THE BIOLOGICAL ACTIVITY OF SOLUBLE ANTIGEN-ANTIBODY COMPLEXES
Ishizaka, Kimishige; Ishizaka, Teruko; Campbell, Dan H.
1959-01-01
Soluble BSA-anti-BSA complexes, formed in antigen excess, give immediate skin reactions in normal guinea pigs. The mechanism of the reaction is not that of passive or reversed passive anaphylaxis. The complex itself is toxic. Skin activity of the complex depends on its composition. It has become obvious that the complex composed of two antigen molecules and one antibody molecule, (Ag2Ab), does not have the activity, whereas, Ag3Ab2 and more complicated complexes do. The role of complement as well as speculation on the structural changes of antibody-antigen complexes is presented. PMID:13620844
Lyon, J A; Haynes, J D; Diggs, C L; Chulay, J D; Pratt-Rossiter, J M
1986-03-15
Some immune sera that inhibit erythrocyte invasion by merozoites also agglutinate the merozoites as they emerge from rupturing schizonts. These immune clusters of merozoites (ICM) possess a surface coat that is cross-linked by antibody and is thicker than the surface coat associated with normal merozoites (NM) obtained from cultures containing preimmune serum. Analysis of metabolically labeled ICM and NM performed by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that washed ICM possessed immune complexes containing antigens representative of schizonts and merozoites. Characteristics of the immune complexes included: a) they were not soluble in pH 8 Triton X-100, b) they were soluble at an acid pH, and c) after pH neutralization they were precipitated by using staphylococcal protein A. Merozoite antigens having Mr of 83, 73, and 45 kDa were associated with immune complexes in ICM. The 83 and 73 kDa antigens were recovered in considerably larger quantities from ICM than from NM. Schizont antigens having Mr of 230, 173 (triplet), 152 (doublet), and 31 kDa were associated with immune complexes in ICM, and a 195 kDa antigen(s) from schizonts and merozoites was also present in the immune complexes. In addition, other antigens of Mr 113, 101, 65, and 51 kDa may have been immune complexed. These 15 antigens accounted for less than 30% of the schizont and merozoite antigens recognized by the immune serum. Immune complexes probably formed between antibodies and a) surface antigens of schizont-infected erythrocytes exposed to antibody before schizont rupture, b) surface antigens of merozoites and schizonts exposed during schizont rupture, and c) soluble antigens normally released during schizont rupture. The antibody components of the immune complexes may have prevented rapid degradation or shedding of some antigens from the merozoite surface. Allowing schizonts to rupture in the presence of inhibitory antibodies (to form ICM) is a useful approach to identifying exposed targets of protective immunity against malaria.
Huber, S A; Lucas, Z J
1978-12-01
Sera from Fischer rats 3 to 13 days after i.p. injection of syngeneic 13762A mammary adenocarcinoma contain three factors specifically blocking cell-mediated cytotoxicity (CMC). The major blocking factor is a 160,000-dalton IgG that combines specifically to cytolytic lymphocytes but not to tumor cells or tumor antigen, and that is not dissociated after treatment with 8 M urea. The other factors have been putatively identified as tumor antigen (less than 70,000 daltons) and as soluble antigen-antibody complexes (greater than 200,000 daltons). Injecting the tumor antigen into tumor-free rats induced spleen cells specifically cytotoxic to the 13762A tumor and provided partial protection to challenge with live tumor cells. Treating soluble antigen-antibody complexes with 8 M urea decreased the size of the blocking activity from greater than 200,000 to less than 70,000 daltons. Although the IgG fraction dissociated from the complex did not block CMC, it did recombine with the tumor antigen fraction to transfer activity to the greater than 200,000-dalton fraction. In contrast, mixing tumor antigen with the IgG fraction that did block CMC did not alter the size of the blocking activities.
Schwartz, B S; Edgington, T S
1981-09-01
It has previously been described that soluble antigen:antibody complexes in antigen excess can induce an increase in the procoagulant activity of human peripheral blood mononuclear cells. It has been proposed that this response may explain the presence of fibrin in immune complex-mediated tissue lesions. In the present study we define cellular participants and their roles in the procoagulant response to soluble immune complexes. Monocytes were shown by cell fractionation and by a direct cytologic assay to be the cell of origin of the procoagulant activity; and virtually all monocytes were able to participate in the response. Monocytes, however, required the presence of lymphocytes to respond. The procoagulant response required cell cooperation, and this collaborative interaction between lymphocytes and monocytes appeared to be unidirectional. Lymphocytes once triggered by immune complexes induced monocytes to synthesize the procoagulant product. Intact viable lymphocytes were required to present instructions to monocytes; no soluble mediator could be found to subserve this function. Indeed, all that appeared necessary to induce monocytes to produce procoagulant activity was an encounter with lymphocytes that had previously been in contact with soluble immune complexes. The optimum cellular ratio for this interaction was four lymphocytes per monocyte, about half the ratio in peripheral blood. The procoagulant response was rapid, reaching a maximum within 6 h after exposure to antigen:antibody complexes. The procoagulant activity was consistent with tissue factor because Factors VII and X and prothrombin were required for clotting of fibrinogen. WE propose that this pathway differs from a number of others involving cells of the immune system. Elucidation of the pathway may clarify the role of this lymphocyte-instructed monocyte response in the Shwartzman phenomenon and other thrombohemorrhagic events associated with immune cell function and the formation of immune complexes.
Lagerkvist, Ann Catrin; Földes-Papp, Zeno; Persson, Mats A.A.; Rigler, Rudolf
2001-01-01
Phage display is widely used for expression of combinatorial libraries, not least for protein engineering purposes. Precise selection at the single molecule level will provide an improved tool for generating proteins with complex and distinct properties from large molecular libraries. To establish such an improved selection system, we here report the detection of specific interactions between phage with displayed antibody fragments and fluorescently labeled soluble antigen based on Fluorescence Correlation Spectroscopy (FCS). Our novel strategy comprises the use of two separate fluorochromes for detection of the phage–antigen complex, either with labeled antiphage antibody or using a labeled antigen. As a model system, we studied a human monoclonal antibody to the hepatitis-C virus (HCV) envelope protein E2 and its cognate antigen (rE2 or rE1/E2). We could thus assess the specific interactions and determine the fraction of specific versus background phage (26% specific phage). Aggregation of these particular antigens made it difficult to reliably utilize the full potential of cross-correlation studies using the two labels simultaneously. However, with true monomeric proteins, this will certainly be possible, offering a great advantage in a safer and highly specific detection system. PMID:11468349
Antigen Cross-Presentation of Immune Complexes
Platzer, Barbara; Stout, Madeleine; Fiebiger, Edda
2014-01-01
The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of interest to physicians, as well as basic scientists, that aim to establish efficient cell-based cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes is a better understanding of the mechanisms that underlie the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The ability of humans DC to perform cross-presentation is of utmost interest, as this cell type is a main target for cell-based immunotherapy in humans. The outcome of a cross-presentation event is guided by the nature of the antigen, the form of antigen uptake, and the subpopulation of DCs that performs presentation. Generally, CD8α+ DCs are considered to be the most potent cross-presenting DCs. This paradigm, however, only applies to soluble antigens. During adaptive immune responses, immune complexes form when antibodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG) immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation pathway is a well-described route for the induction of strong CD8+ T cell responses. IgG-mediated cross-presentation is intriguing because it permits the CD8− DCs, which are commonly considered to be weak cross-presenters, to efficiently cross-present. Engaging multiple DC subtypes for cross-presentation might be a superior strategy to boost CTL responses in vivo. We here summarize our current understanding of how DCs use IgG-complexed antigens for the efficient induction of CTL responses. Because of its importance for human cell therapy, we also review the recent advances in the characterization of cross-presentation properties of human DC subsets. PMID:24744762
Sun, Juan; Chang, Yan-Xiang; Niu, Chun-Yan
2017-11-01
The overexpression of soluble human leukocyte antigen-G is associated with malignant tumours. The purpose of our study was to detect soluble human leukocyte antigen-G concentrations in ascites and to evaluate the value of ascitic soluble human leukocyte antigen-G for the diagnosis of malignant ascites. Enzyme-linked immunosorbent assay was used to detect soluble human leukocyte antigen-G levels in 64 patients with malignant ascites and 30 patients with benign ascites. Receiver operating characteristic curves were used to evaluate the diagnostic efficacy of ascitic soluble human leukocyte antigen-G for the detection of malignant ascites. Ascitic soluble human leukocyte antigen-G levels were significantly higher in the malignant ascites group than in the benign ascites group (20.718 ± 3.215 versus 12.467 ± 3.678 µg/L, t = 7.425, p < 0.001). The area under the receiver operating characteristic curve for ascitic soluble human leukocyte antigen-G was 0.957 (95% confidence interval, 0.872-0.992). At a cut-off value of 19.60 µg/L, the sensitivity and specificity of ascitic soluble human leukocyte antigen-G were 87.5% (95% confidence interval, 71.0%-96.5%) and 100% (95% confidence interval, 88.4%-100%), respectively. With respect to area under the receiver operating characteristic curve, sensitivity and specificity, ascitic carcinoembryonic antigen (0.810, 68.75% and 83.33%, respectively) and carbohydrate antigen 19-9 (0.710, 65.63% and 70%, respectively) significantly differed (all p < 0.05). In malignant ascites that were cytology-negative and biopsy-positive, the rate of positivity for ascitic soluble human leukocyte antigen-G was 75%, which was higher than the corresponding rates for ascitic carcinoembryonic antigen (31.25%) and carbohydrate antigen 19-9 (6.25%; both p < 0.05). In conclusion, The detection of ascitic soluble human leukocyte antigen-G exhibited good performance for diagnosing malignant ascites, and particularly those that were cytology-negative and biopsy-positive.
Tabaczewski, P; Shirwan, H; Lewis, K; Stroynowski, I
1994-01-01
Class Ib Qa-2 molecules are expressed in tissue culture cells as approximately 40-kDa membrane-bound, glycophosphatidylinositol-linked antigens and as approximately 39-kDa soluble polypeptides. Recently, alternative splicing events which delete exon 5 from a portion of Qa-2 transcripts were demonstrated to give rise to truncated secreted Qa-2 molecules in transfected cell lines. To determine whether this mechanism operates in vivo and to find out whether Qa-2 can be detected in soluble form in circulation, murine blood samples were analyzed. Critical to these experiments was preparation of an anti-peptide antiserum against an epitope encoded by a junction of exon 4 and exon 6. We find that supernatants of splenocytes cultured in vitro as well as serum or plasma contain two forms of soluble Qa-2 molecules. One form corresponds to a secreted molecule translated from transcripts from which exon 5 has been deleted; the other is derived from membrane-bound antigens or their precursors. The levels of both soluble forms of Qa-2 are inducible upon stimulation of the immune system, suggesting an immunoregulatory role for these molecules or for the mechanism leading to the reduction of cell-associated Qa-2 antigens in vivo. Images PMID:8127900
Voevodin, A F; Lapin, B A; Agrba, V Z; Timanovskaya, V V
1978-01-01
A new technique (indirect double immunodiffusion) for detection of EBV-associated soluble antigen and corresponding antibodies has been developed. This technique includes three steps: 1) simple double immunodiffusion with extracts of Raji cells (or other EBV-genome positive cells) and human sera containing antibodies against EBV-associated soluble antigen; 2) extensive washing and treatment with anti-human globulin; 3) extensive washing and treatment with tannic acid. Using this test it was shown that the soluble antigen indistinguishable from EBV-associated soluble antigen was present in KMPG-1 cells producing HVP.
Podocytes Are Nonhematopoietic Professional Antigen-Presenting Cells
Burkard, Miriam; Ölke, Martha; Daniel, Christoph; Amann, Kerstin; Hugo, Christian; Kurts, Christian; Steinkasserer, Alexander; Gessner, André
2013-01-01
Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC–antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection. PMID:23539760
PATHOGENETIC MECHANISMS IN EXPERIMENTAL IMMUNE FEVER
Root, Richard K.; Wolff, Sheldon M.
1968-01-01
When rabbits sensitized to human serum albumin (HSA) are challenged intravenously with specific antigen, fever develops and two transferable pyrogens can be demonstrated in the circulation. The first appears prior to the development of fever and has properties consistent with soluble antigen-antibody complexes. These have been shown to be pyrogenic when prepared in vitro and to produce a state of febrile tolerance when repeatedly administered. The second pyrogen, demonstrable during fever in donor rabbits, appears to be similar to endogenous pyrogen described in other experimental fevers. It is postulated that the formation of antigen-antibody complexes constitutes an important initial phase of the febrile reaction in this type of immune fever. PMID:4873023
Skaik, Younis; Battermann, Anja; Hiller, Oliver; Meyer, Oliver; Figueiredo, Constanca; Salama, Abdulgabar; Blasczyk, Rainer
2013-05-31
Timely and accurate testing for human platelet antigen 1a (HPA-1a) alloantibodies is vital for clinical diagnosis of neonatal alloimmune thrombocytopenia (NAIT). Current antigen-specific assays used for the detection of HPA-1 alloantibodies are technically very complex and cumbersome for most diagnostic laboratories. Hence, we designed and applied recombinant soluble (rs) β3 integrins displaying HPA-1a or HPA-1b epitopes for the development of a single-antigen magnetic bead assay (SAMBA). Soluble HPA-1a and HPA-1b were produced recombinantly in human embryonic kidney 293 (HEK293) cells and differentially tagged. The recombinant soluble proteins were then immobilized onto paramagnetic beads and used for analysis of HPA-1 alloantibodies by enzyme-linked immunosorbent assay (ELISA). HPA-1a serum samples (n=7) from NAIT patients, inert sera and sera containing non-HPA-1a antibodies were used to evaluate the sensitivity and specificity of the SAMBA. Fusion of V5-His or GS-SBP-His tags to the rsβ3 integrins resulted in high-yield expression. SAMBA was able to detect all HPA-1a and -1b alloantibodies recognized by monoclonal antibody-specific immobilization of platelet antigens assay (MAIPA). No cross-reactions between the sera were observed. Two out of seven of the HPA-1a alloantibody-containing sera demonstrated weak to moderate reactivity in MAIPA but strong signals in SAMBA. SAMBA provides a very reliable method for the detection of HPA-1 antibodies with high specificity and sensitivity. This simple and rapid assay can be adapted for use in any routine laboratory and can be potentially adapted for use on automated systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Mannik, M; Gauthier, V J; Stapleton, S A; Agodoa, L Y
1987-06-15
In previously published studies, highly cationized antibodies alone and in immune complexes bound to glomeruli by charge-charge interaction, but only immune complexes persisted in glomeruli. Because normal IgG does not deposit in glomeruli, studies were conducted to determine whether cationized antibodies can be prepared which deposit in glomeruli when bound to antigen but not when free in circulation. A series of cationized rabbit antiHSA was prepared with the number of added amino groups ranging from 13.3 to 60.2 per antibody molecule. Antibodies alone or in preformed soluble immune complexes, prepared at fivefold or 50-fold antigen excess, were administered to mice. With the injection of a fixed dose of 100 micrograms per mouse, antibodies alone did not deposit in glomeruli with less than 29.6 added amino groups by immunofluorescence microscopy. In contrast, 100 micrograms of antibodies with 23.5 added amino groups in immune complexes, made at fivefold antigen excess, formed immune deposits in glomeruli. With selected preparations of cationized, radiolabeled antibodies, deposition in glomeruli was quantified by isolation of mouse glomeruli. These quantitative data were in good agreement with the results of immunofluorescence microscopy. Immune complexes made at 50-fold antigen excess, containing only small-latticed immune complexes with no more than two antibody molecules per complex, deposited in glomeruli similar to antibodies alone. Selected cationized antibodies alone or in immune complexes were administered to mice in varying doses. In these experiments, glomerular deposition of immune complexes, made at fivefold antigen excess, was detected with five- to 10-fold smaller doses than the deposition of the same antibodies alone. These studies demonstrate that antibody molecules in immune complexes are more likely to deposit in glomeruli by charge-charge interactions than antibodies alone.
EFFECT OF PROFLAVINE ON THE SYNTHESIS OF ADENOVIRUS, TYPE 5, AND ASSOCIATED SOLUBLE ANTIGENS
Wilcox, Wesley C.; Ginsberg, Harold S.
1962-01-01
Wilcox, Wesley C. (University of Pennsylvania, Philadelphia) and Harold S. Ginsberg. Effect of proflavine on the synthesis of adenovirus, type 5, and associated soluble antigens. J. Bacteriol. 84:526–533. 1962.—The synthesis of type 5 adenovirus in HeLa cells was suppressed to a considerable extent by low concentrations of proflavine, an acridine dye. In comparison, the processes leading to the production of soluble complement-fixing antigens and toxin were less sensitive to the action of this chemical. Addition of proflavine to infected cells at different times during the virus growth cycle revealed that the processes leading to the synthesis of soluble antigens began prior to the first appearance of newly synthesized virus. This observation is compatible with the hypothesis that the soluble antigens may represent virus subunits or precursor materials. In addition, these data indicate that it is possible to interrupt the latter stages of the virus synthetic process by addition of proflavine late in the eclipse period. PMID:14000661
Zeelenberg, Ingrid S; Ostrowski, Matias; Krumeich, Sophie; Bobrie, Angélique; Jancic, Carolina; Boissonnas, Alexandre; Delcayre, Alain; Le Pecq, Jean-Bernard; Combadière, Béhazine; Amigorena, Sebastian; Théry, Clotilde
2008-02-15
Expression of non-self antigens by tumors can induce activation of T cells in vivo, although this activation can lead to either immunity or tolerance. CD8+ T-cell activation can be direct (if the tumor expresses MHC class I molecules) or indirect (after the capture and cross-presentation of tumor antigens by dendritic cells). The modes of tumor antigen capture by dendritic cells in vivo remain unclear. Here we examine the immunogenicity of the same model antigen secreted by live tumors either in association with membrane vesicles (exosomes) or as a soluble protein. We have artificially addressed the antigen to secreted vesicles by coupling it to the factor VIII-like C1C2 domain of milk fat globule epidermal growth factor-factor VIII (MFG-E8)/lactadherin. We show that murine fibrosarcoma tumor cells that secrete vesicle-bound antigen grow slower than tumors that secrete soluble antigen in immunocompetent, but not in immunodeficient, host mice. This growth difference is due to the induction of a more potent antigen-specific antitumor immune response in vivo by the vesicle-bound than by the soluble antigen. Finally, in vivo secretion of the vesicle-bound antigen either by tumors or by vaccination with naked DNA protects against soluble antigen-secreting tumors. We conclude that the mode of secretion can determine the immunogenicity of tumor antigens and that manipulation of the mode of antigen secretion may be used to optimize antitumor vaccination protocols.
A Novel Virus-Like Particle Based Vaccine Platform Displaying the Placental Malaria Antigen VAR2CSA.
Thrane, Susan; Janitzek, Christoph M; Agerbæk, Mette Ø; Ditlev, Sisse B; Resende, Mafalda; Nielsen, Morten A; Theander, Thor G; Salanti, Ali; Sander, Adam F
2015-01-01
Placental malaria caused by Plasmodium falciparum is a major cause of mortality and severe morbidity. Clinical testing of a soluble protein-based vaccine containing the parasite ligand, VAR2CSA, has been initiated. VAR2CSA binds to the human receptor chondroitin sulphate A (CSA) and is responsible for sequestration of Plasmodium falciparum infected erythrocytes in the placenta. It is imperative that a vaccine against malaria in pregnancy, if administered to women before they become pregnant, can induce a strong and long lasting immune response. While most soluble protein-based vaccines have failed during clinical testing, virus-like particle (VLP) based vaccines (e.g., the licensed human papillomavirus vaccines) have demonstrated high efficacy, suggesting that the spatial assembly of the vaccine antigen is a critical parameter for inducing an optimal long-lasting protective immune response. We have developed a VLP vaccine display platform by identifying regions of the HPV16 L1 coat protein where a biotin acceptor site (AviTagTM) can be inserted without compromising VLP-assembly. Subsequent biotinylation of Avi-L1 VLPs allow us to anchor monovalent streptavidin (mSA)-fused proteins to the biotin, thereby obtaining a dense and repetitive VLP-display of the vaccine antigen. The mSA-VAR2CSA antigen was delivered on the Avi-L1 VLP platform and tested in C57BL/6 mice in comparison to two soluble protein-based vaccines consisting of naked VAR2CSA and mSA-VAR2CSA. The mSA-VAR2CSA Avi-L1 VLP and soluble mSA-VAR2CSA vaccines induced higher antibody titers than the soluble naked VAR2CSA vaccine after three immunizations. The VAR2CSA Avi-L1 VLP vaccine induced statistically significantly higher endpoint titres compared to the soluble mSA-VAR2CSA vaccine, after 1st and 2nd immunization; however, this difference was not statistically significant after 3rd immunization. Importantly, the VLP-VAR2CSA induced antibodies were functional in inhibiting the binding of parasites to CSA. This study demonstrates that the described Avi-L1 VLP-platform may serve as a versatile system for facilitating optimal VLP-display of large and complex vaccine antigens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajenova, Olga, E-mail: o.bazhenova@spbu.ru; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034; Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178
2014-06-10
Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA andmore » beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.« less
IMMUNE DIFFUSION ANALYSIS OF THE EXTRACELLULAR SOLUBLE ANTIGENS OF TWO STRAINS OF RHIZOBIUM MELILOTI
Dudman, W. F.
1964-01-01
Dudman, W. F. (Commonwealth Scientific and Industrial Research Organization, Canberra, Australia). Immune diffusion analysis of the extracellular soluble antigens of two strains of Rhizobium meliloti. J. Bacteriol. 88:782–794. 1964.—Immune diffusion techniques applied to cultures of two strains of Rhizobium meliloti grown in liquid defined medium showed the presence of multiple antigens. Improved resolution of precipitin patterns was obtained with concentrated antigens separated from the cultures as the extracellular soluble fraction or as suspensions of washed cells. The extracellular fraction contained the same diffusible antigens as the washed cells, but additional antigens were found in the cells after ultrasonic disruption. The extracellular soluble antigens were shown by analysis to contain polysaccharide and protein components. In immune diffusion systems, they gave rise to three groups of precipitin bands, two of which were characterized as polysaccharides by their susceptibility to periodate oxidation, and the third as protein by its lability to heat. All the extracellular antigens of both strains were shared except a fast-diffusing polysaccharide, which was specific for each strain. Despite the sharing of all but one of their antigens, cells of these strains showed only a low degree of cross-agglutination, suggesting that their surfaces are dominated by the specific polysaccharide. No differences could be found in the composition of the polysaccharides in the unfractionated extracellular antigens of the two strains, the main components of which were glucose (66%) and galactose (12%) in the presence of several other unidentified sugars in smaller amounts. The pattern of precipitin bands produced in immune diffusion systems by the extracellular soluble fraction could be changed by altering the cultural conditions. Images PMID:14208519
Zhang, Shu; Huang, Shengshi; Lu, Lu; Song, Xinlei; Li, Pingli; Wang, Fengshan
2018-01-01
The development of ideal vaccine adjuvants for intranasal vaccination can provide convenience for many vaccinations. As an ideal intranasal vaccine adjuvant, it should have the properties of assisting soluble antigens to pass the mucosal barrier and potentiating both systemic and mucosal immunity via nasal administration. By using the advantages of polysaccharides, which can promote both T-helper 1 and 2 responses, curdlan sulfate (CS)- O -(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride ( O -HTCC) nanoparticles were prepared by interacting CS with O -HTCC, and the adjuvancy of the nanoparticles was investigated. The results showed that the polysaccharide-based nanoparticles induced the proliferation and activation of antigen-presenting cells. High protein-loading efficiency was obtained by testing with the model antigen ovalbumin (Ova), and the Ova adsorbed onto the cationic CS/ O -HTCC complexes was taken up easily by the epithelium. To evaluate the capacity of the Ova/CS/ O -HTCC nanoparticles for immune enhancement in vivo, we collected and analyzed immunocytes, serum, and mucosal lavage fluid from intranasally vaccinated mice. The results showed that Ova/CS/ O -HTCC nanoparticles induced activation and maturation of antigen-presenting cells and provoked the proliferation and differentiation of lymphocytes more significantly compared to the immunization of Ova mixed with aluminum hydroxide gel. Furthermore, CS/ O -HTCC evoked a significantly higher level of Ova-specific antibodies. Therefore, these results suggest that CS/ O -HTCC nanoparticles are ideal vaccine adjuvants for soluble antigens used in intranasal or mucosal vaccination.
Wieland, Eberhard; Shipkova, Maria
2016-04-01
T-cell activation is a characteristic of organ rejection. T cells, located in the draining lymph nodes of the transplant recipient, are faced with non-self-molecules presented by antigen presenting cells and become activated. Activated T cells are characterized by up-regulated surface antigens, such as costimulatory molecules, adhesion molecules, chemokine receptors, and major histocompatibility complex class II molecules. Surface antigen expression can be followed by flow cytometry using monoclonal antibodies in either cell function assays using donor-specific or nonspecific stimulation of isolated cells or whole blood and without stimulation on circulating lymphocytes. Molecules such as CD30 can be proteolytically cleaved off the surface of activated cells in vivo, and the determination of the soluble protein (sCD30) in serum or plasma is performed by immunoassays. As promising biomarkers for rejection and long-term transplant outcome, CD28 (costimulatory receptor for CD80 and CD86), CD154 (CD40 ligand), and sCD30 (tumor necrosis factor receptor superfamily, member 8) have been identified. Whereas cell function assays are time-consuming laboratory-developed tests which are difficult to standardize, commercial assays are frequently available for soluble proteins. Therefore, more data from clinical trials have been published for sCD30 compared with the surface antigens on activated T cells. This short review summarizes the association between selected surface antigens and immunosuppression, and rejection in solid organ transplantation.
Siragam, Vinayakumar; Brinc, Davor; Crow, Andrew R.; Song, Seng; Freedman, John; Lazarus, Alan H.
2005-01-01
Intravenous Ig (IVIg) mediates protection from the effects of immune thrombocytopenic purpura (ITP) as well as numerous other autoimmune states; however, the active antibodies within IVIg are unknown. There is some evidence that antibodies specific for a cell-associated antigen on erythrocytes are responsible, at least in part, for the therapeutic effect of IVIg in ITP. Yet whether an IVIg directed to a soluble antigen can likewise be beneficial in ITP or other autoimmune diseases is also unknown. A murine model of ITP was used to determine the effectiveness of IgG specific to soluble antigens in treating immune thrombocytopenic purpura. Mice experimentally treated with soluble OVA + anti-OVA versus mice treated with OVA conjugated to rbcs (OVA-rbcs) + anti-OVA were compared. In both situations, mice were protected from ITP. Both these experimental therapeutic regimes acted in a complement-independent fashion and both also blocked reticuloendothelial function. In contrast to OVA-rbcs + anti-OVA, soluble OVA + anti-OVA (as well as IVIg) did not have any effect on thrombocytopenia in mice lacking the inhibitory receptor FcγRIIB (FcγRIIB–/– mice). Similarly, antibodies reactive with the endogenous soluble antigens albumin and transferrin also ameliorated ITP in an FcγRIIB-dependent manner. Finally, broadening the significance of these experiments was the finding that anti-albumin was protective in a K/BxN serum–induced arthritis model. We conclude that IgG antibodies directed to soluble antigens ameliorated 2 disparate IVIg-treatable autoimmune diseases. PMID:15630455
Kidney lesions in baboons infected with Schistosoma mansoni.
Houba, V; Sturrock, R F; Butterworth, A E
1977-01-01
Glomerular lesions in baboons (Papio anubis) infected with different dosage regimes of Schistosoma mansoni were studied by immunofluorescence and light microscopy on kidney sections and by countercurrent immunoelectrophoresis on kidney homogenates and tissue eluates. Mild lesions, characterized by focal and segmental deposits of immune complexes, developed in sixty-two out of 103 baboons, irrespective of the intensity and duration of the infection. Severe, diffuse lesions developed in six baboons after prolonged and heavy infections. Adult worm and soluble egg antigens, together with IgM, IgG and C3, were detected in most of the severe lesions and in some of the mild lesions. In some animals, antigens were detected in most of the severe lesions and in some of the mild lesions. In some animals, antigens were detected in acid homogenates and eluates of kidneys which showed no deposits of immunoglobulins or complement. These observations indicate that renal lesions in S. mansoni infections may be attributable to the deposition of immune complexes pre-formed in the circulation. However, the demonstration of antigens alone in some animals may suggest an alternative possibility, namely that antigens are deposited first with a subsequent binding of antibody and complement. PMID:414868
Overview of a HLA-Ig based "Lego-like system" for T cell monitoring, modulation and expansion.
Oelke, Mathias; Schneck, Jonathan P
2010-07-01
Recent advances in molecular medicine have shown that soluble MHC-multimers can be valuable tools for both analysis and modulation of antigen-specific immune responses in vitro and in vivo. In this review, we describe the use of dimeric human and mouse major histocompatibility complexes, MHC-Ig, as part of an artificial Antigen-Presenting Cell (aAPC). MHC-Ig-based aAPC and its derivatives represent an exciting new platform technology for measuring and manipulating immune responses in vitro as well as in vivo. This new technology has the potential to help overcome many of the obstacles associated with limitations in current antigen-specific approaches of immunotherapy for the treatment of cancer, infectious diseases and autoimmunity.
Soluble Antigen Fluorescent-Antibody Technique
Toussaint, Andre J.; Anderson, Robert I.
1965-01-01
An indirect fluorescent-antibody (FA) procedure employing soluble antigen fixed onto an artificial matrix was developed, and a mechanical means for reading of test results was devised. The method employs two small cellulose acetate paper discs for each test. One disc contains soluble antigen diluted in 1% bovine serum albumin (BSA); the other contains only 1% BSA and serves as a control. After testing by the indirect FA procedure, the results of the tests are read on a fluorometer fitted with a paper chromatogram door. The instrument is set at zero with the control disc as a blank, and the specific fluorescence of the antigen disc is determined. Findings obtained with homologous and heterologous antisera indicated that the method yields excellent results. The soluble antigen fluorescent-antibody technique has definite advantages over the conventional indirect FA procedures. (i) The investigator may objectively select the antigen to be employed. (ii) It is possible to obtain objective mechanical reading of test results rather than the highly subjective readings required by conventional methods. (iii) The system compensates for any nonspecific fluorescence contributed either by the serum (e.g., drugs) or by free fluorescein in the conjugated antiserum. Images Fig. 1 PMID:14339261
Gelder, F B; McDonald, J C; Landreneau, M D; McMillan, R M; Aultman, D F
1991-01-01
Human lymphocyte antigen (HLA) class I and class II antigens and beta 2 microglobulin (B2M) were identified in peritoneal dialysate (PD) and serum from patients with end-stage renal disease (ESRD) using monoclonal antibodies in an enzyme-linked immunoassay. The HLA class I and class II antigens each exhibited approximate molecular weights of 50,000 to 60,000 daltons by chromatography on Sepharose CL 6B. Class I antigens in serum and PD fluid were associated with B2M. Free B2M (Mr 11,500) also was detected in both sera and PD fluids. Unlike class I antigens, class II antigens were not found to have attached B2M. Class I and class II antigens eluted from 2-diethylaminoethanol ion exchange gradient columns at 0.07 mol/L (molar) phosphate buffer pH 7.2 and migrated with alpha 2-beta 1 mobility in agarose electrophoresis. Class I antigens were purified from ESRD patients' PD fluid by solid-phase immunoaffinity chromatography. Enzyme-linked immunoassay demonstrated that this purified protein was composed of a class I heavy chain and B2M. Class I allospecificity was confirmed by neutralization on known HLA typing antisera in a microcytotoxicity assay. Soluble HLA class I antigen preparations specifically inhibited blast transformation of responder lymphocytes in mixed lymphocyte culture reactions. Inhibition was dose dependent and ranged from 0% to 95%. The presence of soluble HLA antigens in body fluids may play an important part in the immunologic tolerance to self. This study demonstrates a ready source of large quantities of soluble HLA for detailed analysis. Images Fig. 1. PMID:2039290
Maturation of Shark Single-Domain (IgNAR) Antibodies: Evidence for Induced-Fit Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanfield, R.L.; Dooley, H.; Verdino, P.
2007-07-13
Sharks express an unusual heavy-chain isotype called IgNAR, whose variable regions bind antigen as independent soluble domains. To further probe affinity maturation of the IgNAR response, we structurally characterized the germline and somatically matured versions of a type II variable (V) region, both in the presence and absence of its antigen, hen egg-white lysozyme. Despite a disulfide bond linking complementarity determining regions (CDRs) 1 and 3, both germline and somatically matured V regions displayed significant structural changes in these CDRs upon complex formation with antigen. Somatic mutations in the IgNAR V region serve to increase the number of contacts withmore » antigen, as reflected by a tenfold increase in affinity, and one of these mutations appears to stabilize the CDR3 region. In addition, a residue in the HV4 loop plays an important role in antibody-antigen interaction, consistent with the high rate of somatic mutations in this non-CDR loop.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Chuanlai; Chang Chienchung; Zhang Jianqiong
The uses of soluble HLA class I/peptide complexes to monitor antigen reactive T cells are often hampered by their low-yield and high-cost production. As an alternative strategy, the peptide-{beta}{sub 2}m fused, 2-component (2C) HLA class I/peptide complex has been developed, but its application is limited due to the lack of the comparison of its structural and functional characteristics with those of its conventional 3-component (3C) counterpart. In this study, we have demonstrated that the 2C and 3C HLA-A2/MART1{sub 27-35} complexes have a similar chromatographical profile and comparable stability, but the former has 2.5 times higher yield and significantly higher bindingmore » ability with HLA-A2/MART1{sub 27-35} complex-specific receptors than the latter. Furthermore, the 2C complex has a comparable ability to stimulate specific CTL proliferation, but appears to be more effective in eliciting the cytotoxicity of antigen-specific CTL, as compared to its 3C counterpart.« less
Liu, Jinny L; Anderson, George P; Goldman, Ellen R
2007-11-19
Shark heavy chain antibody, also called new antigen receptor (NAR), consists of one single Variable domain (VH), containing only two complementarity-determining regions (CDRs). The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs) make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB), ricin, and botulinum toxin A (BoNT/A) complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins.
Liu, Jinny L; Anderson, George P; Goldman, Ellen R
2007-01-01
Background Shark heavy chain antibody, also called new antigen receptor (NAR), consists of one single Variable domain (VH), containing only two complementarity-determining regions (CDRs). The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs) make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. Results A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB), ricin, and botulinum toxin A (BoNT/A) complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. Conclusion We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins. PMID:18021450
Jutila, Mark A.; Wilson, Eric; Kurk, Sandy
1997-01-01
Bovine γ/δ T cells and neutrophils roll on 24 h cytokine- or lipopolysaccharide-stimulated bovine fetal umbilical cord endothelial cells in assays done under physiological flow. An antibody directed against E- and L-selectin has minimal blocking effect on this rolling interaction. mAbs were raised against the stimulated bovine endothelial cells and screened for inhibition of γ/δ T cell rolling. One mAb (GR113) was identified that recognizes an antigen (GR antigen) selectively expressed by stimulated bovine endothelial cells isolated from fetal umbilical cord, mesenteric lymph nodes, and aorta. GR113 blocked bovine γ/δ T cell as well as neutrophil rolling on the 24 h-activated endothelial cells. The GR antigen was constitutively expressed at low levels on the cell surface of platelets and its expression was not upregulated after stimulation of these cells with thrombin or phorbol myristate acetate. However, stimulated platelets released a soluble, functionally active form of the molecule that selectively bound in solution to γ/δ T cells in a mixed lymphocyte preparation. GR113 mAb blocked the binding of the soluble platelet molecule to the γ/δ T cells. Soluble GR antigen also bound a subset of human lymphocytes. Cutaneous lymphocyte-associated antigen (CLA) bright human lymphocytes exhibited the greatest capacity to bind the GR antigen, though CLA was not required for binding. Subsets of both human CD4 and CD8 T cells bound the GR antigen. Immunoprecipitation experiments showed the GR antigen to be 110-120 kD M r. The binding of soluble GR antigen was inhibited by EDTA and O-sialoglycoprotease, but not neuraminidase treatment of the target cells. PMID:9362530
Stemshorn, B; Nielsen, K
1977-01-01
Selected sera from cattle naturally infected with Brucella abortus precipitate water soluble antigens extracted by sonication from B. abortus. One of these antigens resembles antigen E (Baughn and Freeman) as it is excluded from Sephadex G-200 gels, migrates anodally when electrophoresed at pH 8.6, resists heating at 100 degrees C for ten minutes and appears to be susceptible to papain digestion. Precipitins specific for this antigen remained in sera from which all detectable Brucella agglutinating antibody had been removed by adsorption with live or heat killed B. abortus. The antigen has been extracted from smooth and rough strains of B abortus. Precipitins specific for this antigen have been detected in antisera produced against Brucella canis. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:405088
Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G
2017-07-01
Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are necessary to further facilitate solubility and removal of nuclear-associated antigenic proteins from xenogeneic ECM scaffolds, in addition to an in vivo assessing of the material.
Casares, Sofia; Lin, Marvin; Zhang, Nan; Teijaro, John R; Stoica, Cristina; McEvoy, Robert; Farber, Donna L; Bona, Constantin; Brumeanu, Teodor D
2008-06-27
Transplantation of pancreatic islets showed a tremendous progress over the years as a promising, new therapeutic strategy in patients with type 1 diabetes. However, additional immunosuppressive drug therapy is required to prevent rejection of engrafted islets. The current immunosuppressive therapies showed limited success in maintaining long-term islet survival as required to achieve insulin independence in type 1 diabetes, and they induce severe adverse effects. Herein, we analyzed the effects of a soluble peptide-major histocompatibility complex (MHC) class II chimera aimed at devising an antigen-specific therapy for suppression of anti-islet T cell responses and to improve the survival of pancreatic islets transplants. Pancreatic islets from transgenic mice expressing the hemagglutinin antigen in the beta islets under the rat insulin promoter (RIP-HA) were grafted under the kidney capsule of diabetic, double transgenic mice expressing hemagglutinin in the pancreas and T cells specific for hemagglutinin (RIP-HA, TCR-HA). The recipient double transgenic mice were treated or not with the soluble peptide-MHC II chimera, and the progression of diabetes, graft survival, and T cell responses to the grafted islets were analyzed. The peptide-MHC II chimera protected syngeneic pancreatic islet transplants against the islet-reactive CD4 T cells, and prolonged the survival of transplanted islets. Protection of transplanted islets occurred by polarization of antigen-specific memory CD4 T cells toward a Th2 anti-inflammatory response. The peptide-MHC II chimera approach is an efficient and specific therapeutic approach to suppress anti-islet T cell responses and provides a long survival of pancreatic grafted islets.
T Cell Receptor Engineering and Analysis Using the Yeast Display Platform
Smith, Sheena N.; Harris, Daniel T.; Kranz, David M.
2017-01-01
The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g. a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g. T cell activation by as few as 1 to 3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with KD values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072
Gros, Frédéric; Sebti, Yasmine; de Guibert, Sophie; Branger, Bernard; Bernard, Marc; Fauchet, Renée; Amiot, Laurence
2006-01-01
Abstract Human leukocyte antigen G (HLA-G) molecules corresponding to nonclassic class I genes of the major histocompatibility complex exhibit immunomodulatory properties. They are either membrane-bound or solubly expressed during certain tumoral malignancies. Soluble human leukocyte antigen G (sHLA-G) molecules seem more frequently expressed than membrane-bound isoforms during hematologic malignancies, such as lymphoproliferative disorders. Assay of these molecules by enzyme-linked immunosorbent assay in patients suffering from another hematologic disorder (acute leukemia) highlights increased sHLA-G secretion. This increased secretion seems more marked in acute leukemia subtypes affecting monocytic and lymphoid lineages such as FABM4 and FABM5, as well as both B and T acute lymphoblastic leukemia (ALL). Moreover, this study uses in vitro cytokine stimulations and reveals the respective potential roles of granulocyte-macrophage colony-stimulating factor and interferon-γ in increasing this secretion in FABM4 and ALL. Correlations between sHLA-G plasma level and clinical biologic features suggest a link between elevated sHLA-G level and 1) the absence of anterior myelodysplasia and 2) high-level leukocytosis. All these findings suggest that sHLA-G molecules could be a factor in tumoral escape from immune survey during acute leukemia. PMID:16611416
Anti-soluble liver antigen (SLA) antibodies in chronic HCV infection.
Vitozzi, Susana; Lapierre, Pascal; Djilali-Saiah, Idriss; Marceau, Gabriel; Beland, Kathie; Alvarez, Fernando
2004-05-01
Hepatitis C infection is associated with autoimmune disorders, such as the production of autoantibodies. Anti-LKM1 and anti-LC1, immunomarkers of type 2 autoimmune hepatitis, have been previously associated with a HCV infection. Anti-Soluble-Liver-Antigen autoantibodies (SLA) are specifically associated with type 1 and type 2 autoimmune hepatitis and more closely related to patients who relapse after steroid therapy. The recent molecular cloning of the soluble liver antigen provides the opportunity to develop more specific tests for the detection of antibodies against it. The aim of this work is to characterize anti-soluble-liver autoantibodies in sera from patients chronically infected by HCV. A recombinant cDNA from activated Jurkat cells coding for the full length tRNP(Ser)Sec/SLA antigen was obtained. ELISA, Western Blot and immunoprecipitation tests were developed and used to search for linear and conformational epitopes recognized by anti-SLA antibodies in sera from patients chronically infected by HCV. Anti-soluble liver antigen antibodies were found in sera from 10.4% of HCV-infected patients. The prevalence was significantly increased to 27% when anti-LKM1 was also present. Most anti-SLA reactivity was directed against conformational epitopes on the antigen. The means titers by ELISA were lower than those obtained in type 2 AIH. The result of autoantibody isotyping showed a subclass restriction to IgG1 and also IgG4. This study shows the presence of anti-SLA antibodies in approximately 10% of HCV infected patients. The prevalence of SLA autoantibodies in HCV infected patients increases when LKM1 autoantibodies are also present. The relationship between the prevalence of this characteristic autoimmune hepatitis autoantibody and the implication of an autoimmune phenomenon in the liver injury of patients chronically infected by HCV needs further investigation.
Horsfall, A C; Venables, P J; Mumford, P A; Maini, R N
1981-01-01
The Raji cell assay is regarded as a test for the detection and quantitation of immune complexes. It is frequently positive in sera from patients with SLE. We have demonstrated a relationship between Raji cell binding and antibodies to DNA and soluble cellular antigens. In five sera containing high titres of antibodies of known single specificity, most of the Raji cell binding occurred in the 7S IgG fraction where the majority of anti-nuclear antibody was also found. When each of these sera was incubated with its specific antigen, Raji cell binding increased. Subsequent fractionation showed that this binding was in the high molecular weight fraction (greater than 200,000 daltons) and that Raji cell binding and antibody activity were abolished in the 7S fraction. These data confirm that Raji cell bind immune complexes but also indicate that 7S anti-nuclear antibodies may interact directly with Raji cells by an unknown mechanism. Therefore, in sera of patients with anti-nuclear antibodies, binding to Raji cells does not necessarily imply the presence of immune complexes alone. PMID:6975676
Development of a Vaccine for Bacterial Kidney Disease in Salmon, 1984 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaattari, Stephen L.
1985-06-01
The data presented here demonstrate that there is some variability to the antigenic structure of KDB. Although gel filtration of all antigenic preparations revealed a wide range of sizes for antigens, resolution on a denaturing gel revealed relatively few protein bands and immunological assays revealed the same (3) low number of antigens. It is of particular interest that there seems to be a protein of 60 kd in all preparations, but that there are not larger individual molecular species. This, in turn indicates that the larger molecular weight species detected in gel filtration are most likely aggregates or membrane fragmentsmore » composed of a lower molecular weight subunit. Use of ultrafiltration of KDM-2 medium appears to be successful in eliminating contamination of high molecular weight material found in KDM-2. There appears to be no alteration in the number of soluble antigens produced by growth in either medium, nor in the number of proteins, as detected by SDS-PAGE. However, soluble antigens isolated from UF-KDM-2 does appear to have greater heterogeneity in their isoelectric focusing (IEF) patterns than those from UF-KDM-2. Also, although there does appear to be an extended lag period in KDB growth on UF-KDM-2, there is no alteration in final O.D. or wet weight of cells. Thus, it appears that UF-KDM-2 may be an alternate medium for those wishing to isolate purified bacterial proteins or antigens. ELISA assays have been developed for the detection of soluble KDB antigens. This system is currently being developed as a sensitive measure of the presence of soluble antigen in serum and tissues of fish. Such a sensitive assay may also allow for the detection of KD+ spawners by the testing of ovarian fluid or serum. ELISA assays have also been developed to detect antibodies to soluble and cellular antigens of KDB. These systems have been proven successful in the detection of rabbit and murine monoclonal antibodies against KDB antigens. Future work will develop the use of anti-fish immunoglobulin (Ig) reagents to detect the presence of fish antibodies to KDB. This would be an extremely useful tool to be used in monitoring the immune response of salmon to the various test vaccines. The various antigens characterized in this study, along with whole KDB cells are currently being conjugated to various immunopotentiating agents. Testing of these prototype vaccines is currently under study.« less
Chemoselective ligation and antigen vectorization.
Gras-Masse, H
2001-01-01
The interest in cocktail-lipopeptide vaccines has now been confirmed by phase I clinical trials: highly diversified B-, T-helper or cytotoxic T-cell epitopes can be combined with a lipophilic vector for the induction of B- and T-cell responses of predetermined specificity. With the goal of producing an improved vaccine that should ideally induce a multispecific response in non-selected populations, increasing the diversity of the immunizing mixture represents one of the most obvious strategies.The selective delivery of antigens to professional antigen-presenting cells represents another promising approach for the improvement of vaccine efficacy. In this context, the mannose-receptor represents an attractive entry point for the targeting to dendritic cells of antigens linked to clustered glycosides or glycomimetics. In all cases, highly complex but fully characterized molecules must be produced. To develop a modular and flexible strategy which could be generally applicable to a large set of peptide antigens, we elected to explore the potentialities of chemoselective ligation methods. The hydrazone bond was found particularly reliable and fully compatible with sulphide ligation. Hydrazone/thioether orthogonal ligation systems could be developed to account for the nature of the antigens and the solubility of the vector systems. Copyright 2001 The International Association for Biologicals.
Patel, Jaina M; Vartabedian, Vincent F; Bozeman, Erica N; Caoyonan, Brianne E; Srivatsan, Sanjay; Pack, Christopher D; Dey, Paulami; D'Souza, Martin J; Yang, Lily; Selvaraj, Periasamy
2016-01-01
Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Shuangshuang; Li, Shasha; Zhang, Yang; Wang, Ye; Zhu, Yumeng; Wang, Bin; Chen, Zhi-Nan
2017-01-01
The immunoglobulin superfamily member CD147 is a widely expressed glycoprotein that occurs in both a membrane-spanning and soluble form. Sandwich ELISA is a powerful tool for analyzing soluble antigens. The aim of the present study was to obtain a highly specific polyclonal antibody against human CD147 that can be used for sandwich ELISA analysis. Expression of recombinant CD147 by a eukaryotic expression system was used to immunize rabbits to obtain antiserum. A highly specific polyclonal antibody that was able to detect soluble CD147 in sandwich ELISA was obtained by antigen-immunoaffinity chromatography purification. The purity of rabbit anti-CD147 polyclonal antibodies was ~99%, and ELISA analysis was able to determine the titer of the rabbit anti-CD147 polyclonal antibodies at 1:512,000. The lowest concentration of the standard CD147 antigen that the sandwich ELISA was able to detect was 31.25 pg/ml. The sandwich ELISA system was composed of anti-hepatoma HAb18 monoclonal antibodies and purified rabbit anti-CD147 polyclonal antibodies. The present study demonstrated that antigen-immunoaffinity chromatography may be a good technique for the purification of polyclonal antibodies, which may be used to detect antigen in sandwich ELISAs. PMID:28487989
Pascho, R.J.; Mulcahy, D.
1987-01-01
A double-antibody enzyme-linked immunosorbent assay (ELISA) for detection of a soluble fraction of Renibacterium salmoninarum was developed from components extracted from the supernatant of an R. salmoninarum broth culture. The Costar® Serocluster™ EIA microplate gave the highest absorbance and signal-to-noise ratios among seven types tested. Including Tween 80 in the wash buffer resulted in higher absorbances than Tween 20 when antigen was present. Background absorbance did not increase when Tween 80 was added to the wash buffer, but did when Tween 80 replaced Tween 20 in antigen and conjugate diluents. Adsorption of coating antibody peaked within 4 h at 37 °C and 16 h at 4 °C. Antigen attachment to antibody-coated microplate wells depended more on incubation temperature than duration; we adopted a 3-h incubation at 25 °C. Conjugate incubation for longer than 1 h at 37 °C or 3 h at 25 °C resulted in unacceptable background levels. No cross-reactions resulted from heat-extracted antigens of 10 other species of bacteria. The optimized ELISA is a 6-h test that enables detection of levels of soluble antigen as low as 2–20 ng.
Voevodin, A F; Lapin, B A; Yakovleva, L A; Ponomarjova, T I; Agrba, V Z
1979-01-01
Soluble antigen of P3HR-1 cells (SA-P3HR-1) was identified in indirect double immunodiffusion enhanced with tannic acid using serum of a nasopharyngeal carcinoma patient containing high-titer antibodies to Epstein-Barr virus (EBV) antigens. SA-P3HR-1 was nonidentical to soluble antigen of Raji cells. Human and baboon sera containing antibodies to all the known antigen of EBV and HVP respectively were anti-SA-3HR-1-positive. Human and baboon sera containing antibodies to all the known antigens of EBV and herpesvirus Papio (HVP) were also anti-SA-P3HR-1-negative. Prevalence of anti-SA-P3HR-1 was very high in two groups of the high-lymphoma incidence stock of hamadryas baboons of the Sukhumi monkey colony. 54% (15 of 28) and 38% (13 of 34) of clinically lymphomatous and clinical normal monkeys, respectively, were anti-SA-P3HR-1-positive.. Only 1 of 30 normal baboons studied, living in the forest and having no contacts with the baboons in the main stock of the Sukhumi monkey colony, was anti-SA-P3HR-1-positive (3%).
Mannose-pepstatin conjugates as targeted inhibitors of antigen processing.
Free, Paul; Hurley, Christopher A; Kageyama, Takashi; Chain, Benjamin M; Tabor, Alethea B
2006-05-07
The molecular details of antigen processing, including the identity of the enzymes involved, their intracellular location and their substrate specificity, are still incompletely understood. Selective inhibition of proteolytic antigen processing enzymes such as cathepsins D and E, using small molecular inhibitors such as pepstatin, has proven to be a valuable tool in investigating these pathways. However, pepstatin is poorly soluble in water and has limited access to the antigen processing compartment in antigen presenting cells. We have synthesised mannose-pepstatin conjugates, and neomannosylated BSA-pepstatin conjugates, as tools for the in vivo study of the antigen processing pathway. Conjugation to mannose and to neomannosylated BSA substantially improved the solubility of the conjugates relative to pepstatin. The mannose-pepstatin conjugates showed no reduction in inhibition of cathepsin E, whereas the neomannosylated BSA-pepstatin conjugates showed some loss of inhibition, probably due to steric factors. However, a neomannosylated BSA-pepstatin conjugate incorporating a cleavable disulfide linkage between the pepstatin and the BSA showed the best uptake to dendritic cells and the best inhibition of antigen processing.
Kinetic of antigent-antibody reactions with scattering method
NASA Astrophysics Data System (ADS)
Bilyi, Olexander I.; Kiselyov, Yevgen M.; Novikov, Volodymyr P.
2001-07-01
The immune reactions of interaction antigen-antibody represent specific effect of an antigene with an antibody, which outcome are the complex immune aggregates forming precipitate in case of a soluble antigene, or agglutinate in case of a corpuscular antigene. Immunological methods which uses in the quality of carrier protein latex's polymeric microspheresis, gained name and method latex agglutination. Polymeric microspheresis have the array of advantages before biological carries, which consist in the opportunity of the variation of attributes surface and size microspheresis in the broad band of meanings with the preservation of narrow distribution particles behind measurements, the putting of functional groups, necessary for bunch with ligand on stage their synthesis, in ragidity at storage. The quantitative evaluation of parameters of a response of interaction antigen-antibody in immunology is possible by optical methods on a measurement of a modification of intensity of a light stream of a solution in an outcome of a course of a reaction. Concentration of immune complexes determine both on slacking a taking place stream of light, and on a modification of intensity of a stream of light scattering suspended particles in a solution. The process light scattering by colloidal aggregates are formed from suspension microspheresis with adsorbed on their surface protein is described. In report the physics principle of registration immune reaction by light scattering methods is concerned. The results of the effectiveness latex's preparation created on basis of the polymeric carries is described.
Determinants of hypofibrinolysis in patients with digestive tract cancer.
Gronostaj, Katarzyna; Richter, Piotr; Nowak, Wojciech; Undas, Anetta
2016-01-01
Recently, we demonstrated that digestive tract cancer (DTC) is associated with reduced fibrin clot permeability and impaired fibrinolysis. We investigated determinants of fibrinolysis in DTC patients. In 44 consecutive patients with DTC and 47 controls matched for age, sex, and cardiovascular risk, we evaluated fibrinolysis proteins, platelet activation markers, thrombin formation, together with plasma clot lysis time assays in the absence (CLT) and presence of carboxypeptidase potato inhibitor (CLT CPI) that blocks thrombin activatable fibrinolysis inhibitor (TAFI). In the DTC group CLT (by 22.3%) and CLT CPI (by 27.4%) were longer compared with controls. The DTC patients had higher plasma fibrinolysis inhibitors, plasminogen activator inhibitor 1 (PAI-1) (by 18.2%), TAFI activity (by 17.3%), and antigen (by 11.2%). The patients had markedly increased platelet markers - soluble CD40 ligand (by 338%) and P-selectin (by 97%), together with von Willebrand factor (vWF) antigen (by 61%). Thrombin-antithrombin complexes (TAT) (by 48.7%) and soluble thrombomodulin (sTM) (by 17.2%) were also increased in the DTC group (all p < 0.05). Patients with high-grade tumours (n = 26) compared with remainders (n = 18) had longer CLT, higher tissue-type plasminogen activator antigen, both TAFI antigen and activity levels, vWF, and sTM. Multiple regression analysis after adjustment for potential confounders showed that independent predictors of CLT in DTC patients were TAT, TAFI activity, and vWF. The only independent predictor of CLT CPI was TAT. Hypofibrinolysis in DTC patients is largely driven by enhanced thrombin generation, TAFI, and endothelial injury.
Khalid, Ruqyya; Afzal, Madeeha; Khurshid, Sana; Paracha, Rehan Zafar; Khan, Imran H; Akhtar, Muhammad Waheed
Variable individual response against the antigens of Mycobacterium tuberculosis necessitates detection of multiple antibodies for enhancing reliability of serodiagnosis of tuberculosis. Fusion molecules consisting of two or more antigens showing high sensitivity would be helpful in achieving this objective. Antigens of M. tuberculosis HSPX and PE35 were expressed in a soluble form whereas tnPstS1 and FbpC1 were expressed as inclusion bodies at 37°C. Heat shock protein HSPX when attached to the N-termini of the antigens PE35, tnPstS1 and FbpC1, all the fusion molecules were expressed at high levels in E. coli in a soluble form. ELISA analysis of the plasma samples of TB patients against HSPX-tnPstS1 showed 57.7% sensitivity which is nearly the same as the expected combined value obtained after deducting the number of plasma samples (32) containing the antibodies against both the individual antigens. Likewise, the 54.4% sensitivity of HSPX-PE35 was nearly the same as that expected from the combined values of the contributing antigens. Structural analysis of all the fusion molecules by CD spectroscopy showed that α-helical and β-sheet contents were found close to those obtained through molecular modeling. Molecular modeling studies of HSPX-tnPstS1 and HSPX-PE35 support the analytical results as most of the epitopes of the contributing antigens were found to be available for binding to the corresponding antibodies. Using these fusion molecules in combination with other antigenic molecules should reduce the number of antigenic proteins required for a more reliable and economical serodiagnosis of tuberculosis. Also, HSPX seems to have potential application in soluble expression of heterologous proteins in E. coli.
Directed evolution for improved secretion of cancer-testis antigen NY-ESO-1 from yeast.
Piatesi, Andrea; Howland, Shanshan W; Rakestraw, James A; Renner, Christoph; Robson, Neil; Cebon, Jonathan; Maraskovsky, Eugene; Ritter, Gerd; Old, Lloyd; Wittrup, K Dane
2006-08-01
NY-ESO-1 is a highly immunogenic tumor antigen and a promising vaccine candidate in cancer immunotherapy. Access to purified protein both for vaccine formulations and for monitoring antigen-specific immune responses is vital to vaccine development. Currently available recombinant Escherichia coli-derived NY-ESO-1 is isolated from inclusion bodies as a complex protein mixture and efforts to improve the purity of this antigen are required, especially for later-stage clinical trials. Using yeast cell surface display and fluorescence activated cell sorting techniques, we have engineered an NY-ESO-1 variant (NY-ESO-L5; C(75)A C(76)A C(78)A L(153)H) with a 100x improved display level on yeast compared to the wild-type protein. This mutant can be effectively produced as an Aga2p-fusion and purified in soluble form directly from the yeast cell wall. In the process, we have identified the epitope recognized by anti-NY-ESO-1 mAb E978 (79-87, GARGPESRL). The availability of an alternative expression host for this important antigen will help avoid artifactual false positive tests of patient immune response due to reaction against expression-host-specific contaminants.
Ruwona, Tinashe B.; Giang, Erick; Nieusma, Travis
2014-01-01
ABSTRACT The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this study, we investigated the antibody responses of mice immunized with E1E2 and a novel soluble form of E1E2 (sE1E2) by a DNA prime and protein boost strategy. The results showed that sE1E2 elicited higher antibody titers and a greater breadth of reactivity than the wild-type cell-associated E1E2. However, immune sera elicited by either immunogen were only weakly neutralizing. In order to understand the contrasting results of binding and serum neutralizing activities, epitopes targeted by the polyclonal antibody responses were mapped and monoclonal antibodies (MAbs) were generated. The results showed that the majority of serum antibodies were directed to the E1 region 211 to 250 and the E2 regions 421 to 469, 512 to 539, 568 to 609, and 638 to 651, instead of the well-known immunodominant E2 hypervariable region 1 (HVR1). Unexpectedly, in MAb analysis, ∼12% of MAbs isolated were specific to the conserved E2 antigenic site 412 to 423, and 85% of them cross-neutralized multiple HCV isolates. The epitopes recognized by these MAbs are similar but distinct from the previously reported HCV1 and AP33 broadly neutralizing epitopes. In conclusion, E1E2 can prime B cells specific to conserved neutralizing epitopes, but the levels of serum neutralizing antibodies elicited are insufficient for effective virus neutralization. The sE1E2 constructs described in this study can be a useful template for rational antigen engineering. IMPORTANCE Hepatitis C virus infects 2 to 3% of the world's population and is a leading cause of liver failures and the need for liver transplantation. The virus envelope glycoprotein complex E1E2 produced by detergent extraction of cells overexpressing the protein was evaluated in a phase I clinical trial but failed to induce neutralizing antibodies in most subjects. In this study, we designed a novel form of E1E2 which is secreted from cells and is soluble and compared it to wild-type E1E2 by DNA immunization of mice. The results showed that this new E1E2 is more immunogenic than wild-type E1E2. Detailed mapping of the antibody responses revealed that antibodies to the conserved E2 antigenic site 412 to 423 were elicited but the serum concentrations were too low to neutralize the virus effectively. This soluble E1E2 provides a new reagent for studying HCV and for rational vaccine design. PMID:24965471
Turunen, H J
1983-01-01
A sensitive four-layer modification of an enzyme immunoassay for the detection of soluble antigens of Toxoplasma gondii is described. Microtiter plates were sensitized with rabbit anti-toxoplasma immunoglobulins (6 micrograms/ml) used as the primary antibodies; guinea pig anti-toxoplasma immunoglobulins (6 micrograms/ml) were used as the secondary trapping antibodies. Horseradish peroxidase-conjugated anti-guinea pig immunoglobulins were used as the indicator antibodies. The specificity of the antigen assay was confirmed by using guinea pig immunoglobulins from preimmunization sera. The sensitivity of the antigen assay was found to be at least 10 ng of antigen protein per ml. The suitability of the method for detecting antigens of T. gondii in different specimens was studied by experimental toxoplasma infection in mice. Antigenic components of T. gondii could be detected in different tissue specimens from infected animals from the first day after infection onwards. Toxoplasma antigen in serum and urine samples from infected mice reached detectable levels on day 2 after infection followed by a linear increase in antigen concentration in succeeding samples. This method might offer a valuable aid for a rapid etiological diagnosis also in human cases of acute toxoplasmosis. PMID:6345574
Smadel, Joseph E.; Rights, Fred L.; Jackson, Elizabeth B.
1946-01-01
A complement-fixing antigen specific for scrub typhus occurs in the body fluids and tissues of infected mice, white rats, and cotton rats. The specific serological substance is demonstrable only in those animals which develop a rapidly fatal disease after an incubation period of a few days. Such an experimental infection is induced in mice and rats by the intravenous injection of suspensions of yolk sac rich in R. orientalis. Ether extraction is an important step in the preparation of a complement-fixing antigen from tissues of mice dying with scrub typhus. The Imphal No. 8 and Calcutta strains of R. orientalis are indistinguishable on the basis of complement fixation and cross-immunity tests. The complement-fixing antigen in body fluids of infected mice and rats and in our preparations of tissues from such animals occurs as a soluble antigen. Under the proper conditions the soluble antigen can be stored or dehydrated without loss of serological activity. PMID:19871518
Evaluation of membrane-bound and soluble forms of human leucocyte antigen-G in systemic sclerosis.
Contini, P; Negrini, S; Murdaca, G; Borro, M; Puppo, F
2018-04-16
Systemic sclerosis (SSc) is a complex disease characterized by immune dysregulation, extensive vascular damage and widespread fibrosis. Human leucocyte antigen-G (HLA-G) is a non-classic class I major histocompatibility complex (MHC) molecule characterized by complex immunomodulating properties. HLA-G is expressed on the membrane of different cell lineages in both physiological and pathological conditions. HLA-G is also detectable in soluble form (sHLA-G) deriving from the shedding of surface isoforms (sHLA-G1) or the secretion of soluble isoforms (HLA-G5). Several immunosuppressive functions have been attributed to both membrane-bound and soluble HLA-G molecules. The plasma levels of sHLA-G were higher in SSc patients (444·27 ± 304·84 U/ml) compared to controls (16·74 ± 20·58 U/ml) (P < 0·0001). The plasma levels of transforming growth factor (TGF)-β were higher in SSc patients (18 937 ± 15 217 pg/ml) compared to controls (11 099 ± 6081 pg/ml; P = 0·003), and a significant correlation was found between TGF-β and the plasma levels of total sHLA-G (r = 0·65; P < 0·01), sHLA-G1 (r = 0·60; P = 0·003) and HLA-G5 (r = 0·47; P = 0·02). The percentage of HLA-G-positive monocytes (0·98 ± 1·72), CD4 + (0·37 ± 0·68), CD8 + (2·05 ± 3·74) and CD4 + CD8 + double-positive cells (14·53 ± 16·88) was higher in SSc patients than in controls (0·11 ± 0·08, 0·01 ± 0·01, 0·01 ± 0·01 and 0·39 ± 0·40, respectively) (P < 0·0001). These data indicate that in SSc the secretion and/or shedding of soluble HLA-G molecules and the membrane expression of HLA-G by peripheral blood mononuclear cells (PBMC) is clearly elevated, suggesting an involvement of HLA-G molecules in the immune dysregulation of SSc. © 2018 British Society for Immunology.
ANTIGEN-INDUCED CHANGES IN LYMPHOID CELL HISTONES
Black, Maurice M.; Ansley, Hudson R.
1967-01-01
In this study we have examined the solubility of deoxyribonucleoprotein (DNP) isolated from control and antigen-affected thymocytes. 2-M sodium chloride extracts containing the DNP of rat thymus glands were serially diluted. A comparison was made of the effect of dilution on fiber formation in the control and test series. Fiber formation is usually complete for the control material at a salt concentration between 0.63 and 0.57 M. The test material shows some fiber formation within this range. However, a significant portion of the DNP is precipitated at dilutions of 0.54–0.48 M. Ammoniacal silver (A-S) stains the control fibers a characteristic yellowish color. With the test material, those fibers formed within the control range tended to be stained yellowish brown by A-S, whereas those formed only after greater dilution stained blackish. These data, coupled with our previous observations on altered A-S staining, clearly demonstrate an antigen-induced physical and/or chemical alteration of the histone or histone-DNA complex of lymphoid cell chromatin. PMID:4168881
Kintzer, Alexander F.; Sterling, Harry J.; Tang, Iok I.; Abdul-Gader, Ali; Miles, Andrew J.; Wallace, B. A.; Williams, Evan R.; Krantz, Bryan A.
2010-01-01
Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-γ-D-glutamic acid capsule. Atx is comprised of three-proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of either LF and/or EF, producing lethal toxin (LT), edema toxin, or mixtures thereof. Once a host cell endocytoses these complexes, PA converts into a membrane-inserted channel that translocates LF and EF into the cytosol. LT may assemble on host cell surfaces or extracellularly in plasma. We show that under physiological conditions in bovine plasma that LT complexes containing heptameric PA aggregate and inactivate more readily than LT complexes containing octameric PA. LT complexes containing octameric PA possess enhanced stability, channel forming activity, and macrophage cytotoxicity relative to those containing heptameric PA. Under physiological conditions, multiple biophysical probes reveal that heptameric PA can prematurely adopt the channel conformation, but octameric PA complexes remain in their soluble prechannel configuration allowing them to resist aggregation and inactivation. We conclude that PA may form an octameric oligomeric state as a means to produce a more stable and active LT complex that may circulate freely in the blood. PMID:20433851
Li, Pan; Asokanathan, Catpagavalli; Liu, Fang; Khaing, Kyi Kyi; Kmiec, Dorota; Wei, Xiaoqing; Song, Bing; Xing, Dorothy; Kong, Deling
2016-11-20
Poly(lactic-co-glycolic acid) (PLGA) based nano/micro particles were investigated as a potential vaccine platform for pertussis antigen. Presentation of pertussis toxoid as nano/micro particles (NP/MP) gave similar antigen-specific IgG responses in mice compared to soluble antigen. Notably, in cell line based assays, it was found that PLGA based nano/micro particles enhanced the phagocytosis of fluorescent antigen-nano/micro particles by J774.2 murine monocyte/macrophage cells compared to soluble antigen. More importantly, when mice were immunised with the antigen-nano/micro particles they significantly increased antigen-specific Th1 cytokines INF-γ and IL-17 secretion in splenocytes after in vitro re-stimulation with heat killed Bordetalla pertussis, indicating the induction of a Th1/Th17 response. Also, presentation of pertussis antigen in a NP/MP formulation is able to provide protection against respiratory infection in a murine model. Thus, the NP/MP formulation may provide an alternative to conventional acellular vaccines to achieve a more balanced Th1/Th2 immune response. Copyright © 2016 Elsevier B.V. All rights reserved.
Monahan, C M; Taylor, H W; Chapman, M R; Klei, T R
1994-12-01
Protection from Strongylus vulgaris infection through immunization with radiation-attenuated third-stage larvae (L3) or crude soluble homogenates from larval or adult stages was examined. Yearling ponies raised parasite-free were divided into 3 immunization groups: radiation-attenuated L3; soluble adult somatic extracts; larval somatic extracts with excretory/secretory products (E/S) from in vitro culture; and 1 medium control group. Ponies were immunized twice; attenuated larvae were administered orally and somatic extracts or controls injected intramuscularly with adjuvant. Approximately 6 wk following the second immunization, all ponies were challenged. Necrospy examinations were performed 6 wk following challenge. Irradiated larvae recipients had the fewest postchallenge clinical signs and lesions and were 91% protected from infection determined by larval recoveries from arterial dissections. Soluble antigen recipients and controls had similar larval recoveries and thus equal susceptibility to challenge. Soluble antigen recipients had more severe clinical signs and lesions than controls, suggesting that parenteral immunization exacerbated postchallenge inflammatory responses. Protection by immunization with irradiated larvae was associated with an anamnestic eosinophilia and postimmunization antibody recognition of S. vulgaris L3 surface antigens. Histologic staining of eosinophils within tissues of this group suggested that this immunization induced a cytophilic antibody response that facilitated degranulation.
Identification of HLA-A2–restricted CD8+ Cytotoxic T Cell Responses in Primary Biliary Cirrhosis
Kita, Hiroto; Lian, Zhe-Xiong; Van de Water, Judy; He, Xiao-Song; Matsumura, Shuji; Kaplan, Marshall; Luketic, Velimir; Coppel, Ross L.; Ansari, Aftab A.; Gershwin, M. Eric
2002-01-01
Primary biliary cirrhosis (PBC) is characterized by an intense biliary inflammatory CD4+ and CD8+ T cell response. Very limited information on autoantigen-specific cytotoxic T lymphocyte (CTL) responses is available compared with autoreactive CD4+ T cell responses. Using peripheral blood mononuclear cells (PBMCs) from PBC, we identified an HLA-A2–restricted CTL epitope of the E2 component of pyruvate dehydrogenase (PDC-E2), the immunodominant mitochondrial autoantigen. This peptide, amino acids 159–167 of PDC-E2, induces specific MHC class I–restricted CD8+ CTL lines from 10/12 HLA-A2+ PBC patients, but not controls, after in vitro stimulation with antigen-pulsed dendritic cells (DCs). PDC-E2–specific CTLs could also be generated by pulsing DCs with full-length recombinant PDC-E2 protein. Furthermore, using soluble PDC-E2 complexed with either PDC-E2–specific human monoclonal antibody or affinity-purified autoantibodies against PDC-E2, the generation of PDC-E2–specific CTLs, occurred at 100-fold and 10-fold less concentration, respectively, compared with soluble antigen alone. Collectively, these data demonstrate that autoantibody, helper, and CTL epitopes all contain a shared peptide sequence. The finding that autoantigen–immune complexes can not only cross-present but also that presentation of the autoantigen is of a higher relative efficiency, for the first time defines a unique role for autoantibodies in the pathogenesis of an autoimmune disease. PMID:11781370
Garg, Renu; Tolbert, Melanie; Oakes, Judy L; Clemente, Thomas E; Bost, Kenneth L; Piller, Kenneth J
2007-07-01
Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of enteric diseases affecting livestock and humans. Edible transgenic plants producing E. coli fimbrial subunit proteins have the potential to vaccinate against these diseases, but have not reached their full potential as a renewable source of oral vaccines due in part to insufficient levels of recombinant protein accumulation. Previously, we reported that cytosol targeting of the E. coli K99 fimbrial subunit antigen resulted in FanC accumulation to approximately 0.4% of total soluble protein in soybean leaves (Piller et al. in Planta 222:6-18, 2005). In this study, we report on the subcellular targeting of FanC to chloroplasts. Twenty-two transgenic T1 progeny derived from seven individual T0 transformation events were characterized, and 17 accumulated transgenic FanC. All of the characterized events displayed relatively low T-DNA complexity, and all exhibited proper targeting of FanC to the chloroplast. Accumulation of chloroplast-targeted FanC was approximately 0.08% of total soluble leaf protein, or approximately 5-fold less than cytosol-targeted FanC. Protein analysis of leaves at various stages of maturity suggested stability of chloroplast-targeted FanC throughout leaf maturation. Furthermore, mice immunized intraperitoneally with protein extract derived from transgenic leaves expressing chloroplast-targeted FanC developed significant antibody titers against FanC. This is the first report of subcellular targeting of a vaccine subunit antigen in soybean.
Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins
de Val, Natalia; Montefiori, David; Tomaras, Georgia D.; Shen, Xiaoying; Kalyuzhniy, Oleksandr; Sanders, Rogier W.; McCoy, Laura E.; Moore, John P.; Ward, Andrew B.
2018-01-01
Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine. PMID:29746590
Ogier, J A; Klein, J P; Niddam, R; Frank, R M
1985-06-01
Antigens prepared from culture supernatants or whole cells of several cariogenic strains were examined by immunoelectrophoresis for their crossed antigenicity, with reference to Streptococcus mutans OMZ175, serotype f. Crossed immunoelectrophoresis revealed a crossreactivity between soluble extracellular and wall associated antigens of six strains of Streptococcus mutans and one strain of Streptococcus sanguis. Protease destroyed the immunoreactivity of crossreactive antigens. One of them was shown to be localized on the bacterial surface.
Gourlay, Louise J; Peano, Clelia; Deantonio, Cecilia; Perletti, Lucia; Pietrelli, Alessandro; Villa, Riccardo; Matterazzo, Elena; Lassaux, Patricia; Santoro, Claudio; Puccio, Simone; Sblattero, Daniele; Bolognesi, Martino
2015-11-01
The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using β-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography.
Antibody responses to Herpesvirus papio antigens in baboons with lymphoma.
Neubauer, R H; Rabin, H; Strnad, B C; Lapin, B A; Yakovleva, L A; Indzie, E
1979-02-01
An Epstein-Barr virus-related herpesvirus, termed Herpesvirus papio (HVP), was isolated from baboons (Papio hamadryas) at the Institute of Experimental Pathology and Therapy, Sukhumi, USSR, where there is a continuing outbreak of lymphoma. In the present study sera from diseased baboons and from age- and sex-matched control animals were examined for antibodies to HVP antigens. Results showed that animals with lymphoid disease had antibodies to HVP virus capsid, early, soluble, and nuclear antigens at higher frequencies and at higher titers than did control animals. Antibody titers were not age- or sex-related. No concordancy was detected for antibodies to soluble and nuclear antigens. The sera were also examined for antibodies to two other widely distributed viruses of hamadryas baboons, cytomegalovirus and foamy virus. The results of these studies did not indicate a disease-related role for either of these viruses.
Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomavo, S.; Schwarz, R.T.; Dubremetz, J.F.
1989-10-01
The four major surface antigens of Toxoplasma gondii tachyzoites (P43, P35, P30, and P22) were made water soluble by phosphatidylinositol-specific phospholipase C (PI-PLC). These antigens were biosynthetically labeled with {sup 3}H-fatty acids, ({sup 3}H)ethanolamine, and ({sup 3}H)carbohydrates. Treatment of {sup 3}H-fatty-acid-labeled parasite lysates with PI-PLC removed the radioactive label from these antigens. A cross-reacting determinant was exposed on these antigens after PI-PLC treatment.
Hazenberg, M P; Pennock-Schröder, A M; van de Merwe, J P
1986-01-01
Agglutinating antibodies to Coprococcus comes and three other obligately anaerobic coccoid rods from the intestinal flora are used in the diagnosis of Crohn's disease. Further studies on the pathogenetic role as well as the development of more sensitive and specific methods for detecting antibodies require extraction of the antigen fractions. Culturing methods to obtain C. comes with optimal antigen presentation and isolation of soluble antigen fractions were therefore developed. Hot water extraction of whole cells and subsequent removal of proteins with trichloroacetic acid provided a fraction that absorbed serum agglutinins, was useful for an enzyme-linked immunosorbent assay and induced agglutinating antibodies in rats.
Using llama derived single domain antibodies to target botulinum neurotoxins
NASA Astrophysics Data System (ADS)
Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.
2010-04-01
Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.
Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies.
Okegawa, Yuki; Koshino, Masanori; Okushima, Teruya; Motohashi, Ken
2016-02-01
Specific antibodies are a reliable tool to examine protein expression patterns and to determine the protein localizations within cells. Generally, recombinant proteins are used as antigens for specific antibody production. However, recombinant proteins from mammals and plants are often overexpressed as insoluble inclusion bodies in Escherichia coli. Solubilization of these inclusion bodies is desirable because soluble antigens are more suitable for injection into animals to be immunized. Furthermore, highly purified proteins are also required for specific antibody production. Plastidic acetyl-CoA carboxylase (ACCase: EC 6.4.1.2) from Arabidopsis thaliana, which catalyzes the formation of malonyl-CoA from acetyl-CoA in chloroplasts, formed inclusion bodies when the recombinant protein was overexpressed in E. coli. To obtain the purified protein to use as an antigen, we applied preparative disk gel electrophoresis for protein purification from inclusion bodies. This method is suitable for antigen preparation from inclusion bodies because the purified protein is recovered as a soluble fraction in electrode running buffer containing 0.1% sodium dodecyl sulfate that can be directly injected into immune animals, and it can be used for large-scale antigen preparation (several tens of milligrams). Copyright © 2015 Elsevier Inc. All rights reserved.
2014-01-01
Background The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). No candidate HIV-1 immunogen has yet induced potent, broadly active NAbs (bNAbs). Part of the explanation may be that previously tested Env proteins inadequately mimic the functional, native Env complex. Trimerization and the proteolytic processing of Env precursors into gp120 and gp41 profoundly alter antigenicity, but soluble cleaved trimers are too unstable to serve as immunogens. By introducing stabilizing mutations (SOSIP), we constructed soluble, cleaved Env trimers derived from the HIV-1 subtype A isolate BG505 that resemble native Env spikes on virions both structurally and antigenically. Results We used surface plasmon resonance (SPR) to quantify antibody binding to different forms of BG505 Env: the proteolytically cleaved SOSIP.664 trimers, cleaved gp120-gp41ECTO protomers, and gp120 monomers. Non-NAbs to the CD4-binding site bound only marginally to the trimers but equally well to gp120-gp41ECTO protomers and gp120 monomers, whereas the bNAb VRC01, directed to the CD4bs, bound to all three forms. In contrast, bNAbs to V1V2 glycan-dependent epitopes bound preferentially (PG9 and PG16) or exclusively (PGT145) to trimers. We also explored the antigenic consequences of three different features of SOSIP.664 gp140 trimers: the engineered inter-subunit disulfide bond, the trimer-stabilizing I559P change in gp41ECTO, and proteolytic cleavage at the gp120-gp41ECTO junction. Each of these three features incrementally promoted native-like trimer antigenicity. We compared Fab and IgG versions of bNAbs and validated a bivalent model of IgG binding. The NAbs showed widely divergent binding kinetics and degrees of binding to native-like BG505 SOSIP.664. High off-rate constants and low stoichiometric estimates of NAb binding were associated with large amounts of residual infectivity after NAb neutralization of the corresponding BG505.T332N pseudovirus. Conclusions The antigenicity and structural integrity of cleaved BG505 SOSIP.664 trimers render these proteins good mimics of functional Env spikes on virions. In contrast, uncleaved gp140s antigenically resemble individual gp120-gp41ECTO protomers and gp120 monomers, but not native trimers. Although NAb binding to functional trimers may thus be both necessary and sufficient for neutralization, the kinetics and stoichiometry of the interaction influence the neutralizing efficacy of individual NAbs. PMID:24884783
A carbon nanotube-polymer composite for T-cell therapy
NASA Astrophysics Data System (ADS)
Fadel, Tarek R.; Sharp, Fiona A.; Vudattu, Nalini; Ragheb, Ragy; Garyu, Justin; Kim, Dongin; Hong, Enping; Li, Nan; Haller, Gary L.; Pfefferle, Lisa D.; Justesen, Sune; Harold, Kevin C.; Fahmy, Tarek M.
2014-08-01
Clinical translation of cell therapies requires strategies that can manufacture cells efficiently and economically. One promising way to reproducibly expand T cells for cancer therapy is by attaching the stimuli for T cells onto artificial substrates with high surface area. Here, we show that a carbon nanotube-polymer composite can act as an artificial antigen-presenting cell to efficiently expand the number of T cells isolated from mice. We attach antigens onto bundled carbon nanotubes and combined this complex with polymer nanoparticles containing magnetite and the T-cell growth factor interleukin-2 (IL-2). The number of T cells obtained was comparable to clinical standards using a thousand-fold less soluble IL-2. T cells obtained from this expansion were able to delay tumour growth in a murine model for melanoma. Our results show that this composite is a useful platform for generating large numbers of cytotoxic T cells for cancer immunotherapy.
Dye-doped silica-based nanoparticles for bioapplications
NASA Astrophysics Data System (ADS)
Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Tan Pham, Minh; Van Nguyen, Thi; Trang Tran, Thu; Chu, Viet Ha; Thuan Tong, Kim; Thuy Tran, Thanh; Le, Thi Thanh Xuan; Brochon, Jean-Claude; Quy Nguyen, Thi; Nhung Hoang, My; Nguyen Duong, Cao; Thuy Nguyen, Thi; Hoang, Anh Tuan; Hoa Nguyen, Phuong
2013-12-01
This paper presents our recent research results on synthesis and bioapplications of dye-doped silica-based nanoparticles. The dye-doped water soluble organically modified silicate (ORMOSIL) nanoparticles (NPs) with the size of 15-100 nm were synthesized by modified Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). Because thousands of fluorescent dye molecules are encapsulated in the silica-based matrix, the dye-doped nanoparticles are extremely bright and photostable. Their surfaces were modified with bovine serum albumin (BSA) and biocompatible chemical reagents. The highly intensive luminescent nanoparticles were combined with specific bacterial and breast cancer antigen antibodies. The antibody-conjugated nanoparticles can identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-antigen interaction and recognition. A highly sensitive breast cancer cell detection has been achieved with the anti-HER2 monoclonal antibody-nanoparticles complex. These results demonstrate the potential to apply these fluorescent nanoparticles in various biodetection systems.
Braz, Luis; Grenha, Ana; Ferreira, Domingos; Rosa da Costa, Ana M; Gamazo, Carlos; Sarmento, Bruno
2017-03-01
This work proposes the design of nanoparticles based on locus bean gum (LBG) and chitosan to be used as oral immunoadjuvant for vaccination purposes. LBG-based nanoparticles were prepared by mild polyelectrolyte complexation between chitosan (CS) and a synthesized LBG sulfate derivative (LBGS). Morphological characterization suggested that nanoparticles present a solid and compact structure with spherical-like shape. Sizes around 180-200nm and a positive surface charge between +9mV and +14mV were obtained. CS/LBGS nanoparticles did not affect cell viability of Caco-2 cells after 3h and 24h of exposure when tested at concentrations up to 1.0mg/mL. Two model antigens (a particulate acellular extract HE of Salmonella enterica serovar Enteritidis, and ovalbumin as soluble antigen) were associated to CS/LBGS nanoparticles with efficiencies around 26% for ovalbumin and 32% for HE, which resulted in loading capacities up to 12%. The process did not affect the antigenicity of the associated antigens. BALB/c mice were orally immunized with ovalbumin-loaded nanoparticles (100μg), and results indicate an adjuvant effect of the CS/LBGS nanoparticles, eliciting a balanced Th1/Th2 immune response. Thus, CS/LBGS nanoparticles are promising as antigen mucosal delivery strategy, with particular interest for oral administration. Copyright © 2017 Elsevier B.V. All rights reserved.
Differential antigenic protein recovery from Taenia solium cyst tissues using several detergents.
Navarrete-Perea, José; Orozco-Ramírez, Rodrigo; Moguel, Bárbara; Sciutto, Edda; Bobes, Raúl J; Laclette, Juan P
2015-07-01
Human and porcine cysticercosis is caused by the larval stage of the flatworm Taenia solium (Cestoda). The protein extracts of T. solium cysts are complex mixtures including cyst's and host proteins. Little is known about the influence of using different detergents in the efficiency of solubilization-extraction of these proteins, including relevant antigens. Here, we describe the use of CHAPS, ASB-14 and Triton X-100, alone or in combination in the extraction buffers, as a strategy to notably increase the recovery of proteins that are usually left aside in insoluble fractions of cysts. Using buffer with CHAPS alone, 315 protein spots were detected through 2D-PAGE. A total of 255 and 258 spots were detected using buffers with Triton X-100 or ASB-14, respectively. More protein spots were detected when detergents were combined, i.e., 2% CHAPS, 1% Triton X-100 and 1% ASB-14 allowed detection of up to 368 spots. Our results indicated that insoluble fractions of T. solium cysts were rich in antigens, including several glycoproteins that were sensitive to metaperiodate treatment. Host proteins, a common component in protein extracts of cysts, were present in larger amounts in soluble than insoluble fractions of cysts proteins. Finally, antigens present in the insoluble fraction were more appropriate as a source of antigens for diagnostic procedures. Copyright © 2015 Elsevier B.V. All rights reserved.
The allergens of Schistosoma mansoni
Harris, W. G.
1973-01-01
Ten antigen fractions were prepared from adult Schistosoma mansoni by extraction into borate-buffered saline, precipitation at pH 4.6 and separation on Sephadex G-100. The allergic activity of these antigens was assayed by a modified Prausnitz—Kustner type reaction in rats; this test system was found to be sensitive and consistent, allowing differences in allergenicity between antigens to be accurately assessed. Skin-reactivity was detected in both acid-soluble and acid-insoluble fractions. Specific allergenicity was located in peak 3 of a G-100 separation of the acid-soluble fraction and in peaks 1 and 2 of a G-100 separation of the acid-insoluble fraction suggesting that the allergens of S. mansoni were of at least two types: (1) a protein of mol. wt above 150,000 precipitated at pH 4.6, and (2) a protein of mol. wt 20–30,000 remaining in solution at this pH. It is suggested that both these allergens are glycoproteins. Non-specific histamine-releasing agents were found in peak 1 of the G-100 separation of the acid-soluble material. ImagesFIG. 1 PMID:4122335
INFECTIOUS MYXOMATOSIS OF RABBITS
Smadel, Joseph E.; Ward, S. M.; Rivers, Thomas M.
1940-01-01
A second soluble antigen, separable from the virus, occurs in extracts of infected skin and in the serum of rabbits acutely ill with infectious myxomatosis. Like the first antigen (A), the second (B) is heat labile and has certain characteristics of a globulin. The two antigens precipitate in different concentrations of ammonium sulfate and can be separated by this method. Neither of the antigens after being heated at 56°C. precipitates in the presence of specific antibody but each is capable of inhibiting the activity of its antibody. PMID:19871012
Schoeffield, Andrew J.; Falkler, William A.; Desai, Darshana; Williams, Henry N.
1991-01-01
Little has been reported on the serological relationship of halophilic bdellovibrios (Bd). Immunodiffusion analysis performed with rabbit or mouse Bd antisera developed against eight halophilic Bd isolates and one terrestrial Bd isolate, when reacted with soluble antigen preparations of 45 isolates of halophilic Bd, allowed separation into seven serogroups, which were distinct from the terrestrial isolate. Soluble antigen preparations of prey bacteria, Vibrio parahaemolyticus P-5 (P-5) and Escherichia coli ML 35 (ML 35), exhibited no reactivity with the antisera by immunodiffusion. Immunoelectrophoresis revealed the presence of three distinct antigens in homologous reactions and one shared antigen in heterologous Bd reactions. Shared antigens were noted between halophilic and terrestrial Bd, in addition to between halophilic Bd strains, indicating the possible existence of an antigen(s) which may be shared among all Bd. Again, no shared antigen was noted when P-5 or ML 35 was allowed by immunoelectrophoresis to react with the antisera. Prey susceptibility testing of the seven distinct groups of halophilic Bd, using 20 test prey, produced essentially identical spectra for each group, indicating that this was not a useful technique in delineating the Bd. While immunoelectrophoresis was able to demonstrate an antigen common to all Bd tested, immunodiffusion was able to delineate strains on the basis of a “serogroup specific” antigen. This suggests that immunological tools may serve as important means to study the taxonomy of halophilic Bd, as well as in the formation of a clearer taxonomic picture of the genus Bdellovibrio. Images PMID:16348597
Blood SC5b-9 complement levels increase at parturition during term and preterm labor.
Segura-Cervantes, Enrique; Mancilla-Ramirez, Javier; Zurita, Luis; Paredes, Yuriria; Arredondo, José Luis; Galindo-Sevilla, Norma
2015-06-01
We explored the hypothesis that complement, an innate and adaptive immune effector, is active in the plasma of parturient women and is deposited on fetal membranes collected after delivery. A cross-sectional study was designed to evaluate complement activity at parturition. Pregnant women (n = 97) between 15 and 41 years of age were enrolled in a hospital protocol during the perinatal period to assess both SC5b-9 complement activity in blood and complement deposition on fetal membranes during parturition. Soluble SC5b-9 complement activity in plasma fractions was measured using a standard enzyme-linked immunosorbent assay (ELISA) that included specific anti-complement antibodies. Complement deposition on membranes was analyzed using immuno-dot blots and immunohistochemistry. Soluble SC5b-9 complement complex levels were increased in the plasma of women during term labor (TL; median 3361; range 1726-5670 ng/mL), preterm labor (PL; median 2958; range 1552-7092 ng/mL), and preterm premature rupture of membranes (PPROM; median 2272; range 167-6540 ng/mL) compared with pregnant women who were not in labor (P; median 1384; range 174-4570 ng/mL; P < 0.001, Kruskal-Wallis test). Active complement, as assessed by the C9 neo-antigen in C5b-9 complexes, was deposited on fetal membranes, with no difference between term and preterm delivery. The deposition of active complement on fetal membranes was confirmed by immunohistochemistry. Women who underwent non-labor-indicated Cesarean sections did not exhibit complement deposition. Soluble SC5b-9 complement complex levels increased in the plasma of women during parturition, and complement C5b-9 complexes were deposited on fetal membranes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Alkaline soluble Trypanosoma cruzi epimastigote antigen (ASEA) applied to Dot-ELISA.
Lissaldo, A M; Hoshino-Shimizu, S; Umezawa, E S; Stolf, A M
1994-01-01
The alkaline soluble Trypanosoma cruzi epimastigote antigen (ASEA) was assessed in dot-ELISA for the diagnosis of Chagas' disease. Serum samples (355) from chagasic and non-chagasic patients were studied, and IgG antibodies to ASEA were found in all patients with chronic Chagas' disease. In non-chagasic patients 95.6% were negative, except for those with leishmaniasis (visceral and mucocutaneous), and some patients from control group reacted in low titers. The data indicate that dot-ELISA using ASEA is suitable for seroepidemiologic surveys to be employed in endemic areas for Chagas' disease.
Selection of cholera toxin specific IgNAR single-domain antibodies from a naïve shark library.
Liu, Jinny L; Anderson, George P; Delehanty, James B; Baumann, Richard; Hayhurst, Andrew; Goldman, Ellen R
2007-03-01
Shark immunoglobulin new antigen receptor (IgNAR, also referred to as NAR) variable domains (Vs) are single-domain antibody (sdAb) fragments containing only two hypervariable loop structures forming 3D topologies for a wide range of antigen recognition and binding. Their small size ( approximately 12kDa) and high solubility, thermostability and binding specificity make IgNARs an exceptional alternative source of engineered antibodies for sensor applications. Here, two new shark NAR V display libraries containing >10(7) unique clones from non-immunized (naïve) adult spiny dogfish (Squalus acanthias) and smooth dogfish (Mustelus canis) sharks were constructed. The most conserved consensus sequences derived from random clone sequence were compared with published nurse shark (Ginglymostoma cirratum) sequences. Cholera toxin (CT) was chosen for panning one of the naïve display libraries due to its severe pathogenicity and commercial availability. Three very similar CT binders were selected and purified soluble monomeric anti-CT sdAbs were characterized using Luminex(100) and traditional ELISA assays. These novel anti-CT sdAbs selected from our newly constructed shark NAR V sdAb library specifically bound to soluble antigen, without cross reacting with other irrelevant antigens. They also showed superior heat stability, exhibiting slow loss of activity over the course of one hour at high temperature (95 degrees C), while conventional antibodies lost all activity in the first 5-10min. The successful isolation of target specific sdAbs from one of our non-biased NAR libraries, demonstrate their ability to provide binders against an unacquainted antigen of interest.
Kueng, Hans J.; Manta, Calin; Haiderer, Daniela; Leb, Victoria M.; Schmetterer, Klaus G.; Neunkirchner, Alina; Byrne, Ruth A.; Scheinecker, Clemens; Steinberger, Peter; Seed, Brian; Pickl, Winfried F.
2010-01-01
We describe for the first time fluorescent virus-like particles decorated with biologically active mono- and multisubunit immune receptors of choice and the basic application of such fluorosomes (FSs) to visualize and target immune receptor-ligand interactions. For that purpose, human embryonic kidney (HEK)-293 cells were stably transfected with Moloney murine leukemia virus (MoMLV) matrix protein (MA) GFP fusion constructs. To produce FSs, interleukins (ILs), IL-receptors (IL-Rs), and costimulatory molecules were fused to the glycosyl phosphatidyl inositol anchor acceptor sequence of CD16b and coexpressed along with MoMLV group-specific antigen-polymerase (gag-pol) in MA::GFP+ HEK-293 cells. We show that IL-2 decorated but not control-decorated FSs specifically identify normal and malignant IL-2 receptor-positive (IL-2R+) lymphocytes by flow cytometry. In addition to cytokines and costimulatory molecules, FSs were also successfully decorated with the heterotrimeric IL-2Rs, allowing identification of IL-2+ target cells. Specificity of binding was proven by complete inhibition with nonlabeled, soluble ligands. Moreover, IL-2R FSs efficiently neutralized soluble IL-2 and thus induced unresponsiveness of T cells receiving full activation stimuli via T-cell antigen receptor and CD28. FSs are technically simple, multivalent tools for assessing and blocking mono- and multisubunit immune receptor-ligand interactions with natural constituents in a plasma membrane context.—Kueng, H. J., Manta, C., Haiderer, D., Leb, V. M., Schmetterer, K. G., Neunkirchner, A., Byrne, R. A., Scheinecker, C., Steinberger, P., Seed, B., Pickl, W. F. Fluorosomes: a convenient new reagent to detect and block multivalent and complex receptor-ligand interactions. PMID:20056716
Ding, Jun-Ying; Meng, Qing-Ling; Guo, Min-Zhuo; Yi, Yao; Su, Qiu-Dong; Lu, Xue-Xin; Qiu, Feng; Bi, Sheng-Li
2012-10-01
To study the effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering. Based on the colon preference of E. coli, the HDV small antigen original gene from GenBank was optimized. Both the original gene and the optimized gene expressed in prokaryotic cells, SDS-PAGE was made to analyze the protein expression yield and to decide which protein expression style was more proportion than the other. Furthermore, two antigens were purified by chromatography in order to compare the purity by SDS-PAGE and Image Lab software. SDS-PAGE indicated that the molecular weight of target proteins from two groups were the same as we expected. Gene optimization resulted in the higher yield and it could make the product more soluble. After chromatography, the purity of target protein from optimized gene was up to 96.3%, obviously purer than that from original gene. Gene optimization could increase the protein expression yield and solubility of genetic engineering HDV small antigen. In addition, the product from the optimized gene group was easier to be purified for diagnosis usage.
Faria-Pinto, P; Meirelles, M N L; Lenzi, H L; Mota, E M; Penido, M L O; Coelho, P M Z; Vasconcelos, E G
2004-07-01
The fact that the Schistosoma mansoni egg has two ATP diphosphohydrolase (EC 3.6.1.5) isoforms with different net charges and an identical molecular weight of 63,000, identified by non-denaturing polyacrylamide gel electrophoresis and immunological cross-reactivity with potato apyrase antibodies, is shown. In soluble egg antigen (SEA), only the isoform with the lower net negative charge was detected and seemed to be the predominant species in this preparation. By confocal fluorescence microscopy, using anti-potato apyrase antibodies, the S. mansoni egg ATP diphosphohydrolase was detected on the external surface of miracidium and in von Lichtenberg's envelope. Intense fluorescence was also seen in the outer side of the egg-shell, entrapped by the surface microspines, suggesting that a soluble isoform is secreted. ATP diphosphohydrolase antigenicity was tested using the vegetable protein as antigen. The purified potato apyrase was recognized in Western blots by antibodies present in sera from experimentally S. mansoni-infected mice. In addition, high levels of IgG anti-ATP diphosphohydrolase antibodies were detected by ELISA in the same sera. This work represents the first demonstration of antigenic properties of S. mansoni ATP diphosphohydrolase and immunological cross-reactivity between potato apyrase and sera from infected individuals.
TAP, a novel T cell-activating protein involved in the stimulation of MHC-restricted T lymphocytes
1986-01-01
Five mAbs have been generated and used to characterize TAP (T cell activating protein) a novel, functional murine T cell membrane antigen. The TAP molecule is a 12-kD protein that is synthesized by T cells. By antibody crossblocking, it appears to be closely associated with a 16- kD protein on the T cell membrane also identified with a novel mAb. These molecules are clearly distinct from the major well-characterized murine T cell antigens previously described. Antibody binding to TAP can result in the activation of MHC-restricted, antigen-specific inducer T cell hybridomas that is equivalent in magnitude to maximal antigen or lectin stimulation. This is a direct effect of soluble antibody and does not require accessory cells or other factors. The activating anti-TAP mAbs are also mitogenic for normal heterogeneous T lymphocytes in the presence of accessory cells or IL-1. In addition, these antibodies are observed to modulate specific immune stimulation. Thus, the activating anti-TAP mAbs synergise with antigen-specific stimulation of T cells, while a nonactivating anti-TAP mAb inhibits antigen driven activation. These observations suggest that the TAP molecule may participate in physiologic T cell activation. The possible relationship of TAP to known physiologic triggering structures, the T3- T cell receptor complex, is considered. TAP is expressed on 70% of peripheral T cells and therefore defines a major T cell subset, making it perhaps the first example of a murine subset-specific activating protein. PMID:2418146
Choudhary, Alok; Honnen, William; Lai, Zhong; Gennaro, Maria Laura; Garcia-Viveros, Moncerrato; Sahloul, Kamar; Spencer, John S.; Chatterjee, Delphi
2018-01-01
Lipoarabinomannan (LAM), the major antigenic glycolipid of Mycobacterium tuberculosis, is an important immunodiagnostic target for detecting tuberculosis (TB) infection in HIV-1–coinfected patients, and is believed to mediate a number of functions that promote infection and disease development. To probe the human humoral response against LAM during TB infection, several novel LAM-specific human mAbs were molecularly cloned from memory B cells isolated from infected patients and grown in vitro. The fine epitope specificities of these Abs, along with those of a panel of previously described murine and phage-derived LAM-specific mAbs, were mapped using binding assays against LAM Ags from several mycobacterial species and a panel of synthetic glycans and glycoconjugates that represented diverse carbohydrate structures present in LAM. Multiple reactivity patterns were seen that differed in their specificity for LAM from different species, as well as in their dependence on arabinofuranoside branching and nature of capping at the nonreducing termini. Competition studies with mAbs and soluble glycans further defined these epitope specificities and guided the design of highly sensitive immunodetection assays capable of detecting LAM in urine of TB patients, even in the absence of HIV-1 coinfection. These results highlighted the complexity of the antigenic structure of LAM and the diversity of the natural Ab response against this target. The information and novel reagents described in this study will allow further optimization of diagnostic assays for LAM and may facilitate the development of potential immunotherapeutic approaches to inhibit the functional activities of specific structural motifs in LAM. PMID:29610143
Boisgerault, F; Khalil, I; Tieng, V; Connan, F; Tabary, T; Cohen, J H; Choppin, J; Charron, D; Toubert, A
1996-01-01
The peptide-binding motif of HLA-A29, the predisposing allele for birdshot retinopathy, was determined after acid-elution of endogenous peptides from purified HLA-A29 molecules. Individual and pooled HPLC fractions were sequenced by Edman degradation. Major anchor residues could be defined as glutamate at the second position of the peptide and as tyrosine at the carboxyl terminus. In vitro binding of polyglycine synthetic peptides to purified HLA-A29 molecules also revealed the need for an auxiliary anchor residue at the third position, preferably phenylalanine. By using this motif, we synthesized six peptides from the retinal soluble antigen, a candidate autoantigen in autoimmune uveoretinitis. Their in vitro binding was tested on HLA-A29 and also on HLA-B44 and HLA-B61, two alleles sharing close peptide-binding motifs. Two peptides derived from the carboxyl-terminal sequence of the human retinal soluble antigen bound efficiently to HLA-A29. This study could contribute to the prediction of T-cell epitopes from retinal autoantigens implicated in birdshot retinopathy. PMID:8622959
Constructing Chimeric Antigen for Precise Screening of HTLV-I Infection.
Heydari Zarnagh, Hafez; Hassanpour, Kazem; Rasaee, Mohammad Javad
2015-08-01
Individual preparation of two human T-cell lymphotropic virus type I (HTLV-I) diagnostic GST fused peptides (MTA-1 and GD21) is time-consuming and expensive. The aim of this study was to design a novel single chimeric antigen (SCA) to obviate separate expression of proteins and reduce the cost of reagent preparation. Structural protein fragments, including immunodominant B cell linear epitopes, were selected and different SCAs were designed. Tertiary structure, epitope exposure, solubility and stability were calculated for each SCA and compared with each other. The synthetic DNA encoding the interested SCA was sub-cloned into pET32a expression vector, expressed as a soluble form in Escherichia coli BL21 (DE3) cells and purified under native condition using affinity chromatography. The SDS-PAGE results indicated that thioredoxin-fused SCA was successfully expressed as a soluble form in E. coli BL21 (DE3) cells. The results of ELISA confirmed that SCA reacted with anti-HTLV-I antibodies in a concentration-dependent manner. Our results indicated that the designed SCA may be a good candidate for the screening of HTLV-I carriers with antigen-antibody-based tests.
Zhao, Y-K; Jia, C-M; Yuan, G-J; Liu, W; Qiu, Y; Zhu, Q-G
2015-06-29
We investigated the expression and clinical value of the soluble major histocompatibility complex class I-related chain A (sMICA) molecule in the serum of patients with renal tumors. Sixty patients diagnosed with renal tumors were enrolled in the experimental group, whereas 20 healthy volunteers served as the control group. The sMICA levels were measured via enzyme-linked immunosorbent assay, and the results were analyzed in combination with data from pathol-ogy examination. The experimental group had a statistically significant higher sMICA level (P < 0.05) than the control group. The sMICA level was higher in patients with malignant tumors than in those with be-nign tumors. We also observed a positive relationship among different tumor-node-metastasis (TNM) pathological stages with more advanced diseases exhibiting higher sMICA levels. As a tumor-associated antigen, MICA has a close relationship with renal tumorigenesis and immune es-cape. Our results indicated that sMICA levels were related to tumor pathol-ogy, TNM stage, and metastasis. Therefore, sMICA might be a potential marker for tumor characteristics, prognosis, and recurrence prediction.
Fiber optic immunosensor for cross-linked fibrin concentration
NASA Astrophysics Data System (ADS)
Moskowitz, Samuel E.
2000-08-01
Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.
Nato, F; Mazie, J C; Fournier, J M; Slizewicz, B; Sagot, N; Guibourdenche, M; Postic, D; Riou, J Y
1991-01-01
Polyclonal and monoclonal antibodies against capsular polysaccharides of Neisseria meningitidis serogroups A, B, and C were produced in order to develop immunological reagents allowing both the detection of soluble antigens during meningococcal meningitis and antigenic serogrouping of N. meningitidis cultures. The performance characteristics of monoclonal and polyclonal antibody latex reagents were compared. For the detection of soluble polysaccharide antigen, polyclonal antibody latex reagent was selected for N. meningitidis A and C. The latex reagent prepared with polyclonal antibodies against N. meningitidis B could not detect capsular polysaccharide even at 1 mg/ml. The monoclonal antibody B latex reagent which detected 100 ng of polysaccharide per ml was therefore chosen. For the serogroup identification of N. meningitidis, the use of a confirmatory test results in an overall specificity of 100% with polyclonal or monoclonal antibody latex reagents. PMID:1909346
Konkel, Joanne E; Frommer, Friederike; Leech, Melanie D; Yagita, Hideo; Waisman, Ari; Anderton, Stephen M
2010-01-01
The ultimate outcome of T-cell recognition of peptide–major histocompatibility complex (MHC) complexes is determined by the molecular context in which antigen presentation is provided. The paradigm is that, after exposure to peptides presented by steady-state dendritic cells (DCs), inhibitory signals dominate, leading to the deletion and/or functional inactivation of antigen-reactive T cells. This has been utilized in a variety of models providing peptide antigen in soluble form in the absence of adjuvant. A co-inhibitory molecule of considerable current interest is PD-1. Here we show that there is the opportunity for the PD-1/PD-L1 interaction to function in inhibiting the T-cell response during tolerance induction. Using traceable CD4+ T-cell receptor (TCR) transgenic cells, together with a blocking antibody to disrupt PD-1 signalling, we explored the roles of PD-1 in the induction of tolerance versus a productive immune response. Intact PD-1 signalling played a role in limiting the extent of CD4+ T-cell accumulation in response to an immunogenic stimulus. However, PD-1 signalling was not required for either the induction, or the maintenance, of peptide-induced tolerance; a conclusion underlined by successful tolerance induction in TCR transgenic cells genetically deficient for PD-1. These observations contrast with the reported requirement for PD-1 signals in CD8+ T-cell tolerance. PMID:20113370
Husby, G.; Natvig, J. B.
1972-01-01
Amyloid fibrils were isolated from eleven amyloid-laden organs of six patients. By alkaline degradation, soluble units were obtained which gave antibody formation in rabbits. Gel precipitation and haemagglutination inhibition were used to characterize antigens of the amyloid. Evidence was obtained that amyloids from different organs of the same individual were identical in the antigenicity. In contrast, amyloids from different individuals each showed unique individual specificity. Besides this, antigenic cross-reactions were noted between the amyloid preparations. Finally, evidence for antigenic cross-reactivity between certain amyloid preparations and immunoglobulin light chains was obtained. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:4624554
Erb, P; Ramila, G; Sklenar, I; Kennedy, M; Sunshine, G H
1985-05-01
Dendritic cells and macrophages obtained from spleen and peritoneal exudate were tested as accessory cells for the activation of lymphokine production by T cells, for supporting T-B cooperation and for the induction of antigen-specific T helper cells. Dendritic cells as well as macrophages were able to activate T cells for interleukin-2 secretion and functioned as accessory cells in T-B cooperation, but only macrophages induced T helper cells, which cooperate with B cells by a linked recognition interaction, to soluble antigens. Dendritic cell- and antigen-activated T cells also did not help B cells in the presence of Con A supernatants which contained various T cell- and B cell-stimulatory factors. The failure of dendritic cells to differentiate memory into functional T helper cells, but their efficient accessory cell function in T-B cooperation, where functional T helper cells are already present, can be best explained by a differential accessory cell requirement for T helper cell activation dependent on the differentiation stage of the T helper cell.
Extending antigen release from particulate vaccines results in enhanced antitumor immune response.
Kapadia, Chintan H; Tian, Shaomin; Perry, Jillian L; Sailer, David; Christopher Luft, J; DeSimone, Joseph M
2018-01-10
Tumor-specific CD8 + cytotoxic T lymphocytes (CTLs) play a critical role in an anti-tumor immune response. However, vaccination intended to elicit a potent CD8 + T cell responses employing tumor-associated peptide antigens, are typically ineffective due to poor immunogenicity. Previously, we engineered a polyethylene glycol (PEG) hydrogel-based subunit vaccine for the delivery of an antigenic peptide and CpG (adjuvant) to elicit potent CTLs. In this study, we further examined the effect of antigen release kinetics on their induced immune responses. A CD8 + T cell epitope peptide from OVA (CSIINFEKL) and CpG were co-conjugated to nanoparticles utilizing either a disulfide or a thioether linkage. Subsequent studies comparing peptide release rates as a function of linker, determined that the thioether linkage provided sustained release of peptide over 72h. Ability to control the release of peptide resulted in both higher and prolonged antigen presentation when compared to disulfide-linked peptide. Both NP vaccine formulations resulted in activation and maturation of bone marrow derived dendritic cells (BMDCs) and induced potent CD8 + T cell responses when compared to soluble antigen and soluble CpG. Immunization with either disulfide or thioether linked vaccine constructs effectively inhibited EG7-OVA tumor growth in mice, however only treatment with the thioether linked vaccine construct resulted in enhanced survival. Copyright © 2017. Published by Elsevier B.V.
Recent advances in recombinant protein-based malaria vaccines
Draper, Simon J.; Angov, Evelina; Horii, Toshihiro; Miller, Louis H.; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi
2015-01-01
Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. PMID:26458807
Naik, Subhashchandra; Brock, Susan; Akkaladevi, Narahari; Tally, Jon; Mcginn-Straub, Wesley; Zhang, Na; Gao, Phillip; Gogol, E. P.; Pentelute, B. L.; Collier, R. John; Fisher, Mark T.
2013-01-01
Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å beta barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor (EF), from the endosome into the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance (SPR) and bio-layer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from pH 7.5 to pH 5.0, mirroring acidification of the endosome. Once transitioned, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto EM grids, where the PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early or late endosomal pH conditions (5.5 to 5.0 respectively). Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions. PMID:23964683
Naik, Subhashchandra; Brock, Susan; Akkaladevi, Narahari; Tally, Jon; McGinn-Straub, Wesley; Zhang, Na; Gao, Phillip; Gogol, E P; Pentelute, B L; Collier, R John; Fisher, Mark T
2013-09-17
Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å β barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH-dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor, from the endosome to the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance and biolayer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from 7.5 to 5.0, mirroring acidification of the endosome. Once it had undergone the transition, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto electron microscopy grids, where PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early (pH 5.5) or late (pH 5.0) endosomal pH conditions. Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and the soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions.
Brown, W C; Zhao, S; Logan, K S; Grab, D J; Rice-Ficht, A C
1995-03-01
Current vaccines for bovine hemoparasites utilize live attenuated organisms or virulent organisms administered concurrently with antiparasitic drugs. Although such vaccines can be effective, for most hemoparasites the mechanisms of acquired resistance to challenge infection with heterologous parasite isolates have not been clearly defined. Selection of potentially protective antigens has traditionally made use of antibodies to identify immunodominant proteins. However, numerous studies have indicated that induction of high antibody titers neither predicts the ability of an antigen to confer protective immunity nor correlates with protection. Because successful parasites have evolved antibody evasion tactics, alternative strategies to identify protective immunogens should be used. Through the elaboration of cytokines, T helper 1-(Th1)-like T cells and macrophages mediate protective immunity against many intracellular parasites, and therefore most likely play an important role in protective immunity against bovine hemoparasites. CD4+ T cell clones specific for soluble or membrane antigens of either Theileria parva schizonts or Babesia bovis merozoites were therefore employed to identify parasite antigens that elicit strong Th cell responses in vitro. Soluble cytosolic parasite antigen was fractionated by gel filtration, anion exchange chromatography or hydroxylapatite chromatography, or a combination thereof, and fractions were tested for the ability to induce proliferation of Th cell clones. This procedure enabled the identification of stimulatory fractions containing T. parva proteins of approximately 10 and 24 kDa. Antisera raised against the purified 24 kDa band reacted with a native schizont protein of approximately 30 kDa. Babesia bovis-specific Th cell clones tested against fractionated soluble Babesia bovis merozoite antigen revealed the presence of at least five distinct antigenic epitopes. Proteins separated by gel filtration revealed four patterns of reactivity, and proteins separated by anion exchange revealed two patterns of reactivity when selected T cell clones were assayed for stimulation by antigenic fractions. Studies using a continuous-flow electrophoresis apparatus have indicated the feasibility of identifying T cell-stimulatory proteins from parasite membranes as well as from the cytosolic fraction of B. bovis merozoites. The Th cell clones reactive with these different hemoparasites expressed either unrestricted or Th1 cytokine profiles, and were generally characterized by the production of high levels of IFN-gamma. A comprehensive study of T cell and macrophage responses to defined parasite antigens will help elucidate the reasons for vaccine failure or success, and provide clues to the mechanisms of acquired immunity that are needed for vaccine development.
Oblong, J E; Lamppa, G K
1992-01-01
Two proteins of 145 and 143 kDa were identified in pea which co-purify with a chloroplast processing activity that cleaves the precursor for the major light-harvesting chlorophyll binding protein (preLHCP). Antiserum generated against the 145/143 kDa doublet recognizes only these two polypeptides in a chloroplast soluble extract. In immunodepletion experiments the antiserum removed the doublet, and there was a concomitant loss of cleavage of preLHCP as well as of precursors for the small subunit of Rubisco and the acyl carrier protein. The 145 and 143 kDa proteins co-eluted in parallel with the peak of processing activity during all fractionation procedures, but they were not detectable as a homo- or heterodimeric complex. The 145 and 143 kDa proteins were used separately to affinity purify immunoglobulins; each preparation recognized both polypeptides, indicating that they are antigenically related. Wheat chloroplasts contain a soluble species similar in size to the 145/143 kDa doublet. Images PMID:1385116
Theofilopoulos, A N; Eisenberg, R A; Dixon, F J
1978-01-01
Raji cells were used for the isolation of complement-fixing antigen-antibody complexes from serum. Immune complexes bound to these cells were radiolabeled at the cell surface with lactoperoxidase. The complexes were then eluted from the cells with isotonic citrate buffer pH 3.2 or recovered by immunoprecipitation of cell lysates. The antigen and antibody moieties of the complexes were isolated by dissociating sucrose density gradient centrifugation or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A variety of preformed immune complexes were successfully isolated from serum with this approach. In addition, these techniques were used to isolate and identify the antigens in immune complexes in the serum of rabbits with chronic serum sickness and rats with Moloney virus-induced sarcomas. Methods were also developed for the production of antisera against the antigenic moiety of immune complexes isolated from serum. Repeated challenge of rabbits with whole Raji cells with bound complexes or eluates from such cells resulted in antibody production against the antigens of the immune complexes, although reactivity against cellular and serum components was also elicited. Monospecific antisera against the antigens in immune complexes were produced by immunizing rabbits with the alum-precipitated antigen isolated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These techniques may be useful in isolating antigens in immune complex-associated diseases of unknown etiology. Images PMID:659616
HETEROGENETIC ANTIBODIES IN ACUTE HEPATITIS
Eaton, Monroe D.; Murphy, William D.; Hanford, V. Lee
1944-01-01
A heterogenetic antibody showing fixation of complement with human liver and agglutination of sheep erythrocytes was found in certain cases of acute infective hepatitis. The antigen concerned in these reactions was apparently heat stable and alcohol soluble. Differences from other heterogenetic antigen-antibody systems have been noted. The possible relation of the heterogenetic antibody to liver damage was considered. PMID:19871386
Bell, Catherine C; Faulkner, Lee; Martinsson, Klara; Farrell, John; Alfirevic, Ana; Tugwood, Jonathan; Pirmohamed, Munir; Naisbitt, Dean J; Park, B Kevin
2013-05-20
Susceptibility to abacavir hypersensitivity has been attributed to possession of the specific human leukocyte antigen allele HLA-B*57:01. HLA-B*57:01-restricted activation of CD8+ T-cells provides a link between the genetic association and the iatrogenic disease. The objectives of this study were to characterize the functionality of drug-responsive CD8+ T-cell clones generated from HLA-B*57:01+ drug-naive subjects and to explore the relationship between abacavir accumulation in antigen presenting cells and the T-cell response. Seventy-four CD8+ clones expressing different Vβ receptors were shown to proliferate and kill target cells via different mechanisms when exposed to abacavir. Certain clones were activated with abacavir in the absence of antigen presenting cells. Analysis of the remaining clones revealed two pathways of drug-dependent T-cell activation. Overnight incubation of antigen presenting cells with abacavir, followed by repeated washing to remove soluble drug, activated approximately 50% of the clones, and the response was blocked by glutaraldehyde fixation. In contrast, a 1 h antigen presenting cell pulse did not activate any of the clones. Accumulation of abacavir in antigen presenting cells was rapid (less than 1 h), and the intracellular concentrations were maintained for 16 h. However, intracellular abacavir was not detectable by mass spectrometry after pulsing. These data suggest that T-cells can be activated by abacavir through a direct interaction with surface and intracellular major histocompatibility complex (MHC) molecules. With the former, abacavir seemingly participates in the MHC T-cell receptor binding interaction. In contrast, the latter pathway likely involves MHC binding peptides displayed as a consequence of abacavir exposure, but not abacavir itself.
Georgiev, Ivelin S; Joyce, M Gordon; Yang, Yongping; Sastry, Mallika; Zhang, Baoshan; Baxa, Ulrich; Chen, Rita E; Druz, Aliaksandr; Lees, Christopher R; Narpala, Sandeep; Schön, Arne; Van Galen, Joseph; Chuang, Gwo-Yu; Gorman, Jason; Harned, Adam; Pancera, Marie; Stewart-Jones, Guillaume B E; Cheng, Cheng; Freire, Ernesto; McDermott, Adrian B; Mascola, John R; Kwong, Peter D
2015-05-01
Similar to other type I fusion machines, the HIV-1 envelope glycoprotein (Env) requires proteolytic activation; specifically, cleavage of a gp160 precursor into gp120 and gp41 subunits creates an N-terminal gp41 fusion peptide and permits folding from an immature uncleaved state to a mature closed state. While the atomic-level consequences of cleavage for HIV-1 Env are still being determined, the uncleaved state is antigenically distinct from the mature closed state, and cleavage has been reported to be essential for mimicry of the mature viral spike by soluble versions of Env. Here we report the redesign of a current state-of-the-art soluble Env mimic, BG505.SOSIP, to make it cleavage independent. Specifically, we replaced the furin cleavage site between gp120 and gp41 with Gly-Ser linkers of various lengths. The resultant linked gp120-gp41 constructs, termed single-chain gp140 (sc-gp140), exhibited different levels of structural and antigenic mimicry of the parent cleaved BG505.SOSIP. When constructs were subjected to negative selection to remove subspecies recognized by poorly neutralizing antibodies, trimers of high antigenic mimicry of BG505.SOSIP could be obtained; negative-stain electron microscopy indicated these to resemble the mature closed state. Higher proportions of BG505.SOSIP-trimer mimicry were observed in sc-gp140s with linkers of 6 or more residues, with a linker length of 15 residues exhibiting especially promising traits. Overall, flexible linkages between gp120 and gp41 in BG505.SOSIP can thus substitute for cleavage, and sc-gp140s that closely mimicked the vaccine-preferred mature closed state of Env could be obtained. The trimeric HIV-1 envelope glycoprotein (Env) is the sole target of virus-directed neutralizing antibody responses and a primary focus of vaccine design. Soluble mimics of Env have proven challenging to obtain and have been thought to require proteolytic cleavage into two-component subunits, gp120 and gp41, to achieve structural and antigenic mimicry of mature Env spikes on virions. Here we show that replacement of the cleavage site between gp120 and gp41 in a lead soluble gp140 construct, BG505.SOSIP, with flexible linkers can result in molecules that do not require cleavage to fold efficiently into the mature closed state. Our results provide insights into the impact of cleavage on HIV-1 Env folding. In some contexts such as genetic immunization, optimized cleavage-independent soluble gp140 constructs may have utility over the parental BG505.SOSIP, as they would not require furin cleavage to achieve mimicry of mature Env spikes on virions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hunt, Joan S.
2006-01-01
Summary Mammalian mothers and their embryos/fetuses are almost invariably genetically different, which raises the question of how the mother’s immune system is diverted so as to permit cohabitation with the ‘foreign’ body. Several decades of research have shown that multiple cooperative systems sanction uteroplacental immune privilege. These systems include production of several varieties of soluble immunosuppressive molecules in the uterus and the placenta and strict regulation of the molecules expressed on or by placental trophoblast cells. Trophoblast, a unique lineage without counterpart in adult tissues, is in direct contact with maternal blood and tissue. The major graft rejection-promoting molecules, human leukocyte antigens (HLAs), are tightly regulated in these cells, with none of HLA-A, HLA-B, or HLA class II antigens expressed. The HLA class Ib antigens, HLA-E, HLA-F, and HLA-G, are detectable on some subpopulations. Our studies have focused on the expression, regulation, and functions of the soluble isoforms of HLA-G, which circulate in maternal blood and are present at high levels in the pregnant uterus. These isoforms are derived from the single HLA-G gene by alternative splicing and are now known to have immunosuppressive properties. Ours and other studies indicate that soluble HLA-G proteins may comprise a unique tolerogenic system for establishing local immune privilege during pregnancy. PMID:16972895
NASA Astrophysics Data System (ADS)
Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.
2014-01-01
Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.
Characterization of MHC-II antigen presentation by B cells and monocytes from older individuals
HL, Clark; R, Banks; L, Jones; TR, Hornick; PA, Higgins; CJ, Burant; DH, Canaday
2012-01-01
In this study we examine the effects of aging on antigen presentation of B cells and monocytes. We compared the antigen presentation function of peripheral blood B cells from young and old subjects using a system that specifically measures the B cell receptor (BCR)-mediated MHC-II antigen presentation. Monocytes were studied as well. Overall the mean magnitude of antigen presentation of soluble antigen and peptide was not different in older and younger subjects for both B cells and monocytes. Older subjects, however, showed increased heterogeneity of BCR-mediated antigen presentation by their B cells. The magnitude and variability of peptide presentation, which does not require uptake and processing, was the same between groups. Presentation by monocytes had similar variability between the older and younger subjects. These data suggest that poor B cell antigen processing, which results in diminished presentation in some older individuals may contribute to poor vaccine responses. PMID:22797466
Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.
Hey, Ying-Ying; O'Neill, Helen C
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
Nicola, A V; Peng, C; Lou, H; Cohen, G H; Eisenberg, R J
1997-01-01
Soluble forms of herpes simplex virus (HSV) glycoprotein D (gD) block viral penetration. Likewise, most HSV strains are sensitive to gD-mediated interference by cells expressing gD. The mechanism of both forms of gD-mediated inhibition is thought to be at the receptor level. We analyzed the ability of different forms of soluble, truncated gD (gDt) to inhibit infection by different strains of HSV-1 and HSV-2. Strains that were resistant to gD-mediated interference were also resistant to inhibition by gDt, thereby suggesting a link between these two phenomena. Virion gD was the major viral determinant for resistance to inhibition by gDt. An insertion-deletion mutant, gD-1(delta 290-299t), had an enhanced inhibitory activity against most strains tested. The structure and function of gDt proteins derived from the inhibition-resistant viruses rid1 and ANG were analyzed. gD-1(ridlt) and gD-1(ANGt) had a potent inhibitory effect on plaque formation by wild-type strains of HSV but, surprisingly, little or no effect on their parental strains. As measured by quantitative enzyme-linked immunosorbent assay with a diverse panel of monoclonal antibodies, the antigenic structures of gD-1(rid1t) and gD-1(ANGt) were divergent from that of the wild type yet were similar to each other and to that of gD-1 (delta 290-299t). Thus, three different forms of gD have common antigenic changes that correlate with enhanced inhibitory activity against HSV. We conclude that inhibition of HSV infectivity by soluble gD is influenced by the antigenic conformation of the blocking gDt as well as the form of gD in the target virus. PMID:9060653
Next Generation Antibody Therapeutics Using Bispecific Antibody Technology.
Igawa, Tomoyuki
2017-01-01
Nearly fifty monoclonal antibodies have been approved to date, and the market for monoclonal antibodies is expected to continue to grow. Since global competition in the field of antibody therapeutics is intense, we need to establish novel antibody engineering technologies to provide true benefit for patients, with differentiated product values. Bispecific antibodies are among the next generation of antibody therapeutics that can bind to two different target antigens by the two arms of immunoglobulin G (IgG) molecule, and are thus believed to be applicable to various therapeutic needs. Until recently, large scale manufacturing of human IgG bispecific antibody was impossible. We have established a technology, named asymmetric re-engineering technology (ART)-Ig, to enable large scale manufacturing of bispecific antibodies. Three examples of next generation antibody therapeutics using ART-Ig technology are described. Recent updates on bispecific antibodies against factor IXa and factor X for the treatment of hemophilia A, bispecific antibodies against a tumor specific antigen and T cell surface marker CD3 for cancer immunotherapy, and bispecific antibodies against two different epitopes of soluble antigen with pH-dependent binding property for the elimination of soluble antigen from plasma are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, R.D.; Terres, G.
1963-12-01
Enhanced primary antitoxin responses were obtained in mice immunized by intravenous injection with complexes of tetanus toxoid and mouse antitoxin, presumably formed either in vivo, or prepared in vitro in antigen-antibody ratios of antibody excess, equivalence, and antigen excess. The demonstration of the enhancement phenomenon elicited by complexes of toxoid and isologous mouse antitoxin provide conclusive evidence that the antibody portion of the complex does not need to be of heterologous origin in order to elicit enhanced primary antibody responses in mice. Intravenous immunization with the above complexes elicited enhanced primary responses in irradiated animals, whereas minimal responses were obtainedmore » with antigen only. Littie difference was observed in primary responses in nonirradiated mice when antigen only or antigen complexed with specific antibody is given by subcutaneous injection. However, enhanced primary antitoxin responses were obtained in irradiated mice (400 rad) immunized with the various complexes over the responses observed in irradiated animals immunlzed with antigen only. The greatest degree of enhancement occurred when the complexes were prepared in the region of equivalence and antigen excess. Secondary antitoxin responses were repressed when the same complexes of antigen and antibody were injected to elicit secondary responses. A corresponding repression of secondary responses was observed in irradiated mice when radiation doses of 300 rad were delivered 24 hr before the second injection of antigen complexed with specific mouse antitoxin. (BBB)« less
Enzyme-linked immunosorbent assay for detection of antibodies to Epstein-Barr virus antigens.
Voevodin, A F; Pácsa, A S
1983-01-01
Enzyme-Linked Immunosorbent Assay (ELISA) was standardized for measurement of antibody activity of reference human and baboon (Papio hamadryas) sera to soluble Epstein-Barr virus (EBV) antigens. A comparison with the immunofluorescent (IF) method showed that ELISA detects antibody specifically and sensitivity. In ELISA, Herpesvirus Papio (HVP) nuclear antigen (HUPNA) positive baboon serum reacted with EBV nuclear antigen (EBNA), as a further indication of the antigenic similarity between HVP and EBV. Forty-two baboon sera were tested with EBV antigens in both ELISA and IF test. The results showed an agreement between the two methods and also that by the use of EBV antigens, ELISA measures anti-HVP activity of baboon sera. ELISA did not reveal significant difference in antibody activity of 23 baboons with lymphoma and that of 24 healthy baboons. Results provide further data that ELISA can be used effectively in the field of EBV serology.
Solubility enhancement of a bisnaphthalimide tumoricidal agent, DMP 840, through complexation.
Raghavan, K S; Nemeth, G A; Gray, D B; Hussain, M A
1996-10-01
The purpose of this research was to enhance the aqueous solubility of DMP 840 by complexation with water-soluble and nontoxic agents, and to understand the nature of the interactions involved in complex formation using nuclear magnetic resonance (1H-NMR). The solubility of DMP 840 in water, saline, acetate buffers, and cosolvent mixtures was determined by high-performance liquid chromatography, and the effect of nicotinamide and pyridoxine concentrations on the solubility of DMP 840 was examined by the phase solubility method. 1H-NMR spectra were acquired in deuterated acetate buffer at 400 MHz on a Varian Unity-400 spectrometer. The aqueous solubility of DMP 840 was sensitive to the presence of chloride and acetate anions in solution, and did not improve in the presence of cosolvents. The use of the nontoxic and water-soluble complex-forming agents nicotinamide and pyridoxine, however, resulted in a linear increase in the aqueous solubility of DMP 840 with both ligands. The solubilization appears to be due to formation of 1:1 complexes between DMP 840 and the bioorganic ligands. The complexation constants were 15.57 M-1 for the DMP 840:nicotinamide complex and 13.36 M-1 for the DMP 840:pyridoxine complex. The NMR results indicate that the interaction is a result of vertical or plane-to-plane stacking and the complexation constants were in agreement with that obtained by phase solubility. The results suggest that the aqueous solubility of a poorly water soluble drug substance such as DMP 840 can be significantly enhanced by its complexation with water-soluble and nontoxic agents.
Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs.
Farahmand, Mahin; Nahrevanian, Hossein
2016-07-01
Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests are commonly applied for VL diagnosis, including indirect fluorescence antibody test, enzyme-linked immunosorbent assay (ELISA), dot-ELISA, direct agglutination test, Western-blotting, and immunochromatographic test. However, when soluble antigens are used, serological tests are less specific due to cross-reactivity with other parasitic diseases. Several studies have attempted to replace soluble antigens with recombinant proteins to improve the sensitivity and the specificity of the immunodiagnostic tests. Major technological advances in recombinant antigens as reagents for the serological diagnosis of VL have led to high sensitivity and specificity of these serological tests. A great number of recombinant proteins have been shown to be effective for the diagnosis of leishmania infection in dogs, the major reservoir of L. infantum. Although few recombinant proteins with high efficacy provide reasonable results for the diagnosis of human and canine VL, more optimization is still needed for the appropriate antigens to provide high-throughput performance. This review aims to explore the application of different recombinant proteins for the serodiagnosis of VL in humans and dogs.
Recent advances in recombinant protein-based malaria vaccines.
Draper, Simon J; Angov, Evelina; Horii, Toshihiro; Miller, Louis H; Srinivasan, Prakash; Theisen, Michael; Biswas, Sumi
2015-12-22
Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle-including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
CRYSTALLINE PNEUMOCOCCUS ANTIBODY
Northrop, John H.; Goebel, Walther F.
1949-01-01
1. The immune precipitate formed by antipneumococcus horse serum and the specific polysaccharide is not hydrolyzed by trypsin as is the diphtheria toxin-antitoxin complex, and purified pneumococcus antibody cannot be isolated by the method used for the isolation and crystallization of diphtheria antitoxin. 2. Type I pneumococcus antibody, completely precipitable by Type I polysaccharide, may be obtained from immune horse serum globulin by precipitation of the inert proteins with acid potassium phthalate. 3. The antibody obtained in this way may be fractionated by precipitation with ammonium sulfate into three main parts. One is insoluble in neutral salts but soluble from pH 4.5 to 3.0 and from pH 9.5 to 10.5. This is the largest fraction. A second fraction is soluble in 0.05 to 0.2 saturated ammonium sulfate and the third fraction is soluble in 0.2 saturated ammonium sulfate and precipitated by 0.35 saturated ammonium sulfate. The second fraction can be further separated by precipitation with 0.17 saturated ammonium sulfate to yield a small amount of protein which is soluble in 0.17 saturated ammonium sulfate but insoluble in 0.25 saturated ammonium sulfate. This fraction crystallizes in poorly formed, rounded rosettes. 4. The crystallization does not improve the purity of the antibody and is accompanied by the formation of an insoluble protein as in the case of diphtheria antitoxin. 5. None of the fractions obtained is even approximately homogeneous as determined by solubility measurements. 6. Purified antibody has also been obtained by dissociating the antigen-antibody complex. 7. The protective value of the fractions is quite different; that of the dissociated antibody being the highest and that of the insoluble fraction, the lowest. 8. All the fractions are immunologically specific since they do not precipitate with Type II polysaccharide nor protect against Type II pneumococci. 9. All the fractions give a positive precipitin reaction with antihorse rabbit serum. The dissociated antibody gives the least reaction. 10. Comparison of the various fractions, either by their solubility in salt solution or through immunological reactions, indicates that there are a large number of proteins present in immune horse serum, all of which precipitate with the specific polysaccharide but which have very different protective values, different reactions with antihorse rabbit serum, and different solubility in salt solutions. PMID:18131872
Methods for quantifying T cell receptor binding affinities and thermodynamics
Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.
2013-01-01
αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868
Production, fixation, and staining of cells on slides for maximum photometric sensitivity
NASA Astrophysics Data System (ADS)
Leif, Robert C.; Harlow, Patrick M.; Vallarino, Lidia M.
1994-07-01
The need to detect increasingly low levels of antigens or polynucleotides in cells requires improvements in both the preparation and the staining of samples. The combination of centrifugal cytology with the use of glyoxal as cross-linking fixative produces monolayers of cells having minimum background fluorescence. Detection can be further improved by the use of a recently developed type of luminescent tag containing a lanthanide(III) ion as the light- emitting center. These novel tags are macrocyclic complexes functionalized with an isothiocyanate group to allow covalent coupling to a biosubstrate. The Eu(III) complex possesses a set of properties -- water solubility, inertness to metal release over a wide pH range, ligand-sensitized narrow-band luminescence, large Stoke's shift, and long excited-state lifetime -- that provides ease of staining as well as maximum signal with minimum interference from background autofluorescence. Luminescence efficiency studies indicate significant solvent effects.
Induced Resistance to Ixodid Tick Infestation: Analysis and Isolation of Antigens
1988-01-01
female Ixodes ricinus. This resistance could be in- hibited by daily treatment with mepyramine, a type-1 histamine receptor antagonist. Bagnall (1975...attempted to mimic naturally acquired resistance . This approach caused no reaction at attachment sites. Immunization with midgut antigens resulted in the...particulate and soluble components prepared from midgut induced resistance . This agrees with immunization results using 27,000 x g supernatant
1994-01-01
Unlike the highly polymorphic major histocompatibility complex (MHC) class Ia molecules, which present a wide variety of peptides to T cells, it is generally assumed that the nonpolymorphic MHC class Ib molecules may have evolved to function as highly specialized receptors for the presentation of structurally unique peptides. However, a thorough biochemical analysis of one class Ib molecule, the soluble isoform of Qa-2 antigen (H-2SQ7b), has revealed that it binds a diverse array of structurally similar peptides derived from intracellular proteins in much the same manner as the classical antigen-presenting molecules. Specifically, we find that SQ7b molecules are heterodimers of heavy and light chains complexed with nonameric peptides in a 1:1:1 ratio. These peptides contain a conserved hydrophobic residue at the COOH terminus and a combination of one or more conserved residue(s) at P7 (histidine), P2 (glutamine/leucine), and/or P3 (leucine/asparagine) as anchors for binding SQ7b. 2 of 18 sequenced peptides matched cytosolic proteins (cofilin and L19 ribosomal protein), suggesting an intracellular source of the SQ7b ligands. Minimal estimates of the peptide repertoire revealed that at least 200 different naturally processed self-peptides can bind SQ7b molecules. Since Qa-2 molecules associate with a diverse array of peptides, we suggest that they function as effective presenting molecules of endogenously synthesized proteins like the class Ia molecules. PMID:8294869
Development of a Vaccine for Bacterial Kidney Disease in Salmon, 1985 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaattari, Stephen L.
1986-06-01
Bacterial kidney disease (BRD) has been and remains a chronic contributory problem limiting the productivity of salmon in the Columbia River Basin. Control of this disease will not come easily, but it would lead to a tremendous increase in the health and numbers of salmon populations. Vaccination of salmon to Renibacterium salmoninarum (KDB) is a potentially successful method of controlling this disease. To date, however, no successful vaccine has been developed for general use. A possible solution to this problem, and thus the goal of this research, is to isolate the antigenic components of KDB and enhance their ability tomore » activate the host defenses. This will be accomplished by the chemical modification of these antigens with potent immunomodulatory substances. These modified antigens will then be tested for their effectiveness in inducing immunity to BKD and thereby preventing the disease. The goal of the project's second year was to chemically modify the major antigens of Renibacteirium salmoninarum, immunize coho salmon (Oncorhynchus kisutch), and to test the immunogenicity of the preparations used. Immunogenicity of the antigenic material was tested by (1) admixture experiments, using whole KD cells with muramyl dipepetide, Vibrio anguillarum extract, E. coli lipopolysaccharide, or Mycobacterium tuberculosis in Freund's complete adjuvant. In addition to these goals a number of important techniques have been developed in order to facilitate the production of the vaccine. These procedures include: (1) the use of the soluble antigen for diagnosis in the ELISA and Western blot analysis, (2) detection of salmonid anti-KD antibodies by an ELISA technique, (3) detection of cellular immune responses to the soluble antigen, and (4) development of immersion challenge procedures for bacterial kidney disease (BKD).« less
Norcross, Michael A.; Luo, Shen; Lu, Li; Boyne, Michael T.; Gomarteli, Mary; Rennels, Aaron D.; Woodcock, Janet; Margulies, David H.; McMurtrey, Curtis; Vernon, Stephen; Hildebrand, William H.; Buchli, Rico
2014-01-01
Background Abacavir drug hypersensitivity in HIV-treated patients is associated with HLA-B*57:01 expression. To understand the immunochemistry of abacavir drug reactions, we investigated the effects of abacavir on HLA-B*57:01 epitope-binding in vitro and the quality and quantity of self-peptides presented by HLA-B*57:01 from abacavir-treated cells. Design and methods An HLA-B*57:01-specific epitope-binding assay was developed to test for effects of abacavir, didanosine or flucloxacillin on self-peptide binding. To examine whether abacavir alters the peptide repertoire in HLA-B*57:01, a B-cell line secreting soluble human leucocyte antigen (sHLA) was cultured in the presence or absence of abacavir, peptides were eluted from purified human leucocyte antigen (HLA), and the peptide epitopes comparatively mapped by mass spectroscopy to identify drug-unique peptides. Results Abacavir, but not didansosine or flucloxacillin, enhanced binding of the FITC-labeled self-peptide LF9 to HLA-B*57:01 in a dose-dependent manner. Endogenous peptides isolated from abacavir-treated HLA-B*57:01 B cells showed amino acid sequence differences compared with peptides from untreated cells. Novel drug-induced peptides lacked typical carboxyl (C) terminal amino acids characteristic of the HLA-B*57:01 peptide motif and instead contained predominantly isoleucine or leucine residues. Drug-induced peptides bind to soluble HLA-B*57:01 with high affinity that was not altered by abacavir addition. Conclusion Our results support a model of drug-induced autoimmunity in which abacavir alters the quantity and quality of self-peptide loading into HLA-B*57:01. Drug-induced loading of novel self-peptides into HLA, possibly by abacavir either altering the binding cleft or modifying the peptide-loading complex, generates an array of neo-antigen peptides that drive polyclonal T-cell autoimmune responses and multiorgan systemic toxicity. PMID:22617051
Norcross, Michael A; Luo, Shen; Lu, Li; Boyne, Michael T; Gomarteli, Mary; Rennels, Aaron D; Woodcock, Janet; Margulies, David H; McMurtrey, Curtis; Vernon, Stephen; Hildebrand, William H; Buchli, Rico
2012-07-17
Abacavir drug hypersensitivity in HIV-treated patients is associated with HLA-B57:01 expression. To understand the immunochemistry of abacavir drug reactions, we investigated the effects of abacavir on HLA-B57:01 epitope-binding in vitro and the quality and quantity of self-peptides presented by HLA-B57:01 from abacavir-treated cells. An HLA-B57:01-specific epitope-binding assay was developed to test for effects of abacavir, didanosine or flucloxacillin on self-peptide binding. To examine whether abacavir alters the peptide repertoire in HLA-B57:01, a B-cell line secreting soluble human leucocyte antigen (sHLA) was cultured in the presence or absence of abacavir, peptides were eluted from purified human leucocyte antigen (HLA), and the peptide epitopes comparatively mapped by mass spectroscopy to identify drug-unique peptides. Abacavir, but not didansosine or flucloxacillin, enhanced binding of the FITC-labeled self-peptide LF9 to HLA-B57:01 in a dose-dependent manner. Endogenous peptides isolated from abacavir-treated HLA-B57:01 B cells showed amino acid sequence differences compared with peptides from untreated cells. Novel drug-induced peptides lacked typical carboxyl (C) terminal amino acids characteristic of the HLA-B57:01 peptide motif and instead contained predominantly isoleucine or leucine residues. Drug-induced peptides bind to soluble HLA-B57:01 with high affinity that was not altered by abacavir addition. Our results support a model of drug-induced autoimmunity in which abacavir alters the quantity and quality of self-peptide loading into HLA-B57:01. Drug-induced loading of novel self-peptides into HLA, possibly by abacavir either altering the binding cleft or modifying the peptide-loading complex, generates an array of neo-antigen peptides that drive polyclonal T-cell autoimmune responses and multiorgan systemic toxicity.
Analysis of nuclear accumulation of influenza NP antigen in von Magnus virus-infected cells.
Maeno, K; Aoki, H; Hamaguchi, M; Iinuma, M; Nagai, Y; Matsumoto, T; Takeura, S; Shibata, M
1981-01-01
When 1-5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cell NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble from and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells in not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.
Martner, Anna; Östman, Sofia; Lundin, Samuel; Rask, Carola; Björnsson, Viktor; Telemo, Esbjörn; Collins, L. Vincent; Axelsson, Lars; Wold, Agnes E.
2013-01-01
This study aimed to clarify whether Gram-positive (G+) and Gram-negative (G−) bacteria affect antigen-presenting cells differently and thereby influence the immunogenicity of proteins they express. Lactobacilli, lactococci and Escherichia coli strains were transformed with plasmids conferring intracellular ovalbumin (OVA) production. Murine splenic antigen presenting cells (APCs) were pulsed with washed and UV-inactivated OVA-producing bacteria, control bacteria, or soluble OVA. The ability of the APCs to activate OVA-specific DO11.10 CD4+ T cells was assessed by measurments of T cell proliferation and cytokine (IFN-γ, IL-13, IL-17, IL-10) production. OVA expressed within E. coli was strongly immunogenic, since 500 times higher concentrations of soluble OVA were needed to achieve a similar level of OVA-specific T cell proliferation. Furthermore, T cells responding to soluble OVA produced mainly IL-13, while T cells responding to E. coli-expressed OVA produced high levels of both IFN-γ and IL-13. Compared to E. coli, G+ lactobacilli and lactococci were poor inducers of OVA-specific T cell proliferation and cytokine production, despite efficient intracellular expression and production of OVA and despite being efficiently phagocytosed. These results demonstrate a pronounced difference in immunogenicity of intracellular antigens in G+ and G− bacteria and may be relevant for the use of bacterial carriers in vaccine development. PMID:23741469
Heydari Zarnagh, Hafez; Ravanshad, Mehrdad; Pourfatollah, Ali Akbar; Rasaee, Mohammad Javad
2015-04-01
Computational tools are reliable alternatives to laborious work in chimeric protein design. In this study, a chimeric antigen was designed using computational techniques for simultaneous detection of anti-HTLV-I and anti-HBV in infected sera. Databases were searched for amino acid sequences of HBV/HLV-I diagnostic antigens. The immunodominant fragments were selected based on propensity scales. The diagnostic antigen was designed using these fragments. Secondary and tertiary structures were predicted and the B-cell epitopes were mapped on the surface of built model. The synthetic DNA coding antigen was sub-cloned into pGS21a expression vector. SDS-PAGE analysis showed that glutathione fused antigen was highly expressed in E. coli BL21 (DE3) cells. The recombinant antigen was purified by nickel affinity chromatography. ELISA results showed that soluble antigen could specifically react with the HTLV-I and HBV infected sera. This specific antigen could be used as suitable agent for antibody-antigen based screening tests and can help clinicians in order to perform quick and precise screening of the HBV and HTLV-I infections.
Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1
NASA Astrophysics Data System (ADS)
Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.
1995-08-01
ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.
Structural hot spots for the solubility of globular proteins
Ganesan, Ashok; Siekierska, Aleksandra; Beerten, Jacinte; Brams, Marijke; Van Durme, Joost; De Baets, Greet; Van der Kant, Rob; Gallardo, Rodrigo; Ramakers, Meine; Langenberg, Tobias; Wilkinson, Hannah; De Smet, Frederik; Ulens, Chris; Rousseau, Frederic; Schymkowitz, Joost
2016-01-01
Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. PMID:26905391
Vincke, Cécile; Gutiérrez, Carlos; Wernery, Ulrich; Devoogdt, Nick; Hassanzadeh-Ghassabeh, Gholamreza; Muyldermans, Serge
2012-01-01
Immunizing a camelid (camels and llamas) with soluble, properly folded proteins raises an affinity-matured immune response in the unique camelid heavy-chain only antibodies (HCAbs). The peripheral blood lymphocytes of the immunized animal are used to clone the antigen-binding antibody fragment from the HCAbs in a phage display vector. A representative aliquot of the library of these antigen-binding fragments is used to retrieve single domain antigen-specific binders by successive rounds of panning. These single domain antibody fragments are cloned in tandem to generate manifold constructs (bivalent, biparatopic or bispecific constructs) to increase their functional affinity, to increase specificity, or to connect two independent antigen molecules.
Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing
1983-01-01
We examined the ability of a set of cloned chicken ovalbumin (cOVA)- specific, Id-restricted, T cell hybridomas to produce interleukin-2 in response to cOVA presented by the Ia+ B cell lymphoma line, A20-2J. Although viable A20-2J cells presented native, denatured, and fragmented cOVA more or less equally well, A20-2J cells that were glutaraldehyde-fixed could present only enzymatically or chemically fragmented cOVA. These results suggest that antigen fragmentation may be both necessary and sufficient to define accessory cell processing of soluble antigens so that they may be recognized in association with I- region molecules by T cells. PMID:6193218
Schmidt, L M; Preston, J F; Dickson, D W; Rice, J D; Hewlett, T E
2003-05-01
Abstract Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.) that has attracted significant attention as a promising biocontrol agent. The inability to culture P. penetrans has invoked the need for a quantitative detection capability to facilitate biocontrol studies. A chemical extraction method using urea, dithiothreitol and CHES buffer (UDC) is shown to release soluble endospore envelope antigen from endospores present in complex matrices, generating an extract that can be used to determine the levels of spores when compared to a standard in an enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody, MAb 2A41D10. Extractions can be performed in less than 1 h. Linear regression analysis routinely produced line fits with r(2)>0.90. Antigen extraction efficiency was not influenced by soil type. Three ELISA formats were analyzed for quantitative detection of P. penetrans endospores. A tertiary ELISA immunodetection system provided the lowest level of detection at approximately 300 spores per gram of soil. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis Western blots of soil extracts containing P. penetrans endospore antigen produced signature peptides bearing a common epitope characteristic of endospores of Pasteuria spp. MAb 2A41D10 was specific for Pasteuria spp. and did not react with extracts of Pasteuria-free soil or with spore extracts of native Gram-positive endospore-forming bacteria. Immunofluorescent microscopy revealed that MAb 2A41D10 recognizes an epitope uniformly distributed on the endospore surface. The development of a rapid extraction method and analysis of solubilized antigen by immunodetection has the potential for broad application in food and environmental microbiology.
Chen, Jeng-Chang; Ou, Liang-Shiou; Chan, Cheng-Chi; Kuo, Ming-Ling; Tseng, Li-Yun; Chang, Hsueh-Ling
2018-01-01
According to actively acquired tolerance, antigen exposure before full immune development in fetal or early neonatal life will cause tolerance to this specific antigen. In this study, we aimed to examine whether allogeneic tolerance could be elicited by in utero exposure to surface MHC antigens of allogenic cells or soluble form of MHC exosomes. Gestational day 14 FVB/N fetuses were subjected to intraperitoneal injection of allogeneic major histocompatibility complex (MHC) exosomes or highly enriched B-cells. Postnatally, the recipients were examined for the immune responses to donor alloantigens by lymphocyte proliferative reactions and skin transplantation. In utero exposure to allogeneic MHC exosomes abolished the alloreactivity of recipients' lymphocytes to the alloantigens, but could not confer skin allograft tolerance. In utero transplantation of highly enriched allogeneic B-cells generated low-level B-cell chimerism in the recipients. However, it only extended the survivals of skin allograft by a few days despite the lack of donor-specific alloreactivity of recipients' lymphocyte. Thus, an early in utero contact with exosomal or B-cell alloantigens did not lead to full skin tolerance but rather, at best, only to delayed skin rejection in the presence of microchimerism made by B-cell inocula. These results argued against the theory of actively acquired tolerance, and implicated that in utero exposure to marrow cells in previous studies was a unique model of allo-tolerance induction that involved the establishment of significant hematopoietic chimerism. Taken together with the discovery of in utero sensitization to ovalbumin in our previous studies, the immunological consequences of fetal exposure to foreign antigens might vary according to the type or nature of antigens introduced.
Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.
2015-01-01
Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081
Caffeine: a potential complexing agent for solubility and dissolution enhancement of celecoxib.
Shakeel, Faiyaz; Faisal, Mohammed S
2010-01-01
Complexation of caffeine with the drug celecoxib was used to enhance its solubility as well as in vitro dissolution in the present investigation. Caffeine was extracted from tea leaves using the sublimation method. A molecular complex (1:1) of caffeine-celecoxib was prepared using the solubility method. The solubility of celecoxib in distilled water and the caffeine complex was determined using a HPLC method at a wavelength of 250 nm. Dissolution studies of pure celecoxib, a marketed capsule (Celebrex), and the complex were performed using USP dissolution apparatus I for pure celecoxib and the complex and apparatus II for the capsule in distilled water. The highest solubility (48.32 mg/mL) as well as percent dissolution (90.54%) of celecoxib was obtained with the caffeine-celecoxib complex. The results for solubility and dissolution were highly significant as compared to pure celecoxib and the marketed capsule (p < 0.01). These results suggest that caffeine is a promising complexing agent for solubility as well as dissolution enhancement of the poorly soluble drug celecoxib.
Fetal- and uterine-specific antigens in human amniotic fluid.
Sutcliffe, R G; Brock, D J; Nicholson, L V; Dunn, E
1978-09-01
Removal of the major maternal serum proteins from second trimester amniotic fluid by antibody affinity chromatography revealed various soluble tissue antigens, of which two were fetal-specific skin proteins and another, of alpha2-mobility, was specific to the uterus, and was therefore designated alpha-uterine protein (AUP). These proteins could not be detected in maternal serum by antibody-antigen crossed electrophoresis. The concentration of AUP in amniotic fluid reached a maximum between 10 and 20 weeks of gestation, suggesting that there is an influx of uterine protein into the amniotic fluid at this stage of pregnancy.
β2-Microglobulin-mediated signaling as a target for cancer therapy.
Nomura, Takeo; Huang, Wen-Chin; Zhau, Haiyen E; Josson, Sajni; Mimata, Hiromitsu; Chung, Leland W K
2014-03-01
β2-microglobulin (β2-m) has become the focus of intense scrutiny since the discovery of its undesirable roles promoting osteomimicry and cancer progression. β2-m is a well-known housekeeping protein that forms complexes with the heavy chain of major histocompatibility complex class I molecules, which are heterodimeric cell surface proteins that present antigenic peptides to cytotoxic T cells. On recognition of foreign peptide antigens on cell surfaces, T cells actively bind and lyse antigen-presenting cancer cells. In addition to its roles in tumor immunity, β2-m has two different functions in cancer cells, either tumor promoting or tumor suppressing, in cancer cell context-dependent manner. Our studies have demonstrated that β2-m is involved extensively in the functional regulation of growth, survival, apoptosis, and even metastasis of cancer cells. We found that β2-m is a soluble growth factor and a pleiotropic signaling molecule which interacts with its receptor, hemochromatosis protein, to modulate epithelial-to-mesenchymal transition (EMT) through iron-responsive pathways. Specific antibodies against β2-m have remarkable tumoricidal activity in cancer, through β2-m action on iron flux, alterations of intracellular reactive oxygen species, DNA damage and repair enzyme activities, β-catenin activation and cadherin switching, and tumor responsiveness to hypoxia. These novel functions of β2-m and β2-m signaling may be common to several solid tumors including human lung, breast, renal, and prostate cancers. Our experimental results could lead to the development of a novel class of antibody-based pharmaceutical agents for cancer growth control. In this review, we briefly summarize the recent data regarding β2-m as a promising new cancer therapeutic target and discuss antagonizing this therapeutic target with antibody therapy for the treatment of localized and disseminated cancers.
β2-Microglobulin-mediated Signaling as a Target for Cancer Therapy
Nomura, Takeo; Huang, Wen-Chin; Zhau, Haiyen E.; Josson, Sajni; Mimata, Hiromitsu; Kaur, Mandeep
2014-01-01
β2-microglobulin (β2-m) has become the focus of intense scrutiny since the discovery of its undesirable roles promoting osteomimicry and cancer progression. β2-m is a well-known housekeeping protein that forms complexes with the heavy chain of major histocompatibility complex class I molecules, which are heterodimeric cell surface proteins that present antigenic peptides to cytotoxic T cells. On recognition of foreign peptide antigens on cell surfaces, T cells actively bind and lyse antigen-presenting cancer cells. In addition to its roles in tumor immunity, β2-m has two different functions in cancer cells, either tumor promoting or tumor suppressing, in cancer cell context-dependent manner. Our studies have demonstrated that β2-m is involved extensively in the functional regulation of growth, survival, apoptosis, and even metastasis of cancer cells. We found that β2-m is a soluble growth factor and a pleiotropic signaling molecule which interacts with its receptor, hemochromatosis protein, to modulate epithelial-to-mesenchymal transition (EMT) through iron-responsive pathways. Specific antibodies against β2-m have remarkable tumoricidal activity in cancer, through β2-m action on iron flux, alterations of intracellular reactive oxygen species, DNA damage and repair enzyme activities, β-catenin activation and cadherin switching, and tumor responsiveness to hypoxia. These novel functions of β2-m and β2-m signaling may be common to several solid tumors including human lung, breast, renal, and prostate cancers. Our experimental results could lead to the development of a novel class of antibody-based pharmaceutical agents for cancer growth control. In this review, we briefly summarize the recent data regarding β2-m as a promising new cancer therapeutic target and discuss antagonizing this therapeutic target with antibody therapy for the treatment of localized and disseminated cancers. PMID:23848204
USDA-ARS?s Scientific Manuscript database
Immunostimulating complexes (ISCOMs) are unique multimolecular structures formed by encapsulating antigens, lipids and triterpene saponins and are one of the most successful antigen delivery systems for microbial antigens. In the current study, both the route of administration and the antigen conce...
Matsuo, Kazuhiko; Yokota, Yayoi; Zhai, You; Quan, Ying-Shu; Kamiyama, Fumio; Mukai, Yohei; Okada, Naoki; Nakagawa, Shinsaku
2012-07-10
Transcutaneous immunization (TCI) is a promising needle-free, easy-to-use, and low-invasive vaccination method. The hydrogel patch-based TCI system induced immune responses against soluble antigens (Ags) like toxoids, but could not induce immune responses against particulate Ags. Here, as an effective TCI system against every form of Ag, we developed a dissolving microneedle array of three lengths (200, 300, or 800 μm) made of hyaluronate as a novel TCI device. Unlike conventional microneedles, the microneedles of our dissolving microneedle arrays dissolved in the skin after insertion. Each dissolving microneedle array effectively delivered both soluble and particulate Ags under the stratum corneum. TCI using these dissolving microneedle arrays induced effective immune responses in rats regardless of the Ag form that were comparable to conventional vaccination using subcutaneous immunization. In addition, application of these dissolving microneedle arrays caused only slight skin irritation. These findings suggest that our TCI system can simply, safely, and effectively improve protective immune responses for every vaccine Ag. Copyright © 2012 Elsevier B.V. All rights reserved.
THE ANTIBODY-FORMATION BY POLYSACCHARIDS.
Nishimura, S
1929-09-30
1. By complement fixation tests, it has been clearly demonstrated that the sera of rabbits immunized with inulin, soluble starch and dextrine contain specific antibodies. 2. All these immune sera gave a negative precipitation reaction. 3. The kind of dextrine which has a construction very near to starch has an antigenic property, but those in a state of further decomposition do not give rise to antibodies. 4. All the three kinds of polysaccharids have power to produce antibodies without any vehicle. Dextrine is the only one of the three that gives rise to immune bodies more readily when pig serum is added to it. 5. Regarded as antigens, inulin stood first and soluble starch and dextrine next in order. 6. All three kinds of polysaccharids that were employed gave a negative protein color reaction. All of them, however, contained nitrogen. It has been proved that the large portion of the nitrogen contained in the soluble starch is derived from its protein contents. 7. It is suggested that in the production of immune bodies by these three kinds of polysaccharids, proteins might play the part of the vehicle. This is, however, still to be determined.
Advancing a multivalent ‘Pan-anthelmintic’ vaccine against soil-transmitted nematode infections
Zhan, Bin; Beaumier, Coreen M; Briggs, Neima; Jones, Kathryn M; Keegan, Brian P; Bottazzi, Maria Elena; Hotez, Peter J
2014-01-01
Ascaris lumbricoides The Sabin Vaccine Institute Product Development Partnership is developing a Pan-anthelmintic vaccine that simultaneously targets the major soil-transmitted nematode infections, in other words, ascariasis, trichuriasis and hookworm infection. The approach builds off the current bivalent Human Hookworm Vaccine now in clinical development and would ultimately add both a larval Ascaris lumbricoides antigen and an adult-stage Trichuris trichiura antigen from the parasite stichosome. Each selected antigen would partially reproduce the protective immunity afforded by UV-attenuated Ascaris eggs and Trichuris stichosome extracts, respectively. Final antigen selection will apply a ranking system that includes the evaluation of expression yields and solubility, feasibility of process development and the absence of circulating antigen-specific IgE among populations living in helminth-endemic regions. Here we describe a five year roadmap for the antigen discovery, feasibility and antigen selection, which will ultimately lead to the scale-up expression, process development, manufacture, good laboratory practices toxicology and preclinical evaluation, ultimately leading to Phase 1 clinical testing. PMID:24392641
Immunoglobulins drive terminal maturation of splenic dendritic cells
Ziętara, Natalia; Łyszkiewicz, Marcin; Puchałka, Jacek; Pei, Gang; Gutierrez, Maximiliano Gabriel; Lienenklaus, Stefan; Hobeika, Elias; Reth, Michael; Martins dos Santos, Vitor A. P.; Krueger, Andreas; Weiss, Siegfried
2013-01-01
Nature and physiological status of antigen-presenting cells, such as dendritic cells DCs, are decisive for the immune reactions elicited. Multiple factors and cell interactions have been described that affect maturation of DCs. Here, we show that DCs arising in the absence of immunoglobulins (Ig) in vivo are impaired in cross-presentation of soluble antigen. This deficiency was due to aberrant cellular targeting of antigen to lysosomes and its rapid degradation. Function of DCs could be restored by transfer of Ig irrespective of antigen specificity and isotype. Modulation of cross-presentation by Ig was inhibited by coapplication of mannan and, thus, likely to be mediated by C-type lectin receptors. This unexpected dependency of splenic DCs on Ig to cross-present antigen provides insights into the interplay between cellular and humoral immunity and the immunomodulatory capacity of Ig. PMID:23345431
Maia, Zuinara; Lírio, Monique; Mistro, Sóstenes; Mendes, Carlos Maurício Cardeal; Mehta, Sanjay R.; Badaro, Roberto
2012-01-01
Background The rK39 recombinant protein is derived from a specific antigen produced by the Leishmania donovani complex, and has been used in the last two decades for the serodiagnosis of visceral leishmaniasis. We present here a systematic review and meta-analysis of studies evaluating serologic assays to diagnose visceral leishmaniasis to determine the accuracy of rK39 antigen in comparison to the use of other antigen preparations. Methodology/Principal Findings A systematic review with meta-analysis of the literature was performed to compare the rK39 strip-test and ELISA formats against serological tests using promastigote antigens derived from whole or soluble parasites for Direct Aglutination Test (DAT), Indirect Immunofluorescence test (IFAT) and ELISA with a promastigote antigen preparation (p-ELISA). Gold standard diagnosis was defined by the demonstration of amastigotes on hematological specimens. A database search was performed on Medline, Lilacs, Scopus, Isi Web of Science, and Cochrane Library. Quality of data was assessed using the QUADAS questionnaire. A search of the electronic databases found 352 papers of which only 14 fulfilled the selection criteria. Three evaluated the rK39 ELISA, while 13 evaluated the rK39 immunochromatographic strip test. The summarized sensitivity for the rK39-ELISA was 92% followed by IFAT 88% and p-ELISA 87%. The summarized specificity for the three diagnostic tests was 81%, 90%, and 77%. Studies comparing the rK39 strip test with DAT found a similar sensitivity of 94%, although the DAT had a slightly higher specificity. The rK39 strip test was more sensitive and specific than the IFAT and p-ELISA. We did not detect any difference in the sensitivity and specificity between strips produced by different manufacturers. Conclusions The rK39 protein used either in a strip test or in an ELISA, and the DAT are the best choices for implementation of rapid, easy and efficient test for serodiagnosis of VL. PMID:22303488
Maia, Zuinara; Lírio, Monique; Mistro, Sóstenes; Mendes, Carlos Maurício Cardeal; Mehta, Sanjay R; Badaro, Roberto
2012-01-01
The rK39 recombinant protein is derived from a specific antigen produced by the Leishmania donovani complex, and has been used in the last two decades for the serodiagnosis of visceral leishmaniasis. We present here a systematic review and meta-analysis of studies evaluating serologic assays to diagnose visceral leishmaniasis to determine the accuracy of rK39 antigen in comparison to the use of other antigen preparations. A systematic review with meta-analysis of the literature was performed to compare the rK39 strip-test and ELISA formats against serological tests using promastigote antigens derived from whole or soluble parasites for Direct Aglutination Test (DAT), Indirect Immunofluorescence test (IFAT) and ELISA with a promastigote antigen preparation (p-ELISA). Gold standard diagnosis was defined by the demonstration of amastigotes on hematological specimens. A database search was performed on Medline, Lilacs, Scopus, Isi Web of Science, and Cochrane Library. Quality of data was assessed using the QUADAS questionnaire. A search of the electronic databases found 352 papers of which only 14 fulfilled the selection criteria. Three evaluated the rK39 ELISA, while 13 evaluated the rK39 immunochromatographic strip test. The summarized sensitivity for the rK39-ELISA was 92% followed by IFAT 88% and p-ELISA 87%. The summarized specificity for the three diagnostic tests was 81%, 90%, and 77%. Studies comparing the rK39 strip test with DAT found a similar sensitivity of 94%, although the DAT had a slightly higher specificity. The rK39 strip test was more sensitive and specific than the IFAT and p-ELISA. We did not detect any difference in the sensitivity and specificity between strips produced by different manufacturers. The rK39 protein used either in a strip test or in an ELISA, and the DAT are the best choices for implementation of rapid, easy and efficient test for serodiagnosis of VL.
1984-08-01
exhibited strikingly different chromatographic characteristics. 2. Effect of proflavine on the synthesis of adenovirus, type 5, and associated soluble...antigens. The synthesis of type 5 adenovirus in HeLa cells was suppressed to a considerable extent by low concentrations of proflavine , an acridine dye...chemical. Addition of proflavine to infected cells at different times during the virus growth cycle revealed that the processes leading to the synthesis
1993-01-01
Allograft rejection is a T cell-dependent process. Productive T cell activation by antigen requires antigen engagement of the T cell receptor as well as costimulatory signals delivered through other T cell surface molecules such as CD28. Engagement of CD28 by its natural ligand B7 can be blocked using a soluble recombinant fusion protein, CTLA4Ig. Administration of CTLA4Ig blocks antigen-specific immune responses in vitro and in vivo, and we have shown that treatment of rats with a 7-d course of CTLA4Ig at the time of transplantation leads to prolonged survival of cardiac allografts (median 30 d), although most grafts are eventually rejected. Here, we have explored additional strategies employing CTLA4Ig in order to achieve long-term allograft survival. Our data indicate that donor-specific transfusion (DST) plus CTLA4Ig can provide effective antigen-specific immunosuppression. When DST is administered at the time of transplantation followed by a single dose of CTLA4Ig 2 d later, all animals had long-term graft survival (> 60 d). These animals had delayed responses to donor-type skin transplants, compared with normal rejection responses to third-party skin transplants. Furthermore, donor-matched second cardiac allografts were well tolerated with minimal histologic evidence of rejection. These data indicate that peritransplant use of DST followed by subsequent treatment with CTLA4Ig can induce prolonged, often indefinite, cardiac allograft acceptance. These results may be clinically applicable for cadaveric organ and tissue transplantation in humans. PMID:8228826
Chebolu, S; Daniell, H
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%-31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bio-reactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Chebolu, S.; Daniell, H.
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. PMID:19401820
An affinity chromatography-gel filtration device for preparing thyroid microsomal antigen.
Wang, L; Zheng, W F
1987-09-24
On the basis of conventional differential centrifugation for preparing crude thyroid microsomal antigen (TMAg), we have employed Sepharose 4B gel filtration and affinity chromatography separately to study the elution pattern in terms of absorbance and antigenic activity. The result indicates that thyroglobulin (TG) exists in two forms in crude TMAg, i.e., 'free TG' and 'membrane-bound TG'. TMAg is present in two forms in the eluate: (1) the TM fragment or TMAg polymer, which is produced at a higher rate and has greater antigenic activity, but which is less pure; (2) soluble TMAg, which is produced at a lower rate and has less antigenic activity, but which is more pure. We have developed an affinity chromatography-gel filtration (AC-GF) device which is a combination of affinity chromatography and a Sepharose 4B column. Sephadex G-50 is placed between the rubber stopper and Sepharose 4B in the GF column to ensure intactness of the entire system. With such a device, the AC removes the contaminated TG from TM homogenate, and allows the latter to pass directly from AC to GF for rechromatography. This device extracts the full advantages of both methods and each compensates for any deficiency of the other. Using this one-step procedure, one has the greatest chance of removing TG and obtaining TM fragments of TMAg polymers of higher antigenic activity, as well as separating small amounts of more purified soluble TMAg. Thus, the newly developed method meets the need of large quantities of TMAg for practical application, and at the same time the more purified preparations can be used for analytical purposes.
Parra, David; Rieger, Aja M.; Li, Jun; Zhang, Yong-An; Randall, Louise M.; Hunter, Christopher A.; Barreda, Daniel R.; Sunyer, J. Oriol
2012-01-01
Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4+ T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4+ T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages. PMID:22058420
Parra, David; Rieger, Aja M; Li, Jun; Zhang, Yong-An; Randall, Louise M; Hunter, Christopher A; Barreda, Daniel R; Sunyer, J Oriol
2012-04-01
Breaking the long-held paradigm that primary B cells are not phagocytic, several studies have demonstrated recently that B cells from fish, amphibians, and reptilians have a significant phagocytic capacity. Whether such capacity has remained conserved in certain mammalian B cell subsets is presently an enigma. Here, we report a previously unrecognized ability of PerC B-1a and B-1b lymphocytes to phagocytose latex beads and bacteria. In contrast, B-2 lymphocytes had an almost negligible ability to internalize these particles. Upon phagocytosis, B-1a and B-1b cells were able to mature their phagosomes into phagolysosomes and displayed the ability to kill internalized bacteria. Importantly, B-1a and B-1b cells effectively present antigen recovered from phagocytosed particles to CD4(+) T cells. However, these cells showed a much lower competence to present soluble antigen or antigen from large, noninternalized particles. B-1 B cells presented particulate and soluble antigen to CD4(+) T cells more efficiently than macrophages, whereas DCs were the most potent APCs. The novel phagocytic and microbicidal abilities identified in B-1 B lymphocytes strengthen the innate nature that has long been attributed to these cells. In the context of adaptive immunity, we show that these innate immune processes are relevant, as they enable B-1 B cells to present phagocytosable particulate antigen. These capacities position these cells at the crossroads that link innate with adaptive immune processes. In a broader context, these newly identified capacities of B-1 B cells further support the previously recognized functional, developmental, and evolutionary relationships between these cells and macrophages.
Wattam, Alice R.; Inzana, Thomas J.; Williams, Kelly P.; Mane, Shrinivasrao P.; Shukla, Maulik; Almeida, Nalvo F.; Dickerman, Allan W.; Mason, Steven; Moriyón, Ignacio; O’Callaghan, David; Whatmore, Adrian M.; Sobral, Bruno W.; Tiller, Rebekah V.; Hoffmaster, Alex R.; Frace, Michael A.; De Castro, Cristina; Molinaro, Antonio; Boyle, Stephen M.; De, Barun K.; Setubal, João C.
2012-01-01
ABSTRACT Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1T and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1T and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1T and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and M antisera against O-side chain sugars composed of N-formyl-perosamine. While BO1T maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. PMID:22930339
Foroughi-Parvar, Faeze; Hatam, Gholam-Reza; Sarkari, Bahador; Kamali-Sarvestani, Eskandar
2015-01-01
To investigate the efficacy of FML loaded dendritic cells (DCs) in protection against visceral leishmaniasis. Mice were immunized with FML- or soluble Leishmania antigen-loaded DCs as well as FML or soluble Leishmania antigen in saponin and challenged with parasite. The levels of cytokines before and after challenge were detected by ELISA. Parasite burden (total Leishman-Donovan unit) was determined after parasite challenge. FML-saponin induced the highest IFN-γ/IL-4 ratio among vaccinated groups, though this ratio was higher in FML-loaded DCs group subsequent to challenge with Leishmania infantum. Moreover, the greatest reduction in parasite number was detected in mice vaccinated with FML-loaded DCs compared with phosphate-buffered saline-treated mice (p = 0.002). FML-loaded DCs are one of the promising tools for protection against murine visceral leishmaniasis.
Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects
2010-01-01
Background Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1,2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90% fatality rates [3-5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. Results It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole protein shed during early arenaviral biogenesis. This phenomenon was clearly distinguishable from virion-associated GP1 only prior to the emergence of de novo viral particles. Despite this restricted time frame, in 2/46 suspected cases in two studies performed in late 2009 and early 2010, soluble glycoprotein component shedding was identified. Differential detection of viral antigens GP1, GP2, and NP by western blot yielded five different scenarios: whole LASV virions (GP1, GP2, NP; i.e. active viremia), different combinations of these three proteins, sGP1 only, NP only, and absence of all three proteins. Four additional samples showed inconclusive evidence for sGP1 shedding due to lack of detection of GP2 and NP by western blot; however, a sensitive LASV NP antigen capture ELISA generated marginally positive signals Conclusions During a narrow window following active infection with LASV, soluble GP1 can be detected in patient sera. This phenomenon parallels other VHF infection profiles, with the actual role of a soluble viral glycoprotein component in vivo remaining largely speculative. The expenditure of energy and cellular resources toward secretion of a critical protein during viral biogenesis without apparent specific function requires further investigation. Future studies will be aimed at systematically identifying the role of LASV sGP1 in the infection process and outcome in vitro and in vivo. PMID:21062490
Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects.
Branco, Luis M; Grove, Jessica N; Moses, Lina M; Goba, Augustine; Fullah, Mohammed; Momoh, Mambu; Schoepp, Randal J; Bausch, Daniel G; Garry, Robert F
2010-11-09
Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1, 2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90 percent fatality rates [3 - 5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole protein shed during early arenaviral biogenesis. This phenomenon was clearly distinguishable from virion-associated GP1 only prior to the emergence of de novo viral particles. Despite this restricted time frame, in 2/46 suspected cases in two studies performed in late 2009 and early 2010, soluble glycoprotein component shedding was identified. Differential detection of viral antigens GP1, GP2, and NP by western blot yielded five different scenarios: whole LASV virions (GP1, GP2, NP; i.e. active viremia), different combinations of these three proteins, sGP1 only, NP only, and absence of all three proteins. Four additional samples showed inconclusive evidence for sGP1 shedding due to lack of detection of GP2 and NP in western blot; however, a sensitive LASV NP antigen capture ELISA generated marginally positive signals. During a narrow window following active infection with LASV, soluble GP1 can be detected in patient sera. This phenomenon parallels other VHF infection profiles, with the actual role of a soluble viral glycoprotein component in vivo remaining largely speculative. The expenditure of energy and cellular resources toward secretion of a critical protein during viral biogenesis without apparent specific function requires further investigation. Future studies will be aimed at systematically identifying the role of LASV sGP1 in the infection process and outcome in vitro and in vivo.
IMMUNOGLOBULIN ISOANTIGENS (ALLOTYPES) IN THE MOUSE
Herzenberg, Leonard A.; Warner, Noel L.; Herzenberg, Leonore A.
1965-01-01
Eight antigens of 7S γ2-immunoglobulins controlled by alleles at a single locus Ig-1, have been identified in mice. This locus has previously been shown to determine antigenic specificities on the F fragments of 7S γ2a-globulins. The reactions of these antigens with various isoantisera have shown that the antigens all cross react with one another. New methods for the analysis of antigenic specificities of soluble proteins are presented in detail. A sensitive method for detecting in the order of 0.01 µg of these isoantigens has been developed, based on the quantitative inhibition of precipitation of I125-labeled antigen. Cross-reactions of the antigens were analysed in inhibition assays and the data is compatible with the existence of a minimum of eight antigenic specificities. Each of the antigens is composed of different combinations of these specificities, with only one antigen having a specificity not present in any other. Sixty-eight mouse strains have been tested with specific isoantisera, and on the basis of the results, have been placed into the eight allele groups. Evidence for close genetic linkage of the Ig-1 locus and 11 chromosome markers has been sought and not found. PMID:14270242
ɣδ T cell receptor ligands and modes of antigen recognition
Champagne, Eric
2011-01-01
T lymphocytes expressing the γδ-type of T cell receptors for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs. PMID:21298486
γδ T cell receptor ligands and modes of antigen recognition.
Champagne, Eric
2011-04-01
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia
2009-01-01
Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.
Probing the Energetics of Antigen-Antibody Recognition by Titration Microcalorimetry
Jelesarov; Leder; Bosshard
1996-06-01
Our understanding of the energetics that govern antigen-antibody recognition lags behind the increasingly rapid accumulation of structural information on antigen-antibody complexes. Thanks to the development of highly sensitive microcalorimeters, the thermodynamic parameters of antigen-antibody interactions can now be measured with precision and using only nanomole quantities of protein. The method of choice is isothermal titration calorimetry, in which a solution of the antibody (or antigen) is titrated with small aliquots of the antigen (or antibody) and the heat change accompanying the formation of the antigen-antibody complex is measured with a sensitivity as high as 0.1 μcal s-1. The free energy of binding (DeltaG), the binding enthalpy (DeltaH), and the binding entropy (DeltaS) are usually obtained from a single experiment, and no spectroscopic or radioactive label must be introduced into the antigen or antibody. The often large and negative change in heat capacity (DeltaCp) accompanying the formation of an antigen-antibody complex is obtained from DeltaH measured at different temperatures. The basic theory and the principle of the measurements are reviewed and illustrated by examples. The thermodynamic parameters relate to the dynamic physical forces that govern the association of the freely moving antigen and antibody into a well-structured and unique complex. This information complements the static picture of the antigen-antibody complex that results from X-ray diffraction analysis. Attempts to correlate dynamic and static aspects are discussed briefly.
Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain
2009-01-01
Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane. PMID:19531344
Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain
2009-01-01
Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane.
Castro-Sesquen, Yagahira E.; Gilman, Robert H.; Yauri, Verónica; Cok, Jaime; Angulo, Noelia; Escalante, Hermes; Bern, Caryn
2013-01-01
The diagnosis of Chagas disease in humans is generally limited to the detection of specific antibodies. Detection of T. cruzi antigens in urine has been reported previously, but is not used in the diagnosis. In this study, soluble T. cruzi antigens and DNA were detected in urine samples and were associated with kidney injury and systemic detection of the parasite. We used 72 guinea pigs infected with T. cruzi Y strain and 18 non-infected guinea pigs. Blood, kidney, heart and urine samples were collected during the acute phase and chronic phase. Urine samples were concentrated by ultrafiltration. Antigens were detected by Western Blot using a polyclonal antibody against trypomastigote excretory-secretory antigen (TESA). T. cruzi DNA was detected by PCR using primers 121/122 and TcZ1/TcZ2. Levels of T. cruzi DNA in blood, heart and kidney were determined by quantitative PCR. T. cruzi antigens (75 kDa, 80 kDa, 120 kDa, 150 kDa) were detected in the acute phase (67.5%) and the chronic phase (45%). Parasite DNA in urine was detected only in the acute phase (45%). Kidney injury was characterized by high levels of proteinuria, kidney injury molecule-1 (KIM-1) and urea, and some histopathological changes such as inflammation, necrosis, fibrosis and scarce parasites. The detection of antigens and DNA in urine was associated with the presence of parasite DNA in blood and heart and with high levels of parasite DNA in blood, but not with the presence of parasite in kidney or kidney injury. These results suggest that the detection of T. cruzi in urine could be improved to be a valuable method for the diagnosis of Chagas disease, particularly in congenital Chagas disease and in immunocompromised patients. PMID:23520515
Trichinella spiralis: strong antibody response to a 49 kDa newborn larva antigen in infected rats.
Salinas-Tobon, Maria Del Rosario; Navarrete-Leon, Anaid; Mendez-Loredo, Blanca Esther; Esquivel-Aguirre, Dalia; Martínez-Abrajan, Dulce Maria; Hernandez-Sanchez, Javier
2007-02-01
In this work, we analyzed the kinetics of anti-Trichinella spiralis newborn larva (NBL) antibodies (Ab) and the antigenic recognition pattern of NBL proteins and its dose effects. Wistar rats were infected with 0, 700, 2000, 4000 and 8000 muscle larvae (ML) and bled at different time intervals up to day 31 post infection (p.i.). Ab production was higher with 2000 ML dose and decreased with 8000, 4000 and 700 ML. Abs were not detected until day 10, peaked on day 14 for the 2000 ML dose and on day 19 for the other doses and thereafter declined slowly from 19 to 31 days p.i. In contrast, Abs to ML increased from day 10, peaked on day 19 and remained high until the end of the study. Abs bound strongly at least to three NBL components of 188, 205 and 49 kDa. NBL antigen of 188 and 205 kDa were recognized 10-26 days p.i. and that of 49 kDa from day 10 to day 31 p.i. A weak recognition towards antigens of 52, 54, 62 and 83 kDa was also observed during the infection. An early recognition of 31, 43, 45, 55, 68 and 85 kDa ML antigens was observed whereas the response to those of 43, 45, 48, 60, 64 and 97 kDa (described previously as TSL-1 antigens) occurred late in the infection. A follow-up of antigen recognition up to day 61 with the optimal immunization dose (2000 ML) evidenced a decline of Ab production to the 49 kDa NBL antigen 42 days p.i., which suggested antigenic differences with the previously reported 43 kDa ML antigen strongly recognized late in the infection. To analyze the stage-specificity of the 49 kDa NBL antigen, polyclonal antibodies (PoAb) were obtained in rats immunized with 49 kDa NBL antigen. PoAb reacted strongly with the 49 kDa NBL component in NBL total soluble extract but no reactivity was observed with soluble antigen of the other T. spiralis stages. Albeit with less intensity, the 49 kDa component was also recognized by PoAb together with other antigens of 53, 97 and 107 kDa, in NBL excretory-secretory products (NBL-ESP). Thus, our results reveal differences in the kinetics of anti-NBL and ML Ab responses. While anti-NBL Abs declined slowly from day 19 until the end of the experiment, Abs to ML antigen remained high in the same period. It is remarkable the optimal Ab response to NBL antigens with 2000 ML infective dose and the reduced number of NBL antigens identified throughout the experimental T. spiralis infection, standing out the immunodominant 49 kDa antigen. Interestingly, this antigen, which was prominently expressed in NBL somatic proteins, was also detected in NBL-ESP.
Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike
Cai, Yongfei; Karaca-Griffin, Selen; Chen, Jia; ...
2017-04-10
Here, the extraordinary genetic diversity of the HIV-1 envelope spike [Env; trimeric (gp160) 3, cleaved to (gp120/gp41) 3] poses challenges for vaccine development. Envs of different clinical isolates exhibit different sensitivities to antibody-mediated neutralization. Envs of difficult-to-neutralize viruses are thought to be more stable and conformationally homogeneous trimers than those of easy-to-neutralize viruses, thereby providing more effective concealment of conserved, functionally critical sites. In this study we have characterized the antigenic properties of an Env derived from one of the most neutralization-resistant HIV-1 isolates, CH120.6. Sequence variation at neutralizing epitopes does not fully account for its exceptional resistance to antibodies.more » The full-length, membrane-bound CH120.6 Env is indeed stable and conformationally homogeneous. Its antigenicity correlates closely with its neutralization sensitivity, and major changes in antigenicity upon CD4 engagement appear to be restricted to the coreceptor site. The CH120.6 gp140 trimer, the soluble and uncleaved ectodomain of (gp160) 3, retains many antigenic properties of the intact Env, consistent with a conformation close to that of Env spikes on a virion, whereas its monomeric gp120 exposes many nonneutralizing or strain-specific epitopes. Thus, trimer organization and stability are important determinants not only for occluding many epitopes but also for conferring resistance to neutralization by all but a small set of antibodies. Env preparations derived from neutralization-resistant viruses may induce irrelevant antibody responses less frequently than do other Envs and may be excellent templates for developing soluble immunogens.« less
Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yongfei; Karaca-Griffin, Selen; Chen, Jia
Here, the extraordinary genetic diversity of the HIV-1 envelope spike [Env; trimeric (gp160) 3, cleaved to (gp120/gp41) 3] poses challenges for vaccine development. Envs of different clinical isolates exhibit different sensitivities to antibody-mediated neutralization. Envs of difficult-to-neutralize viruses are thought to be more stable and conformationally homogeneous trimers than those of easy-to-neutralize viruses, thereby providing more effective concealment of conserved, functionally critical sites. In this study we have characterized the antigenic properties of an Env derived from one of the most neutralization-resistant HIV-1 isolates, CH120.6. Sequence variation at neutralizing epitopes does not fully account for its exceptional resistance to antibodies.more » The full-length, membrane-bound CH120.6 Env is indeed stable and conformationally homogeneous. Its antigenicity correlates closely with its neutralization sensitivity, and major changes in antigenicity upon CD4 engagement appear to be restricted to the coreceptor site. The CH120.6 gp140 trimer, the soluble and uncleaved ectodomain of (gp160) 3, retains many antigenic properties of the intact Env, consistent with a conformation close to that of Env spikes on a virion, whereas its monomeric gp120 exposes many nonneutralizing or strain-specific epitopes. Thus, trimer organization and stability are important determinants not only for occluding many epitopes but also for conferring resistance to neutralization by all but a small set of antibodies. Env preparations derived from neutralization-resistant viruses may induce irrelevant antibody responses less frequently than do other Envs and may be excellent templates for developing soluble immunogens.« less
Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin.
Rahbarizadeh, F; Rasaee, M J; Forouzandeh Moghadam, M; Allameh, A A; Sadroddiny, E
2004-06-01
Recently, the existence of "heavy-chain" antibody in Camelidae has been described. However, as yet there is no data on the binding of this type of antibody to peptides. In addition, there was not any report of production of single-domain antibodies in two-humped camels (Camelus bactrianus). In the present study, these questions are addressed. We showed the feasibility of immunizing old world camels, cloning the repertoire of the variable domain of their heavy-chain antibodies, panning and selection, leading to the successful identification of minimum-sized antigen binders. Antigen-specific fragments of the heavy-chain IgGs (V(HH)) are of great interest in biotechnology because they are very stable, highly soluble, and react specifically and with high affinity to the antigens. In this study, we immunized two camels (Camelus dromedarius and Camelus bactrianus) with homogenized cancerous tissues, synthetic peptide, and human milk fat globule membrane (HMFG), and generated two V(HH) libraries displayed on phage particles. Some single-domain antibody fragments have been isolated that specifically recognize the tandem repeat region of MUC1. The camels' single-domain V(HH) harbor the original, intact antigen binding site and reacted specifically and with high affinity to the tandem repeat region of MUC1. Indeed soluble, specific antigen binders and good affinities (in the range of 0.2 x 10(9) M(-1) to 0.6 x 10(9) M(-1)) were identified from these libraries. This is the first example of the isolation of camel anti-peptide V(HH) domains.
Moreno, Elizabeth Castro; Gonçalves, Andréa Vieira; Chaves, Anderson Vieira; Melo, Maria Norma; Lambertucci, José Roberto; Andrade, Antero Silva Ribeiro; Negrão-Corrêa, Deborah; Antunes, Carlos Mauricio de Figueiredo; Carneiro, Mariângela
2009-01-01
Background One of the most important drawbacks in visceral leishmaniasis (VL) population studies is the difficulty of diagnosing asymptomatic carriers. The aim of this study, conducted in an urban area in the Southeast of Brazil, was to evaluate the performance of serology to identify asymptomatic VL infection in participants selected from a cohort with a two-year follow-up period. Methodology Blood samples were collected in 2001 from 136 cohort participants (97 positive and 39 negatives, PCR/hybridization carried out in 1999). They were clinically evaluated and none had progressed to disease from their asymptomatic state. As controls, blood samples from 22 control individuals and 8 patients with kala-azar were collected. Two molecular biology techniques (reference tests) were performed: PCR with Leishmania-generic primer followed by hybridization using L. infantum probe, and PCR with specific primer to L. donovani complex. Plasma samples were tested by ELISA using three different antigens: L. infantum and L. amazonensis crude antigens, and rK39 recombinant protein. Accuracy of the serological tests was evaluated using sensitivity, specificity, likelihood ratio and ROC curve. Findings The presence of Leishmania was confirmed, by molecular techniques, in all kala-azar patients and in 117 (86%) of the 136 cohort participants. Kala-azar patients showed high reactivity in ELISAs, whereas asymptomatic individuals presented low reactivity against the antigens tested. When compared to molecular techniques, the L. amazonensis and L. infantum antigens showed higher sensitivity (49.6% and 41.0%, respectively) than rK39 (26.5%); however, the specificity of rK39 was higher (73.7%) than L. amazonensis (52.6%) and L. infantum antigens (36.8%). Moreover, there was low agreement among the different antigens used (kappa<0.10). Conclusions Serological tests were inaccurate for diagnosing asymptomatic infections compared to molecular methods; this could lead to misclassification bias in population studies. Therefore, studies which have used serological assays to estimate prevalence, to evaluate intervention programs or to identify risk factors for Leishmania infection, may have had their results compromised. PMID:19841736
Leyva-Cobián, F; Outschoorn, I M; Carrasco-Marín, E; Alvarez-Domínguez, C
1997-10-01
Intracellular pathogens can be considered as particulate antigens chemically composed of a complex mixture of T-cell-dependent antigens (TD) (peptides and proteins) and T-cell-independent antigens (TI) (glycolipids and complex polysaccharides). A large range of saccharides (from oligosaccharides to complex polysaccharides) derived from pathogenic microorganisms are being isolated and characterized. They are currently implicated in signaling systems and concomitant host-parasite relationships. However, there are not many structure-function relationships described for these pathogens. This is particularly true of polysaccharides. In this report we have reviewed the role of defined TI antigens in the processing and presentation of defined TD antigens to specific T cells by antigen-presenting cells (APC). We also considered the importance of some of the chemical characteristics shared by different carbohydrates implicated in the inhibition of antigen presentation. These findings are discussed in relation to the clear immunopathological consequences of long retention periods of complex carbohydrate molecules derived from intracellular parasites inside certain APC and the absence of antigen presentation impairment in physiological situations such as the removal of senescent or damaged red blood cells by splenic macrophages or intracellular accumulation of carbohydrates in colostrum and milk macrophages during lactation.
Pulmonary arterial remodeling induced by a Th2 immune response
Daley, Eleen; Emson, Claire; Guignabert, Christophe; de Waal Malefyt, Rene; Louten, Jennifer; Kurup, Viswanath P.; Hogaboam, Cory; Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.; Rabinovitch, Marlene; Grunig, Ekkehard; Grunig, Gabriele
2008-01-01
Pulmonary arterial remodeling characterized by increased vascular smooth muscle density is a common lesion seen in pulmonary arterial hypertension (PAH), a deadly condition. Clinical correlation studies have suggested an immune pathogenesis of pulmonary arterial remodeling, but experimental proof has been lacking. We show that immunization and prolonged intermittent challenge via the airways with either of two different soluble antigens induced severe muscularization in small- to medium-sized pulmonary arteries. Depletion of CD4+ T cells, antigen-specific T helper type 2 (Th2) response, or the pathogenic Th2 cytokine interleukin 13 significantly ameliorated pulmonary arterial muscularization. The severity of pulmonary arterial muscularization was associated with increased numbers of epithelial cells and macrophages that expressed a smooth muscle cell mitogen, resistin-like molecule α, but surprisingly, there was no correlation with pulmonary hypertension. Our data are the first to provide experimental proof that the adaptive immune response to a soluble antigen is sufficient to cause severe pulmonary arterial muscularization, and support the clinical observations in pediatric patients and in companion animals that muscularization represents one of several injurious events to the pulmonary artery that may collectively contribute to PAH. PMID:18227220
Negassi, K; Closs, O; Harboe, M
1979-01-01
Cross-reactions between serum proteins and water soluble liver antigens of the nine-banded armadillo (Dasypus novemcinctus Linn.) and man were studied by crossed immunoelectrophoresis (CIE). Armadillo serum tested with rabbit antiserum against human serum proteins gave twelve components in CIE. Nine of these cross-reacting proteins were identified and showed partial identity with the corresponding human proteins. The electrophoretic mobility of alpha 2-macroglobulin and Gc-globulin differed in the two species. An ultrasonicate of normal armadillo liver gave twenty-eight anodic and eight cathodic components in CIE. By absorption experiments with armadillo serum, twenty of the former and seven of the latter were shown to be liver tissue components. A combination of CIE and crossed-line immunoelectrophoresis (CLIE) revealed the presence of twelve anodic and six cathodic liver tissue components cross-reacting with man. A cathodic armadillo liver antigen called (CALA-17) showed partial identity with that of man both in tandem and fused rocket immunoelectrophoresis. The implications of the findings are discussed in relation to the use of armadillo-grown M. leprae for skin testing and other purposes in man. Images FIG. 1 FIG. 3 FIG. 4 FIG. 5 PMID:93527
Coutrot, Edwin; Blancher-Sardou, Marie; Blancher, Antoine
2008-02-01
The aim of the study was to compare the cross-reactivity of macaque anti-CeHV1 antibodies with type 1 and type 2 human herpes simplex viruses (HSV1 and HSV2). We studied the serum of 344 animals which had been tested either positive (n = 39) or negative (n = 305) for the presence of CeHV1 antibodies by expert laboratories. Macaque serums were studied by means of two ELISA: one based on HSV1 antigen-coated wells, the other on polystyrene beads coated with HSV1 and HSV2 antigens in approximately equal proportions. In the serum of two animals originating from Vietnam, we found anti-CeHV1 antibodies cross-reacting with HSV2 but not with HSV1 antigens. For the serum with the highest titer, inhibition by soluble antigens confirmed the high affinity of the antibodies for HSV2 antigens. Tests using HSV1 and HSV2 in a combined way are better suited to macaque screening than tests using only HSV1 antigens.
Indirect Competitive Enzyme-Linked Immunosorbent Assay (ELISA).
Kohl, Thomas O; Ascoli, Carl A
2017-07-05
The indirect competitive ELISA (indirect cELISA) pits plate-immobilized antigen against antigens in solution for binding to antigen-specific antibody. The antigens in solution are in the test sample and are first incubated with antigen-specific antibody. These antibody-antigen complexes are then added to microtiter plates whose wells have been coated with purified antigen. The wells are washed to remove unbound antigen-antibody complexes and free antigen. A reporter-labeled secondary antibody is then added followed by the addition of substrate. Substrate hydrolysis yields a signal that is inversely proportional to antigen concentration within the sample. This is because when antigen concentration is high in the test sample, most of the antibody is bound before adding the solution to the plate. Most of the antibody remains in solution (as complexes) and is thus washed away before the addition of the reporter-labeled secondary antibody and substrate. Thus, the higher the antigen concentration in the test sample, the weaker the resultant signal in the detection step. The indirect cELISA is often used for competitive detection and quantification of antibodies against viral diseases in biological samples. © 2017 Cold Spring Harbor Laboratory Press.
Marin, M S; Hecker, Y P; Quintana, S; Pérez, S E; Leunda, M R; Cantón, G J; Cobo, E R; Moore, D P; Odeón, A C
2017-08-30
Neospora caninum is an obligate parasite and a major cause of abortion in cattle. Pregnancy failures appear to be associated with weak innate defences on the maternal-fetal interface during infection with N. caninum. Herein, we studied the gene expression of Toll-like receptors (TLRs) in pregnant heifers immunized with different vaccine formulations against N. caninum before mating and then challenged the heifers with live N. caninum on day 70 of gestation. TLR7 and TLR8 expression was upregulated in the placental caruncle of infected-pregnant heifers previously exposed to live N. caninum as immunogen. However, TLR7 and 8 expression in both placenta and caruncle as well as, TLR3 and 9 expression in caruncle were upregulated when heifers were previously immunized with inactivated soluble whole antigens and recombinant NcSAG1, NcHSP20 and NcGRA7 proteins. All dams were carrying viable fetuses when they were culled at day 104 of gestation. Upregulation of TLR7 and IFNγ expression was detected in fetal spleen when their mothers where previously vaccinated with soluble antigens and recombinant NcSAG1, NcHSP20 and NcGRA7 proteins. These studies demonstrate that soluble or recombinant NcSAG1, NcHSP20 and NcGRA7 antigens induce key TLRs expression at the maternal-fetal interface, probably triggering damaging inflammatory cellular immune responses associated with abortion. Previous infection with N. caninum seems to attenuate the innate immune response at the maternal-fetal interface, which could favour pregnancy maintenance and perpetuation of the disease. This finding represents novel information on how N. caninum vaccination and infection modulate TLRs expression at the placenta and fetal spleen, the possible role in the pregnancy outcomes and transplacental transmission of the protozoa. Copyright © 2017 Elsevier B.V. All rights reserved.
Immunomodulating activities of soluble synthetic polymer-bound drugs.
Ríhová, Blanka
2002-09-13
The introduction of a synthetic material into the body always affects different body systems, including the defense system. Synthetic polymers are usually thymus-independent antigens with only a limited ability to elicit antibody formation or to induce a cellular immune response against them. However, there are many other ways that they influence or can be used to influence the immune system of the host. Low-immunogenic water-soluble synthetic polymers sometimes exhibit significant immunomodulating activity, mainly concerning the activation/suppression of NK cells, LAK cells and macrophages. Some of them, such as poly(ethylene glycol) and poly[N-(2-hydroxypropyl)methacrylamide], can be used as effective protein carriers, as they are able to reduce the immunogenicity of conjugated proteins and/or to reduce non-specific uptake of liposome/nanoparticle-entrapped drugs and other therapeutic agents. Recently, the development of vaccine delivery systems prepared from biodegradable and biocompatible water-soluble synthetic polymers, microspheres, liposomes and/or nanoparticles has received considerable attention, as they can be tailored to meet the specific physical, chemical, and immunogenic requirements of a particular antigen and some of them can also act as adjuvants. Copyright 2002 Elsevier Science B.V.
THE ANTIBODY-FORMATION BY POLYSACCHARIDS
Nishimura, Shoji
1929-01-01
1. By complement fixation tests, it has been clearly demonstrated that the sera of rabbits immunized with inulin, soluble starch and dextrine contain specific antibodies. 2. All these immune sera gave a negative precipitation reaction. 3. The kind of dextrine which has a construction very near to starch has an antigenic property, but those in a state of further decomposition do not give rise to antibodies. 4. All the three kinds of polysaccharids have power to produce antibodies without any vehicle. Dextrine is the only one of the three that gives rise to immune bodies more readily when pig serum is added to it. 5. Regarded as antigens, inulin stood first and soluble starch and dextrine next in order. 6. All three kinds of polysaccharids that were employed gave a negative protein color reaction. All of them, however, contained nitrogen. It has been proved that the large portion of the nitrogen contained in the soluble starch is derived from its protein contents. 7. It is suggested that in the production of immune bodies by these three kinds of polysaccharids, proteins might play the part of the vehicle. This is, however, still to be determined. PMID:19869634
1980-11-12
320-325. 4. Hedlund, K. W., V. G. McGann, D. S . Copeland, S . F. Little, and R. G. Allen. 1979. Immunologic protection against the Legionnaires ’ disease ...reverse% passive hemagglutination test was developed to assay concentrations of solubl4 antigen of Legionnaires ’ Disease (Legionella pneumophila) in...URINE U. S . Arm" Medical Research Institute of Infectious Diseases Fort Detrick, Frederick, Maryland 21701 The views of the authors do not purport to
Altomonte, M; Pucillo, C; Maio, M
1999-06-01
Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.
Yang, Xiangdong; Lloyd, Bethany; Daniell, Henry
2013-01-01
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long-term storage at room temperature. To our knowledge, this is the first report of expression of TB vaccine antigens in chloroplasts. PMID:23355891
Biosynthesis and Immunolocalization of Lewis a-Containing N-Glycans in the Plant Cell1
Fitchette, Anne-Catherine; Cabanes-Macheteau, Marion; Marvin, Laure; Martin, Barry; Satiat-Jeunemaitre, Béatrice; Gomord, Véronique; Crooks, Kim; Lerouge, Patrice; Faye, Loïc; Hawes, Chris
1999-01-01
We recently demonstrated the presence of a new asparagine-linked complex glycan on plant glycoproteins that harbors the Lewis a (Lea), or Galβ(1-3)[Fucα(1-4)]GlcNAc, epitope, which in mammalian cells plays an important role in cell-to-cell recognition. Here we show that the monoclonal antibody JIM 84, which is widely used as a Golgi marker in light and electron microscopy of plant cells, is specific for the Lea antigen. This antigen is present on glycoproteins of a number of flowering and non-flowering plants, but is less apparent in the Cruciferae, the family that includes Arabidopsis. Lea-containing oligosaccharides are found in the Golgi apparatus, and our immunocytochemical experiments suggest that it is synthesized in the trans-most part of the Golgi apparatus. Lea epitopes are abundantly present on extracellular glycoproteins, either soluble or membrane bound, but are never observed on vacuolar glycoproteins. Double-labeling experiments suggest that vacuolar glycoproteins do not bypass the late Golgi compartments where Lea is built, and that the absence of the Lea epitope from vacuolar glycoproteins is probably the result of its degradation by glycosidases en route to or after arrival in the vacuole. PMID:10517824
CD30 antigen in embryonal carcinoma and embryogenesis and release of the soluble molecule.
Latza, U.; Foss, H. D.; Dürkop, H.; Eitelbach, F.; Dieckmann, K. P.; Loy, V.; Unger, M.; Pizzolo, G.; Stein, H.
1995-01-01
The expression, serological detection, and possible functional role of the CD30 antigen in Hodgkin's disease and anaplastic large cell lymphoma is well documented. In embryonal carcinoma (EC), the expression of this cytokine receptor has been demonstrated only by immunohistology. Because the CD30 monoclonal antibody Ki-1 was found to cross-react with an unrelated molecule, we examined by in situ hybridization testicular germ cell neoplasms for the presence of CD30-specific transcripts. CD30 mRNA was detectable in the tumor cells of 9 of 9 cases of EC or mixed germ cell tumors with an EC component but in no other nonlymphoid tumors. Thus, the CD30 transcript expression pattern proved to be identical to the immunostaining pattern seen with the CD30-specific monoclonal antibody Ber-H2. By Northern blot analysis, CD30 transcripts could be demonstrated in the EC cell line Tera-2. Employing a highly sensitive second generation sandwich enzyme-linked immunosorbent assay, we could detect the soluble CD30 molecule in 8 of 8 sera from patients with a diagnosis of EC but not in 8 of 10 sera from patients with other testicular germ cell tumors. In fetal tissue, no CD30-expressing germ cells or epithelial cells could be observed. Thus, the cellularly expressed CD30 marker for testicular neoplasms of EC type. Moreover, the serum levels of soluble CD30 antigen seem to be a promising parameter for monitoring patients with EC. Images Figure 1 Figure 2 PMID:7856755
Aldoss, I; Bargou, R C; Nagorsen, D; Friberg, G R; Baeuerle, P A; Forman, S J
2017-04-01
Recent advances in antibody technology to harness T cells for cancer immunotherapy, particularly in the difficult-to-treat setting of relapsed/refractory acute lymphoblastic leukemia (r/r ALL), have led to innovative methods for directing cytotoxic T cells to specific surface antigens on cancer cells. One approach involves administration of soluble bispecific (or dual-affinity) antibody-based constructs that temporarily bridge T cells and cancer cells. Another approach infuses ex vivo-engineered T cells that express a surface plasma membrane-inserted antibody construct called a chimeric antigen receptor (CAR). Both bispecific antibodies and CARs circumvent natural target cell recognition by creating a physical connection between cytotoxic T cells and target cancer cells to activate a cytolysis signaling pathway; this connection allows essentially all cytotoxic T cells in a patient to be engaged because typical tumor cell resistance mechanisms (such as T-cell receptor specificity, antigen processing and presentation, and major histocompatibility complex context) are bypassed. Both the bispecific T-cell engager (BiTE) antibody construct blinatumomab and CD19-CARs are immunotherapies that have yielded encouraging remission rates in CD19-positive r/r ALL, suggesting that they might serve as definitive treatments or bridging therapies to allogeneic hematopoietic cell transplantation. With the introduction of these immunotherapies, new challenges arise related to unique toxicities and distinctive pathways of resistance. An increasing body of knowledge is being accumulated on how to predict, prevent, and manage such toxicities, which will help to better stratify patient risk and tailor treatments to minimize severe adverse events. A deeper understanding of the precise mechanisms of action and immune resistance, interaction with other novel agents in potential combinations, and optimization in the manufacturing process will help to advance immunotherapy outcomes in the r/r ALL setting.
Toubas, Dominique; Aubert, Dominique; Villena, Isabelle; Foudrinier, Frédérique; Chemla, Cathy; Pinon, Jean Michel
2003-01-15
The practical value of immunological diagnosis of bird-breeder's disease (BBD) is controversial, because of difficulties in distinguishing active disease patients from simple contact subjects. The aim of this study was to determine the diagnostic and prognostic value of (a) presumed disease-associated antibodies precipitating pigeon antigens (immunoglobulin A (IgAp) and P2 component), (b) characterization of specific isotypes (IgG, IgM, and IgA), and (c) antibody kinetics after antigen eradication. 405 subjects (775 sera) in contact with birds were studied [by means of co-immunoelectrodiffusion (Co-IED) and enzyme-linked immunofiltration (ELIFA)] with soluble extracts of pigeon droppings and squab crop milk. These patients were divided into two groups based on the final clinical evaluation of the patients' physicians, which was taken as the gold standard (positive in 90 and negative in 315 cases). On the basis of this gold standard, the detection of presumed disease-associated precipitating antibodies by Co-IED had a specificity of 95.5%, a sensitivity of 98.7%, an accuracy of 98%, and positive and negative predictive values of 95.5% and 98.7%, respectively. Most of the patients with a final positive diagnosis of BBD had specific IgG, IgM, and IgA antibodies by ELIFA. After antigen eradication, anti IgAp and/or P2 antibodies disappeared more rapidly than other precipitating systems. Identification by Co-IED of precipitating immune complexes IgAp and/or P2 significantly reinforces the intrinsic credibility of immunological diagnosis of BBD. Compared to these presumed disease-associated precipitating antibodies, detection and time course of specific IgM, IgA antibodies, provided no additional diagnostic value or prognostic arguments to judge disease activity after antigen eradication.
Perreault, C
1981-01-01
Human leukocyte antigens (HLA) are transmembrane bicatenar glycoproteins; their heavy chain is coded by chromosome 6 and carries allotypic determinants. These molecules are present in nearly every cell, tissue and biologic fluid. Their congenital absence from fibroblasts is associated with progeria, while their absence from lymphocytes is associated with immunodeficiency. HLA antigens are usually studied microlymphocytotoxicity tests. The numerous cross-reactions encountered make the interpretation of results quite difficult. To clearly understand these reactions a complex-complex model is mandatory. The antigen, the HLA molecule, is complex since it carries many antigenic determinants; some of them are private ("subtypic"), while others are public ("subtypic"). Anti-HLA antibodies are also complex since they are heterogeneous, reacting with variable affinity with different antigenic determinants. The in vitro cross-reactions represent a partial explanation for varying cross-immunogenicity in vivo. PMID:7008927
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.-S.; IGE Therapeutics, Inc., Cellular and Cancer Immunology, 6370 Lusk Boulevard, F109, San Diego, CA 92121; Yang Yongmin
GFP-C{kappa} fusion protein was previously shown selectable on ribosome display platform with solid phase antibodies against GFP determinant [Y.-M. Yang, T.J. Barankiewicz, M. He, M. Taussig, S.-S. Chen, Selection of antigenic markers on a GFP-C{kappa} fusion scaffold with high sensitivity by eukaryotic ribosome display, Biochem. Biophys. Res. Commun. 359 (2007) 251-257]. Herein, we show that members of aptameric peptide library constructed within the site 6 and site 8/9 loops of GFP of the ribosome display construct are selectable upon binding to the solid phase IgE antigen. An input of 1.0 {mu}g of the dual site aptameric GFP library exhibiting amore » diversity of 7.5 x 10{sup 11} was transcribed, translated and incubated with solid phase IgE. RT-PCR products were amplified from mRNA of the aptamer-ribosome-mRNA (ARM) complex captured on the solid phase IgE. Clones of aptameric GFP were prepared from RT-PCR product of ARM complex following repetitive selection. Recombinant aptameric GFP proteins from the selected clones bind IgE coated on the 96-well plate, and the binding was abrogated by incubation with soluble human IgE but not human IgG. Selected aptameric GFP proteins also exhibit binding to three different sources of human IgE (IgE PS, BED, and JW8) but not irrelevant proteins. These observations indicate that appropriately selected aptameric GFP on a solid phase ligand by ribosome display may serve as an affinity reagent for blocking reactivity of a biological ligand.« less
Nie, Shufang; Zhang, Shu; Pan, Weisan; Liu, Yanli
2011-05-01
The purpose of this study was to evaluate the potential of a newly modified cyclodextrin derivative, water-soluble β-cyclodextrin-epichlorohydrin polymer (β-CDP), as an effective drug carrier to enhance the dissolution rate and oral bioavailability of glipizide as a poorly water-soluble model drug. Inclusion complexes of glipizide with β-CDP were prepared by the co-evaporation method and characterized by phase solubility, dissolution, and differential scanning calorimetry. The solubility curve was classified as type A(L), which indicated the formation of 1:1 complex between glipizide and β-CDP. β-CDP had better properties of increasing the aqueous solubility of glipizide compared with HP-β-CD. The dissolution rate of drug from the β-CDP complexes was significantly greater than that of the corresponding physical mixtures indicating that the formation of amorphous complex increased the solubility of glipizide. Moreover, the increment in drug dissolution rate from the glipizide/β-CDP systems was higher than that from the corresponding ones with HP-β-CD, which indicated that β-CDP could provide greater capability of solubilization for poorly soluble drugs. Furthermore, in vivo study revealed that the bioavailability of glipizide was significantly improved by glipizide /β-CDP inclusion complex after oral administration to beagle dogs.
Hashikita, Giichi; Yamaguti, Toshiyuki; Tachi, Yoshimi; Kishi, Etsuko; Kawamura, Toru; Takahashi, Shun; Arai, Yukie; Koyama, Sachie; Huruhata, Toshihumi; Itabashi, Akira; Oka, Yoko; Yamazaki, Tsutomu; Maesaki, Sigefumi
2005-01-01
We investigated the usefullness of Binax NOW urine antigen test, an immunochromatographic assay that binds any soluble Streptococcus pneumoniae antigen (C polysaccharide) for the diagnosis of penumoniae form September 2003 to March 2005. We used 372 samples form the patinets with pneumoniae diagnosed for blood or sputum cultuter or gram-stained sputum smear. Out of 24 culture positive specimens, Binax NOW urine antigen test, showed positive in 18 (75%) specimens. The sensitivity of sputum and blood culture was 71.7% and 83.3%, respectively. Binax NOW urine antigen test was seemed false positives in 55 samples, false negatives in 6 samples. The specificity of Binax NOW urine antigen test was evaluated 84.1%. Overall agreement among tests was 83.6%. When compared to culture, false negative urine antigen may be the result of colonizing S. pneumoniae in sputum or pneumonia caused by an agent other than S. pneumoniae. CRP values for cases were both urine antigen and culture were positive ranged from 40 mg/dl to 10 mg/dl while urine antigen and culture negative cases were predominantly less than 10 mg/dl. Positive blood and pleural fluid culture cases were consistently associated with strongly positive urine antigen tests. Non-agreement between urine antigen, culture, and microscopy may be the result of specimen quality, labile nature of S. pneumoniae and antimicrobial therapy.
B-cell acquisition of antigen: Sensing the surface.
Knight, Andrew M
2015-06-01
B-cell antigen receptor (BCR) recognition and acquisition of antigen by B cells is the essential first step in the generation of effective antibody responses. As B-cell-mediated antigen presentation is also believed to play a significant role in the activation of CD4(+) Th-cell responses, considerable effort has focused on clarifying the nature of antigen/BCR interactions. Following earlier descriptions of interactions of soluble antigens with the BCR, it is now clear that B cells also recognize, physically extract and present antigens that are tethered to, or integral components of, the surfaces or extracellular matrix of other cells. In this issue of the European Journal of Immunology, Zeng et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] examine how the physical property or "stiffness" of the surface displaying antigens to B cells influences the B-cell response. This commentary reports that antigen tethered on "less stiff" surfaces induces increased B-cell activation and antibody responses. I then infer how "sensing the surface" by B cells may represent a new component of the immune system's ability to detect "damage," and how this understanding may influence approaches to clinical therapies where immune activity is either unwanted or desired. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
de Lima Petito, Nicolly; da Silva Dias, Daiana; Costa, Valéria Gonçalves; Falcão, Deborah Quintanilha; de Lima Araujo, Kátia Gome
2016-10-01
Red bell pepper carotenoids were complexed with 2-hydroxypropyl-β-cyclodextrin (2-HPβCD) in different mass ratios (1:4, 1:6, 1:8 and 1:10) through ultrasonic homogenization in order to increase carotenoid solubility and their use as natural pigment in food. Inclusion complexes, red bell pepper extract and physical mixtures were analyzed by DSC, FT-IR, (1)H NMR and DLS. Solubility assay was performed to identify the effect of complexation on the solubility of carotenoids. From characterization assays, results showed that inclusion process occurred for all tested ratios. Results for water solubility assays demonstrated clear differences between solubility index of inclusion complexes (8.06±2.59-16.55±4.40mg/mL) and physical mixtures (3.53±1.44-7.3±1.88mg/mL), while carotenoid extract was no water soluble, as expected. These results indicated that molecular inclusion of carotenoids in 2-HPβCD was efficient to enhance their solubility in water, enabling application of red bell pepper carotenoid as natural pigment and/or bioactive substances in food. Copyright © 2016 Elsevier Ltd. All rights reserved.
Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S
2014-01-01
Synthetic subunit vaccines need to induce CD8+ cytotoxic T-cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8+ cytotoxic T-cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8+ T-cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendant pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25–30 nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5 h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4 h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8+ T cell responses (0.4 % IFN-γ+ of CD8+) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the draining lymph nodes. As early as 90 min post injection ova-micelle conjugates were associated with 28% and 55% of dendritic cells and macrophages, respectively. After 24 h, conjugates preferentially associated with dendritic cells, affording 30-, 3-, and 3-fold enhancements in uptake relative to free protein, physical mixture, and the non pH-responsive conjugate controls, respectively. These results demonstrate the potential of pH-responsive polymeric micelles for use in vaccine applications that rely on CD8+ T cell activation. PMID:24698946
Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S
2014-10-10
Synthetic subunit vaccines need to induce CD8(+) cytotoxic T cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8(+) cytotoxic T cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8(+) T cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendent pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25-30nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non-pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC 2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8(+) T cell responses (0.4% IFN-γ(+) of CD8(+)) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the draining lymph nodes. As early as 90min post injection, ova-micelle conjugates were associated with 28% and 55% of dendritic cells and macrophages, respectively. After 24h, conjugates preferentially associated with dendritic cells, affording 30-, 3-, and 3-fold enhancements in uptake relative to free protein, physical mixture, and the non-pH-responsive conjugate controls, respectively. These results demonstrate the potential of pH-responsive polymeric micelles for use in vaccine applications that rely on CD8(+) T cell activation. Copyright © 2014 Elsevier B.V. All rights reserved.
Ge, Xia; Huang, Zheng; Tian, Shilong; Huang, Yulong; Zeng, Chaozhen
2012-06-05
The effect of hydroxypropyl-β-cyclodextrin (HPβCD) on the improvement of the solubility and fungicidal activity of carbendazim (MBC) has been investigated. The inclusion complexation of HPβCD with MBC has been prepared and characterized by phase solubility diagram, fluorescence, (1)H NMR, ROESY and FT-IR spectra. The stoichiometric ratio and stability constant were determined by Job's plot and phase solubility studies, respectively. The inclusion complex MBC·HPβCD has exhibited different properties from MBC. The obtained inclusion complex was found to significantly improve the water solubility of MBC. In addition, the biological activity indicated that the complex displayed the better fungicidal activity than MBC. The present study provided useful information for a more rational application of MBC. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cabrera, Pablo J; Yang, Xingyi; Suttil, James A; Brooner, Rachel E M; Thompson, Levi T; Sanford, Melanie S
2015-11-02
This report describes the design, synthesis, solubility, and electrochemistry of a series of tris-bipyridine chromium complexes that exhibit up to six reversible redox couples as well as solubilities approaching 1 M in acetonitrile. We have systematically modified both the ligand structure and the oxidation state of these complexes to gain insights into the factors that impact solubility and electrochemistry. The results provide a set of structure-solubility-electrochemistry relationships to guide the future development of electrolytes for nonaqueous flow batteries. In addition, we have identified a promising candidate from the series of chromium complexes for further electrochemical and battery assessment.
Self-association and cyclodextrin solubilization of drugs.
Loftsson, Thorsteinn; Magnúsdóttir, Auethur; Másson, Már; Sigurjónsdóttir, Jóhanna F
2002-11-01
Phase-solubility diagrams are frequently used to calculate stoichiometry of drug/cyclodextrin complexes. Linear diagrams (A(L)-type systems) are thought to indicate that the complexes are first order with respect to cyclodextrin and first or higher order with respect to the drug. Positive deviation from linearity (A(P)-type systems) are thought to indicate formation of complexes that are first order with respect to the drug but second or higher order with respect to cyclodextrin. The phase solubility of several different compounds, i.e., cholesterol, ibuprofen, diflunisal, alprazolam, 17beta-estradiol and diethylstilbestrol, and various charged and uncharged cyclodextrins was investigated. Phase-solubility diagrams of cholesterol in aqueous cyclodextrin solutions were all of A(P) type. However, the phase-solubility diagrams obtained with charged cyclodextrins could not be fitted to complexes of second or higher order with respect to cyclodextrin. The phase-solubility diagrams of ibuprofen and diflunisal were of A(L) type with slope greater than unity indicating formation of 2:1 drug/cyclodextrin complexes. However, Job's plots and space filling docking studies indicated that 1:1 complexes were formed. These and other observations show that stoichiometry of drug/cyclodextrin complexes cannot be derived from simple phase-solubility studies. Furthermore, the results indicate that drug/cyclodextrin complexes can self-associate to form water-soluble aggregates, which then can further solubilize the drug through non-inclusion complexation. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2307-2316, 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do Kwon, Young; Pancera, Marie; Acharya, Priyamvada
As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. In this paper, we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer boundmore » by a single CD4 without the typical antigenic hallmarks of CD4 induction. Finally, antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.« less
Do Kwon, Young; Pancera, Marie; Acharya, Priyamvada; ...
2015-06-22
As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. In this paper, we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer boundmore » by a single CD4 without the typical antigenic hallmarks of CD4 induction. Finally, antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.« less
Garside, P.; Steel, M.; Worthey, E. A.; Kewin, P. J.; Howie, S. E.; Harrison, D. J.; Bishop, D.; Mowat, A. M.
1996-01-01
The mechanism responsible for the induction of immunological tolerance by oral administration of soluble antigen remains unclear. Here we show that, when cultured in vitro in the absence of antigen, lymphocytes from mice tolerized with a single feed of 25 mg of ovalbumin display an enhanced mortality in comparison with cells from immunized control animals. This increased cell death affects both CD4+ and CD8+ T-lymphocyte subsets, and morphological and flow cytometric analyses suggest that it occurs via apoptosis. All of the changes associated with the propensity of tolerant cells to die by apoptosis in vitro are reduced by the inclusion of the tolerizing antigen in the cultures. These results suggest that tolerance to dietary proteins is accompanied by functional changes in T lymphocytes that render them susceptible to apoptosis. This mechanism may underlie the profound and permanent tolerance to food antigens found under physiological conditions and may provide a useful basis for immunotherapy. Images Figure 3 PMID:8952532
Mosconi, E; Rekima, A; Seitz-Polski, B; Kanda, A; Fleury, S; Tissandie, E; Monteiro, R; Dombrowicz, D D; Julia, V; Glaichenhaus, N; Verhasselt, V
2010-09-01
Allergic asthma is a chronic lung disease resulting from an inappropriate T helper (Th)-2 response to environmental antigens. Early tolerance induction is an attractive approach for primary prevention of asthma. Here, we found that breastfeeding by antigen-sensitized mothers exposed to antigen aerosols during lactation induced a robust and long-lasting antigen-specific protection from asthma. Protection was more profound and persistent than the one induced by antigen-exposed non-sensitized mothers. Milk from antigen-exposed sensitized mothers contained antigen-immunoglobulin (Ig) G immune complexes that were transferred to the newborn through the neonatal Fc receptor resulting in the induction of antigen-specific FoxP3(+) CD25(+) regulatory T cells. The induction of oral tolerance by milk immune complexes did not require the presence of transforming growth factor-beta in milk in contrast to tolerance induced by milk-borne free antigen. Furthermore, neither the presence of IgA in milk nor the expression of the inhibitory FcgammaRIIb in the newborn was required for tolerance induction. This study provides new insights on the mechanisms of tolerance induction in neonates and highlights that IgG immune complexes found in breast milk are potent inducers of oral tolerance. These observations may pave the way for the identification of key factors for primary prevention of immune-mediated diseases such as asthma.
Solubility Enhancement of Raloxifene Using Inclusion Complexes and Cogrinding Method
Patil, Payal H.; Belgamwar, Veena S.; Patil, Pratibha R.; Surana, Sanjay J.
2013-01-01
The objective of the present work was to enhance the solubility and dissolution of practically water-insoluble drug raloxifene HCl (RLX), for the same two approaches that were used. In the first approach, drug was kneaded with hydroxypropyl-β-cyclodextrin (HPβCD), and in the second one drug was cogrinded with modified guar gum (MGG). The drug-cyclodextrin complex and drug-MGG cogrind mixtures were characterized by differential scanning calorimetry, X-ray diffraction studies, scanning electron microscopy, and Fourier transform infrared spectroscopy. The solubility and dissolution study reveals that solubility and dissolution rate of RLX remarkably increased in both methods. It was concluded that the prepared inclusion complex showed a remarkable increase in solubility and dissolution of poorly water-soluble drug raloxifene. In the cogrinding mixture, a natural modified gum is used as a surfactant and enhances the solubility and dissolution of RLX without requiring addition of organic solvent or high temperature for its preparation; thus, process is less cumbersome and cost effective. But when both methods were compared; HPβCD complexation method showed significant enhancement of drug solubility. PMID:26555984
Baughn, R E; Musher, D M
1983-01-01
Immune complexes isolated from sera of rabbits with experimental, disseminated syphilis were found to have sedimentation coefficients greater than 19s. By radioimmunoblot assays, materials precipitated with 2.5% polyethylene glycol or chromatographed on DEAE-Affi-Gel Blue were found to contain albumin, C3, immunoglobulin M (IgM), IgG, and treponemal antigen(s), whereas control materials contained only albumin and IgG. When polyethylene glycol precipitation of immune complexes from syphilitic rabbits was followed by immobilization on protein A and acid elution, radioimmunoblots detected only IgG and treponemal antigen(s). Images PMID:6358025
Breda, Susana A; Jimenez-Kairuz, Alvaro F; Manzo, Ruben H; Olivera, María E
2009-04-17
The hydrochlorides of the 1:3 aluminum:norfloxacin and aluminum:ciprofloxacin complexes were characterized according to the Biopharmaceutics Classification System (BCS) premises in comparison with their parent compounds. The pH-solubility profiles of the complexes were experimentally determined at 25 and 37 degrees C in the range of pH 1-8 and compared to that of uncomplexed norfloxacin and ciprofloxacin. Both complexes are clearly more soluble than the antibiotics themselves, even at the lowest solubility pHs. The increase in solubility was ascribed to the species controlling solubility, which were analyzed in the solid phases at equilibrium at selected pHs. Additionally, permeability was set as low, based on data reported in the scientific literature regarding oral bioavailability, intestinal and cell cultures permeabilities and also considering the influence of stoichiometric amounts of aluminum. The complexes fulfill the BCS criterion to be classified as class 3 compounds (high solubility/low permeability). Instead, the active pharmaceutical ingredients (APIs) currently used in solid dosage forms, norfloxacin and ciprofloxacin hydrochloride, proved to be BCS class 4 (low solubility/low permeability). The solubility improvement turns the complexes as potential biowaiver candidates from the scientific point of view and may be a good way for developing more dose-efficient formulations. An immediate release tablet showing very rapid dissolution was obtained. Its dissolution profile was compared to that of the commercial ciprofloxacin hydrochloride tablets allowing to dissolution of the complete dose at a critical pH such as 6.8.
NASA Astrophysics Data System (ADS)
Sherje, Atul P.; Patel, Forum; Murahari, Manikanta; Suvarna, Vasanti; Patel, Kavitkumar
2018-02-01
The present study demonstrated the binary and ternary complexes of Zaltoprofen (ZPF) with β-CD and HP-β-CD. The products were characterized using solubility, in vitro dissolution, and DSC studies. The mode of interaction of guest and host was revealed through 1H NMR and FT-IR studies. A significant increase was noticed in the stability constant (Kc) and complexation efficiency (CE) of β-CD and HP-β-CD due to addition of L-Arg in ternary complexes. The ternary complexes showed greater increase in solubility and dissolution of ZPF than binary complexes. Thus, ternary system of ZPF could be an innovative approach for its solubility and dissolution enhancement.
NASA Astrophysics Data System (ADS)
Imboden, John B.; Shoback, Dolores M.; Pattison, Gregory; Stobo, John D.
1986-08-01
The addition of monoclonal antibodies to the antigen receptor complex on the malignant human T-cell line Jurkat generates increases in inositol trisphosphate and in the concentration of cytoplasmic free calcium. Exposure of Jurkat cells to cholera toxin for 3 hr inhibited these receptor-mediated events and led to a selective, partial loss of the antigen receptor complex from the cellular surface. None of the effects of cholera toxin on the antigen receptor complex were mimicked by the B subunit of cholera toxin or by increasing intracellular cAMP levels with either forskolin or 8-bromo cAMP. These results suggest that a cholera toxin substrate can regulate signal transduction by the T-cell antigen receptor.
Omar, Noorsharmimi; Hamidon, Nurul Hamizah; Yunus, Muhammad Hafiznur; Noordin, Rahmah; Choong, Yee Siew; Lim, Theam Soon
2018-05-01
Phage display has been applied successfully as a tool for the generation of monoclonal antibodies (mAbs). Naive antibody libraries are unique as they are able to overcome several limitations associated with conventional mAb generation methods like the hybridoma technology. Here, we performed an in vitro selection and generation of Fab antibodies against Brugia malayi SXP protein (BmSXP), a recombinant antigen for the detection of lymphatic filariasis. We developed a naïve multi ethnic Fab antibody library with an estimated diversity of 2.99 × 10 9 . The antibody library was used to screen for mAbs against BmSXP recombinant antigen. Soluble monoclonal Fab antibodies against BmSXP were successfully isolated from the naïve library. The Fab antibodies obtained were expressed and analyzed to show its binding capability. The diversity obtained from a pool of donors from various ethnic groups allowed for a diverse antibody library to be generated. The mAbs obtained were also functional in soluble form, which makes it useful for further downstream applications. We believe that the Fab mAbs are valuable for further studies and could also contribute to improvements in the diagnosis of filariasis. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
Upreti, Mani; Strassburger, Ken; Chen, You L.; Wu, Shaoxiong; Prakash, Indra
2011-01-01
Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state 13C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes. PMID:22174615
Blood Type Biochemistry and Human Disease
Ewald, D Rose; Sumner, Susan CJ
2016-01-01
Associations between blood type and disease have been studied since the early 1900s when researchers determined that antibodies and antigens are inherited. In the 1950s, the chemical identification of the carbohydrate structure of surface antigens led to the understanding of biosynthetic pathways. The blood type is defined by oligosaccharide structures, which are specific to the antigens, thus, blood group antigens are secondary gene products, while the primary gene products are various glycosyltransferase enzymes that attach the sugar molecules to the oligosaccharide chain. Blood group antigens are found on red blood cells, platelets, leukocytes, plasma proteins, certain tissues, and various cell surface enzymes, and also exist in soluble form in body secretions such as breast milk, seminal fluid, saliva, sweat, gastric secretions, urine, and amniotic fluid. Recent advances in technology, biochemistry, and genetics have clarified the functional classifications of human blood group antigens, the structure of the A, B, H, and Lewis determinants and the enzymes that produce them, and the association of blood group antigens with disease risks. Further research to identify differences in the biochemical composition of blood group antigens, and the relationship to risks for disease, can be important for the identification of targets for the development of nutritional intervention strategies, or the identification of druggable targets. PMID:27599872
Patel, Parth; Agrawal, Y K; Sarvaiya, Jayrajsinh
2016-03-01
Modafinil is an approved drug for the treatment of narcolepsy and have a strong market presence in many countries. The drug is widely consumed for off-label uses and currently listed as a restricted drug. Modafinil has very low water solubility. To enhance the aqueous solubility of modafinil by the formation of a ternary complex with Hydroxypropyl-β-cyclodextrin and two hydrophilic polymers was the main objective of the present study. Pyrrolidone (PVP K30) and a water soluble chitosan derivative, trimethyl chitosan (TMC) were studied by solution state and solid state characterization methods for their discriminatory efficiency in solubility enhancement of modafinil. Phase solubility study depicted the highest complexation efficiency (2.22) of cyclodextrin derivative in the presence of TMC compared to the same in the presence of PVP K30 (0.08) and in the absence of any polymer (0.92). FT-IR analysis of binary and ternary complex expressed comparable contribution of both polymers in formation of inclusion complex. The thermal behaviour of binary and ternary complex, involving individual polymers disclosed the influence of TMC on polymorphism of the drug. DSC study revealed efficiency of TMC to prevent conversion of metastable polymorphic form to stable polymorphic form. Ternary complex, involving TMC enhanced water solubility of the drug 1.5 times more compared to the binary complex of the drug whereas PVP K30 reduced the Solubility. Copyright © 2015 Elsevier B.V. All rights reserved.
Rao, Monica R P; Chaudhari, Jagruti; Trotta, Francesco; Caldera, Fabrizio
2018-06-04
Rilpivrine is BCS class II drug used for treatment of HIV infection. The drug has low aqueous solubility (0.0166 mg/ml) and dissolution rate leading to low bioavailability (32%). Aim of this work was to enhance solubility and dissolution of rilpivirine using beta-cyclodextrin-based nanosponges. These nanosponges are biocompatible nanoporous particles having high loading capacity to form supramolecular inclusion and non-inclusion complexes with hydrophilic and lipophilic drugs for solubility enhancement. Beta-cyclodextrin was crosslinked with carbonyl diimidazole and pyromellitic dianhydride to prepare nanosponges. The nanosponges were loaded with rilpivirine by solvent evaporation method. Binary and ternary complexes of drug with β-CD, HP-β-CD, nanosponges, and tocopherol polyethylene glycol succinate were prepared and characterized by phase solubility, saturation solubility in different media, in vitro dissolution, and in vivo pharmacokinetics. Spectral analysis by Fourier transform infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry was performed. Results obtained from spectral characterization confirmed inclusion complexation. Phase solubility studies indicated stable complex formation. Saturation solubility was found to be 10-13-folds higher with ternary complexes in distilled water and 12-14-fold higher in 0.1 N HCl. Solubility enhancement was evident in biorelevant media. Molecular modeling studies revealed possible mode of entrapment of rilpivirine within β-CD cavities. A 3-fold increase in dissolution with ternary complexes was observed. Animal studies revealed nearly 2-fold increase in oral bioavailability of rilpivirine. It was inferred that electronic interactions, hydrogen bonding, and van der Waals forces are involved in the supramolecular interactions.
Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity.
Tacken, Paul J; Zeelenberg, Ingrid S; Cruz, Luis J; van Hout-Kuijer, Maaike A; van de Glind, Gerline; Fokkink, Remco G; Lambeck, Annechien J A; Figdor, Carl G
2011-12-22
Effective vaccines consist of 2 components: immunodominant antigens and effective adjuvants. Whereas it has been demonstrated that targeted delivery of antigens to dendritic cells (DCs) improves vaccine efficacy, we report here that co-targeting of TLR ligands (TLRLs) to DCs strongly enhances adjuvanticity and immunity. We encapsulated ligands for intracellular TLRs within biodegradable nanoparticles coated with Abs recognizing DC-specific receptors. Targeted delivery of TLRLs to human DCs enhanced the maturation and production of immune stimulatory cytokines and the Ag-specific activation of naive CD8(+) T cells. In vivo studies demonstrated that nanoparticles carrying Ag induced cytotoxic T-lymphocyte responses at 100-fold lower adjuvant dose when TLRLs were co-encapsulated instead of administered in soluble form. Moreover, the efficacy of these targeted TLRLs reduced the serum cytokine storm and related toxicity that is associated with administration of soluble TLRLs. We conclude that the targeted delivery of adjuvants may improve the efficacy and safety of DC-based vaccines.
Flashner, Yehuda; Fisher, Morly; Tidhar, Avital; Mechaly, Adva; Gur, David; Halperin, Gideon; Zahavy, Eran; Mamroud, Emanuelle; Cohen, Sara
2010-07-01
Markers of the early stages of plague, a rapidly progressing deadly disease, are crucial for enabling the onset of an effective treatment. Here, we show that V-antigen protein (LcrV) is accumulated in the serum of Yersinia pestis-infected mice before bacterial colonization of the spleen and dissemination to blood, in a model of bubonic plague. LcrV accumulation is detected earlier than that of F1 capsular antigen, an established marker of disease. In a mouse model of pneumonic plague, LcrV can be determined in the bronchoalveolar lavage fluid somewhat later than F1, but before dissemination of Y. pestis to the blood. Thus, determination of soluble LcrV is suggested as a potential useful tool for monitoring disease progression in both bubonic and pneumonic plague. Moreover, it may be of particular advantage in cases of infections with F1 nonproducing strains.
Chien, Maw-Sheng; Gilbert , Teresa L.; Huang, Chienjin; Landolt, Marsha L.; O'Hara, Patrick J.; Winton, James R.
1992-01-01
The complete sequence coding for the 57-kDa major soluble antigen of the salmonid fish pathogen, Renibacterium salmoninarum, was determined. The gene contained an opening reading frame of 1671 nucleotides coding for a protein of 557 amino acids with a calculated Mr value of 57190. The first 26 amino acids constituted a signal peptide. The deduced sequence for amino acid residues 27–61 was in agreement with the 35 N-terminal amino acid residues determined by microsequencing, suggesting the protein in synthesized as a 557-amino acid precursor and processed to produce a mature protein of Mr 54505. Two regions of the protein contained imperfect direct repeats. The first region contained two copies of an 81-residue repeat, the second contained five copies of an unrelated 25-residue repeat. Also, a perfect inverted repeat (including three in-frame UAA stop codons) was observed at the carboxyl-terminus of the gene.
Ibarra-Meneses, Ana V.; Sanchez, Carmen; Alvar, Jorge; Moreno, Javier; Carrillo, Eugenia
2017-01-01
New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1) was examined in plasma from soluble Leishmania antigen (SLA)-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL), unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools. PMID:29033933
Salunke, Deepak B.; Connelly, Seth W.; Shukla, Nikunj M.; Hermanson, Alec R.; Fox, Lauren M.; David, Sunil A.
2013-01-01
Antigens in modern subunit vaccines are largely soluble and poorly immunogenic proteins inducing relatively short-lived immune responses. Appropriate adjuvants initiate early innate immune responses, amplifying subsequent adaptive immune responses. Agonists of TLR2 are devoid of significant pro-inflammatory activity in ex vivo human blood models, and yet potently adjuvantic, suggesting that this chemotype may be a safe and effective adjuvant. Our earlier work on the monoacyl lipopeptide class of TLR2 agonists led to the design of a highly potent lead, but with negligible aqueous solubility, necessitating the reintroduction of aqueous solubility. We explored several strategies of introducing ionizable groups on the lipopeptide, as well as the systematic evaluation of chemically stable bioisosteres of the ester-linked palmitoyl group. These studies have led to a fully optimized, chemically stable, and highly water-soluble, human TLR2-specific agonist, which was found to have an excellent safety profile and displayed prominent adjuvantic activities in rabbit models. PMID:23795818
1981-05-01
variety of antigens, KLH, GAT, TGAL and antigens from pathogenic bacteria such as Streptococcus mutans . Furthermore, we now have these systems...histocompatibility complex; PBL, peripheral blood lymphocytes; SAI/II, Streptococcus mutans antigen I/II complex; MHFSAI/II, monkey helper factor specific...from Streptococcus mutans . Helper activity was removed from supernatants of monkey cells by affinity chromatography on Sepharose 4B insolubilized
Abuknesha, Ram; Uematsu, Satoshi; Akira, Shizuo; Nestle, Frank O.; Diebold, Sandra S.
2012-01-01
Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC) that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA) and CpG oligodeoxynucleotides (ODN). We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL) responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses. PMID:22808118
Taupitz, Thomas; Dressman, Jennifer B; Buchanan, Charles M; Klein, Sandra
2013-04-01
The aim of the present series of experiments was to improve the solubility and dissolution/precipitation behaviour of a poorly soluble, weakly basic drug, using itraconazole as a case example. Binary inclusion complexes of itraconazole with two commonly used cyclodextrin derivatives and a recently introduced cyclodextrin derivative were prepared. Their solubility and dissolution behaviour was compared with that of the pure drug and the marketed formulation Sporanox®. Ternary complexes were prepared by addition of Soluplus®, a new highly water soluble polymer, during the formation of the itraconazole/cyclodextrin complex. A solid dispersion made of itraconazole and Soluplus® was also studied as a control. Solid state analysis was performed for all formulations and for pure itraconazole using powder X-ray diffraction (pX-RD) and differential scanning calorimetry (DSC). Solubility tests indicated that with all formulation approaches, the aqueous solubility of itraconazole formed with hydroxypropyl-β-cyclodextrin (HP-β-CD) or hydroxybutenyl-β-cyclodextrin (HBen-β-CD) and Soluplus® proved to be the most favourable formulation approaches. Whereas the marketed formulation and the pure drug showed very poor dissolution, both of these ternary inclusion complexes resulted in fast and extensive release of itraconazole in all test media. Using the results of the dissolution experiments, a newly developed physiologically based pharmacokinetic (PBPK) in silico model was applied to compare the in vivo behaviour of Sporanox® with the predicted performance of the most promising ternary complexes from the in vitro studies. The PBPK modelling predicted that the bioavailability of itraconazole is likely to be increased after oral administration of ternary complex formulations, especially when itraconazole is formulated as a ternary complex comprising HP-β-CD or HBen-β-CD and Soluplus®. Copyright © 2012 Elsevier B.V. All rights reserved.
Santos, Patrícia d‘Emery Alves; de Lorena, Virgínia Maria Barros; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; do Nascimento, Wheverton Ricardo Correia; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; de Souza, Valdênia Maria Oliveira
2016-01-01
Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants. PMID:26872339
Santos, Patrícia d'Emery Alves; Lorena, Virgínia Maria Barros de; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; Nascimento, Wheverton Ricardo Correia do; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; Souza, Valdênia Maria Oliveira de
2016-02-01
Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants.
El Aswad, Bahaa El Deen Wade; Doenhoff, Michael J; El Hadidi, Abeer Shawky; Schwaeble, Wilhelm J; Lynch, Nicholas J
2011-03-01
Schistosomiasis is traditionally diagnosed by microscopic detection of ova in stool samples, but this method is labour intensive and its sensitivity is limited by low and variable egg secretion in many patients. An alternative is an ELISA using Schistosoma mansoni soluble egg antigen (SEA) to detect anti-schistosome antibody in patient samples. SEA is a good diagnostic marker in non-endemic regions but is of limited value in endemic regions, mainly because of its high cost and limited specificity. Here we assess seven novel antigens for the detection of S. mansoni antibody in an endemic region (the Northern Nile Delta). Using recombinant S. mansoni calreticulin (CRT) and fragments thereof, anti-CRT antibodies were detected in the majority of 97 patients sera. The diagnostic value of some of these antigens was, however, limited by the presence of cross-reacting antibody in the healthy controls, even those recruited in non-endemic areas. Cercarial transformation fluid (CTF), a supernatant that contains soluble material released by the cercariae upon transformation to the schistosomula, is cheaper and easier to produce than SEA. An ELISA using CTF as the detection antigen had a sensitivity of 89.7% and an estimated specificity of 100% when used in non-endemic regions, matching the performance of the established SEA ELISA. CTF was substantially more specific than SEA for diagnosis in the endemic region, and less susceptible than SEA to cross-reacting antibody in the sera of controls with other protozoan and metazoan infections. Copyright © 2010 Elsevier GmbH. All rights reserved.
Battisti, Federico; Napoletano, Chiara; Rahimi Koshkaki, Hassan; Belleudi, Francesca; Zizzari, Ilaria Grazia; Ruscito, Ilary; Palchetti, Sara; Bellati, Filippo; Benedetti Panici, Pierluigi; Torrisi, Maria Rosaria; Caracciolo, Giulio; Altieri, Fabio; Nuti, Marianna; Rughetti, Aurelia
2017-01-01
Dendritic cells (DCs) are the only antigen-presenting cells able to prime naïve T cells and cross-prime antigen-specific CD8 + T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs) enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS) accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies.
Isaacs, K. L.; Miller, F.
1983-01-01
Utilizing dextrans of restricted sizes (10,000, 70,000, 500,000 daltons), modified with regard to charge (neutral, polycationic, polyanionic) and an anti-dextran murine IgA myeloma, W3129, the authors have examined a model that may be used in the study of the combined effect of size and charge on renal deposition of immune complexes. Polycationic DEAE dextran complexes, using the 10,000 dalton antigen, showed a mesangiocapillary pattern of deposition. The other antigens showed focal to diffuse mesangial localization of varying degree. This indicates the potential usefulness of this system in examining the factors important in glomerular immune injury. The relevance to other observations, importance of polysaccharide antigens, and role in circulating versus in situ or "planted" immune complex models are considered. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:6190406
Li, Haishan; Pauza, C David
2011-11-24
HIV infects and replicates in CD4+ T cells but effects on host immunity and disease also involve depletion, hyper-activation, and modification of CD4-negative cell populations. In particular, the depletion of CD4-negative γδ T cells is common to all HIV+ individuals. We found that soluble or cell-associated envelope glycoproteins from CCR5-tropic strains of HIV could bind, activates the p38-caspase pathway, and induce the death of γδ cells. Envelope binding requires integrin α4β7 and chemokine receptor CCR5 which are at high levels and form a complex on the γδ T cell membrane. This receptor complex facilitated V3 loop binding to CCR5 in the absence of CD4-induced conformational changes. Cell death was increased by antigen stimulation after exposure to envelope glycoprotein. Direct signaling by envelope glycoprotein killed CD4-negative γδ T cells and reproduced a defect observed in all patients with HIV disease.
Besir, Hüseyin
2017-01-01
Recombinant expression of heterologous proteins in E. coli is well established for a wide range of proteins, although in many cases, purifying soluble and properly folded proteins remains challenging (Sorensen and Mortensen, J Biotechnol 115:113-128, 2005; Correa and Oppezzo, Methods Mol Biol 1258:27-44, 2015). Proteins that contain disulfide bonds (e.g., cytokines, growth factors) are often particularly difficult to purify in soluble form and still need optimizing of protocols in almost every step of the process (Berkmen, Protein Expr Purif 82:240-251, 2012; de Marco, Microb Cell Fact 11:129, 2012). Expression of disulfide bonded proteins in the periplasm of E. coli is one approach that can help to obtain soluble protein with the correct disulfide bridges forming in the periplasm. This offers the appropriate conditions for disulfide formation although periplasmic expression can also result in low expression levels and incorrect folding of the target protein (Schlapschy and Skerra, Methods Mol Biol 705:211-224, 2011). Generation of specific antibodies often requires a specific antigenic sequence of a protein in order to get an efficient immune response and minimize cross-reactivity of antibodies. Larger proteins like GST (Glutathione-S-transferase) or MBP (maltose binding protein) as solubilizing fusion partners are frequently used to keep antigens soluble and immunize animals. This approach has the disadvantage that the immune response against the fusion partner leads to additional antibodies that need to be separated from the antigen-specific antibodies. For both classes of proteins mentioned above, a protocol has been developed and optimized using the human version of small ubiquitin-like modifier 3 (SUMO3) protein and its corresponding protease SenP2. This chapter describes the experimental steps for expression, purification, refolding, and cleavage that are applicable to both disulfide-bonded proteins with a defined structure and random protein fragments for antibody generation or larger peptides with defined sequence that are difficult express on their own.
Hu, Shizong; Jin, Dongdong; Chen, Xinchun; Jin, Qi; Liu, Haiying
2012-01-01
Background IFN-γ is presently the only soluble immunological marker used to help diagnose latent Mycobacterium tuberculosis (M.tb) infection. However, IFN-γ is not available to distinguish latent from active TB infection. Moreover, extrapulmonary tuberculosis, such as tuberculous pleurisy, cannot be properly diagnosed by IFN-γ release assay. As a result, other disease- or infection-related immunological biomarkers that would be more effective need to be screened and identified. Methodology A panel of 41 soluble immunological molecules (17 cytokines and 24 chemokines) was tested using Luminex liquid array-based multiplexed immunoassays. Samples, including plasma and pleural effusions, from healthy donors (HD, n = 12) or patients with latent tuberculosis infection (LTBI, n = 20), pulmonary tuberculosis (TB, n = 12), tuberculous pleurisy (TP, n = 15) or lung cancer (LC, n = 15) were collected and screened for soluble markers. Peripheral blood mononuclear cells (PBMCs) and pleural fluid mononuclear cells (PFMCs) were also isolated to investigate antigen-specific immune factors. Principal Findings For the 41 examined factors, our results indicated that three patterns were closely associated with infection and disease. (1) Significantly elevated plasma levels of IL-2, IP-10, CXCL11 and CXCL12 were present in both patients with tuberculosis and in a sub-group participant with latent tuberculosis infection who showed a higher level of IFN-γ producing cells by ELISPOT assay compared with other latently infected individuals. (2) IL-6 and IL-9 were only significantly increased in plasma from active TB patients, and the two factors were consistently highly secreted after M.tb antigen stimulation. (3) When patients developed tuberculous pleurisy, CCL1, CCL21 and IL-6 were specifically increased in the pleural effusions. In particular, these three factors were consistently highly secreted by pleural fluid mononuclear cells following M.tb-specific antigen stimulation. In conclusion, our data imply that the specific secretion of soluble immunological factors, in addition to IFN-γ, may be used to evaluate M.tb infection and tuberculosis disease. PMID:23028695
[Antibodies and physiopathogeny of autoimmune hepatitis].
García-Leiva, Jorge; Ríos-Vaca, Aurelio; Torre-Delgadillo, Aldo
2003-01-01
Autoimmune hepatitis (AIH) is an inflammatory disease of unknown cause characterized by periportal hepatitis, increased serum globulins and the presence of certain antibodies. The disorder can be classified in three types. Type 1 AIH is characterized by the presence of antinuclear antibodies (ANA) and smooth muscle autoantibodies (SMA) in up to 70-80% of patients. ANA and SMA can be the only antibodies present in 13 and 33% of cases respectively. Type 2 AIH is defined by the presence of liver and kidney antimicrosomal antibodies (LKM1). Type 2 AIH is the only form of the disease in which the autoantigen has been identified: cytochrome mono-oxygenase (P-450 IID6) CYP2D6. In type 3 AIH the presence of anti-SLA/LP (soluble liver antigen/liver pancreas) targets a cytosolic protein involved in the incorporation of selenocysteine into peptidic chains. The pathophysiology of AIH is complex and involves genetic predisposition, previous exposure to antigens (autoantigens), presence of triggering factors and defects in immunoregulation. In spite of the advances in the understanding of AIH, the role of autoantibodies in the pathophysiology of this disease has not been fully established and their presence does not clearly distinguish any prognostic groups. Further investigations will help in the diagnosis of this disorder, the comprehension of its origins and the establishment of new forms of treatment.
Lehnert, Teresa; Figge, Marc Thilo
2017-01-01
Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor-ligand binding in the context of antibody-antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors-such as their dimensionality of motion, morphology, and binding valency-on the receptor-ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.
Lehnert, Teresa; Figge, Marc Thilo
2017-01-01
Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor–ligand binding in the context of antibody–antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors—such as their dimensionality of motion, morphology, and binding valency—on the receptor–ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors. PMID:29250071
Hasegawa, Hiroshi; Rahman, M Mamunur; Kadohashi, Kouta; Takasugi, Yui; Tate, Yousuke; Maki, Teruya; Rahman, M Azizur
2012-09-01
Present study investigated the significance of the concentration of chelating ligand on Fe(3+)-solubility in growth medium and its influence on Fe bioavailability and uptake in rice plant. Rice seedlings were grown in modified Murashige and Skoog (MS) hydroponic growth medium with moderate (250 μM) and high (500 μM) concentrations of ethylenediaminetetraacetate (EDTA) and hydroxyiminodisuccinate (HIDS) under sterile and non-sterile conditions. Concentrations of soluble Fe in the growth medium increased with increasing ligand concentrations, and the growth of rice seedlings was higher at moderate ligand concentration than at control (without chelant) and high ligand concentration. This explains the relationship between Fe solubility and bioavailability in the growth medium, and its effect on Fe uptake in rice plant. Fe exists in the growth medium predominantly as particulate (insoluble) forms at low ligand concentration, and as soluble [Fe(OH)(2+), Fe(OH)(2)(+), Fe-L complex] and apparently soluble (colloidal) forms at moderate ligand concentration. At high ligand concentration, most of the Fe(3+) in the growth medium forms soluble Fe-L complex, however, the bioavailability of Fe from Fe-L complex decreased due to lopsided complex formation equilibrium reaction (CFER) between Fe and the ligands. Also, Fe is solubilized forming stable and soluble Fe-L complex, which is then detached as less stable, but soluble and bioavailable substance(s) after (time-dependent) biodegradation. Therefore- i) ligand concentration and stability constant of Fe-L complex (K(Fe-L)) influence Fe bioavailability and uptake in rice plant, and ii) the biodegradable ligands (e.g., HIDS) would be more effective Fe fertilizer than the environmentally persistent and less biodegradable ligands (e.g., EDTA). Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Oral Sustained Release of a Hydrophilic Drug Using the Lauryl Sulfate Salt/Complex.
Kasashima, Yuuki; Yoshihara, Keiichi; Yasuji, Takehiko; Sako, Kazuhiro; Uchida, Shinya; Namiki, Noriyuki
2016-01-01
The objective of this study was to establish the key factor of the lauryl sulfate (LS) salt/complex for sustained release of a hydrophilic drug at various physiological pH levels. Mirabegron is a hydrophilic drug that exhibits pH-dependent solubility. Sodium lauryl sulfate (SLS) bound to mirabegron in a stoichiometric manner. The formation of the LS salt/complex significantly reduced mirabegron solubility and helped achieve sustained release of mirabegron over a wide range of pH levels. In addition to SLS, other additives containing a sulfate group formed salts/complexes with mirabegron and reduced its solubility at different pH levels. Furthermore, octyl sulfate (OS), myristyl sulfate (MS), and cetyl sulfate (CS) salts/complexes, which contain alkyl chains of different lengths, showed a lower solubility than mirabegron and promoted sustained release of mirabegron. The rank order of solubility and dissolution rate were as follows: OS salt/complex>LS salt/complex>MS salt/complex>CS salt/complex, which corresponded to the rank of alkyl chain lengths. We conclude that the presence of a sulfate group and the length of the alkyl chain are key factors of the LS salt/complex for sustained release of a hydrophilic drug at various physiological pH levels.
Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.
Daniell, Henry
2006-10-01
Transgenic plants offer many advantages, including low cost of production (by elimination of fermenters), storage and transportation; heat stability; and absence of human pathogens. When therapeutic proteins are orally delivered, plant cells protect antigens in the stomach through bioencapsulation and eliminate the need for expensive purification and sterile injections, in addition to development of both systemic and mucosal immunity. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance and multi-gene expression in a single transformation event. Hyper-expression of vaccine antigens against cholera, tetanus, anthrax, plague or canine parvovirus (4-31% of total soluble protein, tsp) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato), as well as the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes, facilitate oral delivery. Hyper-expression of several therapeutic proteins, including human serum albumin (11.1% tsp), somatotropin (7% tsp), interferon-gamma (6% tsp), anti-microbial peptide (21.5% tsp), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitate assembly of complex multi-subunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLa cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Ono, N; Hirayama, F; Arima, H; Uekama, K
2001-01-01
The competitive inclusion complexations in the ternary phenacetin/competitors/beta-cyclodextrin (beta-CyD) systems were investigated by the solubility method, where m-bromobenzoic acid (m-BBA) and o-toluic acid (o-TA) were used as competitors. The solubility changes of the drug and competitors as a function of beta-CyD concentration in the ternary systems were formulated using their stability constants and intrinsic solubilities. The decrease in solubility of phenacetin by the addition of competitors could be quantitatively simulated by the formulation, when both drug and competitor give A(L) type solubility diagrams. On the other hand, when one of the guests gives a B(S) type solubility diagram, its solubility change was clearly reflected in that of the another guest, i.e., phenacetin gave an A(L) type solubility diagram in the binary phenacetin/beta-CyD system and o-TA gave a B(S) type diagram in the binary o-TA/beta-CyD system, but in the ternary phenacetin/o-TA/beta-CyD system, a new plateau region appeared in the original A(L) type diagram of phenacetin. This was explained by the solubilization theory of Higuchi and Connors. The solubility analysis of the ternary drug/competitor/CyD systems may be particularly useful for determination of the stability constant of a drug whose physicochemical and spectroscopic analyses are difficult, because they can be calculated by monitoring the solubility change of a competitor, without monitoring that of a drug. Furthermore, the present results suggest that attention should be paid to the type of the phase solubility diagram, as well as the magnitude of the stability constant and the solubility of the complex, for a rational formulation design of CyD complexes.
Hagbani, Turki Al; Nazzal, Sami
2017-03-30
One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.
Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis.
Bien, Christian G; Vincent, Angela; Barnett, Michael H; Becker, Albert J; Blümcke, Ingmar; Graus, Francesc; Jellinger, Kurt A; Reuss, David E; Ribalta, Teresa; Schlegel, Jürgen; Sutton, Ian; Lassmann, Hans; Bauer, Jan
2012-05-01
Classical paraneoplastic encephalitis syndromes with 'onconeural' antibodies directed to intracellular antigens, and the recently described paraneoplastic or non-paraneoplastic encephalitides and antibodies against both neural surface antigens (voltage-gated potassium channel-complexes, N-methyl-d-aspartate receptors) and intracellular antigens (glutamic acid decarboxylase-65), constitute an increasingly recognized group of immune-mediated brain diseases. Evidence for specific immune mechanisms, however, is scarce. Here, we report qualitative and quantitative immunopathology in brain tissue (biopsy or autopsy material) of 17 cases with encephalitis and antibodies to either intracellular (Hu, Ma2, glutamic acid decarboxylase) or surface antigenic targets (voltage-gated potassium channel-complex or N-methyl-d-aspartate receptors). We hypothesized that the encephalitides with antibodies against intracellular antigens (intracellular antigen-onconeural and intracellular antigen-glutamic acid decarboxylase groups) would show neurodegeneration mediated by T cell cytotoxicity and the encephalitides with antibodies against surface antigens would be antibody-mediated and would show less T cell involvement. We found a higher CD8/CD3 ratio and more frequent appositions of granzyme-B(+) cytotoxic T cells to neurons, with associated neuronal loss, in the intracellular antigen-onconeural group (anti-Hu and anti-Ma2 cases) compared to the patients with surface antigens (anti-N-methyl-d-aspartate receptors and anti-voltage-gated potassium channel complex cases). One of the glutamic acid decarboxylase antibody encephalitis cases (intracellular antigen-glutamic acid decarboxylase group) showed multiple appositions of GrB-positive T cells to neurons. Generally, however, the glutamic acid decarboxylase antibody cases showed less intense inflammation and also had relatively low CD8/CD3 ratios compared with the intracellular antigen-onconeural cases. Conversely, we found complement C9neo deposition on neurons associated with acute neuronal cell death in the surface antigen group only, specifically in the voltage-gated potassium channel-complex antibody patients. N-methyl-d-aspartate receptors-antibody cases showed no evidence of antibody and complement-mediated tissue injury and were distinguished from all other encephalitides by the absence of clear neuronal pathology and a low density of inflammatory cells. Although tissue samples varied in location and in the stage of disease, our findings strongly support a central role for T cell-mediated neuronal cytotoxicity in encephalitides with antibodies against intracellular antigens. In voltage-gated potassium channel-complex encephalitis, a subset of the surface antigen antibody encephalitides, an antibody- and complement-mediated immune response appears to be responsible for neuronal loss and cerebral atrophy; the apparent absence of these mechanisms in N-methyl-d-aspartate receptors antibody encephalitis is intriguing and requires further study.
Presentation of lipid antigens to T cells.
Mori, Lucia; De Libero, Gennaro
2008-04-15
T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.
NASA Astrophysics Data System (ADS)
Jug, Mario; Mennini, Natascia; Melani, Fabrizio; Maestrelli, Francesca; Mura, Paola
2010-11-01
A novel method, which simultaneously exploits experimental (NMR) and theoretically calculated data obtained by a molecular modelling technique, was proposed, to obtain deeper insight into inclusion geometry and possible stereoselective binding of bupivacaine hydrochloride with selected cyclodextrin derivatives. Sulphobuthylether-β-cyclodextrin and water soluble polymeric β-cyclodextrin demonstrated to be the best complexing agents for the drug, resulting in formation of the most stable inclusion complexes with the highest increase in aqueous drug solubility. The drug-carrier binding modes with these cyclodextrins and phenomena which may be directly related to the higher stability and better aqueous solubility of complexes formed were discussed in details.
Artificial Loading of ASC Specks with Cytosolic Antigens
Sahillioğlu, Ali Can; Özören, Nesrin
2015-01-01
Inflammasome complexes form upon interaction of Nod Like Receptor (NLR) proteins with pathogen associated molecular patterns (PAPMS) inside the cytosol. Stimulation of a subset of inflammasome receptors including NLRP3, NLRC4 and AIM2 triggers formation of the micrometer-sized spherical supramolecular complex called the ASC speck. The ASC speck is thought to be the platform of inflammasome activity, but the reason why a supramolecular complex is preferred against oligomeric platforms remains elusive. We observed that a set of cytosolic proteins, including the model antigen ovalbumin, tend to co-aggregate on the ASC speck. We suggest that co-aggregation of antigenic proteins on the ASC speck during intracellular infection might be instrumental in antigen presentation. PMID:26258904
Glove powder's carrying capacity for latex protein: analysis using the ASTM ELISA test.
Beezhold, D; Horton, K; Hickey, V; Daddona, J; Kostyal, D
2003-01-01
Glove donning powders carry latex proteins and disperse them into the workplace environment. We have used the ASTM D6499 ELISA to quantify the amount of latex antigen bound to and carried by glove powders. We could differentiate between a small amount of protein actually bound to the powders and a larger amount carried by the powder. Enhanced binding of a major allergen, Hev b 5, to the starch powders was demonstrated by Western blot. The D6499 ELISA is able to measure total latex antigen, soluble and powder bound, simultaneously without the need to centrifuge the samples.
Localization of organ-specific antigens in the nervous system of the rat.
Weinrauder, H; Lach, B
1977-08-16
Localization of organ-specific brain antigens in the central nervous system of the rat has been studied by means of indirect immunofluorescence. Rabbit antiserum against homogenate of rat brain, previously absorbed with normal serum and homogenates of rat organs (kidney, liver, spleen), reacted with the water-soluble antigens of rat brain prepared by extraction with phosphate buffer (pH 7.3) and ultracentrifugation at 50 000 X g to give one band in the immunodiffusion test and 2--3 precipitation arcs in immunoelectrophoresis. There was also a positive reaction with peripheral nerve. The antigen was detectable in all regions of the CNS. Cells with distinct cytoplasmic immunofluorescence were most frequently observed in cerebellar white matter, pons, cerebellar pedunculi, longitudinal tracts of the brain stem. Positive immunofluorecence reaction has appeared in the outer plexiform layer and granular layer of the retina, satelite cells of the spinal root ganglia and Schwann cells. A similar reaction was observed in human, mouse and guinea pig brain slices. Both the morphological and immunochemical reactions are indicative of glial localization of this antigen.
Papac, D I; Hoyes, J; Tomer, K B
1994-09-01
We have developed a method to rapidly identify the antigenic determinant for an antibody using in situ proteolysis of an immobilized antigen-antibody complex followed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF). A mouse anti-bombesin monoclonal antibody was immobilized to agarose beads and then the antigen, gastrin-releasing peptide (GRP), was allowed to bind. Direct analysis of the immobilized antigen-antibody complex by MALDI/TOF is demonstrated and allows identification of ca. 1 pmol of the bound GRP. To identify the epitope, the immobilized antigen-antibody complex was subjected to proteolysis with trypsin, chymotrypsin, thermolysin, and aminopeptidase M. Following proteolysis, the part of the antigen in contact with the antibody and protected from proteolysis was identified directly by MALDI/TOF. Subsequently, the epitope was eluted from the immobilized antibody with 0.1 M glycine buffer (pH 2.3), separated by reversed-phase HPLC, and its identity confirmed by MALDI/TOF. Using this approach, the epitope for the anti-bombesin monoclonal antibody was shown to comprise the last 7-8 residues (HWAVGHLM-NH2) of GRP.
Papac, D. I.; Hoyes, J.; Tomer, K. B.
1994-01-01
We have developed a method to rapidly identify the antigenic determinant for an antibody using in situ proteolysis of an immobilized antigen-antibody complex followed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF). A mouse anti-bombesin monoclonal antibody was immobilized to agarose beads and then the antigen, gastrin-releasing peptide (GRP), was allowed to bind. Direct analysis of the immobilized antigen-antibody complex by MALDI/TOF is demonstrated and allows identification of ca. 1 pmol of the bound GRP. To identify the epitope, the immobilized antigen-antibody complex was subjected to proteolysis with trypsin, chymotrypsin, thermolysin, and aminopeptidase M. Following proteolysis, the part of the antigen in contact with the antibody and protected from proteolysis was identified directly by MALDI/TOF. Subsequently, the epitope was eluted from the immobilized antibody with 0.1 M glycine buffer (pH 2.3), separated by reversed-phase HPLC, and its identity confirmed by MALDI/TOF. Using this approach, the epitope for the anti-bombesin monoclonal antibody was shown to comprise the last 7-8 residues (HWAVGHLM-NH2) of GRP. PMID:7530543
Damania, Blossom; Mital, Renu; Alwine, James C.
1998-01-01
The TATA-binding protein (TBP) is common to the basal transcription factors of all three RNA polymerases, being associated with polymerase-specific TBP-associated factors (TAFs). Simian virus 40 large T antigen has previously been shown to interact with the TBP-TAFII complexes, TFIID (B. Damania and J. C. Alwine, Genes Dev. 10:1369–1381, 1996), and the TBP-TAFI complex, SL1 (W. Zhai, J. Tuan, and L. Comai, Genes Dev. 11:1605–1617, 1997), and in both cases these interactions are critical for transcriptional activation. We show a similar mechanism for activation of the class 3 polymerase III (pol III) promoter for the U6 RNA gene. Large T antigen can activate this promoter, which contains a TATA box and an upstream proximal sequence element but cannot activate the TATA-less, intragenic VAI promoter (a class 2, pol III promoter). Mutants of large T antigen that cannot activate pol II promoters also fail to activate the U6 promoter. We provide evidence that large T antigen can interact with the TBP-containing pol III transcription factor human TFIIB-related factor (hBRF), as well as with at least two of the three TAFs in the pol III-specific small nuclear RNA-activating protein complex (SNAPc). In addition, we demonstrate that large T antigen can cofractionate and coimmunoprecipitate with the hBRF-containing complex TFIIIB derived from HeLa cells infected with a recombinant adenovirus which expresses large T antigen. Hence, similar to its function with pol I and pol II promoters, large T antigen interacts with TBP-containing, basal pol III transcription factors and appears to perform a TAF-like function. PMID:9488448
Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi
2014-01-01
Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.
Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi
2014-01-01
Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651
Ceschel, GianCarlo; Bergamante, Valentina; Maffei, Paola; Lombardi Borgia, Simone; Calabrese, Valeria; Biserni, Stefano; Ronchi, Celestino
2005-01-01
The permeation ability of a compound is due principally to its concentration in the vehicle and to its aptitude to cross the stratum corneum of the skin. In this work ex-vivo permeation studies on newly developed formulations containing dehydroepiandrosterone (DHEA) were carried out to investigate vehicles that increase drug permeation through the skin. To enhance the solubility of DHEA, its complex form with alpha-cyclodextrin was used. In addition, the two forms (pure drug and complex form) were introduced in hydrophilic (water), lipophilic (paraffin oil), and microemulsion vehicles to evaluate the synergic effect of cyclodextrins and microemulsion vehicles on solubility and permeation. From the results, DHEA solubility is notably conditioned by the type of the vehicle used: the highest solubilities (both for pure and complex drug forms) were obtained with microemulsion, followed by paraffin oil and water. Moreover, in all the studied vehicles, the c-DHEA was more soluble than DHEA. Permeation profile fluxes showed very interesting differences. That reflect the varying drug forms (pure drug and complex form), vehicles used, and drug concentrations in the vehicles. The major flux was obtained in complex of DHEA with alpha-cyclodextrins in the microemulsion vehicle. Therefore, this type of vehicle and drug form would be very useful in the development of a topical formulation containing DHEA.
Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne
2012-01-01
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Water-soluble polymers for recovery of metal ions from aqueous streams
Smith, Barbara F.; Robison, Thomas W.
1998-01-01
A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.
Complexation of phytochemicals with cyclodextrin derivatives - An insight.
Suvarna, Vasanti; Gujar, Parul; Murahari, Manikanta
2017-04-01
Natural compounds have been attracting huge attention because of their broad therapeutic properties with specificity in their action in human health care as functional foods, pharmaceuticals and nutraceuticals. However poor bioavailability and reduced bioactivity attributed to poor solubility and instability is the major drawback hindering the incorporation of these therapeutically potential molecules in novel drug delivery systems. Based on the findings of reported research investigations; complexation of poorly water soluble phytochemicals with cyclodextrins has emerged to be a promising approach to improve their aqueous solubility, stability, rate of dissolution and bioavailability. The present article summarizes the encapsulation of natural compounds ranging from various flavonoids, phenolic derivatives, coumestans to triterpenes, with cyclodextrin and their derivatives. Also the article highlights the method of complexation, complexation ability, drug solubility, stability, bioavailability and safety aspects of reported natural compounds. Additionally we present the glimpses of patents published in recent 10-15 years to highlight the significance of inclusion of phytochemicals in cyclodextrins. In patents narrated, improvement in stability and solubility of curcumin by complexation with alkyl ether derivative of gamma-cyclodextrin is claimed. Another patent mentioned, complexation of artemisinins with β-cyclodextrin, improved the stability and integrity of peroxide part of artemisinins for long period. On the other hand the complex of dihydromyricetin with γ-CD has shown improved solubility, stability and bioavailability. Thus it can be concluded that phytochemicals have multiple biological activities with broader safety index and improvement of their solubility will be truly beneficial to aid their effective delivery in healthcare. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nonclassical T Cells and Their Antigens in Tuberculosis
De Libero, Gennaro; Singhal, Amit; Lepore, Marco; Mori, Lucia
2014-01-01
T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I–related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response. PMID:25059739
Roatt, Bruno Mendes; Aguiar-Soares, Rodrigo Dian de Oliveira; Vitoriano-Souza, Juliana; Coura-Vital, Wendel; Braga, Samuel Leôncio; Corrêa-Oliveira, Rodrigo; Martins-Filho, Olindo Assis; Teixeira-Carvalho, Andréa; de Lana, Marta; Gontijo, Nelder Figueiredo; Marques, Marcos José; Giunchetti, Rodolfo Cordeiro; Reis, Alexandre Barbosa
2012-01-01
In the last decade, the search for new vaccines against canine visceral leishmaniasis has intensified. However, the pattern related to immune protection during long periods after experimental infection in vaccine trials is still not fully understood. Herein, we investigated the immunogenicity and parasitological levels after intradermal challenge with Leishmania infantum plus salivary gland extract in dogs immunized with a vaccine composed of L. braziliensis antigens plus saponin as an adjuvant (LBSap vaccine). The LBSap vaccine elicited higher levels of total anti-Leishmania IgG as well as both IgG1 and IgG2. Furthermore, dogs vaccinated had increased levels of lymphocytes, particularly circulating B cells (CD21+) and both CD4+ and CD8+ T lymphocytes. LBSap also elicited an intense in vitro cell proliferation associated with higher levels of CD4+ T lymphocytes specific for vaccine soluble antigen and soluble lysate of L. infantum antigen even 885 days after experimental challenge. Furthermore, LBSap vaccinated dogs presented high IFN-γ and low IL-10 and TGF-β1 expression in spleen with significant reduction of parasite load in this tissue. Overall, our results validate the potential of LBSap vaccine to protect against L. infantum experimental infection and strongly support further evaluation of efficiency of LBSap against CVL in natural infection conditions. PMID:23189161
Mike, Laura A.; Smith, Sara N.; Sumner, Christopher A.; Eaton, Kathryn A.; Mobley, Harry L. T.
2016-01-01
Uropathogenic Escherichia coli (UPEC) is the primary cause of uncomplicated urinary tract infections (UTIs). Whereas most infections are isolated cases, 1 in 40 women experience recurrent UTIs. The rise in antibiotic resistance has complicated the management of chronic UTIs and necessitates new preventative strategies. Currently, no UTI vaccines are approved for use in the United States, and the development of a highly effective vaccine remains elusive. Here, we have pursued a strategy for eliciting protective immunity by vaccinating with small molecules required for pathogenesis, rather than proteins or peptides. Small iron-chelating molecules called siderophores were selected as antigens to vaccinate against UTI for this vaccine strategy. These pathogen-associated stealth siderophores evade host immune defenses and enhance bacterial virulence. Previous animal studies revealed that vaccination with siderophore receptor proteins protects against UTI. The poor solubility of these integral outer-membrane proteins in aqueous solutions limits their practical utility. Because their cognate siderophores are water soluble, we hypothesized that these bacterial-derived small molecules are prime vaccine candidates. To test this hypothesis, we immunized mice with siderophores conjugated to an immunogenic carrier protein. The siderophore–protein conjugates elicited an adaptive immune response that targeted bacterial stealth siderophores and protected against UTI. Our study has identified additional antigens suitable for a multicomponent UTI vaccine and highlights the potential use of bacterial-derived small molecules as antigens in vaccine therapies. PMID:27821778
Mike, Laura A; Smith, Sara N; Sumner, Christopher A; Eaton, Kathryn A; Mobley, Harry L T
2016-11-22
Uropathogenic Escherichia coli (UPEC) is the primary cause of uncomplicated urinary tract infections (UTIs). Whereas most infections are isolated cases, 1 in 40 women experience recurrent UTIs. The rise in antibiotic resistance has complicated the management of chronic UTIs and necessitates new preventative strategies. Currently, no UTI vaccines are approved for use in the United States, and the development of a highly effective vaccine remains elusive. Here, we have pursued a strategy for eliciting protective immunity by vaccinating with small molecules required for pathogenesis, rather than proteins or peptides. Small iron-chelating molecules called siderophores were selected as antigens to vaccinate against UTI for this vaccine strategy. These pathogen-associated stealth siderophores evade host immune defenses and enhance bacterial virulence. Previous animal studies revealed that vaccination with siderophore receptor proteins protects against UTI. The poor solubility of these integral outer-membrane proteins in aqueous solutions limits their practical utility. Because their cognate siderophores are water soluble, we hypothesized that these bacterial-derived small molecules are prime vaccine candidates. To test this hypothesis, we immunized mice with siderophores conjugated to an immunogenic carrier protein. The siderophore-protein conjugates elicited an adaptive immune response that targeted bacterial stealth siderophores and protected against UTI. Our study has identified additional antigens suitable for a multicomponent UTI vaccine and highlights the potential use of bacterial-derived small molecules as antigens in vaccine therapies.
Pascho, Ronald J.; Chase, Dorothy M.; McKibben, Constance L.
1998-01-01
Ovarian fluid samples from naturally infected chinook salmon (Oncorhynchus tshawytscha) were examined for the presence of Renibacterium salmoninarum by the membrane-filtration fluorescent antibody test (MF-FAT), an antigen capture enzyme-linked immunosorbent assay (ELISA), and a nested polymerase chain reaction (PCR). On the basis of the MF-FAT, 64% (66/103) samples contained detectable levels of R. salmoninarum cells. Among the positive fish, the R. salmoninarum concentrations ranged from 25 cells/ml to 4.3 × 109cells/ml. A soluble antigenic fraction of R. salmoninarum was detected in 39% of the fish (40/103) by the ELISA. The ELISA is considered one of the most sensitive detection methods for bacterial kidney disease in tissues, yet it did not detect R. salmoninarum antigen consistently at bacterial cell concentrations below about 1.3 × 104cells/ml according to the MF-FAT counts. When total DNA was extracted and tested in a nested PCR designed to amplify a 320-base-pair region of the gene encoding a soluble 57-kD protein of R. salmoninarum, 100% of the 100 samples tested were positive. The results provided strong evidence that R. salmoninarum may be present in ovarian fluids thought to be free of the bacterium on the basis of standard diagnostic methods.
Braithwaite, Miles C; Kumar, Pradeep; Choonara, Yahya E; du Toit, Lisa C; Tomar, Lomas K; Tyagi, Charu; Pillay, Viness
2017-10-30
This study was conducted to provide a mechanistic account for understanding the synthesis, characterization and solubility phenomena of vitamin complexes with cyclodextrins (CD) for enhanced solubility and stability employing experimental and in silico molecular modeling strategies. New geometric, molecular and energetic analyses were pursued to explicate experimentally derived cholecalciferol complexes. Various CD molecules (α-, β-, γ-, and hydroxypropyl β-) were complexed with three vitamins: cholecalciferol, ascorbic acid and α-tocopherol. The Inclusion Efficiency (IE%) was computed for each CD-vitamin complex. The highest IE% achieved for a cholecalciferol complex was for 'βCDD 3 -8', after utilizing a unique CD:cholecalciferol molar synthesis ratio of 2.5:1, never before reported as successful. 2HPβCD-cholecalciferol, γCD-cholecalciferol and α-tocopherol inclusion complexes (IC's) reached maximal IE% with a CD:vitamin molar ratio of 5:1. The results demonstrate that IE%, thermal stability, concentration, carrier solubility, molecular mechanics and intended release profile are key factors to consider when synthesizing vitamin-CD complexes. Phase-solubility data provided insights into the design of formulations with IC's that may provide analogous oral vitamin release profiles even when hydrophobic and hydrophilic vitamins are co-incorporated. Static lattice atomistic simulations were able to validate experimentally derived cholecalciferol IE phenomena and are invaluable parameters when approaching formulation strategies using CD's for improved solubility and efficacy of vitamins. Copyright © 2017 Elsevier B.V. All rights reserved.
Shamaki, Bala U; Sandabe, Umar K; Ogbe, Adamu O; Abdulrahman, Fanna I; El-Yuguda, Abdul-Dahiru
2014-01-01
The antineuraminidase activity of different organic soluble fractions of Ganoderma lucidum extract was investigated using inhibition of hemagglutination and elution of chicken erythrocytes by Newcastle disease virus (NDV). Fractions of methanol, ethylacetate, and normal butanol (n-butanol) of the G. lucidum were tested against neuraminidase producing NDV as antigen. Different dilutions of the organic soluble fractions inhibited elution of 1% red blood cells by neuraminidase of NDV While the methanolic and n-butanol extracts inhibited neuraminidase activity even at a dilution of 1:16 and that of ethylacetate fraction inhibited even at 1:32 respectively. This finding indicates that G. lucidum has some antineuraminidase activity against NDV and may be exploited in the management of NDV infection.
Corrias, Maria Valeria; Levreri, Isabella; Scaruffi, Paola; Raffaghello, Lizzia; Carlini, Barbara; Bocca, Paola; Prigione, Ignazia; Stigliani, Sara; Amoroso, Loredana; Ferrone, Soldano; Pistoia, Vito
2012-01-01
The high molecular weight melanoma-associated antigen (HMW-MAA) and the cytoplasmic melanoma-associated antigen (cyt-MAA/LGALS3BP) are expressed in melanoma. Their serum levels are increased in melanoma patients and correlate with clinical outcome. We investigated whether these molecules can serve as prognostic markers for neuroblastoma (NB) patients. Expression of cyt-MAA and HMW-MAA was evaluated by flow cytometry in NB cell lines, patients’ neuroblasts (FI-NB), and short-term cultures of these latter cells (cNB). LGALS3BP gene expression was evaluated by RT–qPCR on FI-NB, cNB, and primary tumor specimens. Soluble HMW-MAA and cyt-MAA were tested by ELISA. Cyt-MAA and HMW-MAA were expressed in NB cell lines, cNB, and FI-NB samples. LGALS3BP gene expression was higher in primary tumors and cNB than in FI-NB samples. Soluble cyt-MAA, but not HMW-MAA, was detected in NB cell lines and cNBs supernatants. NB patients’ serum levels of both antigens were higher than those of the healthy children. High cyt-MAA serum levels at diagnosis associated with higher incidence of relapse, independently from other known risk factors. In conclusion, both HMW-MAA and cyt-MAA antigens, and LGALS3BP gene, were expressed by NB cell lines and patients’ neuroblasts, and both antigens’ serum levels were increased in NB patients. Elevated serum levels of cyt-MAA at diagnosis correlated with relapse, supporting that cyt-MAA may serve as early serological biomarker to individuate patients at higher risk of relapse that may require a more careful follow-up, after being validated in a larger cohort of patients at different time-points during follow-up. Given its immunogenicity, cyt-MAA may also be a potential target for NB immunotherapy. PMID:21660451
Seydoux, Emilie; Rothen-Rutishauser, Barbara; Nita, Izabela M; Balog, Sandor; Gazdhar, Amiq; Stumbles, Philip A; Petri-Fink, Alke; Blank, Fabian; von Garnier, Christophe
2014-01-01
Introduction Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. Methods Bone marrow–derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4+ T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. Results The frequency of PS particle–positive CD11c+/CD11b+ BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4+ T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles. PMID:25152619
Manuel-Cabrera, Carlos Alberto; Vallejo-Cardona, Alba Adriana; Padilla-Camberos, Eduardo; Hernández-Gutiérrez, Rodolfo; Herrera-Rodríguez, Sara Elisa; Gutiérrez-Ortega, Abel
2016-11-29
Assembly of recombinant capsid proteins into virus-like particles (VLPs) still represents an interesting challenge in virus-based nanotechnologies. The structure of VLPs has gained importance for the development and design of new adjuvants and antigen carriers. The potential of Tobacco etch virus capsid protein (TEV CP) as adjuvant has not been evaluated to date. Two constructs for TEV CP expression in Escherichia coli were generated: a wild-type version (TEV-CP) and a C-terminal hexahistidine (His)-tagged version (His-TEV-CP). Although both versions were expressed in the soluble fraction of E. coli lysates, only His-TEV-CP self-assembled into micrometric flexuous filamentous VLPs. In addition, the His-tag enabled high yields and facilitated purification of TEV VLPs. These TEV VLPs elicited broader IgG2-specific antibody response against a novel porcine reproductive and respiratory syndrome virus (PRRSV) protein when compared to the potent IgG1 response induced by the protein alone. His-TEV CP was purified by immobilized metal affinity chromatography and assembled into VLPs, some of them reaching 2-μm length. TEV VLPs administered along with PRRSV chimeric protein changed the IgG2/IgG1 ratio against the chimeric protein, suggesting that TEV CP can modulate the immune response against a soluble antigen.
Mellencamp, M W; O'Brien, P C; Stevenson, J R
1991-01-01
The ability of pseudorabies virus (PrV) to down-modulate expression of major histocompatibility complex class I antigens in murine and porcine cells was investigated. When quantified by flow cytometry, surface expression of class I Kk and Dk antigens on PrV-infected cells decreased by 60% or more. Down-modulation was associated with a decrease in total cellular class I antigens, indicating regulation at the transcriptional or posttranscriptional level. PrV did not suppress expression of transferrin receptor, suggesting a selective regulatory mechanism. Images PMID:1851884
Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.
Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim
2017-09-01
The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.
Antigen-specific response of murine immune system toward a yeast beta-glucan preparation, zymosan.
Miura, T; Ohno, N; Miura, N N; Adachi, Y; Shimada, S; Yadomae, T
1999-06-01
Zymosan, a particulate beta-glucan preparation from Saccharomyces cerevisiae, shows various biological activities, including anti-tumor activity. We have previously shown that soluble beta-glucan initiated anti-tumor activity was long-lived and was effective even by prophylactic treatment at 1 month prior to tumor challenge. However, the activity by zymosan was relatively short-lived. Antigen-specific responses of mice to zymosan might be a causative mechanism. In this paper, mice were immunized with zymosan and antibody production and antigen-specific responses of lymphocytes to zymosan were analyzed. Sera of zymosan immune mice contained zymosan-specific IgG assessed by enzyme-linked immunosorbent assay and FACS. Spleen and bone marrow cells of zymosan-immune mice showed higher cytokine production in response to zymosan. Specificity of zymosan-specific responses were also analyzed using various derivatives prepared from zymosan. These facts strongly suggested that mice recognize zymosan as antigen in addition to non-specific immune stimulant.
He, Wei; Felderman, Martina; Evans, Angela C.; ...
2017-07-24
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, andmore » protein misfolding. For this study, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP–tNLP). The cell-free expressed mMOMP–tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP–tNLP complex in a 1-ml cell-free reaction. The mMOMP–tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP–tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Wei; Felderman, Martina; Evans, Angela C.
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, andmore » protein misfolding. For this study, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP–tNLP). The cell-free expressed mMOMP–tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP–tNLP complex in a 1-ml cell-free reaction. The mMOMP–tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP–tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji
Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a verymore » low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V{alpha}/V{beta} region of the TCR. These findings provide new insights into the binding of sTCRs to p/MHCs and will hopefully be instrumental in establishing functional sTCR as a diagnostic and therapeutic tool for cancer.« less
NASA Astrophysics Data System (ADS)
Zhang, Da; Zhang, Jianqiang; Jiang, Kunming; Li, Ke; Cong, Yangwei; Pu, Shaoping; Jin, Yi; Lin, Jun
2016-01-01
Three water-soluble oxaliplatin complexes were prepared by inclusion complexation with β-cyclodextrin (β-CD), γ-CD and HP-β-CD. The structures of oxaliplatin/CDs were confirmed by NMR, FTIR, TGA, XRD as well as SEM analysis. The results show that the water solubility of oxaliplatin was increased in the complex with CDs in 1:1 stoichiometry inclusion modes, and the cyclohexane ring of oxaliplatin molecule was deeply inserted into the cavity of CDs. Moreover, the stoichiometry was established by a Job plot and the water stability constant (Kc) of oxaliplatin/CDs was calculated by phase solubility studies, all results show that the oxaliplatin/β-CD complex is more stable than free oxaliplatin, oxaliplatin/HP-β-CD and oxaliplatin/γ-CD. Meanwhile, the inclusion complexes displayed almost twice as high cytotoxicity compared to free oxaliplatin against HCT116 and MCF-7 cells. This satisfactory water solubility and higher cytotoxic activity of the oxaliplatin/CD complexes will potentially be useful for their application in anti-tumour therapy.
Freel, Stephanie A.; Picking, Ralph A.; Ferrari, Guido; Ding, Haitao; Ochsenbauer, Christina; Kappes, John C.; Kirchherr, Jennifer L.; Soderberg, Kelly A.; Weinhold, Kent J.; Cunningham, Coleen K.; Denny, Thomas N.; Crump, John A.; Cohen, Myron S.; McMichael, Andrew J.; Haynes, Barton F.
2012-01-01
CD8-mediated virus inhibition can be detected in HIV-1-positive subjects who naturally control virus replication. Characterizing the inhibitory function of CD8+ T cells during acute HIV-1 infection (AHI) can elucidate the nature of the CD8+ responses that can be rapidly elicited and that contribute to virus control. We examined the timing and HIV-1 antigen specificity of antiviral CD8+ T cells during AHI. Autologous and heterologous CD8+ T cell antiviral functions were assessed longitudinally during AHI in five donors from the CHAVI 001 cohort using a CD8+ T cell-mediated virus inhibition assay (CD8 VIA) and transmitted/founder (T/F) viruses. Potent CD8+ antiviral responses against heterologous T/F viruses appeared during AHI at the first time point sampled in each of the 5 donors (Fiebig stages 1/2 to 5). Inhibition of an autologous T/F virus was durable to 48 weeks; however, inhibition of heterologous responses declined concurrent with the resolution of viremia. HIV-1 viruses from 6 months postinfection were more resistant to CD8+-mediated virus inhibition than cognate T/F viruses, demonstrating that the virus escapes early from CD8+ T cell-mediated inhibition of virus replication. CD8+ T cell antigen-specific subsets mediated inhibition of T/F virus replication via soluble components, and these soluble responses were stimulated by peptide pools that include epitopes that were shown to drive HIV-1 escape during AHI. These data provide insights into the mechanisms of CD8-mediated virus inhibition and suggest that functional analyses will be important for determining whether similar antigen-specific virus inhibition can be induced by T cell-directed vaccine strategies. PMID:22514337
Comber, Joseph D.; Robinson, Tara M.; Siciliano, Nicholas A.; Snook, Adam E.; Eisenlohr, Laurence C.
2011-01-01
Major histocompatibility complex (MHC) class II-presented peptides can be derived from both exogenous (extracellular) and endogenous (biosynthesized) sources of antigen. Although several endogenous antigen-processing pathways have been reported, little is known about their relative contributions to global CD4+ T cell responses against complex antigens. Using influenza virus for this purpose, we assessed the role of macroautophagy, a process in which cytosolic proteins are delivered to the lysosome by de novo vesicle formation and membrane fusion. Influenza infection triggered productive macroautophagy, and autophagy-dependent presentation was readily observed with model antigens that naturally traffic to the autophagosome. Furthermore, treatments that enhance or inhibit macroautophagy modulated the level of presentation from these model antigens. However, validated enzyme-linked immunospot (ELISpot) assays of influenza-specific CD4+ T cells from infected mice using a variety of antigen-presenting cells, including primary dendritic cells, revealed no detectable macroautophagy-dependent component. In contrast, the contribution of proteasome-dependent endogenous antigen processing to the global influenza CD4+ response was readily appreciated. The contribution of macroautophagy to the MHC class II-restricted response may vary depending upon the pathogen. PMID:21525345
Burjack, Juliana R.; Santana-Filho, Arquimedes P.; Ruthes, Andrea C.; Riter, Daniel S.; Vicente, Vania A.; Alvarenga, Larissa M.; Sassaki, Guilherme L.
2014-01-01
Dematiaceous fungi constitute a large and heterogeneous group, characterized by having a dark pigment, the dihydroxynaftalen melanin—DHN, inside their cell walls. In nature they are found mainly as soil microbiota or decomposing organic matter, and are spread in tropical and subtropical regions. The fungus Fonsecaea monophora causes chromoblastomycosis in humans, and possesses essential mechanisms that may enhance pathogenicity, proliferation and dissemination inside the host. Glycoconjugates confer important properties to these pathogenic microorganisms. In this work, structural characterization of glycan structures present in two different strains of F. monophora MMHC82 and FE5p4, from clinical and environmental origins, respectively, was performed. Each one were grown on Minimal Medium (MM) and Czapeck-Dox (CD) medium, and the water soluble cell wall glycoconjugates and exopolysaccharides (EPS) were evaluated by NMR, methylation and principal component analysis (PCA). By combining the methylation and 2D NMR analyses, it was possible to visualize the glycosidic profiles of the complex carbohydrate mixtures. Significant differences were observed in β-D-Galf-(1→5) and (1→6) linkages, α- and β-D-Glcp-(1→3), (1→4), and (1→6) units, as well as in α-D-Manp. PCA from 1H-NMR data showed that MMHC82 from CD medium showed a higher variation in the cell wall carbohydrates, mainly related to O-2 substituted β-D-Galf (δ 106.0/5.23 and δ 105.3/5.23) units. In order to investigate the antigenic response of the glycoconjugates, these were screened against serum from chromoblastomycosis patients. The antigen which contained the cell wall of MMHC82 grown in MM had β-D-Manp units that promoted higher antigenic response. The distribution of these fungal species in nature and the knowledge of how cell wall polysaccharides and glycoconjugates structure vary, may contribute to the better understanding and the elucidation of the pathology caused by this fungus. PMID:25401093
Dowdall, S M J; Proudman, C J; Love, S; Klei, T R; Matthews, J B
2003-12-01
Cyathostomins are important equine gastrointestinal parasites. Mass emergence of mucosal stage larvae causes a potentially fatal colitis. Mucosal stages are undetectable non-invasively. An assay that would estimate mucosal larval stage infection would greatly assist in treatment, control and prognosis. Previously, we identified two putative diagnostic antigens (20 and 25 kDa) in somatic larval preparations. Here, we describe their purification and antigen-specific IgG(T) responses to them. Western blots confirmed the purity of the antigens and showed that epitopes in the 20 kDa complex were specific to larval cyathostomins. No cross-reactive antigens appeared to be present in Parascaris equorum or Strongyloides westeri species. Low levels of cross-reactivity were observed in Strongylus edentatus and Strongylus vulgaris species. Use of purified antigens greatly reduced background binding in equine sera. These results indicate that both antigen complexes may be of use in a diagnostic assay.
Grossjohann, Christine; Eccles, Kevin S; Maguire, Anita R; Lawrence, Simon E; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie
2012-01-17
This study examined the 1:1 cocrystal benzamide:dibenzyl sulfoxide, comprising the poorly water soluble dibenzyl sulfoxide (DBSO) and the more soluble benzamide (BA), to establish if this cocrystal shows advantages in terms of solubility and dissolution in comparison to its pure components and to a physical mixture. Solubility studies were performed by measuring DBSO solubility as a function of BA concentration, and a ternary phase diagram was constructed. Dissolution was examined through intrinsic dissolution studies. Solid-state characterisation was carried out by powder X-ray diffraction (PXRD), energy-dispersive X-ray diffraction (EDX), infra-red spectroscopy (ATR-FTIR) and thermal analysis. DBSO solubility was increased by means of complexation with BA. For the cocrystal, the solubility of both components was decreased in comparison to pure components. The cocrystal was identified as metastable and incongruently saturating. Dissolution studies revealed that dissolution of DBSO from the cocrystal was not enhanced in comparison to the pure compound or a physical mix, while BA release was retarded and followed square root of time kinetics. At the disk surface a layer of DBSO was found. The extent of complexation in solution can change the stability of the complex substantially. Incongruent solubility and dissolution behaviour of a cocrystal can result in no enhancement in the dissolution of the less soluble component and retardation of release of the more soluble component. Copyright © 2011 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
This study describes a novel immunization strategy against avian coccidiosis using exosomes derived from Eimeria parasite antigen (Ag)-loaded dendritic cells (DCs) in the absence of soluble Ag. Chicken intestinal DCs were isolated and pulsed in vitro with a mixture of sporozoite-extracted Ags from E...
Chicken egg yolk antibodies (IgY) for detecting circulating antigens of Schistosoma japonicum.
Cai, Yu-Chun; Guo, Jian; Chen, Shao-Hong; Tian, Li-Guang; Steinmann, Peter; Chen, Mu-Xin; Li, Hao; Ai, Lin; Chen, Jia-Xu
2012-09-01
IgY isolated from egg yolk has been widely used in immunodiagnostic tests, including tests to detect circulating antigen (soluble egg antigen or SEA) of Schistosoma japonicum. A sandwich ELISA was established using a combination of anti-S. japonicum SEA-IgY polyclonal antibodies and IgM monoclonal antibodies. To explore sensitivity and specificity of the sandwich ELISA, serum samples from 43 patients infected with S. japonicum were tested. All acute cases and 91.3% of the chronic cases showed a positive reaction. Only 5% of the control sera from healthy persons gave a positive response. Cross-reactions with antibodies to nine other parasites were rare. The developed immunoassay is reasonably sensitive and specific. It could be used for field research and treatment efficacy assessments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Cho, Eunae; Jung, Seunho
2015-10-27
In this review, a comprehensive overview of advances in the supramolecular complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation process, poorly soluble drugs could be efficiently delivered to their desired destinations. Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties owing to their inherent three-dimensional structures, hydrogen bonding, and molecular recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or stability. By extension, polysaccharides and their derivatives can form self-assembled architectures with poorly soluble drugs and have shown increased bioavailability in terms of the sustained or controlled drug release. These supramolecular systems using carbohydrate will be developed consistently in the field of pharmaceutical and medical application.
Electron spectroscopic imaging of antigens by reaction with boronated antibodies.
Qualmann, B; Kessels, M M; Klobasa, F; Jungblut, P W; Sierralta, W D
1996-07-01
Two small homogeneous markers for electron spectroscopic imaging (ESI) containing eight dodecaborane cages linked to a poly-alpha, epsilon-L-lysine dendrimer were synthesized; one of these was made water soluble by the attachment of a polyether. The markers were coupled to the sulfhydryl group of (monovalent) antibody fragments (Fab') by a homobifunctional cross-linker. While the coupling ratios of the poorly water-soluble compound did not exceed 20%, the polyether-containing variant reacted quantitatively. Its suitability for immunolabelling was tested in a study of the mechanism of the transcellular transport of an administered heterologous protein (bovine serum albumin, BSA) through ileal enterocytes of newborn piglets by endocytotic vesicles in comparison to conventional immunogold reagents. The post-embedding technique was employed. The boronated Fab' gave rise to considerably higher tagging frequencies than seen with immunogold, as could be expected from its form- and size-related physical advantages and the dense packing of BSA in the vesicles. The new probe, carrying the antigen-combining cleft at one end and the boron clusters at the opposite end of the oval-shaped conjugate, add to the potential of ESI-based immunocytochemistry.
Human Leukocyte Antigen-G Within the Male Reproductive System: Implications for Reproduction.
Hviid, Thomas Vauvert F
2015-01-01
In sexual reproduction in humans, a man has a clear interest in ensuring that the immune system of his female partner accepts the semi-allogenic fetus. Increasing attention has been given to soluble immunomodulatory molecules in the seminal fluid as one mechanism of ensuring this, possibly by "priming" the woman's immune system before conception and at conception. Recent studies have demonstrated the presence of the immunoregulatory and tolerance-inducible human leukocyte antigen (HLA)-G in the male reproductive organs. The expression of HLA-G in the blastocyst and by extravillous trophoblast cells in the placenta during pregnancy has been well described. Highly variable amounts of soluble HLA-G (sHLA-G) in seminal plasma from different men have been reported, and the concentration of sHLA-G is associated with HLA-G genotype. A first pilot study indicates that the level of sHLA-G in seminal plasma may even be associated with the chance of pregnancy in couples, where the male partner has reduced semen quality. More studies are needed to verify these preliminary findings.
In vivo fate of 125I SS-B (La) injected into mice.
Schrieber, L; Erhardt, C C; Melsom, R D; Venables, P J; McCarthy, D A; Mumford, P A; Horsfall, A C; Maini, R N
1983-01-01
The fate of the radiolabelled soluble cellular antigen SS-B (La) was compared with that of other 125I-labelled proteins of known molecular weight (MW) and electrostatic charge, following i.v. injection into BALB/c mice. The plasma half-life of 125I-SS-B was 3 min, while that of 125I-bovine serum albumin (similar MW and electrostatic charge) was 270 min. 125I-heat-aggregated IgG (MW greater than 1 x 10(6)) and 125I-7S human IgG (MW 168,000) had plasma half-lives of 40 min and greater than 300 min, respectively. Liver and kidney showed preferential uptake of 125I-SS-B, followed by a rapid decrease in radioactivity. During this time low MW, trichloroacetic acid (TCA) soluble, material appeared in urine. This suggests a specific uptake mechanism followed by a catabolic phase. These studies demonstrate that normal mice remove 125I-SS-B rapidly from the circulation and then degrade it. This rapid antigen elimination may protect against the induction of potentially harmful autoantibody responses. PMID:6832805
Süsal, Caner; Pelzl, Steffen; Opelz, Gerhard
2003-10-27
The influence of human leukocyte antigen (HLA) matching on graft survival is greater in patients with preformed lymphocytotoxic antibodies than in nonsensitized patients. Pretransplant serum soluble CD30 (sCD30) affects graft outcome independently of presensitization status. The impact of HLA compatibility on kidney transplant survival was analyzed in 3980 nonsensitized first cadaveric kidney recipients in relation to the pretransplant serum sCD30 content. Although HLA compatibility influenced graft outcome only marginally in nonsensitized recipients with low sCD30 (at 3 years: P=0.0095; at 5 years: P=0.1033), a strong HLA matching effect was observed in nonsensitized recipients with high sCD30 (at 3 years: P<0.0001; at 5 years: P=0.0001). Nonsensitized patients with high pretransplant sCD30 benefit from an HLA well-matched kidney. Patients should be tested for sCD30 while on the waiting list for a kidney transplant, and HLA well-matched kidneys should be allocated to patients with high sCD30.
Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J
2015-01-01
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption. PMID:25559441
Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J
2015-01-01
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.
Process for the displacement of cyanide ions from metal-cyanide complexes
Smith, Barbara F.; Robinson, Thomas W.
1997-01-01
The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.
Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D
2016-12-01
In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas.
NASA Astrophysics Data System (ADS)
Araújo, Éverton José Ferreira de; Silva, Oskar Almeida; Rezende-Júnior, Luís Mário; Sousa, Ian Jhemes Oliveira; Araújo, Danielle Yasmin Moura Lopes de; Carvalho, Rusbene Bruno Fonseca de; Pereira, Sean Telles; Gutierrez, Stanley Juan Chavez; Ferreira, Paulo Michel Pinheiro; Lima, Francisco das Chagas Alves
2017-08-01
This study performed a physicochemical characterization of the inclusion complex generated between Riparin A and β-cyclodextrin (Rip A/β-CD) and compared the cytotoxic potential of the incorporated Rip A upon Artemia salina larvae. Samples were analyzed by phase solubility diagram, dissolution profile, differential scanning calorimetry, X-ray diffraction, infrared spectroscopy, proton nuclear magnetic resonance, scanning electron microscopy and artemicidal action. Riparin A/β-cyclodextrin complexes presented increased water solubility, AL type solubility diagram and Kst constant of 373 L/mol. Thermal analysis demonstrated reduction of the melt peak of complexed Rip A at 116.2 °C. Infrared spectroscopy confirmed generation of inclusion complexes, 1H NMR pointed out the interaction with H-3 of β-CD cavities, alterations in the crystalline natures of Rip A when incorporated within β-CD were observed and inclusion complexes presented higher cytotoxic on A. salina nauplii, with CL50 value of 117.2 (84.9-161.8) μg/mL. So, Rip A was incorporated into β-CDs with high efficiency and water solubility of Rip A was improved. Such solubility was corroborated by cytotoxic evaluation and these outcomes support the improvement of biological properties for complexes between Riparin A/β-cyclodextrin.
Sasakawa, T; Takizawa, H; Bannai, H; Narisawa, R; Asakura, H
1995-01-01
This study was performed to clarify the relationship between activated (HLA-DR-expressing) CD4+ and CD8+ cells in the colonic lamina propria of ulcerative colitis and other immunological factors, i.e., epithelial DR expression, serum soluble CD25 levels, and colonic mucosal CD25+ cells. The frequency of epithelial DR expression was positively correlated with the numbers of CD4+ and CD8+ cells. The percentages activated CD4+/CD4+ cells were higher in mucosae with DR- epithelium than in mucosae with DR+ epithelium. The serum soluble CD25 levels were increased in ulcerative colitis, and there was an inverse correlation between these levels and the relative number of activated CD4+ cells in untreated active disease. These results suggest that interactions among mucosal CD4+ cells, colonic epithelium, and serum soluble CD25 might play an important role in the pathogenesis of ulcerative colitis.
Li, Hui-Shan; Singh, Bijay; Park, Tae-Eun; Hong, Zhong-Shan; Kang, Sang-Kee; Cho, Chong-Su; Choi, Yun-Jaie
2015-12-01
Mucosal vaccination of protein as an antigen requires appropriate delivery or adjuvant systems to deliver antigen to mucosal immune cells efficiently and generate valid immune responses. For successful nasal immunization, the obstacles imposed by the normal process of mucociliary clearance which limits residence time of applied antigens and low antigen delivery to antigen presenting cells (APCs) in nasal associated lymphoid tissue (NALT) need to be overcome for the efficient vaccination. Here, we prepared mucoadhesive and mannan-decorated thiolated Eudragit microspheres (Man-TEM) as a nasal vaccine carrier to overcome the limitations. Mucoadhesive thiolated Eudragit (TE) were decorated with mannan for targeting mannose receptors (MR) in antigen presenting cells (APCs) to obtain efficient immune responses. The potential adjuvant ability of Man-TEM for intranasal immunization was confirmed by in vitro and in vivo experiments. In mechanistic study using APCs in vitro, we obtained that Man-TEM enhanced the receptor-mediated endocytosis by stimulating the MR receptors of APCs. The nasal vaccination of OVA-loaded Man-TEM in mice showed higher levels of serum IgG and mucosal sIgA than the soluble OVA group due to the specific recognition of MR of APCs by the mannan in the Man-TEM. These results suggest that mucoadhesive and Man-TEM may be a promising candidate for nasal vaccine delivery system to elicit systemic and mucosal immunity. Copyright © 2015 Elsevier B.V. All rights reserved.
Odongo, Steven; Sterckx, Yann G J; Stijlemans, Benoît; Pillay, Davita; Baltz, Théo; Muyldermans, Serge; Magez, Stefan
2016-02-01
Infectious diseases pose a severe worldwide threat to human and livestock health. While early diagnosis could enable prompt preventive interventions, the majority of diseases are found in rural settings where basic laboratory facilities are scarce. Under such field conditions, point-of-care immunoassays provide an appropriate solution for rapid and reliable diagnosis. The limiting steps in the development of the assay are the identification of a suitable target antigen and the selection of appropriate high affinity capture and detection antibodies. To meet these challenges, we describe the development of a Nanobody (Nb)-based antigen detection assay generated from a Nb library directed against the soluble proteome of an infectious agent. In this study, Trypanosoma congolense was chosen as a model system. An alpaca was vaccinated with whole-parasite soluble proteome to generate a Nb library from which the most potent T. congolense specific Nb sandwich immunoassay (Nb474H-Nb474B) was selected. First, the Nb474-homologous sandwich ELISA (Nb474-ELISA) was shown to detect experimental infections with high Positive Predictive Value (98%), Sensitivity (87%) and Specificity (94%). Second, it was demonstrated under experimental conditions that the assay serves as test-of-cure after Berenil treatment. Finally, this assay allowed target antigen identification. The latter was independently purified through immuno-capturing from (i) T. congolense soluble proteome, (ii) T. congolense secretome preparation and (iii) sera of T. congolense infected mice. Subsequent mass spectrometry analysis identified the target as T. congolense glycosomal aldolase. The results show that glycosomal aldolase is a candidate biomarker for active T. congolense infections. In addition, and by proof-of-principle, the data demonstrate that the Nb strategy devised here offers a unique approach to both diagnostic development and target discovery that could be widely applied to other infectious diseases.
GENETIC CONTROL OF THE IMMUNE RESPONSE
Lonai, Peter; McDevitt, Hugh O.
1974-01-01
In vitro antigen-induced tritiated thymidine uptake has been used to study the response of sensitized lymphocytes to (T,G)-A--L, (H,G)-A--L, and (Phe,G)-A--L in responder and nonresponder strains of mice. The reaction is T-cell and macrophage dependent. Highly purified T cells (91% Thy 1.2 positive) are also responsive, suggesting that this in vitro lymphocyte transformation system is not B-cell dependent. Lymphocytes from high and low responder mice stimulated in vitro react as responders and nonresponders in a pattern identical to that seen with in vivo immunization. Stimulation occurs only if soluble antigen is added at physiological temperatures; antigen exposure at 4°C followed by washing and incubation at 37°C fails to induce lymphocyte transformation. Stimulation is specific for the immunizing antigen and does not exhibit the serologic cross-reactivity which is characteristic of these three antigens and their respective antisera. The reaction can be inhibited by anti-H-2 sera but not by anti-immunoglobulin sera. The anti-immunoglobulin sera did, however, inhibit lipopolysaccharide or pokeweed mitogen stimulation. These results suggest that the Ir-1A gene(s) are expressed in T cells, and that there are fundamental physiologic differences between T- and B-cell antigen recognition. PMID:4547782
Identification of the antigenic region of Neospora caninum dense granule protein 7 using ELISA.
Abdelbaky, Hanan H; Fereig, Ragab M; Nishikawa, Yoshifumi
2018-06-26
Dense granule protein 7 (NcGRA7) is a potent diagnostic antigen of Neospora caninum. Some studies have reported on the difficult expression, low yield, and variable degree of solubility of recombinant NcGRA7. We aimed to unravel the possible causes for these issues and tested NcGRA7 antigenicity in enzyme linked immunosorbent assays (ELISAs). The NcGRA7 coding sequence (217 amino acids) was split into five amino acid regions: NcGRA7m (27-217), NcGRA7m3 (27-160), NcGRA7m4 (27-135), NcGRA7m5 (161-190), and NcGRA7m6 (188-217). Three fragments, NcGRA7m, NcGRA7m3 and NcGRA7m4, exhibited high antigenic properties when tested against experimentally-infected mice and dog sera by ELISA. High levels of IgG2 antibodies against NcGRA7m were observed in field dog sera. In experimentally and naturally-infected cattle, the N. caninum-specific sera only reacted with NcGRA7m, indicating that this antigenic region differs among the three animal species. This study presents valuable information about the antigenic properties and topology of NcGRA7, and highlights its suitability for diagnostic purposes. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, W.J.; Hellqvist, L.; Basten, A.
1985-12-01
Four distinct antigens were identified in soluble sonicates of Mycobacterium leprae by using a panel of 11 monoclonal antibodies. Cross-reactivity studies with other mycobacterial species were conducted by using ELISA and immunoblot assays, and demonstrated that determinants on two of the antigens were present in many mycobacteria, whereas the other two were limited in distribution. Competitive inhibition experiments with radiolabeled monoclonal antibodies showed cross-inhibition between antibodies identifying two of the four antigenicbands. These two bands, of M/sub tau/ 4.5 to 6 KD and 30 to 40 KD, were resistant to protease treatment after immunoblotting. In contrast the two other bandsmore » of 16 and 70 KD were protease-sensitive. Although all four bands reacted with some human lepromatous leprosy sera in immunoblots, the 4.5 to 6 KD and 30 to 40 KD bands were most prominent. Lepromatous leprosy sera also inhibited the binding of radiolabeled monoclonal antibodies to each of the four antigens, with the mean titer causing 50% inhibition being higher for antibodies reacting with the 4.5 to 6 KD and 30 to 40 KD bands. These findings indicated that all four antigens were involved in the human B cell response to M. leprae.« less
Doenhoff, Michael J.; El-Faham, Marwa; Liddell, Susan; Fuller, Heidi R.; Stanley, Ronald G.; Schramm, Gabriele; Igetei, Joseph E.
2016-01-01
IgG antibodies produced by rabbits immunized against S. mansoni antigens cross-reacted with aqueous soluble constituents of a variety of allergens. The antibody cross-reactivity was largely sensitive to degradation by treatment of the target antigens with sodium meta-periodate, suggesting the cross-reactivity was due to carbohydrate determinants that were common to both the schistosome and the allergens (CCDs). The reaction between the rabbit antibodies and a 43 kDa molecule in a rubber latex extract was analysed further: tandem mass spectrometry identified the latex molecule as allergen Hev b 7. Rabbit anti-schistosome IgG antibodies purified by acid-elution from solid-phase latex Hev b 7 reacted with the S. mansoni egg antigens IPSE/alpha-1 and kappa-5 and cercarial antigens SPO-1 and a fatty acid-binding protein. Moreover, purified anti-S. mansoni egg, latex cross-reactive antibodies reacted with antigenic constituents of some fruits, a result of potential relevance to the latex-fruit syndrome of allergic reactions. We propose that IgG anti-schistosome antibodies that cross-react with allergens may be able to block IgE-induced allergic reactions and thus provide a possible explanation for the hygiene hypothesis. PMID:27467385
Improving permeability and oral absorption of mangiferin by phospholipid complexation.
Ma, Hequn; Chen, Hongming; Sun, Le; Tong, Lijin; Zhang, Tianhong
2014-03-01
Mangiferin is an active ingredient of medicinal plant with poor hydrophilicity and lipophilicity. Many reports focused on improving aqueous solubility, but oral bioavailability of mangiferin was still limited. In this study, we intended to increase not only solubility, but also membrane permeability of mangiferin by a phospholipid complexation technique. The new complex's physicochemical properties were characterized in terms of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), aqueous solubility, oil-water partition coefficient and in vitro dissolution. The intestinal absorption of the complex was studied by the rat in situ intestinal perfusion model. After oral administration of mangiferin-phospholipid complex and crude mangiferin in rats, the concentrations of mangiferin were determined by a validated RP-HPLC method. Results showed that the solubility of the complex in water and in n-octanol was enhanced and the oil-water partition coefficient was improved by 6.2 times and the intestinal permeability in rats was enhanced significantly. Peak plasma concentration and AUC of mangiferin from the complex (Cmax: 377.66 μg/L, AUC: 1039.94 μg/L*h) were higher than crude mangiferin (Cmax: 180 μg/L, AUC: 2355.63 μg/L*h). In view of improved solubility and enhanced permeability, phospholipid complexation technique can increase bioavailability of mangiferin by 2.3 times in comparison to the crude mangiferin. Copyright © 2013 Elsevier B.V. All rights reserved.
Tomotake, Hiroyuki; Yamazaki, Rikio; Yamato, Masayuki
2012-06-01
The effects of an autoclave treatment of buckwheat flour on a 24-kDa allergenic protein were investigated by measuring reduction in solubility and antibody binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that the intensity of the major bands, including that of the 24-kDa allergen, was reduced by the autoclave treatment. The protein solubility in buckwheat flour was variably decreased by the autoclave treatment. Enzyme-linked immunosorbent assay analysis using a monoclonal antibody specific for buckwheat 24-kDa protein showed that the reactivity of protein extracts (10 μg/ml) from buckwheat flour was lowered by the autoclave treatment. The autoclave treatment may reduce the major allergen content of buckwheat. Future studies will determine if autoclaving treatments affect the allergenicity of the 24-kDa buckwheat protein.
Schönbeck, Christian; Madsen, Tobias L; Peters, Günther H; Holm, René; Loftsson, Thorsteinn
2017-10-15
The molecular mechanisms underlying the drug-solubilizing properties of γ-cyclodextrin were explored using hydrocortisone as a model drug. The B S -type phase-solubility diagram of hydrocortisone with γ-cyclodextrin was thoroughly characterized by measuring the concentrations of hydrocortisone and γ-cyclodextrin in solution and the solid phase. The drug-solubilizer interaction was also studied by isothermal titration calorimetry from which a precise value of the 1:1 binding constant (K 11 =4.01mM -1 at 20°C) was obtained. The formation of water-soluble 1:1 complexes is responsible for the initial increase in hydrocortisone solubility while the precipitation of entities with a 3:2 ratio of γ-cyclodextrin:hydrocortisone is responsible for the plateau and the ensuing strong decrease in solubility once all solid hydrocortisone is used up. The complete phase-solubility diagram is well accounted for by a model employing the 1:1 binding constant and the solubility product of the precipitating 3:2 entity (K 32 S =5.51 mM 5 ). For such systems, a small surplus of γ-cyclodextrin above the optimum concentration may result in a significant decrease in drug solubility, and the implications for drug formulations are briefly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
How Soluble GARP Enhances TGFβ Activation.
Fridrich, Sven; Hahn, Susanne A; Linzmaier, Marion; Felten, Matthias; Zwarg, Jenny; Lennerz, Volker; Tuettenberg, Andrea; Stöcker, Walter
2016-01-01
GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi
Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances themore » flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.« less
Tasso, Roberta; Ilengo, Cristina; Quarto, Rodolfo; Cancedda, Ranieri; Caspi, Rachel R; Pennesi, Giuseppina
2012-02-01
Mesenchymal stem/progenitor cells (MSCs) have regenerative and immunomodulatory properties, exerted by cell-cell contact and in a paracrine fashion. Part of their immunosuppressive activity has been ascribed to their ability to promote the induction of CD4+CD25+FoxP3+ T lymphocytes with regulatory functions (Treg). Here the authors studied the effect of MSCs on the induction of Treg and on the development of autoimmunity, and they examined the possibility that MSC-mediated Treg induction could be attributed to the secretion of soluble factors. The authors induced experimental autoimmune uveitis (EAU) in mice by immunization with the 1-20 peptide of the intraphotoreceptor binding protein. At the same time, some of the animals were treated intraperitoneally with syngeneic MSCs. The authors checked T-cell responses and in vitro Treg conversion by cell proliferation and blocking assays, in cell-cell contact and transwell settings. TGFβ and TGFβ receptor gene expression analyses were performed by real-time PCR. The authors found that a single intraperitoneal injection of MSCs was able to significantly attenuate EAU and that a significantly higher percentage of adaptive Treg was present in MSC-treated mice than in MSC-untreated animals. In vitro blocking of antigen presentation by major histocompatibility complex class II precluded priming and clonal expansion of antigen-specific Treg, whereas blockade of TGFβ impaired the expression of FoxP3, preventing the conversion of CD4+ T cells into functionally active Treg. The authors demonstrated that MSCs can inhibit EAU and that their immunomodulatory function is due at least in part to the induction of antigen-specific Treg in a paracrine fashion by secreting TGFβ.
Su, Haibo; Zhu, Shenglin; Zhu, Lin; Huang, Wei; Wang, Honghai; Zhang, Zhi; Xu, Ying
2016-01-01
TLR2-dependent cellular signaling in Mycobacterium tuberculosis -infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these effects. In this study, we identified and characterized MTB lipoprotein Rv1016c (lpqT) as a cell wall associated-protein that was exposed on the cell surface and enhanced the survival of recombinants M. smegmatis_Rv1016c under stress conditions. We found that Rv1016c lipoprotein was a novel TLR2 ligand and able to induce macrophage apoptosis in a both dose- and time-dependent manner. Additionally, apoptosis induced by Rv1016c was reserved in THP-1 cells blocked with anti-TLR-2 Abs or in TLR2 -/- mouse macrophages, indicating that Rv1016c-induced apoptosis is dependent on TLR2. Moreover, we demonstrated that Rv1016c lipoprotein inhibited IFN-γ-induced MHC-II expression and processing of soluble antigens in a TLR2 dependent manner. Class II transactivator (CIITA) regulates MHC II expression. In this context, Rv1016c lipoprotein diminished IFN-γ-induced expression of CIITA IV through TLR2 and MAPK Signaling. TLR2-dependent apoptosis and inhibition of MHC-II Ag processing induced by Rv1016c during mycobacteria infection may promote the release of residual bacilli from apoptotic cells and decrease recognition by CD4 + T cells. These mechanisms may allow intracellular MTB to evade immune surveillance and maintain chronic infection.
The effect of pH dependence of antibody-antigen interactions on subcellular trafficking dynamics.
Devanaboyina, Siva Charan; Lynch, Sandra M; Ober, Raimund J; Ram, Sripad; Kim, Dongyoung; Puig-Canto, Alberto; Breen, Shannon; Kasturirangan, Srinath; Fowler, Susan; Peng, Li; Zhong, Haihong; Jermutus, Lutz; Wu, Herren; Webster, Carl; Ward, E Sally; Gao, Changshou
2013-01-01
A drawback of targeting soluble antigens such as cytokines or toxins with long-lived antibodies is that such antibodies can prolong the half-life of the target antigen by a "buffering" effect. This has motivated the design of antibodies that bind to target with higher affinity at near neutral pH relative to acidic endosomal pH (~pH 6.0). Such antibodies are expected to release antigen within endosomes following uptake into cells, whereas antibody will be recycled and exocytosed in FcRn-expressing cells. To understand how the pH dependence of antibody-antigen interactions affects intracellular trafficking, we generated three antibodies that bind IL-6 with different pH dependencies in the range pH 6.0-7.4. The behavior of antigen in the presence of these antibodies has been characterized using a combination of fixed and live cell fluorescence microscopy. As the affinity of the antibody:IL-6 interaction at pH 6.0 decreases, an increasing amount of antigen dissociates from FcRn-bound antibody in early and late endosomes, and then enters lysosomes. Segregation of antibody and FcRn from endosomes in tubulovesicular transport carriers (TCs) into the recycling pathway can also be observed in live cells, and the extent of IL-6 association with TCs correlates with increasing affinity of the antibody:IL-6 interaction at acidic pH. These analyses result in an understanding, in spatiotemporal terms, of the effect of pH dependence of antibody-antigen interactions on subcellular trafficking and inform the design of antibodies with optimized binding properties for antigen elimination.
Tsaltas, G; Ford, C H
1993-02-01
Methods following the process of binding and internalization of antibodies to cell surface antigens have often employed low pH isoosmolar buffers in order to dissociate surface antigen-antibody complexes. One of the most widely used buffers is a 0.05 M glycine-HCL buffer pH 2.8. Since the efficacy of action of this buffer was critical to a series of internalization experiments employing monoclonal antibodies (Mabs) to carcinoembryonic antigen (CEA) expressing cancer cell lines in this laboratory, we tested its performance in a number of different assays. Our results indicate that this buffer only partially dissociates antigen-antibody bonds and therefore can introduce major inaccuracies in internalization experiments.
ERIC Educational Resources Information Center
Ibanez, Jorge G.; And Others
1988-01-01
Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)
Study of rubella candidate vaccine based on a structurally modified plant virus.
Trifonova, Ekaterina A; Zenin, Vladimir A; Nikitin, Nikolai A; Yurkova, Maria S; Ryabchevskaya, Ekaterina M; Putlyaev, Egor V; Donchenko, Ekaterina K; Kondakova, Olga A; Fedorov, Alexey N; Atabekov, Joseph G; Karpova, Olga V
2017-08-01
A novel rubella candidate vaccine based on a structurally modified plant virus - spherical particles (SPs) - was developed. SPs generated by the thermal remodelling of the tobacco mosaic virus are promising platforms for the development of vaccines. SPs combine unique properties: biosafety, stability, high immunogenicity and the effective adsorption of antigens. We assembled in vitro and characterised complexes (candidate vaccine) based on SPs and the rubella virus recombinant antigen. The candidate vaccine induced a strong humoral immune response against rubella. The IgG isotypes ratio indicated the predominance of IgG1 which plays a key role in immunity to natural rubella infection. The immune response was generally directed against the rubella antigen within the complexes. We suggest that SPs can act as a platform (depot) for the rubella antigen, enhancing specific immune response. Our results demonstrate that SPs-antigen complexes can be an effective and safe candidate vaccine against rubella. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Boghaei, Davar M.; Gharagozlou, Mehrnaz
2006-01-01
Water-soluble cobalt(II) tetradentate Schiff base complexes have been shown to form charge transfer (CT) complexes with a series of nucleoside monophosphates including adenosine-5‧-monophosphate (AMP) and cytidine-5‧-monophosphate (CMP). The investigated water-soluble cobalt(II) Schiff base complexes are (i) disodium[{bis(5-sulfo-salicylaldehyde)-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-salophen)] (1); (ii) disodium[{bis(5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-sal-4,5-dmophen)] (2) and (iii) disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-4-meosal-4,5-dmophen)] (3). The formation constant and thermodynamic parameters for charge transfer complex formation of water-soluble cobalt(II) Schiff base complexes with nucleoside monophosphates were determined spectrophotometrically in aqueous solution at constant ionic strength (I = 0.2 mol dm-3 KNO3) under physiological condition (pH 7.0) and at various temperatures between 288 and 308 K. The stoichiometry has been found to be 1:1 (water-soluble cobalt(II) Schiff base complex: nucleoside monophosphate) in each case. Our spectroscopic and thermodynamic results show that the interaction of water-soluble cobalt(II) Schiff base complexes with the investigated nucleoside monophosphates occurs mainly through the phosphate group. The trend of the interaction according to the cobalt(II) Schiff base complexes due to electronic and steric factors is as follows: Na2[Co(SO3-salophen)] > Na2[Co(SO3-sal-4,5-dmophen)] > Na2[Co(SO3-4-meosal-4,5-dmophen)]. Also the trend of the interaction of a given cobalt(II) Schiff base complex according to the nucleoside monophosphate is as follows: CMP > AMP.
2001-05-01
isolates could retain gp120 in an oligomer. A large scale purification scheme was developed using lentil lectin affinity and size exclusion...34 e. Western blot analysis……………………………………………… 35 f. Large scale protein expression and purification…………………... 35 g. Metabolic labeling, size...isolate HIV-1 Env………... 60 c. Large scale antigen preparation and analysis……………………… 67 d. Cleaved, soluble crosslinked primary isolate Env binds
Nagdas, Subir K; Smith, Linda; Medina-Ortiz, Ilza; Hernandez-Encarnacion, Luisa; Raychoudhury, Samir
2016-03-01
Mammalian fertilization is accomplished by the interaction between sperm and egg. Previous studies from this laboratory have identified a stable acrosomal matrix assembly from the bovine sperm acrosome termed the outer acrosomal membrane-matrix complex (OMC). This stable matrix assembly exhibits precise binding activity for acrosin and N-acetylglucosaminidase. A highly purified OMC fraction comprises three major (54, 50, and 45 kDa) and several minor (38-19 kDa) polypeptides. The set of minor polypeptides (38-19 kDa) termed "OMCrpf polypeptides" is selectively solubilized by high-pH extraction (pH 10.5), while the three major polypeptides (55, 50, and 45 kDa) remain insoluble. Proteomic identification of the OMC32 polypeptide (32 kDa polypeptide isolated from high-pH soluble fraction of OMC) yielded two peptides that matched the NCBI database sequence of acrosin-binding protein. Anti-OMC32 recognized an antigenically related family of polypeptides (OMCrpf polypeptides) in the 38-19-kDa range with isoelectric points ranging between 4.0 and 5.1. Other than glycohydrolases, OMC32 may also be complexed to other acrosomal proteins. The present study was undertaken to identify and localize the OMC32 binding polypeptides and to elucidate the potential role of the acrosomal protein complex in sperm function. OMC32 affinity chromatography of a detergent-soluble fraction of bovine cauda sperm acrosome followed by mass spectrometry-based identification of bound proteins identified acrosin, lactadherin, SPACA3, and IZUMO1. Co-immunoprecipitation analysis also demonstrated the interaction of OMC32 with acrosin, lactadherin, SPACA3, and IZUMO1. Our immunofluorescence studies revealed the presence of SPACA3 and lactadherin over the apical segment, whereas IZUMO1 is localized over the equatorial segment of Triton X-100 permeabilized cauda sperm. Immunoblot analysis showed that a significant portion of SPACA3 was released after the lysophosphatidylcholine (LPC)-induced acrosome reaction, whereas the IZUMO1 and lactadherin polypeptides remain associated to the particulate fraction. Almost entire population of bovine sperm IZUMO1 relocates to the equatorial segment during the LPC-induced acrosome reaction. We propose that the interaction of OMC32 matrix polypeptide with detergent-soluble acrosomal proteins regulates the release of hydrolases/other acrosomal protein(s) during the acrosome reaction.
Complexes between methyltestosterone and β-cyclodextrin for application in aquaculture production.
Carvalho, Lucas Bragança de; Burusco, Kepa Koldo; Jaime, Carlos; Venâncio, Tiago; Carvalho, Aline Ferreira Souza de; Murgas, Luis David Solis; Pinto, Luciana de Matos Alves
2018-01-01
The inclusion complexes between 17-α-methyltestosterone (MT) and β-cyclodextrin (bCD) were prepared and characterized in dissolution and solid phase. The complex promoted a sixfold increment in solubility of the hormone. It has a limited solubility and stoichiometry of 2:1 (bCD:MT) determined by DSC, NMR and solubility experiments, the association constant Ka=2846Lmol -1 and complex fraction of 76% (assessed by DOSY-NMR, in (1:3) DMSO/D 2 O). The association constant obtained in water by the solubility isotherms is 7540Lmol -1 . 2D-ROESY experiments indicate the intermolecular orientation (complete inclusion of the hormone in the cavity). Simulations by molecular dynamics agreed with the formation of the inclusion complex 2:1. Release tests showed the slower release for the complexes, with 50% for lyophilization and 56% for malaxation. These results clearly demonstrate the complexation of MT in bCD, which formulations are promising for further applications involving this steroid in aquaculture, both for sexual reversal and in technologies of hormone in water sequestration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Individual-specific antibody identification methods
Francoeur, Ann -Michele
1989-11-14
An identification method, applicable to the identification of animals or inanimate objects, is described. The method takes advantage of a hithertofore unknown set of individual-specific, or IS antibodies, that are part of the unique antibody repertoire present in animals, by reacting an effective amount of IS antibodies with a particular panel, or n-dimensional array (where n is typically one or two) consisting of an effective amount of many different antigens (typically greater than one thousand), to give antibody-antigen complexes. The profile or pattern formed by the antigen-antibody complexes, termed an antibody fingerprint, when revealed by an effective amount of an appropriate detector molecule, is uniquely representative of a particular individual. The method can similarly by used to distinguish genetically, or otherwise similar individuals, or their body parts containing IS antibodies. Identification of inanimate objects, particularly security documents, is similarly affected by associating with the documents, an effective amount of a particular individual's IS antibodies, or conversely, a particular panel of antigens, and forming antibody-antigen complexes with a particular panel of antigens, or a particular individual's IS antibodies, respectively. One embodiment of the instant identification method, termed the blocked fingerprint assay, has applications in the area of allergy testing, autoimmune diagnostics and therapeutics, and the detection of environmental antigens such as pathogens, chemicals, and toxins.
Strauss, J; Pardo, V; Koss, M N; Griswold, W; McIntosh, R M
1975-03-01
The nature of the glomerular-bound antibody and the putative antigen was investigated in one of the patients with sickle cell disease and immune deposit membranoproliferative glomerulonephritis by immunohistologic and glomerular antibody elution. Renal proximal tubular epithelial antigen was localized in association with immunoglobulins G (IgG), M (IgM), Clq fraction of the first component of complement (Clq) and the third component of complement (C3) in a granular pattern along the glomerular basement membrane of the patient's kidney. IgG and IgM were eluted from glomeruli. These immunoglobulins fixed to the proximal tubules of normal human kidney by direct immunofluorescence. This localization was abolished by absorption of the eluted immunoglobulins with renal tubular epithelial (RTE) antigen. The IgG eluted from the glomeruli blocked the fixation of rabbit anti-RTE antigen to normal proximal tubular brush border. These studies suggest that the nephritis in this patient was due to deposition of complexes or RTE antigen and specific antibody. An autologous immune complex nephritis may develop in some patients with sickle cell anemia secondary to RTE antigen released possibly after renal ischemia or some other phenomenon causing renal tubular damage.
The antigenic complex in HIT binds to B cells via complement and complement receptor 2 (CD21)
Khandelwal, Sanjay; Lee, Grace M.; Hester, C. Garren; Poncz, Mortimer; McKenzie, Steven E.; Sachais, Bruce S.; Rauova, Lubica; Kelsoe, Garnett; Cines, Douglas B.; Frank, Michael
2016-01-01
Heparin-induced thrombocytopenia is a prothrombotic disorder caused by antibodies to platelet factor 4 (PF4)/heparin complexes. The mechanism that incites such prevalent anti-PF4/heparin antibody production in more than 50% of patients exposed to heparin in some clinical settings is poorly understood. To investigate early events associated with antigen exposure, we first examined the interaction of PF4/heparin complexes with cells circulating in whole blood. In healthy donors, PF4/heparin complexes bind preferentially to B cells (>90% of B cells bind to PF4/heparin in vitro) relative to neutrophils, monocytes, or T cells. Binding of PF4 to B cells is heparin dependent, and PF4/heparin complexes are found on circulating B cells from some, but not all, patients receiving heparin. Given the high proportion of B cells that bind PF4/heparin, we investigated complement as a mechanism for noncognate antigen recognition. Complement is activated by PF4/heparin complexes, co-localizes with antigen on B cells from healthy donors, and is present on antigen-positive B cells in patients receiving heparin. Binding of PF4/heparin complexes to B cells is mediated through the interaction between complement and complement receptor 2 (CR2 [CD21]). To the best of our knowledge, these are the first studies to demonstrate complement activation by PF4/heparin complexes, opsonization of PF4/heparin to B cells via CD21, and the presence of complement activation fragments on circulating B cells in some patients receiving heparin. Given the critical contribution of complement to humoral immunity, our observations provide new mechanistic insights into the immunogenicity of PF4/heparin complexes. PMID:27412887
Yadav, Vivek R; Suresh, Sarasija; Devi, Kshama; Yadav, Seema
2009-01-01
The purpose of the study was to prepare and evaluate the anti-inflammatory activity of cyclodextrin (CD) complex of curcumin for the treatment of inflammatory bowel disease (IBD) in colitis-induced rat model. Inclusion complexes of curcumin were prepared by common solvent and kneading methods. These complexes were further evaluated for increase in solubility of poorly soluble curcumin. The inclusion complexes were characterized for enhancement in solubility, in vitro dissolution, surface morphology, infrared, differential scanning calorimetry, and X-ray studies. Solubility, phase solubility, and in vitro dissolution studies showed that curcumin has higher affinity for hydroxypropyl-beta-CD (HPbetaCD) than other CDs. HPbetaCD complex of curcumin was further investigated for its antiangiogenic and anti-inflammatory activity using chick embryo and rat colitis model. HPbetaCD complex of curcumin proved to be a potent angioinhibitory compound, as demonstrated by inhibition of angiogenesis in chorioallantoic membrane assay. Curcumin- and HPbetaCD-treated rats showed a faster weight gain compared to dextran sulfate solution (DSS) controls. Whole colon length appeared to be significantly longer in HPbetaCD-treated rats than pure curcumin and DSS controls. An additional finding in the DSS-treated rats was the predominance of eosinophils in the chronic cell infiltrate. Decreased mast cell numbers in the mucosa of the colon of CD of curcumin- and pure-curcumin-treated rats was observed. This study concluded that the degree of colitis caused by administration of DSS was significantly attenuated by CD of curcumin. Being a nontoxic natural dietary product, curcumin could be useful in the therapeutic strategy for IBD patients.
NASA Astrophysics Data System (ADS)
Araujo, Marcia Valeria Gaspar de; Macedo, Osmir F. L.; Nascimento, Cristiane da Cunha; Conegero, Leila Souza; Barreto, Ledjane Silva; Almeida, Luis Eduardo; Costa, Nivan Bezerra da; Gimenez, Iara F.
2009-02-01
An inclusion complex between the dihydrofolate reductase inhibitor pyrimethamine (PYR) and α-cyclodextrin (α-CD) was prepared and characterized. From the phase-solubility diagram, a linear increase of PYR solubility was verified as a function of α-CD concentration, suggesting the formation of a soluble complex. A 1:1 host-guest stoichiometry can be proposed according to the Job's plot, obtained from the difference of PYR fluorescence intensity in the presence and absence of α-CD. Differential scanning calorimetry (DSC) measurements provided additional evidences of complexation such as the absence of the endothermic peak assigned to the melting of the drug. The inclusion mode characterized by two-dimensional 1H NMR spectroscopy (ROESY) involves penetration of the p-chlorophenyl ring into the α-CD cavity, in agreement to the orientation optimized by molecular modeling methods.
Antigenic relatedness of glucosyltransferase enzymes from streptococcus mutans.
Smith, D J; Taubman, M A
1977-01-01
The antigenic relationship of glucosyltransferases (GTF) produced by different serotypes of Streptococcus mutans was studied by using a functional inhibition assay. Rat, rabbit, or hamster immune fluids, directed to cell-associated or supernatant-derived GTF, were tested against ammonium sulfate-precipitated culture supernatants containing GTF from seven strains of S. mutans representing six different serotypes. An antigenic relationship was shown to exist among GTF from serotypes a, d, and g, since both rat and rabbit antisera directed to serotype a or g GTF inhibited GTF of serotypes d and g similarly and both antisera also inhibited serotype a GTF. Furthermore, serum inhibition patterns indicated that GTF of serotypes c and e, and possibly b, are antigenically related to each other, but are antigenically distinct from GTF of serotype a, d, or g. Serum antibody directed to antigens other than enzyme (e.g., serotype-specific antigen or teichoic acid) had little effect on the inhibition assay. Salivas from rats immunized with cell-associated or supernatant-derived GTF exhibited low but consistent inhibition of GTF activity, which generally corresponded to the serum patterns. The sera of two groups of hamsters immunized with GTF (serotype g), enriched either in water-insoluble or water-soluble glucan synthetic activity, gave patterns of inhibition quite similar to those seen with sera from more heterogenous cell-associated or crude supernatant-derived GTF preparations. Both groups of hamster sera also gave virtually identical patterns, suggesting that the two enzyme forms used as antigen share common antigenic determinants. The results from the three animal models suggest that among the cariogenic organisms tested, two (serotypes a, d, g and b, c, e), or perhaps three (serotypes a, d, g; b; and c, e), different subsets of GTF exist that have distinct antigenic determinants within a subset.
Emami, Tara; Rezayat, Seyed Mahdi; Khamesipour, Ali; Madani, Rasool; Habibi, Gholamreza; Hojatizade, Mansure; Jaafari, Mahmoud Reza
2018-04-01
Adjuvants play an essential role in the induction of immunity against leishmaniasis. In this study, monophosphoryl lipid A (MPL) and imiquimod (IMQ) were used as TLR ligands adjuvants to enhance immunogenicity and rate of protection against leishmaniasis. Nanoliposomes containing soluble Leishmania antigens (SLA) and adjuvants were consisted of DSPC, DSPG and Chol prepared by using lipid film method followed by bath sonication. The size of nanoliposomes was around 95 nm and their zeta potential was negative. BALB/c mice were immunized by liposomal formulations of lip/SLA, lip/MPL/SLA, lip/IMQ/SLA, lip/MPL/IMQ/SLA, lip/SLA + lip/IMQ, lip/SLA + lip/MPL, lip/SLA + lip/MPL/IMQ and five controls of SLA, lip/MPL, lip/IMQ, lip/MPL/IMQ and buffer by subcutaneously (SC) injections, three times in 2 weeks intervals. The synergic effect of two adjuvants when they are used in one formulation showed significantly (p < .001) smaller footpad swelling and the lowest parasite burden in lymph node and foot after the challenge. IgG2a in these groups showed the higher titre compared to control groups, which is compatible with the high IFN-γ production and lowest IL-4. Taken together the results indicated that co-delivery of MPL and IMQ adjuvants and antigen in nanoliposome carrier could be an appropriate delivery system to induce cellular immunity pathway against leishmaniasis.
Tillotson, Benjamin J; Goulatis, Loukas I; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V
2015-01-01
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes.
Tillotson, Benjamin J.; Goulatis, Loukas I.; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V.
2015-01-01
The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes. PMID:26713870
Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch
Blees, Andreas; Reichel, Katrin; Trowitzsch, Simon; Fisette, Olivier; Bock, Christoph; Abele, Rupert; Hummer, Gerhard; Schäfer, Lars V.; Tampé, Robert
2015-01-01
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity. PMID:26611325
Binding of human and rat CD59 to the terminal complement complexes.
Lehto, T; Morgan, B P; Meri, S
1997-01-01
CD59-antigen (protectin) is a widely distributed glycolipid-anchored inhibitor of complement lysis. CD59 interacts with complement components C8 and C9 during assembly of the membrane attack complex (MAC). To evaluate species specificity of these interactions we have in the present study examined cross-species binding of isolated human and rat CD59 to the terminal complement components C8 and C9. By using primarily soluble CD59 isolated from urine (CD59U) potentially non-specific binding interactions of the phospholipid portion of the membrane forms of CD59 could be avoided. Sucrose density gradient ultracentrifugation analysis showed that human CD59U bound to both human and rat C8 in the SC5b-8 complexes. Similar binding occurred when rat CD59U was used. The degree of binding did not significantly differ between the heterologous and homologous CD59-C8 combinations. C9 from both species inhibited the binding of CD59 to soluble SC5b-8. In ligand blotting analysis human and rat CD59U bound to human and rat C8 alpha gamma-subunit and C9. Binding of human and rat CD59U was stronger to human than rat C9. In plate binding assays the erythrocyte form of CD59 (CD59E) bound to both human and rat C8. Binding of CD59E to heterologous C9 was considerably weaker than to homologous C9. Our results imply that the reciprocal binding sites between C8 and CD59 and to a lesser degree between CD59 and C9 are conserved between human and rat. Interactions of CD59 with the terminal C components are thus species selective but not 'homologously restricted'. Images Figure 4 Figure 5 PMID:9038722
NASA Astrophysics Data System (ADS)
Sanina, N. M.; Chopenko, N. S.; Davydova, L. A.; Mazeika, A. N.; Portnyagina, O. Yu.; Kim, N. Yu.; Golotin, V. A.; Kostetsky, E. Y.; Shnyrov, V. L.
2017-09-01
Nanoparticulate tubular immunostimulating complex (TI-complex) is a novel promising adjuvant carrier of antigens allowing to create safe and effective vaccines of new generation. The adjuvant activity of TI-complexes based on monogalactosyldyacylglycerol (MGDG) from the sea alga Ulva lactuca and different triterpene glycosides cucumariosides (CDs) from marine invertebrate Cucumaria japonica and their fractions was studied to assess effects of different CDs on the immunogenicity of porin OmpF from Yersinia pseudotuberculosis (YOmpF). TI-complexes with cucumarioside A2-2 (CDA2-2) maximally stimulated anti-porin antibody production. Studies of protein intrinsic fluorescence showed that all CDs had a relaxing effect on the conformation of YOmpF, loosening peripheral region of protein and promoting exposure of the protein antigenic determinants to the water environment. The greatest immunostimulating effect of TI-complexes comprising CDA2-2 was accompanied by mild effect of this CD on the tertiary structure of protein antigen YOmpF, whereas cucumarioside E (CDE) and cucumarioside A2-4 (CDA2-4) caused especially sharp redistribution of spectral form of the YOmpF corresponding to the emission of an intrinsic protein fluorophore tryptophan.
Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold
2004-02-01
We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.
Crockett-Torabi, E; Fantone, J C
1990-11-01
Signal transduction initiated by interaction of immune complexes (IC) with Fc gamma RII and Fc gamma RIII receptors on human neutrophils was studied by investigating the capacity of well-defined complexes to stimulate O2- generation in neutrophils. IC consisting of polyclonal rabbit antibody to human albumin were prepared at equivalence (insoluble complexes) and at five times Ag excess (soluble complexes). Stimulation of human neutrophils with soluble and insoluble IC caused a dose-dependent activation of the respiratory burst and O2- generation. Incubation of neutrophils with cytochalasin B significantly enhanced O2- generation in neutrophils stimulated with soluble IC. In contrast, cytochalasin B treatment had a minimal effect on O2- generation in neutrophils stimulated with insoluble IC. Treatment of neutrophils with PGE1 or pertussis toxin (PTx) significantly inhibited O2- generation by soluble IC-stimulated neutrophils. However, neither PGE1 nor PTx treatment significantly altered O2- generation in neutrophils stimulated with insoluble complexes. Although O2- generation induced by soluble IC was significantly inhibited by mAb against both Fc gamma RII and Fc gamma RIII receptor, insoluble IC stimulation of neutrophil O2- generation was significantly diminished only by mAb against Fc gamma RIII receptor. Cross-linking of either Fc gamma RII or Fc gamma RIII receptors on neutrophil surfaces induced O2- generation, and this activation was inhibited by both PGE1 and PTx treatment. These findings indicate that soluble and insoluble ICs induce O2- production in human neutrophils through distinct mechanisms. Soluble IC induce activation of neutrophils through a PTx- and PGE1-sensitive pathway that is dependent upon both Fc gamma RII and Fc gamma RIII receptors. Although insoluble IC induce O2- production through a PTx and PGE1 insensitive pathway mediated primarily through Fc gamma RIII receptor.
SIMPLE: a sequential immunoperoxidase labeling and erasing method.
Glass, George; Papin, Jason A; Mandell, James W
2009-10-01
The ability to simultaneously visualize expression of multiple antigens in cells and tissues can provide powerful insights into cellular and organismal biology. However, standard methods are limited to the use of just two or three simultaneous probes and have not been widely adopted for routine use in paraffin-embedded tissue. We have developed a novel approach called sequential immunoperoxidase labeling and erasing (SIMPLE) that enables the simultaneous visualization of at least five markers within a single tissue section. Utilizing the alcohol-soluble peroxidase substrate 3-amino-9-ethylcarbazole, combined with a rapid non-destructive method for antibody-antigen dissociation, we demonstrate the ability to erase the results of a single immunohistochemical stain while preserving tissue antigenicity for repeated rounds of labeling. SIMPLE is greatly facilitated by the use of a whole-slide scanner, which can capture the results of each sequential stain without any information loss.
Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine
Li, Bo; Siuta, Michael; Bright, Vanessa; Koktysh, Dmitry; Matlock, Brittany K; Dumas, Megan E; Zhu, Meiying; Holt, Alex; Stec, Donald; Deng, Shenglou; Savage, Paul B; Joyce, Sebastian; Pham, Wellington
2016-01-01
The present study investigated the immunoenhancing property of our newly designed nanovaccine, that is, its ability to induce antigen-specific immunity. This study also evaluated the synergistic effect of a novel compound PBS-44, an α-galactosylceramide analog, in boosting the immune response induced by our nanovaccine. The nanovaccine was prepared by encapsulating ovalbumin (ova) and an adjuvant within the poly(lactic-co-glycolic acid) nanoparticles. Quantitative analysis of our study data showed that the encapsulated vaccine was physically and biologically stable; the core content of our nanovaccine was found to be released steadily and slowly, and nearly 90% of the core content was slowly released over the course of 25 days. The in vivo immunization studies exhibited that the nanovaccine induced stronger and longer immune responses compared to its soluble counterpart. Similarly, intranasal inhalation of the nanovaccine induced more robust antigen-specific CD8+ T cell response than intraperitoneal injection of nanovaccine. PMID:27895483
[Production of marker-free plants expressing the gene of the hepatitis B virus surface antigen].
Rukavtsova, E B; Gaiazova, A R; Chebotareva, E N; Bur'ianova, Ia I
2009-08-01
The pBM plasmid, carrying the gene of hepatitis B virus surface antigen (HBsAg) and free of any selection markers of antibiotic or herbicide resistance, was constructed for genetic transformation of plants. A method for screening transformed plant seedlings on nonselective media was developed. Enzyme immunoassay was used for selecting transgenic plants with HBsAg gene among the produced regenerants; this method provides for a high sensitivity detection of HBsAg in plant extracts. Tobacco and tomato transgenic lines synthesizing this antigen at a level of 0.01-0.05% of the total soluble protein were obtained. The achieved level of HBsAg synthesis is sufficient for preclinical trials of the produced plants as a new generation safe edible vaccine. The developed method for selecting transformants can be used for producing safe plants free of selection markers.
Ringe, Rajesh P.; Sanders, Rogier W.; Yasmeen, Anila; Kim, Helen J.; Lee, Jeong Hyun; Cupo, Albert; Korzun, Jacob; Derking, Ronald; van Montfort, Thijs; Julien, Jean-Philippe; Wilson, Ian A.; Klasse, Per Johan; Ward, Andrew B.; Moore, John P.
2013-01-01
We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120–gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120–gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated. PMID:24145402
Su, Jianyu; Chen, Jianping; Li, Lin; Li, Bing; Shi, Lei; Chen, Ling; Xu, Zhenbo
2012-06-01
The aims of this study were to optimize the preparation conditions of natural borneol/β-cyclodextrin (NB/β-CD) inclusion complex by ultrasound method, and to investigate its improvement of stability and solubility. The complex was characterized by different various spectroscopic techniques including Fourier transform infrared spectroscopy, X-ray diffractometry, and differential scanning calorimetry. The results demonstrate that NB could be efficiently loaded into β-CD to form an inclusion complex by ultrasound method at a molar ratio of 1: 1and mass ratio of 1: 6. The complex exhibited different physicochemical characteristics from that of free NB. Typically, formation of β-CD inclusion significantly enhanced the stability and aqueous solubility of NB. Natural borneol (NB) has the potential to be widely used in the fields of medical and functional food, due to its specificity. However, the disadvantages of unstability in the preparation and storage process due to its easy sublimation and the low water solubility limit its application. This research provides an effective way to improve the solubility and stability of NB by preparing NB/β-CD inclusion complex. Furthermore, theoretical basis is also provided for the application development of NB. © 2012 Institute of Food Technologists®
Gao, Jie; Ochyl, Lukasz J; Yang, Ellen; Moon, James J
2017-01-01
Cationic liposomes (CLs) have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs), and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation – the process by which APCs internalize extracellular protein antigens, degrade them into minimal CD8+ T-cell epitopes, and present them in the context of major histocompatibility complex-I (MHC-I). However, the precise mechanisms behind CL-mediated induction of cross-presentation and cross-priming of CD8+ T-cells remain to be elucidated. In this study, we have developed two distinct CL systems and examined their impact on the lysosomal pH in dendritic cells (DCs), antigen degradation, and presentation of peptide:MHC-I complexes to antigen-specific CD8+ T-cells. To achieve this, we have used 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as the prototypical components of CLs with tertiary amine groups and compared the effect of CLs and anionic liposomes on lysosomal pH, antigen degradation, and cross-presentation by DCs. Our results showed that CLs, but not anionic liposomes, elevated the lysosomal pH in DCs and reduced antigen degradation, thereby promoting cross-presentation and cross-priming of CD8+ T-cell responses. These studies shed new light on CL-mediated cross-presentation and suggest that intracellular fate of vaccine components and subsequent immunological responses can be controlled by rational design of nanomaterials. PMID:28243087
Improvement of drug loading onto ion exchange resin by cyclodextrin inclusion complex.
Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Sila-on, Warisada; Opanasopit, Praneet
2013-11-01
Ion exchange resins have ability to exchange their counter ions for ionized drug in the surrounding medium, yielding "drug resin complex." Cyclodextrin can be applied for enhancement of drug solubility and stability. Cyclodextrin inclusion complex of poorly water-soluble NSAIDs, i.e. meloxicam and piroxicam, was characterized and its novel application for improving drug loading onto an anionic exchange resin, i.e. Dowex® 1×2, was investigated. β-Cyclodextrin (β-CD) and hydroxypropyl β-cyclodextrin (HP-β-CD) were used for the preparation of inclusion complex with drugs in solution state at various pH. The inclusion complex was characterized by phase solubility, continuous variation, spectroscopic and electrochemistry methods. Then, the drug with and without cyclodextrin were equilibrated with resin at 1:1 and 1:2 weight ratio of drug and resin. Solubility of the drugs was found to increase with increasing cyclodextrin concentration and pH. The increased solubility was explained predominantly due to the formation of inclusion complex at low pH and the increased ionization of drug at high pH. According to characterization studies, the inclusion complex was successfully formed with a 1:1 stoichiometry. The presence of cyclodextrin in the loading solution resulted in the improvement of drug loading onto resin. Enhancing drug loading onto ion-exchange resin via the formation of cyclodextrin inclusion complex is usable in the development of ion-exchange based drug delivery systems, which will beneficially reduce the use of harmful acidic or basic and organic chemicals.
Chemical synthesis of water-soluble, chiral conducting-polymer complexes
Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng
2003-01-01
The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.
Mohammadinezhad, Rezvan; Farahmand, Hamid; Jalali, Seyed Amir Hossein; Mirvaghefi, Alireza
2018-05-01
The nucleoprotein of infectious hematopoietic necrosis virus (IHNV) is considered as the main target antigen for detection of IHNV infection in salmonid fish. This study aimed at improving the expression and solubility of IHNV nucleoprotein (IHNV-NP) in E. coli expression system. The effects of several expression strategies including host strain type, protein expression temperature, heat-shock treatment prior to protein induction, and additives in the growth medium and in the cell lysis buffer were examined. Results showed that bacterial strain type had a great impact on protein expression level, whereas it was not effective in preventing protein aggregation. Production of soluble IHNV-NP was proportionally increased with decreased incubation temperature. Heat-shock treatment prior to protein induction did not change the percent of solubility. For cells grown at low temperature, the presence of additives in the lysis buffer enhanced the solubility of IHNV-NP up to 24%. The highest yield of soluble protein was obtained via incorporation of osmolytes in the growth medium of cells exposed to a mild salt stress, in the following order: sucrose > sorbitol > glycerol > glycine. Soluble protein obtained by the optimized condition was efficiently purified in high yield and successfully detected by two monoclonal antibodies in a sandwich ELISA. Taken together, a combination of proper host strain, low-temperature expression, and timely application of osmolytes in the growth medium provided sufficient quantities of soluble recombinant IHNV-NP that has the potential to be used for diagnostic purposes.
Chi, Liandi; Liu, Ruihao; Guo, Tao; Wang, Manli; Liao, Zuhua; Wu, Li; Li, Haiyan; Wu, Deling; Zhang, Jiwen
2015-02-20
As one of the most important technologies to improve the solubility of poorly water-soluble drugs, the solubilization effects of cyclodextrins (CDs) complexation are, on occasions, not as large as expected, which tends to detract from the wider application of CDs. In this study, a dramatic improvement of the solubility of pseudolaric acid B (PAB) by CDs has been found with a 600 fold increase by HP-β-CD complexation. In addition, the solubility enhancement of PAB by various CDs, including α-CD, β-CD, γ-CD, HP-β-CD and SBE-β-CD was investigated by phase solubility studies. The inclusion complex of PAB/HP-β-CD was prepared by different methods and characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy ((1)H NMR) together with molecular simulation. The results indicated that the solubility of PAB was increased to 15.78mgmL(-1) in the presence of 30% HP-β-CD, which is a 600 fold increase compared with that in pure water. And the chemical stability of PAB in PBS (pH 7.4) can be enhanced. The results of DSC and XRD showed the absence of crystallinity in the PAB/HP-β-CD inclusion complex prepared by the saturated water solution method. The results of (1)H NMR together with molecular simulation indicated the conjugated diene side-chain of PAB was included into the cavity of HP-β-CD, with the free energy of -20.34±4.69kJmol(-1). While the enzymatic degradation site of the carboxyl polar bond is located in the hydrophilic outer of HP-β-CD resulted in no significant difference for the enzymatic degradation rate between PAB and PAB/HP-β-CD complexes in rat plasma. In summary, the PAB/HP-β-CD inclusion complex prepared in this study can greatly improve the solubility and chemical stability of PAB, which will result in the in vivo administration of PAB as a liquid solution. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumanian, M.A.; Duplishcheva, A.P.; Sedova, T.S.
1958-01-01
Bacteria of the intestinal group were found to be killed by radiation doses of 400,000 to 600,000 r. When spore forms of bacteria were contained in the material, sterilization was achieved by doses of 1.5 to 2 Mr. Applications of radiosterilization are discussed for the preparation of bacterial-cell vaccines, bacterial antigen complexes. chemical vaccines, and the preparation of vaccines made from bacteria killed by radiation. A study was made of the quality, antigenic and immunogenic properties, liability to retain Vi antigen, and toxicity of vaccines and antigenic complexes prepared from irradiated dysentery and typhoid bacteria. It was found that themore » radio-antigens were less toxic than antigens prepared from formalinized bacteria or from bacteria which had not been killed before the preparation of the antigen. When antigen previously prepared from formalinized bacteria was subjected to radiation, it either did not differ in toxic properties from the unirradiated antigen or was more toxic. Radiovaccines induced antibody formatdon in the same way as ordinary formalinized vaccines. Experimental data are tabulated. It was concluded that gamma irradiation can be used both for the production of intestinal group vaccines and antigens and for the sterilization of corresponding bacterial preparations already prepared. (C.H.)« less
Watkinson, Allan; Soliakov, Andrei; Ganesan, Ashok; Hirst, Karie; Lebutt, Chris; Fleetwood, Kelly; Fusco, Peter C; Fuerst, Thomas R; Lakey, Jeremy H
2013-11-01
Aluminum salts are the most widely used vaccine adjuvants, and phosphate is known to modulate antigen-adjuvant interactions. Here we report an unexpected role for phosphate buffer in an anthrax vaccine (SparVax) containing recombinant protective antigen (rPA) and aluminum oxyhydroxide (AlOH) adjuvant (Alhydrogel). Phosphate ions bind to AlOH to produce an aluminum phosphate surface with a reduced rPA adsorption coefficient and binding capacity. However, these effects continued to increase as the free phosphate concentration increased, and the binding of rPA changed from endothermic to exothermic. Crucially, phosphate restored the thermostability of bound rPA so that it resembled the soluble form, even though it remained tightly bound to the surface. Batches of vaccine with either 0.25 mM (subsaturated) or 4 mM (saturated) phosphate were tested in a disease model at batch release, which showed that the latter was significantly more potent. Both formulations retained their potency for 3 years. The strongest aluminum adjuvant effects are thus likely to be via weakly attached or easily released native-state antigen proteins.
Piras, Anna Maria; Zambito, Ylenia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Terreni, Eleonora; Fabiano, Angela; Balzano, Federica; Uccello-Barretta, Gloria; Chetoni, Patrizia
2018-03-30
The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.
Effect of β-Cyclodextrin Complexation on Solubility and Enzymatic Conversion of Naringin
Cui, Li; Zhang, Zhen-Hai; Sun, E; Jia, Xiao-Bin
2012-01-01
In the present paper, the effect of β-cyclodextrin (β-CD) inclusion complexation on the solubility and enzymatic hydrolysis of naringin was investigated. The inclusion complex of naringin/β-CD at the molar ratio of 1:1 was obtained by the dropping method and was characterized by differential scanning calorimetry. The solubility of naringin complexes in water at 37 ± 0.1 °C was 15 times greater than that of free naringin. Snailase-involved hydrolysis conditions were tested for the bioconversion of naringin into naringenin using the univariate experimental design. Naringin can be transformed into naringenin by snailase-involved hydrolysis. The optimum conditions for enzymatic hydrolysis were determined as follows: pH 5.0, temperature 37 °C, ratio of snailase/substrate 0.8, substrate concentration 20 mg·mL−1, and reaction time 12 h. Under the optimum conditions, the transforming rate of naringenin from naringin for inclusion complexes and free naringin was 98.7% and 56.2% respectively, suggesting that β-CD complexation can improve the aqueous solubility and consequently the enzymatic hydrolysis rate of naringin. PMID:23203062
Oral formulation strategies to improve solubility of poorly water-soluble drugs.
Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy
2011-10-01
In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.
Blocking of HIV-1 Infectivity by a Soluble, Secreted Form of the CD4 Antigen
NASA Astrophysics Data System (ADS)
Smith, Douglas H.; Byrn, Randal A.; Marsters, Scot A.; Gregory, Timothy; Groopman, Jerome E.; Capon, Daniel J.
1987-12-01
The initial event in the infection of human T lymphocytes, macrophages, and other cells by human immunodeficiency virus (HIV-1) is the attachment of the HIV-1 envelope glycoprotein gp120 to its cellular receptor, CD4. As a step toward designing antagonists of this binding event, soluble, secreted forms of CD4 were produced by transfection of mammalian cells with vectors encoding versions of CD4 lacking its transmembrane and cytoplasmic domains. The soluble CD4 so produced binds gp120 with an affinity and specificity comparable to intact CD4 and is capable of neutralizing the infectivity of HIV-1. These studies reveal that the high-affinity CD4-gp120 interaction does not require other cell or viral components and may establish a novel basis for therapeutic intervention in the acquired immune deficiency syndrome (AIDS).
Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla
2014-01-01
In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer. PMID:25045689
Bettini, Ruggero; Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla
2014-01-01
In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer.
Comor, Lubos; Dolinska, Saskia; Bhide, Katarina; Pulzova, Lucia; Jiménez-Munguía, Irene; Bencurova, Elena; Flachbartova, Zuzana; Potocnakova, Lenka; Kanova, Evelina; Bhide, Mangesh
2017-01-23
Camelids possess unique functional heavy chain antibodies, which can be produced and modified in vitro as a single domain antibody (sdAb or nanobody) with full antigen binding ability. Production of sdAb in conventional manner requires active immunization of Camelidae animal, which is laborious, time consuming, costly and in many cases not feasible (e.g. in case of highly toxic or infectious antigens). In this study, we describe an alternative pipeline that includes in vitro stimulation of naïve alpaca B-lymphocytes by antigen of interest (in this case endothelial cell binding domain of OspA of Borrelia) in the presence of recombinant alpaca interleukins 2 and 4, construction of sdAb phage library, selection of antigen specific sdAb expressed on phages (biopanning) and confirmation of binding ability of sdAb to the antigen. By joining the in vitro immunization and the phage display ten unique phage clones carrying sdAb were selected. Out of ten, seven sdAb showed strong antigen binding ability in phage ELISA. Furthermore, two soluble forms of sdAb were produced and their differential antigen binding affinity was measured with bio-layer interferometry. A proposed pipeline has potential to reduce the cost substantially required for maintenance of camelid herd for active immunization. Furthermore, in vitro immunization can be achieved within a week to enrich mRNA copies encoding antigen-specific sdAbs in B cell. This rapid and cost effective pipeline can help researchers to develop efficiently sdAb for diagnostic and therapeutic purposes.
Bhattachar, Shobha N; Risley, Donald S; Werawatganone, Pornpen; Aburub, Aktham
2011-06-30
This work reports on the solubility of two weakly basic model compounds in media containing sodium lauryl sulfate (SLS). Results clearly show that the presence of SLS in the media (e.g. simulated gastric fluid or dissolution media) can result in an underestimation of solubility of some weak bases. We systematically study this phenomenon and provide evidence (chromatography and pXRD) for the first time that the decrease in solubility is likely due to formation of a less soluble salt/complex between the protonated form of the weak base and lauryl sulfate anion. Copyright © 2011 Elsevier B.V. All rights reserved.
Eijsink, Chantal; Kester, Michel G D; Franke, Marry E I; Franken, Kees L M C; Heemskerk, Mirjam H M; Claas, Frans H J; Mulder, Arend
2006-08-31
The ability of tetrameric major histocompatibility complex (MHC) class I-peptide complexes (tetramers) to detect antigen-specific T lymphocyte responses has yielded significant information about the generation of in vivo immunity in numerous antigenic systems. Here we present a novel method for rapid validation of tetrameric HLA molecules based on the presence of allodeterminants. Human monoclonal antibodies (mAbs) recognizing polymorphic determinants on HLA class I were immobilized on polystyrene microparticles and used to probe the structural integrity of tetrameric HLA class I molecules by flow cytometry. A total of 22 tetramers, based on HLA-A1, A2, A3, A24, B7 and B8 were reactive with their counterpart mAbs, thus confirming their antigenic integrity. A positive outcome of this mAb test ensures that tetrameric HLA class I can be used with greater confidence in subsequent functional assays.
Detergent Stabilized Nanopore Formation Kinetics of an Anthrax Protein
NASA Astrophysics Data System (ADS)
Peterson, Kelby
2015-03-01
This summer research project funded through the Society of Physics Students Internship Program and The National Institute of Standards and Technology focused on optimization of pore formation of Protective Antigen protein secreted by Bacillus Anthraces. This experiment analyzes the use of N-tetradecylphosphocholine (FOS-14 Detergent) to stabilize the water soluble protein, protective antigen protein (PA63) to regulate the kinetics of pore formation in a model bilayer lipid membrane. The FOS-14 Detergent was tested under various conditions to understand its impact on the protein pore formation. The optimization of this channel insertion is critical in preparing samples of oriented for neutron reflectometry that provide new data to increase the understanding of the protein's structure.
Igetei, Joseph E; El-Faham, Marwa; Liddell, Susan; Doenhoff, Michael J
2017-04-01
The antigenic reactivity of constituents of Schistosoma mansoni and peanut (Arachis hypogaea) was investigated to determine whether identical antigenic epitopes possessed by both organisms provided a possible explanation for the negative correlation between chronic schistosome infection and atopy to allergens. Aqueous extracts of peanuts were probed in Western immunoblots with rabbit IgG antibodies raised against the egg, cercarial and adult worm stages of S. mansoni. Several molecules in the peanut extract were antigenically reactive with antibodies from the various rabbit anti-schistosome sera. A pair of cross-reactive peanut molecules at ~30 000-33 000 molecular weight was purified and both proteins were identified by mass spectrometric analysis as the peanut allergen Ara h 1. Anti-S. mansoni soluble egg antigen antibodies that were eluted off the peanut molecules reacted with two S. mansoni egg antigens identified by mass spectrometry as IPSE/α-1 and κ-5. Alignments of the amino acid sequences of Ara h 1 and either IPSE/α-1 or κ-5 revealed a low level of peptide sequence identity. Incubation of nitrocellulose paper carrying electrophoresed peanut molecules, six constituents of other allergic plants and S. mansoni egg antigens in a mild solution of sodium metaperiodate before probing with antibodies, inhibited most of the cross-reactivities. The results are consistent with the antigenic cross-reactive epitopes of S. mansoni egg antigens, peanut and other allergic plants being cross-reactive carbohydrate determinants (CCDs). These findings are novel and an explanation based on 'blocking antibodies' could provide an insight for the inverse relationship observed between schistosome infection and allergies. © 2017 John Wiley & Sons Ltd.
Clapéron, Audrey; Rose, Christiane; Gane, Pierre; Collec, Emmanuel; Bertrand, Olivier; Ouimet, Tanja
2005-06-03
The Kell blood group is a highly polymorphic system containing over 20 different antigens borne by the protein Kell, a 93-kDa type II glycoprotein that displays high sequence homology with members of the M13 family of zinc-dependent metalloproteases whose prototypical member is neprilysin. Kell K1 is an antigen expressed in 9% of the Caucasian population, characterized by a point mutation (T193M) of the Kell K2 antigen, and located within a putative N-glycosylation consensus sequence. Recently, a recombinant, non-physiological, soluble form of Kell was shown to cleave Big ET-3 to produce the mature vasoconstrictive peptide. To better characterize the enzymatic activity of the Kell protein and the possible differences introduced by antigenic point mutations affecting post-translational processing, the membrane-bound forms of the Kell K1 and Kell K2 antigens were expressed either in K562 cells, an erythroid cell line, or in HEK293 cells, a non-erythroid system, and their pharmacological profiles and enzymatic specificities toward synthetic and natural peptides were evaluated. Results presented herein reveal that the two antigens possess considerable differences in their enzymatic activities, although not in their trafficking pattern. Indeed, although both antigens are expressed at the cell surface, Kell K1 protein is shown to be inactive, whereas the Kell K2 antigen binds neprilysin inhibitory compounds such as phosphoramidon and thiorphan with high affinity, cleaves the precursors of the endothelin peptides, and inactivates members of the tachykinin family with enzymatic properties resembling those of other members of the M13 family of metalloproteases to which it belongs.
Antigen delivery by α2-macroglobulin enhances the cytotoxic T lymphocyte response
Bowers, Edith V.; Horvath, Jeffrey J.; Bond, Jennifer E.; Cianciolo, George J.; Pizzo, Salvatore V.
2009-01-01
α2M* targets antigens to APCs for rapid internalization, processing, and presentation. When used as an antigen-delivery vehicle, α2M* amplifies MHC class II presentation, as demonstrated by increased antibody titers. Recent evidence, however, suggests that α2M* encapsulation may also enhance antigen-specific CTL immunity. In this study, we demonstrate that α2M*-delivered antigen (OVA) enhances the production of specific in vitro and in vivo CTL responses. Murine splenocytes expressing a transgenic TCR specific for CTL peptide OVA257–264 (SIINFEKL) demonstrated up to 25-fold greater IFN-γ and IL-2 secretion when treated in vitro with α2M*-OVA compared with soluble OVA. The frequency of IFN-γ-producing cells was increased ∼15-fold, as measured by ELISPOT. Expansion of the OVA-specific CD8+ T cell population, as assayed by tetramer binding and [3H]thymidine incorporation, and OVA-specific cell-mediated cytotoxicity, as determined by a flow cytometric assay, were also enhanced significantly by α2M*-OVA. Furthermore, significant CTL responses were observed at antigen doses tenfold lower than those required with OVA alone. Finally, we also observed enhanced humoral and CTL responses by naïve mice following intradermal immunization with α2M*-OVA. These α2M*-OVA-immunized mice demonstrated increased protection against a s.c.-implanted, OVA-expressing tumor, as demonstrated by delayed tumor growth and prolonged animal survival. The observation that α2M*-mediated antigen delivery elicits specific CTL responses suggests the cross-presentation of antigen onto MHC class I. These results support α2M* as an effective antigen-delivery system that may be particularly useful for vaccines based on weakly immunogenic subunits or requiring dose sparing. PMID:19652028
Determinants of wheat antigen and fungal alpha-amylase exposure in bakeries.
Burstyn, I; Teschke, K; Bartlett, K; Kennedy, S M
1998-05-01
The study's objectives were to measure flour antigen exposure in bakeries and define the determinants of exposure. Ninety-six bakery workers, employed in seven different bakeries, participated in the study. Two side-by-side full-shift inhalable dust samples were obtained from each study participant on a single occasion. The flour antigen exposure was measured as wheat antigen and fungal alpha-amylase content of the water-soluble fraction of inhalable dust, assayed via enzyme-linked immunosorbent assays. During the entire sampling period bakers were observed and information on 14 different tasks was recorded at 15-minute intervals. Other production characteristics were also recorded for each sampling day and used in statistical modeling to identify significant predictors of exposure. The mean alpha-amylase antigen exposure was 22.0 ng/m3 (ranging from below the limit of detection of 0.1 ng/m3 to 307.1 ng/m3) and the mean wheat antigen exposure was 109 micrograms/m3 (ranging from below the limit of detection of 1 microgram/m3 to 1018 micrograms/m3). Regression models that explained 74% of variability in wheat antigen and alpha-amylase antigen exposures were constructed. The models indicated that tasks such as weighing, pouring, and operating dough-brakers increased flour antigen exposure, while packing and decorating resulted in lower exposures. Croissant, puff-pastry, and bread/bun production lines were associated with increased exposure, while cake production and substitution of dusting with the use of divider oil were associated with decreased exposure. Exposure levels can be reduced by the automation of forming tasks, alteration of tasks requiring pouring of flour, and changes to the types of products manufactured.
Henry, Kevin A.; Kim, Dae Young; Kandalaft, Hiba; Lowden, Michael J.; Yang, Qingling; Schrag, Joseph D.; Hussack, Greg; MacKenzie, C. Roger; Tanha, Jamshid
2017-01-01
Human autonomous VH/VL single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged VH/VL domains. Here, we describe the design and characterization of three novel human VH/VL sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential VH/VL sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three VH/VL sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three VH/VL libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 VHs and 7 VLs in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2–3 µM), but had highly variable expression yields (range: 0.1–19 mg/L). Despite our efforts to identify the most stable VH/VL scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing VH/VL sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some VH/VL sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence clearly dramatically impacts the stability of human autonomous VH/VL immunoglobulin domain folds, and sequence-stability tradeoffs must be taken into account during the design of such libraries. PMID:29375542
MacLachlan, Bruce J; Greenshields-Watson, Alexander; Mason, Georgina H; Schauenburg, Andrea J; Bianchi, Valentina; Rizkallah, Pierre J; Sewell, Andrew K; Fuller, Anna; Cole, David K
2017-02-06
Human CD8+ cytotoxic T lymphocytes (CTLs) are known to play an important role in tumor control. In order to carry out this function, the cell surface-expressed T-cell receptor (TCR) must functionally recognize human leukocyte antigen (HLA)-restricted tumor-derived peptides (pHLA). However, we and others have shown that most TCRs bind sub-optimally to tumor antigens. Uncovering the molecular mechanisms that define this poor recognition could aid in the development of new targeted therapies that circumnavigate these shortcomings. Indeed, present therapies that lack this molecular understanding have not been universally effective. Here, we describe methods that we commonly employ in the laboratory to determine how the nature of the interaction between TCRs and pHLA governs T-cell functionality. These methods include the generation of soluble TCRs and pHLA and the use of these reagents for X-ray crystallography, biophysical analysis, and antigen-specific T-cell staining with pHLA multimers. Using these approaches and guided by structural analysis, it is possible to modify the interaction between TCRs and pHLA and to then test how these modifications impact T-cell antigen recognition. These findings have already helped to clarify the mechanism of T-cell recognition of a number of cancer antigens and could direct the development of altered peptides and modified TCRs for new cancer therapies.
Henry, Kevin A; Tanha, Jamshid
2018-05-01
Fully human synthetic single-domain antibodies (sdAbs) are desirable therapeutic molecules but their development is a considerable challenge. Here, using a retrospective analysis of in-house historical data, we examined the parameters that impact the outcome of screening phage-displayed synthetic human sdAb libraries to discover antigen-specific binders. We found no evidence for a differential effect of domain type (V H or V L ), library randomization strategy, incorporation of a stabilizing disulfide linkage or sdAb display format (monovalent vs. multivalent) on the probability of obtaining any antigen-binding human sdAbs, instead finding that the success of library screens was primarily related to properties of target antigens, especially molecular mass. The solubility and binding affinity of sdAbs isolated from successful screens depended both on properties of the sdAb libraries (primarily domain type) and the target antigens. Taking attrition of sdAbs with major manufacturability concerns (aggregation; low expression) and sdAbs that do not recognize native cell-surface antigens as independent probabilities, we calculate the overall likelihood of obtaining ≥1 antigen-binding human sdAb from a single library-target screen as ~24%. Successful library-target screens should be expected to yield ~1.3 human sdAbs on average, each with average binding affinity of ~2 μM. Copyright © 2018 Elsevier B.V. All rights reserved.
Bendz, Henriette; Ruhland, Sibylle C; Pandya, Maya J; Hainzl, Otmar; Riegelsberger, Stefan; Braüchle, Christoph; Mayer, Matthias P; Buchner, Johannes; Issels, Rolf D; Noessner, Elfriede
2007-10-26
Heat shock proteins (HSPs) have shown promise for the optimization of protein-based vaccines because they can transfer exogenous antigens to dendritic cells and at the same time induce their maturation. Great care must be exercised in interpretating HSP-driven studies, as by-products linked to the recombinant generation of these proteins have been shown to mediate immunological effects. We generated highly purified human recombinant Hsp70 and demonstrated that it strongly enhances the cross-presentation of exogenous antigens resulting in better antigen-specific T cell stimulation. Augmentation of T cell stimulation was a direct function of the degree of complex formation between Hsp70 and peptides and correlated with improved antigen delivery to endosomal compartments. The Hsp70 activity was independent of TAP proteins and was not inhibited by exotoxin A or endosomal acidification. Consequently, Hsp70 enhanced cross-presentation of various antigenic sequences, even when they required different post-uptake processing and trafficking, as exemplified by the tumor antigens tyrosinase and Melan-A/MART-1. Furthermore, Hsp70 enhanced cross-presentation by different antigen-presenting cells (APCs), including dendritic cells and B cells. Importantly, enhanced cross-presentation and antigen-specific T cell activation were observed in the absence of innate signals transmitted by Hsp70. As Hsp70 supports the cross-presentation of different antigens and APCs and is inert to APC function, it may show efficacy in various settings of immune modulation, including induction of antigen-specific immunity or tolerance.
The Role of FcRn in Antigen Presentation
Baker, Kristi; Rath, Timo; Pyzik, Michal; Blumberg, Richard S.
2014-01-01
Immunoglobulins are unique molecules capable of simultaneously recognizing a diverse array of antigens and themselves being recognized by a broad array of receptors. The abundance specifically of the IgG subclass and the variety of signaling receptors to which it binds render this an important immunomodulatory molecule. In addition to the classical Fcγ receptors that bind IgG at the cell surface, the neonatal Fc receptor (FcRn) is a lifelong resident of the endolysosomal system of most hematopoietic cells where it determines the intracellular fate of both IgG and IgG-containing immune complexes (IgG IC). Cross-linking of FcRn by multivalent IgG IC within antigen presenting cells such as dendritic cells initiates specific mechanisms that result in trafficking of the antigen-bearing IgG IC into compartments from which the antigen can successfully be processed into peptide epitopes compatible with loading onto both major histocompatibility complex class I and II molecules. In turn, this enables the synchronous activation of both CD4+ and CD8+ T cell responses against the cognate antigen, thereby bridging the gap between the humoral and cellular branches of the adaptive immune response. Critically, FcRn-driven T cell priming is efficient at very low doses of antigen due to the exquisite sensitivity of the IgG-mediated antigen delivery system through which it operates. FcRn-mediated antigen presentation has important consequences in tissue compartments replete with IgG and serves not only to determine homeostatic immune activation at a variety of sites but also to induce inflammatory responses upon exposure to antigens perceived as foreign. Therapeutically targeting the pathway by which FcRn enables T cell activation in response to IgG IC is thus a highly attractive prospect not only for the treatment of diseases that are driven by immune complexes but also for manipulating local immune responses against defined antigens such as those present during infections and cancer. PMID:25221553
García-Guerrero, Estefanía; Pérez-Simón, José Antonio; Sánchez-Abarca, Luis Ignacio; Díaz-Moreno, Irene; De la Rosa, Miguel A; Díaz-Quintana, Antonio
2016-01-01
Generating the immune response requires the discrimination of peptides presented by the human leukocyte antigen complex (HLA) through the T-cell receptor (TCR). However, how a single amino acid substitution in the antigen bonded to HLA affects the response of T cells remains uncertain. Hence, we used molecular dynamics computations to analyze the molecular interactions between peptides, HLA and TCR. We compared immunologically reactive complexes with non-reactive and weakly reactive complexes. MD trajectories were produced to simulate the behavior of isolated components of the various p-HLA-TCR complexes. Analysis of the fluctuations showed that p-HLA binding barely restrains TCR motions, and mainly affects the CDR3 loops. Conversely, inactive p-HLA complexes displayed significant drop in their dynamics when compared with its free versus ternary forms (p-HLA-TCR). In agreement, the free non-reactive p-HLA complexes showed a lower amount of salt bridges than the responsive ones. This resulted in differences between the electrostatic potentials of reactive and inactive p-HLA species and larger vibrational entropies in non-elicitor complexes. Analysis of the ternary p-HLA-TCR complexes also revealed a larger number of salt bridges in the responsive complexes. To summarize, our computations indicate that the affinity of each p-HLA complex towards TCR is intimately linked to both, the dynamics of its free species and its ability to form specific intermolecular salt-bridges in the ternary complexes. Of outstanding interest is the emerging concept of antigen reactivity involving its interplay with the HLA head sidechain dynamics by rearranging its salt-bridges.
Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics
Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.
2012-01-01
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726
Discriminating acute from chronic human schistosomiasis mansoni.
Beck, Lílian; Van-Lüme, Daniele S M; Souza, Joelma R; Domingues, Ana L C; Favre, Tereza; Abath, Frederico G C; Montenegro, Silvia M L
2008-01-01
Specific immunoglobulin (IgA, IgG and IgM) responses to different antigen targets (soluble eggs antigen--SEA, soluble worm adult protein--SWAP and keyhole limpet hole--KLH) were measured by enzyme linked immunosorbent assay (ELISA) in patients with acute and chronic schistosomiasis, as well as patients without schistosomiasis. SEA IgA and KLH IgM presented high discriminatory powers to distinguish acute from chronic schistosomiasis, with calculated areas under the curve (AUCs) of 0.88 and 0.82, respectively, obtained from receiver operating characteristic (ROC) curve. On the other hand, these tests, particularly SEA IgA were not useful to distinguish schistosomiasis (including the acute and chronic forms) from individuals without this disease, but infected with other intestinal parasites (Ascaris lumbricoides, Trichuris trichiura and hookworm). By contrast, SWAP IgG and SEA IgG were able to discriminate schistosomiasis patients from healthy individuals and patients infected with other parasites (AUCs of 0.96 and 0.85, respectively). Thus, it is possible to use a combination of serological tests, such as SEA IgA and SWAP IgG, to simultaneously establish the diagnosis of schistosomiasis and discriminate the acute from the chronic forms of the disease.
Chura-Chambi, Rosa M; Nakajima, Erika; de Carvalho, Roberta R; Miyasato, Patricia A; Oliveira, Sergio C; Morganti, Ligia; Martins, Elizabeth A L
2013-12-01
Schistosomiasis is an important parasitic disease, with about 240 million people infected worldwide. Humans and animals can be infected, imposing an enormous social and economic burden. The only drug available for chemotherapy, praziquantel, does not control reinfections, and an efficient vaccine for prophylaxis is still missing. However, the tegumental protein Sm29 of Schistosoma mansoni was shown to be a promising antigen to compose an anti-schistosomiasis vaccine. Though, recombinant Sm29 is expressed in Escherichia coli as insoluble inclusion bodies requiring an efficient process of refolding, thus, hampering its production in large scale. We present in this work studies to refold the recombinant Sm29 using high hydrostatic pressure, a mild condition to dissociate aggregated proteins, leading to refolding on a soluble conformation. Our studies resulted in high yield of rSm29 (73%) as a stably soluble and structured protein. The refolded antigen presented protective effect against S. mansoni development in immunized mice. We concluded that the refolding process by application of high hydrostatic pressure succeeded, and the procedure can be scaled-up, allowing industrial production of Sm29. Copyright © 2013 Elsevier B.V. All rights reserved.
Hofbauer, Anna; Melnik, Stanislav; Tschofen, Marc; Arcalis, Elsa; Phan, Hoang T.; Gresch, Ulrike; Lampel, Johannes; Conrad, Udo; Stoger, Eva
2016-01-01
Zein is a water-insoluble polymer from maize seeds that has been widely used to produce carrier particles for the delivery of therapeutic molecules. We encapsulated a recombinant model vaccine antigen in newly formed zein bodies in planta by generating a fusion construct comprising the ectodomain of hemagglutinin subtype 5 and the N-terminal part of γ-zein. The chimeric protein was transiently produced in tobacco leaves, and H5-containing protein bodies (PBs) were used to immunize mice. An immune response was achieved in all mice treated with H5-zein, even at low doses. The fusion to zein markedly enhanced the IgG response compared the soluble H5 control, and the effect was similar to a commercial adjuvant. The co-administration of adjuvants with the H5-zein bodies did not enhance the immune response any further, suggesting that the zein portion itself mediates an adjuvant effect. While the zein portion used to induce protein body formation was only weakly immunogenic, our results indicate that zein-induced PBs are promising production and delivery vehicles for subunit vaccines. PMID:26909090
Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand
2016-01-20
Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.
Hinz, Andreas; Jedamzick, Johanna; Herbring, Valentina; Fischbach, Hanna; Hartmann, Jessica; Parcej, David; Koch, Joachim; Tampé, Robert
2014-11-28
Antigen presentation to cytotoxic T lymphocytes via major histocompatibility complex class I (MHC I) molecules depends on the heterodimeric transporter associated with antigen processing (TAP). For efficient antigen supply to MHC I molecules in the ER, TAP assembles a macromolecular peptide-loading complex (PLC) by recruiting tapasin. In evolution, TAP appeared together with effector cells of adaptive immunity at the transition from jawless to jawed vertebrates and diversified further within the jawed vertebrates. Here, we compared TAP function and interaction with tapasin of a range of species within two classes of jawed vertebrates. We found that avian and mammalian TAP1 and TAP2 form heterodimeric complexes across taxa. Moreover, the extra N-terminal domain TMD0 of mammalian TAP1 and TAP2 as well as avian TAP2 recruits tapasin. Strikingly, however, only TAP1 and TAP2 from the same taxon can form a functional heterodimeric translocation complex. These data demonstrate that the dimerization interface between TAP1 and TAP2 and the tapasin docking sites for PLC assembly are conserved in evolution, whereas elements of antigen translocation diverged later in evolution and are thus taxon specific. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Nacsa, A; Ambrus, R; Berkesi, O; Szabó-Révész, P; Aigner, Z
2008-11-04
The majority of active pharmaceutical ingredients are poorly soluble in water. The rate-determining step of absorption is the dissolution of these drugs. Inclusion complexation with cyclodextrin derivatives can lead to improved aqueous solubility and bioavailability of pharmacons due to the formation of co-crystals through hydrogen-bonding between the components. Inclusion complexes of loratadine were prepared by a convenient new method involving microwave irradiation and the products were compared with those of a conventional preparation method. Dissolution studies demonstrated that the solubility and rate of dissolution of loratadine increased in both of the methods used. The interactions between the components were investigated by thermal analysis and Fourier Transform Infrared studies. The microwave treatment did not cause any chemical changes in the loratadine molecule.
Nanoaggregation of inclusion complexes of glibenclamide with cyclodextrins.
Lucio, David; Irache, Juan Manuel; Font, María; Martínez-Ohárriz, María Cristina
2017-03-15
Glibenclamide is a sulfonylurea used for the oral treatment of type II diabetes mellitus. This drug shows low bioavailability as consequence of its low solubility. In order to solve this problem, the interaction with cyclodextrin has been proposed. This study tries to provide an explanation about the processes involved in the formation of GB-βCDs complexes, which have been interpreted in different ways by several authors. Among native cyclodextrins, βCD presents the most appropriate cavity to host glibenclamide molecules showing A L solubility diagrams (K 1:1 ≈1700M -1 ). However, [Formula: see text] solubility profiles were found for βCD derivatives, highlighting the coexistence of several phenomena involved in the drug solubility enhancement. At low CD concentration, the formation of inclusion complexes can be studied and the stability constants can be calculated (K 1:1 ≈1400M -1 ). Whereas at high CD concentration, the enhancement of GB solubility would be mainly attributed to the formation of nanoaggregates of CD and GB-CD complexes (sizes between 100 and 300nm). The inclusion mode into βCD occurs through the cyclohexyl ring of GB, adopting a semi-folded conformation which maximizes the hydrogen bond network. As consequence of all these phenomena, a 150-fold enhancement of drug solubility has been achieved using β-cyclodextrin derivatives. Thus, its use has proven to be an interesting tool to improve the oral administration of glibenclamide in accordance with dosage bulk and dose/solubility ratio requirements. Copyright © 2017 Elsevier B.V. All rights reserved.
Theillet, François-Xavier; Saul, Frederick A; Vulliez-Le Normand, Brigitte; Hoos, Sylviane; Felici, Franco; Weintraub, Andrej; Mulard, Laurence A; Phalipon, Armelle; Delepierre, Muriel; Bentley, Graham A
2009-05-15
The use of carbohydrate-mimicking peptides to induce immune responses against surface polysaccharides of pathogenic bacteria offers a novel approach to vaccine development. Factors governing antigenic and immunogenic mimicry, however, are complex and poorly understood. We have addressed this question using the anti-lipopolysaccharide monoclonal antibody F22-4, which was raised against Shigella flexneri serotype 2a and shown to protect against homologous infection in a mouse model. In a previous crystallographic study, we described F22-4 in complex with two synthetic fragments of the O-antigen, the serotype-specific saccharide moiety of lipopolysaccharide. Here, we present a crystallographic and NMR study of the interaction of F22-4 with a dodecapeptide selected by phage display using the monoclonal antibody. Like the synthetic decasaccharide, the peptide binds to F22-4 with micromolar affinity. Although the peptide and decasaccharide use very similar regions of the antigen-binding site, indicating good antigenic mimicry, immunogenic mimicry by the peptide was not observed. The F22-4-antigen interaction is significantly more hydrophobic with the peptide than with oligosaccharides; nonetheless, all hydrogen bonds formed between the peptide and F22-4 have equivalents in the oligosaccharide complex. Two bridging water molecules are also in common, adding to partial structural mimicry. Whereas the bound peptide is entirely helical, its structure in solution, as shown by NMR, is helical in the central region only. Moreover, docking the NMR structure into the antigen-binding site shows that steric hindrance would occur, revealing poor complementarity between the major solution conformation and the antibody that could contribute to the absence of immunogenic mimicry.
1994-01-01
Antinuclear antibodies (ANAs) reactive with a limited spectrum of nuclear antigens are characteristic of systemic lupus erythematosus (SLE) and other collagen vascular diseases, and are also associated with certain viral infections. The factors that initiate ANA production and determine ANA specificity are not well understood. In this study, high titer ANAs specific for the p53 tumor suppressor protein were induced in mice immunized with purified complexes of murine p53 and the Simian virus 40 large T antigen (SVT), but not in mice immunized with either protein separately. The autoantibodies to p53 in these mice were primarily of the IgG1 isotype, were not cross-reactive with SVT, and were produced at titers up to 1:25,000, without the appearance of other autoantibodies. The high levels of autoantibodies to p53 in mice immunized with p53/SVT complexes were transient, but low levels of the autoantibodies persisted. The latter may have been maintained by self antigen, since the anti-p53, but not the SVT, response in these mice could be boosted by immunizing with murine p53. Thus, once autoimmunity to p53 was established by immunizing with p53/SVT complexes, it could be maintained without a requirement for SVT. These data may be explained in at least two ways. First, altered antigen processing resulting from the formation of p53/SVT complexes might activate autoreactive T helper cells specific for cryptic epitopes of murine p53, driving anti-p53 autoantibody production. Alternatively, SVT- responsive T cells may provide intermolecular-intrastructural help to B cells specific for murine p53. In a second stage, these activated B cells might themselves process self p53, generating p53-responsive autoreactive T cells. The induction of autoantibodies during the course of an immune response directed against this naturally occurring complex of self and nonself antigens may be relevant to the generation of specific autoantibodies in viral infections, and may also have implications for understanding the pathogenesis of ANAs in SLE. In particular, our results imply that autoimmunity can be initiated by a "hit and run" mechanism in which the binding of a viral antigen to a self protein triggers an immune response that subsequently can be perpetuated by self antigen. PMID:8145041
New Insights into the Mechanism of Inhibition of p53 by Simian Virus 40 Large T Antigen
Sheppard, Hilary M.; Corneillie, Siska I.; Espiritu, Christine; Gatti, Andrea; Liu, Xuan
1999-01-01
Simian virus 40 (SV40) large tumor antigen (T antigen) has been shown to inhibit p53-dependent transcription by preventing p53 from binding to its cognate cis element. Data presented in this report provide the first direct functional evidence that T antigen, under certain conditions, may also repress p53-dependent transcription by a mechanism in which the transactivation domain of p53 is abrogated while DNA binding is unaffected. Specifically, p53 purified as a complex with T antigen from mouse cells was found to bind DNA as a transcriptionally inactive intact complex, while that purified from human cells was found to bind DNA independently of T antigen and could activate p53-dependent transcription. This difference in activity may be dependent on a different interaction of T antigen with mouse and human p53 and, in addition, on the presence of super T, which is found only in transformed rodent cells. These results suggest that subtle yet important differences exist between the inhibition of p53 by T antigen in mouse and human cells. The implications of this finding with respect to SV40-associated malignancies are discussed. PMID:10082540
Saoji, Suprit D; Dave, Vivek S; Dhore, Pradip W; Bobde, Yamini S; Mack, Connor; Gupta, Deepak; Raut, Nishikant A
2017-10-15
In an attempt to improve the solubility and permeability of Standardized Bacopa Extract (SBE), a complexation approach based on phospholipid was employed. A solvent evaporation method was used to prepare the SBE-phospholipid complex (Bacopa Naturosome, BN). The formulation and process variables were optimized using a central-composite design. The formation of BN was confirmed by photomicroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD). The saturation solubility, the in-vitro dissolution, and the ex-vivo permeability studies were used for the functional evaluation of the prepared complex. BN exhibited a significantly higher aqueous solubility compared to the pure SBE (20-fold), or the physical mixture of SBE and the phospholipid (13-fold). Similarly, the in-vitro dissolution revealed a significantly higher efficiency of the prepared complex (BN) in releasing the SBE (>97%) in comparison to the pure SCE (~42%), or the physical mixture (~47%). The ex-vivo permeation studies showed that the prepared BN significantly improved the permeation of SBE (>90%), compared to the pure SBE (~21%), or the physical mixture (~24%). Drug-phospholipid complexation may thus be a promising strategy for solubility enhancement of bioactive phytoconstituents. Copyright © 2016 Elsevier B.V. All rights reserved.
Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah
2016-01-01
The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.
Edmonds, J. W.; Shepherd, R. C.; Nolan, I. F.
1978-01-01
The occurrence of antibody of myxoma virus in wild rabbits following epizootics is highest in the semi-arid north-west of Victoria and lowest in temperate southern Victoria. Occurrence ranges up to about 90% in the north-west and to about 70% in the south except on the Western Plains where epizootics are rare and antibody occurrence seldom exceeds 30%. The establishment of the European rabbit flea may be changing the pattern of occurrence of antibody in the north-west by causing spring outbreaks of myxomatosis. It is suggested that the effects of the replacement of a simple recurring system of epizootic and breeding season several months apart by the occurrence of myxomatosis twice in the same year, once coincident with the breeding season, will be complex. The occurrence of detectable antibody may be less dependent on the infection rate and may be dependent to some extent on the relative timing of spring myxomatosis and the breeding season. PMID:701788
Edmonds, J W; Shepherd, R C; Nolan, I F
1978-10-01
The occurrence of antibody of myxoma virus in wild rabbits following epizootics is highest in the semi-arid north-west of Victoria and lowest in temperate southern Victoria. Occurrence ranges up to about 90% in the north-west and to about 70% in the south except on the Western Plains where epizootics are rare and antibody occurrence seldom exceeds 30%. The establishment of the European rabbit flea may be changing the pattern of occurrence of antibody in the north-west by causing spring outbreaks of myxomatosis. It is suggested that the effects of the replacement of a simple recurring system of epizootic and breeding season several months apart by the occurrence of myxomatosis twice in the same year, once coincident with the breeding season, will be complex. The occurrence of detectable antibody may be less dependent on the infection rate and may be dependent to some extent on the relative timing of spring myxomatosis and the breeding season.
Despommier, D D
1981-01-01
The soluble portion of a large particle fraction which was derived from the muscle larva of T. spiralis was subjected to molecular sizing column chromatography using Sephacryl S-200. Five major peaks of 280 nm absorbing material were obtained. Analysis by immunoelectrophoresis revealed that each peak contained antigens, with the majority of them occurring in peaks 3, 4 and 5. Preliminary studies indicated that peak 4(mol. wt range 20 000--10 000) contained protection-inducing antigens. Crossed-immunoelectrophoretic and single-dimension electrophoretic analysis of peak 4 revealed a minimum of 10 antigens, while analytical isoelectric focusing demonstrated the presence of proteins with widely different pl, ranging from 4.0 to 9.0. Peak 4 was fractionated by preparative flatbed isoelectric focusing (PIEF) using two gradients: one from 3.5 to 9.5 and the other from 3.5 to 5.5. Fused rocket immunoelectrophoretic (FRIEP) analysis of both runs indicated that several antigens were separated from the others: one at pl 4.0 and the other at pl 9.0. The remaining antigens focused between pl 4.3 and 4.9. One hundred micrograms of whole peak 4, pl 9.0 antigen and the group of antigens at pl 4.3--4.9 were each separately injected, along with Freund's complete adjuvant, into mice. In addition, a portion of the pl 4.0 antigen was also assayed for protection. All antigenic preparations induced significant levels of protection. The pl 4.0 was further analysed on high-performance liquid chromatography (HPLC). Two sharp peaks of antigen, as detected by FRIEP, were eluted isocratically with 65% acetonitrile from a C-18 (aliphatic) column. Both peaks of antigen showed complete cross-reactivity on FRIEP and absorbed at 220 nm. Amino acid analysis of each HPLC peak revealed no detectable differences in composition. Each peak contained predominance of aspartic (13 mol%) and glutamic (18 mol%) acid. This antigen did not contain significant quantities of aromatic amino acids, and absorbed strongly at 206 nm. Neither the pl 4.0 or pl 9.0 antigen stained positively with the PAS reaction.
Lorente, Elena; García, Ruth; Mir, Carmen; Barriga, Alejandro; Lemonnier, François A.; Ramos, Manuel; López, Daniel
2012-01-01
The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8+ lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8+ T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections. PMID:22298786
Toward a Network Model of MHC Class II-Restricted Antigen Processing
Miller, Michael A.; Ganesan, Asha Purnima V.; Eisenlohr, Laurence C.
2013-01-01
The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen processing depicts a straightforward, linear pathway: internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4+ T cells (TCD4+). Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell. PMID:24379819
Alvarez-Cienfuegos, Ana; Nuñez-Prado, Natalia; Compte, Marta; Cuesta, Angel M.; Blanco-Toribio, Ana; Harwood, Seandean Lykke; Villate, Maider; Merino, Nekane; Bonet, Jaume; Navarro, Rocio; Muñoz-Briones, Clara; Sørensen, Karen Marie Juul; Mølgaard, Kasper; Oliva, Baldo; Sanz, Laura; Blanco, Francisco J.; Alvarez-Vallina, Luis
2016-01-01
Here, we describe a new strategy that allows the rapid and efficient engineering of mono and multispecific trivalent antibodies. By fusing single-domain antibodies from camelid heavy-chain-only immunoglobulins (VHHs) to the N-terminus of a human collagen XVIII trimerization domain (TIEXVIII) we produced monospecific trimerbodies that were efficiently secreted as soluble functional proteins by mammalian cells. The purified VHH-TIEXVIII trimerbodies were trimeric in solution and exhibited excellent antigen binding capacity. Furthermore, by connecting with two additional glycine-serine-based linkers three VHH-TIEXVIII modules on a single polypeptide chain, we present an approach for the rational design of multispecific tandem trimerbodies with defined stoichiometry and controlled orientation. Using this technology we report here the construction and characterization of a tandem VHH-based trimerbody capable of simultaneously binding to three different antigens: carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR) and green fluorescence protein (GFP). Multispecific tandem VHH-based trimerbodies were well expressed in mammalian cells, had good biophysical properties and were capable of simultaneously binding their targeted antigens. Importantly, these antibodies were very effective in inhibiting the proliferation of human epidermoid carcinoma A431 cells. Multispecific VHH-based trimerbodies are therefore ideal candidates for future applications in various therapeutic areas. PMID:27345490
Antibodies to P450IID6, SLA, PDH-E2 and BCKD-E2 in Japanese patients with chronic hepatitis.
Nishioka, M; Morshed, S A; Parveen, S; Kono, K; Matsuoka, H; Manns, M P
1997-12-01
Auto-antibodies specific to various antigens in chronic hepatitis (CH) have been detected but their specificities and implications were uncertain. The aims of the present study were to investigate the frequency and the significance of seropositivity of antibodies to P450IID6 or liver/kidney microsome 1 (LKM1), soluble liver antigen (SLA), pyruvate dehydrogenase (PDH) and branched-chain keto acid dehydrogenase (BCKD) in 188 Japanese patients with different forms of CH by western blot or enzyme immunoassay (EIA). Anti-LKM1 was also measured by indirect immunofluorescent test. Anti-P450IID6 was found in 6/188 (3.2%) CH patients including 5/104 (4.8%) with hepatitis C virus (C) infection and 1/12 (8.3%) CH-C patients with antibodies to nuclear and smooth muscle antigens and hypergammaglobulinaemia (> 2.5 g/dL). This patient was the only one diagnosed with autoimmune hepatitis (AIH). All CH patients with hepatitis B (B), hepatitis non-B non-C (NBNC) and AIH were seronegative for anti-LKM1. Antibodies to soluble liver antigen were found in two of 188 (1%) patients, one with AIH and one with CH-B. Anti-BCKD-E2 but not anti-PDH-E2 was found in four patients (2.5%), one with AIH, two with CH-C, and one with NBNC. There was no obvious difference in age, sex ratio and laboratory findings in patients with or without anti-SLA and anti-BCKD-E2. Antibodies to P450IID6, SLA, PDH-E2 and BCKD-E2 are uncommon in adult CH-C, CH-B, CH-NBNC and AIH patients in Japan. Some of these patients positive for auto-antibodies appear to have autoimmune features and might require a careful follow up. The heterogeneity of these antibodies in CH preclude further justification for subtyping of AIH by the presence of the distinct auto-antibodies.
Mansilla, F C; Czepluch, W; Malacari, D A; Hecker, Y P; Bucafusco, D; Franco-Mahecha, O L; Moore, D P; Capozzo, A V
2013-10-18
Mice immunized with a soluble extract of Neospora caninum tachyzoites (sNcAg) formulated with Providean-AVEC, an aqueous soy-based adjuvant, are fully protected from N. caninum multiplication. Here we evaluated the dose-dependent immunogenicity of this vaccine formulation in cattle. Cattle (N=3 per group) were immunized with two applications (30 days apart) of formulations containing Providean-AVEC and different payloads of sNcAg (100, 50 and 10 μg), that were five to fifty times lower than the only reported study using this same antigen in cattle. Kinetics and magnitude of the vaccine-induced immune responses were dose-dependent. Cattle immunized with 100 μg-sNcAg elicited high-avidity specific antibodies 3 weeks after the primary vaccination while those that received 50 μg of antigen had maximum levels of specific high-avidity antibodies 5 days after the day 30 boost. Vaccination with 10 μg of sNcAg induced comparable antibody responses after 2 weeks post re-vaccination. IgG1 was the predominant isotype in all vaccinated animals. Maximum systemic IFN-γ levels were measured in cattle immunized with 50 and 100 μg-sNcAg (14 ± 2.8 ng/ml). CD4(+)-T cells from vaccinated animals proliferated after sNcAg stimulation in vitro, producing IFN-γ. Recall IFN-γ responses mediated by CD4(+)-T cells were detected up to 140 days post vaccination. Formulations containing Providean-AVEC and 50 μg of sNcAg stimulated broad cellular and humoral immune responses against N. caninum in cattle. The profile and magnitude of the immune response elicited by this vaccine can be modified by the antigen-dose and vaccination schedule. This is the first dose-response study performed in cattle using sNcAg as antigen. Copyright © 2013 Elsevier B.V. All rights reserved.
Firouzmand, Hengameh; Badiee, Ali; Khamesipour, Ali; Heravi Shargh, Vahid; Alavizadeh, Seyedeh Hoda; Abbasi, Azam; Jaafari, Mahmoud Reza
2013-12-01
A suitable adjuvant and delivery system are needed to develop an effective vaccine against leishmaniasis. To induce a Th1 type of response and protection in BALB/c mice against Leishmania major infection, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) nanoliposomes bearing an intrinsic adjuvanticity, were used as an antigen delivery system and immunoadjuvant for soluble Leishmania antigens (SLA). DOTAP liposomes containing different concentrations of SLA were prepared by using lipid film method followed by sonication. The prepared vesicles showed a diameter of about 100nm, a positive zeta potential and approximately 70% encapsulation efficiency of SLA. BALB/c mice were immunized subcutaneously (SC), three times in a 3-week interval with different concentrations of liposomal SLA (12.5, 25, and 50μg of SLA/50μl/mice), free SLA and as well as free liposome. The group of mice received 50μg of SLA in DOTAP-nanoliposomes showed a significantly (p<0.001) smaller footpad swelling and the lowest spleen and footpad parasite burden after the challenge. This group also showed the highest IFN-γ production compared to the other groups, lower IL-4 level and higher IgG2a antibody titer. Taken together, the results indicated that simple DOTAP nanoliposome containing 1μg/μl SLA are appropriate delivery systems to induce a Th1 type of immune response and protection against L. major infection in BALB/c mice. Copyright © 2013 Elsevier B.V. All rights reserved.
Tozetto-Mendoza, Tania Regina; Vasconcelos, Dewton de Moraes; Ibrahim, Karim Yaqub; Sartori, Ana Marli Christovam; Bezerra, Rita C; Freitas, Vera Lúcia Teixeira de; Shikanai-Yasuda, Maria Aparecida
2017-11-01
The impact of Chagas disease (CD) in HIV-infected patients is relevant throughout the world. In fact, the characterization of the adaptive immune response in the context of co-infection is important for predicting the need for interventions in areas in which HIV and Chagas disease co-exist. We described and compared the frequency of cytokine-producing T cells stimulated with soluble antigen of Trypanosoma cruzi (T. cruzi) using a cytometric assay for the following groups: individuals with chronic Chagas disease (CHR, n=10), those with Chagas disease and HIV infection (CO, n=11), those with only HIV (HIV, n=14) and healthy individuals (C, n=15). We found 1) a constitutively lower frequency of IL-2+ and IFN-γ+ T cells in the CHR group compared with the HIV, CO and healthy groups; 2) a suppressive activity of soluble T. cruzi antigen, which down-regulated IL-2+CD4+ and IFN-γ+CD4+ phenotypes, notably in the healthy group; 3) a down-regulation of inflammatory cytokines on CD8+ T cells in the indeterminate form of Chagas disease; and 4) a significant increase in IL-10+CD8+ cells distinguishing the indeterminate form from the cardiac/digestive form of Chagas disease, even in the presence of HIV infection. Taken together, our data suggest the presence of an immunoregulatory response in chronic Chagas disease, which seems to be driven by T. cruzi antigens. Our findings provide new insights into immunotherapeutic strategies for people living with HIV/AIDS and Chagas disease.
Teodoro, Guilherme Rodrigues; Salvador, Marcos José; Koga-Ito, Cristiane Yumi
2017-01-01
The aim of this study was to increase the solubility of gallic acid (GA) for the treatment of Candida albicans biofilm, which is very difficult to treat and requires high drug concentrations. Cyclodextrins (CDs) were used for this purpose. Complexes were evaluated by phase-solubility studies, prepared by spray drying and characterized by drug loading, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The complexes were tested on C. albicans biofilm using in vitro and in vivo models. HPβCD formed soluble inclusion complexes with GA. The percentage of GA in GA/HPβCD was 10.8 ± 0.01%. The SEM and DSC analyses confirmed the formation of inclusion complexes. GA/HPβCD maintained the antimicrobial activity of the pure GA. GA/HPβCD was effective on C. albicans biofilms of 24 and 48h. The in vivo results showed an anti-inflammatory activity of GA/HPβCD with no difference in invading hypha counting among the groups. This study encourages the development of new antifungal agents. PMID:28700692
Jakobsen, P H; Rasheed, F N; Bulmer, J N; Theisen, M; Ridley, R G; Greenwood, B M
1998-01-01
To better understand reasons for increased susceptibility to malaria in pregnancy; and the interrelationships between maternal malaria, local immune reactions and the development of the fetus, concentrations of soluble interleukin-10 (IL-10), cytokine receptors, adhesion molecules, a Plasmodium falciparum protein, glutamate-rich protein (GLURP) and antibodies to P. falciparum rhoptry-associated protein-1 were measured among 105 Gambian women and their neonates. Peripheral blood concentrations of IL-10, soluble cytokine receptors and soluble adhesion molecules were found to be different from those concentrations measured in the placenta. Markers of inflammatory reactions: IL-10, sIL-2R, sIL-4R, and soluble tumour necrosis factor receptor I (sTNF-RI) were found in high concentrations in the placenta, indicating that inflammatory reactions take place in the placenta which has been regarded as an immunoprivileged site. Concentrations of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intracellular adhesion molecule-1 (sICAM-1), potential adhesion receptors for malaria parasites, were associated with an active P. falciparum infection in the placenta although the associations did not reach significance. P. falciparum exoantigen, GLURP, was detected in cord blood indicating transplacental passage of malarial antigens. Concentrations of E-selectin were higher in cord blood samples compared with peripheral blood samples. This appeared to be associated with development of cord endothelial cells and not with P. falciparum infection. PMID:9616377
Soluble E-cadherin is an independent pretherapeutic factor for long-term survival in gastric cancer.
Chan, Annie On-On; Chu, Kent-Man; Lam, Shiu-Kum; Wong, Benjamin Chun-Yu; Kwok, Ka-Fai; Law, Simon; Ko, Samuel; Hui, Wai-Mo; Yueng, Yui-Hung; Wong, John
2003-06-15
To evaluate whether pretherapeutic serum soluble E-cadherin is an independent factor predicting long-term survival in gastric cancer. Gastric cancer remains the second leading cause of cancer-related deaths in the world, but a satisfactory tumor marker is currently unavailable for gastric cancer. Soluble E-cadherin has recently been found to have prognostic value in gastric cancer. One hundred sixteen patients with histologically proven gastric adenocarcinoma were included in the trial. Pretherapeutic serum was collected, and soluble E-cadherin was assayed using a commercially available enzyme-linked immunosorbent assay kit. The patients were followed up prospectively at the outpatient clinic. There were 75 men and 41 women, with a mean (+/- SD) age of 66 +/- 14 years. Forty-eight percent of tumors were located in the gastric antrum. The median survival time was 11 months. The mean pretherapeutic value of soluble E-cadherin was 9,159 ng/mL (range, 6,002 to 10,025 ng/mL), and the mean pretherapeutic level of carcinoembryonic antigen was 11 ng/mL (range, 0.3 to 4,895 ng/mL). On multivariate analysis, soluble E-cadherin is an independent factor predicting long-term survival. Ninety percent of patients with a serum level of E-cadherin greater than 10,000 ng/mL had a survival time of less than 3 years (P =.009). Soluble E-cadherin is a potentially valuable pretherapeutic prognostic factor in patients with gastric cancer.
Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O
2013-05-01
Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thakkar, Vaishali Tejas; Deshmukh, Amol; Hingorani, Lal; Juneja, Payal; Baldaniya, Lalji; Patel, Asha; Pandya, Tosha; Gohel, Mukesh
2017-01-01
The Bacopa monnieri is traditional Ayurvedic medicine, and reported for memory-enhancing effects. The Bacoside is poorly soluble, bitter in taste and responsible for the memory enhancement action. Memory enhancer is commonly prescribed for children or elder people. Poor solubility, patient compliance and bitterness were a major driving force to develop taste masked β-cyclodextrin complex and dispersible tablets. The inclusion complex of Bacopa monnieri and β-cyclodextrin was prepared in different molar ratios of Bacopa monnieri by Co-precipitation method. Phase solubility study was conducted to evaluate the effect of β-cyclodextrin on aqueous solubility of Bacoside A. The characterization was determined by Fourier transformation infrared spectroscopy (FTIR),Differential scanning calorimetry (DSC) and X-ray diffraction study (XRD).Crospovidone and croscarmallose sodium were used as super disintigrant. The 3 2 full factorial design was adopted to investigate the influence of two superdisintegrants on the wetting time and disntegration time of the tablets. The result revels that molar ratio (1:4) of inclusion complex enhance 3-fold solubility. Full factorial design was successfully employed for the optimization of dispersible tablet of B. monnieri . The short-term accelerated stability study confirmed that high stability of B. monnieri in inclusion complex.
NASA Astrophysics Data System (ADS)
Raza, Aun; Sun, Huifang; Bano, Shumaila; Zhao, Yingying; Xu, Xiuquan; Tang, Jian
2017-02-01
To enhance the aqueous solubility of kamebakaurin (KA), it was complexed with hydroxypropyl-β-cyclodextrin (HP-β-CD). In this study, the interaction KA with HP-β-CD and their inclusion complex behavior were determined by different characterization techniques such as UV-vis, 1H NMR, FT-IR, PXRD and SEM. All the characterization information proved the development of inclusion complex KA/HP-β-CD, and this inclusion complex demonstrated discriminable spectroscopic characteristics and properties from free compound KA. The results demonstrated that the water solubility of KA was remarkably increased in the presence of HP-β-CD. Furthermore, in vitro anti-inflammatory study showed that inclusion complex KA/HP-β-CD maintained the anti-inflammatory effect of KA. These results demonstrate that HP-β-CD will be promisingly employed in the application of water-insoluble anti-inflammatory phytochemicals such as KA.
Mowlaboccus, Shakeel; Perkins, Timothy T.; Smith, Helen; Sloots, Theo; Tozer, Sarah; Prempeh, Lydia-Jessica; Tay, Chin Yen; Peters, Fanny; Speers, David; Keil, Anthony D.; Kahler, Charlene M.
2016-01-01
Neisseria meningitidis is the causative agent of invasive meningococcal disease (IMD). The BEXSERO® vaccine which is used to prevent serogroup B disease is composed of four sub-capsular protein antigens supplemented with an outer membrane vesicle. Since the sub-capsular protein antigens are variably expressed and antigenically variable amongst meningococcal isolates, vaccine coverage can be estimated by the meningococcal antigen typing system (MATS) which measures the propensity of the strain to be killed by vaccinated sera. Whole genome sequencing (WGS) which identifies the alleles of the antigens that may be recognised by the antibody response could represent, in future, an alternative estimate of coverage. In this study, WGS of 278 meningococcal isolates responsible for 62% of IMD in Western Australia from 2000–2014 were analysed for association of genetic lineage (sequence type [ST], clonal complex [cc]) with BEXSERO® antigen sequence type (BAST) and MATS to predict the annual vaccine coverage. A hyper-endemic period of IMD between 2000–05 was caused by cc41/44 with the major sequence type of ST-146 which was not predicted by MATS or BAST to be covered by the vaccine. An increase in serogroup diversity was observed between 2010–14 with the emergence of cc11 serogroup W in the adolescent population and cc23 serogroup Y in the elderly. BASTs were statistically associated with clonal complex although individual antigens underwent antigenic drift from the major type. BAST and MATS predicted an annual range of 44–91% vaccine coverage. Periods of low vaccine coverage in years post-2005 were not a result of the resurgence of cc41/44:ST-146 but were characterised by increased diversity of clonal complexes expressing BASTs which were not predicted by MATS to be covered by the vaccine. The driving force behind the diversity of the clonal complex and BAST during these periods of low vaccine coverage is unknown, but could be due to immune selection and inter-strain competition with carriage of non-disease causing meningococci. PMID:27355628
Linzer, R; Mukasa, H; Slade, H D
1975-10-01
The polysaccharide antigen preparations from serotype a and serotype d strains of Streptococcus mutans contained both a serotype-specific antigenic determinant and a common a-d antigenic determinant, as demonstrated by agar gel diffusion studies and a quantitative cross-precipitin assay. The chromatographically purified antigens were isolated by a method which depended on their serological specificity to determine if these two antigenic determinants were located on the same molecule. The a and d polysaccharides were recovered from specific antigen-antibody complexes and characterized with respect to their immunological specificity and chemical composition. Agar gel diffusion tests demonstrated that, in both the a and d preparations, the serotype-specific antigenic determinant and the common a-d antigenic determinant were present in one molecule.
Soluble Human Leukocyte Antigen-G in the Bronchoalveolar Lavage of Lung Cancer Patients.
Montilla, Dayana; Pérez, Mario; Borges, Lérida; Bianchi, Guillermo; Cova, José-Angel
2016-08-01
The main function of the HLA-G molecule in its membrane-bound and soluble forms is to inhibit the immune response by acting on CD4+ T cells, cytotoxic T cells, NK cells and dendritic cells. Lung cancer is a leading cause of death worldwide, and annual incidence is high in both women and men. Some studies have reported an increase of HLA-G serum levels in lung cancer, probably generated by tumor cells escaping the antitumor immune response. In this study the concentration of soluble HLA-G in bronchoalveolar lavage (BAL) in patients with primary and metastatic lung cancer was measured to determine its relation with tumor histological type and overall patient status according to the Karnofsky scale. Thirty-one lung cancer patients were included. A tumor biopsy was obtained by bronchoscopy and the tumor type was determined by hematoxylin and eosin staining. BAL samples were obtained to measure soluble HLA-G concentrations in an ELISA sandwich assay. The average value of soluble HLA-G was 49.04ng/mL. No correlation between soluble HLA-G levels and age, gender or smoking was observed. A highly significant difference was observed in the levels of soluble HLA-G in BAL from patients with different histological types of lung cancer, especially in metastatic tumors. The Karnofsky index showed a significant and inverse correlation with soluble HLA-G levels in BAL. Soluble HLA-G protein is significantly associated with metastatic tumors and patients with lower Karnofsky index and may be useful as a prognostic marker in lung cancer. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Kramers, C; Hylkema, M N; van Bruggen, M C; van de Lagemaat, R; Dijkman, H B; Assmann, K J; Smeenk, R J; Berden, J H
1994-01-01
Histones can mediate the binding of DNA and anti-DNA to the glomerular basement membrane (GBM). In ELISA histone/DNA/anti-DNA complexes are able to bind to heparan sulfate (HS), an intrinsic constituent of the GBM. We questioned whether histone containing immune complexes are able to bind to the GBM, and if so, whether the ligand in the GBM is HS. Monoclonal antibodies (mAbs) complexed to nucleosomal antigens and noncomplexed mAbs were isolated from culture supernatants of four IgG anti-nuclear mAbs. All noncomplexed mAbs showed strong anti-nucleosome reactivity in ELISA. One of them showed in addition anti-DNA reactivity in noncomplexed form. The other three mAbs only showed anti-DNA reactivity when they were complexed to nucleosomal antigens. After renal perfusion a fine granular binding of complexed mAbs to the glomerular capillary wall and activation of complement was observed in immunofluorescence, whereas noncomplexed mAbs did not bind. Immuno-electron microscopy showed binding of complexes to the whole width of the GBM. When HS in the GBM was removed by renal heparinase perfusion the binding of complexed mAb decreased, but did not disappear completely. We conclude that anti-nucleosome mAbs, which do not bind DNA, become DNA reactive once complexed to nucleosomal antigens. These complexed mAbs can bind to the GBM. The binding ligand in the GBM is partly, but not solely, HS. Binding to the GBM of immune complexes containing nucleosomal material might be an important event in the pathogenesis of lupus nephritis. Images PMID:8040312
Effects of iron(III)chelates on the solubility of heavy metals in calcareous soils.
Ylivainio, Kari
2010-10-01
In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg(-1)). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Chen, Yi; Zhang, Yan; Zhou, Yuefang; Luo, Jian; Su, Zhiguo
2016-06-08
The stabilities of two commercially available virus like particles, CHO-HBsAg expressed by Chinese hamster ovary (CHO) cells and Hans-HBsAg expressed by Hansenula polymorpha (Hans), were compared using AF4-MALLS under different treatment processes. The initial molecular weight and hydrodynamic diameter of CHO-HBsAg measured with AF4-MALLS were 4727kDa and 29.4nm, while those of Hans-HBsAg were 3039kDa and 22.8nm respectively. In salt solution of 2M ammonium sulfate, the molecular weight and size of CHO-HBsAg had little change, and its antigenicity remained 95%, while those of Hans-HBsAg changed greatly, resulting in aggregation and 75% antigenicity loss. In freeze-thaw operations, Hans-HBsAg aggregated heavily. Most of the aggregates precipitated and the rest soluble aggregates reached 10(5)-10(6)kDa in molecular weight. The antigenicity of Hans-HBsAg decreased to 26.9% after five freeze-thaw cycles. For CHO-HBsAg, there was no obvious aggregation in freeze-thaw, and the antigenicity retained above 98%. In heating process, Hans-HBsAg gradually aggregated to large particles with temperature and the antigenicity decreased to 10% when the temperature reached 80°C. In contrast, CHO-HBsAg would not aggregate with temperature, remained 92% antigenicity at 80°C. The study demonstrated that CHO-HBsAg appeared to be a superior vaccine antigen in term of particle stability and constant antigenicity, which are important in production, transportation and storage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study
NASA Astrophysics Data System (ADS)
Jullian, Carolina; Orosteguis, Teresita; Pérez-Cruz, Fernanda; Sánchez, Paulina; Mendizabal, Fernando; Olea-Azar, Claudio
2008-11-01
Properties of inclusion complexes between morin (M) and β-cyclodextrin (βCD), 2-hydroxypropyl-β-cyclodextrin (HPβCD) and Heptakis (2,6- O-di methyl) β-cyclodextrin (DMβCD) such as aqueous solubility and the association constants of this complex have been determined. The water solubility of morin was increased by inclusion with cyclodextrins. The phase-solubility diagrams drawn from UV spectral measurements are of the A L-type. Also ORAC FL studies were done. An increase in the antioxidant reactivity is observed when morin form inclusion complex with the three cyclodextrin studied. Finally, thermodynamics studies of cyclodextrin complexes indicated that for DMβCD the inclusion is primarily enthalpy-driven process meanwhile βCD and HPβCD are entropy-driven processes. This is corroborated by the different inclusion geometries obtained by 2D-NMR.
Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for themore » HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.« less
Tao, Pan; Mahalingam, Marthandan; Kirtley, Michelle L.; van Lier, Christina J.; Sha, Jian; Yeager, Linsey A.; Chopra, Ashok K.; Rao, Venigalla B.
2013-01-01
Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines. PMID:23853602
Nanocrystal/sol-gel nanocomposites
Klimov, Victor L.; Petruska, Melissa A.
2010-05-25
The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.
Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels.
Woldum, Henriette Sie; Larsen, Kim Lambertsen; Madsen, Flemming
2008-01-01
The effect of 2-hydroxypropyl-beta-cyclodextrin and gamma-cyclodextrin on the release of ibuprofen, ketoprofen and prednisolone was studied. Stability constants calculated for inclusion complexes show size dependence for complexes with both cyclodextrins. Hydrogels were prepared by ultraviolet irradiation and release of each model drug was studied. For drugs formulated using cyclodextrins an increase in the achievable concentration and in the release from hydrogels was obtained due to increased solubility, although the solubility of all gamma-cyclodextrin complexes was limited. The load also was increased by adjusting pH for the acidic drugs and this exceeds the increase obtained with gamma-cyclodextrin addition.
Rivoire, Becky L; TerLouw, Stephen; Groathouse, Nathan A; Brennan, Patrick J
2014-01-01
True incidence of leprosy and its impact on transmission will not be understood until a tool is available to measure pre-symptomatic infection. Diagnosis of leprosy disease is currently based on clinical symptoms, which on average take 3-10 years to manifest. The fact that incidence, as defined by new case detection, equates with prevalence, i.e., registered cases, suggests that the cycle of transmission has not been fully intercepted by implementation of multiple drug therapy. This is supported by a high incidence of childhood leprosy. Epidemiological screening for pre-symptomatic leprosy in large endemic populations is required to facilitate targeted chemoprophylactic interventions. Such a test must be sensitive, specific, simple to administer, cost-effective, and easy to interpret. The intradermal skin test method that measures cell-mediated immunity was explored as the best option. Prior knowledge on skin testing of healthy subjects and leprosy patients with whole or partially fractionated Mycobacterium leprae bacilli, such as Lepromin or the Rees' or Convit' antigens, has established an acceptable safety and potency profile of these antigens. These data, along with immunoreactivity data, laid the foundation for two new leprosy skin test antigens, MLSA-LAM (M. leprae soluble antigen devoid of mycobacterial lipoglycans, primarily lipoarabinomannan) and MLCwA (M. leprae cell wall antigens). In the absence of commercial interest, the challenge was to develop these antigens under current good manufacturing practices in an acceptable local pilot facility and submit an Investigational New Drug to the Food and Drug Administration to allow a first-in-human phase I clinical trial.
Numanoğlu, Ulya; Sen, Tangül; Tarimci, Nilüfer; Kartal, Murat; Koo, Otilia M Y; Onyüksel, Hayat
2007-10-19
The aim of this study was to increase the stability and water solubility of fragrance materials, to provide controlled release of these compounds, and to convert these substances from liquid to powder form by preparing their inclusion complexes with cyclodextrins (CDs). For this purpose, linalool and benzyl acetate were chosen as the fragrance materials. The use of beta-cyclodextrin (beta CD) and 2-hydroxypropyl-beta-cyclodextrin (2-HP beta CD) for increasing the solubility of these 2 fragrance materials was studied. Linalool and benzyl acetate gave a B-type diagram with beta CD, whereas they gave an A(L)-type diagram with 2-HP beta CD. Therefore, complexes of fragrance materials with 2-HP beta CD at 1:1 and 1:2 molar ratios (guest:host) were prepared. The formation of inclusion complexes was confirmed using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy and circular dichroism spectroscopy. The results of the solubility studies showed that preparing the inclusion complex with 2-HP beta CD at a 1:1 molar ratio increased the solubility of linalool 5.9-fold and that of benzyl acetate 4.2-fold, whereas the complexes at a 1:2 molar ratio increased the solubility 6.4- and 4.5-fold for linalool and benzyl acetate, respectively. The stability and in vitro release studies were performed on the gel formulations prepared using uncomplexed fragrance materials or inclusion complexes of fragrance materials at a 1:1 molar ratio. It was observed that the volatility of both fragrance materials was decreased by preparing the inclusion complexes with 2-HP beta CD. Also, in vitro release data indicated that controlled release of fragrances could be possible if inclusion complexes were prepared.
Srivalli, Kale Mohana Raghava; Mishra, Brahmeshwar
2016-04-01
The purpose of this study was to improve the aqueous solubility, dissolution, and pharmacodynamic properties of a BCS class II drug, ezetimibe (Eze) by preparing ternary cyclodextrin complex systems. We investigated the potential synergistic effect of two novel hydrophilic auxiliary substances, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and L-ascorbic acid-2-glucoside (AA2G) on hydroxypropyl-β-cyclodextrin (HPBCD) solubilization of poorly water-soluble hypocholesterolemic drug, Eze. In solution state, the binary and ternary systems were analyzed by phase solubility studies and Job's plot. The solid complexes prepared by freeze-drying were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM). The log P values, aqueous solubility, dissolution, and antihypercholesterolemic activity of all systems were studied. The analytical techniques confirmed the formation of inclusion complexes in the binary and ternary systems. HPBCD complexation significantly (p < 0.05) reduced the log P and improved the solubility, dissolution, and hypocholesterolemic properties of Eze, and the addition of ternary component produced further significant improvement (p < 0.05) even compared to binary system. The remarkable reduction in log P and enhancement in solubility, dissolution, and antihypercholesterolemic activity due to the addition of TPGS or AA2G may be attributed to enhanced wetting, dispersibility, and complete amorphization. The use of TPGS or AA2G as ternary hydrophilic auxiliary substances improved the HPBCD solubilization and antihypercholesterolemic activity of Eze.
21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.
Code of Federal Regulations, 2010 CFR
2010-04-01
... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...
21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.
Code of Federal Regulations, 2013 CFR
2013-04-01
... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...
21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.
Code of Federal Regulations, 2014 CFR
2014-04-01
... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...
21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.
Code of Federal Regulations, 2012 CFR
2012-04-01
... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...
21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.
Code of Federal Regulations, 2011 CFR
2011-04-01
... oil, peanut oil, and hydrogenated peanut oil), may be safely used to color polymethylmethacrylate bone... the bone cement. (2) Authorization for this use shall not be construed as waiving any of the... the polymethylmethacrylate bone cement in which chlorophyllin-copper complex, oil soluble, is used. (d...
Viral Sequestration of Antigen Subverts Cross Presentation to CD8+ T Cells
Tewalt, Eric F.; Grant, Jean M.; Granger, Erica L.; Palmer, Douglas C.; Heuss, Neal D.; Gregerson, Dale S.; Restifo, Nicholas P.; Norbury, Christopher C.
2009-01-01
Virus-specific CD8+ T cells (TCD8+) are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC). Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector TCD8+. Direct presentation of vaccinia virus (VACV) antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated TCD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the TCD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation must also be taken into account during the rational design of antiviral vaccines. PMID:19478869
Improving solubility and refolding efficiency of human V(H)s by a novel mutational approach.
Tanha, Jamshid; Nguyen, Thanh-Dung; Ng, Andy; Ryan, Shannon; Ni, Feng; Mackenzie, Roger
2006-11-01
The antibody V(H) domains of camelids tend to be soluble and to resist aggregation, in contrast to human V(H) domains. For immunotherapy, attempts have therefore been made to improve the properties of human V(H)s by camelization of a small set of framework residues. Here, we have identified through sequence comparison of well-folded llama V(H) domains an alternative set of residues (not typically camelid) for mutation. Thus, the solubility and thermal refolding efficiency of a typical human V(H), derived from the human antibody BT32/A6, were improved by introduction of two mutations in framework region (FR) 1 and 4 to generate BT32/A6.L1. Three more mutations in FR3 of BT32/A6.L1 further improved the thermal refolding efficiency while retaining solubility and cooperative melting profiles. To demonstrate practical utility, BT32/A6.L1 was used to construct a phage display library from which were isolated human V(H)s with good antigen binding activity and solubility. The engineered human V(H) domains described here may be useful for immunotherapy, due to their expected low immunogenicity, and in applications involving transient high temperatures, due to their efficient refolding after thermal denaturation.
The generation and selection of single-domain, v region libraries from nurse sharks.
Flajnik, Martin F; Dooley, Helen
2009-01-01
The cartilaginous fish (sharks, skates, and rays) are the oldest phylogenetic group in which a human-type adaptive immune system and immunoglobulins (Igs) have been found. In addition to their conventional (heavy-light chain heterodimeric) isotypes, IgM and IgW, sharks produce the novel isotype, IgNAR, a heavy chain homodimer that does not associate with light chains. Instead, its variable (V) regions act as independent, soluble units in order to bind antigen. In this chapter, we detail our immunization protocol in order to raise a humoral IgNAR response in the nurse shark (Ginglymostoma cirratum) and the subsequent cloning of the single-domain V regions from this isotype in order to select antigen-specific binders by phage display.
Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer
Ragupathi, Govind; Gardner, Jeffrey R; Livingston, Philip O; Gin, David Y
2013-01-01
One of the most widely used and potent immunological adjuvants is a mixture of soluble triterpene glycosides purified from the soap bark tree (Quillaja saponaria). Despite challenges in production, quality control, stability and toxicity, the QS-21 fraction from this extract has exhibited exceptional adjuvant properties for a range of antigens. It possesses an ability to augment clinically significant antibody and T-cell responses to vaccine antigens against a variety of infectious diseases, degenerative disorders and cancers. The recent synthesis of active molecules of QS-21 has provided a robust method to produce this leading vaccine adjuvant in high purity as well as to produce novel synthetic QS-21 congeners designed to induce increased immune responsiveness and decreased toxicity. PMID:21506644
Alarcón de Noya, B.; Colmenares, C.; Losada, S.; Fermin, Z.; Masroua, G.; Ruiz, L.; Soto, L.; Noya, O.
1996-01-01
In view of the known cross-reactivity of sera from patients with intestinal parasites to some Schistosoma mansoni antigens, field work was conducted in an area of Venezuela non-endemic for schistosomiasis using the routine immunoenzymatic assay (ELISA) with soluble egg antigen (SEA). False positive reactions represented 15.3% of the total population as determined by SEA-ELISA. SEA-immunoblotting of the false positive sera indicated that protein fractions of 91 and 80 kDa appear to be responsible for cross-reactivity. Sera from hookworm infected individuals produced a higher frequency and intensity of cross-reaction than other sera. SEA-fractions of 105, 54, 46, 42, 32, 25 and 15 kDa were the most specific. Images Fig. 2 PMID:8666077
Yanaka, Saeko; Ueno, Takamasa; Shi, Yi; Qi, Jianxun; Gao, George F.; Tsumoto, Kouhei; Sugase, Kenji
2014-01-01
In immune-mediated control of pathogens, human leukocyte antigen (HLA) class I presents various antigenic peptides to CD8+ T-cells. Long-lived peptide presentation is important for efficient antigen-specific T-cell activation. Presentation time depends on the peptide sequence and the stability of the peptide-HLA complex (pHLA). However, the determinant of peptide-dependent pHLA stability remains elusive. Here, to reveal the pHLA stabilization mechanism, we examined the crystal structures of an HLA class I allomorph in complex with HIV-derived peptides and evaluated site-specific conformational fluctuations using NMR. Although the crystal structures of various pHLAs were almost identical independent of the peptides, fluctuation analyses identified a peptide-dependent minor state that would be more tightly packed toward the peptide. The minor population correlated well with the thermostability and cell surface presentation of pHLA, indicating that this newly identified minor state is important for stabilizing the pHLA and facilitating T-cell recognition. PMID:25028510
Kurien, Biji T; D'Souza, Anil; Scofield, R Hal
2010-08-01
Chronic and complex autoimmune diseases, currently treated palliatively with immunosuppressives, require multi-targeted therapy for greater effectiveness. The naturally occurring polyphenol curcumin has emerged as a powerful "nutraceutical" that interacts with multiple targets to regress diseases safely and inexpensively. Up to 8 g/day of curcumin for 18 months was non-toxic to humans. However, curcumin's utility is limited by its aqueous insolubility. We have demonstrated a heat-mediated 12-fold increase in curcumin's aqueous solubility. Here, we show by SDS-PAGE and surface plasmon resonance that heat-solubilized curcumin binds to proteins. Based on this binding we hypothesized that heat-solubilized curcumin or turmeric would prevent autoantibody targeting of cognate autoantigens. Heat-solubilized curcumin/turmeric significantly decreased binding of autoantibodies from Sjögren's syndrome (up to 43/70%, respectively) and systemic lupus erythematosus (up to 52/70%, respectively) patients as well as an animal model of Sjögren's syndrome (up to 50/60%, respectively) to their cognate antigens. However, inhibition was not specific to autoimmunity. Heat-solubilized curcumin/turmeric also inhibited binding of commercial polyclonal anti-spectrin to spectrin (50/56%, respectively). Thus, we suggest that the multifaceted heat-solubilized curcumin can ameliorate autoimmune disorders. In addition, the non-toxic curcumin could serve as a new protein stain in SDS-PAGE even though it is less sensitive than the Coomassie system which involves toxic chemicals.
Claus, Heike; Jördens, Markus S; Kriz, Pavla; Musilek, Martin; Jarva, Hanna; Pawlik, Marie-Christin; Meri, Seppo; Vogel, Ulrich
2012-01-05
The investigational multicomponent meningococcus serogroup B vaccine (4CMenB) targets the antigenetically variable population of serogroup B meningococci. Forty-one strains of capsule null locus (cnl) meningococci, which are frequent among healthy carriers, were selected from nine sequence types (ST), which belong to four clonal complexes (cc), and three countries. They were antigen sequence typed and analyzed for antigen expression to predict whether these strains harbor the genes and express the four vaccine antigens of 4CMenB as measured by the meningococcal antigen typing system (MATS). The PorA variant used in the vaccine was not found. The nadA gene was absent in all but one strain, which did not express the antigen in vitro. Only strains of clonal complex ST-198 harbored a factor H binding protein (FHBP) allele of the cross-reactive variant 1 family which is included in the vaccine. All these strains expressed the antigen. Five variants of the Neisserial heparin binding antigen (NHBA) gene were identified. Expression of NHBA was observed in all strains with highest levels in ST-198 cc and ST-845. The data suggest a potential impact of 4CMenB immunization at least on cnl meningococci of the ST-198 cc and ST-845. Copyright © 2011 Elsevier Ltd. All rights reserved.
Murphy, J R; Wasserman, S S; Baqar, S; Schlesinger, L; Ferreccio, C; Lindberg, A A; Levine, M M
1989-01-01
Experiments were performed in Baltimore, Maryland and in Santiago, Chile, to determine the level of Salmonella typhi antigen-driven in vitro lymphocyte replication response which signifies specific acquired immunity to this bacterium and to determine the best method of data analysis and form of data presentation. Lymphocyte replication was measured as incorporation of 3H-thymidine into desoxyribonucleic acid. Data (ct/min/culture) were analyzed in raw form and following log transformation, by non-parametric and parametric statistical procedures. A preference was developed for log-transformed data and discriminant analysis. Discriminant analysis of log-transformed data revealed 3H-thymidine incorporation rates greater than 3,433 for particulate S. typhi, Ty2 antigen stimulated cultures signified acquired immunity at a sensitivity and specificity of 82.7; for soluble S. typhi O polysaccharide antigen-stimulated cultures, ct/min/culture values of greater than 1,237 signified immunity (sensitivity and specificity 70.5%). PMID:2702777
Engineering Dendritic Cells to Enhance Cancer Immunotherapy
Boudreau, Jeanette E; Bonehill, Aude; Thielemans, Kris; Wan, Yonghong
2011-01-01
Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed. PMID:21468005
Prediction and Reduction of the Aggregation of Monoclonal Antibodies.
van der Kant, Rob; Karow-Zwick, Anne R; Van Durme, Joost; Blech, Michaela; Gallardo, Rodrigo; Seeliger, Daniel; Aßfalg, Kerstin; Baatsen, Pieter; Compernolle, Griet; Gils, Ann; Studts, Joey M; Schulz, Patrick; Garidel, Patrick; Schymkowitz, Joost; Rousseau, Frederic
2017-04-21
Protein aggregation remains a major area of focus in the production of monoclonal antibodies. Improving the intrinsic properties of antibodies can improve manufacturability, attrition rates, safety, formulation, titers, immunogenicity, and solubility. Here, we explore the potential of predicting and reducing the aggregation propensity of monoclonal antibodies, based on the identification of aggregation-prone regions and their contribution to the thermodynamic stability of the protein. Although aggregation-prone regions are thought to occur in the antigen binding region to drive hydrophobic binding with antigen, we were able to rationally design variants that display a marked decrease in aggregation propensity while retaining antigen binding through the introduction of artificial aggregation gatekeeper residues. The reduction in aggregation propensity was accompanied by an increase in expression titer, showing that reducing protein aggregation is beneficial throughout the development process. The data presented show that this approach can significantly reduce liabilities in novel therapeutic antibodies and proteins, leading to a more efficient path to clinical studies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasumoto, S.; Hayashi, Y.; Aurelian, L.
1987-10-15
Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, andmore » their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.« less
Toledo-Machado, Christina Monerat; Machado de Avila, Ricardo Andrez; NGuyen, Christophe; Granier, Claude; Bueno, Lilian Lacerda; Carneiro, Claudia Martins; Menezes-Souza, Daniel; Carneiro, Rubens Antonio; Chávez-Olórtegui, Carlos; Fujiwara, Ricardo Toshio
2015-01-01
ELISA and RIFI are currently used for serodiagnosis of canine visceral leishmaniasis (CVL). The accuracy of these tests is controversial in endemic areas where canine infections by Trypanosoma cruzi may occur. We evaluated the usefulness of synthetic peptides that were selected through phage display technique in the serodiagnosis of CVL. Peptides were chosen based on their ability to bind to IgGs purified from infected dogs pooled sera. We selected three phage clones that reacted only with those IgGs. Peptides were synthesized, polymerized with glutaraldehyde, and used as antigens in ELISA assays. Each individual peptide or a mix of them was reactive with infected dogs serum. The assay was highly sensitive and specific when compared to soluble Leishmania antigen that showed cross-reactivity with anti-T. cruzi IgGs. Our results demonstrate that phage display technique is useful for selection of peptides that may represent valuable synthetic antigens for an improved serodiagnosis of CVL. PMID:25710003
Recombinant blood group proteins for use in antibody screening and identification tests.
Seltsam, Axel; Blasczyk, Rainer
2009-11-01
The present review elucidates the potentials of recombinant blood group proteins (BGPs) for red blood cell (RBC) antibody detection and identification in pretransfusion testing and the achievements in this field so far. Many BGPs have been eukaryotically and prokaryotically expressed in sufficient quantity and quality for RBC antibody testing. Recombinant BGPs can be incorporated in soluble protein reagents or solid-phase assays such as ELISA, color-coded microsphere and protein microarray chip-based techniques. Because novel recombinant protein-based assays use single antigens, a positive reaction of a serum with the recombinant protein directly indicates the presence and specificity of the target antibody. Inversely, conventional RBC-based assays use panels of human RBCs carrying a huge number of blood group antigens at the same time and require negative reactions of samples with antigen-negative cells for indirect determination of antibody specificity. Because of their capacity for single-step, direct RBC antibody determination, recombinant protein-based assays may greatly facilitate and accelerate the identification of common and rare RBC antibodies.
Gualde, N; Weinberger, O; Ratnofsky, S; Benacerraf, B; Burakoff, S J
1982-04-01
Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observed with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualde, N.; Weinberger, O.; Ratnofsky, S.
1982-04-01
Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observedmore » with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.« less
A canine distemper model of virus-induced anergy.
Mangi, R J; Munyer, T P; Krakowka, S; Jacoby, R O; Kantor, F S
1976-05-01
For development of an animal model of virus-induced anergy, the effect of canine distemper virus (CDV) upon cell-mediated immunity in dogs was investigated. First, canine cutaneous reactions and in vitro lymphocyte responses to soluble protein antigens were characterized. Dogs immunized with picryl guinea pig albumin and with keyhole limpet hemocyanin (both in complete Freund's adjuvant) responded reproducibly to intracutaneous challenge with these antigens. Reactivity peaked in 20-40 days (maximal induration, 6-50 mm). Lymphocytes from these animals responded in vitro to stimulation with keyhole limpet hemocyanin or purified protein derivative. This stimulation was antigen-specific and was maximal on day 6 of culture. Infection with CDV depressed cutaneous reactivity and lymphocyte response in vitro to antigens and mitogens. This effect was transient in animals previously vaccinated with attenuated CDV; however, gnotobiotic puppies (susceptible to CDV) had prolonged depression of cell-mediated immunity and lymphopenia. Some of these animals developed neurologic symptoms and died. The findings indicate that CDV infection is a potentially useful model for study of virus-induced depression of T (thymus)-cell responses and support the hypothesis that there is more than one mechanism responsible for this phenomenon.
Dissecting the T Cell Response: Proliferation Assays vs. Cytokine Signatures by ELISPOT
Anthony, Donald D.; Milkovich, Kimberly A.; Zhang, Wenji; Rodriguez, Benigno; Yonkers, Nicole L.; Tary-Lehmann, Magdalena; Lehmann, Paul V.
2012-01-01
Chronic allograft rejection is in part mediated by host T cells that recognize allogeneic antigens on transplanted tissue. One factor that determines the outcome of a T cell response is clonal size, while another is the effector quality. Studies of alloimmune predictors of transplant graft survival have most commonly focused on only one measure of the alloimmune response. Because differing qualities and frequencies of the allospecific T cell response may provide distinctly different information we analyzed the relationship between frequency of soluble antigen and allo-antigen specific memory IFN-γ secreting CD4 and CD8 T cells, their ability to secrete IL-2, and their proliferative capacity, while accounting for cognate and bystander proliferation. The results show proliferative responses primarily reflect on IL-2 production by antigen-specific T cells, and that proliferating cells in such assays entail a considerable fraction of bystander cells. On the other hand, proliferation (and IL-2 production) did not reflect on the frequency of IFN-γ producing memory cells, a finding particularly accentuated in the CD8 T cell compartment. These data provide rationale for considering both frequency and effector function of pre-transplant T cell reactivity when analyzing immune predictors of graft rejection. PMID:24710419
NASA Astrophysics Data System (ADS)
Laverty, Sean M.; Dawkins, Bryan A.; Chen, Wei R.
2018-02-01
We extend our model of the antitumor immune response initiated by laser-immunotherapy treatment to more closely examine key steps in the immune response 1) tumor antigen acquisition by antigen-presenting dendritic cells (DCs) and 2) cytotoxic T cell (CTL) priming by lymphatic DCs. Specifically we explore the formation of DC-CTL complexes that lead to CTL priming. We find that the bias in the dissociation rate of the complex influences the outcome of treatment. In particular, a bias towards priming favors a rapid activated CTL response and the clearance of tumors.
Loughney, John W; Rustandi, Richard R; Wang, Dai; Troutman, Matthew C; Dick, Lawrence W; Li, Guanghua; Liu, Zhong; Li, Fengsheng; Freed, Daniel C; Price, Colleen E; Hoang, Van M; Culp, Timothy D; DePhillips, Pete A; Fu, Tong-Ming; Ha, Sha
2015-06-26
Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Nonidentity of Some Simian Virus 40-induced Enzymes with Tumor Antigen
Kit, Saul; Melnick, Joseph L.; Anken, Milton; Dubbs, Del Rose; de Torres, R. A.; Kitahara, Tsunehiro
1967-01-01
The complement-fixing tumor (T) antigen induced by simian virus 40 (SV40) has been prepared from SV40-infected cell cultures, from infected cell cultures treated at the time of infection with 1-β-d-arabinofuranosylcytosine (ara-C), and from SV40-transformed cells. Upon partial purification, the T antigen exhibited the following properties: it was tightly adsorbed by calcium phosphate gel, it was precipitated by acetic acid at pH 5 or by ammonium sulfate at about 20 to 32% saturation, and it had a molecular weight greater than 250,000, as estimated by Sephadex G-200 gel chromatography. In contrast, deoxycytidylate (dCMP) deaminase, thymidylate (dTMP) kinase, and thymidine (dT) kinase were less strongly bound to calcium phosphate and were not precipitated at pH 5; these enzymes also had much lower molecular weights than the T antigen, as did dihydrofolic (FH2) reductase. Furthermore, higher ammonium sulfate concentrations were required to precipitate dCMP deaminase, dTMP kinase, and FH2 reductase activities than to precipitate the T antigen. Another difference was that the T antigen was not stabilized, but dCMP deaminase, dTMP kinase, and dT kinase, were stabilized, respectively, by dCTP, dTMP, and dT or dTTP. Deoxyribonucleic acid (DNA) polymerase activity resembled the T antigen in adsorption to calcium phosphate, in precipitation by ammonium sulfate or at pH 5, and in the rate of inactivation when incubated at 38 C. However, the polymerase activity could be partly separated from the T antigen by Sephadex G-200 gel chromatography. The cell fraction containing partially purified T antigen also contained a soluble complement-fixing antigen (presumably a subunit of the viral capsid) which reacted with hyperimmune monkey sera. The latter antigen was present in very low titers or absent from cell extracts prepared from SV40-infected monkey kidney cell cultures which had been treated with ara-C at the time of infection, or from SV40-transformed mouse kidney (mKS) or hamster tumor (H-50) cells. The T antigen, however, was present in usual amounts in SV40-transformed cells or ara-C treated, infected cells. PMID:4316227
Abdelkader, Hamdy; Fathalla, Zeinab
2018-06-18
The search for a simple and scalable approach that can improve the two key biopharmaceutical processes (solubility and permeability) for BCS Class II and BCS Class IV has still been unmet need. In this study, L-lysine was investigated as a potential excipient to tackle problems with solubility and permeability. Bendazac (Class II); quercetin and rutin (Class IV) were employed. Drugs-lysine complexes in 1:1 M ratios were prepared by co-precipitation and co-grinding; characterized for solubility, partition coefficient, DSC, FTIR, SEM, dissolution rate and permeability. Chemical stability of quercetin-lysine and rutin-lysine was studied by assessing antioxidant capacity using Trolox and CUPRAC assays. Drugs-lysine salt/complexes were confirmed. Solubility enhancement factors ranged from 68- to 433-fold increases and dissolution rates were also significantly enhanced by up to 6-times, compared with drugs alone. With the exception of rutin-lysine, P app for bendazac-lysine and quercetin-lysine enhanced by 2.3- to 4-fold. P app for quercetin (Class IV) benefited more than bendazac (Class II) when complexed with lysine. This study warrants the use of L-lysine as a promising excipient for enhanced solubility and permeability of Class II and Class IV, providing that the solubility of the drug is ensured at 'the door step' of absorption sites.
A T-Cell Receptor Breaks the Rules | Center for Cancer Research
Most mature T cells function immunologically when a T-cell receptor (TCR) located on the cell surface encounters and engages its ligand, a major histocompatability complex (MHC), which displays a specific part of a target protein called an antigen. This antigen-presenting complex is assembled from one of the dozen or so MHC molecules that every person inherits from their
Exosomal cancer immunotherapy is independent of MHC molecules on exosomes.
Hiltbrunner, Stefanie; Larssen, Pia; Eldh, Maria; Martinez-Bravo, Maria-Jose; Wagner, Arnika K; Karlsson, Mikael C I; Gabrielsson, Susanne
2016-06-21
Peptide-loaded exosomes are promising cancer treatment vehicles; however, moderate T cell responses in human clinical trials indicate a need to further understand exosome-induced immunity. We previously demonstrated that antigen-loaded exosomes carry whole protein antigens and require B cells for inducing antigen-specific T cells. Therefore, we investigated the relative importance of exosomal major histocompatibility complex (MHC) class I for the induction of antigen-specific T cell responses and tumour protection. We show that ovalbumin-loaded dendritic cell-derived exosomes from MHCI-/- mice induce antigen-specific T cells at the same magnitude as wild type exosomes. Furthermore, exosomes lacking MHC class I, as well as exosomes with both MHC class I and II mismatch, induced tumour infiltrating T cells and increased overall survival to the same extent as syngeneic exosomes in B16 melanoma. In conclusion, T cell responses are independent of exosomal MHC/peptide complexes if whole antigen is present. This establishes the prospective of using impersonalised exosomes, and will greatly increase the feasibility of designing exosome-based vaccines or therapeutic approaches in humans.
Hsp70 enhances presentation of FMDV antigen to bovine CD4+ T cells in vitro
McLaughlin, Kerry; Seago, Julian; Robinson, Lucy; Kelly, Charles; Charleston, Bryan
2010-01-01
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC) class II pathway of antigen presenting cells and generate enhanced MHC II-restricted CD4+ T cell responses in cattle. Monocytes and CD4+ T cells from FMDV vaccinated cattle were stimulated in vitro with complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the presentation of a 25-mer FMDV peptide to CD4+ T cells, as measured by T cell proliferation. Complex formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4+ T cell responses in vitro for an important pathogen of livestock. PMID:20167197
Solubility of (+/-)-ibuprofen and S (+)-ibuprofen in the presence of cosolvents and cyclodextrins.
Nerurkar, Jayanti; Beach, J W; Park, M O; Jun, H W
2005-01-01
Aqueous solubility is an important parameter for the development of liquid formulations and in the determination of bioavailability of oral dosage forms. Ibuprofen (IB), a nonsteroidal anti-inflammatory drug, is a chiral molecule and is currently used clinically as a racemate (racIB). However, the S form of ibuprofen or S(+)-ibuprofen (SIB) is the biologically active isomer and is primarily responsible for the antiinflammatory activity. Phase solubility studies were carried out to compare the saturation solubilities of racIB and SIB in the presence of common pharmaceutical solvents such as glycerol, sorbitol solution, propylene glycol (PG), and polyethylene glycol (PEG 300) over the range of 20% to 80% v/v in aqueous based systems. The solubilities of the two compounds were also compared in the presence of cyclodextrins such as beta cyclodextrin (CD), hydroxypropyl beta cyclodextrin (HPCD), and beta cyclodextrin sulfobutyl ether sodium salt (CDSB) over the range of 5% to 25% w/v. Solubility determinations were carried at 25 degrees C and 37 degrees C. Cosolvents exponentially increased the solubility of both SIB and racIB, especially in the presence of PG and PEG 300. Glycerol was not very effective in increasing the aqueous solubilities of both compounds, whereas sorbitol solution had a minimal effect on their solubility. PG and PEG 300 increased the solubility of SIB by 400-fold and 1500-fold, respectively, whereas the rise in solubility for racIB was 193-fold and 700-fold, respectively, at 25 degrees C for the highest concentration of the cosolvents used (80% v/v). Of the two compounds studied, higher equilibrium solubilities were observed for SIB as compared with racIB. The derivatized cyclodextrins increased the aqueous solubility of racIB and SIB in a concentration-dependent manner giving AL type of phase diagrams. The phase solubility diagrams indicated the formation of soluble inclusion complexes between the drugs and HPCD and CDSB, which was of 1:1 stoichiometry. The addition of underivatized CD reduced the solubility of racIB and SIB via the formation of an insoluble complex. The S form formed more stable complexes with HPCD and CDSB as compared with raclB. The solubilization process is discussed in terms of solvent polarity and differential solid-state structure of raclB and SIB. The thermodynamic parameters for the solubilization process are presented.
Wang, Lu; Luo, You; Wu, Yanan; Liu, Yan; Wu, Zhenqiang
2018-10-30
There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rasmussen, M; Dahl, M; Buus, S; Djurisic, S; Ohlsson, J; Hviid, T V F
2014-08-01
The human leukocyte antigen (HLA) class Ib molecule, HLA-G, has gained increased attention because of its assumed important role in immune regulation. The HLA-G protein exists in several soluble isoforms. Most important are the actively secreted HLA-G5 full-length isoform generated by alternative splicing retaining intron 4 with a premature stop codon, and the cleavage of full-length membrane-bound HLA-G1 from the cell surface, so-called soluble HLA-G1 (sHLA-G1). A specific and sensitive immunoassay for measurements of soluble HLA-G is mandatory for conceivable routine testing and research projects. We report a novel method, a competitive immunoassay, for measuring HLA-G5/sHLA-G1 in biological fluids. The sHLA-G immunoassay is based upon a competitive enzyme-linked immunosorbent assay (ELISA) principle. It includes a recombinant sHLA-G1 protein in complex with β2-microglobulin and a peptide as a standard, biotinylated recombinant sHLA-G1 as an indicator, and the MEM-G/9 anti-HLA-G monoclonal antibody (mAb) as the capture antibody. The specificity and sensitivity of the assay were evaluated. Testing with different recombinant HLA class I proteins and different anti-HLA class I mAbs showed that the sHLA-G immunoassay was highly specific. Optimal combinations of competitor sHLA-G1 and capture mAb concentrations were determined. Two versions of the assay were tested. One with a relatively wide dynamic range from 3.1 to 100.0 ng/ml, and another more sensitive version ranging from 1.6 to 12.5 ng/ml. An intra-assay coefficient of variation (CV) of 15.5% at 88 ng/ml and an inter-assay CV of 23.1% at 39 ng/ml were determined. An assay based on the competitive sHLA-G ELISA may be important for measurements of sHLA-G proteins in several conditions: assisted reproduction, organ transplantation, cancer, and certain pregnancy complications, both in research studies and possibly in the future also for clinical routine use. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Thakkar, Vaishali Tejas; Deshmukh, Amol; Hingorani, Lal; Juneja, Payal; Baldaniya, Lalji; Patel, Asha; Pandya, Tosha; Gohel, Mukesh
2017-01-01
Introduction: The Bacopa monnieri is traditional Ayurvedic medicine, and reported for memory-enhancing effects. The Bacoside is poorly soluble, bitter in taste and responsible for the memory enhancement action. Memory enhancer is commonly prescribed for children or elder people. Objective: Poor solubility, patient compliance and bitterness were a major driving force to develop taste masked β-cyclodextrin complex and dispersible tablets. Materials and Methods: The inclusion complex of Bacopa monnieri and β-cyclodextrin was prepared in different molar ratios of Bacopa monnieri by Co-precipitation method. Phase solubility study was conducted to evaluate the effect of β-cyclodextrin on aqueous solubility of Bacoside A. The characterization was determined by Fourier transformation infrared spectroscopy (FTIR),Differential scanning calorimetry (DSC) and X-ray diffraction study (XRD).Crospovidone and croscarmallose sodium were used as super disintigrant. The 32 full factorial design was adopted to investigate the influence of two superdisintegrants on the wetting time and disntegration time of the tablets. Conclusion: The result revels that molar ratio (1:4) of inclusion complex enhance 3-fold solubility. Full factorial design was successfully employed for the optimization of dispersible tablet of B. monnieri. The short-term accelerated stability study confirmed that high stability of B. monnieri in inclusion complex. PMID:28979076
Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.
Mangas-Sanjuan, Victor; Gutiérrez-Nieto, Jorge; Echezarreta-López, Magdalena; González-Álvarez, Isabel; González-Álvarez, Marta; Casabó, Vicente-Germán; Bermejo, Marival; Landin, Mariana
2016-12-01
β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability.
Morris, Charles D; Azadnia, Parisa; de Val, Natalia; Vora, Nemil; Honda, Andrew; Giang, Erick; Saye-Francisco, Karen; Cheng, Yushao; Lin, Xiaohe; Mann, Colin J; Tang, Jeffrey; Sok, Devin; Burton, Dennis R; Law, Mansun; Ward, Andrew B; He, Linling; Zhu, Jiang
2017-02-28
Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches. IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the viral envelope (Env). However, little is known about the differences in antibody response to these bNAb targets presented by foreign scaffolds and native Env. In this study, a systematic effort was undertaken to design multivalent epitope scaffolds and soluble gp140.681 trimers with a complete antigenic surface, and to comparatively analyze the antibody responses elicited by these antigens to the N332 supersite and MPER in a mouse model. This study will inform both epitope-focused and trimer-based vaccine design and will facilitate integration of the two vaccine strategies. Copyright © 2017 Morris et al.
Patel, Dimendra; Patel, Dipti; Prajapati, Jatin; Patel, Umang; Patel, Vijay
2012-03-01
The aim of the present work is to formulate and evaluate in situ oral topical gels of poorly water soluble drug Bifonazole based on temperature induced systems for the treatment of oral candidiasis. Bifonazole is poorly water soluble and low permeable drug means it's belongs to BCS Class IV. Due to its poor water solubility, it necessary to enhance solubility in water by make complex with Beta- Cyclodextrin (Drug to βCyclo Dextrine ratio is 1:1). After in situ gel preparation done by using Poloxamer (10% and 15%w/w) along with carbopol 934 (0.2 to 1.0% w/w) and Bifonazole - β CD complex (1%w/w). The formulations were evaluated for physiochemical parameter, gelation Temperature, viscosity, gel strength, content uniformity mucoadhesive force, Diffusion Study.
Patel, Dimendra; Patel, Dipti; Prajapati, Jatin; Patel, Umang; Patel, Vijay
2012-01-01
The aim of the present work is to formulate and evaluate in situ oral topical gels of poorly water soluble drug Bifonazole based on temperature induced systems for the treatment of oral candidiasis. Bifonazole is poorly water soluble and low permeable drug means it's belongs to BCS Class IV. Due to its poor water solubility, it necessary to enhance solubility in water by make complex with Beta- Cyclodextrin (Drug to βCyclo Dextrine ratio is 1:1). After in situ gel preparation done by using Poloxamer (10% and 15%w/w) along with carbopol 934 (0.2 to 1.0% w/w) and Bifonazole – β CD complex (1%w/w). The formulations were evaluated for physiochemical parameter, gelation Temperature, viscosity, gel strength, content uniformity mucoadhesive force, Diffusion Study. PMID:23066185
Influence of antigen on immune complex behavior in mice.
Finbloom, D S; Magilavy, D B; Harford, J B; Rifai, A; Plotz, P H
1981-07-01
To explore the possibility that the behavior of immune complexes can, under some circumstances, be directed by the antigen, we have studied the behavior of complexes of identical size made with the glycoproteins, orosomucoid (OR), and ceruloplasmin: or with their desialylated derivatives, asialo-orosomucoid (ASOR) and asialo-ceruloplasmin. Such desialylated proteins are rapidly removed from the circulation by a hepatic cell receptor for galactose, the sugar exposed upon removal of sialic acid. Mixtures of 125I-goat anti-ASOR with either ASOR or OR and mixtures of 125I-rabbit anti-OR with either ASOR or OR form complexes identically. The complexes were separated by density gradient centrifugation and injected intravenously into C3H mice. Blood clearance and hepatic uptake of the OR complexes and ASOR complexes were markedly different. T 1/2 for the goat OR complexes exceeded 300 min, whereas that for the ASOR complexes was 15 min. More detailed studies using rabbit complexes of various sizes revealed that light rabbit complexes behaved similarly to the goat complexes. The light rabbit OR complexes were cleared slowly, with only 18% found in the liver at 60 min, whereas the light rabbit ASOR complexes were cleared much more rapidly, with 62% found within the liver by 30 min. This rapid clearance was completely suppressed by a prior injection of a blocking dose of ASOR, which implies uptake by a galactose-mediated mechanism on hepatocytes. As the size of the rabbit complexes increased, so did the rate of Fc receptor-mediated clearance. Heavy rabbit OR complexes were cleared more rapidly than light OR complexes but not so rapidly as heavy ASOR complexes. The clearance and hepatic uptake of the heavy OR complexes were markedly suppressed by a prior injection of heat-aggregated gamma globulin, a known Fc receptor-blocking agent (45% hepatic uptake without and 6% with aggregated gamma globulin). The heavy rabbit ASOR complexes exhibited inhibition of blood clearance and hepatic uptake by both galactose receptor-blocking and Fc receptor-blocking agents. A blocking dose of ASOR reduced the hepatic uptake at 30 min from 75 to 49%, and heat-aggregated gamma globulin reduced it from 75 to 39%, which suggests that these heavy complexes were removed from the circulation by receptors both for the immunoglobulin and for the antigen. Cell separation studies and autoradiographs confirmed that those complexes cleared primarily by galactose-mediated mechanism were within hepatocytes, and those cleared by Fc receptors were within the nonparenchymal cells of the liver. It seems probable, therefore, the some antigen-antibody complexes may be removed from the circulation via receptors not only for immunoglobulin but also for antigen.
Sareen, Rashmi; Jain, Nitin; Dhar, K L
2016-08-01
The aim of present investigation was to prepare Curcumin-Zn(II) complex in a view to enhance solubility, stability and pharmacodynamic effect in experimentally induced ulcerative colitis. Curcumin-Zn(II) complex was prepared by stirring curcumin with anhydrous zinc chloride at a molar ratio of 1:1. The prepared curcumin metallocomplex was characterized by TLC, FTIR, UV spectroscopy and (1)H NMR. In vitro kinetic degradation and solubility of Curcumin and Curcumin-Zn(II) complex was analyzed spectrophotometrically. Pharmacodynamic evaluation of curcumin and its metal complex was assessed in ulcerative colitis in mice. Curcumin showed chelation with zinc ion as confirmed by the TLC, FTIR, UV spectroscopy and (1)H NMR. The results of TLC [Rf value], IR Spectroscopy [shifting of stretching vibrations of υ(C=C) and υ(C=O)], UV spectra [deconvoluted with absorption band at 432-466.4 nm] of Curcumin-Zn(II) complex compared to curcumin confirmed the formation of metallocomplex. (1)HNMR spectra of Curcumin-Zn(II) showed the upfield shift of Ha and Hb. Kinetic stability studies showed metallocomplex with zinc exhibited good stability. In vivo study revealed significant reduction in severity and extent of colonic damage with Curcumin-Zn(II) which were further confirmed by histopathological study. This study recognizes higher solubility and stability of Curcumin-Zn(II) complex and suggested better pharmacodynamic effects.
Peres, Raphael Sanches; Chiuso-Minicucci, Fernanda; da Rosa, Larissa Camargo; Domingues, Alexandre; Zorzella-Pezavento, Sofia Fernanda Gonçalves; França, Thais Graziela Donegá; Ishikawa, Larissa Lumi Watanabe; do Amarante, Alessandro Francisco Talamini; Sartori, Alexandrina
2013-06-01
Epidemiological and experimental studies support the idea that helminth infections can induce a protective effect against the development of autoimmune and allergic diseases. In this study we characterized the immune response induced by Strongyloides venezuelensis infection in C57BL/6 mice and then evaluated the effect of a previous contact with this helminth in the outcome of type 1 diabetes. Animals were initially infected with 2000 L3 larvae from S. venezuelensis and euthanized 22 days later. An acute phase, identified by a high amount of eggs per gram of feces, was established between days 7 and 9 post-infection. Recovery from infection was associated with a Th2 polarized response characterized by a significant level of serum IgG1 specific antibodies and also a significant production of IL-5 and IL-10 by spleen cells stimulated with S. venezuelensis soluble antigen. Immunization with soluble S. venezuelensis antigen associated with complete Freund's adjuvant followed by infection with S. venezuelensis protected mice from diabetes development induced by streptozotocin. Protection was characterized by a higher body weight gain, lower glycemic levels, much less severe insulitis and preserved insulin production. Together, these results indicate that S. venezuelensis contributed to protect C57BL/6 mice against experimental diabetes induced by streptozotocin. Copyright © 2013 Elsevier Inc. All rights reserved.
Eris, J M; Basten, A; Brink, R; Doherty, K; Kehry, M R; Hodgkin, P D
1994-01-01
B-cell tolerance to soluble protein self antigens such as hen egg lysozyme (HEL) is mediated by clonal anergy. Anergic B cells fail to mount antibody responses even in the presence of carrier-primed T cells, suggesting an inability to activate or respond to T helper cells. To investigate the nature of this defect, B cells from tolerant HEL/anti-HEL double-transgenic mice were incubated with a membrane preparation from activated T-cell clones expressing the CD40 ligand. These membranes, together with interleukin 4 and 5 deliver the downstream antigen-independent CD40-dependent B-cell-activating signals required for productive T-B collaboration. Anergic B cells responded to this stimulus by proliferating and secreting antibody at levels comparable to or better than control B cells. Furthermore, anergic B cells presented HEL acquired in vivo and could present the unrelated antigen, conalbumin, targeted for processing via surface IgD. In contrast, the low immunoglobulin receptor levels on anergic B cells were associated with reduced de novo presentation of HEL and a failure to upregulate costimulatory ligands for CD28. These defects in immunoglobulin-receptor-mediated functions could be overcome in vivo, suggesting a number of mechanisms for induction of autoantibody responses. Images PMID:7514304
Askenase, P W; Debernardo, R; Tauben, D; Kashgarian, M
1978-01-01
Many delayed-type reactions contain large infiltrates of basophils whose function is unknown. We have studied these cutaneous basophil hypersensitivity (CBH) reactions in guinea-pigs to ascertain whether basophils that are recruited to delayed reaction sites could be triggered for immediate reactivity. We compared 24 h CBH reactions with nearby skin for immediate hypersensitivity by challenging each site with small amounts of antigen. CBH sites had augmented immediate increases in vascular permeability detected by extravasation of Evan's blue dye. The ability to elicit this augmented anaphylactic phenomenon correlated with the local presence of basophils, and light microscopy at CBH reactions 15 min after antigen challenge showed a 50% decline in basophil counts. Electron microscopy showed that progressive anaphylactic-type degranulation of local basophils occurred within minutes following reintroduction of antigen. There was fusion of vacuoles containing granules, exocytosis of granules, and dissolution of granules, without ultrastructural disruption of cellular integrity. These results establish that basophils in CBH reactions can be triggered with soluble antigen to undergo anaphylactic degranulation, with the immediate release of vasoactive mediators. We have termed this phenomenon 'cutaneous basophil anaphylaxis'. Thus, one function of basophils at sites of delayed hypersensitivity may be to provide the potential for augmented, local, immediate anaphylactic reactivity. Images Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:721140
Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants.
Lou, Xiao-Ming; Yao, Quan-Hong; Zhang, Zhen; Peng, Ri-He; Xiong, Ai-Sheng; Wang, Hua-Kun
2007-04-01
The original hepatitis B virus (HBV) large surface antigen gene was synthesized. In order to optimize the expression of this gene in tomato plants, the tobacco pathogenesis-related protein S signal peptide was fused to the 5' end of the modified gene and the sequence encoding amino acids S, E, K, D, E, and L was placed at the 3' end. The gene encoding the modified HBV large surface antigen under the control of a fruit-specific promoter was constructed and expressed in transgenic tomato plants. The expression of the antigen from transgenic plants was confirmed by PCR and reverse transcriptase PCR. Enzyme-linked immunoassays using a monoclonal antibody directed against human serum-derived HBsAg revealed that the maximal level of HBsAg was about 0.02% of the soluble protein in transgenic tomato fruit. The amount of HBsAg in mature fruits was found to be 65- to 171-fold larger than in small or medium fruits and leaf tissues. Examination of transgenic plant samples by transmission electron microscopy proved that HBsAg had been expressed and had accumulated. The HBsAg protein was capable of assembling into capsomers and virus-like particles. To our knowledge, this is the first time the HBV large surface antigen has been expressed in plants. This work suggests the possibility of producing a new alternative vaccine for human HBV.
Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho
2017-08-08
Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.
Tian, Tian; Blanco, Elena; Smoukov, Stoyan K; Velev, Orlin D; Velikov, Krassimir P
2016-10-01
Ferric pyrophosphate (FePP) is a widely used iron source in food fortification and in nutritional supplements, due to its white colour, that is very uncommon for insoluble Fe salts. Although its dissolution is an important determinant of Fe adsorption in human body, the solubility characteristics of FePP are complex and not well understood. This report is a study on the solubility of FePP as a function of pH and excess of pyrophosphate ions. FePP powder is sparingly soluble in the pH range of 3-6 but slightly soluble at pH<2 and pH>8. In the presence of pyrophosphate ions the solubility of FePP strongly increases at pH 5-8.5 due to formation a soluble complex between Fe(III) and pyrophosphate ions, which leads to an 8-10-fold increase in the total ionic iron concentration. This finding is beneficial for enhancing iron bioavailability, which important for the design of fortified food, beverages, and nutraceutical products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Apanasenko, Irina E; Selyutina, Olga Yu; Polyakov, Nikolay E; Suntsova, Lyubov P; Meteleva, Elizaveta S; Dushkin, Alexander V; Vachali, Preejith; Bernstein, Paul S
2015-04-15
Xanthophyll carotenoids zeaxanthin and lutein play a special role in the prevention and treatment of visual diseases. These carotenoids are not produced by the human body and must be consumed in the diet. On the other hand, extremely low water solubility of these carotenoids and their instability restrict their practical application as components of food or medicinal formulations. Preparation of supramolecular complexes of zeaxanthin and lutein with glycyrrhizic acid, its disodium salt and the natural polysaccharide arabinogalactan allows one to minimize the aforementioned disadvantages when carotenoids are used in food processing as well as for production of therapeutic formulations with enhanced solubility and stability. In the present study, the formation of supramolecular complexes was investigated by NMR relaxation, surface plasmon resonance (SPR) and optical absorption techniques. The complexes increase carotenoid solubility more than 1000-fold. The kinetics of carotenoid decay in reactions with ozone molecules, hydroperoxyl radicals and metal ions were measured in water and organic solutions, and significant increases in oxidation stability of lutein and zeaxanthin in arabinogalactan and glycyrrhizin complexes were detected. Copyright © 2014 Elsevier Inc. All rights reserved.
Buchanan, Charles M; Alderson, Susan R; Cleven, Curtis D; Dixon, Daniel W; Ivanyi, Robert; Lambert, Juanelle L; Lowman, Douglas W; Offerman, Rick J; Szejtli, Jozsef; Szente, Lajos
2002-03-15
We have examined the synthesis of hydroxybutenyl cyclomaltooligosaccharides (cyclodextrins) and the ability of these cyclodextrin ethers to form guest-host complexes with guest molecules. The hydroxybutenyl cyclodextrin ethers were prepared by a base-catalyzed reaction of 3,4-epoxy-1-butene with the parent cyclodextrins in an aqueous medium. Reaction byproducts were removed by nanofiltration before the hydroxybutenyl cyclodextrins were isolated by co-evaporation of water-EtOH. Hydroxybutenyl cyclodextrins containing no unsubstituted parent cyclodextrin typically have a degree of substitution of 2-4 and a molar substitution of 4-7. These hydroxybutenyl cyclodextrins are randomly substituted, amorphous solids. The hydroxybutenyl cyclodextrin ethers were found to be highly water soluble. Complexes of HBen-beta-CD with glibenclamide and ibuprofen were prepared and isolated. In both cases, the guest content of the complexes was large, and a significant increase in the solubility of the free drug was observed. Dissolution of the complexes in pH 1.4 water was very rapid, and significant increases in the solubility of the free drugs were observed. Significantly, after reaching equilibrium concentration, a decrease in the drug concentration over time was not observed.
Bazon, Murilo Luiz; Perez-Riverol, Amilcar; dos Santos-Pinto, José Roberto Aparecido; Lasa, Alexis Musacchio; Justo-Jacomini, Débora Laís; Palma, Mario Sergio
2017-01-01
Polybia paulista (Hymenoptera: Vespidae) is responsible for a high number of sting accidents and anaphylaxis events in Southeast Brazil, Argentina and Paraguay. The specific detection of allergy to the venom of this wasp is often hampered by the lack of recombinant allergens currently available for molecular diagnosis. Antigen 5 (~23 kDa) from P. paulista venom (Poly p 5) is a highly abundant and glycosylated allergenic protein that could be used for development of component-resolved diagnosis (CRD). Here, we describe the cloning and heterologous expression of the antigen 5 (rPoly p 5) from P. paulista venom using the eukaryotic system Pichia pastoris. The expression as a secreted protein yielded high levels of soluble rPoly p 5. The recombinant allergen was further purified to homogeneity (99%) using a two-step chromatographic procedure. Simultaneously, the native form of the allergen (nPoly p 5) was purified from the wasp venom by Ion exchange chromatography. The rPoly p 5 and nPoly p 5 were then submitted to a comparative analysis of IgE-mediated immunodetection using sera from patients previously diagnosed with sensitization to wasp venoms. Both rPoly p 5 and nPoly p 5 were recognized by specific IgE (sIgE) in the sera of the allergic individuals. The high levels of identity found between nPoly p 5 and rPoly p 5 by the alignment of its primary sequences as well as by 3-D models support the results obtained in the immunoblot. Overall, we showed that P. pastoris is a suitable system for production of soluble rPoly p 5 and that the recombinant allergen represents a potential candidate for molecular diagnosis of P.paulista venom allergy. PMID:28837089
Gobert, Geoffrey N.; Nawaratna, Sujeevi K.; Harvie, Marina; Ramm, Grant A.; McManus, Donald P.
2015-01-01
Background We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis. Methods and Findings Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5. Conclusions This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs. PMID:25965781
Mirzadeh, Abolfazl; Saadatnia, Geita; Golkar, Majid; Babaie, Jalal; Noordin, Rahmah
2017-05-01
SAG1-related sequence 3 (SRS3) is one of the major Toxoplasma gondii tachyzoite surface antigens and has been shown to be potentially useful for the detection of toxoplasmosis. This protein is highly conformational due to the presence of six disulfide bonds. To achieve solubility and antigenicity, SRS3 depends on proper disulfide bond formation. The aim of this study was to over-express the SRS3 protein with correct folding for use in serodiagnosis of the disease. To achieve this, a truncated SRS3 fusion protein (rtSRS3) was produced, containing six histidyl residues at both terminals and purified by immobilized metal affinity chromatography. The refolding process was performed through three methods, namely dialysis in the presence of chemical additives along with reduced/oxidized glutathione and drop-wise dilution methods with reduced/oxidized glutathione or reduced DTT/oxidized glutathione. Ellman's assay and ELISA showed that the protein folding obtained by the dialysis method was the most favorable, probably due to the correct folding. Subsequently, serum samples from individuals with chronic infection (n = 76), probable acute infection (n = 14), and healthy controls (n = 81) were used to determine the usefulness of the refolded rtSRS3 for Toxoplasma serodiagnosis. The results of the developed IgG-ELISA showed a diagnostic specificity of 91% and a sensitivity of 82.89% and 100% for chronic and acute serum samples, respectively. In conclusion, correctly folded rtSRS3 has the potential to be used as a soluble antigen for the detection of human toxoplasmosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Establishment of a reliable dual-vector system for the phage display of antibody fragments.
Joo, Hyun-yoo; Hur, Byung-ung; Lee, Kyung-woo; Song, Suk-yoon; Cha, Sang-hoon
2008-04-20
To resolve some of the technical limitations in a phage-displayed Fab library, we have designed two dual-vector systems, DVS-I and DVS-II, composed of a set of replicon-compatible plasmid (pLA-1 or pLT-2) for producing soluble L chain fragments and phagemid (pHf1g3T-1 or pHf1g3A-2) for expressing Fd (V(H)+C(H1))-DeltapIII fusion molecules as well as a genotype-phenotype linkage. Compared to the DVS-I (pLA-1 and pHf1g3T-1), the DVS-II (pLT-2 and pHf1g3A-2) showed stable transformation efficiency regardless of the order of the vectors introduced into the host cells. In addition, expression of soluble Fab molecules with antigen-binding reactivity, recombinant phage titer and display level of functional Fab-DeltapIII on the phage progenies of the DVS-II were comparable with a conventional phage display system using a single phagemid vector. More importantly, the phage displaying target-specific Fab-DeltapIII molecules was successfully enriched by panning, which allows isolation of the pHf1g3A-2 phagemid encoding antigen-specific Fd molecules. We believe that the DVS-II may provide a valuable tool in the construction of a combinatorial phage-displayed Fab library with large diversity. Furthermore, it can be readily applied to isolation of desired antibody clones if L chain promiscuity of antibodies in determining antigen-binding specificity is considered, or in guided-selection or chain shuffling of mAbs of non-human origin.
Petrov, Artem; Arzhanik, Vladimir; Makarov, Gennady; Koliasnikov, Oleg
2016-08-01
Antibodies are the family of proteins, which are responsible for antigen recognition. The computational modeling of interaction between an antigen and an antibody is very important when crystallographic structure is unavailable. In this research, we have discovered the correlation between the amino acid sequence of antibody and its specific binding characteristics on the example of the novel conservative binding motif, which consists of four residues: Arg H52, Tyr H33, Thr H59, and Glu H61. These residues are specifically oriented in the binding site and interact with each other in a specific manner. The residues of the binding motif are involved in interaction strictly with negatively charged groups of antigens, and form a binding complex. Mechanism of interaction and characteristics of the complex were also discovered. The results of this research can be used to increase the accuracy of computational antibody-antigen interaction modeling and for post-modeling quality control of the modeled structures.
NASA Astrophysics Data System (ADS)
Venuti, Valentina; Stancanelli, Rosanna; Acri, Giuseppe; Crupi, Vincenza; Paladini, Giuseppe; Testagrossa, Barbara; Tommasini, Silvana; Ventura, Cinzia Anna; Majolino, Domenico
2017-10-01
The ability of Captisol® (sulphobutylether-β-cyclodextrin, SBE-β-CD), to form inclusion complexes, both in solution and in the solid state, has been tested in order to improve some unfavorable chemical-physical characteristics, such as poor solubility in water, of a bioflavonoid, Coumestrol (Coum), well known for its anti-oxidant, anti-inflammatory, anti-fungal and anti-viral activity. In pure water, a phase-solubility study was carried out to evaluate the enhancement of the solubility of Coum and, therefore, the occurred complexation with the macrocycle. The stoichiometry and the stability constant of the SBE-β-CD/Coum complex were calculated with the phase solubility method and through the Job's plot. After that, the solid SBE-β-CD/Coum complex was prepared utilizing a kneading method. The spectral changes induced by complexation on characteristic vibrational band of Coum were complementary investigated by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) and Raman spectroscopy, putting into evidence the guest chemical groups involved in the "host-guest" interactions responsible of the formation and stabilization of the complex. Particular attention was paid to the Cdbnd O and Osbnd H stretching vibrations, whose temperature-evolution respectively furnished the enthalpy changes associated to the binding of host and guest in solid phase and to the reorganization of the hydrogen bond scheme upon complexation. From the whole set of results, an inclusion geometry is also proposed.
USDA-ARS?s Scientific Manuscript database
Major histocompatibility complex (MHC) class I molecules regulate adaptive immune responses through the presentation of antigenic peptides to CD8positive T-cells. Polymorphisms in the peptide binding region of class I molecules determine peptide binding affinity and stability during antigen presenta...
Henry, Kevin A; Kim, Dae Young; Kandalaft, Hiba; Lowden, Michael J; Yang, Qingling; Schrag, Joseph D; Hussack, Greg; MacKenzie, C Roger; Tanha, Jamshid
2017-01-01
Human autonomous V H /V L single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged V H /V L domains. Here, we describe the design and characterization of three novel human V H /V L sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential V H /V L sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three V H /V L sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three V H /V L libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 V H s and 7 V L s in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2-3 µM), but had highly variable expression yields (range: 0.1-19 mg/L). Despite our efforts to identify the most stable V H /V L scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing V H /V L sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some V H /V L sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence clearly dramatically impacts the stability of human autonomous V H /V L immunoglobulin domain folds, and sequence-stability tradeoffs must be taken into account during the design of such libraries.
Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John
2009-12-30
In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.
Nicholls, Sarah; Piper, Karen P.; Mohammed, Fiyaz; Dafforn, Timothy R.; Tenzer, Stefan; Salim, Mahboob; Mahendra, Premini; Craddock, Charles; van Endert, Peter; Schild, Hansjörg; Cobbold, Mark; Engelhard, Victor H.; Moss, Paul A. H.; Willcox, Benjamin E.
2009-01-01
T cell recognition of minor histocompatibility antigens (mHags) underlies allogeneic immune responses that mediate graft-versus-host disease and the graft-versus-leukemia effect following stem cell transplantation. Many mHags derive from single amino acid polymorphisms in MHC-restricted epitopes, but our understanding of the molecular mechanisms governing mHag immunogenicity and recognition is incomplete. Here we examined antigenic presentation and T-cell recognition of HA-1, a prototypic autosomal mHag derived from single nucleotide dimorphism (HA-1H versus HA-1R) in the HMHA1 gene. The HA-1H peptide is restricted by HLA-A2 and is immunogenic in HA-1R/R into HA-1H transplants, while HA-1R has been suggested to be a “null allele” in terms of T cell reactivity. We found that proteasomal cleavage and TAP transport of the 2 peptides is similar and that both variants can bind to MHC. However, the His>Arg change substantially decreases the stability and affinity of HLA-A2 association, consistent with the reduced immunogenicity of the HA-1R variant. To understand these findings, we determined the structure of an HLA-A2-HA-1H complex to 1.3Å resolution. Whereas His-3 is accommodated comfortably in the D pocket, incorporation of the lengthy Arg-3 is predicted to require local conformational changes. Moreover, a soluble TCR generated from HA-1H-specific T-cells bound HA-1H peptide with moderate affinity but failed to bind HA-1R, indicating complete discrimination of HA-1 variants at the level of TCR/MHC interaction. Our results define the molecular mechanisms governing immunogenicity of HA-1, and highlight how single amino acid polymorphisms in mHags can critically affect both MHC association and TCR recognition. PMID:19234124
Seenivasan, Rajesh; Singh, Chandra K; Warrick, Jay W; Ahmad, Nihal; Gunasekaran, Sundaram
2017-09-15
An optically transparent patterned indium tin oxide (ITO) three-electrode sensor integrated with a microfluidic channel was designed for label-free immunosensing of prostate-specific membrane antigen (PSMA), a prostate cancer (PCa) biomarker, expressed on prostate tissue and circulating tumor cells but also found in serum. The sensor relies on cysteamine capped gold nanoparticles (N-AuNPs) covalently linked with anti-PSMA antibody (Ab) for target specificity. A polydimethylsiloxane (PDMS) microfluidic channel is used to efficiently and reproducibly introduce sample containing soluble proteins/cells to the sensor. The PSMA is detected and quantified by measuring the change in differential pulse voltammetry signal of a redox probe ([Fe(CN) 6 ] 3- /[Fe(CN) 6 ] 4- ) that is altered upon binding of PSMA with PSMA-Ab immobilized on N-AuNPs/ITO. Detection of PSMA expressing cells and soluble PSMA was tested. The limit of detection (LOD) of the sensor for PSMA-based PCa cells is 6/40µL (i.e., 150 cells/mL) (n=3) with a linear range of 15-400 cells/40µL (i.e., 375-10,000 cells/mL), and for the soluble PSMA is 0.499ng/40µL (i.e., 12.5ng/mL) (n=3) with the linear range of 0.75-250ng/40µL (i.e., 19-6250ng/mL), both with an incubation time of 10min. The results indicate that the sensor has a suitable sensitivity and dynamic range for routine detection of PCa circulating tumor cells and can be adapted to detect other biomarkers/cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Marcipar, Iván S; Olivares, María Laura; Robles, Lucía; Dekanty, Andrés; Marcipar, Alberto; Silber, Ariel M
2004-03-01
In the present work, we have determined the effect of expression vectors and their corresponding host bacteria on the antigenic performance of Trypanosoma cruzi P2beta (TcP2beta) full-length recombinant protein. The gene encoding the TcP2beta ribosomal protein was cloned in pMAL-c2 and pET-32a vectors that allow the expression of high levels of soluble fusion proteins. A panel of 32 positive and 32 negative sera was assayed with the purified proteins expressed using pMal-c2 (TcP2beta-MBP) and pET-32a (TcP2beta-TRX) vectors and with MBP and TRX purified from pMAL-c2 and pET-32a vectors, respectively. The antigenic behavior of each TcP2beta recombinant protein differed in the diagnostic performance in terms of DI(+) (93.7 for TcP2beta-MBP vs 100% for TcP2beta-TRX), in DI(-) (90.5 for TcP2beta-MBP vs 100% for TcP2beta-TRX) and in cross-reaction with negative sera. To determine if the higher reactivity of expressed pMAL-c2 protein was due to folding during protein expression or to a steric effect related to the protein adsorption at the titration plate, the reactivity of sera against soluble proteins was assessed by ELISA inhibition assays. As each soluble protein preserved its level of reactivity, we concluded that differences in reactivity were due to intrinsic characteristics of the proteins and not to differences in patterns of adsorption to the plates.
Lad, P M; Cooper, J F; Learn, D B; Olson, C V
1984-12-07
We have utilized the technique of lectin-loading of SDS gels with iodinated concanavalin A and wheat germ agglutinin to identify glycoproteins in prostatic and seminal fluids as well as in prostate tissue fractions. The following subunits which bound both lectins were detected: (a) 50, 43 and 38 kDa subunits common to prostatic and seminal fluids, and an additional 55 kDa subunit which predominates only in prostatic fluid; (b) 78, 55, 50 and 43 kDa subunits in prostatic tissue cytosol and (c) 195, 170, 135, 116 and 95 kDa subunits present in the particulate fractions of prostatic tissue. Immunoblotting using specific rabbit antibodies revealed the 50 kDa band to be prostatic acid phosphatase and the 38 kDa band to be prostate-specific antigen. Interestingly, antibodies directed toward prostatic acid phosphatase were found to cross-react with the 43 kDa band. Fractionation on sucrose gradients showed that several of these particulate glycoproteins were associated with a vesicle fraction enriched in adenylate cyclase activity, implying that they are plasma membrane glycoproteins. Comparison of soluble and particulate fractions of normal and cancerous tissue homogenates was made by densitometric scanning of autoradiograms of lectin-loaded gels. Similar relative intensities of lectin-binding were obtained for corresponding proteins in normal and cancerous tissue fractions. Also, immunoblotting showed no differences in prostatic acid phosphatase or prostate-specific antigen between normal and cancerous soluble homogenate fractions. Our results suggest that major lectin-binding proteins are conserved in the transition from normal to cancerous tissue. These results may be useful in developing a multiple-marker profile of metastatic prostate cancer and for the design of imaging agents, such as monoclonal antibodies, to prominent soluble and particulate prostate glycoproteins.
Tay, Chin-Siean; Tagliani, Elisa; Collins, Mary K.; Erlebacher, Adrian
2013-01-01
Maternal immune tolerance towards the fetus and placenta is thought to be established in part by pathways that attenuate T cell priming to antigens released from the placenta into maternal blood. These pathways remain largely undefined and their existence, at face value, seems incompatible with a mother's need to maintain a functional immune system during pregnancy. A particular conundrum is evident if we consider that maternal antigen presenting cells, activated in order to prime T cells to pathogen-derived antigens, would also have the capacity to prime T cells to co-ingested placental antigens. Here, we address this paradox using a transgenic system in which placental membranes are tagged with a strong surrogate antigen (ovalbumin). We find that although a remarkably large quantity of acellular ovalbumin-containing placental material is released into maternal blood, splenic CD8 T cells in pregnant mice bearing unmanipulated T cell repertoires are not primed to ovalbumin even if the mice are intravenously injected with adjuvants. This failure was largely independent of regulatory T cells, and instead was linked to the intrinsic characteristics of the released material that rendered it selectively non-immunogenic, potentially by sequestering it from CD8α+ dendritic cells. The release of ovalbumin-containing placental material into maternal blood thus had no discernable impact on CD8 T cell priming to soluble ovalbumin injected intravenously during pregnancy, nor did it induce long-term tolerance to ovalbumin. Together, these results outline a major pathway governing the maternal immune response to the placenta, and suggest how tolerance to placental antigens can be maintained systemically without being detrimental to host defense. PMID:24391885
Abréu-Vélez, Ana María; Javier Patiño, Pablo; Montoya, Fernando; Bollag, Wendy B
2003-01-01
Multiple antigens are recognized by sera from patients with pemphigus foliaceus (PF). Several have been identified including keratin 59, desmocollins, envoplakin, periplakin, and desmogleins 1 and 3 (Dsg1 and Dsg3). In addition, an 80 kDa antigen was identified as the N-terminal fragment of Dsg1 using as antigen source an insoluble epidermal cell envelope preparation. However, still unsolved was the identity of the most important antigenic moiety, a 45 kDa tryptic fragment which is recognized by all sera from patients with fogo selvagem, pemphigus foliaceus, by half of pemphigus vulgaris sera and by a new variant of endemic pemphigus in E1 Bagre, Colombia that resembles Senear-Usher syndrome. Here, we report the identification of the 45 kDa conformational epitope of a soluble tryptic cleavage product from viable bovine epidermis. To elucidate the nature of this peptide, viable bovine epidermis was trypsin-digested, and glycosylated peptides were partially purified on a concanavalin A (Con-A) affinity column. This column fraction was then used as an antigen source for further immunoaffinity purification. A PF patient's serum covalently coupled to a Staphylococcus aureus protein A column was incubated with the Con-A eluted products and the immuno-isolated antigen was separated by SDS-PAGE, transferred to a membrane, and visualized with Coomassie blue, silver and amido black stains. The 45 kD band was subjected to amino acid sequence analysis revealing the sequence, EXIKFAAAXREGED, which matched the mature form of the extracellular domain of bovine Dsg1. This study confirms the biological importance of the ectodomain of Dsg1 as well as the relevance of conformational epitopes in various types of pemphigus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douat-Casassus, Celine; Borbulevych, Oleg; Tarbe, Marion
2010-10-07
There is growing interest in using tumor associated antigens presented by class I major histocompatibility complex (MHC-I) proteins as cancer vaccines. As native peptides are poorly stable in biological fluids, researchers have sought to engineer synthetic peptidomimetics with greater biostability. Here, we demonstrate that antigenic peptidomimetics of the Melan-A/MART-1{sub 26(27L)-35} melanoma antigen adopt strikingly different conformations when bound to MHC-I, highlighting the degeneracy of T cell recognition and revealing the challenges associated with mimicking native peptide conformation.
Golby, Paul; Nunez, Javier; Cockle, Paul J.; Ewer, Katie; Logan, Karen; Hogarth, Philip; Vordermeier, H. Martin; Hinds, Jason; Hewinson, R. Glyn; Gordon, Stephen V.
2011-01-01
Genome sequencing of Mycobacterium tuberculosis complex members has accelerated the search for new disease-control tools. Antigen mining is one area that has benefited enormously from access to genome data. As part of an ongoing antigen mining programme, we screened genes that were previously identified by transcriptome analysis as upregulated in response to an in vitro acid shock for their in vivo expression profile and antigenicity. We show that the genes encoding two methyltransferases, Mb1438c/Rv1403c and Mb1440c/Rv1404c, were highly upregulated in a mouse model of infection, and were antigenic in M. bovis-infected cattle. As the genes encoding these antigens were highly upregulated in vivo, we sought to define their genetic regulation. A mutant was constructed that was deleted for their putative regulator, Mb1439/Rv1404; loss of the regulator led to increased expression of the flanking methyltransferases and a defined set of distal genes. This work has therefore generated both applied and fundamental outputs, with the description of novel mycobacterial antigens that can now be moved into field trials, but also with the description of a regulatory network that is responsive to both in vivo and in vitro stimuli. PMID:18375799
[Regression analysis to select native-like structures from decoys of antigen-antibody docking].
Chen, Zhengshan; Chi, Xiangyang; Fan, Pengfei; Zhang, Guanying; Wang, Meirong; Yu, Changming; Chen, Wei
2018-06-25
Given the increasing exploitation of antibodies in different contexts such as molecular diagnostics and therapeutics, it would be beneficial to unravel properties of antigen-antibody interaction with modeling of computational protein-protein docking, especially, in the absence of a cocrystal structure. However, obtaining a native-like antigen-antibody structure remains challenging due in part to failing to reliably discriminate accurate from inaccurate structures among tens of thousands of decoys after computational docking with existing scoring function. We hypothesized that some important physicochemical and energetic features could be used to describe antigen-antibody interfaces and identify native-like antigen-antibody structure. We prepared a dataset, a subset of Protein-Protein Docking Benchmark Version 4.0, comprising 37 nonredundant 3D structures of antigen-antibody complexes, and used it to train and test multivariate logistic regression equation which took several important physicochemical and energetic features of decoys as dependent variables. Our results indicate that the ability to identify native-like structures of our method is superior to ZRANK and ZDOCK score for the subset of antigen-antibody complexes. And then, we use our method in workflow of predicting epitope of anti-Ebola glycoprotein monoclonal antibody-4G7 and identify three accurate residues in its epitope.
Rahman, Shafiur; Cao, Siyu; Steadman, Kathryn J; Wei, Ming; Parekh, Harendra S
2012-01-01
With a view to improving the solubility and delivery characteristics of poorly water-soluble drugs, we prepared β-cyclodextrin-curcumin (βCD-C) inclusion complexes (hydrophilic curcumin) and entrapped both native curcumin (hydrophobic) and the complexes separately into liposomes; these were then assessed for in vitro cytotoxicity in lung and colon cancer cell lines. Optimization of curcumin entrapment within βCD was achieved, with the resultant βCD-C complexes prepared by methanol reflux. Inclusion complexes were confirmed using UV spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction. The water solubility of βCD-C complexes improved markedly (c.f. native curcumin) and successful entrapment of complexes into liposomes, prepared using a thin-film hydration approach, was also achieved. All the liposomal formulations were characterized for curcumin and βCD-C complex entrapment efficiency, particle size, polydispersity and stability at 2-8°C. Curcumin, βCD-C complex and their optimized liposomal formulations were evaluated for anticancer activity in lung (A-459) and colon (SW-620) cancer cell lines. All curcumin-containing formulations tested were effective in inhibiting cell proliferation, as determined via an MTT assay. The median effective dose (EC(50)) for all curcumin formulations was found to be in the low µM range for both lung and colon cancer cell lines tested. Our results confirm that βCD inclusion complexes of poorly water soluble drugs, such as curcumin can be entrapped within biocompatible vesicles such as liposomes, and this does not preclude their anticancer activity.
Autoantibodies in Autoimmune Hepatitis.
Muratori, Luigi; Deleonardi, Gaia; Lalanne, Claudine; Barbato, Erica; Tovoli, Alessandra; Libra, Alessia; Lenzi, Marco; Cassani, Fabio; Muratori, Paolo
2015-01-01
The detection of diagnostic autoantibodies such as antinuclear antibodies (ANA), anti-smooth muscle antibodies (SMA), anti-liver/kidney microsomal type 1 (anti-LKM1), anti-liver cytosol type 1 (anti-LC1) and anti-soluble liver antigen (anti-SLA) is historically associated with the diagnosis of autoimmune hepatitis. When autoimmune hepatitis is suspected, the detection of one or any combination of diagnostic autoantibodies, by indirect immunofluorescence or immuno-enzymatic techniques with recombinant antigens, is a pivotal step to reach a diagnostic score of probable or definite autoimmune hepatitis. Diagnostic autoantibodies (ANA, SMA, anti-LKM1, anti-LC1, anti-SLA) are a cornerstone in the diagnosis of autoimmune hepatitis. Other ancillary autoantibodies, associated with peculiar clinical correlations, appear to be assay-dependent and institution-specific, and validation studies are needed. © 2015 S. Karger AG, Basel.
Hickey, John M; Sahni, Neha; Toth, Ronald T; Kumru, Ozan S; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B
2016-10-01
Liquid chromatographic methods, combined with mass spectrometry, offer exciting and important opportunities to better characterize complex vaccine antigens including recombinant proteins, virus-like particles, inactivated viruses, polysaccharides, and protein-polysaccharide conjugates. The current abilities and limitations of these physicochemical methods to complement traditional in vitro and in vivo vaccine potency assays are explored in this review through the use of illustrative case studies. Various applications of these state-of-the art techniques are illustrated that include the analysis of influenza vaccines (inactivated whole virus and recombinant hemagglutinin), virus-like particle vaccines (human papillomavirus and hepatitis B), and polysaccharide linked to protein carrier vaccines (pneumococcal). Examples of utilizing these analytical methods to characterize vaccine antigens in the presence of adjuvants, which are often included to boost immune responses as part of the final vaccine dosage form, are also presented. Some of the challenges of using chromatographic and LC-MS as physicochemical assays to routinely test complex vaccine antigens are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Arshad, Norhafiza M; In, Lionel L A; Soh, Tchen Lin; Azmi, Mohamad Nurul; Ibrahim, Halijah; Awang, Khalijah; Dudich, Elena; Tatulov, Eduard; Nagoor, Noor Hasima
2015-06-30
Previous in vitro and in vivo studies have reported that 1'-S-1'-acetoxychavicol acetate (ACA) isolated from rhizomes of the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) induces apoptosis-mediated cell death in tumour cells via dysregulation of the NF-κB pathway. However there were some clinical development drawbacks such as poor in vivo solubility, depreciation of biological activity upon exposure to an aqueous environment and non-specific targeting of tumour cells. In the present study, all the problems above were addressed using the novel drug complex formulation involving recombinant human alpha fetoprotein (rhAFP) and ACA. To study the synergistic effect of both agents on human cancer xenografts, athymic nude (Nu/Nu) mice were used and treated with various combination regimes intraperitoneally. Serum levels of tumour markers for carcinoembryonic antigen (CEA) and prostate specific antigen (PSA) were assessed using sandwich ELISA. IHC and Western blotting were also conducted on in vivo tumour biopsies to investigate the involvement of NF-κB regulated genes and inflammatory biomarkers. Quantification and correlation between drug efficacies and AFP-receptors were done using IF-IC and Pearson's correlation analysis. Mice exposed to combined treatments displayed higher reductions in tumour volume compared to stand alone agents, consistent with in vitro cytotoxicity assays. Milder signs of systemic toxicity, such as loss in body weight and inflammation of vital organs were also demonstrated compared to stand alone treatments. Tumour marker levels were consistent within all rhAFP/ACA treatment groups where levels of CEA and PSA were initially elevated upon commencement of treatment, and consecutively reduced corresponding to a decrease in tumour bulk volume. Both IHC and Western blotting results indicated that the combined action of rhAFP/ACA was not only able to down-regulate NF-κB activation, but also reduce the expression of NF-κB regulated genes and inflammatory biomarkers. The efficacy of rhAFP/ACA complex was also found to be weakly negatively correlated to the level of surface AFP-receptors between tumour types. This drug complex formulation shows great therapeutic potential against AFP-receptor positive tumours, and serves as a basis to overcome insoluble and non-specific anti-neoplastic molecules.
Arshad, Norhafiza M.; In, Lionel L.A.; Soh, Tchen Lin; Azmi, Mohamad Nurul; Ibrahim, Halijah; Awang, Khalijah; Dudich, Elena; Tatulov, Eduard; Nagoor, Noor Hasima
2015-01-01
Purpose Previous in vitro and in vivo studies have reported that 1′-S-1′-acetoxychavicol acetate (ACA) isolated from rhizomes of the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) induces apoptosis-mediated cell death in tumour cells via dysregulation of the NF-κB pathway. However there were some clinical development drawbacks such as poor in vivo solubility, depreciation of biological activity upon exposure to an aqueous environment and non-specific targeting of tumour cells. In the present study, all the problems above were addressed using the novel drug complex formulation involving recombinant human alpha fetoprotein (rhAFP) and ACA. Experimental Design To study the synergistic effect of both agents on human cancer xenografts, athymic nude (Nu/Nu) mice were used and treated with various combination regimes intraperitoneally. Serum levels of tumour markers for carcinoembryonic antigen (CEA) and prostate specific antigen (PSA) were assessed using sandwich ELISA. IHC and Western blotting were also conducted on in vivo tumour biopsies to investigate the involvement of NF-κB regulated genes and inflammatory biomarkers. Quantification and correlation between drug efficacies and AFP-receptors were done using IF-IC and Pearson's correlation analysis. Results Mice exposed to combined treatments displayed higher reductions in tumour volume compared to stand alone agents, consistent with in vitro cytotoxicity assays. Milder signs of systemic toxicity, such as loss in body weight and inflammation of vital organs were also demonstrated compared to stand alone treatments. Tumour marker levels were consistent within all rhAFP/ACA treatment groups where levels of CEA and PSA were initially elevated upon commencement of treatment, and consecutively reduced corresponding to a decrease in tumour bulk volume. Both IHC and Western blotting results indicated that the combined action of rhAFP/ACA was not only able to down-regulate NF-κB activation, but also reduce the expression of NF-κB regulated genes and inflammatory biomarkers. The efficacy of rhAFP/ACA complex was also found to be weakly negatively correlated to the level of surface AFP-receptors between tumour types. Conclusions This drug complex formulation shows great therapeutic potential against AFP-receptor positive tumours, and serves as a basis to overcome insoluble and non-specific anti-neoplastic molecules. PMID:26158863
Immune complex orchitis in vasectomized rabbits
1976-01-01
The results of the present study show that bilaterally vasectomized rabbits with high levels of antibodies to sperm antigens frequently develop an orchitis associated with granular deposits of rabbit IgG and C3 in the basement membranes of seminiferous tubules. The immune deposits correspond in location to electron-opaque deposits seen by electron microscopy. The "membranous orchitis" is characterized by thickening of tubular basement membranes, acc-mulation of macrophages and a few polymorphonuclear leukocytes, and destruction of the basal lamina, of the Sertoli and spermatogenetic cells. The pathogenetic role of the immune deposits and the possibility that they contain antigen- antibody complexes is indicated by: (a) selective accumulation of IgG and C3 granular deposits along the basement membranes of seminiferous tubules in rabbits producing high and persistent levels of antibodies to sperm antigens; (b) the elution of immunoglobulins from tissues with chaotropic ion-containing buffers, acid buffers, or heat; (c) the observation that the immuno-globulins accumulated in the testis contain antibody to sperm antigens; and (d) the demonstration of sperm antigens in a location similar to that of IgG and C3. It is postulated that sperm antigen-antibody complexes are formed in the basement membranes of seminiferous tubules when antigens leaking out of the tubules react with specific antibody coming from the circulation. In two rabbits with higher levels of circulating antisperm antibodies and severe orchitis, granular deposits of IgG and C3 were also present in renal glomeruli. Immunoglobulins eluted from the kidneys contained antibody with antisperm activity. These findings are consistent with the hypothesis that in some vasectomized rabbits extratesticular lesions may develop by a mechanism comparable to that of chronic serum sickness. PMID:129498
USDA-ARS?s Scientific Manuscript database
Water soluble amylose fatty acid and fatty ammonium salt inclusion complexes (AIC) were prepared by jet cooked high amylose corn starch with water soluble salts of long chain fatty acids or fatty amines. The formation of AIC was confirmed by X-ray diffraction of freeze-dried samples. After dissoluti...
Water insoluble and soluble lipids for gene delivery.
Mahato, Ram I
2005-04-05
Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.
Moosic, J P; Sung, E; Nilson, A; Jones, P P; McKean, D J
1982-08-25
The selective solubilization of different murine lymphocyte membrane compartments with several nonionic detergents was used to study the subcellular distribution of two distinct forms of lymphocyte cell recognition structures (Ia antigens). Ia antigens were isolated with a monoclonal anti-Ia immunoadsorbent from murine splenocytes that had been solubilized with four different nonionic detergents. Analyses of the immunoprecipitates indicated that Lubrol WX was selectively solubilizing a subpopulation of Ia consisting of mature highly glycosylated alpha and beta polypeptides which were not associated with Ii polypeptide. A second Ia subpopulation consisting of less glycosylated cytoplasmic precursor alpha and beta polypeptides associated with Ii polypeptide was immunoprecipitated from the Lubrol WX-insoluble material after solubilizing this material with Triton X-100. Comparable results were obtained when HLA-DR antigens were similarly isolated from cultured human lymphoblastoid cells. This selective solubilization phenomenon was not unique to Ia antigens. Only mature highly glycosylated H-2K molecules were immunoprecipitated from the Lubrol WX-soluble material while the less glycosylated precursor H-2K molecules were immunoprecipitated from the Triton X-100-solubilized Lubrol-insoluble material. These data directly demonstrate that the Ii polypeptide is exclusively associated with the intracellular Ia antigen cytoplasmic precursor molecules. These data also indicate that, under the conditions used in these experiments, Lubrol WX does not completely solubilize integral membrane proteins that have previously been shown to be associated with the rough endoplasmic reticulum.
Mirzadeh, Abolfazl; Valadkhani, Zarrintaj; Yoosefy, Asiyeh; Babaie, Jalal; Golkar, Majid; Esmaeili Rastaghi, Ahmad Reza; Kazemi-Rad, Elham; Ashrafi, Keyhan
2017-07-01
Early diagnosis of fascioliasis is critical in prevention of injury to the liver and bile ducts. Saposin-like protein (FhSAP-2) is probably the most ideal antigen of Fasciola hepatica for development of ELISA kits. SAP-2 has a conserved tertiary structure containing three disulfide bonds and conformational epitopes. Therefore, antigenicity of SAP-2 is greatly depends on disulfide bond formation and proper folding. We produced the recombinant truncated SAP-2 (rtSAP-2) in the SHuffle ® T7 and Rosetta strain of Escherichia coli, in soluble and insoluble forms, respectively and purified by immobilized metal affinity chromatography (IMAC). The refolding process of denatured rtSAP-2 was performed using dialysis and dilution methods in the presence of chemical additives, along with reduced/oxidized glutathione (in vitro). Physicochemical studies, including non-reducing gel electrophoresis, Ellman's assay, Western blotting and ELISA showed the most antigenicity and likely correct folding of rtSAP-2, which was obtained by dialysis method. An IgG ELISA test was developed using rtSAP-2 refolded by dialysis and compared with excretory/secretory products of parasite with 52 positive fascioliasis samples, 79 other parasitic samples and 70 negative controls samples. The results exhibited 100% sensitivity and 98% specificity for rtSAP-2, also, 100% and 95.3% for excretory/secretory (E/S) antigen, respectively. In conclusion, it is suggested that rtSAP-2 with the correct folding could be used as a candidate antigen for detection of human fascioliasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Miyata, Takeshi; Harakuni, Tetsuya; Tsuboi, Takafumi; Sattabongkot, Jetsumon; Ikehara, Ayumu; Tachibana, Mayumi; Torii, Motomi; Matsuzaki, Goro; Arakawa, Takeshi
2011-01-01
The creation of subunit vaccines to prevent malaria infection has been hampered by the intrinsically weak immunogenicity of the recombinant antigens. We have developed a novel strategy to increase immune responses by creating genetic fusion proteins to target specific antigen-presenting cells (APCs). The fusion complex was composed of three physically linked molecular entities: (i) a vaccine antigen, (ii) a multimeric α-helical coiled-coil core, and (iii) an APC-targeting ligand linked to the core via a flexible linker. The vaccine efficacy of the tricomponent complex was evaluated using an ookinete surface protein of Plasmodium vivax, Pvs25, and merozoite surface protein-1 of Plasmodium yoelii. Immunization of mice with the tricomponent complex induced a robust antibody response and conferred substantial levels of P. vivax transmission blockade as evaluated by a membrane feed assay, as well as protection from lethal P. yoelii infection. The observed effect was strongly dependent on the presence of all three components physically integrated as a fusion complex. This system, designated the tricomponent immunopotentiating system (TIPS), onto which any recombinant protein antigens or nonproteinaceous substances could be loaded, may be a promising strategy for devising subunit vaccines or adjuvants against various infectious diseases, including malaria. PMID:21807905
Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho
2015-01-12
The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers. Copyright © 2014 Elsevier Ltd. All rights reserved.
PURIFICATION OF THE SOLUBLE HEMOLYSINS OF LISTERIA MONOCYTOGENES
Jenkins, E. M.; Njoku-Obi, A. N.; Adams, E. W.
1964-01-01
Jenkins, E. M. (Tuskegee Institute, Tuskegee, Ala.), A. N. Njoku-Obi, and E. W. Adams. Purification of the soluble hemolysins of Listeria monocytogenes. J. Bacteriol. 88:418–424. 1964.—A method is described for obtaining relatively purified hemolysin preparations from both virulent and avirulent strains of Listeria monocytogenes. These hemolysins are protein in nature as shown by heat lability, nondialyzable properties, precipitation with trichloroacetic acid, and electrophoretic mobility. The hemolysins are antigenic in rabbits as shown by serum neutralization tests. The potency of the purified hemolysin was markedly increased by cysteine, sodium hydrosulfite, and a number of reducing agents. Many of the actions of the purified hemolysin seemed to parallel that of streptolysin O, and certain of these activities could be explained by the “thioldisulfide hypothesis.” PMID:14203359
Cranberry Proanthocyanidins - Protein complexes for macrophage activation.
Carballo, Sergio M; Haas, Linda; Krueger, Christian G; Reed, Jess D
2017-09-20
In this work we characterize the interaction of cranberry (Vaccinium macrocarpon) proanthocyanidins (PAC) with bovine serum albumin (BSA) and hen egg-white lysozyme (HEL) and determine the effects of these complexes on macrophage activation and antigen presentation. We isolated PAC from cranberry and complexed the isolated PAC with BSA and HEL. The properties of the PAC-protein complexes were studied by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), gel electrophoresis and zeta-potential. The effects of PAC-BSA complexes on macrophage activation were studied in RAW 264.7 macrophage like cells after treatment with lipopolysaccharide (LPS). Fluorescence microscopy was used to study the endocytosis of PAC-BSA complexes. The effects of the PAC complexes on macrophage antigen presentation were studied in an in vitro model of HEL antigen presentation by mouse peritoneal mononuclear cells to a T-cell hybridoma. The mass spectra of the PAC complexes with BSA and HEL differed from the spectra of the proteins alone by the presence of broad shoulders on the singly and doubly charged protein peaks. Complexation with PAC altered the electrophoretic mobility shift assay in native agarose gel and the electrophoretic mobility (ζ-potential) values. These results indicate that the PAC-protein complexes are stable and alter the protein structure without precipitating the protein. Fluorescence microscopy showed that the RAW 264.7 macrophages endocytosed BSA and PAC-BSA complexes in discrete vesicles that surrounded the nucleus. Macrophages treated with increasing amounts of PAC-BSA complexes had significantly reduced COX-2 and iNOS expression in response to treatment with lipopolysaccharide (LPS) in comparison to the controls. The PAC-HEL complexes modulated antigen uptake, processing and presentation in murine peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas the PAC-HEL complex had already reached the maximum IL-2 expression. Cranberry PAC may increase the rate of endocytosis of HEL and subsequent expression of IL-2 by the T-cell hybridomas. These results suggest that PAC-protein complexes modulate aspects of innate and acquired immune responses in macrophages.
Effect of atmospheric organic complexation on iron-bearing dust solubility
NASA Astrophysics Data System (ADS)
Paris, R.; Desboeufs, K. V.
2013-02-01
Recent studies reported that the effect of organic complexation may be a potentially important process to be considered in models to estimate atmospheric iron flux to the ocean. In this study, we investigated this effect by a series of dissolution experiments on iron-bearing dust in presence or absence of various organic compounds typically found in the atmospheric waters (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances (HULIS)). Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid) caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II) concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in order oxalate > malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implied a reductive ligand-promoted dissolution. This study confirmed that oxalate is the most effective ligand playing on dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution in atmospheric conditions.
Jennings, Joan K.; Leventhal, J.S.
1978-01-01
Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.
Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.
Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie
2017-12-01
Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Complement C1q formation of immune complexes with milk caseins and wheat glutens in schizophrenia
Severance, Emily G.; Gressitt, Kristin; Halling, Meredith; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Alaedini, Armin; Dupont, Didier; Dickerson, Faith B.; Yolken, Robert H.
2012-01-01
Immune system factors including complement pathway activation are increasingly linked to the etiology and pathophysiology of schizophrenia. Complement protein, C1q, binds to and helps to clear immune complexes composed of immunoglobulins coupled to antigens. The antigenic stimuli for C1q activation in schizophrenia are not known. Food sensitivities characterized by elevated IgG antibodies to bovine milk caseins and wheat glutens have been reported in individuals with schizophrenia. Here, we examined the extent to which these food products might comprise the antigen component of complement C1q immune complexes in individuals with recent onset schizophrenia (n=38), non-recent onset schizophrenia (n=61) and non-psychiatric controls (n=63). C1q seropositivity was significantly associated with both schizophrenia groups (recent onset, odds ratio (OR)=8.02, p≤0.008; non-recent onset, OR=3.15, p≤0.03) compared to controls (logistic regression models corrected for age, sex, race and smoking status). Casein- and/or gluten-IgG binding to C1q was significantly elevated in the non-recent onset group compared to controls (OR=4.36, p≤0.01). Significant amounts of C1q-casein/gluten-related immune complexes and C1q correlations with a marker for gastrointestinal inflammation in non-recent onset schizophrenia suggests a heightened rate of food antigens in the systemic circulation, perhaps via a disease-associated altered intestinal permeability. In individuals who are in the early stages of disease onset, C1q activation may reflect the formation of immune complexes with non-casein- or non-gluten-related antigens, the presence of C1q autoantibodies, and/or a dissociated state of immune complex components. In conclusion, complement activation may be a useful biomarker to diagnose schizophrenia early during the course of the disease. Future prospective studies should evaluate the impacts of casein- and gluten-free diets on C1q activation in schizophrenia. PMID:22801085
Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing
2014-01-01
Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565
Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing
2014-12-19
Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.
Khan, Khalid; Badshah, Syed Lal; Ahmad, Nasir; Rashid, Haroon Ur; Mabkhot, Yahia
2017-05-11
The inclusion complexes of a new family of nonionic amphiphilic calix[4]arenes with the anti-inflammatory hydrophobic drugs naproxen (NAP) and ibuprofen (IBP) were investigated. The effects of the alkyl chain's length and the inner core of calix[4]arenes on the interaction of the two drugs with the calix[4]arenes were explored. The inclusion complexes of Amphiphiles 1a - c with NAP and IBP increased the solubility of these drugs in aqueous media. The interaction of 1a - c with the drugs in aqueous media was investigated through fluorescence, molecular modeling, and ¹H-NMR analysis. TEM studies further supported the formation of inclusion complexes. The length of lipophilic alkyl chains and the intrinsic cyclic nature of cailx[4]arene derivatives 1a - c were found to have a significant impact on the solubility of NAP and IBP in pure water.
Cala, Antonio; Molinillo, José M G; Fernández-Aparicio, Mónica; Ayuso, Jesús; Álvarez, José A; Rubiales, Diego; Macías, Francisco A
2017-08-09
Allelochemicals are safer, more selective and more active alternatives than synthetic agrochemicals for weed control. However, the low solubility of these compounds in aqueous media limits their use as agrochemicals. Herein, we propose the application of α-, β- and γ-cyclodextrins to improve the physicochemical properties and biological activities of three sesquiterpene lactones: dehydrocostuslactone, costunolide and (-)-α-santonin. Complexation was achieved by kneading and coprecipitation methods. Aqueous solubility was increased in the range 100-4600% and the solubility-phase diagrams suggested that complex formation had been successful. The results of the PM3 semiempirical calculations were consistent with the experimental results. The activities on etiolated wheat coleoptiles, Standard Target Species and parasitic weeds were improved. Cyclodextrins preserved or enhanced the activity of the three sesquiterpene lactones. Free cyclodextrins did not show significant activity and therefore the enhancement in activity was due to complexation. These results are promising for applications in agrochemical design.
Nanobiotechnology for hemoglobin-based blood substitutes.
Chang, T M S
2009-04-01
Nanobiotechnology is the assembling of biological molecules into nanodimension complexes. This has been used for the preparation of polyhemoglobin formed by the assembling of hemoglobin molecules into a soluble nanodimension complex. New generations of this approach include the nanobiotechnological assembly of hemoglobin, catalase, and superoxide dismutase into a soluble nanodimension complex. This acts as an oxygen carrier and an antioxidant for those conditions with potential for ischemiareperfusion injuries. Another recent novel approach is the assembling of hemoglobin and fibrinogen into a soluble nanodimension polyhemoglobin-fibrinogen complex that acts as an oxygen carrier with platelet-like activity. This is potentially useful in cases of extensive blood loss requiring massive replacement using blood substitutes, resulting in the need for the replacement of platelets and clotting factors. A further step is the preparation of nanodimension artificial red blood cells that contain hemoglobin and all the enzymes present in red blood cells.
Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya
2014-02-15
The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dazzo, F B; Hubbell, D H
1975-01-01
Cross-reactive antigens of clover roots and Rhizobium trifolii were detected on their cell surfaces by tube agglutination, immunofluorescent, and radioimmunoassay techniques. Anti-clover root antiserum had a higher agglutinating titer with infective strains of R. trifolii than with noninfective strains. The root antiserum previously adsorbed with noninfective R. trifolii cells remained reactive only with infective cells, including infective revertants. When adsorbed with infective cells, the root antiserum was reactive with neither infective nor noninfective cells. Other Rhizobium species incapable of infecting clover did not demonstrate surface antigens cross-reactive with clover. Radioimmunoassay indicated twice as much antigenic cross-reactivity of clover roots and R. trifolii 403 (infective) than R. trifolii Bart A (noninfective). Immunofluorescence with anti-R. trifolii (infective) antiserum was detected on the exposed surface of the root epidermal cells and diminished at the root meristem. The immunofluorescent crossreaction on clover roots was totally removed by adsorption of anti-R. trifolii (infective) antiserum with encapsulated infective cells but not with noninfective cells. The cross-reactive capsular antigens from R. trifolii strains were extracted and purified. The ability of these antigens to induce clover root hair deformation was much greater when they were obtained from the infective than noninfective strains. The cross-reactive capsular antigen of R. trifolii 403 was characterized as a high-molecular-weight (greater than 4.6 times 10(6) daltons), beta-linked, acidic heteropolysaccharide containing 2-deoxyglucose, galactose, glucose, and glucuronic acid. A soluble, nondialyzable, substance (clover lectin) capable of binding to the cross-reactive antigen and agglutinating only infective cells of R. trifolii was extracted from white clover seeds. This lectin was sensitive to heat, Pronase, and trypsin. inhibition studies indicated that 2-deoxyglucose was the most probable haptenic determinant of the cross-reactive capsular antigen capable of binding to the root antiserum and the clover lectin. A model is proposed suggesting the preferential adsorption of infective versus noninfective cells of R. trifolii on the surface of clover roots by a cross-bridging of their common surface antigens with a multivalent clover lectin. Images PMID:55100
Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Nuñez-Prado, Natalia; Diaz, Rosa M; Vile, Richard; Alvarez-Vallina, Luis
2013-01-01
A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2) bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR) and the selection context (cell synapse), which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells. PMID:23695536
Protein Crystallography in Vaccine Research and Development.
Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J
2015-06-09
The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.
Protein Crystallography in Vaccine Research and Development
Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J.
2015-01-01
The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines. PMID:26068237
Neng, Jing; Li, Yina; Driscoll, Ashley J; Wilson, William C; Johnson, Patrick A
2018-06-06
A robust immunoassay based on surface-enhanced Raman scattering (SERS) has been developed to simultaneously detect trace quantities of multiple pathogenic antigens from West Nile virus, Rift Valley fever virus, and Yersinia pestis in fetal bovine serum. Antigens were detected by capture with silica-encapsulated nanotags and magnetic nanoparticles conjugated with polyclonal antibodies. The magnetic pull-down resulted in aggregation of the immune complexes, and the silica-encapsulated nanotags provided distinct spectra corresponding to each antigen captured. The limit of detection was ∼10 pg/mL in 20% fetal bovine serum, a significant improvement over previous studies in terms of sensitivity, level of multiplexing, and medium complexity. This highly sensitive multiplex immunoassay platform provides a promising method to detect various antigens directly in crude serum samples without the tedious process of sample preparation, which is desirable for on-site diagnostic testing and real-time disease monitoring.
A T-Cell Receptor Breaks the Rules | Center for Cancer Research
Most mature T cells function immunologically when a T-cell receptor (TCR) located on the cell surface encounters and engages its ligand, a major histocompatability complex (MHC), which displays a specific part of a target protein called an antigen. This antigen-presenting complex is assembled from one of the dozen or so MHC molecules that every person inherits from their parents; and the antigen fragment, called a peptide epitope, is excised from one of thousands of possible proteins—originally part of an invading pathogen or a cancer cell—that T cells are capable of identifying and attacking. The framework of an MHC molecule holding a centrally displayed or “presented” peptide is what engages the TCR and triggers T-cell action. This role of MHC molecules presenting antigens to the TCR is a central tenet of immunology, with the fit between a TCR and the MHC framework actually “hardwired” into their three-dimensional structures.
Arlian, L G; Vyszenski-Moher, D L; Merski, J A; Ritz, H L; Nusair, T L; Wilson, E R
1990-01-01
Alcalase and savinase, produced by Bacillus species, are proteolytic enzymes that are used in laundry products and are known to cause respiratory allergy. Antigenic and allergenic characteristics of alcalase and savinase and their potential cross-reactivity were evaluated using crossed immunoelectrophoresis and crossed radioimmunoelectrophoresis. Alcalase exhibited two distinct antigens; one electropositive and one electronegative. The electropositive antigen exhibited some retrograde anodic mobility when coupled with antiserum components. Savinase exhibited one electropositive and two electronegative antigens. The antigens of the two enzymes were clearly different from each other, the three savinase antigens exhibiting greater electrophoretic mobility than the two alcalase antigens. In crossed radioimmunoelectrophoresis studies, only the electropositive antigen of alcalase, its retrograde complex, and the electropositive antigen of savinase bound IgE from the sera of individuals who were skin test positive to one or both enzymes. No evidence of cross-reactivity was observed in heterologous and tandem crossed immunoelectrophoresis studies and heterologous microimmunodiffusion reactions.
Margaroni, Maritsa; Agallou, Maria; Athanasiou, Evita; Kammona, Olga; Kiparissides, Costas; Gaitanaki, Catherine; Karagouni, Evdokia
2017-01-01
Visceral leishmaniasis (VL) persists as a major public health problem, and since the existing chemotherapy is far from satisfactory, development of an effective vaccine emerges as the most appropriate strategy for confronting VL. The development of an effective vaccine relies on the selection of the appropriate antigen and also the right adjuvant and/or delivery vehicle. In the present study, the protective efficacy of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs), which were surface-modified with a TNFα-mimicking eight-amino-acid peptide (p8) and further functionalized by encapsulating soluble Leishmania infantum antigens (sLiAg) and monophosphoryl lipid A (MPLA), a TLR4 ligand, was evaluated against challenge with L. infantum parasites in BALB/c mice. Vaccination with these multifunctionalized PLGA nanoformulations conferred significant protection against parasite infection in vaccinated mice. In particular, vaccination with PLGA-sLiAg-MPLA or p8-PLGA-sLiAg NPs resulted in almost complete elimination of the parasite in the spleen for up to 4 months post-challenge. Parasite burden reduction was accompanied by antigen-specific humoral and cellular immune responses. Specifically, injection with PLGA-sLiAg-MPLA raised exclusively anti-sLiAg IgG1 antibodies post-vaccination, while in p8-PLGA-sLiAg-vaccinated mice, no antibody production was detected. However, 4 months post-challenge, in mice vaccinated with all the multifunctionalized NPs, antibody class switching towards IgG2a subtype was observed. The study of cellular immune responses revealed the increased proliferation capacity of spleen cells against sLiAg, consisting of IFNγ-producing CD4 + and CD8 + T cells. Importantly, the activation of CD8 + T cells was exclusively attributed to vaccination with PLGA NPs surface-modified with the p8 peptide. Moreover, characterization of cytokine production in vaccinated-infected mice revealed that protection was accompanied by significant increase of IFNγ and lower levels of IL-4 and IL-10 in protected mice when compared to control infected group. Conclusively, the above nanoformulations hold promise for future vaccination strategies against VL.
Peifang, S.; Pira, G. L.; Fenoglio, D.; Harris, S.; Costa, M. G.; Venturino, V.; Dessì, V.; Layton, G.; Laman, J.; Huisman, J. G.; Manca, F.
1994-01-01
Recombinant virus-like particles (VLP), formed by the yeast Ty p1 protein, carrying the HIV gp120 V3 loop on their surface (V3-VLP) have been tested in vitro for immunogenicity and antigenicity by using VLP p1-specific human CD4+ T cell lines and clones. VLP-specific human T cell lines and clones were generated from normal individuals, indicating that VLP-specific precursor cells present in the peripheral lymphocyte pool can be induced to expand clonally upon antigen challenge in vitro, in the absence of previous immunization. It was also shown that V3-specific polyclonal antibodies enhance V3-VLP-induced activation of VLP-specific T cell clones. Antibody-dependent potentiation has been shown previously in other antigen systems, and it depends on enhanced uptake of complexed antigen by Fc receptor-positive antigen-presenting cells. Since in this case antigen is internalized by presenting cells as a complex, it can be inferred that a similar event of antibody-mediated antigen uptake can take place with V3-specific B cells, resulting in presentation by the B cells of T helper epitopes derived from processing of the VLP p1 moiety. This suggests that T helper cells specific for the carrier VLP p1 protein can be activated to provide help to V3-specific B cells in the presence of the appropriate antigen construct. PMID:7915974
Williams, James A; Gui, Long; Hom, Nancy; Mileant, Alexander; Lee, Kelly K
2017-12-20
The neutralizing antibody (nAb) response against the influenza virus's hemagglutinin (HA) fusion glycoprotein is important for preventing viral infection, but we lack a comprehensive understanding of the mechanisms by which these antibodies act. Here we investigated the effect of nAb binding and the role of IgG bivalency on inhibition of HA function for nAbs targeting distinct HA epitopes. HC19 targets the receptor-binding pocket at HA's distal end, while FI6v3 binds primarily to the HA2 fusion subunit towards the base of the stalk. Surprisingly, HC19 inhibited HA's ability to induce lipid mixing by preventing structural rearrangement of HA under fusion activating conditions. These results suggest that nAbs such as HC19 not only act by blocking receptor binding, but also inhibit key late-stage HA conformational changes required for fusion. Intact HC19 IgG was also shown to crosslink separate virus particles, burying large proportions of HA within aggregates where they are blocked from interacting with target membranes; Fabs yielded no such aggregation and displayed weaker neutralization than IgG, emphasizing the impact of bivalency on the ability to neutralize virus. In contrast, the stem-targeting nAb FI6v3 did not aggregate particles. The Fab was significantly less effective than IgG in preventing both membrane disruption and fusion. We infer that inter-spike crosslinking within a given particle by FI6v3 IgG may be critical to its potent neutralization, as no significant neutralization occurred with Fabs. These results demonstrate that IgG bivalency enhances HA inhibition through functionally important modes not evident in pared down Fab-soluble HA structures. IMPORTANCE The influenza virus's hemagglutinin (HA) fusion glycoprotein mediates entry into target cells and is the primary antigenic target of neutralizing antibodies (nAbs). Our current structural understanding of mechanisms of Ab-mediated neutralization largely relies on high resolution characterization of antigen binding fragments (Fab) in complex with soluble, isolated antigen constructs by cryo-EM single particle reconstruction or X-ray crystallography. Interactions between full-length IgG and whole virions have not been well-characterized, and a gap remains in our understanding of how intact Abs neutralize virus and prevent infection. Using structural and biophysical approaches, we observed that Ab-mediated inhibition of HA function and neutralization of virus infectivity occurs by multiple coexisting mechanisms and is largely dependent on the specific epitope that is targeted and is highly dependent on the bivalent nature of IgG molecules. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Ihalainen, Petri; Pesonen, Markus; Sund, Pernilla; Viitala, Tapani; Määttänen, Anni; Sarfraz, Jawad; Wilén, Carl-Erik; Österbacka, Ronald; Peltonen, Jouko
2016-02-01
The integration of flexible electronic sensors in clinical diagnostics is visioned to significantly reduce the cost of many diagnostic tests and ultimately make healthcare more accessible. This study concentrates on the characterisation of inkjet-printed bio-functionalised polythiophene films on paper-based ultrathin gold film (UTGF) electrodes and their possible application as biorecognition layers. Physicochemical surface properties (topography, chemistry, and wetting) and electrochemical characteristics of water-soluble regioirregular tetraethylene-glycol polythiophene (TEGPT) and biotin-functionalised TEGPT (b-TEGPT) films were examined and compared. In addition, their specificity towards streptavidin protein was tested. The results show that stable supramolecular biorecognition layers of insulating b-TEGPT and streptavidin were successfully fabricated on a paper-based UTGF by inkjet-printing. Good adhesion of thiophene to UTGF can be attributed to covalent linkage between sulphur and gold, whereas the stability of the streptavidin layer is due to the high affinity between biotin and streptavidin. The device introduced can be utilised in the development of biosensors for clinically relevant analytes e.g. for detecting complementary DNA oligomers or antibody-antigen complexes.
Dendritic platforms for biomimicry and biotechnological applications.
Nagpal, Kalpana; Mohan, Anand; Thakur, Sourav; Kumar, Pradeep
2018-02-15
Dendrimers, commonly referred to as polymeric trees, offer endless opportunities for biotechnological and biomedical applications. By controlling the type, length, and molecular weight of the core, branches and end groups, respectively, the chemical functionality and topology of dendrimeric archetypes can be customized which further can be applied to achieve required solubility, biodegradability, diagnosis and other applications. Given the physicochemical variability of the dendrimers and their hybrids, this review attempts to discuss a full spectrum of recent advances and strides made by these "perfectly designed structures". An extensive biotech/biomimicry application profiling of dendrimers is provided with focus on complex archetypical designs such as protein biomimicry (angiogenic inhibitors, regenerative hydroxyapatite and collagen) and biotechnology applications. In terms of biotechnological advances, dendrimers have provided distinctive advantages in the fields of biocatalysis, microbicides, artificial lights, mitochondrial function modulation, vaccines, tissue regeneration and repair, antigen carriers and even biosensors. In addition, this review provides overview of the extensive chemo-functionalization opportunities available with dendrimers which makes them a perfect candidate for forming drug conjugates, protein hybrids, bio mimics, lipidic derivatives, metal deposits and nanoconjugates thereby making them the most multifunctional platforms for diverse biotechnological applications.
Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N
2018-06-19
Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.
Zhang, Wenwen; Li, Xinying; Yu, Taocheng; Yuan, Lun; Rao, Gang; Li, Defu; Mu, Changdao
2015-08-01
Trans-anethole (AT) has a variety of antimicrobial properties and is widely used as food functional ingredient. However, the applications of AT are limited due to its low water solubility, strong odor and low physicochemical stability. Therefore, the aim of this work was to encapsulate AT with β-cyclodextrin (β-CD) for obtaining inclusion complex by co-precipitation method. The measurements effectively confirmed the formation of inclusion complex between AT and β-CD. The results showed that the inclusion complex presented new solid crystalline phases and was more thermally stable than the physical mixture and β-CD. The phase solubility study showed that the aqueous solubility of AT was increased by being included in β-CD. The calculated stability constant of inclusion complex was 1195M -1 , indicating the strong interaction between AT and β-CD. Furthermore, the release study suggested that β-CD provided the protection for AT against evaporation. The release behavior of AT from the inclusion complex was controlled. Copyright © 2015 Elsevier Ltd. All rights reserved.
van den Berg, Sanne; Koedijk, Dennis G. A. M.; Back, Jaap Willem; Neef, Jolanda; Dreisbach, Annette; van Dijl, Jan Maarten; Bakker-Woudenberg, Irma A. J. M.; Buist, Girbe
2015-01-01
Proteomic studies with different Staphylococcus aureus isolates have shown that the cell surface-exposed and secreted proteins IsaA, LytM, Nuc, the propeptide of Atl (pro-Atl) and four phenol-soluble modulins α (PSMα) are invariantly produced by this pathogen. Therefore the present study was aimed at investigating whether these proteins can be used for active immunization against S. aureus infection in mouse models of bacteremia and skin infection. To this end, recombinant His-tagged fusions of IsaA, LytM, Nuc and pro-Atl were isolated from Lactococcus lactis or Escherichia coli, while the PSMα1-4 peptides were chemically synthesized. Importantly, patients colonized by S. aureus showed significant immunoglobulin G (IgG) responses against all eight antigens. BALB/cBYJ mice were immunized subcutaneously with a mixture of the antigens at day one (5 μg each), and boosted twice (25 μg of each antigen) with 28 days interval. This resulted in high IgG responses against all antigens although the response against pro-Atl was around one log lower compared to the other antigens. Compared to placebo-immunized mice, immunization with the octa-valent antigen mixture did not reduce the S. aureus isolate P load in blood, lungs, spleen, liver, and kidneys in a bacteremia model in which the animals were challenged for 14 days with a primary load of 3 × 105 CFU. Discomfort scores and animal survival rates over 14 days did not differ between immunized mice and placebo-immunized mice upon bacteremia with S. aureus USA300 (6 × 105 CFU). In addition, this immunization did not reduce the S. aureus isolate P load in mice with skin infection. These results show that the target antigens are immunogenic in both humans and mice, but in the used animal models do not result in protection against S. aureus infection. PMID:25710376
[Humoral immune diseases: Cutaneous vasculitis and auto-immune bullous dermatoses].
Wechsler, Janine
2018-02-01
Humoral immunity is the cause of multiple diseases related to antibodies (IgA, IgG, IgM) produced by the patient. Two groups of diseases are identified. The first group is related to circulating antigen-antibody complexes. The antigens are various. They are often unknown. These immune complexes cause a vascular inflammation due to the complement fixation. Consequently, this group is dominated by inflammatory vasculitis. In the second group, the pathology is due to the fixation in situ of antibodies to a target antigen of the skin that is no more recognized by the patient. This group is represented by the auto-immune bullous dermatoses. Copyright © 2017. Published by Elsevier Masson SAS.
Antibody-mediated cofactor-driven reactions
Schultz, Peter G.
1993-01-01
Chemical reactions capable of being rate-enhanced by auxiliary species which interact with the reactants but do not become chemically bound to them in the formation of the final product are performed in the presence of antibodies which promote the reactions. The antibodies contain regions within their antigen binding sites which recognize the auxiliary species in a conformation which promotes the reaction. The antigen binding site frequently recognizes a particular transition state complex or other high energy complex along the reaction coordinate, thereby promoting the progress of the reaction along the desired route as opposed to other less favorable routes. Various classes of reaction together with appropriate antigen binding site specificities tailored for each are disclosed.
NASA Astrophysics Data System (ADS)
Süle, András; Csempesz, Ferenc
The solubility of lovastatin and simvastatin (inevitable drugs in the management of cardiovascular diseases) was studied by phase-solubility measurements in multicomponent colloidal and non-colloidal media. Complexation in aqueous solutions of the highly lipophilic statins with β-cyclodextrin (β-CD) in the absence and the presence of dissolved polyvinyl pyrrolidone, its monomeric compound, tartaric acid and urea, respectively, were investigated. For the characterization of the CD-statin inclusion complexes, stability constants for the associates have been calculated.
Silver Complexes of Dihalogen Molecules.
Malinowski, Przemysław J; Himmel, Daniel; Krossing, Ingo
2016-08-01
The perfluorohexane-soluble and donor-free silver compound Ag(A) (A=Al(OR(F) )4 ; R(F) =C(CF3 )3 ) prepared using a facile novel route has unprecedented capabilities to form unusual and weakly bound complexes. Here, we report on the three dihalogen-silver complexes Ag(Cl2 )A, Ag(Br2 )A, and Ag(I2 )A derived from the soluble silver compound Ag(A) (characterized by single-crystal/powder XRD, Raman spectra, and quantum-mechanical calculations). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald
2014-12-10
A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of the algorithms classifying the ABC and GCB subtypes in diffuse large B-cell lymphoma.
Boltežar, Lučka; Prevodnik, Veronika Kloboves; Perme, Maja Pohar; Gašljević, Gorana; Novaković, Barbara Jezeršek
2018-05-01
Different immunohistochemical algorithms for the classification of the activated B-cell (ABC) and germinal center B-cell (GCB) subtypes of diffuse large B-cell lymphoma (DLBCL) are applied in different laboratories. In the present study, 127 patients with DLCBL were investigated, all treated with rituximab and cyclophosphamide, hydroxydaunorubicin, oncovin and prednisone (CHOP) or CHOP-like regimens between April 2004 and December 2010. Multi-tumor tissue microarrays were prepared and were tested according to 4 algorithms: Hans; modified Hans; Choi; and modified Choi. For 39 patients, the flow cytometric quantification of CD19 and CD20 antigen expression was performed and the level of expression presented as molecules of equivalent soluble fluorochrome units. The Choi algorithm was demonstrated to be prognostic for OS and classified patients into the GCB subgroup with an HR of 0.91. No difference in the expression of the CD19 antigen between the ABC and GCB groups was observed, but the ABC subtype exhibited a decreased expression of the CD20 antigen compared with the GCB subtype.
Johal, Jasjit; Gresty, Karryn; Kongsuwan, Kritaya; Walker, Peter J
2008-01-01
Recombinant baculoviruses expressing the BEFV envelope glycoprotein G and non-structural glycoprotein G(NS) were constructed. The G protein expressed in insect cells was located on the cell surface and induced spontaneous cell fusion at mildly acidic pH. The expressed G protein reacted with MAbs to continuous and conformational neutralization sites (G1, G2, G3b and G4), but not to conformational site G3a. The expressed G(NS) protein was also located on the cell surface but did not exhibit fusogenic activity. The G(NS) protein reacted with polyclonal antiserum produced from vaccinia-virus-expressed recombinant G(NS) but did not react with G protein antibodies. A His(6)-tagged, soluble form of the G protein was expressed and purified by Ni(2+)-NTA chromatography. The purified G protein reacted with BEFV-neutralizing MAbs to all continuous and conformational antigenic sites. The highly protective characteristics of the native BEFV G protein suggest that the secreted, baculovirus-expressed product may be a useful vaccine antigen.