietmar; Lang, Bernhard; Mitterer, Christian

    2018-04-01

    The aim of this work is to evaluate novel cold gas sprayed Nb targets in a reactive sputter deposition process of thin films with respect to the widely used sintered Nb targets. With the exception of a higher target discharge voltage of ∼100 V for the cold gas sprayed targets and the thus higher film growth rate compared to sintered targets, NbOx films with comparable microstructure and properties were obtained for both target variants. The amorphous films with thicknesses between 2.9 and 4.9 μm present an optical shift from dark and non-transparent towards transparent properties, as the oxygen partial pressure increases. X-ray photoelectron spectroscopy confirms the occurrence of the Nb5+ oxidation state for the highest oxygen partial pressure, while Nb4+ is additionally present at lower oxygen partial pressure settings. With a maximal transparency of ∼80% and a refractive index of ∼2.5, the transparent films show characteristics similar to Nb2O5.

  9. Consolidation & Factors Influencing Sintering Process in Polymer Powder Based Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Sagar, M. B.; Elangovan, K.

    2017-08-01

    Additive Manufacturing (AM) is two decade old technology; where parts are build layer manufacturing method directly from a CAD template. Over the years, AM techniques changes the future way of part fabrication with enhanced intricacy and custom-made features are aimed. Commercially polymers, metals, ceramic and metal-polymer composites are in practice where polymers enhanced the expectations in AM and are considered as a kind of next industrial revolution. Growing trend in polymer application motivated to study their feasibility and properties. Laser sintering, Heat sintering and Inhibition sintering are the most successful AM techniques for polymers but having least application. The presentation gives up selective sintering of powder polymers and listed commercially available polymer materials. Important significant factors for effective processing and analytical approaches to access them are discussed.

  10. Quality prediction modeling for sintered ores based on mechanism models of sintering and extreme learning machine based error compensation

    NASA Astrophysics Data System (ADS)

    Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang

    2018-06-01

    Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.

  11. Processing, characterization, and in vitro/in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys.

    PubMed

    Bottino, Marco C; Coelho, Paulo G; Henriques, Vinicius A R; Higa, Olga Z; Bressiani, Ana H A; Bressiani, José C

    2009-03-01

    This article presents details of processing, characterization and in vitro as well as in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr samples with different levels of porosity. Sintered samples were characterized for density, crystalline phases (XRD), and microstructure (SEM and EDX). Samples sintered at 1000 degrees C showed the highest porosity level ( approximately 30%), featuring open and interconnected pores ranging from 50 to 100 mum in diameter but incomplete densification. In contrast, samples sintered at 1300 and 1500 degrees C demonstrated high densification with 10% porosity level distributed in a homogeneous microstructure. The different sintering conditions used in this study demonstrated a coherent trend that is increase in temperature lead to higher sample densification, even though densification represents a drawback for bone ingrowth. Cytotoxicity tests did not reveal any toxic effects of the starting and processed materials on surviving cell percentage. After an 8-week healing period in rabbit tibias, the implants were retrieved, processed for nondecalcified histological evaluation, and then assessed by backscattered electron images (BSEI-SEM) and EDX. Bone growth into the microstructure was observed only in samples sintered at 1000 degrees C. Overall, a close relation between newly formed bone and all processed samples was observed. (c) 2008 Wiley Periodicals, Inc.

  12. Modified PZT ceramics as a material that can be used in micromechatronics

    NASA Astrophysics Data System (ADS)

    Zachariasz, Radosław; Bochenek, Dariusz

    2015-11-01

    Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.

  13. Thermoelectric Properties of Pulsed Electric Current Sintered Samples of AgPb m SbSe17 ( m = 16 or 17)

    NASA Astrophysics Data System (ADS)

    Wu, Chun-I.; Todorov, Ilyia; Kanatzidis, Mercouri G.; Timm, Edward; Case, Eldon D.; Schock, Harold; Hogan, Timothy P.

    2012-06-01

    Lead chalcogenide materials have drawn attention in recent years because of their outstanding thermoelectric properties. Bulk n-type materials of AgPb m SbTe2+ m have been reported to exhibit high figure of merit, ZT, as high as 1.7 at 700 K. Recent reports have shown p-type lead selenide-based compounds with comparable ZT. The analogous material AgPb m SbSe17 shares a similar cubic rock-salt structure with PbTe-based compounds; however, it exhibits a higher melting point, and selenium is more abundant than tellurium. Using solid solution chemistry, we have fabricated cast AgPb15SbSe17 samples that show a peak power factor of approximately 17 μW/cm K2 at 450 K. Increasing the strength of such materials is commonly achieved through powder processing, which also helps to homogenize the source materials. Pulsed electric current sintering (PECS) is a hot-pressing technique that utilizes electric current through the die and sample for direct Joule heating during pressing. The mechanisms present during PECS processing have captured significant research interest and have led to some notable improvements in sample properties compared with other densification techniques. We report the thermoelectric properties of PECS samples of AgPb m SbSe17 along with sample fabrication and processing details.

  14. Arsenic speciation in sinter mineralization from a hydrothermal channel of El Tatio geothermal field, Chile

    NASA Astrophysics Data System (ADS)

    Alsina, Marco A.; Zanella, Luciana; Hoel, Cathleen; Pizarro, Gonzalo E.; Gaillard, Jean-François; Pasten, Pablo A.

    2014-10-01

    El Tatio geothermal field is the principal natural source of arsenic for the Loa River, the main surface water resource in the hyper-arid Atacama Desert (Antofagasta Region, Northern Chile). Prior investigations by bulk X-ray absorption spectroscopy have identified hydrous ferric oxides as the principal arsenic-containing phase in sinter material from El Tatio, suggesting sorption as the main mechanism for arsenic scavenging by the solid phases of these hot spring environments. Here we examine siliceous sinter material sampled from a hydrothermal channel using synchrotron based X-ray micro-probe techniques, including As and Fe Kα X-ray fluorescence (μ-XRF), As K-edge X-ray absorption near edge structure (μ-XANES), and X-ray diffraction (μ-XRD). Least-squares linear fitting of μ-XANES spectra shows that arsenic is predominantly present as arsenate sorbed on hydrous ferric oxides (63% molar proportion), but we also identify nodular arsenide micro-mineralizations (37% molar proportion) similar to loellingite (FeAs2), not previously detected during bulk-scale analysis of the sinter material. Presence of arsenide mineralizations indicates development of anoxic environments on the surface of the siliceous sinter, and suggests a more complex biogeochemistry for arsenic than previously observed for circum-neutral pH brine hot spring environments.

  15. Effects of Primary Processing Techniques and Significance of Hall-Petch Strengthening on the Mechanical Response of Magnesium Matrix Composites Containing TiO2 Nanoparticulates

    PubMed Central

    Meenashisundaram, Ganesh Kumar; Nai, Mui Hoon; Gupta, Manoj

    2015-01-01

    In the present study, Mg (1.98 and 2.5) vol % TiO2 nanocomposites are primarily synthesized utilizing solid-phase blend-press-sinter powder metallurgy (PM) technique and liquid-phase disintegrated melt deposition technique (DMD) followed by hot extrusion. Microstructural characterization of the synthesized Mg-TiO2 nanocomposites indicated significant grain refinement with DMD synthesized Mg nanocomposites exhibiting as high as ~47% for 2.5 vol % TiO2 NPs addition. X-ray diffraction studies indicated that texture randomization of pure Mg depends not only on the critical amount of TiO2 NPs added to the Mg matrix but also on the adopted synthesis methodology. Irrespective of the processing technique, theoretically predicted tensile yield strength of Mg-TiO2 nanocomposites was found to be primarily governed by Hall-Petch mechanism. Among the synthesized Mg materials, solid-phase synthesized Mg 1.98 vol % TiO2 nanocomposite exhibited a maximum tensile fracture strain of ~14.5%. Further, the liquid-phase synthesized Mg-TiO2 nanocomposites exhibited higher tensile and compression properties than those primarily processed by solid-phase synthesis. The tensile-compression asymmetry values of the synthesized Mg-TiO2 nanocomposite was found to be lower than that of pure Mg with solid-phase synthesized Mg 1.98 vol % TiO2 nanocomposite exhibiting as low as 1.06. PMID:28347063

  16. Effects of particle packing on the sintered microstructure

    NASA Astrophysics Data System (ADS)

    Barringer, E. A.; Bowen, H. K.

    1988-04-01

    The sintering process is shown to be critically dependent on particle-packing density and porosity uniformity. Sintering experiments were conducted on compacts consisting of monodisperse, spherical TiO2 particles. Densification kinetics and microstructure evolution for two initial packing densities, 55% and 69% of theoretical, were investigated. The lower-density compacts sintered rapidly to theoretical density, yet improved particle-packing density and uniformity significantly enhanced densification.

  17. Concentrated solar energy used for sintering magnesium titanates for electronic applications

    NASA Astrophysics Data System (ADS)

    Apostol, Irina; Rodríguez, Jose; Cañadas, Inmaculada; Galindo, Jose; Mendez, Senen Lanceros; de Abreu Martins, Pedro Libȃnio; Cunha, Luis; Saravanan, Kandasamy Venkata

    2018-04-01

    Solar energy is an important renewable source of energy with many advantages: it is unlimited, clean and free. The main objective of this work was to sinter magnesium titanate ceramics in a solar furnace using concentrated solar energy, which is a novel and original process. The direct conversion of solar power into high temperature makes this process simple, feasible and ecologically viable/environmentally sustainable. We performed the solar sintering experiments at Plataforma Solar de Almeria-CIEMAT, Spain. This process takes place in a vertical axis solar furnace (SF5-5 kW) hosting a mobile flat mirror heliostat, a fixed parabolic mirror concentrator, an attenuator and a test table the concentrator focus. We sintered (MgO)0.63(TiO2)0.37, (MgO)0.49(TiO2)0.51, (MgO)0.50(TiO2)0.50 ceramics samples in air at about 1100 °C for a duration of 16 min, 1 h, 2 h and 3 h in the solar furnace. The MgO/TiO2 ratio and the dwell time was varied in order to obtain phase pure MgTiO3 ceramic. We obtained a pure MgTiO3 geikielite phase by solar sintering of (MgO)0.63(TiO2)0.37 samples at 1100 °C (16 min-3 h). Samples of (MgO)0.63(TiO2)0.37, solar sintered at 1100 °C for 3 h, resulted in well-sintered, non-porous samples with good density (3.46 g/cm3). The sintered samples were analyzed by XRD for phase determination. The grain and surface morphology was observed using SEM. Electrical measurements were carried out on solar sintered samples. The effect of processing parameters on microstructure and dielectric properties were investigated and is presented.

  18. Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.

    PubMed

    Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X

    2008-07-01

    An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  19. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less

  20. [Influence on microstructure of dental zirconia ceramics prepared by two-step sintering].

    PubMed

    Jian, Chao; Li, Ning; Wu, Zhikai; Teng, Jing; Yan, Jiazhen

    2013-10-01

    To investigate the microstructure of dental zirconia ceramics prepared by two-step sintering. Nanostructured zirconia powder was dry compacted, cold isostatic pressed, and pre-sintered. The pre-sintered discs were cut processed into samples. Conventional sintering, single-step sintering, and two-step sintering were carried out, and density and grain size of the samples were measured. Afterward, T1 and/or T2 of two-step sintering ranges were measured. Effects on microstructure of different routes, which consisted of two-step sintering and conventional sintering were discussed. The influence of T1 and/or T2 on density and grain size were analyzed as well. The range of T1 was between 1450 degrees C and 1550 degrees C, and the range of T2 was between 1250 degrees C and 1350 degrees C. Compared with conventional sintering, finer microstructure of higher density and smaller grain could be obtained by two-step sintering. Grain growth was dependent on T1, whereas density was not much related with T1. However, density was dependent on T2, and grain size was minimally influenced. Two-step sintering could ensure a sintering body with high density and small grain, which is good for optimizing the microstructure of dental zirconia ceramics.

Top