Sample records for solid-state terahertz phase

  1. Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor.

    PubMed

    Nickel, Daniel V; Ruggiero, Michael T; Korter, Timothy M; Mittleman, Daniel M

    2015-03-14

    The temperature-dependent terahertz spectra of the partially-disordered and ordered phases of camphor (C10H16O) are measured using terahertz time-domain spectroscopy. In its partially-disordered phases, a low-intensity, extremely broad resonance is found and is characterized using both a phenomenological approach and an approach based on ab initio solid-state DFT simulations. These two descriptions are consistent and stem from the same molecular origin for the broad resonance: the disorder-localized rotational correlations of the camphor molecules. In its completely ordered phase(s), multiple lattice phonon modes are measured and are found to be consistent with those predicted using solid-state DFT simulations.

  2. Intense Plasma Waveguide Terahertz Sources for High-Field THz Probe Science with Ultrafast Lasers for Solid State Physics

    DTIC Science & Technology

    2016-08-25

    AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a.  CONTRACT NUMBER 5b.  GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose

  3. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    NASA Astrophysics Data System (ADS)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  4. Terahertz vibrational modes of the rigid crystal phase of succinonitrile.

    PubMed

    Nickel, Daniel V; Delaney, Sean P; Bian, Hongtao; Zheng, Junrong; Korter, Timothy M; Mittleman, Daniel M

    2014-04-03

    Succinonitrile (N ≡ C-CH2-CH2-C ≡ N), an orientationally disordered molecular plastic crystal at room temperature, exhibits rich phase behavior including a solid-solid phase transition at 238 K. In cooling through this phase transition, the high-temperature rotational disorder of the plastic crystal phase is frozen out, forming a rigid crystal that is both spatially and orientationally ordered. Using temperature-dependent terahertz time-domain spectroscopy, we characterize the vibrational modes of this low-temperature crystalline phase for frequencies from 0.3 to 2.7 THz and temperatures ranging from 20 to 220 K. Vibrational modes are observed at 1.122 and 2.33 THz at 90 K. These modes are assigned by solid-state density functional theory simulations, corresponding respectively to the translation and rotation of the molecules along and about their crystallographic c-axis. In addition, we observe a suppression of the phonon modes as the concentration of dopants, in this case a lithium salt (LiTFSI), increases, indicating the importance of doping-induced disorder in these ionic conductors.

  5. Terahertz spectroscopy and computational investigation of the flufenamic acid/nicotinamide cocrystal.

    PubMed

    Delaney, Sean P; Korter, Timothy M

    2015-04-02

    Terahertz spectroscopy probes the low-frequency vibrations that are sensitive to both the intermolecular and intramolecular interactions of molecules in the solid state. Thus, terahertz spectroscopy can be a useful tool in the investigation of crystalline pharmaceutical compounds, where slight changes in the packing arrangement can modify the overall effectiveness of a drug formulation. This is especially true for cases of polymorphic systems, hydrates/solvates, and cocrystals. In this work, the cocrystal of flufenamic acid with nicotinamide was investigated using terahertz spectroscopy and solid-state density functional theory. The solid-state simulations enable understanding of the low-frequency vibrations seen in the terahertz spectra, while also providing insight into the energetics involved in the formation of the cocrystal. The comparison of the cocrystal to the pure forms of the molecular components reveals that the cocrystal has better overall binding energy, driven by increased intermolecular hydrogen bond strength and greater London dispersion forces and that the trifluoromethyl torsional potential is significantly different between the studied solids.

  6. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.

    2014-02-01

    Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense light pulses in the terahertz spectral range have opened fascinating vistas. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm-1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.

  7. Cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride and assignment using solid-state density functional theory.

    PubMed

    Hakey, Patrick M; Allis, Damian G; Ouellette, Wayne; Korter, Timothy M

    2009-04-30

    The cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride from 10.0 to 100.0 cm(-1) is presented, as is the complete structural analysis and vibrational assignment of the compound using solid-state density functional theory. This cryogenic investigation reveals multiple spectral features that were not previously reported in room-temperature terahertz studies of the title compound. Modeling of the compound employed eight density functionals utilizing both solid-state and isolated-molecule methods. The results clearly indicate the necessity of solid-state simulations for the accurate assignment of solid-state THz spectra. Assignment of the observed spectral features to specific atomic motions is based on the BP density functional, which provided the best-fit solid-state simulation of the experimental spectrum. The seven experimental spectral features are the result of thirteen infrared-active vibrational modes predicted at a BP/DNP level of theory with more than 90% of the total spectral intensity associated with external crystal vibrations.

  8. The solid-state terahertz spectrum of MDMA (Ecstasy) - A unique test for molecular modeling assignments

    NASA Astrophysics Data System (ADS)

    Allis, Damian G.; Hakey, Patrick M.; Korter, Timothy M.

    2008-10-01

    The terahertz (THz, far-infrared) spectrum of 3,4-methylene-dioxymethamphetamine hydrochloride (Ecstasy) is simulated using solid-state density functional theory. While a previously reported isolated-molecule calculation is noteworthy for the precision of its solid-state THz reproduction, the solid-state calculation predicts that the isolated-molecule modes account for only half of the spectral features in the THz region, with the remaining structure arising from lattice vibrations that cannot be predicted without solid-state molecular modeling. The molecular origins of the internal mode contributions to the solid-state THz spectrum, as well as the proper consideration of the protonation state of the molecule, are also considered.

  9. Terahertz control of nanotip photoemission

    NASA Astrophysics Data System (ADS)

    Wimmer, L.; Herink, G.; Solli, D. R.; Yalunin, S. V.; Echternkamp, K. E.; Ropers, C.

    2014-06-01

    The active control of matter by strong electromagnetic fields is of growing importance, with applications all across the optical spectrum from the extreme-ultraviolet to the far-infrared. In recent years, phase-stable terahertz fields have shown tremendous potential for observing and manipulating elementary excitations in solids. In the gas phase, on the other hand, driving free charges with terahertz transients provides insight into ultrafast ionization dynamics. Developing such approaches for locally enhanced terahertz fields in nanostructures will create new means to govern electron currents on the nanoscale. Here, we use single-cycle terahertz transients to demonstrate extensive control over nanotip photoelectron emission. The terahertz near-field is shown to either enhance or suppress photocurrents, with the tip acting as an ultrafast rectifying diode. We record phase-resolved sub-cycle dynamics and find spectral compression and expansion arising from electron propagation within the terahertz near-field. These interactions produce rich spectro-temporal features and offer unprecedented control over ultrashort free electron pulses for imaging and diffraction.

  10. Solid-state modeling of the terahertz spectrum of the high explosive HMX.

    PubMed

    Allis, Damian G; Prokhorova, Darya A; Korter, Timothy M

    2006-02-09

    The experimental solid-state terahertz (THz) spectrum (3-120 cm(-1)) of the beta-crystal form of the high explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been analyzed using solid-state density functional theory calculations. Various density functionals (both generalized gradient approximation and local density approximation) are compared in terms of their abilities to reproduce the experimentally observed solid-state structure and low-frequency vibrational motions. Good-to-excellent agreement between solid-state theory and experiment can be achieved in the THz region where isolated-molecule calculations fail to reproduce the observed spectral features, demonstrating a clear limitation of using isolated-molecule calculations for the assignment of THz frequency motions in molecular solids. The deficiency of isolated-molecule calculations is traced to modification of the molecular structure in the solid state through crystal packing effects and the formation of weak C-H...O hydrogen bonds.

  11. A versatile and reconfigurable setup for all-terahertz time-resolved pump-probe spectroscopy.

    PubMed

    Elezzabi, A Y; Maraghechi, P

    2012-05-01

    A versatile optical setup for all-terahertz (THz) time resolved pump-probe spectroscopy was designed and tested. By utilizing a dual THz pulse generator emitter module, independent and synchronized THz radiation pump and probe pulses were produced, thus eliminating the need for THz beam splitters and the limitations associated with their implementation. The current THz setup allows for precise control of the electric fields splitting ratio between the THz radiation pump and probe pulses, as well as in-phase, out-of-phase, and polarization dependent pump-probe spectroscopy. Since the present THz pump-probe setup does not require specialized THz radiation optical components, such as phase shifters, polarization rotators, or wide bandwidth beam splitters, it can be easily implemented with minimal alterations to a conventional THz time domain spectroscopy system. The present setup is valuable for studying the time dynamics of THz coherent phenomena in solid-state, chemical, and biological systems.

  12. Investigating tautomeric polymorphism in crystalline anthranilic acid using terahertz spectroscopy and solid-state density functional theory.

    PubMed

    Delaney, Sean P; Witko, Ewelina M; Smith, Tiffany M; Korter, Timothy M

    2012-08-02

    Terahertz spectroscopy is sensitive to the interactions between molecules in the solid-state and recently has emerged as a new analytical tool for investigating polymorphism. Here, this technique is applied for the first time to the phenomenon of tautomeric polymorphism where the crystal structures of anthranilic acid (2-aminobenzoic acid) have been investigated. Three polymorphs of anthranilic acid (denoted Forms I, II and III) were studied using terahertz spectroscopy and the vibrational modes and relative polymorph stabilities analyzed using solid-state density functional theory calculations augmented with London dispersion force corrections. Form I consists of both neutral and zwitterionic molecules and was found to be the most stable polymorph as compared to Forms II and III (both containing only neutral molecules). The simulations suggest that a balance between steric interactions and electrostatic forces is responsible for the favoring of the mixed neutral/zwitterion solid over the all neutral or all zwitterion crystalline arrangements.

  13. A 2 Thz Schottky Solid-State Heterodyne Receiver for Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Treuttel, Jeanne; Schlecht, Erich; Siles, Jose; Lee, Choonsup; Lin, Robert; Thomas, Bertrand; Gonzalez-Olvero, David; Yee, Jeng-Hwa; Wu, Dong; Mehdi, Imran

    2016-01-01

    Obtaining temperature, pressure, and composition profiles along with wind velocities in the Earth's thermosphere/ionosphere system is a key NASA goal for understanding our planet. We report on the status of a technology development effort to build an all-solid-state heterodyne receiver at 2.06 terahertz that will allow the measurement of the 2.06 terahertz [OI] line for altitudes greater than 100 kilometers. The receiver front end features low-parasitic Schottky diode mixer chips that are driven by a local oscillator (LO) source using Schottky diode based multipliers. The multiplier chain consists of a 38 gigahertz oscillator followed by a set of three cascaded triplers at 114 gigahertz, 343 gigahertz and 1.03 terahertz.

  14. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    PubMed Central

    Smart, Ken; Du, Jia; Li, Li; Wang, David; Leslie, Keith; Ji, Fan; Li, Xiang Dong; Zeng, Da Zhang

    2016-01-01

    A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode. PMID:27110791

  15. Interferometrically enhanced sub-terahertz picosecond imaging utilizing a miniature collapsing-field-domain source

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey N.; Duan, Guoyong; Mikhnev, Valeri A.; Zemlyakov, Valery E.; Egorkin, Vladimir I.; Kalyuzhnyy, Nikolay A.; Maleev, Nikolai A.; Näpänkangas, Juha; Sequeiros, Roberto Blanco; Kostamovaara, Juha T.

    2018-05-01

    Progress in terahertz spectroscopy and imaging is mostly associated with femtosecond laser-driven systems, while solid-state sources, mainly sub-millimetre integrated circuits, are still in an early development phase. As simple and cost-efficient an emitter as a Gunn oscillator could cause a breakthrough in the field, provided its frequency limitations could be overcome. Proposed here is an application of the recently discovered collapsing field domains effect that permits sub-THz oscillations in sub-micron semiconductor layers thanks to nanometer-scale powerfully ionizing domains arising due to negative differential mobility in extreme fields. This shifts the frequency limit by an order of magnitude relative to the conventional Gunn effect. Our first miniature picosecond pulsed sources cover the 100-200 GHz band and promise milliwatts up to ˜500 GHz. Thanks to the method of interferometrically enhanced time-domain imaging proposed here and the low single-shot jitter of ˜1 ps, our simple imaging system provides sufficient time-domain imaging contrast for fresh-tissue terahertz histology.

  16. Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model

    NASA Technical Reports Server (NTRS)

    Schlecht, E. T.; Chattopadhyay, G.; Maestrini, A.; Pukala, D.; Gill, J.; Mehdi, I.

    2002-01-01

    Substantial proress has been made recently in the advancement of solid state terahertz sources using chains of Schottky diode frequency multipliers. We have developed a harmonic balance simulator and corresponding diode model that incorporates many other factors participating in the diode behavior.

  17. Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2).

    PubMed

    Wang, Shengxiang; Kang, Lei; Werner, Douglas H

    2018-01-09

    Compared with natural materials, chiral metamaterials have been demonstrated with orders of magnitude stronger chiroptical response, which provides the basis for applications such as ultracompact polarization components and plasmonic-enhanced biosensing. Terahertz chiral metamaterials that allow dynamic polarization control of terahertz waves are of great practical interest, but remain extremely rare. Here, we show that hybrid metamaterials integrated with vanadium dioxide (VO 2 ) exhibiting phase transition can enable dynamically tunable chiroptical responses at terahertz frequencies. In particular, a circular dichroism of ~40° and a maximum polarization rotation of ~200°/λ are observed around 0.7 THz. Furthermore, our study also reveals that the chiroptical response from the proposed metamaterials is strongly dependent on the phase transition of VO 2 , leading to actively controllable polarization states of the transmitted terahertz waves. This work paves the way for the development of terahertz metadevices capable of enabling active polarization manipulation.

  18. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  19. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.

    PubMed

    Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A

    2016-10-18

    Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  20. Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lloyd-Hughes, J.

    2015-08-01

    Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.

  1. Terahertz plasmonic Bessel beamformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integratedmore » with solid-state terahertz sources.« less

  2. The Third International Symposium on Space Terahertz Technology: Symposium proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Papers from the symposium are presented that are relevant to the generation, detection, and use of the terahertz spectral region for space astronomy and remote sensing of the Earth's upper atmosphere. The program included thirteen sessions covering a wide variety of topics including solid-state oscillators, power-combining techniques, mixers, harmonic multipliers, antennas and antenna arrays, submillimeter receivers, and measurement techniques.

  3. Terahertz spin current pulses controlled by magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Wolf, M.; Radu, I.; Oppeneer, P. M.; Münzenberg, M.

    2013-04-01

    In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.

  4. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Cocker, T. L.; Titova, L. V.; Fourmaux, S.; Holloway, G.; Bandulet, H.-C.; Brassard, D.; Kieffer, J.-C.; El Khakani, M. A.; Hegmann, F. A.

    2012-04-01

    We use time-resolved terahertz spectroscopy to probe the ultrafast dynamics of the insulator-metal phase transition induced by femtosecond laser pulses in a nanogranular vanadium dioxide (VO2) film. Based on the observed thresholds for characteristic transient terahertz dynamics, a phase diagram of critical pump fluence versus temperature for the insulator-metal phase transition in VO2 is established for the first time over a broad range of temperatures down to 17 K. We find that both Mott and Peierls mechanisms are present in the insulating state and that the photoinduced transition is nonthermal. We propose a critical-threshold model for the ultrafast photoinduced transition based on a critical density of electrons and a critical density of coherently excited phonons necessary for the structural transition to the metallic state. As a result, evidence is found at low temperatures for an intermediate metallic state wherein the Mott state is melted but the Peierls distortion remains intact, consistent with recent theoretical predictions. Finally, the observed terahertz conductivity dynamics above the photoinduced transition threshold reveal nucleation and growth of metallic nanodomains over picosecond time scales.

  5. Terahertz plasmonic laser radiating in an ultra-narrow beam

    DOE PAGES

    Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...

    2016-07-07

    Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.« less

  6. Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Kazuue, E-mail: kfujita@crl.hpk.co.jp; Hitaka, Masahiro; Ito, Akio

    2015-06-22

    We report the performance of room temperature terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers with a dual-upper-state (DAU) active region. DAU active region design is theoretically expected to produce larger optical nonlinearity for terahertz difference-frequency generation, compared to the active region designs of the bound-to-continuum type used previously. Fabricated buried heterostructure devices with a two-section buried distributed feedback grating and the waveguide designed for Cherenkov difference-frequency phase-matching scheme operate in two single-mode mid-infrared wavelengths at 10.7 μm and 9.7 μm and produce terahertz output at 2.9 THz with mid-infrared to terahertz conversion efficiency of 0.8 mW/W{sup 2}more » at room temperature.« less

  7. Methods of amorphization and investigation of the amorphous state.

    PubMed

    Einfal, Tomaž; Planinšek, Odon; Hrovat, Klemen

    2013-09-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid- -state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on the method of preparation and how these differences can be screened by a variety of spectroscopic (X-ray powder diffraction, solid state nuclear magnetic resonance, atomic pairwise distribution, infrared spectroscopy, terahertz spectroscopy) and calorimetry methods.

  8. Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors

    PubMed Central

    Wang, Lin; Chen, Xiaoshuang; Yu, Anqi; Zhang, Yang; Ding, Jiayi; Lu, Wei

    2014-01-01

    Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~108 cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs. PMID:24969065

  9. Phase locking of 2.324 and 2.959 terahertz quantum cascade lasers using a Schottky diode harmonic mixer.

    PubMed

    Danylov, Andriy; Erickson, Neal; Light, Alexander; Waldman, Jerry

    2015-11-01

    The 23rd and 31st harmonics of a microwave signal generated in a novel THz balanced Schottky diode mixer were used as a frequency stable reference source to phase lock solid-nitrogen-cooled 2.324 and 2.959 THz quantum cascade lasers. Hertz-level frequency stability was achieved, which was maintained for several hours.

  10. Robust terahertz self-heterodyne system using a phase noise compensation technique.

    PubMed

    Song, Hajun; Song, Jong-In

    2015-08-10

    We propose and demonstrate a robust terahertz self-heterodyne system using a phase noise compensation technique. Conventional terahertz self-heterodyne systems suffer from degraded phase noise performance due to phase noise of the laser sources. The proposed phase noise compensation technique uses an additional photodiode and a simple electric circuit to produce phase noise identical to that observed in the terahertz signal produced by the self-heterodyne system. The phase noise is subsequently subtracted from the terahertz signal produced by the self-heterodyne system using a lock-in amplifier. While the terahertz self-heterodyne system using a phase noise compensation technique offers improved phase noise performance, it also provides a reduced phase drift against ambient temperature variations. The terahertz self-heterodyne system using a phase noise compensation technique shows a phase noise of 0.67 degree in terms of a standard deviation value even without using overall delay balance control. It also shows a phase drift of as small as approximately 10 degrees in an open-to-air measurement condition without any strict temperature control.

  11. Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm.

    PubMed

    Pallas, Florent; Herault, Emilie; Roux, Jean-Francois; Kevorkian, Antoine; Coutaz, Jean-Louis; Vitrant, Guy

    2012-07-15

    A passively Q-switched dual-wavelength solid-state laser is presented. The two wavelengths are emitted by two different crystals in order to avoid gain competition, and the synchronization between the pulses is obtained by external triggering of the saturable absorber. Sum frequency mixing is demonstrated, proving the interest of this source for terahertz generation in the 0.3-0.4 THz range through difference frequency generation.

  12. Terahertz multiheterodyne spectroscopy using laser frequency combs

    DOE PAGES

    Yang, Yang; Burghoff, David; Hayton, Darren J.; ...

    2014-07-01

    The terahertz region is of great importance for spectroscopy since many molecules have absorption fingerprints there. Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multiheterodyne spectroscopy using two terahertz quantum cascade laser combs. Over a spectral range of 250 GHz, we achieve average signal-to-noise ratios of 34 dB using cryogenic detectors and 24 dB using room-temperature detectors, all in just 100 μs. As a proof of principle, we use these combs to measure the broadband transmissionmore » spectrum of etalon samples and show that, with proper signal processing, it is possible to extend the multiheterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode. Here, this greatly expands the range of quantum cascade lasers that could be suitable for these techniques and allows for the creation of completely solid-state terahertz laser spectrometers.« less

  13. A novel analytical method for pharmaceutical polymorphs by terahertz spectroscopy and the optimization of crystal form at the discovery stage.

    PubMed

    Ikeda, Yukihiro; Ishihara, Yoko; Moriwaki, Toshiya; Kato, Eiji; Terada, Katsuhide

    2010-01-01

    A novel analytical method for the determination of pharmaceutical polymorphs was developed using terahertz spectroscopy. It was found out that each polymorph of a substance showed a specific terahertz absorption spectrum. In particular, analysis of the second derivative spectrum was enormously beneficial in the discrimination of closely related polymorphs that were difficult to discern by powder X-ray diffractometry. Crystal forms that were obtained by crystallization from various solvents and stored under various conditions were specifically characterized by the second derivative of each terahertz spectrum. Fractional polymorphic transformation for substances stored under stressed conditions was also identified by terahertz spectroscopy during solid-state stability test, but could not be detected by powder X-ray diffractometry. Since polymorphs could be characterized clearly by terahertz spectroscopy, further physicochemical studies could be conducted in a timely manner. The development form of compound examined was determined by the results of comprehensive physicochemical studies that included thermodynamic relationships, as well as chemical and physicochemical stability. In conclusion, terahertz spectroscopy, which has unique power in the elucidation of molecular interaction within a crystal lattice, can play more important role in physicochemical research. Terahertz spectroscopy has a great potential as a tool for polymorphic determination, particularly since the second derivative of the terahertz spectrum possesses high sensitivity for pharmaceutical polymorphs.

  14. Solid-state Terahertz Sources for Space Applications

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Pearson, John C.; Ward, John S.; Schlecht, Erich; Chattopadhyay, Goutam; Gill, John J.; Ferber, R.; Tsang, Raymond; Lin, Robert H.; Peralta, Alejandro; hide

    2004-01-01

    This paper discusses the construction of solid-state frequency multiplier chains utilized far teraherz receiver applications such as the Herschel Space Observatory . Emphasis will he placed on the specific requirements to be met and challenges that were encountered. The availability of high power amplifiers at 100 GHz makes it possible to cascade frequency doublers and triplers with sufficient RF power to pump heterodyne receivers at THz frequencies. The environmental and mechanical constraints will be addressed as well as reliability issues.

  15. New Insights into the Diverse Electronic Phases of a Novel Vanadium Dioxide Polymorph: A Terahertz Spectroscopy Study

    PubMed Central

    Lourembam, James; Srivastava, Amar; La-o-vorakiat, Chan; Rotella, H.; Venkatesan, T.; Chia, Elbert E. M.

    2015-01-01

    A remarkable feature of vanadium dioxide is that it can be synthesized in a number of polymorphs. The conductivity mechanism in the metastable layered polymorph VO2(B) thin films has been investigated by terahertz time-domain spectroscopy (THz-TDS). In VO2(B), a critical temperature of 240 K marks the appearance of a non-zero Drude term in the observed complex conductivity, indicating the evolution from a pure insulating state towards a metallic state. In contrast, the THz conductivity of the well-known VO2(M1) is well fitted only by a modification of the Drude model to include backscattering. We also identified two different THz conductivity regimes separated by temperature in these two polymorphs. The electronic phase diagram is constructed, revealing that the width and onset of the metal-insulator transition in the B phase develop differently from the M1 phase. PMID:25777320

  16. Berry phase dependent quantum trajectories of electron-hole pairs in semiconductors under intense terahertz fields

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Ren-Bao

    2013-03-01

    Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  17. Terahertz Emitter Based on Frequency Mixing in Microchip Solid-State Laser Cavity

    DTIC Science & Technology

    2011-09-09

    crystals” Applied Physics Letterrs 64, 1324 (1994). 7. Takayuki Shibuya, Takuya Akiba, Koji Suizu, Hirohisa Uchida, Chiko Otani, and Kodo Kawase...thin films”, Journal of Applied Physics 108, 044310 (2010) 23. Takayuki Shibuya, Takuya Akiba, Koji Suizu, Hirohisa Uchida, Chiko Otani, and Kodo

  18. Topological-insulator-based terahertz modulator

    DOE PAGES

    Wang, X. B.; Cheng, L.; Wu, Y.; ...

    2017-10-18

    Three dimensional topological insulators, as a new phase of quantum matters, are characterized by an insulating gap in the bulk and a metallic state on the surface. Particularly, most of the topological insulators have narrow band gaps, and hence have promising applications in the area of terahertz optoelectronics. In this work, we experimentally demonstrate an electronically-tunable terahertz intensity modulator based on Bi 1:5Sb 0:5Te 1:8Se 1:2 single crystal, one of the most insulating topological insulators. A relative frequency-independent modulation depth of ~62% over a wide frequency range from 0.3 to 1.4 THz has been achieved at room temperature, by applyingmore » a bias current of 100 mA. The modulation in the low current regime can be further enhanced at low temperature. We propose that the extraordinarily large modulation is a consequence of thermally-activated carrier absorption in the semiconducting bulk states. Our work provides a new application of topological insulators for terahertz technology.« less

  19. Topological-insulator-based terahertz modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. B.; Cheng, L.; Wu, Y.

    Three dimensional topological insulators, as a new phase of quantum matters, are characterized by an insulating gap in the bulk and a metallic state on the surface. Particularly, most of the topological insulators have narrow band gaps, and hence have promising applications in the area of terahertz optoelectronics. In this work, we experimentally demonstrate an electronically-tunable terahertz intensity modulator based on Bi 1:5Sb 0:5Te 1:8Se 1:2 single crystal, one of the most insulating topological insulators. A relative frequency-independent modulation depth of ~62% over a wide frequency range from 0.3 to 1.4 THz has been achieved at room temperature, by applyingmore » a bias current of 100 mA. The modulation in the low current regime can be further enhanced at low temperature. We propose that the extraordinarily large modulation is a consequence of thermally-activated carrier absorption in the semiconducting bulk states. Our work provides a new application of topological insulators for terahertz technology.« less

  20. Robustness of edge states in topological quantum dots against global electric field

    NASA Astrophysics Data System (ADS)

    Qu, Jin-Xian; Zhang, Shu-Hui; Liu, Ding-Yang; Wang, Ping; Yang, Wen

    2017-07-01

    The topological insulator has attracted increasing attention as a new state of quantum matter featured by the symmetry-protected edge states. Although the qualitative robustness of the edge states against local perturbations has been well established, it is not clear how these topological edge states respond quantitatively to a global perturbation. Here, we study the response of topological edge states in a HgTe quantum dot to an external in-plane electric field—a paradigmatic global perturbation in solid-state environments. We find that the stability of the topological edge state could be larger than that of the ground bulk state by several orders of magnitudes. This robustness may be verified by standard transport measurements in the Coulomb blockage regime. Our work may pave the way towards utilizing these topological edge states as stable memory devices for charge and/or spin information and stable emitter of single terahertz photons or entangled terahertz photon pairs for quantum communication.

  1. Terahertz Spectroscopy of Low-Dimensional Nanomaterials: Nonlinear Emission and Ultrafast Electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Liang; Wang, Jigang

    Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emittersmore » using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?« less

  2. Terahertz Spectroscopy of Low-Dimensional Nanomaterials: Nonlinear Emission and Ultrafast Electrodynamics

    DOE PAGES

    Luo, Liang; Wang, Jigang

    2016-01-01

    Nonlinear and non-equilibrium properties of low-dimensional quantum materials are fundamental in nanoscale science yet transformative in nonlinear imaging/photonic technology today. These have been poorly addressed in many nano-materials despite of their well-established equilibrium optical and transport properties. The development of ultrafast terahertz (THz) sources and nonlinear spectroscopy tools facilitates understanding these issues and reveals a wide range of novel nonlinear and quantum phenomena that are not expected in bulk solids or atoms. In this paper, we discuss our recent discoveries in two model photonic and electronic nanostructures to solve two outstanding questions: (1) how to create nonlinear broadband terahertz emittersmore » using deeply subwavelength nanoscale meta-atom resonators? (2) How to access one-dimensional (1D) dark excitons and their non-equilibrium correlated states in single-walled carbon nanotubes (SWMTs)?« less

  3. Compare the phase transition properties of VO2 films from infrared to terahertz range

    NASA Astrophysics Data System (ADS)

    Liang, Shan; Shi, Qiwu; Huang, Wanxia; Peng, Bo; Mao, Zhenya; Zhu, Hongfu

    2018-06-01

    VO2 with reversible semiconductor-metal phase transition properties is particularly available for the application in smart opto-electrical devices. However, there are rare reports on comparing its phase transition properties at different ranges. In this study, the VO2 films are designed with the similar crystalline structure and stoichiometry, but different morphologies by inorganic and organic sol-gel methods, and their phase transition characteristics are compared both at infrared and terahertz range. The results indicate that the VO2 film prepared by inorganic sol-gel method shows more compact nanostructure. It results in larger resistivity change, infrared and terahertz switching ratio in the VO2 film. Moreover, it presents that the phase transition intensity of VO2 film in terahertz range is more sensitive to its microstructure. This work is helpful for understanding the susceptibility of terahertz switching properties of VO2 to its microstructure. And it can provide insights for the applications of VO2 in terahertz smart devices.

  4. Nonlinear terahertz coherent excitation of vibrational modes of liquids.

    PubMed

    Allodi, Marco A; Finneran, Ian A; Blake, Geoffrey A

    2015-12-21

    We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A terahertz-terahertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond terahertz pulse, that are then measured in a terahertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader terahertz frequency coverage, and an increased sensitivity relative to previously reported terahertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm(-1)), and in carbon tetrachloride at 6.50 THz (217 cm(-1)), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in terahertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at terahertz frequencies.

  5. Towards Terahertz MMIC Amplifiers: Present Status and Trends

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2006-01-01

    This viewgraph presentation surveys the fastest Monolithic Millimeter-wave Integrated Circuit (MMIC) amplifiers to date; summarize previous solid state power amp results to date; reviews examples of MMICs, reviews Power vs. Gate periphery and frequency; Summarizes previous LNA results to date; reviews Noise figure results and trends toward higher frequency

  6. Mode-locking of a terahertz laser by direct phase synchronization.

    PubMed

    Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J

    2012-09-10

    A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

  7. Terahertz Absorption by Cellulose: Application to Ancient Paper Artifacts

    NASA Astrophysics Data System (ADS)

    Peccianti, M.; Fastampa, R.; Mosca Conte, A.; Pulci, O.; Violante, C.; Łojewska, J.; Clerici, M.; Morandotti, R.; Missori, M.

    2017-06-01

    Artifacts made of cellulose, such as ancient documents, pose a significant experimental challenge in the terahertz transmission spectra interpretation due to their small optical thickness. In this paper, we describe a method to recover the complex refractive index of cellulose fibers from the terahertz transmission data obtained on single freely standing paper sheets in the (0.2-3.5)-THz range. By using our technique, we eliminate Fabry-Perot effects and recover the absorption coefficient of the cellulose fibers. The obtained terahertz absorption spectra are explained in terms of absorption peaks of the cellulose crystalline phase superimposed to a background contribution due to a disordered hydrogen-bond network. The comparison between the experimental spectra with terahertz vibrational properties simulated by density-functional-theory calculations confirms this interpretation. In addition, evident changes in the terahertz absorption spectra are produced by natural and artificial aging on paper samples, whose final stage is characterized by a spectral profile with only two peaks at about 2.1 and 3.1 THz. These results can be used to provide a quantitative assessment of the state of preservation of cellulose artifacts.

  8. Graphene based terahertz phase modulators

    NASA Astrophysics Data System (ADS)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  9. Toward remote sensing with broadband terahertz waves

    NASA Astrophysics Data System (ADS)

    Clough, Benjamin W.

    Terahertz electromagnetic waves, defined as the frequency region between 0.1 and 10 terahertz on the electromagnetic spectrum, have demonstrated remarkable usefulness for imaging and chemical identification with the ability to penetrate many optically opaque barriers. Photon energies at these frequencies are relatively small (meV), which means the radiation is non-ionizing and therefore considered biologically innocuous. With the growing list of applications and demand for terahertz technology, there is a need to develop innovative terahertz sources and detectors that can overcome existing limitations in power, bandwidth, and operating range. Although terahertz radiation has demonstrated unique and exceptional abilities, it has also presented several fundamental challenges. Most notably, the water vapor absorption of terahertz waves in air at habitable altitudes is greater than 100 dB/km. There is an immediate push to utilize the material and vapor identification abilities of terahertz radiation, while extending the effective distances over which the technology can be used. Remote terahertz detection, until recently, was thought to be impossible due to the high water content in the atmosphere, limited signal collection geometries, and solid state materials necessary for generation and detection. This dissertation focuses on laser air-photonics used for sensing short pulses of electromagnetic radiation. Through the ionization process, the very air that we breathe is capable of generating terahertz field strengths greater than 1 MV/cm, useful bandwidths over 100 terahertz, and highly directional emission patterns. Following ionization and plasma formation, the emitted plasma acoustics or fluorescence can be modulated by an external field to serve as omnidirectional, broadband, electromagnetic sensor. A deeper understanding of terahertz wave-plasma interaction is used to develop methods for retrieving coherent terahertz wave information that can be encoded into plasma acoustic and fluorescence wave emission; the ultimate goal aimed at overcoming fundamental limitations of the current terahertz technology. A synthesized bichromatic field-induced laser plasma is used to study effects of electron velocity redistribution inside the plasma filament, and a technique for obtaining a direct correlation between the terahertz field and the plasma acoustic or fluorescence emission is engineered. This dissertation presents significant advances in terahertz air photonics that help to close the "THz gap" once existing between electronic and optical frequencies, and the acoustic and fluorescence detection methodologies developed provide promising new avenues for extending the useful range of terahertz wave technology.

  10. Graphene field-effect transistors as room-temperature terahertz detectors.

    PubMed

    Vicarelli, L; Vitiello, M S; Coquillat, D; Lombardo, A; Ferrari, A C; Knap, W; Polini, M; Pellegrini, V; Tredicucci, A

    2012-10-01

    The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.

  11. Estimation of Crystallinity of Nifedipine-Polyvinylpyrrolidone Solid Dispersion by Usage of Terahertz Time-Domain Spectroscopy and of X-Ray Powder Diffractometer.

    PubMed

    Takeuchi, Issei; Shimakura, Kemmaro; Kuroda, Hideki; Nakajima, Takehisa; Goto, Satoru; Makino, Kimiko

    2015-12-01

    Crystalline state of pharmaceutical materials is of great importance in preparation of pharmaceutics, because their physicochemical properties affect bioavailability, quality of products, therapeutic level and manufacturing process. In this study, we have estimated time-dependent changes of nifedipine in nifedipine-polyvinylpyrrolidone (PVP) solid dispersion by measuring terahertz time-domain spectroscopy (THz-TDS) and by X-ray powder diffractometry (XRPD), and compared their correlativity. Crystallinity of nifedipine-PVP solid dispersion was changed by storing the amorphous sample at 25°C-75°C and relative humidity of over 80% for 0.25-24.00 h. To compare the results of two types of measurements, we have used a general method of linear regression analysis. Crystallinities estimated using THz-TDS were plotted on the x-axis and that of XRPD were on the y-axis. From the result of the calculation, the correlativity of them was confirmed. THz-TDS has the capability of becoming the replacement of XRPD. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids

    NASA Astrophysics Data System (ADS)

    Ruggiero, Michael T.; Zhang, Wei; Bond, Andrew D.; Mittleman, Daniel M.; Zeitler, J. Axel

    2018-05-01

    The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.

  13. Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids.

    PubMed

    Ruggiero, Michael T; Zhang, Wei; Bond, Andrew D; Mittleman, Daniel M; Zeitler, J Axel

    2018-05-11

    The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.

  14. Uncovering the Terahertz Spectrum of Copper Sulfate Pentahydrate.

    PubMed

    Ruggiero, Michael T; Korter, Timothy M

    2016-01-21

    Terahertz vibrational spectroscopy has evolved into a powerful tool for the detection and characterization of transition metal sulfate compounds, specifically for its ability to differentiate between various hydrated forms with high specificity. Copper(II) sulfate is one such system where multiple crystalline hydrates have had their terahertz spectra fully assigned, and the unique spectral fingerprints of the forms allows for characterization of multicomponent systems with relative ease. Yet the most commonly occurring form, copper(II) sulfate pentahydrate (CuSO4·5H2O), has proven elusive due to the presence of a broad absorption across much of the terahertz region, making the unambiguous identification of its spectral signature difficult. Here, it is shown that the sub-100 cm(-1) spectrum of CuSO4·5H2O is obscured by absorption from adsorbed water and that controlled drying reveals sharp underlying features. The crystalline composition of the samples was monitored in parallel by X-ray diffraction as a function of drying time, supporting the spectroscopic results. Finally, the terahertz spectrum of CuSO4·5H2O was fully assigned using solid-state density functional theory simulations, helping attribute the additional absorptions that appear after excessive drying to formation of CuSO4·3H2O.

  15. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Xia, Tianyu; Jing, Shuaicheng; Deng, Guangsheng; Lu, Hongbo; Fang, Yong; Yin, Zhiping

    2018-02-01

    We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30 × 30 patch elements, printed on a 20 × 20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.

  16. Probing the interatomic potential of solids with strong-field nonlinear phononics

    NASA Astrophysics Data System (ADS)

    von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.

    2018-03-01

    Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.

  17. Microfabricated Circuits for Terahertz Wave Amplification and Terahertz Biosensors

    NASA Astrophysics Data System (ADS)

    Fawole, Olutosin Charles

    The terahertz frequency band extends from deep infrared (100 THz) down to millimeter waves (0.4 THz), and this band was mostly inaccessible due to the lack of appropriate sources and detectors. Those with access to this band had to endure the small-intensity pulsed signals (nanowatts to microwatts) that the terahertz sources of those times could provide. In recent years, however, sufficient development has led to the availability of terahertz sources with sufficient power (1-100 muW) and the ease of use these sources has in turn enabled researchers to develop newer sources, detectors, and application areas. The terahertz regime is interesting because a) many molecules have vibrational, rotation and transition absorption bands in this regime, b) the terahertz electromagnetic wavelength is sufficiently small to resolve centimeter to millimeter scale objects, and c) scattering and absorption in metals in the terahertz regime make it very challenging to devise terahertz signal processing circuits. Thus, performing terahertz reflection/transmission measurements may enable precise identification of chemicals in a sample. Furthermore, small wavelengths and strong scattering by metallic objects make imaging with terahertz waves quite attractive. Finally, the ability to devise terahertz communication circuits and links will provide access to a frequency domain that is restricted and not available to others. One of the main objectives of this work is to develop 0.75 - 1.1 terahertz (free space wavelength 272 mum - 400 ?mum) amplifiers. Another objective of this work is to explore the suitability of terahertz waves in biological imaging and sensing. The terahertz amplifiers developed in this work consisted of distributed components such as rectangular waveguides and cylindrical dielectric resonators. In contrast to discrete amplifiers, which are based on solid-state devices, distributed traveling wave amplifiers can potentially handle and produce larger powers. Three different distributed terahertz amplifier circuits were considered in this work. These were based on a) coupled dielectric resonators, b) dielectric waveguides with periodic slots, and c) metallic meandering waveguides. The result of the hot test of the last circuit on interaction with an electron beam energy source yielded an amplification of 12 dB of a -55 dBm, 0.9 terahertz signal over 1 gigahertz bandwidth. The electron beam acceleration voltage was 4.8 kV and its current was approximately 20 microamps. The terahertz biosensing system developed in this work was used to study the unique interaction of terahertz waves with the chemical and physical components of biological tissues, and the products of biochemical reactions. A terahertz near-field imaging system was also developed to image mouse brain slices, plants, and bug wings. In addition, this work also demonstrated the capabilities and limitations of terahertz waves for the real-time noninvasive monitoring of bioethanol production by yeast cells.

  18. Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.

    PubMed

    Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf

    2005-12-01

    Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.

  19. An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface.

    PubMed

    Wang, Dacheng; Gu, Yinghong; Gong, Yandong; Qiu, Cheng-Wei; Hong, Minghui

    2015-05-04

    Metamaterials promise an exotic approach to artificially manipulate the polarization state of electromagnetic waves and boost the design of polarimetric devices for sensitive detection, imaging and wireless communication. Here, we present the design and experimental demonstration of an ultrathin (0.29λ) terahertz quarter-wave plate based on planar babinet-inverted metasurface. The quarter-wave plate consisting of arrays of asymmetric cross apertures reveals a high transmission of 0.545 with 90 degrees phase delay at 0.870 THz. The calculated ellipticity indicates a high degree of polarization conversion from linear to circular polarization. With respect to different incident polarization angles, left-handed circular polarized light, right-handed circular polarized light and elliptically polarized light can be created by this novel design. An analytical model is applied to describe transmitted amplitude, phase delay and ellipticitiy, which are in good agreement with the measured and simulated results. The planar babinet-inverted metasurface with the analytical model opens up avenues for new functional terahertz devices design.

  20. On the relative utility of infrared (IR) versus terahertz (THz) for optical sensors

    NASA Astrophysics Data System (ADS)

    Johnson, T. J.; Valentine, N. B.; Gassman, P. L.; Atkinson, D. A.; Sharpe, S. W.; Williams, Steven D.

    2007-09-01

    Pacific Northwest National Laboratory (PNNL) has active programs investigating the optical absorption strengths of several types of molecules including toxic industrial chemicals (TICs), microbiological threats such as bacteria, as well as explosives such as RDX, PETN and TNT. While most of our work has centered on the mid-infrared domain (600 to 6,500 cm-1), more recent work has also included work in the far-infrared, also called the terahertz (THz) region (500 to ~8 cm-1). Using Fourier transform infrared spectroscopy, we have been able to compare the relative, and in some cases absolute, IR/THz cross sections of a number of species in the solid and liquid phases. The relative band strengths of a number of species of interest are discussed in terms of both experimental and computational results.

  1. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    NASA Astrophysics Data System (ADS)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  2. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  3. Birefringence of wood at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Todoruk, Tara M.; Schneider, Jon; Hartley, Ian D.; Reid, Matthew

    2008-06-01

    Fibre content of solid wood plays an important role in the wood products industry in terms of value. Additionally, fibre structure in composite wood products such as Oriented Strand Board (OSB) and paper products plays an important role in terms of strength properties. The effect of moisture content on wood properties is important in the manufacturing process and final product performance, and therefore its effect on the birefringence is of considerable interest. Since solid wood exhibits strong birefringence at terahertz frequencies, there may be potential applications of terahertz spectroscopy to fibre content and structure sensing. There are two potential sources for this strong birefringence: (i) form birefringence resulting from the porous structure of solid wood and (ii) intrinsic birefringence resulting from the dielectric properties of the material itself. In this report, the variability of birefringence within and between species, the dependence of the birefringence on moisture content and the relative contributions from form and intrinsic birefringence are examined. In order to clarify the role of these contributions to the measured birefringence, polarized terahertz reflection spectroscopy is examined and compared to the results obtained in a transmission geometry. Comparison of the birefringence measured in transmission and reflection geometries suggests that form birefringence may dominate.

  4. Solid-state cocrystal formation between acyclovir and fumaric acid: Terahertz and Raman vibrational spectroscopic studies.

    PubMed

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2017-11-05

    The vibrational spectra of solid-state acyclovir, fumaric acid and their cocrystal have been investigated by using terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy at room temperature. In experimental THz spectra, the cocrystal has absorption peaks in 0.65, 0.94 and 1.10THz respectively, while the raw materials are absolutely different in this region. Raman spectra also show similar results about differences between the cocrystal and raw materials. Density functional theory (DFT) was performed to simulate vibrational modes of different theoretical forms between acyclovir and fumaric acid. The calculation of theoretical THz spectra shows that O8C7N1H27 and the carboxyl group COOH establish a dimer theoretical cocrystal form by the hydrogen bonding effect, which makes contributions to the formation of absorption peaks in 0.70, 1.01 and 1.34THz, and agrees well with experimental observations. The theoretical Raman result also indicates that this dimer form matches with experimental results. The characteristic bands of the cocrystal between acyclovir and fumaric acid are also assigned based on the simulation results from the DFT calculation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Solid-state cocrystal formation between acyclovir and fumaric acid: Terahertz and Raman vibrational spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2017-11-01

    The vibrational spectra of solid-state acyclovir, fumaric acid and their cocrystal have been investigated by using terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy at room temperature. In experimental THz spectra, the cocrystal has absorption peaks in 0.65, 0.94 and 1.10 THz respectively, while the raw materials are absolutely different in this region. Raman spectra also show similar results about differences between the cocrystal and raw materials. Density functional theory (DFT) was performed to simulate vibrational modes of different theoretical forms between acyclovir and fumaric acid. The calculation of theoretical THz spectra shows that O8dbnd C7sbnd N1sbnd H27 and the carboxyl group sbnd COOH establish a dimer theoretical cocrystal form by the hydrogen bonding effect, which makes contributions to the formation of absorption peaks in 0.70, 1.01 and 1.34 THz, and agrees well with experimental observations. The theoretical Raman result also indicates that this dimer form matches with experimental results. The characteristic bands of the cocrystal between acyclovir and fumaric acid are also assigned based on the simulation results from the DFT calculation.

  6. Application of London-type dispersion corrections to the solid-state density functional theory simulation of the terahertz spectra of crystalline pharmaceuticals.

    PubMed

    King, Matthew D; Buchanan, William D; Korter, Timothy M

    2011-03-14

    The effects of applying an empirical dispersion correction to solid-state density functional theory methods were evaluated in the simulation of the crystal structure and low-frequency (10 to 90 cm(-1)) terahertz spectrum of the non-steroidal anti-inflammatory drug, naproxen. The naproxen molecular crystal is bound largely by weak London force interactions, as well as by more prominent interactions such as hydrogen bonding, and thus serves as a good model for the assessment of the pair-wise dispersion correction term in systems influenced by intermolecular interactions of various strengths. Modifications to the dispersion parameters were tested in both fully optimized unit cell dimensions and those determined by X-ray crystallography, with subsequent simulations of the THz spectrum being performed. Use of the unmodified PBE density functional leads to an unrealistic expansion of the unit cell volume and the poor representation of the THz spectrum. Inclusion of a modified dispersion correction enabled a high-quality simulation of the THz spectrum and crystal structure of naproxen to be achieved without the need for artificially constraining the unit cell dimensions.

  7. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.

    2016-12-01

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  8. Determination of plane stress state using terahertz time-domain spectroscopy

    PubMed Central

    Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili

    2016-01-01

    THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials. PMID:27824112

  9. Determination of plane stress state using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili

    2016-11-01

    THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials.

  10. The in-phase states of Josephson junctions stacks as attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hristov, I.; Dimova, S.; Hristova, R.

    2014-11-12

    The aim of this investigation is to show that the coherent, in-phase states of intrinsic Josephson junctions stacks are attractors of the stacks' states when the applied external magnetic field h{sub e} and the external current γ vary within certain domains. Mathematically the problem is to find the solutions of the system of perturbed sine-Gordon equations for fixed other parameters and zero or random initial conditions. We determine the region in the plane (h{sub e}, γ), where the in-phase states are attractors of the stack's states for arbitrary initial perturbations. This is important, because the in-phase states are required formore » achieving terahertz radiation from the Josephson stacks.« less

  11. Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolmatov, Dima; Zhernenkov, Mikhail; Sharpnack, Lewis

    The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of amore » sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. In conclusion, the tunability of the collective excitations at nanometer–terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.« less

  12. Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Sharpnack, Lewis; ...

    2017-05-26

    The investigation of phononic collective excitations in soft matter systems at the molecular scale has always been challenging due to limitations of experimental techniques in resolving low-energy modes. Recent advances in inelastic X-ray scattering (IXS) enabled the study of such systems with unprecedented spectral contrast at meV excitation energies. In particular, it has become possible to shed light on the low-energy collective motions in materials whose morphology and phase behavior can easily be manipulated, such as mesogenic systems. The understanding of collective mode behavior with a Q-dependence is the key to implement heat management based on the control of amore » sample structure. The latter has great potential for a large number of energy-inspired innovations. As a first step toward this goal, we carried out high contrast IXS measurements on a liquid crystal sample, D7AOB, which exhibits solid-like dynamic features, such as the coexistence of longitudinal and transverse phononic modes. For the first time, we found that these terahertz phononic excitations persist in the crystal, smectic A, and isotropic phases. Furthermore, the intermediate smectic A phase is shown to support a van der Waals-mediated nonhydrodynamic mode with an optical-like phononic behavior. In conclusion, the tunability of the collective excitations at nanometer–terahertz scales via selection of the sample mesogenic phase represents a new opportunity to manipulate optomechanical properties of soft metamaterials.« less

  13. Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection.

    PubMed

    You, Borwen; Chen, Ching-Yu; Yu, Chin-Ping; Liu, Tze-An; Hattori, Toshiaki; Lu, Ja-Yu

    2017-04-17

    A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 μmol/mm2. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

  14. Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice.

    PubMed

    Ji, Yun-Yun; Fan, Fei; Chen, Meng; Yang, Lei; Chang, Sheng-Jiang

    2017-05-15

    A dielectric metasurface with line-square compound lattice structure has been fabricated and demonstrated in the terahertz (THz) regime by the THz time-domain spectroscopy and numerical simulation. A polarization dependent electromagnetically induced transparency (EIT) effect is achieved in this metasurface due to the mode coupling and interference between the resonance modes in line and square subunits of the metasurface. Accompany with the EIT effect, a large artificial birefringence effect between two orthogonal polarization states is also observed in this compound metasurface, of which birefringence is over 0.6. Furthermore, the liquid crystals are filled on the surface of this dielectric metasurface to fabricate an electrically tunable THz LC phase shifter. The experimental results show that its tunable phase shift under the biased electric field reaches 0.33π, 1.8 times higher than the bare silicon, which confirms the enhancement role of THz microstructure on the LC phase shift in the THz regime. The large birefringence phase shift of this compound metasurface and its LC tunable phase shifter will be of great significance for potential applications in THz polarization and phase devices.

  15. Investigation of Layer Structure of the Takamatsuzuka Mural Paintings by Terahertz Imaging Technique

    NASA Astrophysics Data System (ADS)

    Inuzuka, M.; Kouzuma, Y.; Sugioka, N.; Fukunaga, K.; Tateishi, T.

    2017-04-01

    Terahertz imaging can be a powerful tool in conservation science for cultural heritages. In this study, a new terahertz imaging system was applied to the Takamatsuzuka mural painting of a blue dragon, and the condition of the plaster layer was diagnosed. As a result, the locations where the plaster layer appears solid on the surface but in actuality may have peeled off the underlying tuff stone were revealed and viewed as two-dimensional images.

  16. Elliptically polarized terahertz radiation from a chiral oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, R.; Kida, N., E-mail: kida@k.u-tokyo.ac.jp; Sotome, M.

    2015-09-28

    Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses.more » Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.« less

  17. Spectral shifts as a signature of the onset of diffusion of broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-12-15

    We describe measurements of polarization dynamics as a probe of multiple scattering of photons in a random medium by use of single-cycle terahertz pulses. We measure the degree of polarization and correlate it directly with the single-scattering regime in the time domain. We also measure the evolution of the temporal phase of the radiation and show that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect can be used to distinguish photons that have been scattered a few times from those that are propagating diffusively.

  18. WGM Resonators for Terahertz-to-Optical Frequency Conversion

    NASA Technical Reports Server (NTRS)

    Strekalov,Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Nu, Nan

    2008-01-01

    Progress has been made toward solving some practical problems in the implementation of terahertz-to-optical frequency converters utilizing whispering-gallery-mode (WGM) resonators. Such frequency converters are expected to be essential parts of non-cryogenic terahertz- radiation receivers that are, variously, under development or contemplated for a variety of applications in airborne and spaceborne instrumentation for astronomical and military uses. In most respects, the basic principles of terahertz-to-optical frequency conversion in WGM resonators are the same as those of microwave (sub-terahertz)-to-optical frequency conversion in WGM resonators, various aspects of which were discussed in the three preceeding articles. To recapitulate: In a receiver following this approach, a preamplified incoming microwave signal (in the present case, a terahertz signal) is up-converted to an optical signal by a technique that exploits the nonlinearity of the electromagnetic response of a whispering-gallery-mode (WGM) resonator made of LiNbO3 or another suitable electro-optical material. Upconversion takes place by three-wave mixing in the resonator. To ensure the required interaction among the optical and terahertz signals, the WGM resonator must be designed and fabricated to function as an electro-optical modulator while simultaneously exhibiting (1) resonance at the required microwave and optical operating frequencies and (2) phase matching among the microwave and optical signals circulating in the resonator. Downstream of the WGM resonator, the up-converted signal is processed photonically by use of a tunable optical filter or local oscillator and is then detected. The practical problems addressed in the present development effort are the following: Satisfaction of the optical and terahertz resonance-frequency requirement is a straightforward matter, inasmuch as the optical and terahertz spectra can be measured. However, satisfaction of the phase-matching requirement is more difficult. The approach followed in the present development is to perform computer simulations of the microwave and optical signals circulating in the resonator to test for phase matching. To enable excitation of the terahertz WGM resonator mode, it is also necessary to ensure phase matching between that mode and the incoming terahertz radiation. In the present development, the incoming signal is coupled into the WGM resonator via a tapered waveguide in the form of a fused silica rod. The phase-matching requirement is satisfied at one point along the taper; the rod is positioned with this point in proximity to the WGM resonator. To maximize the conversion efficiency, it is necessary to maximize the spatial overlap among the terahertz and optical modes in the WGM resonator. In the absence of a special design effort to address this issue, there would be little such overlap because, as a consequence of a large difference between wavelengths, the optical and terahertz modes would be concentrated at different depths from the rim of a WGM resonator. In the present development, overlap is ensured by constructing the WGM resonator as a ring (see figure) so thin that the optical and terahertz modes are effectively forced to overlap.

  19. Terahertz beam switching by electrical control of graphene-enabled tunable metasurface.

    PubMed

    Zhang, Yin; Feng, Yijun; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-10-26

    Controlling the terahertz wave, especially the dynamical and full control of terahertz wavefront, is highly demanded due to the increasing development of practical devices and application systems. Recently considerable efforts have been made to fill the 'terahertz gap' with the help of artificial metamaterial or metasurface incorporated with graphene material. Here, we propose a scheme to design tunable metasurface consisting of metallic patch array on a grounded polymer substrate embedded with graphene layers to electrically control the electromagnetic beam reflection at terahertz frequency. By adjusting geometric dimension of the patch elements, 360 degree reflection phase range may be achieved, thus abrupt phase shifts can be introduced along the metasurface for tailoring the reflected wavefront. Moreover, the reflective phase gradient over the metasurface can be switched between 90 and 360 degree by controlling the Fermi energy of the embedded graphene through voltage biasing, hence dynamically switching the reflective beam directions. Numerical simulations demonstrate that either single beam or dual beam dynamically switching between normal and oblique reflection angles can be well attained at working frequency. The proposed approach will bring much freedom in the design of beam manipulation devices and may be applied to terahertz radiation control.

  20. Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Ren-Bao

    2014-03-01

    Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  1. Controllable Terahertz Radiation from a Linear-Dipole Array Formed by a Two-Color Laser Filament in Air.

    PubMed

    Zhang, Zhelin; Chen, Yanping; Chen, Min; Zhang, Zhen; Yu, Jin; Sheng, Zhengming; Zhang, Jie

    2016-12-09

    We demonstrate effective control on the carrier-envelope phase and angular distribution as well as the peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of both the generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of a terahertz pulse for potential applications.

  2. Demonstration of a terahertz pure vector beam by tailoring geometric phase.

    PubMed

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Sakaue, Kazuyuki; Washio, Masakazu; Otani, Yukitoshi

    2018-06-06

    We demonstrate the creation of a vector beam by tailoring geometric phase of left- and right- circularly polarized beams. Such a vector beam with a uniform phase has not been demonstrated before because a vortex phase remains in the beam. We focus on vortex phase cancellation to generate vector beams in terahertz regions, and measure the geometric phase of the beam and its spatial distribution of polarization. We conduct proof-of-principle experiments for producing a vector beam with radial polarization and uniform phase at 0.36 THz. We determine the vortex phase of the vector beam to be below 4%, thus highlighting the extendibility and availability of the proposed concept to the super broadband spectral region from ultraviolet to terahertz. The extended range of our proposed techniques could lead to breakthroughs in the fields of microscopy, chiral nano-materials, and quantum information science.

  3. Real-time terahertz imaging through self-mixing in a quantum-cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W.

    2016-07-04

    We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.

  4. Terahertz dielectric analysis and spin-phonon coupling in multiferroic GeV 4 S 8

    DOE PAGES

    Warren, Matthew T.; Pokharel, G.; Christianson, A. D.; ...

    2017-08-23

    We present an investigation of the multiferroic lacunar spinel compound GeV 4S 8 using time-domain terahertz spectroscopy. We find three absorptions which either appear or shift at the antiferromagnetic transition temperature, T N=17K, as S=1 magnetic moments develop on vanadium tetrahedra. Two of these absorptions are coupled to the magnetic state and one only appears below the Néel temperature, and is interpreted as a magnon. We also observe isosbestic points in the dielectric constant in both the temperature and frequency domains. Further, we perform an analysis on the isosbestic features to reveal an interesting collapse into a single curve asmore » a function of both frequency and temperature, behavior which exists throughout the phase transitions. This analysis suggests the importance of spectral changes in the terahertz range which are linear in frequency and temperature.« less

  5. Terahertz in-line digital holography of human hepatocellular carcinoma tissue.

    PubMed

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-13

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  6. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    PubMed Central

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-01-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer. PMID:25676705

  7. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    NASA Astrophysics Data System (ADS)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  8. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity.

    PubMed

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; Jarrahi, Mona

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-the-art photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means of a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1-4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on short-carrier-lifetime substrates.

  9. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity

    DOE PAGES

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; ...

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-theart photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means ofmore » a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1–4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on shortcarrier- lifetime substrates.« less

  10. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    NASA Astrophysics Data System (ADS)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.; Rathje, Christopher; Hornig, Graham J.; Sharum, Haille M.; Hoffman, James R.; Freeman, Mark R.; Hegmann, Frank A.

    2017-06-01

    Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 107 times larger than steady-state currents in conventional STM are used to image individual atoms on a silicon surface with 0.3 nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 × 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.

  11. Investigation of thermal denaturation of solid oxytocin by terahertz dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiangjun; Yang, Xiaojie; Liu, Jianjun; Du, Yong; Hong, Zhi

    2014-07-01

    We investigate the thermal denaturation of solid oxytocin using terahertz time domain spectroscopy(THz-TDS). When the peptide is heated up from 25°C to 107°C and cooled down to 25°C again, an irreversible decrease in its THz absorption coefficient and refractive index is observed. The corresponding frequency-dependent permittivity during heating is fitted by the Debye model with single relaxation time. The relaxation times during temperature rising agree very well with Arrhenius equation with the activation energy of 3.12kJ/(K•mol) as an indicator for its thermal denaturation difficulty.

  12. A simple system for 160GHz optical terahertz wave generation and data modulation

    NASA Astrophysics Data System (ADS)

    Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin

    2018-01-01

    A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.

  13. Terahertz carpet cloak based on ultrathin metasurface

    NASA Astrophysics Data System (ADS)

    Wei, Minggui; Yang, Quanlong; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2018-01-01

    Ultrathin metasurfaces with local phase compensation deliver new schemes to cloaking devices. We demonstrate a remarkable large size carpet cloak realized by an ultrathin metasurface at terahertz frequencies. The metasurface cloak is constructed by periodically arranging 12 different elements. The reflected wave front is perfectly reconstructed by an ultrathin metasurface cloak, which perform well under both intensity-sensitive and phase-sensitive detectors. The invisibility is verified when the cloak is placed on a reflecting triangular surface (bump). The multi-step discrete phase design method would greatly simplify the design process and is probable to achieve large-dimension cloaks, for applications in radar and antenna systems as a thin and easy-to-fabricate solution for radio and terahertz frequencies.

  14. Metallic scattering lifetime measurements with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Lea, Graham Bryce

    The momentum scattering lifetime is a fundamental parameter of metallic conduction that can be measured with terahertz time-domain spectroscopy. This technique has an important strength over optical reflectance spectroscopy: it is capable of measuring both the phase and the amplitude of the probing radiation. This allows simultaneous, independent measurements of the scattering lifetime and resistivity. Broadly, it is the precision of the phase measurement that determines the precision of scattering lifetime measurements. This thesis describes milliradian-level phase measurement refinements in the experimental technique and measures the conductivity anisotropy in the correlated electron system CaRuO3. These phase measurement refinements translate to femtosecond-level refinements in scattering lifetime measurements of thin metallic films. Keywords: terahertz time-domain spectroscopy, calcium ruthenate, ruthenium oxides, correlated electrons, experimental technique.

  15. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)

    2007-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  16. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S. (Inventor); Hu, Qing (Inventor)

    2009-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  17. Terahertz Sum-Frequency Excitation of a Raman-Active Phonon.

    PubMed

    Maehrlein, Sebastian; Paarmann, Alexander; Wolf, Martin; Kampfrath, Tobias

    2017-09-22

    In stimulated Raman scattering, two incident optical waves induce a force oscillating at the difference of the two light frequencies. This process has enabled important applications such as the excitation and coherent control of phonons and magnons by femtosecond laser pulses. Here, we experimentally and theoretically demonstrate the so far neglected up-conversion counterpart of this process: THz sum-frequency excitation of a Raman-active phonon mode, which is tantamount to two-photon absorption by an optical transition between two adjacent vibrational levels. Coherent control of an optical lattice vibration of diamond is achieved by an intense terahertz pulse whose spectrum is centered at half the phonon frequency of 40 THz. Remarkably, the carrier-envelope phase of the THz pulse is directly transferred into the phase of the lattice vibration. New prospects in general infrared spectroscopy, action spectroscopy, and lattice trajectory control in the electronic ground state emerge.

  18. Solid immersion terahertz imaging with sub-wavelength resolution

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Schadko, Aleksander O.; Lebedev, Sergey P.; Tolstoguzov, Viktor L.; Kurlov, Vladimir N.; Reshetov, Igor V.; Spektor, Igor E.; Skorobogatiy, Maksim; Yurchenko, Stanislav O.; Zaytsev, Kirill I.

    2017-05-01

    We have developed a method of solid immersion THz imaging—a non-contact technique employing the THz beam focused into evanescent-field volume and allowing strong reduction in the dimensions of THz caustic. We have combined numerical simulations and experimental studies to demonstrate a sub-wavelength 0.35λ0-resolution of the solid immersion THz imaging system compared to 0.85λ0-resolution of a standard imaging system, employing only an aspherical singlet. We have discussed the prospective of using the developed technique in various branches of THz science and technology, namely, for THz measurements of solid-state materials featuring sub-wavelength variations of physical properties, for highly accurate mapping of healthy and pathological tissues in THz medical diagnosis, for detection of sub-wavelength defects in THz non-destructive sensing, and for enhancement of THz nonlinear effects.

  19. Compact Solid State Terahertz Detectors

    DTIC Science & Technology

    2007-07-09

    We think that the noise in our Be doped GaAs quantum well structures is of the shot noise origin as in conventional GaAs QWIPs designed for mid...University of Leeds as follows: Within the frame of this project attention will be focussed on the low-frequency noise of the proposed devices. More...specifically, the Johnson and shot noise , as well as 1/f noise spectra, will be measured at various temperatures from 4 K up to 300 K. The figure

  20. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.

    PubMed

    Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P

    2012-01-01

    Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (<100 nW) of the radiation emitted from the quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.

  1. Impurity-assisted terahertz photoluminescence in quantum wells under conditions of interband stimulated emission

    NASA Astrophysics Data System (ADS)

    Makhov, I. S.; Panevin, V. Yu; Firsov, D. A.; Vorobjev, L. E.; Sofronov, A. N.; Vinnichenko, M. Ya; Maleev, N. A.; Vasil'ev, A. P.

    2018-03-01

    Terahertz and near-infrared photoluminescence under conditions of interband stimulated emission are studied in n-GaAs/AlGaAs quantum well laser structure. The observed terahertz emission is related to the optical transitions of nonequilibrium electrons from the first electron subband and excited donor states to donor ground states in quantum wells. The opportunity to increase the intensity of impurity-assisted terahertz emission due to interband stimulated emission with the participation of impurity centres is demonstrated.

  2. Phonon Mode Transformation across the Orthohombic-Tetragonal Phase Transition in a Lead-Iodide Perovskite CH3NH3PbI3: a Terahertz Time-Domain Spectroscopy Approach

    NASA Astrophysics Data System (ADS)

    Chia, Elbert E. M.; La-O-Vorakiat, Chan; Kadro, Jeannette; Salim, Teddy; Zhao, Daming; Ahmed, Towfiq; Lam, Yeng Ming; Zhu, Jian-Xin; Marcus, Rudolph; Michel-Beyerle, Maria-Elisabeth

    Using terahertz time-domain spectroscopy (THz-TDS), we study the temperature-dependent phonon modes of the organometallic lead iodide perovskite CH3NH3PbI3 thin film across the terahertz (0.5-3 THz) and temperature (20-300 K) ranges. These modes are related to the vibration of the Pb-I bonds. We found that two phonon modes in the tetragonal phase at room temperature split into four modes in the low-temperature orthorhombic phase. By use of the Lorentz model fitting, we analyze the critical behavior of this phase transition. King Mongkut's University of Technology Thonburi (Grant No. SCI58-003), Singapore MOE Tier 1 (RG13/12, RG123/14), ONR, ARO, NTU Biophysics Center, LANL LDRD, LANL CINT.

  3. Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review.

    PubMed

    Haaser, Miriam; Gordon, Keith C; Strachan, Clare J; Rades, Thomas

    2013-12-05

    Solid dosage forms are the pharmaceutical drug delivery systems of choice for oral drug delivery. These solid dosage forms are often coated to modify the physico-chemical properties of the active pharmaceutical ingredients (APIs), in particular to alter release kinetics. Since the product performance of coated dosage forms is a function of their critical coating attributes, including coating thickness, uniformity, and density, more advanced quality control techniques than weight gain are required. A recently introduced non-destructive method to quantitatively characterise coating quality is terahertz pulsed imaging (TPI). The ability of terahertz radiation to penetrate many pharmaceutical materials enables structural features of coated solid dosage forms to be probed at depth, which is not readily achievable with other established imaging techniques, e.g. near-infrared (NIR) and Raman spectroscopy. In this review TPI is introduced and various applications of the technique in pharmaceutical coating analysis are discussed. These include evaluation of coating thickness, uniformity, surface morphology, density, defects and buried structures as well as correlation between TPI measurements and drug release performance, coating process monitoring and scale up. Furthermore, challenges and limitations of the technique are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging.

    PubMed

    Zeitler, J Axel; Shen, Yaochun; Baker, Colin; Taday, Philip F; Pepper, Michael; Rades, Thomas

    2007-02-01

    Three dimensional terahertz pulsed imaging (TPI) was evaluated as a novel tool for the nondestructive characterization of different solid oral dosage forms. The time-domain reflection signal of coherent pulsed light in the far infrared was used to investigate film-coated tablets, sugar-coated tablets, multilayered controlled release tablets, and soft gelatin capsules. It is possible to determine the spatial and statistical distribution of coating thickness in single and multiple coated products using 3D TPI. The measurements are nondestructive even for layers buried underneath other coating structures. The internal structure of coating materials can be analyzed. As the terahertz signal penetrates up to 3 mm into the dosage form interfaces between layers in multilayered tablets can be investigated. In soft gelatin capsules it is possible to measure the thickness of the gelatin layer and to characterize the seal between the gelatin layers for quality control. TPI is a unique approach for the nondestructive characterization and quality control of solid dosage forms. The measurements are fast and fully automated with the potential for much wider application of the technique in the process analytical technology scheme. Copyright (c) 2006 Wiley-Liss, Inc.

  5. Broadband non-polarizing terahertz beam splitters with variable split ratio

    NASA Astrophysics Data System (ADS)

    Wei, Minggui; Xu, Quan; Wang, Qiu; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Tian, Zhen; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-08-01

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  6. Synthetic aperture in terahertz in-line digital holography for resolution enhancement.

    PubMed

    Huang, Haochong; Rong, Lu; Wang, Dayong; Li, Weihua; Deng, Qinghua; Li, Bin; Wang, Yunxin; Zhan, Zhiqiang; Wang, Xuemin; Wu, Weidong

    2016-01-20

    Terahertz digital holography is a combination of terahertz technology and digital holography. In digital holography, the imaging resolution is the key parameter in determining the detailed quality of a reconstructed wavefront. In this paper, the synthetic aperture method is used in terahertz digital holography and the in-line arrangement is built to perform the detection. The resolved capability of previous terahertz digital holographic systems restricts this technique to meet the requirement of practical detection. In contrast, the experimental resolved power of the present method can reach 125 μm, which is the best resolution of terahertz digital holography to date. Furthermore, the basic detection of a biological specimen is conducted to show the practical application. In all, the results of the proposed method demonstrate the enhancement of experimental imaging resolution and that the amplitude and phase distributions of the fine structure of samples can be reconstructed by using terahertz digital holography.

  7. Active Metamaterials for Terahertz Communication and Imaging

    NASA Astrophysics Data System (ADS)

    Rout, Saroj

    In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR). We have computationally demonstrated a novel pictorial modulation technique showing N/log2(N) improvement in bandwidth using a N-tile SLM compared to standard spatial modulation using a single-pixel detector. Finally, we demonstrate a path to realize a terahertz focal plane array (FPA) using a commercial 0.18 mum CMOS foundry process. Through EM simulation and circuit simulation we have demonstrated a metamaterial based THz detectors at 230-325 GHz that can be used in a focal plane array.

  8. Creating Rydberg electron wave packets using terahertz pulses

    NASA Astrophysics Data System (ADS)

    Bromage, Jake

    1999-10-01

    In this thesis I present experiments in which we excited classical-limit states of an atom using terahertz pulses. In a classical-limit state, an atom's outer electron is confined to a wave packet that orbits the core along a classical trajectory. Researchers have excited states with classical traits, but wave packets localized in all three dimensions have proved elusive. Theoretical studies have shown such states can be created using terahertz pulses. Using these techniques, we created a linear-orbit wave packet (LOWP), that is three-dimensionally localized and orbits along a line on one side of the atom's core. Terahertz pulses are sub-picosecond bursts of far- infrared radiation. Unlike ultrashort optical pulses, the electric field of terahertz pulses barely completes a single cycle. Our simulations of the atom-pulse interaction show that this electric field profile is critical in determining the quality of the wave packet. To characterize our terahertz pulses, we invented dithered-edge sampling which time- resolves the electric field using a photoconductive receiver and a triggered attenuator. We also studied how pulses are distorted after propagating through metallic structures, and used our findings to design our atomic experiments. We excited wave packets in atomic sodium using a two-step process. First, we used tunable, nanosecond dye lasers to excite an extreme Stark state. Next, we used a terahertz pump pulse to coherently redistribute population among extreme Stark states in neighboring manifolds. Interference between the final states produces a localized, dynamic LOWP. To analyze the LOWP, we ionized it with a stronger terahertz probe pulse, varying the pump-probe delay to map out its motion. We observed two strong LOWP signatures. Changing the static electric field produced small changes (2%) in the orbital period that agreed with our theoretical predictions. Secondly, because the LOWP scatters off the core, the pump-probe signal depended on the direction of the kick the LOWP received from the robe pulse. These observations, combined with our detailed simulations that used sodium parameters and the actual shape of the terahertz pulse, lead us to conclude that we excited a LOWP.

  9. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2016-06-21

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.

  10. Spectral Narrowing of a Varactor-Integrated Resonant-Tunneling-Diode Terahertz Oscillator by Phase-Locked Loop

    NASA Astrophysics Data System (ADS)

    Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-12-01

    Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.

  11. Optical Properties and Crystallization of Natural Waxes at Several Annealing Temperatures: a Terahertz Time-Domain Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Tian, Lu; Xu, Xinlong

    2018-03-01

    The thermal analysis and optical properties of paraffin wax, beeswax, and liquid paraffin annealed at variable temperatures have been conducted using terahertz time-domain spectroscopy (THz-TDS) coupled with SEM methods. The characteristic optical properties of natural waxes can be used to analyze natural wax adulteration. The lamellar structure of paraffin wax and beeswax grew by a sheet of chain expansion. Furthermore, the crystallization process of paraffin wax can be assigned: rotator-solid transition and liquid-solid ones. According to the temperature-dependent refractive index curves, the refractive index of paraffin wax varies from large to small followed by rotator-liquid transition, untreated one, and liquid-solid one, respectively. The results indicated that THz-TDS has been proved to be of great potential in identification the crystallization of waxes.

  12. Towards terahertz detection and calibration through spontaneous parametric down-conversion in the terahertz idler-frequency range generated by a 795 nm diode laser system

    NASA Astrophysics Data System (ADS)

    Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.

    2018-05-01

    We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.

  13. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  14. Josephson Photodetectors via Temperature-to-Phase Conversion

    NASA Astrophysics Data System (ADS)

    Virtanen, P.; Ronzani, A.; Giazotto, F.

    2018-05-01

    We theoretically investigate the temperature-to-phase conversion (TPC) process occurring in dc superconducting quantum interferometers based on superconductor-normal-metal-superconductor (S -N -S ) mesoscopic Josephson junctions. In particular, we predict the temperature-driven rearrangement of the phase gradients in the interferometer under the fixed constraints of fluxoid quantization and supercurrent conservation. This mechanism allows sizeable phase variations across the junctions for suitable structure parameters and temperatures. We show that the TPC can be a basis for sensitive single-photon sensors or bolometers. We propose a radiation detector realizable with conventional materials and state-of-the-art nanofabrication techniques. Integrated with a superconducting quantum-interference proximity transistor as a readout setup, an aluminum-based TPC calorimeter can provide a large signal-to-noise ratio >100 in the 10-GHz-10-THz frequency range and a resolving power larger than 1 02 below 50 mK for terahertz photons. In the bolometric operation, electrical noise equivalent power of approximately 10-22 W /√{Hz } is predicted at 50 mK. This device can be attractive as a cryogenic single-photon sensor operating in the giga- and terahertz regime with applications in dark-matter searches.

  15. Terahertz photoluminescence from S.I.-GaAs by below gap excitation via EL2 level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Yutaka, E-mail: oyama@material.tohoku.ac.jp; Dezaki, Hikari; Shimizu, Yusaku

    2015-01-12

    Terahertz emission by radiative transitions in semi-conductors via shallow impurity states is investigated. We report on the observation of terahertz photoluminescence from S.I.-GaAs by below gap excitation via EL2 level which is located at the center of band gap. In order to investigate the terahertz wave emission mechanisms, the emission spectra and temperature dependence of the emission intensity are evaluated. It is shown that intense terahertz emission from S.I.-GaAs over 120 K is observed due to the thermal recovery of photo-quenched EL2 meta-stable state, and that the emission peak frequency looks to be attributed to the shallow level energy in GaAs.

  16. Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating.

    PubMed

    Lin, Chia-Jen; Li, Yu-Tai; Hsieh, Cho-Fan; Pan, Ru-Pin; Pan, Ci-Ling

    2008-03-03

    This investigation demonstrates the feasibility of a magnetically tunable liquid crystal phase grating for the terahertz wave. The phase grating can be used as a beam splitter. The ratio of the zeroth and first-order diffracted THz-beams (0.3 THz) polarized in a direction perpendicular to that of the grooves of the grating can be tuned from 4:1 to 1:2. When the THz wave is polarized in any other direction, this device can be operated as a polarizing beam splitter.

  17. Guided Terahertz Waves for Characterizing Explosives

    DTIC Science & Technology

    2009-01-01

    Spectroscopy of Nanometer Water Layers,” Optics Letters 29, 1617–1619 (2004). 4 J. S. Melinger, N. Laman , S. Sree Harsha, and D. Grischkowsky, “Line...2006). 5 N. Laman , S. Sree Harsha, D. Grischkowsky, and J.S. Melinger, “7 GHz Resolution Waveguide THz Spectroscopy of Explosives Related Solids...Showing New Features,” Optics Express 16, 4094–4105 (2008). 6 J.S. Melinger, N. Laman , and D. Grischkowsky, “The Underlying Terahertz Vibrational

  18. Tutorial: Terahertz beamforming, from concepts to realizations

    NASA Astrophysics Data System (ADS)

    Headland, Daniel; Monnai, Yasuaki; Abbott, Derek; Fumeaux, Christophe; Withayachumnankul, Withawat

    2018-05-01

    The terahertz range possesses significant untapped potential for applications including high-volume wireless communications, noninvasive medical imaging, sensing, and safe security screening. However, due to the unique characteristics and constraints of terahertz waves, the vast majority of these applications are entirely dependent upon the availability of beam control techniques. Thus, the development of advanced terahertz-range beam control techniques yields a range of useful and unparalleled applications. This article provides an overview and tutorial on terahertz beam control. The underlying principles of wavefront engineering include array antenna theory and diffraction optics, which are drawn from the neighboring microwave and optical regimes, respectively. As both principles are applicable across the electromagnetic spectrum, they are reconciled in this overview. This provides a useful foundation for investigations into beam control in the terahertz range, which lies between microwaves and infrared light. Thereafter, noteworthy experimental demonstrations of beam control in the terahertz range are discussed, and these include geometric optics, phased array devices, leaky-wave antennas, reflectarrays, and transmitarrays. These techniques are compared and contrasted for their suitability in applications of terahertz waves.

  19. Comparison of Intermolecular Forces in Anhydrous Sorbitol and Solvent Cocrystals.

    PubMed

    Dierks, Teresa M; Korter, Timothy M

    2017-08-03

    The hygroscopicity of solid sorbitol is important for its utilization as a sweetener in the pharmaceutical and food industries. The molecular foundations of sorbitol hydration characteristics are explored here using two solvated cocrystals, sorbitol-water and sorbitol-pyridine. In this work, solid-state density functional theory and terahertz time-domain spectroscopy were used to evaluate the relative stabilities of these cocrystals as compared to anhydrous sorbitol in terms of conformational and cohesive energies. The modification of the hydrogen-bonding network in crystalline sorbitol by solvent molecules gives new insight into the origins of the notable stability of sorbitol-water as compared to similar solids such as mannitol-water. In particular, the energy analysis reveals that the relative instability of the mannitol hydrate is based primarily in the lack of water-water interactions which provide considerable stabilization in the sorbitol-water crystal.

  20. Origins of hydration differences in homochiral and racemic crystals of aspartic acid.

    PubMed

    Juliano, Thomas R; Korter, Timothy M

    2015-02-26

    The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.

  1. Millimetre wave and terahertz technology for the detection of concealed threats: a review

    NASA Astrophysics Data System (ADS)

    Kemp, Michael C.

    2006-09-01

    There has been intense interest in the use of millimetre wave and terahertz technology for the detection of concealed weapons, explosives and other threats. Electromagnetic waves at these frequencies are safe, penetrate barriers and have short enough wavelengths to allow discrimination between objects. In addition, many solids including explosives have characteristic spectroscopic signatures at terahertz wavelengths which can be used to identify them. This paper reviews the progress which has been made in recent years and identifies the achievements, challenges and prospects for these technologies in checkpoint people screening, stand off detection of improvised explosive devices (IEDs) and suicide bombers as well as more specialized screening tasks.

  2. Signature analysis of ballistic missile warhead with micro-nutation in terahertz band

    NASA Astrophysics Data System (ADS)

    Li, Ming; Jiang, Yue-song

    2013-08-01

    In recent years, the micro-Doppler effect has been proposed as a new technique for signature analysis and extraction of radar targets. The ballistic missile is known as a typical radar target and has been paid many attentions for the complexities of its motions in current researches. The trajectory of a ballistic missile can be generally divided into three stages: boost phase, midcourse phase and terminal phase. The midcourse phase is the most important phase for radar target recognition and interception. In this stage, the warhead forms a typical micro-motion called micro-nutation which consists of three basic micro-motions: spinning, coning and wiggle. This paper addresses the issue of signature analysis of ballistic missile warhead in terahertz band via discussing the micro-Doppler effect. We establish a simplified model (cone-shaped) for the missile warhead followed by the micro-motion models including of spinning, coning and wiggle. Based on the basic formulas of these typical micro-motions, we first derive the theoretical formula of micro-nutation which is the main micro-motion of the missile warhead. Then, we calculate the micro-Doppler frequency in both X band and terahertz band via these micro-Doppler formulas. The simulations are given to show the superiority of our proposed method for the recognition and detection of radar micro targets in terahertz band.

  3. Two-dimensional tomographic terahertz imaging by homodyne self-mixing.

    PubMed

    Mohr, Till; Breuer, Stefan; Giuliani, G; Elsäßer, Wolfgang

    2015-10-19

    We realize a compact two-dimensional tomographic terahertz imaging experiment involving only one photoconductive antenna (PCA) simultaneously serving as a transmitter and receiver of the terahertz radiation. A hollow-core Teflon cylinder filled with α-Lactose monohydrate powder is studied at two terahertz frequencies, far away and at a specific absorption line of the powder. This sample is placed between the antenna and a chopper wheel, which serves as back reflector of the terahertz radiation into the PCA. Amplitude and phase information of the continuous-wave (CW) terahertz radiation are extracted from the measured homodyne self-mixing (HSM) signal after interaction with the cylinder. The influence of refraction is studied by modeling the set-up utilizing ZEMAX and is discussed by means of the measured 1D projections. The tomographic reconstruction by using the Simultaneous Algebraic Reconstruction Technique (SART) allows to identify both object geometry and α-Lactose filling.

  4. Terahertz Measurement of the Water Content Distribution in Wood Materials

    NASA Astrophysics Data System (ADS)

    Bensalem, M.; Sommier, A.; Mindeguia, J. C.; Batsale, J. C.; Pradere, C.

    2018-02-01

    Recently, THz waves have been shown to be an effective technique for investigating the water diffusion within porous media, such as biomaterial or insulation materials. This applicability is due to the sufficient resolution for such applications and the safe levels of radiation. This study aims to achieve contactless absolute water content measurements at a steady state case in semi-transparent solids (wood) using a transmittance THz wave range setup. First, a calibration method is developed to validate an analytical model based on the Beer-Lambert law, linking the absorption coefficient, the density of the solid, and its water content. Then, an estimation of the water content on a local scale in a transient-state case (drying) is performed. This study shows that THz waves are an effective contactless, safe, and low-cost technique for the measurement of water content in a porous medium, such as wood.

  5. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms.

    PubMed

    Zeitler, J Axel; Gladden, Lynn F

    2009-01-01

    Tomographic imaging techniques offer new prospects for a better understanding of the quality, performance and release mechanisms of pharmaceutical solid dosage forms. It is only over the last fifteen years that tomography has been applied for the in-vitro characterisation of dosage forms. This review aims to introduce the concept of tomography in a pharmaceutical context, and describes the current state-of-the-art of the four most promising techniques: X-ray computed microtomography, magnetic resonance imaging, terahertz imaging and optical coherence tomography. The basic working principles of the techniques are introduced and the current pharmaceutical applications of the technologies are discussed, together with a comparison of their specific strengths and weaknesses. Possible future developments in these fields are also discussed.

  6. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shenggang, E-mail: liusg@uestc.edu.cn; Hu, Min; Chen, Xiaoxing

    2014-05-19

    Although surface plasmon polaritons (SPPs) resonance in graphene can be tuned in the terahertz regime, transforming such SPPs into coherent terahertz radiation has not been achieved. Here, we propose a graphene-based coherent terahertz radiation source with greatly enhanced intensity. The radiation works at room temperature, it is tunable and can cover the whole terahertz regime. The radiation intensity generated with this method is 400 times stronger than that from SPPs at a conventional dielectric or semiconducting surface and is comparable to that from the most advanced photonics source such as a quantum cascade laser. The physical mechanism for this strongmore » radiation is presented. The phase diagrams defining the parameters range for the occurrence of radiation is also shown.« less

  7. Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.

    PubMed

    Greig, S R; Elezzabi, A Y

    2014-11-17

    We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.

  8. Investigation of broadband terahertz generation from metasurface

    NASA Astrophysics Data System (ADS)

    Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E. I.; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M.

    2018-05-01

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.

  9. Investigation of broadband terahertz generation from metasurface.

    PubMed

    Fang, Ming; Niu, Kaikun; Huang, Zhiaxiang; Sha, Wei E I; Wu, Xianliang; Koschny, Thomas; Soukoulis, Costas M

    2018-05-28

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing nonlinear plasmonic metamaterials.

  10. Terahertz wave parametric oscillations at polariton resonance using a MgO:LiNbO3 crystal.

    PubMed

    Li, Zhongyang; Bing, Pibin; Yuan, Sheng; Xu, Degang; Yao, Jianquan

    2015-06-20

    Terahertz wave (THz-wave) parametric oscillations with a noncollinear phase-matching scheme at polariton resonance using a MgO:LiNbO3 crystal with a surface-emitted configuration are investigated. We investigate frequency tuning characteristics of a THz-wave via varying the wavelength of the pump wave and phase-matching angle. The effective parametric gain length under the noncollinear phase-matching condition is calculated. Parametric gain and absorption characteristics of a THz-wave in the vicinity of polariton resonances are analyzed.

  11. Terahertz ptychography.

    PubMed

    Valzania, Lorenzo; Feurer, Thomas; Zolliker, Peter; Hack, Erwin

    2018-02-01

    We realized a phase retrieval technique using terahertz (THz) radiation as an alternative to THz digital holography, named THz ptychography. Ptychography has been used in x-ray imaging as a groundbreaking improvement of conventional coherent diffraction imaging. Here we show that ptychography can be performed at THz frequencies too. We reconstructed an amplitude and a phase object with both simulated and real data. Lateral resolution accounts to <2λ, while depth variations as low as λ/30 can be assessed.

  12. Strong Broadband Terahertz Optical Activity through Control of the Blaschke Phase with Chiral Metasurfaces

    NASA Astrophysics Data System (ADS)

    Cole, Michael A.; Chen, Wen-chen; Liu, Mingkai; Kruk, Sergey S.; Padilla, Willie J.; Shadrivov, Ilya V.; Powell, David A.

    2017-07-01

    We demonstrate terahertz chiral metamaterials that achieve resonant transmission and strong optical activity. This response is realized in a metasurface coupled to its Babinet complement, with additional twist. Uniquely, the optical activity achieved in this type of metamaterial is weakly dispersive around the resonant transmission maxima, but it can be highly dispersive around the transmission minima. It has recently been shown that this unique optical activity response is closely related to zeros in the transmission spectra of circular polarizations through the Kramers-Kronig relations and strong resonant features in the optical activity spectrum corresponding to the Blaschke phase terms. Here we demonstrate how modifying the meta-atom geometry greatly affects the location and magnitude of these Blaschke phase terms. We study three different meta-atoms, which are variations on the simple cross structure. Their responses are measured using terahertz time-domain spectroscopy and analyzed via numerical simulations.

  13. Observations in the 1.3 and 1.5 THz atmospheric windows with the Receiver Lab Telescope

    NASA Technical Reports Server (NTRS)

    Marrone, Daniel P.; Blundell, Raymond; Tong, Edward; Paine, Scott N.; Loudkov, Denis; Kawamura, Jonathan H.; Luhr, Daniel; Barrientos, Claudio

    2005-01-01

    The Receiver Lab Telescope (RLT) is a groundbased terahertz telescope; it is currently the only instrument producing astronomical data between 1 and 2 THz. The capabilities of the RLT have been expanding since observations began in late 2002. Initial observations were limited to the 850 GHz and 1.03 THz windows due to the availability of solid state local oscillators. In the last year we have begun observations with new local oscillators for the 1.3 and 1.5 THz atmospheric windows.

  14. Terahertz spectroscopic investigation of gallic acid and its monohydrate

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Shaoping; Wang, Chenyang; Zou, Tao; Pan, Tingting; Zhang, Jianbing; Xu, Zhou; Ren, Guanhua; Zhao, Hongwei

    2018-02-01

    The low-frequency spectra of gallic acid (GA) and its monohydrate were investigated by terahertz time-domain spectroscopy (THz-TDS) in the range of 0.5 to 4.5 THz. The dehydration process of GA monohydrate was monitored on-line. The kinetic mechanism of the dehydration process was analyzed depending on the THz spectral change at different temperatures. The results indicate that the diffusion of water molecule dominates the speed of the entire dehydration process. Solid-state density functional theory (DFT) calculations of the vibrational modes of both GA and its monohydrate were performed based on their crystalline structures for better interpreting the experimental THz spectra. The results demonstrate that the characterized features of GA mainly originate from the collective vibrations of molecules. And the interactions between GA and water molecules are responsible for THz fingerprint of GA monohydrate. Multi-techniques including differential scanning calorimetry and thermogravimetry (DSC-TG) and powder X-ray diffraction (PXRD) were also carried out to further investigate GA and its monohydrate.

  15. Determination of the polarization states of an arbitrary polarized terahertz beam: Vectorial vortex analysis

    PubMed Central

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J. Scott; Otani, Yukitoshi

    2015-01-01

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1–1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams. PMID:25799965

  16. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis.

    PubMed

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J Scott; Otani, Yukitoshi

    2015-03-24

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1-1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams.

  17. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    PubMed Central

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-01-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum. PMID:27225031

  18. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution.

    PubMed

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-26

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  19. Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements.

    PubMed

    Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis

    2011-02-28

    We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.

  20. Terahertz plasmon and surface-plasmon modes in hollow nanospheres

    PubMed Central

    2012-01-01

    We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121

  1. Terahertz spectroscopic evidence of non-Fermi-liquid-like behavior in structurally modulated PrNi O3 thin films

    NASA Astrophysics Data System (ADS)

    Phanindra, V. Eswara; Agarwal, Piyush; Rana, D. S.

    2018-01-01

    The intertwined and competing energy scales of various interactions in rare-earth nickelates R Ni O3 (R =La to Lu) hold potential for a wide range of exotic ground states realized upon structural modulation. Using terahertz (THz) spectroscopy, the low-energy dynamics of a novel non-Fermi liquid (NFL) metallic phase induced in compressive PrNi O3 thin film was studied by evaluating the quasiparticle scattering rate in the light of two distinct models over a wide temperature range. First, evaluating THz conductivity in the framework of extended Drude model, the frequency-dependent scattering rate is found to deviate from the Landau Fermi liquid (LFL) behavior, thus, suggesting NFL-like phase at THz frequencies. Second, fitting THz conductivity to the multiband Drude-Lorentz model reveals the band-dependent scattering rates and provides microscopic interpretation of the carriers contributing to the Drude modes. This is first evidence of NFL-like behavior in nickelates at THz frequencies consistent with dc conductivity, which also suggests that THz technology is indispensable in understanding emerging electronic phases and associated phenomena. We further demonstrate that the metal-insulator transition in nickelates has the potential to design efficient THz modulators.

  2. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  3. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-03-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  4. Development of terahertz laser diagnostics for electron density measurements.

    PubMed

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2008-10-01

    A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 microm of a CH(3)OD laser pumped by a cw 9R(8) CO(2) laser line. The laser wavelength around 50 microm is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.

  5. Controlled Terahertz Birefringence in Stretched Poly(lactic acid) Films Investigated by Terahertz Time-Domain Spectroscopy and Wide-Angle X-ray Scattering.

    PubMed

    Iwasaki, Hotsumi; Nakamura, Madoka; Komatsubara, Nozomu; Okano, Makoto; Nakasako, Masayoshi; Sato, Harumi; Watanabe, Shinichi

    2017-07-20

    We report a correlation between the dielectric property and structure of stretched poly(lactic acid) (PLA) films, revealed by polarization-sensitive terahertz time-domain spectroscopy and two-dimensional (2D) wide-angle X-ray scattering (WAXS). The experiments evidence that the dielectric function of the PLA film becomes more anisotropic with increasing draw ratio (DR). This behavior is explained by a classical Lorentz oscillator model assuming polarization-dependent absorption. The birefringence can be systematically altered from 0 to 0.13 by controlling DR. The combination of terahertz spectroscopy and 2D WAXS measurement reveals a clear correlation between the birefringence in the terahertz frequency domain and the degree of orientation of the PLA molecular chains. These findings imply that the birefringence is a result of the orientation of the PLA chains with anisotropic macromolecular vibration modes. Because of a good controllability of the birefringence, polymer-based materials will provide an attractive materials system for phase retarders in the terahertz frequency range.

  6. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.

    PubMed

    Vijayraghavan, Karun; Jiang, Yifan; Jang, Min; Jiang, Aiting; Choutagunta, Karthik; Vizbaras, Augustinas; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A

    2013-01-01

    Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade laser sources based on an optimized non-collinear Cherenkov difference-frequency generation scheme that demonstrates dramatic improvements in performance. Devices emitting at 4 THz display a mid-infrared-to-terahertz conversion efficiency in excess of 0.6 mW W(-2) and provide nearly 0.12 mW of peak power output. Devices emitting at 2 and 3 THz fabricated on the same chip display 0.09 and 0.4 mW W(-2) conversion efficiencies at room temperature, respectively. High terahertz-generation efficiency and relaxed phase-matching conditions offered by the Cherenkov scheme allowed us to demonstrate, for the first time, an external-cavity terahertz quantum cascade laser source tunable between 1.70 and 5.25 THz.

  7. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires.

    PubMed

    Yan, Jie-Yun

    2018-06-13

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  8. Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Yan, Jie-Yun

    2018-06-01

    Excitonic terahertz photoconductivity in intrinsic semiconductor nanowires is studied. Based on the excitonic theory, the numerical method to calculate the photoconductivity spectrum in the nanowires is developed, which can simulate optical pump terahertz-probe spectroscopy measurements on real nanowires and thereby calculate the typical photoconductivity spectrum. With the help of the energetic structure deduced from the calculated linear absorption spectrum, the numerically observed shift of the resonant peak in the photoconductivity spectrum is found to result from the dominant exciton transition between excited or continuum states to the ground state, and the quantitative analysis is in good agreement with the quantum plasmon model. Besides, the dependence of the photoconductivity on the polarization of the terahertz field is also discussed. The numerical method and supporting theoretical analysis provide a new tool for experimentalists to understand the terahertz photoconductivity in intrinsic semiconductor nanowires at low temperatures or for nanowires subjected to below bandgap photoexcitation, where excitonic effects dominate.

  9. Investigation of broadband terahertz generation from metasurface

    DOE PAGES

    Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...

    2018-01-01

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less

  10. Investigation of broadband terahertz generation from metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ming; Niu, Kaikun; Huang, ZHixiang

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less

  11. Investigation of broadband terahertz generation from metasurface

    DOE PAGES

    Fang, Ming; Niu, Kaikun; Huang, ZHixiang; ...

    2018-05-21

    The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designingmore » nonlinear plasmonic metamaterials.« less

  12. Parametric amplification of a superconducting plasma wave

    DOE PAGES

    Rajasekaran, S.; Casandruc, E.; Laplace, Y.; ...

    2016-07-11

    Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor–metal oscillations and soliton formation. In this paper, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Finally, parametric amplification is sensitivemore » to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.« less

  13. Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials

    NASA Astrophysics Data System (ADS)

    Missonnier, Marc; Heuzé, Olivier

    2006-07-01

    When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.

  14. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.

    PubMed

    Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen

    2018-01-19

    As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  15. Phonon Mode Transformation Across the Orthohombic–Tetragonal Phase Transition in a Lead Iodide Perovskite CH 3 NH 3 PbI 3 : A Terahertz Time-Domain Spectroscopy Approach

    DOE PAGES

    La-o-vorakiat, Chan; Xia, Huanxin; Kadro, Jeannette; ...

    2015-12-03

    Here, we study the temperature-dependent phonon modes of the organometallic lead iodide perovskite CH 3NH 3PbI 3 thin film across the terahertz (0.5–3 THz) and temperature (20–300 K) ranges. These modes are related to the vibration of the Pb–I bonds. We found that two phonon modes in the tetragonal phase at room temperature split into four modes in the low-temperature orthorhombic phase. By use of the Lorentz model fitting, we also analyze the critical behavior of this phase transition. The carrier mobility values calculated from the low-temperature phonon mode frequencies, via two theoretical approaches, are found to agree reasonably withmore » the experimental value (~2000 cm 2 V –1 s –1) from a previous time-resolved THz spectroscopy work. Thus, we have established a possible link between terahertz phonon modes and the transport properties of perovskite-based solar cells.« less

  16. An effective way to reduce water absorption to terahertz

    NASA Astrophysics Data System (ADS)

    Wu, Yaxiong; Su, Bo; He, Jingsuo; Zhang, Cong; Zhang, Hongfei; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    Since many vibrations and rotational levels of biomolecules fall within the THz band, THz spectroscopy can be used to identify biological samples. In addition, most biomolecules need to maintain their biological activity in a liquid environment, but water as polar substance has strong absorption to the THz wave. Thus, it is difficult to detect the sample information in aqueous solution using THz wave. In order to prevent the information of biological samples were masked in the solution, many research methods were used to explore how to reduce the water absorption of terahertz. In this paper, we have developed a real-time chemical methodology through transmission Terahertz time-domain spectroscopy (THz-TDS) system. The material of Zeonor 1020r is used as substrate and cover plate, and PDMS as channel interlayer. The transmission of the empty microfluidic chip is more than 80% in the range of 0.2-2.6 THz by THz-TDS system. Then, experiments were carried out using chips, which were filled with different volumes of 1, 2- propanediol, and it has been proved that the microfluidic chip could reduce the water absorption of terahertz. Finally, in order to further explore the reduction of terahertz to water absorption, we inject different concentrations of electrolyte to the chip. The results show that with the addition of different electrolytes, terahertz transmission line has evident changes. It can be taken into account that the electrolyte has different effects about the hydrogen bonds in the aqueous solution. Some of them can promote water molecules clusters, while others destroy them. Based on the basis of microfluidic chip, the discovery of this phenomenon can provide a way that reduces water absorption of terahertz. This work has laid a solid foundation for the subsequent study in reducing water absorption of terahertz.

  17. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    ERIC Educational Resources Information Center

    Long, Gary J.; Leighly, H. P., Jr.

    1982-01-01

    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  18. Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate

    PubMed Central

    Coslovich, Giacomo; Kemper, Alexander F.; Behl, Sascha; Huber, Bernhard; Bechtel, Hans A.; Sasagawa, Takao; Martin, Michael C.; Lanzara, Alessandra; Kaindl, Robert A.

    2017-01-01

    The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La1.75Sr0.25NiO4, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen—as witnessed by time-delayed suppression of zone-folded Ni–O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids. PMID:29202025

  19. [Research progress of Terahertz wave technology in quality measurement of food and agricultural products].

    PubMed

    Yan, Zhan-Ke; Zhang, Hong-Jian; Ying, Yi-Bin

    2007-11-01

    The quality concern of food and agricultural products has become more and more significant. The related technologies for nondestructive measurement or quality control of food products have been the focus of many researches. Terahertz (THz) radiation, or THz wave, the least explored region of the spectrum, is the electromagnetic wave that lies between mid-infrared and microwave radiation, which has very important research and application values. THz spectroscopy and THz imaging technique are the two main applications of THz wave. During the past decade, THz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials. Recently, THz technology has gained a lot of attention of researchers in various fields from biological spectral analysis to bio-medical imaging due to its unique features compared with microwave and optical waves. In the present paper, the properties of THz wave and its uniqueness in sensing and imaging applications were discussed. The most recent researches on THz technology used in food quality control and agricultural products inspection were summarized. The prospect of this novel technology in agriculture and food industry was also discussed.

  20. Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate

    DOE PAGES

    Coslovich, Giacomo; Kemper, Alexander F.; Behl, Sascha; ...

    2017-11-24

    The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La 1.75Sr 0.25NiO 4, yielding novel insight into its electronic and structural dynamics following an ultrafast opticalmore » quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen—as witnessed by time-delayed suppression of zone-folded Ni–O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. As a result, the hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids.« less

  1. Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coslovich, Giacomo; Kemper, Alexander F.; Behl, Sascha

    The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La 1.75Sr 0.25NiO 4, yielding novel insight into its electronic and structural dynamics following an ultrafast opticalmore » quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen—as witnessed by time-delayed suppression of zone-folded Ni–O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. As a result, the hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids.« less

  2. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.

    PubMed

    Pronin, A V; Goncharov, Yu G; Fischer, T; Wosnitza, J

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r = absolute value(r) x exp(i phi(R)) of a solid at frequencies of 1-50 cm(-1) (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  3. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode

    NASA Astrophysics Data System (ADS)

    Pronin, A. V.; Goncharov, Yu. G.; Fischer, T.; Wosnitza, J.

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r̂=|r̂|ṡexp(iφR) of a solid at frequencies of 1-50 cm-1 (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  4. On the Possibility of Studying the Reactions of the Thermal Decomposition of Energy Substances by the Methods of High-Resolution Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaks, V. L.; Domracheva, E. G.; Chernyaeva, M. B.; Pripolzin, S. I.; Revin, L. S.; Tretyakov, I. V.; Anfertyev, V. A.; Yablokov, A. A.; Lukyanenko, I. A.; Sheikov, Yu. V.

    2018-02-01

    We show prospects for using the method of high-resolution terahertz spectroscopy for a continuous analysis of the decomposition products of energy substances in the gas phase (including short-lived ones) in a wide temperature range. The experimental setup, which includes a terahertz spectrometer for studying the thermal decomposition reactions, is described. The results of analysis of the gaseous decomposition products of energy substances by the example of ammonium nitrate heated from room temperature to 167°C are presented.

  5. Broadband gate-tunable terahertz plasmons in graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Yao, Baicheng; Liu, Yuan; Huang, Shu-Wei; Choi, Chanyeol; Xie, Zhenda; Flor Flores, Jaime; Wu, Yu; Yu, Mingbin; Kwong, Dim-Lee; Huang, Yu; Rao, Yunjiang; Duan, Xiangfeng; Wong, Chee Wei

    2018-01-01

    Graphene, a unique two-dimensional material comprising carbon in a honeycomb lattice1, has brought breakthroughs across electronics, mechanics and thermal transport, driven by the quasiparticle Dirac fermions obeying a linear dispersion2,3. Here, we demonstrate a counter-pumped all-optical difference frequency process to coherently generate and control terahertz plasmons in atomic-layer graphene with octave-level tunability and high efficiency. We leverage the inherent surface asymmetry of graphene for strong second-order nonlinear polarizability4,5, which, together with tight plasmon field confinement, enables a robust difference frequency signal at terahertz frequencies. The counter-pumped resonant process on graphene uniquely achieves both energy and momentum conservation. Consequently, we demonstrate a dual-layer graphene heterostructure with terahertz charge- and gate-tunability over an octave, from 4.7 THz to 9.4 THz, bounded only by the pump amplifier optical bandwidth. Theoretical modelling supports our single-volt-level gate tuning and optical-bandwidth-bounded 4.7 THz phase-matching measurements through the random phase approximation, with phonon coupling, saturable absorption and below the Landau damping, to predict and understand graphene plasmon physics.

  6. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays.

    PubMed

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-02-16

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.

  7. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    PubMed Central

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  8. [Use of terahertz electromagnetic radiation at nitric oxide frequencies for the correction of thyroid functional state during stress].

    PubMed

    Kirichuk, V F; Tsymbal, A A

    2010-01-01

    The influence of terahertz electromagnetic radiation at nitric oxide frequencies (150.176-150.664 Ghz) on the functional activity of rat thyroid gland subjected to acute immobilization stress has been studied. It is shown that terahertz radiation totally normalizes thyroid activity in stressed animals within 30 min after application.

  9. Materials research for passive solar systems: Solid-state phase-change materials

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  10. Efficient flat metasurface lens for terahertz imaging.

    PubMed

    Yang, Quanlong; Gu, Jianqiang; Wang, Dongyang; Zhang, Xueqian; Tian, Zhen; Ouyang, Chunmei; Singh, Ranjan; Han, Jiaguang; Zhang, Weili

    2014-10-20

    Metamaterials offer exciting opportunities that enable precise control of amplitude, polarization and phase of the light beam at a subwavelength scale. A gradient metasurface consists of a class of anisotropic subwavelength metamaterial resonators that offer abrupt amplitude and phase changes, thus enabling new applications in optical device design such as ultrathin flat lenses. We propose a highly efficient gradient metasurface lens based on a metal-dielectric-metal structure that operates in the terahertz regime. The proposed structure consists of slotted metallic resonator arrays on two sides of a thin dielectric spacer. By varying the geometrical parameters, the metasurface lens efficiently manipulates the spatial distribution of the terahertz field and focuses the beam to a spot size on the order of a wavelength. The proposed flat metasurface lens design is polarization insensitive and works efficiently even at wide angles of incidence.

  11. Multiple scattering of broadband terahertz pulses

    NASA Astrophysics Data System (ADS)

    Pearce, Jeremiah Glen

    Propagation of single-cycle terahertz (THz) pulses through a random medium leads to dramatic amplitude and phase variations of the electric field because of multiple scattering. We present the first set of experiments that investigate the propagation of THz pulses through scattering media. The scattering of short pulses is a relevant subject to many communities in science and engineering, because the properties of multiply scattered or diffuse waves provide insights into the characteristics of the random medium. For example, the depolarization of diffuse waves has been used to form images of objects embedded in inhomogeneous media. Most of the previous scattering experiments have used narrowband optical radiation where measurements are limited to time averaged intensities or autocorrelation quantities, which contain no phase information of the pulses. In the experiments presented here, a terahertz time-domain spectrometer (THz-TDS) is used. A THz-TDS propagates single-cycle sub-picosecond pulses with bandwidths of over 1 THz into free space. The THz-TDS is a unique tool to study such phenomena, because it provides access to both the intensity and phase of those pulses through direct measurement of the temporal electric field. Because of the broad bandwidth and linear phase of the pulses, it is possible to simultaneously study Rayleigh scattering and the short wavelength limit in a single measurement. We study the diffusion of broadband single-cycle THz pulses by propagating the pulses through a highly scattering medium. Using the THz-TDS, time-domain measurements provide information on the statistics of both the amplitude and phase of the diffusive waves. We develop a theoretical description, suitable for broadband radiation, which accurately describes the experimental results. We measure the time evolution of the degree of polarization, and directly correlate it with the single-scattering regime in the time domain. Measurements of the evolution of the temporal phase of the radiation demonstrate that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect distinguishes photons that have been scattered only a few times from those that are propagating diffusively.

  12. Information hiding and retrieval in Rydberg wave packets using half-cycle pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J. M.; Pisharody, S. N.; Wen, H.

    We demonstrate an information hiding and retrieval scheme with the relative phases between states in a Rydberg wave packet acting as the bits of a data register. We use a terahertz half-cycle pulse (HCP) to transfer phase-encoded information from an optically accessible angular momentum manifold to another manifold which is not directly accessed by our laser pulses, effectively hiding the information from our optical interferometric measurement techniques. A subsequent HCP acting on these wave packets reintroduces the information back into the optically accessible data register manifold which can then be read out.

  13. Phase seeding of a terahertz quantum cascade laser

    PubMed Central

    Oustinov, Dimitri; Jukam, Nathan; Rungsawang, Rakchanok; Madéo, Julien; Barbieri, Stefano; Filloux, Pascal; Sirtori, Carlo; Marcadet, Xavier; Tignon, Jérôme; Dhillon, Sukhdeep

    2010-01-01

    The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy. PMID:20842195

  14. Technology Development of Miniaturized Far-Infrared Sources for Biomolecular Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kono, Junichiro

    2003-01-01

    The objective of this project was to develop a purely solid-state based, thus miniaturized, far-infrared (FIR) (also known as terahertz (THz)) wave source using III-V semiconductor nanostructures for biomolecular detection and sensing. Many biomolecules, such as DNA and proteins, have distinct spectroscopic features in the FIR wavelength range as a result of vibration-rotation-tunneling motions and various inter- and intra-molecule collective motions. Spectroscopic characterization of such molecules requires narrow linewidth, sufficiently high power, tunable (in wavelength), and coherent FIR sources. Unfortunately, the FIR frequency is one of the least technologically developed ranges in the electromagnetic spectrum. Currently available FIR sources based on non-solid state technology are bulky, inefficient, and very often incoherent. In this project we investigated antimonide based compound semiconductor (ABCS) nanostructures as the active medium to generate FIR radiation. The final goal of this project was to demonstrate a semiconductor THz source integrated with a pumping diode laser module to achieve a compact system for biomolecular applications.

  15. 1.9 THz Quantum-cascade Lasers with One-well Injector

    NASA Technical Reports Server (NTRS)

    Kumar, Sushil; Williams, Benjamin S.; Hu, Qing; Reno, John L.

    2006-01-01

    We report terahertz quantum-cascade lasers operating predominantly at 1.90 THz with side modes as low as 1.86 THz (lambda approx. equal to 161 micrometers, planck's constant omega approx. equal to 7.7 meV). This is the longest wavelength to date of any solid-state laser that operates without assistance of a magnetic field. Carriers are injected into the upper radiative state by using a single quantum-well injector, which resulted in a significant reduction of free-carrier losses. The laser operated up to a heat-sink temperature of 110 K in pulsed mode, 95 K in continuous wave (cw) mode, and the threshold current density at 5 K was approx. 140 A per square centimeters.

  16. Geometric diffusion of quantum trajectories

    PubMed Central

    Yang, Fan; Liu, Ren-Bao

    2015-01-01

    A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745

  17. High-efficiency terahertz polarization devices based on the dielectric metasurface

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Wang, JingJing; Guo, Kai; Shen, Fei; Zhou, Qingfeng; Zhiping yin; Guo, Zhongyi

    2018-02-01

    Metasurfaces are composed of the subwavelength structures, which can be used to manipulate the amplitude, phase, and polarization of incident electromagnetic waves efficiently. Here, we propose a novel type of dielectric metasurface based on crystal Si for realizing to manipulate the terahertz wave, in which by varying the geometric sizes of the Si micro-bricks, the transmitting phase of the terahertz wave can almost span over the entire 2π range for both of the x-polarization and y-polarization simultaneously, while keeping the similarly high-transmission amplitudes (over 90%). At the frequency of 1.0 THz, we have successfully designed a series of controllable THz devices, such as the polarization-dependent beam splitter, polarization-independent beam deflector and the focusing lenses based on the designed metasurfaces. Our designs are easy to fabricate and can be promising in developing high-efficiency THz functional devices.

  18. Planar Holographic Metasurfaces for Terahertz Focusing

    PubMed Central

    Kuznetsov, Sergei A.; Astafev, Mikhail A.; Beruete, Miguel; Navarro-Cía, Miguel

    2015-01-01

    Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (also called metamirrors) designed for focusing terahertz radiation into a single spot and four spaced spots are proposed and experimentally investigated at the frequency of 0.35 THz. Each metasurface is designed using a computer-generated spatial distribution of the reflection phase. The phase variation within 360 deg is achieved via a topological morphing of the metasurface pattern from metallic patches to U-shaped and split-ring resonator elements, whose spectral response is derived from full-wave electromagnetic simulations. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices for the terahertz band. PMID:25583565

  19. Direct comparison of low- and mid-frequency Raman spectroscopy for quantitative solid-state pharmaceutical analysis.

    PubMed

    Lipiäinen, Tiina; Fraser-Miller, Sara J; Gordon, Keith C; Strachan, Clare J

    2018-02-05

    This study considers the potential of low-frequency (terahertz) Raman spectroscopy in the quantitative analysis of ternary mixtures of solid-state forms. Direct comparison between low-frequency and mid-frequency spectral regions for quantitative analysis of crystal form mixtures, without confounding sampling and instrumental variations, is reported for the first time. Piroxicam was used as a model drug, and the low-frequency spectra of piroxicam forms β, α2 and monohydrate are presented for the first time. These forms show clear spectral differences in both the low- and mid-frequency regions. Both spectral regions provided quantitative models suitable for predicting the mixture compositions using partial least squares regression (PLSR), but the low-frequency data gave better models, based on lower errors of prediction (2.7, 3.1 and 3.2% root-mean-square errors of prediction [RMSEP] values for the β, α2 and monohydrate forms, respectively) than the mid-frequency data (6.3, 5.4 and 4.8%, for the β, α2 and monohydrate forms, respectively). The better performance of low-frequency Raman analysis was attributed to larger spectral differences between the solid-state forms, combined with a higher signal-to-noise ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    PubMed

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  1. Compact terahertz wave polarization beam splitter using photonic crystal.

    PubMed

    Mo, Guo-Qiang; Li, Jiu-Sheng

    2016-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of a terahertz wave polarization state exhibits tremendous potential in developing applications of terahertz science and technology. We propose an approach to efficiently split transverse-electric and transverse-magnetic polarized terahertz waves into different propagation directions over the frequency range from 0.9998 to 1.0007 THz. Both the plane wave expansion method and the finite-difference time-domain method are used to calculate and analyze the transmission characteristics of the proposed device. The present device is very compact and the total size is 1.02  mm×0.99  mm. This polarization beam splitter performance indicates that the structure has a potential application for forthcoming terahertz-wave integrated circuit fields.

  2. Invited Article: An active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry

    NASA Astrophysics Data System (ADS)

    Liu, Xudong; Chen, Xuequan; Parrott, Edward P. J.; Han, Chunrui; Humbert, Georges; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2018-05-01

    Active broadband terahertz (THz) polarization manipulation devices are challenging to realize, but also of great demand in broadband terahertz systems. Vanadium dioxide (VO2) shows a promising phase transition for active control of THz waves and provides broadband polarization characteristics when integrated within grating-type structures. We creatively combine a VO2-based grating structure with a total internal reflection (TIR) geometry providing a novel interaction mechanism between the electromagnetic waves and the device, to realize a powerful active broadband THz polarization-controlling device. The device is based on a Si-substrate coated with a VO2 layer and a metal grating structure on top, attached to a prism for generating the TIR condition on the Si-VO2-grating interface. The grating is connected to electrodes for electrically switching the VO2 between its insulating and conducting phases. By properly selecting the incident angle of the THz waves, the grating direction, and the incident polarization state, we first achieved a broadband intensity modulator under a fused silica prism with an average modulation depth of 99.75% in the 0.2-1.1 THz region. Additionally, we realized an active ultra-broadband quarter-wave converter under a Si prism that can be switched between a 45° linear rotator and a quarter wave converter in the 0.8-1.5 THz region. This is the first demonstration of an active quarter-wave converter with ultra-broad bandwidth performance. Our work shows a highly flexible and multifunctional polarization-controlling device for broadband THz applications.

  3. PREFACE: 2nd Russia-Japan-USA Symposium on the Fundamental and Applied Problems of Terahertz Devices and Technologies (RJUS TeraTech - 2013)

    NASA Astrophysics Data System (ADS)

    Karasik, Valeriy; Ryzhii, Viktor; Yurchenko, Stanislav

    2014-03-01

    The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) Bauman Moscow State Technical University Moscow, Russia, 3-6 June, 2013 The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) was held in Bauman Moscow State Technical University on 3-6 June 2013 and was devoted to modern problems of terahertz optical technologies. RJUS TeraTech 2013 was organized by Bauman Moscow State Technical University in cooperation with Tohoku University (Sendai, Japan) and University of Buffalo (The State University of New York, USA). The Symposium was supported by Bauman Moscow State Technical University (Moscow, Russia) and Russian Foundation for Basic Research (grant number 13-08-06100-g). RJUS TeraTech - 2013 became a foundation for sharing and discussing modern and promising achievements in fundamental and applied problems of terahertz optical technologies, devices based on grapheme and grapheme strictures, condensed matter of different nature. Among participants of RJUS TeraTech - 2013, there were more than 100 researchers and students from different countries. This volume contains proceedings of the 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies'. Valeriy Karasik, Viktor Ryzhii and Stanislav Yurchenko Bauman Moscow State Technical University Symposium chair Anatoliy A Aleksandrov, Rector of BMSTU Symposium co-chair Valeriy E Karasik, Head of the Research and Educational Center 'PHOTONICS AND INFRARED TECHNOLOGY' (Russia) Invited Speakers Taiichi Otsuji, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Akira Satou, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Michael Shur, Electrical, Computer and System Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, NY, USA Natasha Kirova, University Paris-Sud, France Andrei Sergeev, Department of Electrical Engineering, The University of Buffalo, The State University of New Your, Buffalo, NY, USA Magnus Willander, Linkoping University (LIU), Department of Science and Technology, Linkopings, Sweden Dmitry R Khohlov, Physical Faculty, Lomonosov Moscow State University, Russia Vladimir L Vaks, Institute for Physics of Microstructures of Russian Academy of Sciences, Russia

  4. Terahertz time-domain spectroscopy of chondroitin sulfate

    PubMed Central

    Shi, Changcheng; Ma, Yuting; Zhang, Jin; Wei, Dongshan; Wang, Huabin; Peng, Xiaoyu; Tang, Mingjie; Yan, Shihan; Zuo, Guokun; Du, Chunlei; Cui, Hongliang

    2018-01-01

    Chondroitin sulfate (CS), derived from cartilage tissues, is an important type of biomacromolecule. In this paper, the terahertz time-domain spectroscopy (THz-TDS) was investigated as a potential method for content detection of CS. With the increase of the CS content, the THz absorption coefficients of the CS/polyethylene mixed samples linearly increase. The refractive indices of the mixed samples also increase when the CS content increases. The extinction coefficient of CS demonstrates the THz frequency dependence to be approximately the power of 1.4, which can be explained by the effects of CS granular solids on THz scattering. PMID:29541526

  5. Terahertz solid immersion microscopy for sub-wavelength-resolution imaging of biological objects and tissues

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Kucheryavenko, Anna S.; Malakhov, Kirill M.; Schadko, Alexander O.; Komandin, Gennady A.; Lebedev, Sergey P.; Dolganova, Irina N.; Kurlov, Vladimir N.; Lavrukhin, Denis V.; Ponomarev, Dmitry S.; Yurchenko, Stanislav O.; Tuchin, Valery V.; Zaytsev, Kirill I.

    2018-04-01

    We have developed a method of terahertz (THz) solid immersion microscopy for imaging of biological objects and tissues. It relies on the solid immersion lens (SIL) employing the THz beam focusing into the evanescent-field volume and allowing strong reduction in the dimensions of the THz beam caustic. By solving the problems of the sample handling at the focal plane and raster scanning of its surface with the focused THz beam, the THz SIL microscopy has been adapted for imaging of soft tissues. We have assembled an experimental setup based on a backward-wave oscillator, as a continuous-wave source operating at the wavelength of λ = 500 μm, and a Golay cell, as a detector of the THz wave intensity. By imaging of the razor blade, we have demonstrated advanced 0.2λ-resolution of the proposed THz SIL configuration. Using the experimental setup, we have performed THz imaging of a mint leaf revealing its sub-wavelength features. The observed results highlight a potential of the THz SIL microscopy in biomedical applications of THz science and technology.

  6. On Ultrafast Time-Domain TeraHertz Spectroscopy in the Condensed Phase: Linear Spectroscopic Measurements of Hydrogen-Bond Dynamics of Astrochemical Ice Analogs and Nonlinear TeraHertz Kerr Effect Measurements of Vibrational Quantum Beats

    NASA Astrophysics Data System (ADS)

    Allodi, Marco A.

    Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 wavenumbers) and the mid-IR (400 - 4000 wavenumbers). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with 10 GHz (0.3 wavenumber) resolution. Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high-vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 wavenumbers (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice. To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoium-based THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 wavenumbers), in exact agreement with the fundamental transition frequency of the lowest energy vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies. To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the group's core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.

  7. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate.

    PubMed

    Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X

    2016-10-31

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.

  8. Equations of State and Phase Diagrams of Ammonia

    ERIC Educational Resources Information Center

    Glasser, Leslie

    2009-01-01

    We present equations of state relating the phases and a three-dimensional phase diagram for ammonia with its solid, liquid, and vapor phases, based on fitted authentic experimental data and including recent information on the high-pressure solid phases. This presentation follows similar articles on carbon dioxide and water published in this…

  9. NASA Tech Briefs, November 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Digital Phase Meter for a Laser Heterodyne Interferometer; Vision System Measures Motions of Robot and External Objects; Advanced Precipitation Radar Antenna to Measure Rainfall From Space; Wide-Band Radar for Measuring Thickness of Sea Ice; Vertical Isolation for Photodiodes in CMOS Imagers; Wide-Band Microwave Receivers Using Photonic Processing; L-Band Transmit/Receive Module for Phase-Stable Array Antennas; Microwave Power Combiner/Switch Utilizing a Faraday Rotator; Compact Low-Loss Planar Magic-T; Using Pipelined XNOR Logic to Reduce SEU Risks in State Machines; Quasi-Optical Transmission Line for 94-GHz Radar; Next Generation Flight Controller Trainer System; Converting from DDOR SASF to APF; Converting from CVF to AAF; Documenting AUTOGEN and APGEN Model Files; Sequence History Update Tool; Extraction and Analysis of Display Data; MRO DKF Post-Processing Tool; Rig Diagnostic Tools; MRO Sequence Checking Tool; Science Activity Planner for the MER Mission; UAVSAR Flight-Planning System; Templates for Deposition of Microscopic Pointed Structures; Adjustable Membrane Mirrors Incorporating G-Elastomers; Hall-Effect Thruster Utilizing Bismuth as Propellant; High-Temperature Crystal-Growth Cartridge Tubes Made by VPS; Quench Crucibles Reinforced with Metal; Deep-Sea Hydrothermal-Vent Sampler; Mars Rocket Propulsion System; Two-Stage Passive Vibration Isolator; Improved Thermal Design of a Compression Mold; Enhanced Pseudo-Waypoint Guidance for Spacecraft Maneuvers; Altimetry Using GPS-Reflection/Occultation Interferometry; Thermally Driven Josephson Effect; Perturbation Effects on a Supercritical C7H16/N2 Mixing Layer; Gold Nanoparticle Labels Amplify Ellipsometric Signals; Phase Matching of Diverse Modes in a WGM Resonator; WGM Resonators for Terahertz-to-Optical Frequency Conversion; Determining Concentration of Nanoparticles from Ellipsometry; Microwave-to-Optical Conversion in WGM Resonators; Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser; Low-Resolution Raman-Spectroscopy Combustion Thermometry; Temperature Sensors Based on WGM Optical Resonators; Varying the Divergence of Multiple Parallel Laser Beams; Efficient Algorithm for Rectangular Spiral Search; Algorithm-Based Fault Tolerance Integrated with Replication; Targeting and Localization for Mars Rover Operations; Terrain-Adaptive Navigation Architecture; Self-Adjusting Hash Tables for Embedded Flight Applications; Schema for Spacecraft-Command Dictionary; Combined GMSK Communications and PN Ranging; System-Level Integration of Mass Memory; Network-Attached Solid-State Recorder Architecture; Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme; An Efficient Reachability Analysis Algorithm.

  10. Polarization control of terahertz waves generated by circularly polarized few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Song, Liwei; Bai, Ya; Xu, Rongjie; Li, Chuang; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-12-01

    We demonstrate the generation and control of elliptically polarized terahertz (THz) waves from air plasma produced by circularly polarized few-cycle laser pulses. Experimental and calculated results reveal that electric field asymmetry in rotating directions of the circularly polarized few-cycle laser pulses produces the enhanced broadband transient currents, and the phase difference of perpendicular laser field components is partially inherited in the generation process of THz emission. The ellipticity of the THz emission and its major axis direction are all-optically controlled by the duration and carrier-envelope phase of the laser pulses.

  11. Crossovers from excitons to plasmons in narrow-gap carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Uryu, Seiji

    2018-06-01

    Plasmons and excitons, bound states of electrons and holes, are collective charge excitations in solids. In this study, we numerically show that in most metallic carbon nanotubes, which are called narrow-gap carbon nanotubes, excitons cross over to plasmons as the wave vector increases. This indicates that resonance with the excitons changes to that with the plasmons by changing the nanotube length, which can explain the origin of observed peaks in the terahertz or far-infrared region in the optical absorption spectra of metallic carbon nanotubes. In the crossovers from excitons to plasmons, a depolarization effect on the many-body wave functions of the plasmons and excitons is clarified.

  12. Excitation of terahertz radiation by an electron beam in a dielectric lined waveguide with rippled dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Deepak; Uma, R.; Tripathi, V. K.

    A relativistic electron beam propagating through a dielectric lined waveguide, with ripple on the dielectric surface, excites a free electron laser type instability where ripple acts as a wiggler. The spatial modulation of permittivity in the ripple region couples a terahertz radiation mode to a driven mode of lower phase velocity, where the beam is in Cerenkov resonance with the slow mode. Both the modes grow at the expanse of beam energy. The terahertz frequency increases as the beam velocity increases. The growth rate of the instability goes as one third power of beam density.

  13. Terahertz imaging with compressed sensing and phase retrieval.

    PubMed

    Chan, Wai Lam; Moravec, Matthew L; Baraniuk, Richard G; Mittleman, Daniel M

    2008-05-01

    We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sensing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than traditionally required. Using CS, we successfully reconstruct a 64 x 64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane, and observe improved reconstruction quality when we apply phase correction. For our chosen image, only about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our system has the capability to reconstruct images with only a small subset of Fourier amplitude measurements and thus has potential application in THz imaging with cw sources.

  14. Enhanced coherent oscillations in the superconducting state of underdoped YB a 2 C u 3 O 6 + x induced via ultrafast terahertz excitation

    DOE PAGES

    Dakovski, Georgi L.; Lee, Wei -Sheng; Hawthorn, David G.; ...

    2015-06-24

    We utilize intense, single-cycle terahertz pulses to induce collective excitations in the charge-density-wave-ordered underdoped cuprate YBa 2Cu 3O 6+x. These excitations manifest themselves as pronounced coherent oscillations of the optical reflectivity in the transient state, accompanied by minimal incoherent quasiparticle relaxation dynamics. The oscillations occur at frequencies consistent with soft phonon energies associated with the charge-density-wave, but vanish above the superconducting transition temperature rather than that at the charge-density-wave transition. These results indicate an intimate relationship of the terahertz excitation with the underlying charge-density-wave and the superconducting condensate itself.

  15. Terahertz Light-Matter Interaction beyond Unity Coupling Strength.

    PubMed

    Bayer, Andreas; Pozimski, Marcel; Schambeck, Simon; Schuh, Dieter; Huber, Rupert; Bougeard, Dominique; Lange, Christoph

    2017-10-11

    Achieving control over light-matter interaction in custom-tailored nanostructures is at the core of modern quantum electrodynamics. In strongly and ultrastrongly coupled systems, the excitation is repeatedly exchanged between a resonator and an electronic transition at a rate known as the vacuum Rabi frequency Ω R . For Ω R approaching the resonance frequency ω c , novel quantum phenomena including squeezed states, Dicke superradiant phase transitions, the collapse of the Purcell effect, and a population of the ground state with virtual photon pairs are predicted. Yet, the experimental realization of optical systems with Ω R /ω c ≥ 1 has remained elusive. Here, we introduce a paradigm change in the design of light-matter coupling by treating the electronic and the photonic components of the system as an entity instead of optimizing them separately. Using the electronic excitation to not only boost the electronic polarization but furthermore tailor the shape of the vacuum mode, we push Ω R /ω c of cyclotron resonances ultrastrongly coupled to metamaterials far beyond unity. As one prominent illustration of the unfolding possibilities, we calculate a ground state population of 0.37 virtual photons for our best structure with Ω R /ω c = 1.43 and suggest a realistic experimental scenario for measuring vacuum radiation by cutting-edge terahertz quantum detection.

  16. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation

    PubMed Central

    Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki

    2016-01-01

    Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 106, which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results. PMID:26976363

  17. Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation.

    PubMed

    Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki

    2016-03-15

    Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 10(6), which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results.

  18. Building of Equations of State with Numerous Phase Transitions — Application to Bismuth

    NASA Astrophysics Data System (ADS)

    Heuzé, Olivier

    2006-07-01

    We propose an algorithm to build complete equation of state EOS including several solid/solid or solid/liquid phase transitions. Each phase has its own EOS and independent parameters. The phase diagram is deduced from the thermodynamic equilibrium assumption. Until now, such an approach was used in simple cases and limited to 2 or 3 phases. We have applied it in the general case to bismuth for which up to 13 phases have been identified. This study shows the great influence of binary mixtures and triple points properties in released isentropes after shock waves.

  19. Graphene-based terahertz metasurface with tunable spectrum splitting.

    PubMed

    Su, Zhaoxian; Chen, Xuan; Yin, Jianbo; Zhao, Xiaopeng

    2016-08-15

    We design a tunable terahertz metasurface, which consists of two different trapezoid graphene ribbons patterned in opposite directions on a gold film, separated by a thin dielectric spacer. The two kinds of graphene ribbons can cover a nearly 2π phase shift with high reflection efficiency in different spectral regions so that the metasurface can reflect different frequency waves to totally different directions. By changing the Fermi level of the graphene ribbons, the response frequency of the proposed metasurface can be adjusted, and as a result, tunable spectrum splitting can be realized. The present metasurface provides a powerful way to control terahertz waves and has potential applications in wide-angle beam splitters.

  20. Propagation of terahertz pulses in random media.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-02-15

    We describe measurements of single-cycle terahertz pulse propagation in a random medium. The unique capabilities of terahertz time-domain spectroscopy permit the characterization of a multiply scattered field with unprecedented spatial and temporal resolution. With these results, we can develop a framework for understanding the statistics of broadband laser speckle. Also, the ability to extract information on the phase of the field opens up new possibilities for characterizing multiply scattered waves. We illustrate this with a simple example, which involves computing a time-windowed temporal correlation between fields measured at different spatial locations. This enables the identification of individual scattering events, and could lead to a new method for imaging in random media.

  1. Terahertz broadband polarization converter based on metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  2. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    PubMed

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  3. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W.; Kitano, Masao

    2016-03-01

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  4. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition.

    PubMed

    Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W; Kitano, Masao

    2016-03-07

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide (VO 2 ), the proposed meta-material is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  5. Self-starting harmonic frequency comb generation in a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Kazakov, Dmitry; Piccardo, Marco; Wang, Yongrui; Chevalier, Paul; Mansuripur, Tobias S.; Xie, Feng; Zah, Chung-en; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2017-12-01

    Optical frequency combs1,2 establish a rigid phase-coherent link between microwave and optical domains and are emerging as high-precision tools in an increasing number of applications3. Frequency combs with large intermodal spacing are employed in the field of microwave photonics for radiofrequency arbitrary waveform synthesis4,5 and for the generation of terahertz tones of high spectral purity in future wireless communication networks6,7. Here, we demonstrate self-starting harmonic frequency comb generation with a terahertz repetition rate in a quantum cascade laser. The large intermodal spacing caused by the suppression of tens of adjacent cavity modes originates from a parametric contribution to the gain due to temporal modulations of population inversion in the laser8,9. Using multiheterodyne self-detection, the mode spacing of the harmonic comb is shown to be uniform to within 5 × 10-12 parts of the central frequency. This new harmonic comb state extends the range of applications of quantum cascade laser frequency combs10-13.

  6. Crystallization Caught in the Act with Terahertz Spectroscopy: Non-Classical Pathway for l-(+)-Tartaric Acid.

    PubMed

    Soltani, Amin; Gebauer, Denis; Duschek, Lennart; Fischer, Bernd M; Cölfen, Helmut; Koch, Martin

    2017-10-12

    Crystal formation is a highly debated problem. This report shows that the crystallization of l-(+)-tartaric acid from water follows a non-classical path involving intermediate hydrated states. Analytical ultracentrifugation indicates solution clusters of the initial stages aggregate to form an early intermediate. Terahertz spectroscopy performed during water evaporation highlights a transient increase in the absorption during nucleation; this indicates the recurrence of water molecules that are expelled from the intermediate phase. Besides, a transient resonance at 750 GHz, which can be assigned to a natural vibration of large hydrated aggregates, vanishes after the final crystal has formed. Furthermore, THz data reveal the vibration of nanosized clusters in the dilute solution indicated by analytical ultracentrifugation. Infrared spectroscopy and wide-angle X-ray scattering highlight that the intermediate is not a crystalline hydrate. These results demonstrate that nanoscopic intermediate units assemble to form the first solvent-free crystalline nuclei upon dehydration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Terahertz wave techniques using a metal mesh for evaluating the components of the stratum corneum.

    PubMed

    Mizukoshi, Koji; Yonekura, Kazuki; Ogura, Hidehiro; Guan, Yu; Kawase, Kodo

    2013-02-01

    Terahertz waves are located in the region of the spectrum between milliwaves and infrared. We analyzed the feasibility of terahertz spectroscopy to inspect the compositional variations of the stratum corneum (SC). We used a terahertz time-domain spectroscopy system with the metal mesh technique. To investigate whether terahertz can inspect compositional variation of SC, we measured the terahertz frequency spectra of the SC sheet that was treated with chloroform-methanol, lipid mixture, a denaturation agent, and heating with hot air. The chloroform-methanol treatment of the SC shifted the dip position, which represents a convex downward shape of the spectra, to a higher frequency. This dip shift was reversed to an untreated position by the dose-dependent application of a lipid mixture. The heating treatment of the SC shifted the dip position to a higher frequency. The same dip shift was also induced by the application of a denaturation agent to the SC. The technique using terahertz waves with a metal mesh is effective because of its simplicity and its high degree of accuracy in detecting the amount of lipid and the protein conformation state. © 2012 John Wiley & Sons A/S.

  8. Nitroxoline Molecule: Planar or Not? A Story of Battle between π-π Conjugation and Interatomic Repulsion.

    PubMed

    Tikhonov, Denis S; Sharapa, Dmitry I; Otlyotov, Arseniy A; Solyankin, Peter M; Rykov, Anatolii N; Shkurinov, Alexander P; Grikina, Olga E; Khaikin, Leonid S

    2018-02-15

    The conformational properties of the nitro group in nitroxoline (8-hydroxy-5-nitroquinoline, NXN) were investigated in the gas phase by means of gas electron diffraction (GED) and quantum chemical calculations, and also with solid-state analysis performed using terahertz time-domain spectroscopy (THz-TDS). The results of the GED refinement show that in the equilibrium structure the NO 2 group is twisted by angle ϕ = 8 ± 3° with respect to the 8-hydroxyoquinoline plane. This is the result of interatomic repulsion of oxygen in the NO 2 group from the closest hydrogen, which overcomes the energy gain from the π-π conjugation of the nitro group and aromatic system of 8-hydroxyoquinoline. The computation of equilibrium geometry using MP2/cc-pVXZ (X = T, Q) shows a large overestimation of the ϕ value, while DFT with the cc-pVTZ basis set performs reasonably well. On the other hand, DFT computations with double-ζ basis sets yield a planar structure of NXN. The refined potential energy surface of the torsion vibration the of nitro group in the condensed phase derived from the THz-TDS data indicates the NXN molecule to be planar. This result stays in good agreement with the previous X-ray structure determination. The strength of the π-system conjugation for the NO 2 group and 8-hydroxyoquinoline is discussed using NBO analysis, being further supported by comparison of the refined semiexperimental gas-phase structure of NXN from GED with other nitrocompounds.

  9. Phase-locked laser array through global antenna mutual coupling

    DOE PAGES

    Kao, Tsung -Yu; Reno, John L.; Hu, Qing

    2016-01-01

    Here, phase locking of an array of lasers is a highly effective way in beam shaping, to increase the output power, and to reduce lasing threshold. In this work, we present a novel phase-locking mechanism based on "antenna mutual coupling" wherein laser elements interact through far-field radiations with definite phase relations. This allows long-range global coupling among array elements to achieve robust 2-dimensional phase-locked laser array. The new scheme is ideal for lasers with deep sub-wavelength confined cavity such as nanolasers, where the divergent beam pattern could be used to form strong coupling among elements in the array. We experimentallymore » demonstrated such a scheme using sub-wavelength short-cavity surface-emitting lasers at terahertz frequency. More than 37 laser elements are phase-locked to each other, delivering up to 6.5 mW single-mode radiations at ~3 terahertz, with maximum 450-mW/A slope efficiency and near diffraction limit beam divergence.« less

  10. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  11. Self-healing liquid/solid state battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.

    A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrodemore » includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.« less

  12. An Investigation into the Polymorphism and Crystallization of Levetiracetam and the Stability of its Solid Form.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui

    2015-12-01

    Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Hauser, Daniel; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S.; Geistlinger, Katharina; Kumar, Sunil S.; Wester, Roland

    2016-03-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just a few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J =1 ←0 and J =2 ←1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598 596.08(19) MHz for J =1 ←0 and 1 196 791.57(27) MHz for J =2 ←1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  14. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals

    NASA Astrophysics Data System (ADS)

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

  15. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals.

    PubMed

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

  16. Complex extreme learning machine applications in terahertz pulsed signals feature sets.

    PubMed

    Yin, X-X; Hadjiloucas, S; Zhang, Y

    2014-11-01

    This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. NASA satellite communications application research. Phase 2: Efficient high power, solid state amplifier for EFH communications

    NASA Technical Reports Server (NTRS)

    Benet, James

    1993-01-01

    The final report describes the work performed from 9 Jun. 1992 to 31 Jul. 1993 on the NASA Satellite Communications Application Research (SCAR) Phase 2 program, Efficient High Power, Solid State Amplifier for EHF Communications. The purpose of the program was to demonstrate the feasibility of high-efficiency, high-power, EHF solid state amplifiers that are smaller, lighter, more efficient, and less costly than existing traveling wave tube (TWT) amplifiers by combining the output power from up to several hundred solid state amplifiers using a unique orthomode spatial power combiner (OSPC).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishitani, Junichi, E-mail: jnishitani@issp.u-tokyo.ac.jp; Lippmaa, Mikk; Suemoto, Tohru

    The dynamics of photoexcited electrons in various excited d-states was investigated in a transition metal oxide MnO by tunable optical pump-terahertz probe measurements. Photoexcited electrons in the lowest excited d-state showed the longest relaxation time among the three excited d-states that are accessible in MnO at room temperature. The relaxation rate in the lowest excited d-state showed a drastic increase below the Neel temperature T{sub N} = 120 K in MnO. We conclude that this increase is caused by the appearance of a decay channel related to magnetic-excitation-assisted photoluminescence from self-trapped exciton (STE) states. The opening of relaxation channels to the STE statesmore » in an antiferromagnetic phase suggests that it may be possible to control photocarrier lifetime by magnetic order in transition metal oxides.« less

  19. Electronic ferroelectricity in carbon-based systems: from reality of organic conductors to promises of polymers and graphene nano-ribbons

    NASA Astrophysics Data System (ADS)

    Kirova, Natasha; Brazovskii, Serguei

    2014-03-01

    Ferroelectricity is a rising demand in fundamental and applied solid state physics. Ferroelectrics are used in microelectronics as active gate materials, in capacitors, electro-optical-acoustic modulators, etc. There is a particular demand for plastic ferroelectrics, e.g. as a sensor for acoustic imaging in medicine and beyond, in shapeable capacitors, etc. Microscopic mechanisms of ferroelectric polarization in traditional materials are typically ionic. In this talk we discuss the electronic ferroelectrics - carbon-based materials: organic crystals, conducting polymers and graphene nano-ribbons. The motion of walls, separating domains with opposite electric polarisation, can be influenced and manipulated by terahertz and infra-red range optics.

  20. Terahertz electrical writing speed in an antiferromagnetic memory

    PubMed Central

    Kašpar, Zdeněk; Campion, Richard P.; Baumgartner, Manuel; Sinova, Jairo; Kužel, Petr; Müller, Melanie; Kampfrath, Tobias

    2018-01-01

    The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band. PMID:29740601

  1. Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxing; Lu, Dongping; Bowden, Mark

    Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport propertiesmore » of liquid phase synthesized Li7P3S11 is identified and discussed.« less

  2. Statistics of multiply scattered broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2003-07-25

    We describe the first measurements of the diffusion of broadband single-cycle optical pulses through a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain measurement provides information on the statistics of both the amplitude and phase distributions of the diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately describes the experimental results.

  3. Terahertz Sideband-tuned Quantum Cascade Laser Radiation

    DTIC Science & Technology

    2008-03-31

    resolution of 2 MHz in CW regime was observed. ©2008 Optical Society of America OCIS codes: (140.5965) Semiconductor lasers , quantum cascade...diode,” Opt. Lett. 29, 1632 (2004). 6. A. Baryshev, et.al., “ Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser ,” Appl... optically pumped gas laser . With further improvements in power and spatial mode quality, it should be possible to lock a TQCL to the harmonic of an ultra

  4. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.

    PubMed

    Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David

    2010-09-27

    We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.

  5. Terahertz adaptive optics with a deformable mirror.

    PubMed

    Brossard, Mathilde; Sauvage, Jean-François; Perrin, Mathias; Abraham, Emmanuel

    2018-04-01

    We report on the wavefront correction of a terahertz (THz) beam using adaptive optics, which requires both a wavefront sensor that is able to sense the optical aberrations, as well as a wavefront corrector. The wavefront sensor relies on a direct 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. By measuring the phase variation of the THz electric field in the crystal, we were able to minimize the geometrical aberrations of the beam, thanks to the action of a deformable mirror. This phase control will open the route to THz adaptive optics in order to optimize the THz beam quality for both practical and fundamental applications.

  6. Terahertz beam propagation measured through three-dimensional amplitude profile determination

    NASA Astrophysics Data System (ADS)

    Reiten, Matthew T.; Harmon, Stacee A.; Cheville, Richard Alan

    2003-10-01

    To determine the spatio-temporal field distribution of freely propagating terahertz bandwidth pulses, we measure the time-resolved electric field in two spatial dimensions with high resolution. The measured, phase-coherent electric-field distributions are compared with an analytic model in which the radiation from a dipole antenna near a dielectric interface is coupled to free space through a spherical lens. The field external to the lens is limited by reflection at the lens-air dielectric interface, which is minimized at Brewster's angle, leading to an annular field pattern. Field measurements compare favorably with theory. Propagation of terahertz beams is determined both by assuming a TEM0,0 Gaussian profile as well as expanding the beam into a superposition of Laguerre-Gauss modes. The Laguerre-Gauss model more accurately describes the beam profile for free-space propagation and after propagating through a simple optical system. The accuracy of both models for predicting far-field beam patterns depend upon accurately measuring complex field amplitudes of terahertz beams.

  7. Picosecond Transient Photoconductivity in Functionalized Pentacene Molecular Crystals Probed by Terahertz Pulse Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.

    2002-11-01

    We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.

  8. Application of Berry's Phase to the Effective Mass of Bloch Electrons

    ERIC Educational Resources Information Center

    Rave, M. J.; Kerr, W. C.

    2010-01-01

    Berry's phase, although well known since 1984, has received little attention among textbook authors of solid state physics. We attempt to address this lack by showing how the presence of the Berry's phase significantly changes a standard concept (effective mass) found in most solid state texts. Specifically, we show that the presence of a non-zero…

  9. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    PubMed

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  10. Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation.

    PubMed

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Laroze, David

    2017-09-05

    We study the influence of intense THz laser radiation and electric field on molecular states of laterally coupled quantum rings. Laser radiation shows the capability to dissociate quantum ring molecule and add 2-fold degeneracy to the molecular states at the fixed value of the overlapping size between rings. It is shown that coupled to decoupled molecular states phase transition points form almost a straight line with a slope equal to two. In addition, the electric field direction dependent energy spectrum shows unexpected oscillations, demonstrating strong coupling between molecular states. Besides, intraband absorption is considered, showing both blue and redshifts in its spectrum. The obtained results can be useful for the controlling of degeneracy of the discrete energy spectrum of nanoscale structures and in the tunneling effects therein.

  11. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas.

    PubMed

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K

    2016-09-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.

  12. Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object.

    PubMed

    Yasui, Takeshi; Fujio, Makoto; Yokoyama, Shuko; Araki, Tsutomu

    2014-07-14

    Phase measurement of continuous-wave terahertz (CW-THz) radiation is a potential tool for direct distance and imaging measurement of optically rough objects due to its high robustness to optical rough surfaces. However, the 2π phase ambiguity in the phase measurement of single-frequency CW-THz radiation limits the dynamic range of the measured distance to the order of the wavelength used. In this article, phase-slope measurement of tunable CW-THz radiation with a THz frequency comb was effectively used to extend the dynamic range up to 1.834 m while maintaining an error of a few tens µm in the distance measurement of an optically rough object. Furthermore, a combination of phase-slope measurement of tunable CW-THz radiation and phase measurement of single-frequency CW-THz radiation enhanced the distance error to a few µm within the dynamic range of 1.834 m without any influence from the 2π phase ambiguity. The proposed method will be a powerful tool for the construction and maintenance of large-scale structures covered with optically rough surfaces.

  13. Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers.

    PubMed

    Jiang, Yifan; Vijayraghavan, Karun; Jung, Seungyong; Jiang, Aiting; Kim, Jae Hyun; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus C; Belkin, Mikhail A

    2016-02-16

    Terahertz quantum cascade laser sources based on intra-cavity difference-frequency generation are currently the only room-temperature mass-producible diode-laser-like emitters of coherent 1-6 THz radiation. Device performance has improved dramatically over the past few years to reach milliwatt-level power output and broad tuning from 1.2 to 5.9 THz, all at room-temperature. Terahertz output in these sources originates from intersubband optical nonlinearity in the laser active region. Here we report the first comprehensive spectroscopic study of the optical nonlinearity and investigate its dependence on the mid-infrared pump frequencies. Our work shows that the terahertz generation efficiency can vary by a factor of 2 or greater depending on the spectral position of the mid-infrared pumps for a fixed THz difference-frequency. We have also measured for the first time the linewidth for transitions between the lower quantum cascade laser states, which is critical for determining terahertz nonlinearity and predicting optical loss in quantum cascade laser waveguides.

  14. Glassy dynamics of sorbitol solutions at terahertz frequencies.

    PubMed

    Sibik, Juraj; Shalaev, Evgenyi Y; Zeitler, J Axel

    2013-07-28

    The absorption spectra of D-sorbitol and a range of its concentrated aqueous solutions were studied by terahertz spectroscopy over the temperature interval of 80 K < T < 310 K. It is shown that the slow-down of molecules at around the glass transition temperature, Tg, dramatically influences the thermal dependence of the absorption at terahertz frequencies. Furthermore, two different absorption regimes are revealed below Tg: at temperatures well below Tg, the absorption resembles the coupling of terahertz radiation to the vibrational density of states (VDOS); above these temperatures, between 160 K and Tg, in the sample of pure sorbitol and the sample of a solution of 70 wt% sorbitol in water, another type of absorption is observed at terahertz frequencies. Several possibilities of the physical origin of this absorption are discussed and based on the experimental data this process is tentatively assigned to the Johari-Goldstein β-relaxation processes shifting to lower frequencies at temperatures below Tg leaving behind a spectrum largely dominated by losses into the VDOS.

  15. Global distribution of secondary organic aerosol particle phase state

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.

    2016-12-01

    Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.

  16. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, Clifford B.; Hackel, Lloyd A.

    1999-01-01

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  17. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  18. Terahertz wavefront control by tunable metasurface made of graphene ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatooshi, Takumi; Ishikawa, Atsushi, E-mail: a-ishikawa@okayama-u.ac.jp; Tsuruta, Kenji

    2015-08-03

    We propose a tunable metasurface consisting of an array of graphene ribbons on a silver mirror with a SiO{sub 2} gap layer to control reflected wavefront at terahertz frequencies. The graphene ribbons exhibit localized plasmon resonances depending on their Fermi levels to introduce abrupt phase shifts along the metasurface. With interference of the Fabry-Perot resonances in the SiO{sub 2} layer, phase shift through the system is largely accumulated, covering the 0-to-2π range for full control of the wavefront. Numerical simulations prove that wide-angle beam steering up to 53° with a high reflection efficiency of 60% is achieved at 5 THzmore » within a switching time shorter than 0.6 ps.« less

  19. Twenty years of terahertz imaging [Invited].

    PubMed

    Mittleman, Daniel M

    2018-04-16

    The birth of terahertz imaging approximately coincides with the birth of the journal Optics Express. The 20 th anniversary of the journal is therefore an opportune moment to consider the state of progress in the field of terahertz imaging. This article discusses some of the compelling reasons that one may wish to form images in the THz range, in order to provide a perspective of how far the field has come since the early demonstrations of the mid-1990's. It then focuses on a few of the more prominent frontiers of current research, highlighting their impacts on both fundamental science and applications.

  20. Super-resolved terahertz microscopy by knife-edge scan

    NASA Astrophysics Data System (ADS)

    Giliberti, V.; Flammini, M.; Ciano, C.; Pontecorvo, E.; Del Re, E.; Ortolani, M.

    2017-08-01

    We present a compact, all solid-state THz confocal microscope operating at 0.30 THz that achieves super-resolution by using the knife-edge scan approach. In the final reconstructed image, a lateral resolution of 60 μm ≍ λ/17 is demonstrated when the knife-edge is deep in the near-field of the sample surface. When the knife-edge is lifted up to λ/4 from the sample surface, a certain degree of super-resolution is maintained with a resolution of 0.4 mm, i.e. more than a factor 2 if compared to the diffraction-limited scheme. The present results open an interesting path towards super-resolved imaging with in-depth information that would be peculiar to THz microscopy systems.

  1. Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends

    NASA Astrophysics Data System (ADS)

    Hochrein, Thomas

    2015-03-01

    Although a lot of work has already been done under the older terms "far infrared" or "sub-millimeter waves", the term "terahertz" stands for a novel technique offering many potential applications. The latter term also represents a new generation of systems with the opportunity for coherent, time-resolved detection. In addition to the well-known technical opportunities, an historical examination of Internet usage, as well as the number of publications and patent applications, confirms ongoing interest in this technique. These activities' annual growth rate is between 9 % and 21 %. The geographical distribution shows the center of terahertz activities. A shift from the scientific to more application-oriented research can be observed. We present a survey among worldwide terahertz suppliers with special focus on the European region and the use of terahertz systems in the field of measurement and analytical applications. This reveals the current state of terahertz systems' commercial and geographical availability as well as their costs, target markets, and technical performance. Component cost distribution using the example of an optical pulsed time-domain terahertz system gives an impression of the prevailing cost structure. The predication regarding prospective market development, decreasing system costs and higher availability shows a convenient situation for potential users and interested customers. The causes are primarily increased competition and larger quantities in the future.

  2. Solidification and solid-state transformation sciences in metals additive manufacturing

    DOE PAGES

    Kirka, Michael M.; Nandwana, Peeyush; Lee, Yousub; ...

    2017-02-11

    Additive manufacturing (AM) of metals is rapidly emerging as an established manufacturing process for metal components. Unlike traditional metals fabrication processes, metals fabricated via AM undergo localized thermal cycles during fabrication. As a result, AM presents the opportunity to control the liquid-solid phase transformation, i.e. material texture. But, thermal cycling presents challenges from the standpoint of solid-solid phase transformations. We will discuss the opportunities and challenges in metals AM in the context of texture control and associated solid-solid phase transformations in Ti-6Al-4V and Inconel 718.

  3. Study of the solid-state amorphization of (GaSb){sub 1-x}Ge{sub x} semiconductors by real-time neutron diffraction and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.

    2011-12-15

    The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.

  4. Investigation on thixojoining to produce hybrid components with intermetallic phase

    NASA Astrophysics Data System (ADS)

    Seyboldt, Christoph; Liewald, Mathias

    2018-05-01

    Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.

  5. Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation.

    PubMed

    Li, Hua; Laffaille, Pierre; Gacemi, Djamal; Apfel, Marc; Sirtori, Carlo; Leonardon, Jeremie; Santarelli, Giorgio; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jerome; Hänsel, Wolfgang; Holzwarth, Ronald; Barbieri, Stefano

    2015-12-28

    We present an experimental investigation of the multimode dynamics and the coherence of terahertz quantum cascade lasers emitting over a spectral bandwidth of ~1THz. The devices are studied in free-running and under direct RF modulation. Depending on the pump current we observe different regimes of operation, where RF spectra displaying single and multiple narrow beat-note signals alternate with spectra showing a single beat-note characterized by an intense phase-noise, extending over a bandwidth up to a few GHz. We investigate the relation between this phase-noise and the dynamics of the THz modes through the electro-optic sampling of the laser emission. We find that when the phase-noise is large, the laser operates in an unstable regime where the lasing modes are incoherent. Under RF modulation of the laser current such instability can be suppressed and the modes coherence recovered, while, simultaneously, generating a strong broadening of the THz emission spectrum.

  6. Application of Terahertz Imaging and Backscatter Radiography to Space Shuttle Foam Inspection

    NASA Technical Reports Server (NTRS)

    Ussery, Warren

    2008-01-01

    Two state of the art technologies have been developed for External Fuel Tank foam inspections. Results of POD tests have shown Backscatter Radiography and Terahertz imaging detect critical defects with no false positive issue. These techniques are currently in use on the External Tank program as one component in the foam quality assurance program.

  7. The global phase diagram of the Gay-Berne model

    NASA Astrophysics Data System (ADS)

    de Miguel, Enrique; Vega, Carlos

    2002-10-01

    The phase diagram of the Gay-Berne model with anisotropy parameters κ=3, κ'=5 has been evaluated by means of computer simulations. For a number of temperatures, NPT simulations were performed for the solid phase leading to the determination of the free energy of the solid at a reference density. Using the equation of state and free energies of the isotropic and nematic phases available in the existing literature the fluid-solid equilibrium was calculated for the temperatures selected. Taking these fluid-solid equilibrium results as the starting points, the fluid-solid equilibrium curve was determined for a wide range of temperatures using Gibbs-Duhem integration. At high temperatures the sequence of phases encountered on compression is isotropic to nematic, and then nematic to solid. For reduced temperatures below T=0.85 the sequence is from the isotropic phase directly to the solid state. In view of this we locate the isotropic-nematic-solid triple point at TINS=0.85. The present results suggest that the high-density phase designated smectic B in previous simulations of the model is in fact a molecular solid and not a smectic liquid crystal. It seems that no thermodynamically stable smectic phase appears for the Gay-Berne model with the choice of parameters used in this work. We locate the vapor-isotropic liquid-solid triple point at a temperature TVIS=0.445. Considering that the critical temperatures is Tc=0.473, the Gay-Berne model used in this work presents vapor-liquid separation over a rather narrow range of temperatures. It is suggested that the strong lateral attractive interactions present in the Gay-Berne model stabilizes the layers found in the solid phase. The large stability of the solid phase, particularly at low temperatures, would explain the unexpectedly small liquid range observed in the vapor-liquid region.

  8. Deformability of adsorbents during adsorption and principles of the thermodynamics of solid-phase systems

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-09-01

    A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.

  9. Time-diagnostics for improved dynamics experiments at XUV FELs

    NASA Astrophysics Data System (ADS)

    Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek

    2010-10-01

    Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.

  10. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    NASA Astrophysics Data System (ADS)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  11. Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite

    DOE PAGES

    Luo, Liang; Men, Long; Liu, Zhaoyu; ...

    2017-06-01

    How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less

  12. Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Liang; Men, Long; Liu, Zhaoyu

    How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less

  13. Defence and security applications of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.

    2016-09-01

    Quantum Cascade Lasers (QCL) have seen tremendous recent application in the realm of Defence and Security. And, in many instances replacing traditional solid state lasers as the source of choice for Countermeasures, Remote Sensing, In-situ Sensing, Through-Barrier Sensing, and many others. Following their development and demonstration in the early 1990's, QCL's reached some maturity and specific defence and security application prior to 2005; with much initial development fostered by DARPA initiatives in the US, dstl, MoD, and EOARD funding initiatives in the UK, and University level R&D such as those by Prof Manijeh Razeghi at Northwestern University [1], and Prof Ted Masselink at Humboldt University [2]. As QCL's provide direct mid-IR laser output for electrical input, they demonstrate high quantum efficiency compared with diode pumped solid state lasers with optical parametric oscillators (OPOs) to generate mid-Infrared output. One particular advantage of QCL's is their very broad operational bandwidth, extending from the terahertz to the near-infrared spectral regions. Defence and Security areas benefiting from QCL's include: Countermeasures, Remote Sensing, Through-the-Wall Sensing, and Explosive Detection. All information used to construct this paper obtained from open sources.

  14. Electromagnon Resonance at Room Temperature with Gigantic Magnetochromism

    NASA Astrophysics Data System (ADS)

    Shishikura, H.; Tokunaga, Y.; Takahashi, Y.; Masuda, R.; Taguchi, Y.; Kaneko, Y.; Tokura, Y.

    2018-04-01

    The elementary excitation characteristic of magnetoelectric (ME) multiferroics is a magnon endowed with electric activity, which is referred to as an electromagnon. The electromagnon resonance mediated by the bilinear exchange coupling potentially exhibits strong terahertz light-matter interaction with optical properties different from the conventional magnon excitation. Here we report the robust electromagnon resonance on helimagnetic Y -type hexaferrites in a wide temperature range including room temperature. Furthermore, the efficient magnetic field controls of the electromagnon are demonstrated on the flexible spin structure of these compounds, leading to the generation or annihilation of the resonance as well as the large resonance energy shift. These terahertz characteristics of the electromagnon exemplify the versatile magneto-optical functionality driven by the ME coupling in multiferroics, paving a way for possible terahertz applications as well as terahertz control of a magnetic state of matter.

  15. Label-free sensing of the binding state of MUC1 peptide and anti-MUC1 aptamer solution in fluidic chip by terahertz spectroscopy.

    PubMed

    Zhao, Xiang; Zhang, Mingkun; Wei, Dongshan; Wang, Yunxia; Yan, Shihan; Liu, Mengwan; Yang, Xiang; Yang, Ke; Cui, Hong-Liang; Fu, Weiling

    2017-10-01

    The aptamer and target molecule binding reaction has been widely applied for construction of aptasensors, most of which are labeled methods. In contrast, terahertz technology proves to be a label-free sensing tool for biomedical applications. We utilize terahertz absorption spectroscopy and molecular dynamics simulation to investigate the variation of binding-induced collective vibration of hydrogen bond network in a mixed solution of MUC1 peptide and anti-MUC1 aptamer. The results show that binding-induced alterations of hydrogen bond numbers could be sensitively reflected by the variation of terahertz absorption coefficients of the mixed solution in a customized fluidic chip. The minimal detectable concentration is determined as 1 pmol/μL, which is approximately equal to the optimal immobilized concentration of aptasensors.

  16. Interferometric Control of Dual-Band Terahertz Perfect Absorption Using a Designed Metasurface

    NASA Astrophysics Data System (ADS)

    Kang, Ming; Zhang, Huifang; Zhang, Xueqian; Yang, Quanlong; Zhang, Weili; Han, Jiaguang

    2018-05-01

    The coherent perfect absorber (CPA), a time-reversed counterpart to the laser emission, could cause all energy fed to the system to be absorbed. It can also be used as an absorptive interferometer, which could provide applications in controllable optical energy transfer. Here, in order to achieve a terahertz CPA, we propose a designed metasurface and experimentally demonstrate that it can serve as a polarization-insensitive CPA at a one-frequency channel under normal symmetric excitation, while a transverse-electric CPA at two-frequency channels around oblique 40° symmetric incidence. Such phenomena in this system can be attributed to Fano resonance consisting of interacting one bright and one dark mode under normal incidence and an additional operative dark mode under oblique symmetric excitation. The experimental results find good agreement with the fitted coupled-mode theory. Moreover, we show that the output amplitude can be effectively tuned from 0 to 1 only by varying the relative phase between the two input waves. The designed CPA could find potential application in effectively controlling absorption for terahertz imaging and terahertz switches.

  17. Control of terahertz nonlinear transmission with electrically gated graphene metadevices.

    PubMed

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U K; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-02-20

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

  18. Terahertz spectroscopic investigations of leather in terahertz wave range

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2012-03-01

    Pulsed THz time-domain spectroscopy is a coherent technique, in which both the amplitude and the phase of a THz pulse are measured. Recently, material characterization using THz spectroscopy has been applied to biochemicals, pharmaceuticals, polymers and semiconductors and has given us important information. Moreover, THz imaging has progressed and is expected to be applicable for the identification of narcotics and explosives. The most important and characteristic point of THz spectroscopy is said to be its ability to observe intermolecular vibrations in contrast to infrared spectroscopy (IR), which observes intramolecular vibrations. Coherent detection enables direct calculations of both the imaginary and the real parts of the refractive index without using the Kramers-Kronig relations. Terahertz wave spectroscopy has been used to study the properties and absorption spectra characteristic of materials. In this paper, the spectral characteristics of cow skin, pig skin sheep skin, horse skin and deer skin have been measured with terahertz time-domain spectroscopy in the range of 0.1~2.0THz. The results show that THz-TDS technology provides an important tool for quality analysis and detection of leathers.

  19. Terahertz imaging with compressive sensing

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam

    Most existing terahertz imaging systems are generally limited by slow image acquisition due to mechanical raster scanning. Other systems using focal plane detector arrays can acquire images in real time, but are either too costly or limited by low sensitivity in the terahertz frequency range. To design faster and more cost-effective terahertz imaging systems, the first part of this thesis proposes two new terahertz imaging schemes based on compressive sensing (CS). Both schemes can acquire amplitude and phase-contrast images efficiently with a single-pixel detector, thanks to the powerful CS algorithms which enable the reconstruction of N-by- N pixel images with much fewer than N2 measurements. The first CS Fourier imaging approach successfully reconstructs a 64x64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels which defines the image in the Fourier plane. Only about 12% of the pixels are required for reassembling the image of a selected object, equivalent to a 2/3 reduction in acquisition time. The second approach is single-pixel CS imaging, which uses a series of random masks for acquisition. Besides speeding up acquisition with a reduced number of measurements, the single-pixel system can further cut down acquisition time by electrical or optical spatial modulation of random patterns. In order to switch between random patterns at high speed in the single-pixel imaging system, the second part of this thesis implements a multi-pixel electrical spatial modulator for terahertz beams using active terahertz metamaterials. The first generation of this device consists of a 4x4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. The spatial modulator has a uniform modulation depth of around 40 percent across all pixels, and negligible crosstalk, at the resonant frequency. The second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.

  20. Microwave spectroscopic observation of multiple phase transitions in the bilayer electron solid in wide quantum wells

    NASA Astrophysics Data System (ADS)

    Hatke, Anthony; Engel, Lloyd; Liu, Yang; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk

    2015-03-01

    The termination of the low Landau filling factor (ν) fractional quantum Hall series for a single layer two dimensional system results in the formation of a pinned Wigner solid for ν < 1 / 5. In a wide quantum well the system can support a bilayer state in which interlayer and intralayer interactions become comparable, which is measured in traditional transport as an insulating state for ν < 1 / 2. We perform microwave spectroscopic studies of this bilayer state and observe that this insulator exhibits a resonance, a signature of a solid phase. Additionally, we find that as we increase the density of the well at fixed ν this bilayer solid exhibits multiple sharp reductions in the resonance amplitude vs ν. This behavior is characteristic of multiple phase transitions, which remain hidden from dc transport measurements.

  1. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    NASA Astrophysics Data System (ADS)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  2. Low frequency piezoresonance defined dynamic control of terahertz wave propagation.

    PubMed

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan

    2016-11-30

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  3. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to polarization and birefringence effects, it was determined that one can not utilize the dielectric properties of powder-containing packages to differentiate hoax attacks and serious security threats.

  4. Recent advances in multidimensional ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliver, Thomas A. A.

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.

  5. Recent advances in multidimensional ultrafast spectroscopy

    PubMed Central

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes. PMID:29410844

  6. Manufacturing issues and optical properties of rare-earth (Y, Lu, Sc, Nd) aluminate garnets composite transparent ceramics

    NASA Astrophysics Data System (ADS)

    Bonnet, Loïck; Boulesteix, Rémy; Maître, Alexandre; Sallé, Christian; Couderc, Vincent; Brenier, Alain

    2015-12-01

    In this work, a comparative study of reactive sintering and optical properties of three laser composite transparent ceramics doped with neodymium: Nd:YAG/Nd:YS1AG, Nd:YAG/Nd:LuAG and Nd:YS1AG/Nd:LuAG has been achieved. Samples were manufactured thanks to pressureless co-sintering under vacuum of bilayer powder compacts. The reaction sequence from primary oxides to final garnet phases has been investigated. Similar dilatometric behavior was observed during reactive-sintering for each composition. Differential shrinkage can be thus accommodated to some extent. Second, this work has shown that the intermediate zone at composites interface is composed of single-phased garnet solid-solution with continuous evolution from one side to the other. The thickness of the interdiffusion zone was found to be limited to about 100 μm in all cases and appeared to be well described by classical diffusion laws of Fick and Whipple-Le Claire. The analyses of spectroscopic properties of transparent ceramics composites have finally shown that composite ceramics should be suitable to produce dual wavelength emission for terahertz generation.

  7. Fast and High Dynamic Range Imaging with Superconducting Tunnel Junction Detectors

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi

    2014-08-01

    We have demonstrated a combined test of the submillimeter-wave SIS photon detectors and GaAs-JFET cryogenic integrated circuits. A relatively large background photo-current can be read out by fast-reset integrating amplifiers. An integration time of 1 ms enables fast frame rate readout and large dynamic range imaging, with an expected dynamic range of 8,000 in 1 ms. Ultimate fast and high dynamic range performance of superconducting tunnel junction detectors (STJ) will be obtained when photon counting capabilities are employed. In the terahertz frequencies, when input photon rate of 100 MHz is measured, the photon bunching gives us enough timing resolution to be used as phase information of intensity fluctuation. Application of photon statistics will be a new tool in the terahertz frequency region. The design parameters of STJ terahertz photon counting detectors are discussed.

  8. Physics and capabilities of terahertz spectroscopy to study the water-biomolecule interaction

    NASA Astrophysics Data System (ADS)

    Vezzoli, G. C.

    2007-09-01

    We have conducted the first study of the use of terahertz radiation to precisely identify pre-melting, melting, polymerization, depolymerization and the influence of polar water in sulfur by scanning frequency as a parametric function of temperature, and including identifying precursor and intermediate states. This spectroscopic study has also identified the orthorhombic-monoclinic phase transformation, and the melting of the superheated orthorhombic phase. This work also reports detection of a water absorption indicating a perturbation of the water molecules, associated with solvation spheres of the inter-chain dynamics, as a precursor to a transition, and supporting our earlier results showing the transducing capabilities of conglomerates of water molecules. Through a study of the fine structure of the water absorption, we are able to determine information about local polarization effects which contribute to the transducing properties of water relative to a ligand. The above inorganic polymer study is applied to the understanding of the response of biomolecules to thermal and chemical influences, and data are included giving optical, electrical, and pH properties of the DNA-water system, showing a major conformational transition at ~43°C, and various forms of reconformation of DNA macromolecule due to chemical perturbation. Our results include findings aimed at complementing existing inhibitors that are intended to prevent retrovirus/phage invasion of the host cell DNA.

  9. Anomalous Surface Wave Launching by Handedness Phase Control.

    PubMed

    Zhang, Xueqian; Xu, Yuehong; Yue, Weisheng; Tian, Zhen; Gu, Jianqiang; Li, Yanfeng; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2015-11-25

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Investigation of phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by in situ synchrotron high-temperature powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Xin; Huang, Saifang; School of Materials Science and Technology, China University of Geosciences

    2014-03-15

    In situ synchrotron X-ray powder diffraction was used to study the high-temperature phase evolution of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) precursors prepared via solid-state and sol–gel methods. After the precursors are heated to 1225 °C, the CCTO phase is the main phase observed in the calcined powder, with the presence of some minor impurities. Comparing the two precursors, we found that the onset temperature for the CCTO phase formation is 800 °C in the sol–gel precursor, lower than that in the solid-state precursor (875 °C). Intermediate phases were only observed in the sol–gel precursor. Both precursors are able to bemore » calcined to sub-micrometric sized powders. Based on the synchrotron data along with differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), the phase formation sequence and mechanism during calcination are proposed in this study. -- Graphical abstract: The in situ synchrotron HT-XRD patterns of CCTO sol–gel and solid-state precursor. Highlights: • Phase formation sequence/mechanism in two CCTO precursors has been established. • Formation temperature of CCTO via sol–gel method is lower than solid-state method. • Intermediate phases are only observed in the sol–gel precursor. • Both precursors are able to be calcined into sub-micrometric sized powders.« less

  11. Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites.

    PubMed

    Hu, Te; Smith, Matthew D; Dohner, Emma R; Sher, Meng-Ju; Wu, Xiaoxi; Trinh, M Tuan; Fisher, Alan; Corbett, Jeff; Zhu, X-Y; Karunadasa, Hemamala I; Lindenberg, Aaron M

    2016-06-16

    The recently discovered phenomenon of broadband white-light emission at room temperature in the (110) two-dimensional organic-inorganic perovskite (N-MEDA)[PbBr4] (N-MEDA = N(1)-methylethane-1,2-diammonium) is promising for applications in solid-state lighting. However, the spectral broadening mechanism and, in particular, the processes and dynamics associated with the emissive species are still unclear. Herein, we apply a suite of ultrafast spectroscopic probes to measure the primary events directly following photoexcitation, which allows us to resolve the evolution of light-induced emissive states associated with white-light emission at femtosecond resolution. Terahertz spectra show fast free carrier trapping and transient absorption spectra show the formation of self-trapped excitons on femtosecond time-scales. Emission-wavelength-dependent dynamics of the self-trapped exciton luminescence are observed, indicative of an energy distribution of photogenerated emissive states in the perovskite. Our results are consistent with photogenerated carriers self-trapped in a deformable lattice due to strong electron-phonon coupling, where permanent lattice defects and correlated self-trapped states lend further inhomogeneity to the excited-state potential energy surface.

  12. Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.

  13. Terahertz characterization of Y2O3-added AlN ceramics

    NASA Astrophysics Data System (ADS)

    Kang, Seung Beom; Chung, Dong Chul; Kim, Sung-Jin; Chung, Jun-Ki; Park, Sang-Yeup; Kim, Ki-Chul; Kwak, Min Hwan

    2016-12-01

    Terahertz optical and dielectric properties of AlN ceramics fabricated by hot pressed sintering are investigated by THz time-domain spectroscopy in the frequency range of 0.2-3.5 THz. The measured properties of the pure AlN ceramic are compared with those of Y2O3-added AlN ceramic. Two prominent resonance modes, which are essentially responsible for the dielectric properties of the Y2O3-added AlN in terahertz regime, are characterized at ωTO1/(2π) = 2.76 THz (92 cm-1) and ωTO2/(2π) = 18.2 THz (605 cm-1) and are well described by the pseudo-harmonic oscillator model through theoretical fitting. The resonance ωTO1 at 2.76 THz is proposed to be due to the formation of a YAG (Y3Al5O12) secondary phase in Y2O3-added AlN ceramic. From the experimental results, good correlation is observed between the prominent peak of YAG secondary phase at 2.76 THz and thermal conductivity. Additionally, there is a high correlation between densification and refractive index of AlN ceramics fabricated by hot pressed sintering.

  14. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    NASA Astrophysics Data System (ADS)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  15. High-pressure cell for terahertz time-domain spectroscopy.

    PubMed

    Zhang, Wei; Nickel, Daniel; Mittleman, Daniel

    2017-02-06

    We introduce a sample cell that can be used for pressure-dependent terahertz time-domain spectroscopy. Compared with traditional far-IR spectroscopy with a diamond anvil cell, the larger aperture permits measurements down to much lower frequencies as low as 3.3 cm-1 (0.1 THz), giving access to new spectroscopic results. The pressure tuning range reaches up to 34.4 MPa, while the temperature range is from 100 to 473 K. With this large range of tuning parameters, we are able to map out phase diagrams of materials based on their THz spectrum, as well as to track the changing of the THz spectrum within a single phase as a function of temperature and pressure. Pressure-dependent THz-TDS results for nitrogen and R-camphor are shown as an example.

  16. Sol-gel transition of organogels observed by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ozaki, Atsumi; Itagaki, Yusuke; Yajima, Setsuko; Suzuki, Hal; Ishii, Shinya; Ishida, Misaki; Uchiyama, Tetsuji; Kimura, Keiichi; Otani, Chiko

    2014-07-01

    Terahertz (THz) absorption spectra of organogels consisting of (1R,2R)-1,2-bis(dodecanoylamino)cyclohexane/2-nitrophenyl octyl ether (RR-BDC/NPOE) and RR-BDC/n-dodecane were measured by Fourier-transform far-infrared (FT-FIR) spectroscopy. The vibrational peaks of the gels were observed at the same frequencies as those of the pure gelator, suggesting that the intermolecular structure around the Nsbnd H⋯Odbnd C hydrogen bond is maintained in the gel phase. Temperature-dependent spectroscopy showed a drastic spectral change at the sol-gel transition temperature, in which the vibrational peak at 3.5 THz disappears and a new peak appears at 2.9 THz. The change in THz vibrational frequency is indicative of the structural collapse of the hydrogen-bonded fibrous architecture in the sol phase.

  17. Waveform-controlled terahertz radiation from the air filament produced by few-cycle laser pulses.

    PubMed

    Bai, Ya; Song, Liwei; Xu, Rongjie; Li, Chuang; Liu, Peng; Zeng, Zhinan; Zhang, Zongxin; Lu, Haihe; Li, Ruxin; Xu, Zhizhan

    2012-06-22

    Waveform-controlled terahertz (THz) radiation is of great importance due to its potential application in THz sensing and coherent control of quantum systems. We demonstrated a novel scheme to generate waveform-controlled THz radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized few-cycle laser pulses undergo filamentation in ambient air. We launched CEP-stabilized 10 fs-long (~1.7 optical cycles) laser pulses at 1.8 μm into air and found that the generated THz waveform can be controlled by varying the filament length and the CEP of driving laser pulses. Calculations using the photocurrent model and including the propagation effects well reproduce the experimental results, and the origins of various phase shifts in the filament are elucidated.

  18. CO2-Doped Diamond: A Potential Solid-State CO2 Laser Material?

    NASA Technical Reports Server (NTRS)

    Tratt, D.

    1994-01-01

    This paper describes a novel concept for a solid-state CO subscript 2 laser medium which, by eschewing the gas-phase approach, may offer prospects for a compact, robust 9 - 11 (micro)m coherent source, coupled with the potentially superior frequency stability characteristics afforded by monolithic solid-state construction.

  19. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  20. A multiphase equation of state of three solid phases, liquid, and gas for titanium

    NASA Astrophysics Data System (ADS)

    Pecker, S.; Eliezer, S.; Fisher, D.; Henis, Z.; Zinamon, Z.

    2005-08-01

    A multiple-phase equation of state of the α phase, β phase, ω phase, liquid, and gas for titanium is presented. This equation of state is thermodynamically consistent, based on a three-term semiempirical model for the Helmholtz free energy. The parameters of the free energy are first evaluated from the experimental data and solid-state theoretical calculations. Then, the values of the parameters are adjusted using a numerical minimization scheme based on the simplex algorithm, to values that best reproduce measured phase diagrams and other experimental data. The predicted phase diagram shows a compression-induced β-ω transition, up to a β-ω-liquid triple point at ˜45GPa and ˜2200K. For pressures above this triple point, the melting occurs from the ω phase. Moreover, no β-ω transition is predicted along the Hugoniot curve starting at STP conditions.

  1. Detection of terahertz radiation in metamaterials: giant plasmonic ratchet effect (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rudin, Sergey; Rupper, Greg; Kachorovski, Valentin; Shur, Michael S.

    2017-05-01

    The electromagnetic wave impinging on the spatially modulated two-dimensional electron liquid (2DEL) induces a direct current (DC) when the wave amplitude modulated with the same wave vector as the 2DEL but is shifted in phase (the ratchet effect). The recent theory of this phenomenon predicted a dramatic enhancement at the plasmonic resonances and a non-trivial polarization dependence [1]. We will present the results of the numerical simulations using a hydrodynamic model exploring the helicity dependence of the DC current for silicon, InGaAs, and GaN metamaterial structures at cryogenic and room temperatures. In particular we will report on the effect of the DEL viscosity and explore the nonlinear effects at large amplitudes of the helical electromagnetic radiation impinging on the ratchet structures. We will then discuss the applications of the ratchet effect for terahertz metamaterials in order to realize ultra-sensitive terahertz (THz) radiation detectors, modulators, phase shifters, and delay lines with cross sections matching the terahertz wavelength and capable of determining the electromagnetic wave polarization and helicity. To this end, we propose and analyze the four contact ratchet devices capable of registering the two perpendicular components of the electric currents induced by the elliptically or circularly polarized radiation and analyze the load impedance effects in the structures optimized for the ratchet metamaterial THz components. The analysis is based on the hydrodynamic model suitable for the multi-gated semiconductor structures, coupled self-consistently with Poisson's equation for the electric potential. The model accounts for the effects of pressure gradients and 2DEL viscosity. Our numerical solutions are applicable to the wide ranges of electron mobility and terahertz power. [1] I. V. Rozhansky, V. Yu. Kachorovskii, and M. S. Shur, Helicity-Driven Ratchet Effect Enhanced by Plasmons, Phys. Rev. Lett. 114, 246601, 15 June 2015

  2. Experimental investigation of terahertz quantum cascade laser with variable barrier heights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu

    2014-04-28

    We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition.more » Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.« less

  3. Effect of processing route for preparation of mullite from kaolinite and alumina

    NASA Astrophysics Data System (ADS)

    Behera, Pallavi Suhasinee; Bhattacharyya, Sunipa

    2018-05-01

    In current work, two different types of mullite ceramic powder were prepared using kaolinite and alumina by solid state and chemical precipitation route. The phases, bond types and microstructural evolution of the mullite powders were investigated by X-ray diffraction, infrared analysis, and field emission scanning electron microscopy to study the mullitisation behavior. The solid state method evident a pure mullite phase formation at 1550 °C. In case of chemical precipitation route small amount of alumina peak was noticed along with major phase of mullite which was also clearly apprehended from FESEM micrographs and IR spectra. Densification was more for the samples prepared by solid state process which may be correlated to the delayed mullitization process in chemical precipitation route.

  4. NiTi shape memory via solid-state nudge-elastic band

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2014-03-01

    We determine atomic mechanisms of the shape memory effect in NiTi from a generalized solid-state nudge elastic band (SSNEB) method. We consider transformation between the austenite B2 and the ground-state base-centered orthorhombic (BCO) structures. In these pathways we obtain the R-phase and discuss its structure. We confirm that BCO is the ground state, and determine the pathways to BCO martensite, which dictate transition barriers. While ideal B2 is unstable, we find a B2-like NiTi high-temperature solid phase with significant local displacement disorder, which is B2 on average. This B2-like phase appears to be entropically stabilized. This work is supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering. Ames Laboratory is operated for the U.S. DOE by Iowa State University under contract DE-AC02-07CH11358.

  5. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy

    PubMed Central

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.

    2016-01-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779

  6. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy.

    PubMed

    Yamakawa, H; Miyamoto, T; Morimoto, T; Yada, H; Kinoshita, Y; Sotome, M; Kida, N; Yamamoto, K; Iwano, K; Matsumoto, Y; Watanabe, S; Shimoi, Y; Suda, M; Yamamoto, H M; Mori, H; Okamoto, H

    2016-02-11

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.

  7. Terahertz lens made out of natural stone.

    PubMed

    Han, Daehoon; Lee, Kanghee; Lim, Jongseok; Hong, Sei Sun; Kim, Young Kie; Ahn, Jaewook

    2013-12-20

    Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.

  8. Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters

    NASA Astrophysics Data System (ADS)

    Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis

    2018-03-01

    We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.

  9. Construction and Application of a Terahertz Scanning Near-Field Microscope for Study of Correlated Electron Materials at Cryogenic Temperatures and Nanometer Length Scales

    NASA Astrophysics Data System (ADS)

    Stinson, Harry Theodore, III

    This dissertation describes the design and construction of the world's first cryogenic apertureless near-field microscope designed for terahertz sources and detectors. I first provide motivation for the creation of this instrument in the context of spectroscopy of correlated electron materials, and background information on the two techniques that the instrument combines, scanning near-field optical microscopy and terahertz time-domain spectroscopy. I then detail key components of the instrument design, including proof-of-principle results obtained at room and cryogenic temperatures. Following this, I discuss an imaging experiment performed with this instrument on vanadium dioxide, an insulator-metal transition material, which sheds new light on the nature of the phase transition and provides support for a new model Hamiltonian for the system. Finally, I discuss a theoretical proposal for the study of cuprate superconductors using this instrument.

  10. A view of metals through the terahertz window

    NASA Astrophysics Data System (ADS)

    Dodge, Steve

    2006-05-01

    As electrons move through a metal, interaction with their environment tends to slow them down, causing the Drude peak in the optical conductivity to become narrower. The resulting peak width is typically in the terahertz frequency range that sits between microwaves the far infrared, too fast for conventional electronics and too slow for conventional infrared spectroscopy. With femtosecond laser techniques, however, coherent, broadband terahertz radiation can now be generated and detected with exquisite sensitivity, providing a new window onto electronic interactions in metals. I will discuss the application of this technique to a variety of metallic systems, including elemental lead, the nearly magnetic oxide metal CaRuO3, and CrV alloys that span the quantum phase transition from spin-density wave to paramagnetic metal. M. A. Gilmore, S. Kamal, D. M. Broun, and J. S. Dodge, Appl. Phys. Lett. 88, 141910 (2006).

  11. Terahertz generation by relativistic ponderomotive focusing of two co-axial Gaussian laser beams propagating in ripple density plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Subodh; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P.

    Terahertz (THz) generation by beating of two co-axial Gaussian laser beams, propagating in ripple density plasma, has been studied when both ponderomotive and relativistic nonlinearities are operative. When the two lasers co-propagate in rippled density plasma, electrons acquire a nonlinear velocity at beat frequency in the direction transverse to the direction of propagation. This nonlinear oscillatory velocity couples with the density ripple to generate a nonlinear current, which in turn generates THz radiation at the difference frequency. The necessary phase matching condition is provided by the density ripple. Relativistic ponderomotive focusing of the two lasers and its effects on yieldmore » of the generated THz amplitude have been discussed. Numerical results show that conversion efficiency of the order of 10{sup −3} can be achieved in the terahertz radiation generation with relativistic ponderomotive focusing.« less

  12. Terahertz metasurface quantum-cascade VECSELs: theory and performance

    DOE PAGES

    Xu, Luyao; Curwen, Christopher; Chen, Daguan; ...

    2017-04-12

    A longstanding challenge for terahertz quantum-cascade (QC) lasers is achieving both a high power and high-quality beam pattern, this is due in part due to their use of sub-wavelength metallic waveguides. Recently, the vertical-external-cavity surface-emitting laser (VECSEL) concept was demonstrated for the first time in the terahertz range and for a QC-laser. This is enabled by the development of an amplifying metasurface reflector capable of coupling incident free-space THz radiation to the QC-laser material such that it is amplified and re-radiated. The THz metasurface QC-VECSEL initiates a new approach for making QC-lasers with high power and excellent beam pattern. Furthermore,more » the ability to engineer the electromagnetic phase, amplitude, and polarization response of the metasurface enables lasers with new functionality. Our article provides an overview of the fundamental theory, design considerations, and recent results for high-performance THz QC-VECSELs.« less

  13. Solid state high resolution multi-spectral imager CCD test phase

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.

  14. Ultrafast terahertz spectroscopy study of a Kondo insulating thin-film Sm B6 : Evidence for an emergent surface state

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Yong, Jie; Takeuchi, Ichiro; Greene, Richard L.; Averitt, Richard D.

    2018-04-01

    We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound Sm B6 , a prototype Kondo insulator. Temperature-dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ˜T*=20 K , well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20 K) suggests the emergence of a surface state with an effective electron mass of 0.1 me . The conductivity dynamics following optical excitation is also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20 K, indicative of another channel opening up in the low-energy electrodynamics. Taken together, these results are consistent with the onset of a surface state well below the crossover temperature (100 K) after long-range coherence of the f -electron Kondo lattice is established.

  15. Electrolysis-induced protonation of VO2 thin film transistor for the metal-insulator phase modulation

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2016-02-01

    Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.

  16. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells

    NASA Astrophysics Data System (ADS)

    Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2014-06-01

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  17. Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance.

    PubMed

    Rozé, Mathieu; Ung, Bora; Mazhorova, Anna; Walther, Markus; Skorobogatiy, Maksim

    2011-05-09

    In this work we report two designs of subwavelength fibers packaged for practical terahertz wave guiding. We describe fabrication, modeling and characterization of microstructured polymer fibers featuring a subwavelength-size core suspended in the middle of a large porous outer cladding. This design allows convenient handling of the subwavelength fibers without distorting their modal profile. Additionally, the air-tight porous cladding serves as a natural enclosure for the fiber core, thus avoiding the need for a bulky external enclosure for humidity-purged atmosphere. Fibers of 5 mm and 3 mm in outer diameters with a 150 µm suspended solid core and a 900 µm suspended porous core respectively, were obtained by utilizing a combination of drilling and stacking techniques. Characterization of the fiber optical properties and the subwavelength imaging of the guided modes were performed using a terahertz near-field microscopy setup. Near-field imaging of the modal profiles at the fiber output confirmed the effectively single-mode behavior of such waveguides. The suspended core fibers exhibit transmission from 0.10 THz to 0.27 THz (larger core), and from 0.25 THz to 0.51 THz (smaller core). Due to the large fraction of power that is guided in the holey cladding, fiber propagation losses as low as 0.02 cm(-1) are demonstrated specifically for the small core fiber. Low-loss guidance combined with the core isolated from environmental perturbations make these all-dielectric fibers suitable for practical terahertz imaging and sensing applications. © 2011 Optical Society of America

  18. Terahertz spectroscopy properties of the selected engine oils

    NASA Astrophysics Data System (ADS)

    Zhu, Shouming; Zhao, Kun; Lu, Tian; Zhao, Songqing; Zhou, Qingli; Shi, Yulei; Zhao, Dongmei; Zhang, Cunlin

    2010-11-01

    Engine oil, most of which is extracted from petroleum, consist of complex mixtures of hydrocarbons of molecular weights in the range of 250-1000. Variable amounts of different additives are put into them to inhibit oxidation, improve the viscosity index, decrease the fluidity point and avoid foaming or settling of solid particles among others. Terahertz (THz) spectroscopy contains rich physical, chemical, and structural information of the materials. Most low-frequency vibrational and rotational spectra of many petrochemicals lie in this frequency range. In recent years, much attention has been paid to the THz spectroscopic studies of petroleum products. In this paper, the optical properties and spectroscopy of selected kinds of engine oil consisting of shell HELIX 10W-40, Mobilube GX 80W-90, GEELY ENGINE OIL SG 10W-30, SMA engine oil SG 5W-30, SMA engine oil SG 10W-30, SMA engine oil SG 75W-90 have been studied by the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.6-2.5 THz. Engine oil with different viscosities in the terahertz spectrum has certain regularity. In the THz-TDS, with the increase of viscosity, time delay is greater and with the increase of viscosity, refractive indexes also grow and their rank is extremely regular. The specific kinds of engine oil can be identified according to their different spectral features in the THz range. The THz-TDS technology has potentially significant impact on the engine oil analysis.

  19. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.

    PubMed

    Liu, Xin; Shu, Xuewen

    2017-08-20

    All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.

  20. Strong terahertz radiation from relativistic laser interaction with solid density plasmas

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Li, C.; Zhou, M. L.; Wang, W. M.; Du, F.; Ding, W. J.; Lin, X. X.; Liu, F.; Sheng, Z. M.; Peng, X. Y.; Chen, L. M.; Ma, J. L.; Lu, X.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.

    2012-06-01

    We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.

  1. Collaborative Initiative in Biomedical Imaging to Study Complex Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Weili; Fiddy, Michael A.

    2012-03-31

    The work reported addressed these topics: Fluorescence imaging; Optical coherence tomography; X-ray interferometer/phase imaging system; Quantitative imaging from scattered fields, Terahertz imaging and spectroscopy; and Multiphoton and Raman microscopy.

  2. Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.

    PubMed

    Ashrafi, Reza; Azaña, José

    2012-07-01

    A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.

  3. Metasurfaces in terahertz waveband

    NASA Astrophysics Data System (ADS)

    He, Jingwen; Zhang, Yan

    2017-11-01

    Metasurface, composed of subwavelength antennas, allows us to obtain arbitrary permittivity and permeability in electromagnetic (EM) waveband. It can be used to control the polarization, frequency, amplitude, and phase of the EM wave. Conventional terahertz (THz) components, such as high-impedance silicon lens, polyethylene lens, and quartz wave plate, rely on the phase accumulation along the wave propagation to reshape the THz wavefront. The metasurface employs the localized surface plasmon resonance to modulate the wavefront. Compared with conventional THz components, metasurface has the advantages of being ultrathin, ultralight, and low cost. In recent years, a large number of THz devices based on metasurface have been proposed. We review in broad outline the metasurface devices in the THz region and describe the progress of static and tunable THz field-modulated metasurfaces in detail. Finally, we discuss current challenges and opportunities in this rapidly developing research field.

  4. Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers

    PubMed Central

    Mezzapesa, Francesco P.; Columbo, Lorenzo L.; Rizza, Carlo; Brambilla, Massimo; Ciattoni, Alessardro; Dabbicco, Maurizio; Vitiello, Miriam S.; Scamarcio, Gaetano

    2015-01-01

    Periodic patterns of photo-excited carriers on a semiconductor surface profoundly modifies its effective permittivity, creating a stationary all-optical quasi-metallic metamaterial. Intriguingly, one can tailor its artificial birefringence to modulate with unprecedented degrees of freedom both the amplitude and phase of a quantum cascade laser (QCL) subject to optical feedback from such an anisotropic reflector. Here, we conceive and devise a reconfigurable photo-designed Terahertz (THz) modulator and exploit it in a proof-of-concept experiment to control the emission properties of THz QCLs. Photo-exciting sub-wavelength metastructures on silicon, we induce polarization-dependent changes in the intra-cavity THz field, that can be probed by monitoring the voltage across the QCL terminals. This inherently flexible approach promises groundbreaking impact on THz photonics applications, including THz phase modulators, fast switches, and active hyperbolic media. PMID:26549166

  5. Design of a LiNbO(3) ribbon waveguide for efficient difference-frequency generation of terahertz wave in the collinear configuration.

    PubMed

    Takushima, Y; Shin, S Y; Chung, Y C

    2007-10-29

    We propose and investigate a ribbon waveguide for difference-frequency generation of terahertz (THz) wave from infrared light sources. The proposed ribbon waveguide is composed of a nonlinear optic crystal and has a thickness less than the wavelength of the THz wave to support the surface-wave mode in the THz region. By utilizing the waveguide dispersion of the surface-wave mode, the phase matching condition between infrared pump, idler and THz waves can be realized in the collinear configuration. Owing to the weak mode confinement of the THz wave, the absorption coefficient can also be reduced. We design the ribbon waveguide which uses LiNbO(3) crystal and discuss the phase-matching condition for DFG of THz wave. Highly efficient THz-wave generation is confirmed by numerical simulations.

  6. Two-path plasmonic interferometer with integrated detector

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory

    2016-03-29

    An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.

  7. Detection of Ionic liquid using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  8. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  9. Active Metamaterial Based Terahertz Polarimeter for Spectroscopic Detection of Chemical and Biological Hazards

    DTIC Science & Technology

    2014-04-01

    13. SUPPLEMENTARY NOTES Author’s email: grace.d.metcalfe.civ@mail.mil 14. ABSTRACT Polarimetry is the analysis of the polarization state of...been virtually no polarimetry work at terahertz (THz) frequencies because, until recently, it has been difficult to create components to control the...develop the essential components such that THz polarimetry may enhance the ability to study previously unexploited spectral responses in the THz

  10. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO 2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation

    DOE PAGES

    Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.; ...

    2015-10-16

    Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO 2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests amore » novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less

  11. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO 2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.

    Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO 2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests amore » novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less

  12. Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability

    PubMed Central

    Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.

    2013-01-01

    Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564

  13. Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: Effect of dispersion force on the vibrational modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Tominaga, Keisuke, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp; Hayashi, Michitoshi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp

    2014-05-07

    The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D{sup *} have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. Themore » relationship between the experimentally obtained IS and the IS obtained by PBE-D{sup *} simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D{sup *} data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D{sup *} produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D{sup *}.« less

  14. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.

    PubMed

    Rosenholm, Jarl B

    2018-03-01

    The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered (aggregated) phases is shown to exist when liquid vapor is confined in capillaries (condensation-liquefaction-evaporation and flux). This pheno-menon can be experimentally illustrated with suspended nano-sized particles (flocculation-coagulation-peptisation of colloidal sols) being confined in sample holders of varying size. The self-assembled aggregates represent critical self-similar equilibrium structures corres-ponding to rate determining complexes in kinetics. Overall, a self-consistent thermodynamic framework is established for the characterization of two- and three-dimensional phase separations in one-, two- and three-component systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Gigantic terahertz magnetochromism via electromagnons in the hexaferrite magnet Ba2Mg2Fe12O22

    NASA Astrophysics Data System (ADS)

    Kida, N.; Kumakura, S.; Ishiwata, S.; Taguchi, Y.; Tokura, Y.

    2011-02-01

    Effects of temperature (6-225 K) and magnetic field (0-7 T) on the low-energy (1.2-5 meV) electrodynamics of the electromagnon, the magnetic resonance driven by the light electric field, have been investigated for a hexaferrite magnet Ba2Mg2Fe12O22 by using terahertz time-domain spectroscopy. We find the gigantic terahertz magnetochromism via electromagnons; the magnetochromic change, as defined by the difference of the absorption intensity with and without magnetic field, exceeds 500% even at 0.6 T. The results arise from the fact that the spectral intensity of the electromagnon critically depends on the magnetic structure. With changing the conical spin structures in terms of the conical angle θ from the proper screw (θ=0°) to the ferrimagnetic (θ=90°) through the conical spin-ordered phases (0°<θ<90°) by external magnetic fields, we identify the maximal magnetochromism around θ≈45°. On the contrary, there is no remarkable signature of the electromagnon in the proper screw and spin-collinear (ferrimagnetic) phases, clearly indicating the important role of the conical spin order to produce the magnetically controllable electromagnons. The possible origin of this electromagnon is argued in terms of the exchange-striction mechanism.

  16. Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons.

    PubMed

    Temnov, Vasily V; Klieber, Christoph; Nelson, Keith A; Thomay, Tim; Knittel, Vanessa; Leitenstorfer, Alfred; Makarov, Denys; Albrecht, Manfred; Bratschitsch, Rudolf

    2013-01-01

    Fundamental interactions induced by lattice vibrations on ultrafast time scales have become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the terahertz-frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here we report on the generation and nonlinear propagation of giant (1 per cent) acoustic strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast surface plasmon interferometry. This new technique allows for unambiguous characterization of arbitrary ultrafast acoustic transients. The giant acoustic pulses experience substantial nonlinear reshaping after a propagation distance of only 100 nm in a crystalline gold layer. Excellent agreement with the Korteveg-de Vries model points to future quantitative nonlinear femtosecond terahertz-ultrasonics at the nano-scale in metals at room temperature.

  17. A Tandem Coupler for Terahertz Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Reck, Theodore J.; Deal, William; Chattopadhyay, Goutam

    2013-01-01

    A coplanar waveguide 3 dB quadrature coupler operating from 500 to 700 GHz is designed, fabricated and measured. On-wafer measurements demonstrate an amplitude balance of +/-2 dB and phase balance of +/-20 deg.

  18. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  19. Amplification of terahertz pulses in gases beyond thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Schwaab, G. W.; Schroeck, K.; Havenith, M.

    2007-03-01

    In Ebbinghaus [Plasma Sources Sci. Technol. 15, 72 (2006)] we reported terahertz time-domain spectroscopy in a plasma at low pressure, we observed a simultaneous absorption and amplification process within each single rotational transition. Here we show that this observation is a direct consequence of the short interaction time of the pulsed terahertz radiation with the plasma, which is shorter than the average collision time between the molecules. Thus, during the measurement time the molecular states may be considered entangled. Solution of the time-dependent Schrödinger equation yields a linear term that may be neglected for long observation times, large frequencies, or nonentangled states. We determine the restrictions for the observation of this effect and calculate the spectrum of a simple diatomic molecule. Using this model we are able to explain the spectral features showing a change from emission to absorption as observed previously. In addition we find that the amplification and absorption do not follow the typical Lambert-Beer exponential law but an approximate square law.

  20. Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy

    NASA Astrophysics Data System (ADS)

    Fukunaga, K.; Cortes, E.; Cosentino, A.; Stã¼nkel, I.; Leona, M.; Duling, N.; Mininberg, D. T.

    2011-08-01

    This paper reports the first use of terahertz time domain reflection imaging involving textiles on part of a complete human mummy, still in original wrapping. X-ray technique has been used extensively to investigate anatomical features, since X-ray pass through the wrapping. Terahertz waves, on the other hand, can penetrate into non-metallic materials and its reflection depends on the refractive index of materials at the interface, such as textiles and the air. The mummy of Kharushere (ca. 945-712 B.C.) was examined by using Terahertz time domain reflection imaging in the Egyptian galleries of The Metropolitan Museum of Art. Experimental results suggest that the Terahetz imaging is a promising technique for probing the fabric layers surrounding Egyptian mummies, although it is still very limited in its current state. In the future it could become a useful complement to CT scanning when materials with low radiographic density and contrast are being investigated

  1. Phase Relations in Ternary Systems in the Subsolidus Region: Methods to Formulate Solid Solution Equations and to Find Particular Compositions

    ERIC Educational Resources Information Center

    Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.

    2017-01-01

    A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…

  2. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE PAGES

    Kelly, B. G.; Loether, A.; Unruh, K. M.; ...

    2017-02-01

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  3. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B. G.; Loether, A.; Unruh, K. M.

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  4. The sign of the polarizability anisotropy of polar molecules is obtained from the terahertz Kerr effect

    NASA Astrophysics Data System (ADS)

    Kampfrath, Tobias; Wolf, Martin; Sajadi, Mohsen

    2018-01-01

    The terahertz Kerr effect (TKE) of polar molecular vapors is reported. The birefringence signal of fluoroform appears with opposite polarity compared to acetonitrile and water. This behavior is a hallmark of the opposite sign of a new molecular polarizability anisotropy ΔαTKE =αzz - (αxx +αyy) / 2 , with αzz being the polarizability along the permanent dipole moment. As the excitation of the rotational states orients the permanent dipoles along the terahertz electric field, the orientation is translated into an optical birefringence proportional to ΔαTKE . Thus, the sign of ΔαTKE is imprinted onto the TKE signal, providing novel insights into the polarizability tensor of water.

  5. Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm.

    PubMed

    Kohlhaas, Robert B; Rehn, Arno; Nellen, Simon; Koch, Martin; Schell, Martin; Dietz, Roman J B; Balzer, Jan C

    2017-05-29

    We present a fiber-coupled terahertz quasi time-domain spectroscopy system driven by a laser with a central wavelength of 1550 nm. By using a commercially available multimode laser diode in combination with state-of-the-art continuous wave antennas, a bandwidth of more than 1.8 THz is achieved. The peak signal-to-noise ratio is around 60 dB. A simulation based on the optical spectrum of the laser diode and the transfer function of the THz path is in agreement with the experimental results. The system is used to extract the refractive index from two different samples and the results indicate that the performance is up to 1.8 THz comparable to a terahertz time-domain spectroscopy system.

  6. The significance of the amorphous potential energy landscape for dictating glassy dynamics and driving solid-state crystallisation.

    PubMed

    Ruggiero, Michael T; Krynski, Marcin; Kissi, Eric Ofosu; Sibik, Juraj; Markl, Daniel; Tan, Nicholas Y; Arslanov, Denis; van der Zande, Wim; Redlich, Britta; Korter, Timothy M; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Elliott, Stephen R; Zeitler, J Axel

    2017-11-15

    The fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, T g , can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why T g can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe. Whilst this has been proposed previously, we demonstrate, using ab initio molecular-dynamics (AIMD) simulations, that it is of critical importance to carefully consider the complete PES - both the intra-molecular and inter-molecular features - in order to fully understand the entire range of atomic-dynamical processes in disordered solids. Finally, we show that it is possible to utilise this dependence to directly manipulate and harness amorphous dynamics in order to control the behaviour of such solids by using high-powered terahertz pulses to induce crystallisation and preferential crystal-polymorph growth in glasses. Combined, these findings provide compelling evidence that the PES landscape, and the corresponding energy barriers, are the ultimate controlling feature behind the atomic and molecular dynamics of disordered solids, regardless of the frequency at which they occur.

  7. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Bo; School of Mechanical Engineering, Gui Zhou University, Guiyang 550000; Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Displaymore » Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo

    The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperaturemore » solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.« less

  9. Nonvolatile Solid-State Charged-Polymer Gating of Topological Insulators into the Topological Insulating Regime

    NASA Astrophysics Data System (ADS)

    Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.

    2018-04-01

    We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.

  10. View from... JSAP Spring Meeting 2012: Photonics news from Japan

    NASA Astrophysics Data System (ADS)

    Horiuchi, Noriaki

    2012-05-01

    Scientists gathered at the spring meeting of the Japan Society of Applied Physics to discuss quantum devices based on silicon and diamond, imaging using the X-ray Berry-phase effect and terahertz near-field microscopy.

  11. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  12. Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis.

    PubMed

    Rakić, Aleksandar D; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Dean, Paul; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Wilson, Stephen J; Linfield, Edmund H; Davies, A Giles

    2013-09-23

    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.

  13. Estimation of dc transport dynamics in strongly correlated (La,Pr,Ca)MnO{sub 3} film using an insulator-metal composite model for terahertz conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, T. V. A.; Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531; Hattori, A. N.

    2014-07-14

    Temperature-dependent conductivities at dc and terahertz (THz) frequency region (σ{sub THz}(ω,T)) were obtained for a strongly correlated (La{sub 0.275}Pr{sub 0.35}Ca{sub 0.375})MnO{sub 3} (LPCMO) film using THz time domain spectroscopy. A composite model that describes σ{sub THz}(ω,T) for LPCMO through the insulator-metal transition (IMT) was established by incorporating Austin-Mott model characterizing the hopping of localized electrons and Drude model explaining the behavior of free electrons. This model enables us to reliably investigate the dc transport dynamics from THz conductivity measurement, i.e., simultaneously evaluate the dc conductivity and the competing composition of metal and insulator phases through the IMT, reflecting the changesmore » in microscopic conductivity of these phases.« less

  14. Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field.

    PubMed

    Yu, Jian-Ping; Chen, Sai; Fan, Fei; Cheng, Jie-Rong; Xu, Shi-Tong; Wang, Xiang-Hui; Chang, Sheng-Jiang

    2018-01-22

    In this work, the optically anisotropic property of dual-frequency liquid crystals (DFLC) in terahertz (THz) regime has been experimentally investigated, which indicates that the refractive index and birefringence of DFLC can be continuously modulated by both the alternating frequency and intensity of the alternating electric field. This tunability originates from the rotation of DFLC molecules induced by alternating electric fields. The results show that by modulating the alternating frequency from 1 kHz to 100 kHz under 30 kV/m electric field, the 600 μm thickness DFLC cell can play as a tunable quarter-wave plate above 0.68 THz, or a half-wave plate above 1.33 THz. Besides, it can be viewed as a tunable THz phase shifter from 0 to π. Therefore, due to its novel tuning mechanism, DFLC will be of great significance in dynamic manipulating on THz phase and polarization.

  15. [Application of terahertz technology in medical testing and diagnosis].

    PubMed

    Qi, Na; Zhang, Zhuo-Yong; Xiang, Yu-Hong

    2013-08-01

    Terahertz science and technology is increasingly emphasized in science and industry, and has progressed significantly in recent years. There is an important aspect of attention in the application of terahertz technology to medicine. The overview of the terahertz characters, terahertz spectroscopy and terahertz imaging technology is introduced. This paper focuses on reviewing the use of and research progress in terahertz spectroscopy and terahertz imaging technology in medical testing and diagnosis. Furthermore, the problems to be solved and development directions of terahertz spectroscopy and terahertz imaging technology are discussed.

  16. Global distribution of particle phase state in atmospheric secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich

    2017-04-01

    Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.

  17. Global distribution of particle phase state in atmospheric secondary organic aerosols.

    PubMed

    Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P; Karydis, Vlassis A; Berkemeier, Thomas; Pandis, Spyros N; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich

    2017-04-21

    Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.

  18. Global distribution of particle phase state in atmospheric secondary organic aerosols

    PubMed Central

    Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich

    2017-01-01

    Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas–particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA. PMID:28429776

  19. Optimal control of quantum rings by terahertz laser pulses.

    PubMed

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  20. Highly sensitive atomic based MW interferometry.

    PubMed

    Shylla, Dangka; Nyakang'o, Elijah Ogaro; Pandey, Kanhaiya

    2018-06-06

    We theoretically study a scheme to develop an atomic based micro-wave (MW) interferometry using the Rydberg states in Rb. Unlike the traditional MW interferometry, this scheme is not based upon the electrical circuits, hence the sensitivity of the phase and the amplitude/strength of the MW field is not limited by the Nyquist thermal noise. Further, this system has great advantage due to its much higher frequency range in comparision to the electrical circuit, ranging from radio frequency (RF), MW to terahertz regime. In addition, this is two orders of magnitude more sensitive to field strength as compared to the prior demonstrations on the MW electrometry using the Rydberg atomic states. Further, previously studied atomic systems are only sensitive to the field strength but not to the phase and hence this scheme provides a great opportunity to characterize the MW completely including the propagation direction and the wavefront. The atomic based MW interferometry is based upon a six-level loopy ladder system involving the Rydberg states in which two sub-systems interfere constructively or destructively depending upon the phase between the MW electric fields closing the loop. This work opens up a new field i.e. atomic based MW interferometry replacing the conventional electrical circuit in much superior fashion.

  1. Hydrogen bond breaking dynamics in the water pentamer: Terahertz VRT spectroscopy of a 20 μm libration

    NASA Astrophysics Data System (ADS)

    Cole, William T. S.; Fellers, Raymond S.; Viant, Mark R.; Saykally, Richard J.

    2017-01-01

    Hydrogen bonds in solid and liquid water are formed and broken via librational vibrations, hence characterizing the details of these motions is vital to understanding these important dynamics. Here we report the measurement and assignment of 875 transitions comprising 6 subbands originating from out-of-plane librational transitions of the water pentamer-d10 near 512 cm-1. The precisely measured (ca. 1 ppm) transitions reveal bifurcation splittings of ˜1884 MHz, a ˜4000× enhancement over ground state splittings and 100× greater than predicted by theory. The pentamer is thus the third water cluster to display greatly enhanced bifurcation tunneling upon single quantum excitation of librational vibrations. From the intensity pattern of the observed transitions, the mechanism of bifurcation is established by comparison with theoretical predictions.

  2. Hydrogen bond breaking dynamics in the water pentamer: Terahertz VRT spectroscopy of a 20 μm libration.

    PubMed

    Cole, William T S; Fellers, Raymond S; Viant, Mark R; Saykally, Richard J

    2017-01-07

    Hydrogen bonds in solid and liquid water are formed and broken via librational vibrations, hence characterizing the details of these motions is vital to understanding these important dynamics. Here we report the measurement and assignment of 875 transitions comprising 6 subbands originating from out-of-plane librational transitions of the water pentamer-d 10 near 512 cm -1 . The precisely measured (ca. 1 ppm) transitions reveal bifurcation splittings of ∼1884 MHz, a ∼4000× enhancement over ground state splittings and 100× greater than predicted by theory. The pentamer is thus the third water cluster to display greatly enhanced bifurcation tunneling upon single quantum excitation of librational vibrations. From the intensity pattern of the observed transitions, the mechanism of bifurcation is established by comparison with theoretical predictions.

  3. High speed real-time wavefront processing system for a solid-state laser system

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  4. Generation and investigation of terahertz Airy beam realized using parallel-plate waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shi, Guohua; Han, Zhanghua

    2018-03-01

    In this paper, the launching of Airy beam in the terahertz region using waveguiding structures was proposed, designed and numerically characterized. By properly designing the waveguide slit width and the packing number in different sections of parallel-plate waveguides (PPWGs) array, arbitrary phase delay and lateral position-dependent amplitude transmission through the structure, required to realize the target Airy beam profile, can be easily fulfilled. Airy beams working at the frequency of 0.3 THz with good non-diffracting, self-bending, and self-healing features are demonstrated. This study represents a new alternative to scattering-based metasurface structures, and can be utilized in many modern applications.

  5. Terahertz pulse generation by the tilted pulse front technique using an M-shaped optical system

    NASA Astrophysics Data System (ADS)

    Morita, Ken; Shiozawa, Kento; Suizu, Koji; Ishitani, Yoshihiro

    2018-05-01

    To achieve the phase matching condition in terahertz (THz) pulse generation by the tilted pulse front technique, it is necessary to rebuild the entire optical setup if the optical conditions, such as excitation wavelength, temperature of nonlinear crystal, and output THz frequency, are changed. We propose THz pulse generation by the tilted pulse front technique using an M-shaped configuration. This system allows us to change the optical conditions only by tuning a few optics and without rebuilding the entire setup. We change the excitation wavelength at a fixed radiation frequency and assess the performance of the proposed system.

  6. Observation of superradiant synchrotron radiation in the terahertz region

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Dallin, L.; de Jong, M.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2013-06-01

    We report the first high-resolution measurement of superradiance, using coherent synchrotron radiation in the terahertz region from the Canadian Light Source synchrotron and a Michelson interferometer with a nominal frequency resolution of 0.00096cm-1. Superradiance arises when a high degree of phase coherence exists between the radiation fields of the individual electron bunches, and manifests itself as a series of narrow spectral peaks at harmonics of the bunch frequency. We observe an enhancement factor of 16 at the spectral peaks, limited by the interferometer resolution. The spectral distribution and relative amplitudes of the superradiant peaks are modified by altering the pattern of bunches along the bunch train.

  7. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  8. Microspectroscopy with Terahertz bioMEMS

    NASA Astrophysics Data System (ADS)

    Akalin, Tahsin; Treizebré, Anthony

    2006-04-01

    Biological applications require more and more compact, sensitive and reliable microsystems. We will present solutions in order to realize a "microspectroscopy" up to Terahertz frequencies of various biological entities (living cell, neurons, proteins...). We investigate these entities in liquid phase. In a recent work, we have demonstrated a solution to excite efficiently a single wire transmission line [1]. The propagation mode is similar to a surface plasmon and known as a Goubau-mode [2]. The wire we used is extremely thin compared to other recent solutions at terahertz frequencies. There are three orders of magnitude in the size of the wire used by K. Wang and D.M. Mittleman. Typically the wire's width is 1μm compared to the 900μm diameter metal wire in [3]. Moreover our solution is in a planar configuration which is more suitable for microfluidic applications. We benefit from the high confinement of the electromagnetic field around this very thin gold wire to optimize the sensitivity of these Terahertz BioMEMS. Microfluidic channels are placed below the strip in a perpendicular direction. We will first present some properties of the Planar Goubau-Line (PGL) [4] and the measurements results obtained with structures fabricated on glass and quartz substrates. In a last part resonant structures and Mach-Zehnder type interferometers will also be presented.

  9. Collective dynamics of lysozyme in water: terahertz absorption spectroscopy and comparison with theory.

    PubMed

    Xu, Jing; Plaxco, Kevin W; Allen, S James

    2006-11-30

    To directly measure the low-frequency vibrational modes of proteins in biologically relevant water environment rather than previously explored dry or slightly hydrated phase, we have developed a broadband terahertz spectrometer suitable for strongly attenuating protein solutions. Radiation is provided by harmonic multipliers (up to 0.21 THz), a Gunn oscillator (at 0.139 THz), and the UCSB free-electron lasers (up to 4.8 THz). Our spectrometer combines these intense sources with a sensitive cryogenic detector and a variable path length sample cell to detect radiation after it is attenuated by more than 7 orders of magnitudes by the aqueous sample. Using this spectrometer, we have measured the molar extinction of solvated lysozyme between 0.075 and 3.72 THz (2.5-124 cm(-1)), and we made direct comparison to several published theoretical models based on molecular dynamics simulations and normal-mode analysis. We confirm the existence of dense, overlapping normal modes in the terahertz frequency range. Our observed spectrum, while in rough qualitative agreement with these models, differs in detail. Further, we observe a low-frequency cutoff in terahertz dynamics between 0.2 and 0.3 THz, and we see no evidence of a predicted normal mode at approximately 0.09 THz for the protein.

  10. Link and Network Layers Design for Ultra-High-Speed Terahertz-Band Communications Networks

    DTIC Science & Technology

    2017-01-01

    throughput, and identify the optimal parameter values for their design (Sec. 6.2.3). Moreover, we validate and test the scheme with experimental data obtained...LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH- SPEED TERAHERTZ-BAND COMMUNICATIONS NETWORKS STATE UNIVERSITY OF NEW YORK (SUNY) AT BUFFALO JANUARY...TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) FEB 2015 – SEP 2016 4. TITLE AND SUBTITLE LINK AND NETWORK LAYERS DESIGN FOR ULTRA-HIGH

  11. Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications.

    PubMed

    Smirnov, Serguei; Anoshkin, Ilya V; Demchenko, Petr; Gomon, Daniel; Lioubtchenko, Dmitri V; Khodzitsky, Mikhail; Oberhammer, Joachim

    2018-06-21

    Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.

  12. Theory of injection locking and rapid start-up of magnetrons, and effects of manufacturing errors in terahertz traveling wave tubes

    NASA Astrophysics Data System (ADS)

    Pengvanich, Phongphaeth

    In this thesis, several contemporary issues on coherent radiation sources are examined. They include the fast startup and the injection locking of microwave magnetrons, and the effects of random manufacturing errors on phase and small signal gain of terahertz traveling wave amplifiers. In response to the rapid startup and low noise magnetron experiments performed at the University of Michigan that employed periodic azimuthal perturbations in the axial magnetic field, a systematic study of single particle orbits is performed for a crossed electric and periodic magnetic field. A parametric instability in the orbits, which brings a fraction of the electrons from the cathode toward the anode, is discovered. This offers an explanation of the rapid startup observed in the experiments. A phase-locking model has been constructed from circuit theory to qualitatively explain various regimes observed in kilowatt magnetron injection-locking experiments, which were performed at the University of Michigan. These experiments utilize two continuous-wave magnetrons; one functions as an oscillator and the other as a driver. Time and frequency domain solutions are developed from the model, allowing investigations into growth, saturation, and frequency response of the output. The model qualitatively recovers many of the phase-locking frequency characteristics observed in the experiments. Effects of frequency chirp and frequency perturbation on the phase and lockability have also been quantified. Development of traveling wave amplifier operating at terahertz is a subject of current interest. The small circuit size has prompted a statistical analysis of the effects of random fabrication errors on phase and small signal gain of these amplifiers. The small signal theory is treated with a continuum model in which the electron beam is monoenergetic. Circuit perturbations that vary randomly along the beam axis are introduced through the dimensionless Pierce parameters describing the beam-wave velocity mismatch (b), the gain parameter (C), and the cold tube circuit loss ( d). Our study shows that perturbation in b dominates the other two in terms of power gain and phase shift. Extensive data show that standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C and d.

  13. Equation of state of solid, liquid and gaseous tantalum from first principles

    DOE PAGES

    Miljacic, Ljubomir; Demers, Steven; Hong, Qi-Jun; ...

    2015-09-18

    Here, we present ab initio calculations of the phase diagram and the equation of state of Ta in a wide range of volumes and temperatures, with volumes from 9 to 180 Å 3/atom, temperature as high as 20000 K, and pressure up to 7 Mbars. The calculations are based on first principles, in combination with techniques of molecular dynamics, thermodynamic integration, and statistical modeling. Multiple phases are studied, including the solid, fluid, and gas single phases, as well as two-phase coexistences. We calculate the critical point by direct molecular dynamics sampling, and extend the equation of state to very lowmore » density through virial series fitting. The accuracy of the equation of state is assessed by comparing both the predicted melting curve and the critical point with previous experimental and theoretical investigations.« less

  14. Silicon nitride equation of state

    NASA Astrophysics Data System (ADS)

    Brown, Robert C.; Swaminathan, Pazhayannur K.

    2017-01-01

    This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.

  15. Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinlong; Li, Shuai; Zhang, Yi

    Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less

  16. Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte

    DOE PAGES

    Zhu, Jinlong; Li, Shuai; Zhang, Yi; ...

    2016-09-07

    Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less

  17. Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases

    NASA Astrophysics Data System (ADS)

    Waldner, Peter

    2017-08-01

    All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.

  18. Molecular processes from the AGB to the PN stage

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. Anibal

    2012-08-01

    Many complex organic molecules and inorganic solid-state compounds have been observed in the circumstellar shell of stars (both C-rich and O-rich) in the transition phase between Asymptotic Giant Branch (AGB) stars and Planetary Nebulae (PNe). This short (~102-104 years) phase of stellar evolution represents a wonderful laboratory for astrochemistry and provides severe constraints on any model of gas-phase and solid-state chemistry. One of the major challenges of present day astrophysics and astrochemistry is to understand the formation pathways of these complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene in the case of a C-rich chemistry and oxides and crystalline silicates in O-rich environments) in space. In this review, I present an observational review of the molecular processes in the late stages of stellar evolution with a special emphasis on the first detections of fullerenes and graphene in PNe.

  19. Solid-state reaction synthesis for mixed-phase Eu3+-doped bismuth molybdate and its luminescence properties

    NASA Astrophysics Data System (ADS)

    Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong

    2017-09-01

    A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.

  20. Predictive of the quantum capacitance effect on the excitation of plasma waves in graphene transistors with scaling limit

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Chen, Xiaoshuang; Hu, Yibin; Wang, Shao-Wei; Lu, Wei

    2015-04-01

    Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions.Plasma waves in graphene field-effect transistors (FETs) and nano-patterned graphene sheets have emerged as very promising candidates for potential terahertz and infrared applications in myriad areas including remote sensing, biomedical science, military, and many other fields with their electrical tunability and strong interaction with light. In this work, we study the excitations and propagation properties of plasma waves in nanometric graphene FETs down to the scaling limit. Due to the quantum-capacitance effect, the plasma wave exhibits strong correlation with the distribution of density of states (DOS). It is indicated that the electrically tunable plasma resonance has a power-dependent V0.8TG relation on the gate voltage, which originates from the linear dependence of density of states (DOS) on the energy in pristine graphene, in striking difference to those dominated by classical capacitance with only V0.5TG dependence. The results of different transistor sizes indicate the potential application of nanometric graphene FETs in highly-efficient electro-optic modulation or detection of terahertz or infrared radiation. In addition, we highlight the perspectives of plasma resonance excitation in probing the many-body interaction and quantum matter state in strong correlation electron systems. This study reveals the key feature of plasma waves in decorated/nanometric graphene FETs, and paves the way to tailor plasma band-engineering and expand its application in both terahertz and mid-infrared regions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07689c

  1. Phase behavior of blends of linear and branched polyethylenes in the molten and solid states by small-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamo, R.G.; Mandelkern, L.; Londono, J.D.

    1994-01-17

    The state of mixing in blends of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) in the liquid and solid state has been examined by small-angle neutron scattering (SANS) in conjunction with deuterium labeling. In the melt, SANS results indicate that HDPE/LDPE mixtures from a single-phase solution for all concentrations, including blends containing high volume fractions ([phi] > 0.5) of branched polymer, for which multiphase melts have previously been suggested. Proper accounting for isotope effects is essential to avoid artifacts, because the H/D interaction parameter is sufficiently large ([sub [chi]HD] [approximately] 4 [times] 10[sup [minus]4]) to cause phase separation in themore » amorphous state for molecular weights (MW) >150,000. In the solid state, after slow cooling from the melt ([approximately]0.75 C/min), the HDPE/LDPE system shows extensive segregation into separate domains [approximately]100--300 [angstrom] in size. Both the shape and magnitude of the absolute scattering cross section are consistent with the conclusion that the components are extensively segregated into separate lamellae. Two-peak melting curves obtained for such mixtures support the SANS interpretation, and the segregation of components in the solid state is therefore a consequence of crystallization mechanisms rather than incompatibility in the liquid state.« less

  2. Polarization-dependent thin-film wire-grid reflectarray for terahertz waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tiaoming; School of Information Science and Engineering, Lanzhou University, Lanzhou 730000; Upadhyay, Aditi

    2015-07-20

    A thin-film polarization-dependent reflectarray based on patterned metallic wire grids is realized at 1 THz. Unlike conventional reflectarrays with resonant elements and a solid metal ground, parallel narrow metal strips with uniform spacing are employed in this design to construct both the radiation elements and the ground plane. For each radiation element, a certain number of thin strips with an identical length are grouped to effectively form a patch resonator with equivalent performance. The ground plane is made of continuous metallic strips, similar to conventional wire-grid polarizers. The structure can deflect incident waves with the polarization parallel to the stripsmore » into a designed direction and transmit the orthogonal polarization component. Measured radiation patterns show reasonable deflection efficiency and high polarization discrimination. Utilizing this flexible device approach, similar reflectarray designs can be realized for conformal mounting onto surfaces of cylindrical or spherical devices for terahertz imaging and communications.« less

  3. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  4. (U) Equation of State and Compaction Modeling for CeO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredenburg, David A.; Chisolm, Eric D.

    2014-10-20

    Recent efforts have focused on developing a solid-liquid and three-phase equation of state (EOS) for CeO 2, while parallel experimental efforts have focused on obtaining high-fidelity Hugoniot measurements on CeO 2 in the porous state. The current work examines the robustness of two CeO 2 SESAME equations of state, a solid-liquid EOS, 96170, and a three-phase EOS, 96171, by validating the EOS against a suite of high-pressure shock compression experiments on initially porous CeO 2. At lower pressures compaction is considered by incorporating a two-term exponential form of the P-compaction model, using three separate definitions for α(P). Simulations are executedmore » spanning the partially compacted and fully compacted EOS regimes over the pressure range 0.5 - 109 GPa. Comparison of calculated Hugoniot results with those obtained experimentally indicate good agreement for all definitions of α(P) with both the solid-liquid and three-phase EOS in the low-pressure compaction regime. At higher pressures the three-phase EOS does a better job at predicting the measured Hugoniot response, though at the highest pressures EOS 96171 predicts a less compliant response than is observed experimentally. Measured material velocity profiles of the shock-wave after it has transmitted through the powder are also compared with those simulated using with solid-liquid and three-phase EOS. Profiles lend insight into limits of the current experimental design, as well as the threshold conditions for the shock-induced phase transition in CeO 2.« less

  5. p-Adic solid-on-solid model on a Cayley tree

    NASA Astrophysics Data System (ADS)

    Khakimov, O. N.

    2017-12-01

    We consider a p-adic solid-on-solid ( SOS) model with a nearest-neighbor coupling, m+1 spins, and a coupling constant J ∈ Q p on a Cayley tree. We find conditions under which a phase transition does not occur in the model. We show that if p | m + 1 for some J, then a phase transition occurs. Moreover, we formulate a criterion for the boundedness of p-adic Gibbs measures for the ( m+1)- state SOS model.

  6. Equation of state and Helmholtz free energy for the atomic system of the repulsive Lennard-Jones particles.

    PubMed

    Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid

    2017-12-07

    Simple and accurate expressions are presented for the equation of state (EOS) and absolute Helmholtz free energy of a system composed of simple atomic particles interacting through the repulsive Lennard-Jones potential model in the fluid and solid phases. The introduced EOS has 17 and 22 coefficients for fluid and solid phases, respectively, which are regressed to the Monte Carlo (MC) simulation data over the reduced temperature range of 0.6≤T * ≤6.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. The average absolute relative percent deviation in fitting the EOS parameters to the MC data is 0.06 and 0.14 for the fluid and solid phases, respectively. The thermodynamic integration method is used to calculate the free energy using the MC simulation results. The Helmholtz free energy of the ideal gas is employed as the reference state for the fluid phase. For the solid phase, the values of the free energy at the reduced density equivalent to the close-packed of a hard sphere are used as the reference state. To check the validity of the predicted values of the Helmholtz free energy, the Widom particle insertion method and the Einstein crystal technique of Frenkel and Ladd are employed. The results obtained from the MC simulation approaches are well agreed to the EOS results, which show that the proposed model can reliably be utilized in the framework of thermodynamic theories.

  7. Equation of state and Helmholtz free energy for the atomic system of the repulsive Lennard-Jones particles

    NASA Astrophysics Data System (ADS)

    Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid

    2017-12-01

    Simple and accurate expressions are presented for the equation of state (EOS) and absolute Helmholtz free energy of a system composed of simple atomic particles interacting through the repulsive Lennard-Jones potential model in the fluid and solid phases. The introduced EOS has 17 and 22 coefficients for fluid and solid phases, respectively, which are regressed to the Monte Carlo (MC) simulation data over the reduced temperature range of 0.6 ≤T*≤6.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. The average absolute relative percent deviation in fitting the EOS parameters to the MC data is 0.06 and 0.14 for the fluid and solid phases, respectively. The thermodynamic integration method is used to calculate the free energy using the MC simulation results. The Helmholtz free energy of the ideal gas is employed as the reference state for the fluid phase. For the solid phase, the values of the free energy at the reduced density equivalent to the close-packed of a hard sphere are used as the reference state. To check the validity of the predicted values of the Helmholtz free energy, the Widom particle insertion method and the Einstein crystal technique of Frenkel and Ladd are employed. The results obtained from the MC simulation approaches are well agreed to the EOS results, which show that the proposed model can reliably be utilized in the framework of thermodynamic theories.

  8. Solid-solution thermodynamics in Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Lukina, E. A.

    2016-05-01

    The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.

  9. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate

    PubMed Central

    Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige

    2016-01-01

    Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system. PMID:27966595

  10. Metastable State during Melting and Solid-Solid Phase Transition of [CnMim][NO3] (n = 4-12) Ionic Liquids by Molecular Dynamics Simulation.

    PubMed

    Cao, Wudi; Wang, Yanting; Saielli, Giacomo

    2018-01-11

    We simulate the heating process of ionic liquids [C n Mim][NO 3 ] (n = 4, 6, 8, 10, 12), abbreviated as C n , by means of molecular dynamics (MD) simulation starting from a manually constructed triclinic crystal structure composed of polar layers containing anions and cationic head groups and nonpolar regions in between containing cationic alkyl side chains. During the heating process starting from 200 K, each system undergoes first a solid-solid phase transition at a lower temperature, and then a melting phase transition at a higher temperature to an isotropic liquid state (C 4 , C 6 , and C 8 ) or to a liquid crystal state (C 10 and C 12 ). After the solid-solid phase transition, all systems keep the triclinic space symmetry, but have a different set of lattice constants. C 4 has a more significant structural change in the nonpolar regions which narrows the layer spacing, while the layer spacings of other systems change little, which can be qualitatively understood by considering that the contribution of the effective van der Waals interaction in the nonpolar regions (abbreviated as EF1) to free energy becomes stronger with increasing side-chain length, and at the same time the contribution of the effective electrostatic interaction in the polar layers (abbreviated as EF2) to free energy remains almost the same. The melting phase transitions of all systems except C 6 are found to be a two-step process with an intermediate metastable state appeared during the melting from the crystal state to the liquid or liquid crystal state. Because the contribution of EF2 to the free energy is larger than EF1, the metastable state of C 4 has the feature of having higher ordered polar layers and lower ordered side-chain orientation. By contrast, C 8 -C 12 have the feature of having lower ordered polar layers and higher ordered side-chain orientation, because for these systems, the contribution of EF2 to the free energy is smaller than EF1. No metastable state is found for C 6 because the free-energy contribution of EF1 is balanced with EF2.

  11. A field-emission based vacuum device for the generation of THz waves

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Chieh

    2005-03-01

    Terahertz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials during the past decade. More and more applications in imaging science and technology call for the well development of THz wave sources. Amplification and generation of a high frequency electromagnetic wave are a common interest of field emission based devices. In the present work, we propose a vacuum electronic device based on field emission mechanism for the generation of THz waves. To verify our thinking and designs, the cold tests and the hot tests have been studied via the simulation tools, SUPERFISH and MAGIC. In the hot tests, two types of electron emission mechanisms are considered. One is the field emission and the other is the explosive emission. The preliminary design of the device is carried out and tested by the numerical simulations. The simulation results show that an electronic efficiency up to 4% can be achieved without employing any magnetic circuits.

  12. Snapshots of a solid-state transformation: coexistence of three phases trapped in one crystal

    DOE PAGES

    Aromí, G.; Beavers, C. M.; Sánchez Costa, J.; ...

    2016-01-05

    Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H 2L)](ClO 4) 2·1.5C 3H 6O (bpp = 2,6-bis(pyrazol-3-yl)pyridine; H 2L = 2,6-bis(5-(2-methoxyphenyl)-pyrazol-3-yl)pyridine; C 3H 6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner,more » leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. Lastly, the process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.« less

  13. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging.

    PubMed

    Niwa, Masahiro; Hiraishi, Yasuhiro

    2014-01-30

    Tablets are the most common form of solid oral dosage produced by pharmaceutical industries. There are several challenges to successful and consistent tablet manufacturing. One well-known quality issue is visible surface defects, which generally occur due to insufficient physical strength, causing breakage or abrasion during processing, packaging, or shipping. Techniques that allow quantitative evaluation of surface strength and the risk of surface defect would greatly aid in quality control. Here terahertz pulsed imaging (TPI) was employed to evaluate the surface properties of core tablets with visible surface defects of varying severity after film coating. Other analytical methods, such as tensile strength measurements, friability testing, and scanning electron microscopy (SEM), were used to validate TPI results. Tensile strength and friability provided no information on visible surface defect risk, whereas the TPI-derived unique parameter terahertz electric field peak strength (TEFPS) provided spatial distribution of surface density/roughness information on core tablets, which helped in estimating tablet abrasion risk prior to film coating and predicting the location of the defects. TPI also revealed the relationship between surface strength and blending condition and is a nondestructive, quantitative approach to aid formulation development and quality control that can reduce visible surface defect risk in tablets. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations tomore » study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.« less

  15. Lattice modes of the chirally pure and racemic phases of tyrosine crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyanchikov, M. A.; Gorelik, V. S., E-mail: gorelik@sci.lebedev.ru; Gorshunov, B. P.

    High-Q librational modes have been found to be present in the infrared absorption and Raman spectra of chirally pure L-tyrosine. Such modes can serve as terahertz radiation detectors and generators in chirally pure biostructures.

  16. Revealing the dark side of a bright exciton–polariton condensate

    PubMed Central

    Ménard, J. -M.; Poellmann, C.; Porer, M.; Leierseder, U.; Galopin, E.; Lemaître, A.; Amo, A.; Bloch, J.; Huber, R.

    2014-01-01

    Condensation of bosons causes spectacular phenomena such as superfluidity or superconductivity. Understanding the nature of the condensed particles is crucial for active control of such quantum phases. Fascinating possibilities emerge from condensates of light–matter-coupled excitations, such as exciton–polaritons, photons hybridized with hydrogen-like bound electron–hole pairs. So far, only the photon component has been resolved, while even the mere existence of excitons in the condensed regime has been challenged. Here we trace the matter component of polariton condensates by monitoring intra-excitonic terahertz transitions. We study how a reservoir of optically dark excitons forms and feeds the degenerate state. Unlike atomic gases, the atom-like transition in excitons is dramatically renormalized on macroscopic ground state population. Our results establish fundamental differences between polariton condensation and photon lasing and open possibilities for coherent control of condensates. PMID:25115964

  17. Disturbing the coherent dynamics of an excitonic polarization with strong terahertz fields

    NASA Astrophysics Data System (ADS)

    Drexler, M. J.; Woscholski, R.; Lippert, S.; Stolz, W.; Rahimi-Iman, A.; Koch, M.

    2014-11-01

    We present a paper based on combining four-wave mixing and strong fields in the terahertz frequency range to monitor the time evolution of a disturbed excitonic polarization in a multiple quantum well system. Our findings not only confirm a lower field-dependent ionization threshold for higher excitonic states, but furthermore provide experimental evidence for intraexcitonic Rabi flopping in the time domain. These measurements correspond to the picture of a reversible and irreversible transfer as previously predicted by a microscopic theory.

  18. Development of Terahertz Rayleigh Scattering Diagnostics for a Solid Rocket Exhaust Plume

    DTIC Science & Technology

    2010-10-28

    experiment. Many of these experiments involve a diagnostic of a plasma which while different from strictly particles, still provides insight into the...investigate the properties of small plasma objects. Their study developed a method that could be used as a diagnostic for small scale plasmas such...as laser sparks, avalanche-streamer transitions, and resonance-enhanced multi- photon ionizations processes. They treated a plasma as a source of

  19. Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals.

    PubMed

    Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom

    2017-11-17

    Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.

  20. RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Hartemann, F V; Tremaine, A M

    2002-10-16

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.

  1. Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer.

    PubMed

    Ravaro, M; Manquest, C; Sirtori, C; Barbieri, S; Santarelli, G; Blary, K; Lampin, J-F; Khanna, S P; Linfield, E H

    2011-10-15

    We report the heterodyne detection and phase locking of a 2.5 THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10 mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80 dB of signal-to-noise ratio in a bandwidth of 1 Hz.

  2. Computer simulation and high level virial theory of Saturn-ring or UFO colloids.

    PubMed

    Bates, Martin A; Dennison, Matthew; Masters, Andrew

    2008-08-21

    Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B(8).

  3. Computer simulation and high level virial theory of Saturn-ring or UFO colloids

    NASA Astrophysics Data System (ADS)

    Bates, Martin A.; Dennison, Matthew; Masters, Andrew

    2008-08-01

    Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B8.

  4. Directly Insight Into the Inter- and Intramolecular Interactions of CL-20/TNT Energetic Cocrystal through the Theoretical Simulations of THz Spectroscopy.

    PubMed

    Shi, Lu; Duan, Xiao-Hui; Zhu, Li-Guo; Liu, Xun; Pei, Chong-Hua

    2016-03-03

    Compared with cocrystal coformers, an explosive cocrystal has distinctive packing arrangements and complex intermolecular interactions. Identifying the spectral signatures of an explosive cocrystal and understanding the molecular low-frequency modes by means of the spectrum in the terahertz range are of great worth to the explicit mechanism of cocrystal formation. In this work, on the basis of the joint molecular dynamics (MD) simulations and solid-state density functional theory (DFT) calculations, we have investigated the terahertz (THz) absorption spectra of the CL-20/TNT cocrystal and its different directions as well as cocrystal coformers and determined the systematic and all-sided assignments of corresponding THz vibration modes. The THz spectral comparison of the cocrystal with different directions and the cocrystal coformers indicates that the CL-20/TNT cocrystal has five fresh low-frequency absorption features as unique and discernible peaks for identification, in which 0.25, 0.73, and 0.87 THz are attributed to intensive crystalline vibrations; 0.87 THz is also caused by C-H···O hydrogen-bonding bending vibrations; 1.60 and 1.85 THz features originate from C-H···O hydrogen-bond stretching vibrations. Additionally, the THz spectrum of the (001) direction of the CL-20/TNT cocrystal verifies that the molecular conformation of the CL-20 is the same as that in the β-polymorph, other than the initial conformation of raw material ε-CL-20.

  5. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  6. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-12-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  7. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    NASA Astrophysics Data System (ADS)

    Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert

    2016-11-01

    Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

  8. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    PubMed Central

    Yu, Ping; Repp, Jascha; Huber, Rupert

    2017-01-01

    Watching a single molecule move on its intrinsic time scale—one of the central goals of modern nanoscience—calls for measurements that combine ultrafast temporal resolution1–8 with atomic spatial resolution9–30. Steady-state experiments achieve the requisite spatial resolution, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy9–11 or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution27–29. But tracking the dynamics of a single molecule directly in the time domain faces the challenge that single-molecule excitations need to be confined to an ultrashort time window. A first step towards overcoming this challenge has combined scanning tunnelling microscopy with so-called ‘lightwave electronics”1–8, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on time scales faster even than that of a single cycle of light. Here we use such ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state and thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record ~100 fs snapshot images of the structure of the orbital involved, and to reveal through pump-probe measurements coherent molecular vibrations at terahertz frequencies directly in the time domain and with sub-angstrom spatial resolution. We anticipate that the combination of lightwave electronics1–8 and atomic resolution of our approach will open the door to controlling electronic motion inside individual molecules at optical clock rates. PMID:27830788

  9. Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Javadi, Hamid; Jarrahi, Mona

    2017-02-01

    Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.

  10. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun

    2009-08-03

    We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.

  11. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Paul, E-mail: p.dean@leeds.ac.uk; Keeley, James; Kundu, Iman

    2016-02-29

    We report two-dimensional apertureless near-field terahertz (THz) imaging using a quantum cascade laser (QCL) source and a scattering probe. A near-field enhancement of the scattered field amplitude is observed for small tip-sample separations, allowing image resolutions of ∼1 μm (∼λ/100) and ∼7 μm to be achieved along orthogonal directions on the sample surface. This represents the highest resolution demonstrated to date with a THz QCL. By employing a detection scheme based on self-mixing interferometry, our approach offers experimental simplicity by removing the need for an external detector and also provides sensitivity to the phase of the reinjected field.

  12. Terahertz Scattering

    NASA Astrophysics Data System (ADS)

    Zurk, L. M.; Schecklman, S.

    Terahertz (THz) Time Domain Spectroscopy (TDS) measurements have the unique ability to detect both the amplitude and phase of the electric field, simultaneously. This eliminates complications introduced by Kramers-Kronig relations typically used in near-infrared spectroscopy. Many materials of interest contain resonant features in their refractive indices in the far-infrared (THz) spectrum, while their packaging materials are generally transparent. Thus, an important application for THz TDS is the ability to see inside packaging materials and detect the material features of their contents. Such applications are promising for security screening (concealed drugs, explosives, etc.) in post offices and airports as well as for non-destructive evaluation (NDE) of products on an assembly line or tissue damage due to burns or cancer [1-6].

  13. Laser beat wave resonant terahertz generation in a magnetized plasma channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhasin, Lalita; Tripathi, V. K.; Kumar, Pawan, E-mail: kumarpawan-30@yahoo.co.in

    Resonant excitation of terahertz (THz) radiation by nonlinear mixing of two lasers in a ripple-free self created plasma channel is investigated. The channel has a transverse static magnetic field and supports a THz X-mode with phase velocity close to the speed of light in vacuum when the frequency of the mode is close to plasma frequency on the channel axis and its value decreases with the intensity of lasers. The THz is resonantly driven by the laser beat wave ponderomotive force. The THz amplitude scales almost three half power of the intensity of lasers as the width of the THzmore » eigen mode shrinks with laser intensity.« less

  14. Dipolar recoupling in solid state NMR by phase alternating pulse sequences

    PubMed Central

    Lin, J.; Bayro, M.; Griffin, R. G.; Khaneja, N.

    2009-01-01

    We describe some new developments in the methodology of making heteronuclear and homonuclear recoupling experiments in solid state NMR insensitive to rf-inhomogeneity by phase alternating the irradiation on the spin system every rotor period. By incorporating delays of half rotor periods in the pulse sequences, these phase alternating experiments can be made γ encoded. The proposed methodology is conceptually different from the standard methods of making recoupling experiments robust by the use of ramps and adiabatic pulses in the recoupling periods. We show how the concept of phase alternation can be incorporated in the design of homonuclear recoupling experiments that are both insensitive to chemical-shift dispersion and rf-inhomogeneity. PMID:19157931

  15. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  16. ENHANCED DEPTH RESOLUTION IN TERAHERTZ IMAGING USING PHASE-SHIFT INTERFEROMETRY. (R827122)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. State and solubility of cadmium as related to xenotic inorganic phases generated homogeneously in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, W.J.

    The state and solubility of cadmium in waste-treated soils was investigated. Three sets of experiments were designed to elucidate solid phase control of soil solution cadmium. First, the soil solution composition of two soils amended with either sludge or metal contaminated mulch was examined to determine the presence of anions capable of precipitating or co-precipitating cadmium. Results indicated that no known pure solid phases of cadmium developed but that high concentrations of phosphate, sulfate and carbonate apparently influenced cadmium solubility. Secondly, three soils were amended with 10 ug of cadmium as cadmium acetate/g of soil. Three different levels of glycerophosphate,more » cysteine and acetate were added to the soils and incubated at constant temperature and water content in order to release phosphate, sulfate and alkalinity under conditions conducive for homogeneous precipitation. Another set of treatments was prepared in the same fashion with an additional amendment of calcium carbonate to raise soil pH's to 7.0. In the presence of sulfate, cadmium solubility increased with no apparent solid phase formation. The addition of calcium carbonate shifted solid phase control to either calcium carbonate or calcium sulfate. The generation of alkalinity by acetate addition produced solid phase calcium carbonate which in turn controlled cadmium solubility through chemisorption of cadmium on calcite surfaces. In the presence of monobasic calcium phosphate, cadmium was interfacially adsorbed. In the presence of dibasic calcium phosphate, however, cadmium was homogeneously precipitated in the host crystal suggesting possible solid solution.« less

  18. The harmonic state of quantum cascade lasers: origin, control, and prospective applications [Invited].

    PubMed

    Piccardo, Marco; Chevalier, Paul; Mansuripur, Tobias S; Kazakov, Dmitry; Wang, Yongrui; Rubin, Noah A; Meadowcroft, Lauren; Belyanin, Alexey; Capasso, Federico

    2018-04-16

    The recently discovered ability of the quantum cascade laser to produce a harmonic frequency comb has attracted new interest in these devices for both applications and fundamental laser physics. In this review we present an extensive experimental phenomenology of the harmonic state, including its appearance in mid-infrared and terahertz quantum cascade lasers, studies of its destabilization induced by delayed optical feedback, and the assessment of its frequency comb nature. A theoretical model explaining its origin as due to the mutual interaction of population gratings and population pulsations inside the laser cavity will be described. We explore different approaches to control the spacing of the harmonic state, such as optical injection seeding and variation of the device temperature. Prospective applications of the harmonic state include microwave and terahertz generation, picosecond pulse generation in the mid-infrared, and broadband spectroscopy.

  19. The morphology of blends of linear and branched polyethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1995-12-31

    The state of mixing in blends of high density (HD), low density (LD) and linear low density (LLD) polyethylenes (PE) in the melt and solid states has been examined by small-angle x-ray and neutron scattering (SAXS and SANS). In the melt, SANS results indicate that HDPE/LDPE mixtures (with 1-2 branches/100 C) form a single phase. HDPE/LLDPE blends are also homogeneous when the branch content is low, but phase separate as the branching increases. In the solid state, after slow-cooling from the melt, the HDPE/LDPE system segregates into domains {approximately}10{sup 2} in size. For high concentrations of linear polymer ({phi} {ge}more » 0.5), there are separate stacks of HDPE and LDPE lamellae, and the measured SANS cross section agrees closely with the theoretical calculation based on the assumption of complete phase separation of the components. For predominantly branched blends ({phi} < 0.5), the phase segregation is less complete, and the components are separated within the same lamellar stack. Moreover, the phases no longer consist of the pure components, and the HDPE lamellae contain up to 15% LDPE. The segregation of components in the solid state is a consequence of crystallization mechanisms and the blend morphology is a strong function of the cooling rate. Rapid quenching to -78{degrees}C produces only one lamellar stack and these blends show extensive cocrystallization. Samples quenched less rapidly (e.g., into water at 23{degrees}C) show a similar structure to slowly cooled samples. The solid state morphology also depends on the type of branching and differences between HDPE/LDPE and HDPE/LLDPE blends will be reviewed.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, L. L.; Guo, X. G., E-mail: xgguo@mail.sim.ac.cn; Fu, Z. L.

    Strong and sharp photocurrent peak at longitudinal optical (LO) phonon frequency (8.87 THz) is found in GaAs/(Al,Ga)As terahertz quantum-well photodetectors (QWPs). Two mesa-structure terahertz QWPs with and without one-dimensional metal grating are fabricated to investigate the behavior of such photoresponse peak. The experimental and simulation results indicate that the photocurrent peak originates from a two-step process. First, at the LO phonon frequency, a large number of non-equilibrium LO phonons are excited by the incident electromagnetic field, and the electromagnetic energy is localized and enhanced in the thin multi-quantum-well layer. Second, through the Frohlich interaction, the localized electrons are excited tomore » continuum states by absorbing the non-equilibrium LO phonons, which leads to the strong photoresponse peak. This finding is useful for exploring strong light-matter interaction and realizing high sensitive terahertz photodetectors.« less

  1. Terahertz Frequency-Domain Spectroscopy of Low-Pressure Acetonitrile Gas by a Photomixing Terahertz Synthesizer Referenced to Dual Optical Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Kimura, Hiroto; Hayashi, Kenta; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Yasui, Takeshi

    2016-09-01

    A terahertz (THz) frequency synthesizer based on photomixing of two near-infrared lasers with a sub-THz to THz frequency offset is a powerful tool for spectroscopy of polar gas molecules due to its broad spectral coverage; however, its frequency accuracy and resolution are relatively low. To tune the output frequency continuously and widely while maintaining its traceability to a frequency standard, we developed a photomixing THz synthesizer phase-locked to dual optical frequency combs (OFCs). While the phase-locking to dual OFCs ensured continuous tuning within a spectral range of 120 GHz, in addition to the traceability to the frequency standard, use of a broadband uni-traveling carrier photodiode for photomixing enabled the generation of CW-THz radiation within a frequency range from 0.2 to 1.5 THz. We demonstrated THz frequency-domain spectroscopy of gas-phase acetonitrile CH3CN and its isotope CH3 13CN in the frequency range of 0.600-0.720 THz using this THz synthesizer. Their rotational transitions were assigned with a frequency accuracy of 8.42 × 10-8 and a frequency resolution of 520 kHz. Furthermore, the concentration of the CH3CN gas at 20 Pa was determined to be (5.41 ± 0.05) × 1014 molecules/cm3 by curve fitting analysis of the measured absorbance spectrum, and the mixture ratio of the mixed CH3CN/CH3 13CN gas was determined to be 1:2.26 with a gas concentration of 1014-1015 molecules/cm3. The developed THz synthesizer is highly promising for high-precision THz-FDS of low-pressure molecular gases and will enable the qualitative and quantitative analyses of multiple gases.

  2. Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix

    NASA Astrophysics Data System (ADS)

    Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.

  3. Electro-optic sampling of near-infrared waveforms

    NASA Astrophysics Data System (ADS)

    Keiber, Sabine; Sederberg, Shawn; Schwarz, Alexander; Trubetskov, Michael; Pervak, Volodymyr; Krausz, Ferenc; Karpowicz, Nicholas

    2016-03-01

    Access to the complete electric field evolution of a laser pulse is essential for attosecond science in general, and for the scrutiny and control of electron phenomena in solid-state physics specifically. Time-resolved field measurements are routine in the terahertz spectral range, using electro-optic sampling (EOS), photoconductive switches and field-induced second harmonic generation. EOS in particular features outstanding sensitivity and ease of use, making it the basis of time-resolved spectroscopic measurements for studying charge carrier dynamics and active optical devices. In this Letter, we show that careful optical filtering allows the bandwidth of this technique to be extended to wavelengths as short as 1.2 μm (230 THz) with half-cycle durations 2.3 times shorter than the sampling pulse. In a proof-of-principle application, we measure the influence of optical parametric amplification (OPA) on the electric field dynamics of a few-cycle near-infrared (NIR) pulse.

  4. Single-chip source-free terahertz spectroscope across 0.04-0.99 THz: combining sub-wavelength near-field sensing and regression analysis.

    PubMed

    Wu, Xue; Sengupta, Kaushik

    2018-03-19

    This paper demonstrates a methodology to miniaturize THz spectroscopes into a single silicon chip by eliminating traditional solid-state architectural components such as complex tunable THz and optical sources, nonlinear mixing and amplifiers. The proposed method achieves this by extracting incident THz spectral signatures from the surface of an on-chip antenna itself. The information is sensed through the spectrally-sensitive 2D distribution of the impressed current surface under the THz incident field. By converting the antenna from a single-port to a massively multi-port architecture with integrated electronics and deep subwavelength sensing, THz spectral estimation is converted into a linear estimation problem. We employ rigorous regression techniques and analysis to demonstrate a single silicon chip system operating at room temperature across 0.04-0.99 THz with 10 MHz accuracy in spectrum estimation of THz tones across the entire spectrum.

  5. Research on terahertz properties of rat brain tissue sections during dehydration

    NASA Astrophysics Data System (ADS)

    Cui, Gangqiang; Liang, Jianfeng; Zhao, Hongwei; Zhao, Xianghui; Chang, Chao

    2018-01-01

    Biological tissue sections are always kept in a system purged with dry nitrogen for the measurement of terahertz spectrum. However, the injected nitrogen will cause dehydration of tissue sections, which will affect the accuracy of spectrum measurement. In this paper, terahertz time-domain spectrometer is used to measure the terahertz spectra of rat brain tissue sections during dehydration. The changes of terahertz properties, including terahertz transmittance, refractive index and extinction coefficient during dehydration are also analyzed. The amplitudes of terahertz time-domain spectra increase gradually during the dehydration process. Besides, the terahertz properties show obvious changes during the dehydration process. All the results indicate that the injected dry nitrogen has a significant effect on the terahertz spectra and properties of tissue sections. This study contributes to further research and application of terahertz technology in biomedical field.

  6. Discharge, Relaxation, and Charge Model for the Lithium Trivanadate Electrode: Reactions, Phase Change, and Transport

    DOE PAGES

    Brady, Nicholas W.; Zhang, Qing; Knehr, K. W.; ...

    2016-10-26

    The electrochemical behavior of lithium trivanadate (LiV 3O 8) during lithiation, delithiation, and voltage recovery experiments is simulated using a crystal-scale model that accounts for solid-state diffusion, charge-transfer kinetics, and phase transformations. The kinetic expression for phase change was modeled using an approach inspired by the Avrami formulation for nucleation and growth. Numerical results indicate that the solid-state diffusion coefficient of lithium in LiV 3O 8 is ~ 10 -13 cm 2 s -1 and the equilibrium compositions in the two phase region (~2.5 V) are Li 2.5V 3O 8:Li 4V 3O 8. Agreement between the simulated and experimental resultsmore » is excellent. Relative to the lithiation curves, the experimental delithiation curves show significantly less overpotential and at low levels of lithiation (end of charge). Simulations are only able to capture this result by assuming that the solid-state mass-transfer resistance is less during delithiation. The proposed rationale for this difference is that the (100) face is inactive during lithiation, but active during delithiation. Finally, by assuming non-instantaneous phase-change kinetics, estimates are made for the overpotential due to imperfect phase change (supersaturation).« less

  7. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  8. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  9. Effect of the fcc-hcp martensitic transition on the equation of state of solid krypton up to 140 GPa

    NASA Astrophysics Data System (ADS)

    Rosa, A. D.; Garbarino, G.; Briggs, R.; Svitlyk, V.; Morard, G.; Bouhifd, M. A.; Jacobs, J.; Irifune, T.; Mathon, O.; Pascarelli, S.

    2018-03-01

    Solid krypton (Kr) undergoes a pressure-induced martensitic phase transition from a face-centered cubic (fcc) to a hexagonal close-packed (hcp) structure. These two phases coexist in a very wide pressure domain inducing important modifications of the bulk properties of the resulting mixed phase system. Here, we report a detailed in situ x-ray diffraction and absorption study of the influence of the fcc-hcp phase transition on the compression behavior of solid krypton in an extended pressure domain up to 140 GPa. The onset of the hcp-fcc transformation was observed in this study at around 2.7 GPa and the coexistence of these two phases up to 140 GPa, the maximum investigated pressure. The appearance of the hcp phase is also evidenced by the pressure-induced broadening and splitting of the first peak in the XANES spectra. We demonstrate that the transition is driven by a continuous nucleation and intergrowth of nanometric hcp stacking faults that evolve in the fcc phase. These hcp stacking faults are unaffected by high-temperature annealing, suggesting that plastic deformation is not at their origin. The apparent small Gibbs free-energy differences between the two structures that decrease upon compression may explain the nucleation of hcp stacking faults and the large coexistence domain of fcc and hcp krypton. We observe a clear anomaly in the equation of state of the fcc solid at ˜20 GPa when the proportion of the hcp form reaches ˜20 % . We demonstrate that this anomaly is related to the difference in stiffness between the fcc and hcp phases and propose two distinct equation of states for the low and high-pressure regimes.

  10. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples.

    PubMed

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Liquid?solid helium interface: some conceptual questions

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2003-12-01

    I raise, and discuss qualitatively, some conceptual issues concerning the interface between the crystalline solid and superfluid liquid phases of 4He emphasizing, in particular, the fact that the ground-state wave functions of the two phases are prima facie qualitatively quite different, in that the superfluid liquid phase possesses off-diagonal long-range order (ODLRO), while the crystalline solid does not. The fact that the statics and dynamics of the interface do not appear to be particularly sensitive to the presence of ODLRO in the liquid is tentatively explained by the fact that because of a subtlety associated with the Bose statistics obeyed by the atoms, the solid and liquid wave functions are not locally very different.

  12. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.

    PubMed

    Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng

    2017-06-14

    The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.

  13. Entanglement of solid vortex matter: a boomerang-shaped reduction forced by disorder in interlayer phase coherence in Bi2Sr2CaCu2O8+y.

    PubMed

    Kato, T; Shibauchi, T; Matsuda, Y; Thompson, J R; Krusin-Elbaum, L

    2008-07-11

    We present evidence for entangled solid vortex matter in a glassy state in a layered superconductor Bi2Sr2CaCu2O8+y containing randomly splayed linear defects. The interlayer phase coherence--probed by the Josephson plasma resonance--is enhanced at high temperatures, reflecting the recoupling of vortex liquid by the defects. At low temperatures in the vortex solid state, the interlayer coherence follows a boomerang-shaped reentrant temperature path with an unusual low-field decrease in coherence, indicative of meandering vortices. We uncover a distinct temperature scaling between in-plane and out-of-plane critical currents with opposing dependencies on field and time, consistent with the theoretically proposed "splayed-glass" state.

  14. Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.

    2016-01-01

    This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.

  15. Study on THz wave generation from air plasma induced by quasi-square Airy beam

    NASA Astrophysics Data System (ADS)

    Zhang, Shijing; Zhang, Liangliang; Jiang, Guangtong; Zhang, Cunlin; Zhao, Yuejin

    2018-01-01

    Terahertz (THz) wave has attracted considerable attention in recent years because of its potential applications. The intense THz waves generated from air plasma induced by two-color femtosecond laser are widely used due to its high generation efficiency and broad frequency bandwidth. The parameters of the laser change the distribution of the air plasma, and then affect the generation of THz wave. In this research, we investigate the THz wave generation from air plasma induced by quasi-square Airy beam. Unlike the common Gauss beam, the quasi-square Airy beam has ability to autofocus and to increase the maximum intensity at the focus. By using the spatial light modulator (SLM), we can change the parameters of phase map to control the shape of the Airy beam. We obtain the two-color laser field by a 100-um-thick BBO crystal, then use a Golay detector to record THz wave energy. By comparing terahertz generation at different modulation depths, we find that terahertz energy produced by quasi-square Airy beam is up to 3.1 times stronger than that of Gauss beam with identical laser energy. In order to understand the influence of quasi-square Airy beam on the BBO crystal, we record THz wave energy by changing the azimuthal angle of BBO crystal with Gauss beam and Airy beam at different modulation depths. We find that the trend of terahertz energy with respect to the azimuthal angle of the BBO crystal keeps the same for different laser beams. We believe that the quasi-square Airy beam or other auto focusing beam can significantly improve the efficiency of terahertz wave generation and pave the way for its applications.

  16. Anderson localization and Mott insulator phase in the time domain

    PubMed Central

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  17. Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.

    2007-01-01

    Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers

  18. Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration.

    PubMed

    Ye, Longfang; Xiao, Yifan; Liu, Na; Song, Zhengyong; Zhang, Wei; Liu, Qing Huo

    2017-01-23

    We proposed a novel planar terahertz (THz) plasmonic waveguide with folded stub arrays to achieve excellent terahertz propagation performance with tight field confinement and compact size based on the concept of spoof surface plasmon polaritons (spoof SPPs). It is found that the waveguide propagation characteristics can be directly manipulated by increasing the length of the folded stubs without increasing its lateral dimension, which exhibits much lower asymptotic frequency of the dispersion relation and even tighter terahertz field confinement than conventional plasmonic waveguides with rectangular stub arrays. Based on this waveguiding scheme, a terahertz concentrator with gradual step-length folded stubs is proposed to achieve high terahertz field enhancement, and an enhancement factor greater than 20 is demonstrated. This work offers a new perspective on very confined terahertz propagation and concentration, which may have promising potential applications in various integrated terahertz plasmonic circuits and devices, terahertz sensing and terahertz nonlinear optics.

  19. Characterization of SrCo1.5Ti1.5Fe9O19 hexagonal ferrite synthesized by sol-gel combustion and solid state route

    NASA Astrophysics Data System (ADS)

    Vinaykumar, R.; Mazumder, R.; Bera, J.

    2017-05-01

    Co-Ti co-substituted SrM hexagonal ferrite (SrCo1.5Ti1.5Fe9O19) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δμ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route.

  20. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.

    PubMed

    Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon

    2016-11-01

    With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterisation of different polymorphs of tris(8-hydroxyquinolinato)aluminium(III) using solid-state NMR and DFT calculations

    PubMed Central

    Goswami, Mithun; Nayak, Pabitra K; Periasamy, N; Madhu, PK

    2009-01-01

    Background Organic light emitting devices (OLED) are becoming important and characterisation of them, in terms of structure, charge distribution, and intermolecular interactions, is important. Tris(8-hydroxyquinolinato)-aluminium(III), known as Alq3, an organomettalic complex has become a reference material of great importance in OLED. It is important to elucidate the structural details of Alq3 in its various isomeric and solvated forms. Solid-state nuclear magnetic resonance (NMR) is a useful tool for this which can also complement the information obtained with X-ray diffraction studies. Results We report here 27Al one-dimensional (1D) and two-dimensional (2D) multiple-quantum magic-angle spinning (MQMAS) NMR studies of the meridional (α-phase) and the facial (δ-phase) isomeric forms of Alq3. Quadrupolar parameters are estimated from the 1D spectra under MAS and anisotropic slices of the 2D spectra and also calculated using DFT (density functional theory) quantum-chemical calculations. We have also studied solvated phase of Alq3 containing ethanol in its lattice. We show that both the XRD patterns and the quadrupolar parameters of the solvated phase are different from both the α-phase and the δ-phase, although the fluorescence emission shows no substantial difference between the α-phase and the solvated phase. Moreover, we have shown that after the removal of ethanol from the matrix the solvated Alq3 has similar XRD patterns and quadrupolar parameters to that of the α-phase. Conclusion The 2D MQMAS experiments have shown that all the different modifications of Alq3 have 27Al in single unique crystallographic site. The quadrupolar parameters predicted using the DFT calculation under the isodensity polarisable continuum model resemble closely the experimentally obtained values. The solvated phase of Alq3 containing ethanol has structural difference from the α-phase of Alq3 (containing meridional isomer) from the solid-state NMR studies. Solid-state NMR can hence be used as an effective complementary tool to XRD for characterisation and structural elucidation. PMID:19900275

  2. Characterisation of different polymorphs of tris(8-hydroxyquinolinato)aluminium(III) using solid-state NMR and DFT calculations.

    PubMed

    Goswami, Mithun; Nayak, Pabitra K; Periasamy, N; Madhu, P K

    2009-11-09

    Organic light emitting devices (OLED) are becoming important and characterisation of them, in terms of structure, charge distribution, and intermolecular interactions, is important. Tris(8-hydroxyquinolinato)-aluminium(III), known as Alq3, an organomettalic complex has become a reference material of great importance in OLED. It is important to elucidate the structural details of Alq3 in its various isomeric and solvated forms. Solid-state nuclear magnetic resonance (NMR) is a useful tool for this which can also complement the information obtained with X-ray diffraction studies. We report here 27Al one-dimensional (1D) and two-dimensional (2D) multiple-quantum magic-angle spinning (MQMAS) NMR studies of the meridional (alpha-phase) and the facial (delta-phase) isomeric forms of Alq3. Quadrupolar parameters are estimated from the 1D spectra under MAS and anisotropic slices of the 2D spectra and also calculated using DFT (density functional theory) quantum-chemical calculations. We have also studied solvated phase of Alq3 containing ethanol in its lattice. We show that both the XRD patterns and the quadrupolar parameters of the solvated phase are different from both the alpha-phase and the delta-phase, although the fluorescence emission shows no substantial difference between the alpha-phase and the solvated phase. Moreover, we have shown that after the removal of ethanol from the matrix the solvated Alq3 has similar XRD patterns and quadrupolar parameters to that of the alpha-phase. The 2D MQMAS experiments have shown that all the different modifications of Alq3 have 27Al in single unique crystallographic site. The quadrupolar parameters predicted using the DFT calculation under the isodensity polarisable continuum model resemble closely the experimentally obtained values. The solvated phase of Alq3 containing ethanol has structural difference from the alpha-phase of Alq3 (containing meridional isomer) from the solid-state NMR studies. Solid-state NMR can hence be used as an effective complementary tool to XRD for characterisation and structural elucidation.

  3. Complex impedance analyses and magnetoelectric effect in ferrite ferroelectric composite ceramics

    NASA Astrophysics Data System (ADS)

    Patankar, K. K.; Kanade, S. A.; Padalkar, D. S.; Chougule, B. K.

    2007-02-01

    Magnetoelectric (ME) composites yBa0.8Pb0.2TiO3 (1-y)CuFe2O4 are prepared by ceramic method. The component phases are prepared from two different routes, viz. CuFe2O4 (ferrite phase) is prepared by oxalate precursor route and Ba0.8Pb0.2TiO3 (ferroelectric phase) by solid-state reaction route. No intermediate phases are observed in the composites containing these ferrite and ferroelectric phases. ME conversion factor (measure of ME effect) is found to be enhanced compared to those reported in the composites, in which the component phases were prepared by only one route, i.e. solid-state reaction route. The results on ME conversion are well accounted by measuring the complex impedance and analyzing their Nyquist plots.

  4. The effect of solute additions on the steady-state creep behavior of dispersion-strengthened aluminum.

    NASA Technical Reports Server (NTRS)

    Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.

    1971-01-01

    The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.

  5. Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system

    DOE PAGES

    Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol; ...

    2017-01-20

    Internal interfaces in the Li 3N/[LiNH 2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.

  6. Dehydration of detomidine hydrochloride monohydrate.

    PubMed

    Veldre, K; Actiņš, A; Jaunbergs, J

    2011-10-09

    The thermodynamic stability of detomidine hydrochloride monohydrate has been evaluated on the basis of phase transition kinetics in solid state. A method free of empirical models was used for the treatment of kinetic data, and compared to several known solid state kinetic data processing methods. Phase transitions were monitored by powder X-ray diffraction (PXRD) and thermal analysis. Full PXRD profiles were used for determining the phase content instead of single reflex intensity measurements, in order to minimize the influence of particle texture. We compared the applicability of isothermal and nonisothermal methods to our investigation of detomidine hydrochlorine monohydrate dehydration. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk

    2009-04-01

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.

  8. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  9. Direct observation of terahertz surface modes in nanometer-sized liquid water pools.

    PubMed

    Boyd, J E; Briskman, A; Colvin, V L; Mittleman, D M

    2001-10-01

    The far-infrared absorption spectrum of nanometer-sized water pools at the core of AOT micelles exhibits a pronounced resonance which is absent in bulk water. The amplitude and spectral position of this resonance are sensitive to the size of the confined water core. This resonance results from size-dependent modifications in the vibrational density of states, and thus has far-reaching implications for chemical processes which involve water sequestered within small cavities. These data represent the first study of the terahertz dielectric properties of confined liquids.

  10. Photonic-crystal diplexers for terahertz-wave applications.

    PubMed

    Yata, Masahiro; Fujita, Masayuki; Nagatsuma, Tadao

    2016-04-04

    A compact diplexer is designed using a silicon photonic-crystal directional coupler of length comparable to the incident wavelength. The diplexer theoretically and experimentally exhibits a cross state bandwidth as broad as 2% of the operation frequency, with over 40-dB isolation between the cross and bar ports. We also demonstrate 1.5-Gbit/s frequency-division communication in the 0.32- and 0.33-THz bands using a single-wavelength-sized diplexer, and discuss the transmission bandwidth. Our study demonstrates the potential for application of photonic crystals as terahertz-wave integration platforms.

  11. Electromagnon excitation in the field-induced nonlinear ferrimagnetic phase of Ba 2Mg 2Fe 12O 22 studied by polarized inelastic neutron and terahertz time-domain optical spectroscopy

    DOE PAGES

    Nakajima, Taro; Takahashi, Youtarou; Kibayashi, Shunsuke; ...

    2016-01-19

    We have studied magnetic excitations in a field-induced noncollinear commensurate ferrimagnetic phase of Ba 2Mg 2Fe 12O 22 by means of polarized inelastic neutron scattering (PINS) and terahertz (THz) time-domain optical spectroscopy under magnetic field. A previous THz spectroscopy study reported that the field-induced phase exhibits electric-dipole-active excitations with energies of around 5 meV [Kida et al., Phys. Rev. B 83, 064422 (2011)]. In the present PINS measurements, we observed inelastic scattering signals around 5 meV at the zone center in the spin-flip channel. This directly shows that the electric-dipole-active excitations are indeed of magnetic origin, that is, electromagnons. Inmore » addition, the present THz spectroscopy confirms that the excitations have oscillating electric polarization parallel to the c axis. In terms of the spin-current model (Katsura-Nagaosa-Balatsky model), the noncollinear magnetic order in the field-induced phase can induce static electric polarization perpendicular to the c axis, but not dynamic electric polarization along the c axis. Furthermore, we suggest that the electromagnon excitations can be explained by applying the magnetostriction model to the out-of-phase oscillations of the magnetic moments, which is deduced from the present experimental results.« less

  12. Anharmonic Damping of Terahertz Acoustic Waves in a Network Glass and Its Effect on the Density of Vibrational States

    NASA Astrophysics Data System (ADS)

    Baldi, G.; Giordano, V. M.; Ruta, B.; Dal Maschio, R.; Fontana, A.; Monaco, G.

    2014-03-01

    We report the observation, by means of high-resolution inelastic x-ray scattering, of an unusually large temperature dependence of the sound attenuation of a network glass at terahertz frequency, an unprecedentedly observed phenomenon. The anharmonicity can be ascribed to the interaction between the propagating acoustic wave and the bath of thermal vibrations. At low temperatures the sound attenuation follows a Rayleigh-Gans scattering law. As the temperature is increased the anharmonic process sets in, resulting in an almost quadratic frequency dependence of the damping in the entire frequency range. We show that the temperature variation of the sound damping accounts quantitatively for the temperature dependence of the density of vibrational states.

  13. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-20

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  14. Equation of State for Solid Phase I of Carbon Dioxide Valid for Temperatures up to 800 K and Pressures up to 12 GPa

    NASA Astrophysics Data System (ADS)

    Martin Trusler, J. P.

    2011-12-01

    The available thermodynamic-property data for solid phase I of carbon dioxide ("dry ice") are reviewed and used to determine the parameters of a new fundamental equation of state constructed in the form of a Helmholtz energy function with temperature and molar volume as the independent variables. The experimental data considered include the pressure, molar volume, and isobaric heat capacity along the sublimation curve, the melting-pressure curve, and molar volume in the compressed solid at temperatures from 295 to 764 K and pressures up to 12 GPa. The equation of state is based on the quasi-harmonic approximation, incorporating a Debye oscillator distribution for the vibrons, two discrete modes for the librons and a further three distinct modes for the internal vibrations of the CO2 molecule. A small anharmonic correction term is included, which is significant mainly in the region of the triple point. The estimated relative uncertainty of molar volume at specified temperature and pressure calculated from the equation of state is 0.02% on the sublimation curve and 1.5% in the compressed solid; for isobaric heat capacity on the sublimation curve, the uncertainty varies from 5.0% to 0.5% between 2 and 195 K. Auxiliary equations for the pressure and molar volume on the sublimation and melting curves are given. The equation of state is valid at temperatures from 0 to 800 K and at pressures from the solid-fluid phase boundary to 12 GPa.

  15. Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries

    DOE PAGES

    Li, Yutao; Zhou, Weidong; Xin, Sen; ...

    2016-06-30

    A fluorine-doped antiperovskite Li-ion conducto Li 2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li 2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li +/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li 2OHCl. As a result, an all-solid-state Li/LiFePO 4 with F-dope Li 2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles

  16. Thermodynamically constrained correction to ab initio equations of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Mattsson, Thomas R.

    2014-07-07

    We show how equations of state generated by density functional theory methods can be augmented to match experimental data without distorting the correct behavior in the high- and low-density limits. The technique is thermodynamically consistent and relies on knowledge of the density and bulk modulus at a reference state and an estimation of the critical density of the liquid phase. We apply the method to four materials representing different classes of solids: carbon, molybdenum, lithium, and lithium fluoride. It is demonstrated that the corrected equations of state for both the liquid and solid phases show a significantly reduced dependence ofmore » the exchange-correlation functional used.« less

  17. Thermal denaturation of protein studied by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Xiuhua; Li, Xiangjun; Liu, Jianjun; Du, Yong; Hong, Zhi

    2012-12-01

    In this study, the absorption spectra of native or thermal protein were measured in 0.2-1.4THz using terahertz time-domain spectroscopy (THz-TDS) system at room temperature, their absorption spectra and the refractive spectra were obtained. Experimental results indicate that protein both has strong absorption but their characteristics were not distinct in the THz region, and the absorption decreased during thermal denatured state. In order to prove protein had been denatured, we used Differential scanning calorimeter (DSC) measured their denatured temperature, from their DSC heating traces, collagen Td=101℃, Bovine serum albumin Td=97℃. While we also combined the Fourier transform infrared spectrometer (FTIR) to investigate their secondary and tertiary structure before and after denatuation, but the results did not have the distinct changes. We turned the absorption spectra and the refractive spectra to the dielectric spectra, and used the one-stage Debye model simulated the terahertz dielectric spectra of protein before and after denaturation. This research proved that the terahertz spectrum technology is feasible in testing protein that were affected by temperature or other factors which can provide theoretical foundation in the further study about the THz spectrum of protein and peptide temperature stability.

  18. Microelectromechanically tunable multiband metamaterial with preserved isotropy

    NASA Astrophysics Data System (ADS)

    Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo

    2015-06-01

    We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future.

  19. Self-referenced single-shot THz detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  20. Self-referenced single-shot THz detection

    DOE PAGES

    Russell, Brandon K.; Ofori-Okai, Benjamin K.; Chen, Zhijiang; ...

    2017-06-29

    We demonstrate a self-referencing method to reduce noise in a single-shot terahertz detection scheme. By splitting a single terahertz pulse and using a reflective echelon, both the signal and reference terahertz time-domain waveforms were measured using one laser pulse. Simultaneous acquisition of these waveforms significantly reduces noise originating from shot-to-shot fluctuations. Here, we show that correlation function based referencing, which is not limited to polarization dependent measurements, can achieve a noise floor that is comparable to state-of-the-art polarization-gated balanced detection. Lastly, we extract the DC conductivity of a 30 nm free-standing gold film using a single THz pulse. The measuredmore » value of σ 0 = 1.3 ± 0.4 × 10 7 S m -1 is in good agreement with the value measured by four-point probe, indicating the viability of this method for measuring dynamical changes and small signals.« less

  1. Spectral gain profile of a multi-stack terahertz quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachmann, D., E-mail: dominic.bachmann@tuwien.ac.at; Deutsch, C.; Krall, M.

    2014-11-03

    The spectral gain of a multi-stack terahertz quantum cascade laser, composed of three active regions with emission frequencies centered at 2.3, 2.7, and 3.0 THz, is studied as a function of driving current and temperature using terahertz time-domain spectroscopy. The optical gain associated with the particular quantum cascade stacks clamps at different driving currents and saturates to different values. We attribute these observations to varying pumping efficiencies of the respective upper laser states and to frequency dependent optical losses. The multi-stack active region exhibits a spectral gain full width at half-maximum of 1.1 THz. Bandwidth and spectral position of themore » measured gain match with the broadband laser emission. As the laser action ceases with increasing operating temperature, the gain at the dominant lasing frequency of 2.65 THz degrades sharply.« less

  2. Thermodynamics of HMX Polymorphs and HMX/RDX Mixtures

    DOE PAGES

    Myint, Philip C.; Nichols, Albert L.

    2016-12-09

    In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myint, Philip C.; Nichols, Albert L.

    In this paper, we present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): liquid HMX and four solid polymorphs (α-, β-, γ-, and δ-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Wemore » combine our HMX and RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with a few different kinds of phase transitions that these mixtures may undergo. Our paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of α-HMX. Finally, by examining possible arrangements for the relative order of the six different solid-solid transition (α–β, α–γ, α–δ, β–γ, β–δ, and γ–δ) temperatures, we conclude that α-HMX must be thermodynamically stable so that the HMX phase diagram must have an α phase region.« less

  4. Solid state SPS microwave generation and transmission study. Volume 2, phase 2: Appendices

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for SPS was further defined. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. Basic solid state microwave devices were defined and modeled. An initial conceptual subsystems and system design was performed as well as sidelobe control and system selection. The selected system concept and parametric solid state microwave power transmission system data were assessed relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers and Gaussian tapers. A hybrid concept using tubes and solid state was evaluated. Thermal analyses are included with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  5. Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of terahertz wavelength demultiplexer exhibits tremendous potential in developing application of terahertz science and technology. We propose an approach to separate efficiently four frequencies terahertz waves based on three cascaded directional coupling two-dimensional photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results show that the designed terahertz wavelength demultiplexer can split four different wavelengths of terahertz wave into different propagation directions with high transmittance and low crosstalk. The present device is very compact and the total size is 6.8×10.6 mm2. This enables the terahertz wavelength demultiplexer to be used in terahertz wave system and terahertz wave integrated circuit fields.

  6. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-04-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  7. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-06-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  8. Biphasic fermentation is an efficient strategy for the overproduction of δ-endotoxin from Bacillus thuringiensis.

    PubMed

    Jisha, Veloorvalappil Narayanan; Smitha, Robinson Babysarojam; Priji, Prakasan; Sajith, Sreedharan; Benjamin, Sailas

    2015-02-01

    This study illustrates a biphasic solid-state fermentation (SSF) strategy for the overproduction of δ-endotoxin from Bacillus thuringiensis subsp. kurstaki (Btk) and also purification of δ-endotoxin from the solid-fermented medium. The fermentation strategy had two phases (biphasic); i.e., the first short phase was semisolid state (12 h), and the remaining long phase was strict SSF. To achieve the biphasic SSF, after 12 h (150 rpm, 37 °C) fermentation of the medium [Luria-Bertani (LB) supplemented with 30 % (w/v) raw soybean flour (phase I)], the supernatant in it was completely centrifuged out (1,000 × g, 10 min) aseptically for harvesting the extracellular enzymes as by-product. The resultant wet solid matter without free-flowing liquid but with embedded Btk was incubated 60 h more (phase II) for enhancing δ-endotoxin production at static condition (37 °C). Coupled with this, δ-endotoxin was purified by the modified phase separation method, and its purity was physically confirmed by both staining and microscopic techniques. The maximum δ-endotoxin yield from solid medium (48 h) was 15.8 mg/mL (recovery was 55-59 %) LB-equivalent, while that of LB control (recovery was 95 %) was only 0.43 mg/mL (72 h), i.e., thus, in comparison, 36.74-fold more yield in solid medium obtained by 24 h less gestation period. The purified crystal proteins showed apparent molecular weights (MWs) of 45, 35, and 6 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Briefly, this unique study physically demonstrates how Btk δ-endotoxin is purified (95-99 % purity) from solid-fermented matter for the first time, coupled with its overproduction at the expense of only 21.5 % higher production cost.

  9. Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)

    2005-01-01

    An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.

  10. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less

  11. One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires.

    PubMed

    van Vugt, Lambert K; Piccione, Brian; Cho, Chang-Hee; Nukala, Pavan; Agarwal, Ritesh

    2011-06-21

    Strong coupling of light with excitons in direct bandgap semiconductors leads to the formation of composite photonic-electronic quasi-particles (polaritons), in which energy oscillates coherently between the photonic and excitonic states with the vacuum Rabi frequency. The light-matter coherence is maintained until the oscillator dephases or the photon escapes. Exciton-polariton formation has enabled the observation of Bose-Einstein condensation in the solid-state, low-threshold polariton lasing and is also useful for terahertz and slow-light applications. However, maintaining coherence for higher carrier concentration and temperature applications still requires increased coupling strengths. Here, we report on size-tunable, exceptionally high exciton-polariton coupling strengths characterized by a vacuum Rabi splitting of up to 200 meV as well as a reduction in group velocity, in surface-passivated, self-assembled semiconductor nanowire cavities. These experiments represent systematic investigations on light-matter coupling in one-dimensional optical nanocavities, demonstrating the ability to engineer light-matter coupling strengths at the nanoscale, even in non-quantum-confined systems, to values much higher than in bulk.

  12. One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires

    PubMed Central

    van Vugt, Lambert K.; Piccione, Brian; Cho, Chang-Hee; Nukala, Pavan; Agarwal, Ritesh

    2011-01-01

    Strong coupling of light with excitons in direct bandgap semiconductors leads to the formation of composite photonic-electronic quasi-particles (polaritons), in which energy oscillates coherently between the photonic and excitonic states with the vacuum Rabi frequency. The light-matter coherence is maintained until the oscillator dephases or the photon escapes. Exciton-polariton formation has enabled the observation of Bose-Einstein condensation in the solid-state, low-threshold polariton lasing and is also useful for terahertz and slow-light applications. However, maintaining coherence for higher carrier concentration and temperature applications still requires increased coupling strengths. Here, we report on size-tunable, exceptionally high exciton-polariton coupling strengths characterized by a vacuum Rabi splitting of up to 200 meV as well as a reduction in group velocity, in surface-passivated, self-assembled semiconductor nanowire cavities. These experiments represent systematic investigations on light-matter coupling in one-dimensional optical nanocavities, demonstrating the ability to engineer light-matter coupling strengths at the nanoscale, even in non-quantum-confined systems, to values much higher than in bulk. PMID:21628582

  13. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xun-jun, E-mail: hexunjun@hrbust.edu.cn; Li, Teng-yue; Wang, Lei

    2014-05-07

    In this paper, we design and numerically demonstrate an electrically controllable light-matter interaction in a hybrid material/metamaterial system consisting of an artificially constructed cross cut-wire complementary metamaterial and an atomically thin graphene layer to realize terahertz (THz) wave modulator. By applying a bias voltage between the metamaterial and the graphene layer, this modulator can dynamically control the amplitude and phase of the transmitted wave near 1.43 THz. Moreover, the distributions of current density show that this large modulation depth can be attributed to the resonant electric field parallel to the graphene sheet. Therefore, the modulator performance indicates the enormous potentialmore » of graphene for developing sophisticated THz communication systems.« less

  14. Investigation of the kinetics and microscopic mechanism of solid-solid phase transitions in HMX

    NASA Astrophysics Data System (ADS)

    Bowlan, Pamela; Suvorova, Natalya; Oschwald, Dave; Bowlan, John; Rector, Kirk; Henson, Bryan; Smilowitz, Laura

    2017-06-01

    Although studied intensely in the 2000's, a number of important questions about solid-solid phase transitions in the energetic organic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) remain. The mechanism by which one of the four isomorphs, known as δ, γ, α and β, transforms into another, and the conditions (i.e. temperature and pressure) and rates at which these transitions take place are still not fully known, yet important for predicting and controlling energy release phenomena in HMX such as detonation. The theory of virtual melting, by which a liquid forms at the interface of a nucleation site, is necessary to explain transformations between certain of the four different phases of HMX, such as the β to δ transition. However the existence of this disordered intermediate state has never been directly proven due to the need for both spatial (<µm), temporal (the lifetime of the transient melt state is unknown) and structural information. Also, while the β to δ transition was more thoroughly studied, less is known about the other 10 possible phase transitions. We will report on our study of phase transitions in HMX using X-ray diffraction and confocal Raman and near-field infrared microscopy.

  15. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    DOEpatents

    Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  16. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis

    DOE PAGES

    Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...

    2017-01-12

    Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which ismore » the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less

  17. Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state

    NASA Astrophysics Data System (ADS)

    Datta, M. K.; Pabi, S. K.; Murty, B. S.

    2000-06-01

    Solid state reactions induced by mechanical alloying (MA) of elemental blends of Ni and Si have been studied over the entire composition range of the Ni-Si system. A monotonous increase of the lattice parameter of the Ni rich solid solution, Ni(Si), is observed with refinement of crystallite size. Nanocrystalline phase/phase mixtures of Ni(Si), Ni(Si)+Ni31Si12, Ni31Si12+Ni2Si, Ni2Si+NiSi and NiSi+Si, have been obtained during MA, over the composition ranges of 0-10, 10-28, 28-33, 33-50, and >50 at. % Si, respectively. The results clearly suggest that only congruent melting phases, Ni31Si12, Ni2Si, and NiSi form, while the formation of noncongruent melting phases, Ni3Si, Ni3Si2, and NiSi2, is bypassed in the nanocrystalline state. The phase formation during MA has been discussed based on thermodynamic arguments. The predicted phase fields obtained from effective free energy calculations are quite consistent with those obtained during MA.

  18. Solar power satellite system definition study. Volume 4: Solid State SPS Analysis, Phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A 2500 megawatt solid ground output Solar Power Satellite (SPS) of conventional configuration was designed and analyzed. Because the power per receiving antenna is halved, as compared with the klystron reference, twice the number of receiving antennas are needed to deliver the same total power. The solid state approach appears feasible with a slightly greater specific mass and slightly higher cost than the klystron SPS design.

  19. Subcycle quantum physics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Leitenstorfer, Alfred

    2017-02-01

    A time-domain approach to quantum electrodynamics is presented, covering the entire mid-infrared and terahertz frequency ranges. Ultrabroadband electro-optic sampling with few-femtosecond laser pulses allows direct detection of the vacuum fluctuations of the electric field in free space [1,2]. Besides the Planck and electric field fundamental constants, the variance of the ground state is determined solely by the inverse of the four-dimensional space-time volume over which a measurement or physical process integrates. Therefore, we can vary the contribution of multi-terahertz vacuum fluctuations and discriminate against the trivial shot noise due to the constant flux of near-infrared probe photons. Subcycle temporal resolution based on a nonlinear phase shift provides signals from purely virtual photons for accessing the ground-state wave function without amplification to finite intensity. Recently, we have succeeded in generation and analysis of mid-infrared squeezed transients with quantum noise patterns that are time-locked to the intensity envelope of the probe pulses. We find subcycle temporal positions with a noise level distinctly below the bare vacuum which serves as a direct reference. Delay times with increased differential noise indicate generation of highly correlated quantum fields by spontaneous parametric fluorescence. Our time-domain approach offers a generalized understanding of spontaneous emission processes as a consequence of local anomalies in the co-propagating reference frame modulating the quantum vacuum, in combination with the boundary conditions set by Heisenberg's uncertainty principle. [1] C. Riek et al., Science 350, 420 (2015) [2] A. S. Moskalenko et al., Phys. Rev. Lett. 115, 263601 (2015)

  20. Enhanced ionic conductivity with Li{sub 7}O{sub 2}Br{sub 3} phase in Li{sub 3}OBr anti-perovskite solid electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi

    Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt.more » %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.« less

  1. Fingerprint extraction from interference destruction terahertz spectrum.

    PubMed

    Xiong, Wei; Shen, Jingling

    2010-10-11

    In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.

  2. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes.

    PubMed

    Berry, C W; Wang, N; Hashemi, M R; Unlu, M; Jarrahi, M

    2013-01-01

    Even though the terahertz spectrum is well suited for chemical identification, material characterization, biological sensing and medical imaging, practical development of these applications has been hindered by attributes of existing terahertz optoelectronics. Here we demonstrate that the use of plasmonic contact electrodes can significantly mitigate the low-quantum efficiency performance of photoconductive terahertz optoelectronics. The use of plasmonic contact electrodes offers nanoscale carrier transport path lengths for the majority of photocarriers, increasing the number of collected photocarriers in a subpicosecond timescale and, thus, enhancing the optical-to-terahertz conversion efficiency of photoconductive terahertz emitters and the detection sensitivity of photoconductive terahertz detectors. We experimentally demonstrate 50 times higher terahertz radiation powers from a plasmonic photoconductive emitter in comparison with a similar photoconductive emitter with non-plasmonic contact electrodes, as well as 30 times higher terahertz detection sensitivities from a plasmonic photoconductive detector in comparison with a similar photoconductive detector with non-plasmonic contact electrodes.

  3. Changes in volatile compound composition of Antrodia camphorata during solid state fermentation.

    PubMed

    Xia, Yongjun; Zhang, Baorong; Li, Weijiang; Xu, Ganrong

    2011-10-01

    Although the volatiles present in mushrooms and fungi have been investigated by many researchers, including Antrodia camphorata in submerged fermentation, there are few data available regarding changes in volatile compounds during fermentation. Our research has revealed that solid state fermentation of A. camphorata is highly odiferous compared with submerged cultures and the odor changed with increasing culture time. Therefore the aim of this study was to investigate the changes in volatile compound composition of A. camphorata during solid state fermentation. Altogether, 124 major volatile compounds were identified. The volatile compounds produced by A. camphorata during growth in solid state fermentation were quite different. Oct-1-en-3-ol, octan-3-one and methyl 2-phenylacetate were predominant in exponential growth phase production, while the dominant volatiles produced in stationary phase were octan-3-one and methyl 2-phenylacetate. In stationary phase, lactone compounds in A. camphorata, such as 5-butyloxolan-2-one, 5-heptyloxolan-2-one, 6-heptyloxan-2-one, contributed greatly to peach and fruit-like flavor. Terpene and terpene alcohol compounds, such as 1-terpineol, L-linalool, T-cadinol, (E, E)-farnesol, β-elemene, cis-α-bisabolene and α-muurolene, made different contributions to herbal fresh aroma in A. camphorata. Nineteen volatile sesquiterpenes were detected from solid state fermentation of A. camphorata. The compounds 5-n-butyl-5H-furan-2-one, β-ionone, (-)-caryophyllene oxide, aromadendrene oxide, diepi-α-cedrene epoxide, β-elemene, α-selinene, α-muurolene, azulene, germacrene D, γ-cadinene and 2-methylpyrazine have not hitherto been reported in A. camphorata. The preliminary results suggest that the aroma-active compounds produced by A camphorata in solid state fermentation might serve as an important source of natural aroma compounds for the food and cosmetic industries or antibiotic activity compounds. The sesquiterpenes could be identified as possible taxonomic markers for A. camphorata. Copyright © 2011 Society of Chemical Industry.

  4. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2015-10-27

    To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD), followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  5. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR.

  6. Carbon solids in oxygen-deficient explosives (LA-UR-13-21151)

    NASA Astrophysics Data System (ADS)

    Peery, Travis

    2013-06-01

    The phase behavior of excess carbon in oxygen-deficient explosives has a significant effect on detonation properties and product equations of state. Mixtures of fuel oil in ammonium nitrate (ANFO) above a stoichiometric ratio demonstrate that even small amounts of graphite, on the order of 5% by mole fraction, can substantially alter the Chapman-Jouget (CJ) state properties, a central ingredient in modeling the products equation of state. Similar effects can be seen for Composition B, which borders the carbon phase boundary between graphite and diamond. Nano-diamond formation adds complexity to the product modeling because of surface adsorption effects. I will discuss these carbon phase issues in our equation of state modeling of detonation products, including our statistical mechanics description of carbon clustering and surface chemistry to properly treat solid carbon formation. This work is supported by the Advanced Simulation and Computing Program, under the NNSA.

  7. The role of the "Casimir force analogue" at the microscopic processes of crystallization and melting

    NASA Astrophysics Data System (ADS)

    Chuvildeev, V. N.; Semenycheva, A. V.

    2016-10-01

    Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, "the Casimir force analogue", to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. "The Casimir force analogue" helps to estimate latent melting heat and to gain an insight into a solid-liquid transition problem.

  8. On the Lennard-Jones and Devonshire theory for solid state thermodynamics

    NASA Astrophysics Data System (ADS)

    Lustig, Rolf

    2017-06-01

    The Lennard-Jones and Devonshire theory is developed into a self-consistent scheme for essentially complete thermodynamic information. The resulting methodology is compared with molecular simulation of the Lennard-Jones system in the face-centred-cubic solid state over an excessive range of state points. The thermal and caloric equations of state are in almost perfect agreement along the entire fluid-solid coexistence lines over more than six orders of magnitude in pressure. For homogeneous densities greater than twice the solid triple point density, the theory is essentially exact for derivatives of the Helmholtz energy. However, the fluid-solid phase equilibria are in disagreement with simulation. It is shown that the theory is in error by an additive constant to the Helmholtz energy A/(NkBT). Empirical inclusion of the error term makes all fluid-solid equilibria indistinguishable from exact results. Some arguments about the origin of the error are given.

  9. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date.

    PubMed

    Yu, Calvin; Fan, Shuting; Sun, Yiwen; Pickwell-Macpherson, Emma

    2012-03-01

    The terahertz region lies between the microwave and infrared regions of the electromagnetic spectrum such that it is strongly attenuated by water and very sensitive to water content. Terahertz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. Because of these characteristic properties, there has been an increasing interest in terahertz imaging and spectroscopy for biological applications within the last few years and more and more terahertz spectra are being reported, including spectroscopic studies of cancer. The presence of cancer often causes increased blood supply to affected tissues and a local increase in tissue water content may be observed: this acts as a natural contrast mechanism for terahertz imaging of cancer. Furthermore the structural changes that occur in affected tissues have also been shown to contribute to terahertz image contrast. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques. In particular investigations relating to the potential of terahertz imaging and spectroscopy for cancer diagnosis will be highlighted.

  10. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date

    PubMed Central

    Yu, Calvin; Fan, Shuting; Sun, Yiwen; Pickwell-MacPherson, Emma

    2012-01-01

    The terahertz region lies between the microwave and infrared regions of the electromagnetic spectrum such that it is strongly attenuated by water and very sensitive to water content. Terahertz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. Because of these characteristic properties, there has been an increasing interest in terahertz imaging and spectroscopy for biological applications within the last few years and more and more terahertz spectra are being reported, including spectroscopic studies of cancer. The presence of cancer often causes increased blood supply to affected tissues and a local increase in tissue water content may be observed: this acts as a natural contrast mechanism for terahertz imaging of cancer. Furthermore the structural changes that occur in affected tissues have also been shown to contribute to terahertz image contrast. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques. In particular investigations relating to the potential of terahertz imaging and spectroscopy for cancer diagnosis will be highlighted. PMID:23256057

  11. Combined discrete particle and continuum model predicting solid-state fermentation in a drum fermentor.

    PubMed

    Schutyser, M A I; Briels, W J; Boom, R M; Rinzema, A

    2004-05-20

    The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors. Copyright 2004 Wiley Periodicals, Inc.

  12. Terahertz holography for imaging amplitude and phase objects.

    PubMed

    Hack, Erwin; Zolliker, Peter

    2014-06-30

    A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results.

  13. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals

    NASA Astrophysics Data System (ADS)

    Vasić, Borislav; Zografopoulos, Dimitrios C.; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš

    2017-03-01

    Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

  14. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals.

    PubMed

    Vasić, Borislav; Zografopoulos, Dimitrios C; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš

    2017-03-24

    Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

  15. Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging.

    PubMed

    Joseph, Cecil S; Patel, Rakesh; Neel, Victor A; Giles, Robert H; Yaroslavsky, Anna N

    2014-05-01

    We tested the hypothesis that polarization sensitive optical and terahertz imaging may be combined for accurate nonmelanoma skin cancer (NMSC) delineation. Nine NMSC specimens were imaged. 513 μm and 440 nm wavelengths were used for terahertz and optical imaging, respectively. Histopathology was processed for evaluation. Terahertz reflectance of NMSC was quantified. Our results demonstrate that cross-polarized terahertz images correctly identified location of the tumours, whereas cross-polarized and polarization difference optical images accurately presented morphological features. Cross-polarized terahertz images exhibited lower reflectivity values in cancer as compared to normal tissue. Combination of optical and terahertz imaging shows promise for intraoperative delineation of NMSC. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  17. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    PubMed

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  18. Switching terahertz wave with grating-coupled Kretschmann configuration.

    PubMed

    Jiu-Sheng, Li

    2017-08-07

    We present a terahertz wave switch utilizing Kretschmann configuration which consists of high-refractive-index prism-liquid crystal-periodically grooved metal grating. The switching mechanism of the terahertz switch is based on spoof surface plasmon polariton (SSPP) excitation in the attenuated total reflection regime by changing the liquid crystal refractive index. The results highlighted the fact that the feasibility to "tune" the attenuated total reflection terahertz wave intensity by using the external applied bias voltage. The extinction ratio of the terahertz switch reaches 31.48dB. The terahertz switch has good control ability and flexibility, and can be used in potential terahertz free space device systems.

  19. Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan

    2018-05-01

    A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.

  20. Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements

    NASA Astrophysics Data System (ADS)

    Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun

    2016-11-01

    It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.

  1. Solid state SPS microwave generation and transmission study. Volume 1: Phase 2

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  2. Research Laboratory of Electronic Progress Report Number 135.

    DTIC Science & Technology

    1993-06-01

    78 @ 1.12 Ultrashort Pulse Generation in Solid State Lasers ...generation the use of intracavity self-phase-modulation and of ultrashort laser pulses is essential for studies of negative group velocity dispersion... pulses . Our studies focus on exploiting mode locked solid state lasers . While the dominant the short pulse durations and high peak intensity of effect of

  3. Label-free probing of genes by time-domain terahertz sensing.

    PubMed

    Haring Bolivar, P; Brucherseifer, M; Nagel, M; Kurz, H; Bosserhoff, A; Büttner, R

    2002-11-07

    A label-free sensing approach for the label-free characterization of genetic material with terahertz (THz) electromagnetic waves is presented. Time-resolved THz analysis of polynucleotides demonstrates a strong dependence of the complex refractive index of DNA molecules in the THz frequency range on their hybridization state. By monitoring THz signals one can thus infer the binding state (hybridized or denatured) of oligo- and polynucleotides, enabling the label-free determination the genetic composition of unknown DNA sequences. A broadband experimental proof-of-principle in a freespace analytic configuration, as well as a higher-sensitivity approach using integrated THz sensors reaching femtomol detection levels and demonstrating the capability to detect single-base mutations, are presented. The potential application for next generation high-throughput label-free genetic analytic systems is discussed.

  4. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  5. Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique

    DTIC Science & Technology

    2015-10-01

    This report discusses a simple aperture useful for terahertz near-field imaging at .2010 terahertz ( lambda = 1.43 millimeters). The aperture requires...achieve a spatial resolution of lambda /7. The aperture can be scaled with the assistance of machinery found in conventional machine shops to achieve similar results using shorter terahertz wavelengths.

  6. Lattice model theory of the equation of state covering the gas, liquid, and solid phases

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.; Chan, E. M.; Horiguchi, T.; Foreman, J. C.

    1975-01-01

    The three stable states of matter and the corresponding phase transitions were obtained with a single model. Patterned after Lennard-Jones and Devonshires's theory, a simple cubic lattice model containing two fcc sublattices (alpha and beta) is adopted. The interatomic potential is taken to be the Lennard-Jones (6-12) potential. Employing the cluster variation method, the Weiss and the pair approximations on the lattice gas failed to give the correct phase diagrams. Hybrid approximations were devised to describe the lattice term in the free energy. A lattice vibration term corresponding to a free volume correction is included semi-phenomenologically. The combinations of the lattice part and the free volume part yield the three states and the proper phase diagrams. To determine the coexistence regions, the equalities of the pressure and Gibbs free energy per molecule of the coexisting phases were utilized. The ordered branch of the free energy gives rise to the solid phase while the disordered branch yields the gas and liquid phases. It is observed that the triple point and the critical point quantities, the phase diagrams and the coexistence regions plotted are in good agreement with the experimental values and graphs for argon.

  7. Invited Review Terahertz Transmission, Scattering, Reflection, and Absorption—the Interaction of THz Radiation with Soils

    NASA Astrophysics Data System (ADS)

    Lewis, R. A.

    2017-07-01

    Terahertz radiation has been proposed as a useful tool in the study of soils and related materials from such diverse perspectives as detection of non-metallic landmines to improving soil fertility by agricultural charcoals produced by pyrolysis of organic material. The main barrier to such applications is that soils are rather opaque at terahertz frequencies. In this article, the main findings to date on the interaction of terahertz radiation with soils are reviewed, organized around the four phenomena of terahertz: transmission, scattering, reflection, and absorption. Terahertz transmission through soils is generally low and decreases with frequency. Terahertz scattering is evident in many THz-soil interactions, as the wavelength of the radiation is of the order of the particle size. Terahertz reflection is important to communications as these develop from the GHz into the THz band. Terahertz absorption on diluted soil samples has been demonstrated to be effective in identifying soil constituents, such as aromatic compounds, and soil contaminants, such as pesticides.

  8. Semiconductor activated terahertz metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hou-Tong

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  9. Semiconductor activated terahertz metamaterials

    DOE PAGES

    Chen, Hou-Tong

    2014-08-01

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  10. Universal features of the equation of state of solids

    NASA Technical Reports Server (NTRS)

    Vinet, Pascal; Rose, James H.; Ferrante, John; Smith, John R.

    1989-01-01

    A study of the energetics of solids leads to the conclusion that the equation of state for all classes of solids in compression can be expressed in terms of a universal function. The form of this universal function is determined by scaling experimental compression data for measured isotherms of a wide variety of solids. The equation of state is thus known (in the absence of phase transitions), if zero-pressure volume and isothermal compression and its pressure derivative are known. The discovery described in this paper has two immediate consequences: first, despite the well known differences in the microscopic energetics of the various classes of solids, there is a single equation of state for all classes in compression; and second, a new method is provided for analyzing measured isotherms and extrapolating high-pressure data from low-pressure (e.g. acoustic) data.

  11. Assessment of all-solid-state lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Braun, P.; Uhlmann, C.; Weiss, M.; Weber, A.; Ivers-Tiffée, E.

    2018-07-01

    All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.

  12. The intensive terahertz electroluminescence induced by Bloch oscillations in SiC natural superlattices

    PubMed Central

    2012-01-01

    We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices. PMID:23043773

  13. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-04-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  14. Instrumental Analysis in Environmental Chemistry - Liquid and Solid Phase Detection Systems

    ERIC Educational Resources Information Center

    Stedman, Donald H.; Meyers, Philip A.

    1974-01-01

    This is the second of two reviews dealing with analytical methods applicable to environmental chemistry. Methods are discussed under gas, liquid, or solid depending upon the state of the analyte during detection. (RH)

  15. Synthetic routes to a nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} evaluated by solid-state {sup 71}Ga NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.

    Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sitesmore » in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.« less

  16. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil Mcn.

    2016-06-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  17. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics

    PubMed Central

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN.

    2016-01-01

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement. PMID:27312287

  18. One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.

  19. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics.

    PubMed

    Le Goupil, Florian; McKinnon, Ruth; Koval, Vladimir; Viola, Giuseppe; Dunn, Steve; Berenov, Andrey; Yan, Haixue; Alford, Neil McN

    2016-06-17

    The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

  20. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps

    DOE PAGES

    Choe, Hwan Sung; Suh, Joonki; Ko, Changhyun; ...

    2017-08-02

    Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. We describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure an d area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO 2 ) thin film. Our solid-state devices demonstrate large and reversible alteration ofmore » cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. This new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.« less

Top