Wang, Jingbo; Kingsbury, Ryan S; Perry, Lamar A; Coronell, Orlando
2017-02-21
The partition coefficient of solutes into the polyamide active layer of reverse osmosis (RO) membranes is one of the three membrane properties (together with solute diffusion coefficient and active layer thickness) that determine solute permeation. However, no well-established method exists to measure solute partition coefficients into polyamide active layers. Further, the few studies that measured partition coefficients for inorganic salts report values significantly higher than one (∼3-8), which is contrary to expectations from Donnan theory and the observed high rejection of salts. As such, we developed a benchtop method to determine solute partition coefficients into the polyamide active layers of RO membranes. The method uses a quartz crystal microbalance (QCM) to measure the change in the mass of the active layer caused by the uptake of the partitioned solutes. The method was evaluated using several inorganic salts (alkali metal salts of chloride) and a weak acid of common concern in water desalination (boric acid). All partition coefficients were found to be lower than 1, in general agreement with expectations from Donnan theory. Results reported in this study advance the fundamental understanding of contaminant transport through RO membranes, and can be used in future studies to decouple the contributions of contaminant partitioning and diffusion to contaminant permeation.
Equilibrium water and solute uptake in silicone hydrogels.
Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J
2015-05-01
Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chiou, C.T.
1985-01-01
Triolein-water partition coefficients (KtW) have been determined for 38 slightly water-soluble organic compounds, and their magnitudes have been compared with the corresponding octanol-water partition coefficients (KOW). In the absence of major solvent-solute interaction effects in the organic solvent phase, the conventional treatment (based on Raoult's law) predicts sharply lower partition coefficients for most of the solutes in triolein because of its considerably higher molecular weight, whereas the Flory-Huggins treatment predicts higher partition coefficients with triolein. The data are in much better agreement with the Flory-Huggins model. As expected from the similarity in the partition coefficients, the water solubility (which was previously found to be the major determinant of the KOW) is also the major determinant for the Ktw. When the published BCF values (bioconcentration factors) of organic compounds in fish are based on the lipid content rather than on total mass, they are approximately equal to the Ktw, which suggests at least near equilibrium for solute partitioning between water and fish lipid. The close correlation between Ktw and Kow suggests that Kow is also a good predictor for lipid-water partition coefficients and bioconcentration factors.
Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B
2017-06-09
In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.
Dix, James A.; Diamond, Jared M.; Kivelson, Daniel
1974-01-01
The translational diffusion coefficient and the partition coefficient of a spin-labeled solute, di-t-butyl nitroxide, in an aqueous suspension of dipalmitoyl lecithin vesicles have been studied by electron spin resonance spectroscopy. When the lecithin is cooled through its phase transition temperature near 41°C, some solute is “frozen out” of the bilayer, and the standard partial molar enthalpy and entropy of partition go more positive by a factor of 8 and 6, respectively. However, the apparent diffusion constant in the lecithin phase is only slightly smaller than that in water, both above and below the transition temperature. The fraction of bilayer volume within which solute is distributed may increase with temperature, contributing to the positive enthalpy of partition. Comparison of time constants suggests that there is a permeability barrier to this solute in the periphery of the bilayer. PMID:4360944
Sorption of aromatic organic pollutants to grasses from water
Barbour, J.P.; Smith, J.A.; Chiou, C.T.
2005-01-01
The influence of plant lipids on the equilibrium sorption of three aromatic solutes from water was studied. The plant-water sorption isotherms of benzene, 1,2-dichlorobenzene, and phenanthrene were measured over a large range of solute concentrations using sealed vessels containing water, dried plant material, and solute. The plant materials studied include the shoots of annual rye, tall fescue, red fescue, and spinach as well as the roots of annual rye. Seven out of eight sorption isotherms were linear with no evidence of competitive effects between the solutes. For a given plant type, the sorption coefficient increased with decreasing solute water solubility. For a given solute, sorption increased with increasing plant lipid content. The estimated lipid-water partition coefficients of individual solutes were found to be significantly greater than the corresponding octanol-water partition coefficients. This indicates that plant lipids are a more effective partition solvent than octanol for the studied aromatic compounds. As expected, the solute lipid-water partition coefficients were log-linearly related to the respective water solubilities. For the compounds studied, partitioning into the lipids is believed to be the primary sorption mechanism. ?? 2005 American Chemical Society.
Prediction of Partition Coefficients of Organic Compounds between SPME/PDMS and Aqueous Solution
Chao, Keh-Ping; Lu, Yu-Ting; Yang, Hsiu-Wen
2014-01-01
Polydimethylsiloxane (PDMS) is commonly used as the coated polymer in the solid phase microextraction (SPME) technique. In this study, the partition coefficients of organic compounds between SPME/PDMS and the aqueous solution were compiled from the literature sources. The correlation analysis for partition coefficients was conducted to interpret the effect of their physicochemical properties and descriptors on the partitioning process. The PDMS-water partition coefficients were significantly correlated to the polarizability of organic compounds (r = 0.977, p < 0.05). An empirical model, consisting of the polarizability, the molecular connectivity index, and an indicator variable, was developed to appropriately predict the partition coefficients of 61 organic compounds for the training set. The predictive ability of the empirical model was demonstrated by using it on a test set of 26 chemicals not included in the training set. The empirical model, applying the straightforward calculated molecular descriptors, for estimating the PDMS-water partition coefficient will contribute to the practical applications of the SPME technique. PMID:24534804
Singh, Jasmeet; Lai, Amy Jo; Alaee, Yasmin; Ranganathan, Radha
2014-01-01
Distributions of lysopalmitoylphosphatidylcholine (LPPC), palmitic acid (PA) and their 1:1 mixtures between water and dipalmitoylphosphatidylcholine (DPPC) bilayer were determined using a fluorescence probe that selectively detects only the solutes in water. Water solute concentrations were obtained at each of several lipid concentrations. Dynamic Light Scattering experiments confirmed that the lipid/solute aggregates were vesicles in the concentration range investigated. Lipid concentration dependence of the solute component in water was fit to a thermodynamic model of solute distribution between two coexisting solvents. Water/bilayer partition coefficient and the free energy of transfer, for each of these solutes were determined from the fit. Main findings are: (1) Water/bilayer partition coefficient of solute is greater for 2 to 10% solute mole fraction than for 0 to 2%, signaling solute induced bilayer perturbation that increases bilayer solubility, beginning at 2% solute mole fraction. (2) Partition coefficients are in the order LPPC
Singh, Jasmeet; Lai, Amy Jo; Alaee, Yasmin; Ranganathan, Radha
2013-01-01
Distribution of lysopalmitoylphosphatidylcholine (LPPC), Palmitic acid (PA) and their 1:1 mixtures between water and dipalmitoylphosphatidylcholine (DPPC) bilayer were determined using a fluorescence probe that selectively detects only the solutes in water. Water solute concentrations were obtained at each of several lipid concentrations. Dynamic Light Scattering experiments confirmed that the lipid/solute aggregates were vesicles in the concentration range investigated. Lipid concentration dependence of the solute component in water was fit to a thermodynamic model of solute distribution between two coexisting solvents. Water/bilayer partition coefficient and the free energy of transfer, for each of these solutes were determined from the fit. Main findings are: (1) Water/bilayer partition coefficient of solute is greater for 2 to 10 % solute mole fraction than for 0 to 2 %, signaling solute induced bilayer perturbation that increases bilayer solubility, beginning at 2 % solute mole fraction. (2) Partition coefficients are in the order LPPC
The influence of an interface electric field on the distribution coefficient of chromium in LiNbO 3
NASA Astrophysics Data System (ADS)
Uda, Satoshi; Tiller, William A.
1992-06-01
The effective solute partitioning of chromium was investigated on single crystals of LiNbO 3 grown by the laser-heated pedestal growth (LHPG) technique. Electric field effects at the interface influence this solute partitioning, leading to an electric field-dependent effective solute distribution coefficient, kE. The LHPG technique made it possible to explore these field effects by controllably changing the growth velocity ( V) and the temperature gradient ( GS, GL) near the interface over a wide range. The electric field generated via the temperature gradient is associated with the thermoelectric power while an additional electric field is growth rate associated via a charge separation effect. By applying the Burton-Prim-Slichter (BPS) theory to our experimental data, we found the phase diagram solute partition coefficient to be k0 ≈ 3.65, while the field-influenced solute partition coefficient ( V = 0) was k' EO ≈ 8.17 at GL ≈ 11500°C/cm. It is theoretically shown that the same considerations can be applied to all ionic partitioning at a solid-liquid interface.
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
NASA Astrophysics Data System (ADS)
Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy
2016-11-01
Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.
Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.
Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D
2017-02-01
This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobtorweihen, S., E-mail: jakobtorweihen@tuhh.de; Ingram, T.; Gerlach, T.
2014-07-28
Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realisticmore » solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.« less
Effects of plasma proteins on sieving of tracer macromolecules in glomerular basement membrane.
Lazzara, M J; Deen, W M
2001-11-01
It was found previously that the sieving coefficients of Ficoll and Ficoll sulfate across isolated glomerular basement membrane (GBM) were greatly elevated when BSA was present at physiological levels, and it was suggested that most of this increase might have been the result of steric interactions between BSA and the tracers (5). To test this hypothesis, we extended the theory for the sieving of macromolecular tracers to account for the presence of a second, abundant solute. Increasing the concentration of an abundant solute is predicted to increase the equilibrium partition coefficient of a tracer in a porous or fibrous membrane, thereby increasing the sieving coefficient. The magnitude of this partitioning effect depends on solute size and membrane structure. The osmotic reduction in filtrate velocity caused by an abundant, mostly retained solute will also tend to elevate the tracer sieving coefficient. The osmotic effect alone explained only about one-third of the observed increase in the sieving coefficients of Ficoll and Ficoll sulfate, whereas the effect of BSA on tracer partitioning was sufficient to account for the remainder. At physiological concentrations, predictions for tracer sieving in the presence of BSA were found to be insensitive to the assumed shape of the protein (sphere or prolate spheroid). For protein mixtures, the theoretical effect of 6 g/dl BSA on the partitioning of spherical tracers was indistinguishable from that of 3 g/dl BSA and 3 g/dl IgG. This suggests that for partitioning and sieving studies in vitro, a good experimental model for plasma is a BSA solution with a mass concentration matching that of total plasma protein. The effect of plasma proteins on tracer partitioning is expected to influence sieving not only in isolated GBM but also in intact glomerular capillaries in vivo.
Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp
2016-06-07
Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases.
Chiou, C.T.; Schmedding, D.W.; Manes, M.
2005-01-01
A volume-fraction-based solvent-water partition model for dilute solutes, in which the partition coefficient shows a dependence on solute molar volume (V??), is adapted to predict the octanol-water partition coefficient (K ow) from the liquid or supercooled-liquid solute water solubility (Sw), or vice versa. The established correlation is tested for a wide range of industrial compounds and pesticides (e.g., halogenated aliphatic hydrocarbons, alkylbenzenes, halogenated benzenes, ethers, esters, PAHs, PCBs, organochlorines, organophosphates, carbamates, and amidesureas-triazines), which comprise a total of 215 test compounds spanning about 10 orders of magnitude in Sw and 8.5 orders of magnitude in Kow. Except for phenols and alcohols, which require special considerations of the Kow data, the correlation predicts the Kow within 0.1 log units for most compounds, much independent of the compound type or the magnitude in K ow. With reliable Sw and V data for compounds of interest, the correlation provides an effective means for either predicting the unavailable log Kow values or verifying the reliability of the reported log Kow data. ?? 2005 American Chemical Society.
This report describes the conceptualization, measurement, and use of the partition (or distribution) coefficient, Kd, parameter, and the geochemical aqueous solution and sorbent properties that are most important in controlling adsorption/retardation behavior of selected contamin...
Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin
2014-05-01
To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.
Influence of soil organic matter composition on the partition of organic compounds
Rutherford, D.W.; Chiou, C.T.; Klle, D.E.
1992-01-01
The sorption at room temperature of benzene and carbon tetrachloride from water on three high-organic-content soils (muck, peat, and extracted peat) and on cellulose was determined in order to evaluate the effect of sorbent polarity on the solute partition coefficients. The isotherms are highly linear for both solutes on all the organic matter samples, which is consistent with a partition model. For both solutes, the extracted peat shows the greatest sorption capacity while the cellulose shows the lowest capacity; the difference correlates with the polar-to-nonpolar group ratio [(O + N)/C] of the sorbent samples. The relative increase of solute partition coefficient (Kom) with a decrease of sample polar content is similar for both solutes, and the limiting sorption capacity on a given organic matter sample is comparable between the solutes. This observation suggests that one can estimate the polarity effect of a sample of soil organic matter (SOM) on Kom of various nonpolar solutes by determining the partition coefficient of single nonpolar solute when compositional analysis of the SOM is not available. The observed dependence of Kom on sample polarity is used to account for the variation of Kom values of individual compounds on different soils that results from change in the polar group content of SOM. On the assumption that the carbon content of SOM in "ordinary soils" is 53-63%, the calculated variation of Kom is a factor of ???3. This value is in agreement with the limit of variation of most Kom data with soils of relatively high SOM contents.
Bhatnagar, Navendu; Kamath, Ganesh; Chelst, Issac; Potoff, Jeffrey J
2012-07-07
The 1-octanol-water partition coefficient log K(ow) of a solute is a key parameter used in the prediction of a wide variety of complex phenomena such as drug availability and bioaccumulation potential of trace contaminants. In this work, adaptive biasing force molecular dynamics simulations are used to determine absolute free energies of hydration, solvation, and 1-octanol-water partition coefficients for n-alkanes from methane to octane. Two approaches are evaluated; the direct transfer of the solute from 1-octanol to water phase, and separate transfers of the solute from the water or 1-octanol phase to vacuum, with both methods yielding statistically indistinguishable results. Calculations performed with the TIP4P and SPC∕E water models and the TraPPE united-atom force field for n-alkanes show that the choice of water model has a negligible effect on predicted free energies of transfer and partition coefficients for n-alkanes. A comparison of calculations using wet and dry octanol phases shows that the predictions for log K(ow) using wet octanol are 0.2-0.4 log units lower than for dry octanol, although this is within the statistical uncertainty of the calculation.
NASA Astrophysics Data System (ADS)
Odabasi, Mustafa; Cetin, Eylem; Sofuoglu, Aysun
Octanol-air partition coefficients ( KOA) for 14 polycyclic aromatic hydrocarbons (PAHs) were determined as a function of temperature using the gas chromatographic retention time method. log KOA values at 25° ranged over six orders of magnitude, between 6.34 (acenaphthylene) and 12.59 (dibenz[ a,h]anthracene). The determined KOA values were within factor of 0.7 (dibenz[ a,h]anthracene) to 15.1 (benz[ a]anthracene) of values calculated as the ratio of octanol-water partition coefficient to dimensionless Henry's law constant. Supercooled liquid vapor pressures ( PL) of 13 PAHs were also determined using the gas chromatographic retention time technique. Activity coefficients in octanol calculated using KOA and PL ranged between 3.2 and 6.2 indicating near-ideal solution behavior. Atmospheric concentrations measured in this study in Izmir, Turkey were used to investigate the partitioning of PAHs between particle and gas-phases. Experimental gas-particle partition coefficients ( Kp) were compared to the predictions of KOA absorption and KSA (soot-air partition coefficient) models. Octanol-based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. Ratios of measured/modeled partition coefficients ranged between 1.1 and 15.5 (4.5±6.0, average±SD) for KOA model. KSA model predictions were relatively better and measured to modeled ratios ranged between 0.6 and 5.6 (2.3±2.7, average±SD).
Liang, Yuzhen; Torralba-Sanchez, Tifany L; Di Toro, Dominic M
2018-04-18
Polyparameter Linear Free Energy Relationships (pp-LFERs) using Abraham system parameters have many useful applications. However, developing the Abraham system parameters depends on the availability and quality of the Abraham solute parameters. Using Quantum Chemically estimated Abraham solute Parameters (QCAP) is shown to produce pp-LFERs that have lower root mean square errors (RMSEs) of predictions for solvent-water partition coefficients than parameters that are estimated using other presently available methods. pp-LFERs system parameters are estimated for solvent-water, plant cuticle-water systems, and for novel compounds using QCAP solute parameters and experimental partition coefficients. Refitting the system parameter improves the calculation accuracy and eliminates the bias. Refitted models for solvent-water partition coefficients using QCAP solute parameters give better results (RMSE = 0.278 to 0.506 log units for 24 systems) than those based on ABSOLV (0.326 to 0.618) and QSPR (0.294 to 0.700) solute parameters. For munition constituents and munition-like compounds not included in the calibration of the refitted model, QCAP solute parameters produce pp-LFER models with much lower RMSEs for solvent-water partition coefficients (RMSE = 0.734 and 0.664 for original and refitted model, respectively) than ABSOLV (4.46 and 5.98) and QSPR (2.838 and 2.723). Refitting plant cuticle-water pp-LFER including munition constituents using QCAP solute parameters also results in lower RMSE (RMSE = 0.386) than that using ABSOLV (0.778) and QSPR (0.512) solute parameters. Therefore, for fitting a model in situations for which experimental data exist and system parameters can be re-estimated, or for which system parameters do not exist and need to be developed, QCAP is the quantum chemical method of choice.
40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.
Code of Federal Regulations, 2013 CFR
2013-07-01
... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Solubilities and Octanol-Water Partition Coefficients of Hydrophobic Substances,” Journal of Research of the...
40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.
Code of Federal Regulations, 2014 CFR
2014-07-01
... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Solubilities and Octanol-Water Partition Coefficients of Hydrophobic Substances,” Journal of Research of the...
Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R
2017-03-03
Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.
Roth, Michal
2016-12-06
High-pressure phase behavior of systems containing water, carbon dioxide and organics has been important in several environment- and energy-related fields including carbon capture and storage, CO 2 sequestration and CO 2 -assisted enhanced oil recovery. Here, partition coefficients (K-factors) of organic solutes between water and supercritical carbon dioxide have been correlated with extended linear solvation energy relationships (LSERs). In addition to the Abraham molecular descriptors of the solutes, the explanatory variables also include the logarithm of solute vapor pressure, the solubility parameters of carbon dioxide and water, and the internal pressure of water. This is the first attempt to include also the properties of water as explanatory variables in LSER correlations of K-factor data in CO 2 -water-organic systems. Increasing values of the solute hydrogen bond acidity, the solute hydrogen bond basicity, the solute dipolarity/polarizability, the internal pressure of water and the solubility parameter of water all tend to reduce the K-factor, that is, to favor the solute partitioning to the water-rich phase. On the contrary, increasing values of the solute characteristic volume, the solute vapor pressure and the solubility parameter of CO 2 tend to raise the K-factor, that is, to favor the solute partitioning to the CO 2 -rich phase.
Solute partitioning under continuous cooling conditions as a cooling rate indicator. [in lunar rocks
NASA Technical Reports Server (NTRS)
Onorato, P. I. K.; Hopper, R. W.; Yinnon, H.; Uhlmann, D. R.; Taylor, L. A.; Garrison, J. R.; Hunter, R.
1981-01-01
A model of solute partitioning in a finite body under conditions of continuous cooling is developed for the determination of cooling rates from concentration profile data, and applied to the partitioning of zirconium between ilmenite and ulvospinel in the Apollo 15 Elbow Crater rocks. Partitioning in a layered composite solid is described numerically in terms of concentration profiles and diffusion coefficients which are functions of time and temperature, respectively; a program based on the model can be used to calculate concentration profiles for various assumed cooling rates given the diffusion coefficients in the two phases and the equilibrium partitioning ratio over a range of temperatures. In the case of the Elbow Rock gabbros, the cooling rates are calculated from measured concentration ratios 10 microns from the interphase boundaries under the assumptions of uniform and equilibrium initial conditions at various starting temperatures. It is shown that the specimens could not have had uniform concentrations profiles at the previously suggested initial temperature of 1350 K. It is concluded that even under conditions where the initial temperature, grain sizes and solute diffusion coefficients are not well characterized, the model can be used to estimate the cooling rate of a grain assemblage to within an order of magnitude.
Multicomponent phase-field model for extremely large partition coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welland, Michael J.; Wolf, Dieter; Guyer, Jonathan E.
2014-01-01
We develop a multicomponent phase-field model specially formulated to robustly simulate concentration variations from molar to atomic magnitudes across an interlace, i.e., partition coefficients in excess of 10±23 such as may be the case with species which are predominant in one phase and insoluble in the other. Substitutional interdiffusion on a normal lattice and concurrent interstitial diffusion are included. The composition in the interlace follows the approach of Kim. Kim, and Suzuki [Phys. Rev. E 60, 7186 (1999)] and is compared to that of Wheeler, Boettinger, and McFadden [Phys. Rev. A 45, 7424 (1992)] in the context of large partitioning.more » The model successfully reproduces analytical solutions for binary diffusion couples and solute trapping for the demonstrated cases of extremely large partitioning.« less
Solute transport across the articular surface of injured cartilage.
Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M
2013-07-15
Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.
Two-lattice models of trace element behavior: A response
NASA Astrophysics Data System (ADS)
Ellison, Adam J. G.; Hess, Paul C.
1990-08-01
Two-lattice melt components of Bottinga and Weill (1972), Nielsen and Drake (1979), and Nielsen (1985) are applied to major and trace element partitioning between coexisting immiscible liquids studied by RYERSON and Hess (1978) and Watson (1976). The results show that (1) the set of components most successful in one system is not necessarily portable to another system; (2) solution non-ideality within a sublattice severely limits applicability of two-lattice models; (3) rigorous application of two-lattice melt components may yield effective partition coefficients for major element components with no physical interpretation; and (4) the distinction between network-forming and network-modifying components in the sense of the two-lattice models is not clear cut. The algebraic description of two-lattice models is such that they will most successfully limit the compositional dependence of major and trace element solution behavior when the effective partition coefficient of the component of interest is essentially the same as the bulk partition coefficient of all other components within its sublattice.
Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor
2009-06-01
Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.
Kinetics and equilibrium of solute diffusion into human hair.
Wang, Liming; Chen, Longjian; Han, Lujia; Lian, Guoping
2012-12-01
The uptake kinetics of five molecules by hair has been measured and the effects of pH and physical chemical properties of molecules were investigated. A theoretical model is proposed to analyze the experimental data. The results indicate that the binding affinity of solute to hair, as characterized by hair-water partition coefficient, scales to the hydrophobicity of the solute and decreases dramatically as the pH increases to the dissociation constant. The effective diffusion coefficient of solute depended not only on the molecular size as most previous studies suggested, but also on the binding affinity as well as solute dissociation. It appears that the uptake of molecules by hair is due to both hydrophobic interaction and ionic charge interaction. Based on theoretical considerations of the cellular structure, composition and physical chemical properties of hair, quantitative-structure-property-relationships (QSPR) have been proposed to predict the hair-water partition coefficient (PC) and the effective diffusion coefficient (D (e)) of solute. The proposed QSPR models fit well with the experimental data. This paper could be taken as a reference for investigating the adsorption properties for polymeric materials, fibres, and biomaterials.
Fluorescent solute-partitioning characterization of layered soft contact lenses.
Dursch, T J; Liu, D E; Oh, Y; Radke, C J
2015-03-01
Partitioning of aqueous packaging, wetting, and care-solution agents into and out of soft contact lenses (SCLs) is important for improving wear comfort and also for characterizing lens physico-chemical properties. We illustrate both features of partitioning by application of fluorescent-solute partitioning into DAILIES TOTAL1® (delefilcon A) water-gradient SCLs, which exhibit a layered structure of a silicone-hydrogel (SiHy) core sandwiched between thin surface-gel layers. Two-photon fluorescence confocal laser-scanning microscopy and attenuated total-reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) characterize the lens and assess uptake profiles of six prototypical fluorescent solutes. Comparison of solute uptake in a SiHy-core prototype lens (i.e., O2OPTIX(TM)) validates the core SiHy structure of DAILIESTOTAL1®. To establish surface-layer charge, partition coefficients and water contents are obtained for aqueous pH values of 4 and 7.4. Solute fluorescence-intensity profiles clearly confirm a layered structure for the DAILIES TOTAL1® lenses. In all cases, aqueous solute partition coefficients are greater in the surface layers than in the SiHy core, signifying higher water in the surface gels. ATR-FTIR confirms surface-layer mass water contents of 82±3%. Water uptake and hydrophilic-solute uptake at pH 4 compared with that at pH 7.4 reveal that the surface-gel layers are anionic at physiologic pH 7.4, whereas both the SiHy core and O2OPTIX™ (lotrafilcon B) are nonionic. We successfully confirm the layered structure of DAILIES TOTAL1®, consisting of an 80-μm-thick SiHy core surrounded by 10-μm-thick polyelectrolyte surface-gel layers of significantly greater water content and aqueous solute uptake compared with the core. Accordingly, fluorescent-solute partitioning in SCLs provides information on gel structure and composition, in addition to quantifying uptake and release amounts and rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Raevsky, O A; Grigor'ev, V J; Raevskaja, O E; Schaper, K-J
2006-06-01
QSPR analyses of a data set containing experimental partition coefficients in the three systems octanol-water, water-gas, and octanol-gas for 98 chemicals have shown that it is possible to calculate any partition coefficient in the system 'gas phase/octanol/water' by three different approaches: (1) from experimental partition coefficients obtained in the corresponding two other subsystems. However, in many cases these data may not be available. Therefore, a solution may be approached (2), a traditional QSPR analysis based on e.g. HYBOT descriptors (hydrogen bond acceptor and donor factors, SigmaCa and SigmaCd, together with polarisability alpha, a steric bulk effect descriptor) and supplemented with substructural indicator variables. (3) A very promising approach which is a combination of the similarity concept and QSPR based on HYBOT descriptors. In this approach observed partition coefficients of structurally nearest neighbours of a compound-of-interest are used. In addition, contributions arising from differences in alpha, SigmaCa, and SigmaCd values between the compound-of-interest and its nearest neighbour(s), respectively, are considered. In this investigation highly significant relationships were obtained by approaches (1) and (3) for the octanol/gas phase partition coefficient (log Log).
Controlled drug release from hydrogels for contact lenses: Drug partitioning and diffusion.
Pimenta, A F R; Ascenso, J; Fernandes, J C S; Colaço, R; Serro, A P; Saramago, B
2016-12-30
Optimization of drug delivery from drug loaded contact lenses assumes understanding the drug transport mechanisms through hydrogels which relies on the knowledge of drug partition and diffusion coefficients. We chose, as model systems, two materials used in contact lens, a poly-hydroxyethylmethacrylate (pHEMA) based hydrogel and a silicone based hydrogel, and three drugs with different sizes and charges: chlorhexidine, levofloxacin and diclofenac. Equilibrium partition coefficients were determined at different ionic strength and pH, using water (pH 5.6) and PBS (pH 7.4). The measured partition coefficients were related with the polymer volume fraction in the hydrogel, through the introduction of an enhancement factor following the approach developed by the group of C. J. Radke (Kotsmar et al., 2012; Liu et al., 2013). This factor may be decomposed in the product of three other factors E HS , E el and E ad which account for, respectively, hard-sphere size exclusion, electrostatic interactions, and specific solute adsorption. While E HS and E el are close to 1, E ad >1 in all cases suggesting strong specific interactions between the drugs and the hydrogels. Adsorption was maximal for chlorhexidine on the silicone based hydrogel, in water, due to strong hydrogen bonding. The effective diffusion coefficients, D e , were determined from the drug release profiles. Estimations of diffusion coefficients of the non-adsorbed solutes D=D e ×E ad allowed comparison with theories for solute diffusion in the absence of specific interaction with the polymeric membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
Liang, Yuzhen; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M
2016-10-01
There is concern about the environmental fate and effects of munition constituents (MCs). Polyparameter linear free energy relationships (pp-LFERs) that employ Abraham solute parameters can aid in evaluating the risk of MCs to the environment. However, poor predictions using pp-LFERs and ABSOLV estimated Abraham solute parameters are found for some key physico-chemical properties. In this work, the Abraham solute parameters are determined using experimental partition coefficients in various solvent-water systems. The compounds investigated include hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), hexahydro-1,3-dinitroso-5- nitro-1,3,5-triazine (DNX), 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), and 4-nitroanisole. The solvents in the solvent-water systems are hexane, dichloromethane, trichloromethane, octanol, and toluene. The only available reported solvent-water partition coefficients are for octanol-water for some of the investigated compounds and they are in good agreement with the experimental measurements from this study. Solvent-water partition coefficients fitted using experimentally derived solute parameters from this study have significantly smaller root mean square errors (RMSE = 0.38) than predictions using ABSOLV estimated solute parameters (RMSE = 3.56) for the investigated compounds. Additionally, the predictions for various physico-chemical properties using the experimentally derived solute parameters agree with available literature reported values with prediction errors within 0.79 log units except for water solubility of RDX and HMX with errors of 1.48 and 2.16 log units respectively. However, predictions using ABSOLV estimated solute parameters have larger prediction errors of up to 7.68 log units. This large discrepancy is probably due to the missing R2NNO2 and R2NNO2 functional groups in the ABSOLV fragment database. Copyright © 2016. Published by Elsevier Ltd.
Kokkonen, H T; Chin, H C; Töyräs, J; Jurvelin, J S; Quinn, T M
2017-04-01
Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P < 0.05 for iodine and Gd-DTPA; and 76% increase after 10 min for diatrizoate, P < 0.05). Effective partition coefficients were unaffected in mechanically injured cartilage. Mechanical injury reduced PG content and collagen integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.
Tascon, Marcos; Romero, Lílian M; Acquaviva, Agustín; Keunchkarian, Sonia; Castells, Cecilia
2013-06-14
This study focused on an investigation into the experimental quantities inherent in the determination of partition coefficients from gas-liquid chromatographic measurements through the use of capillary columns. We prepared several squalane - (2,6,10,15,19,23-hexamethyltetracosane) - containing columns with very precisely known phase ratios and determined solute retention and hold-up times at 30, 40, 50 and 60°C. We calculated infinite dilution partition coefficients from the slopes of the linear regression of retention factors as a function of the reciprocal of the phase ratio by means of fundamental chromatographic equations. In order to minimize gas-solid and liquid-solid interface contributions to retention, the surface of the capillary inner wall was pretreated to guarantee a uniform coat of stationary phase. The validity of the proposed approach was first tested by estimating the partition coefficients of n-alkanes between n-pentane and n-nonane, for which compounds data from the literature were available. Then partition coefficients of sixteen aliphatic alcohols in squalane were determined at those four temperatures. We deliberately chose these highly challenging systems: alcohols in the reference paraffinic stationary phase. These solutes exhibited adsorption in the gas-liquid interface that contributed to retention. The corresponding adsorption constant values were estimated. We fully discuss here the uncertainties associated with each experimental measurement and how these fundamental determinations can be performed precisely by circumventing the main drawbacks. The proposed strategy is reliable and much simpler than the classical chromatographic method employing packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.
Sanagi, Mohd Marsin; Miskam, Mazidatulakmam; Wan Ibrahim, Wan Aini; Hermawan, Dadan; Aboul-Enein, Hassan Y
2010-07-01
A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.
Modeling Free Energies of Solvation in Olive Oil
Chamberlin, Adam C.; Levitt, David G.; Cramer, Christopher J.; Truhlar, Donald G.
2009-01-01
Olive oil partition coefficients are useful for modeling the bioavailability of drug-like compounds. We have recently developed an accurate solvation model called SM8 for aqueous and organic solvents (Marenich, A. V.; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2011) and a temperature-dependent solvation model called SM8T for aqueous solution (Chamberlin, A. C.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2008, 112, 3024). Here we describe an extension of SM8T to predict air–olive oil and water–olive oil partitioning for drug-like solutes as functions of temperature. We also describe the database of experimental partition coefficients used to parameterize the model; this database includes 371 entries for 304 compounds spanning the 291–310 K temperature range. PMID:19434923
Adsorption mechanisms of the nonequilibrium incorporation of admixtures in a growing crystal
NASA Astrophysics Data System (ADS)
Franke, V. D.; Punin, Yu. O.; Smetannikova, O. G.; Kenunen, D. S.
2007-12-01
The nonequilibrium partition of components between a crystal and solution is mainly controlled by impurity adsorption on the surface of the growing crystal. The specificity of adsorption on the faces of various simple forms leads to the sectorial zoning of crystals. This effect was studied experimentally for several crystallizing systems with different impurities, including isomorphous, 2d-isomorphous, and nonisomorphous, readily adsorbed impurities. In all systems, the sectorial selectivity of impurity incorporation into host crystals has been detected with partition coefficients many times higher than in the case of equilibrium partition. Specific capture of impurities by certain faces is accompanied by inhibition of their growth and modification of habit. The decrease in nonequilibrium partition coefficients with degree of oversaturation provides entrapment of impurities in the growing crystals. Thereby, the adsorption mechanism works in much the same mode for impurities of quite different nature. The behavior of partition coefficient differs drastically from impurity capturing by diffusion mechanism.
Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage.
Kleinhans, Kelsey L; Jackson, Alicia R
2017-03-01
A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.
USDA-ARS?s Scientific Manuscript database
In risk assessment models, the solid-solution partition coefficient (Kd), and plant uptake factor (PUF), are often employed to model the fate and transport of trace elements in soils. The trustworthiness of risk assessments depends on the reliability of the parameters used. In this study, we exami...
Yang, Senpei; Li, Lingyi; Chen, Tao; Han, Lujia; Lian, Guoping
2018-05-14
Sebum is an important shunt pathway for transdermal permeation and targeted delivery, but there have been limited studies on its permeation properties. Here we report a measurement and modelling study of solute partition to artificial sebum. Equilibrium experiments were carried out for the sebum-water partition coefficients of 23 neutral, cationic and anionic compounds at different pH. Sebum-water partition coefficients not only depend on the hydrophobicity of the chemical but also on pH. As pH increases from 4.2 to 7.4, the partition of cationic chemicals to sebum increased rapidly. This appears to be due to increased electrostatic attraction between the cationic chemical and the fatty acids in sebum. Whereas for anionic chemicals, their sebum partition coefficients are negligibly small, which might result from their electrostatic repulsion to fatty acids. Increase in pH also resulted in a slight decrease of sebum partition of neutral chemicals. Based on the observed pH impact on the sebum-water partition of neutral, cationic and anionic compounds, a new quantitative structure-property relationship (QSPR) model has been proposed. This mathematical model considers the hydrophobic interaction and electrostatic interaction as the main mechanisms for the partition of neutral, cationic and anionic chemicals to sebum.
Grunewald, G L; Pleiss, M A; Gatchell, C L; Pazhenchevsky, R; Rafferty, M F
1984-06-01
The use of gas chromatography (GC) for the determination of 0.1 M sodium hydroxide-octanol partition coefficients (log P) for a wide variety of ethylamines is demonstrated. The conventional shake-flask procedure (SFP) is utilized, with the addition of an internal reference, which is cleanly separated from the desired solute and solvents on a 10% Apiezon L, 2% potassium hydroxide on 80-100 mesh Chromosorb W AW column. The partitioned solute is extracted from the aqueous phase with chloroform and analyzed by GC. The method provides an accurate and highly reproducible means of determining log P values, as demonstrated by the low relative standard errors. The technique is both rapid and extremely versatile. The use of the internal standard method of analysis introduces consistency, since variables like the exact weight of solute are not necessary (unlike the traditional SFP) and the volume of sample injected is not critical. The technique is readily accessible to microgram quantities of solutes, making it ideal for a wide range of volatile, amine-bearing compounds.
Mapping Pesticide Partition Coefficients By Electromagnetic Induction
USDA-ARS?s Scientific Manuscript database
A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...
Genheden, Samuel
2017-10-01
We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.
NASA Astrophysics Data System (ADS)
Genheden, Samuel
2017-10-01
We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.
Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.
1986-01-01
Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.
Model for the partition of neutral compounds between n-heptane and formamide.
Karunasekara, Thushara; Poole, Colin F
2010-04-01
Partition coefficients for 84 varied compounds were determined for n-heptane-formamide biphasic partition system and used to derive a model for the distribution of neutral compounds between the n-heptane-rich and formamide-rich layers. The partition coefficients, log K(p), were correlated through the solvation parameter model giving log K(p)=0.083+0.559E-2.244S-3.250A-1.614B+2.387V with a multiple correlation coefficient of 0.996, standard error of the estimate 0.139, and Fisher statistic 1791. In the model, the solute descriptors are excess molar refraction, E, dipolarity/polarizability, S, overall hydrogen-bond acidity, A, overall hydrogen-bond basicity, B, and McGowan's characteristic volume, V. The model is expected to be able to estimate further values of the partition coefficient to about 0.13 log units for the same descriptor space covered by the calibration compounds (E=-0.26-2.29, S=0-1.93, A=0-1.25, B=0.02-1.58, and V=0.78-2.50). The n-heptane-formamide partition system is shown to have different selectivity to other totally organic biphasic systems and to be suitable for estimating descriptor values for compounds of low water solubility and/or stability.
Efficient estimation of diffusion during dendritic solidification
NASA Technical Reports Server (NTRS)
Yeum, K. S.; Poirier, D. R.; Laxmanan, V.
1989-01-01
A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.
Lara, A; Riquelme, M; Vöhringer-Martinez, E
2018-05-11
Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model are in good agreement with the experimental values. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Evaluation of diclofenac prodrugs for enhancing transdermal delivery.
Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang
2014-03-01
Abstract Objective: The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD) and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in the Franz diffusion cell were determined on DA-, MD-, ED-, GD- and PD-saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery.
Nonequilibrium partitioning during rapid solidification of SiAs alloys
NASA Astrophysics Data System (ADS)
Kittl, J. A.; Aziz, M. J.; Brunco, D. P.; Thompson, M. O.
1995-02-01
The velocity dependence of the partition coefficient was measured for rapid solidification of polycrystalline Si-4.5 at% As and Si-9 at% As alloys induced by pulsed laser melting. The results constitute the first test of partitioning models both for the high velocity regime and for non-dilute alloys. The continuous growth model (CGM) of Aziz and Kaplan fits the data well, but with an unusually low diffusive speed of 0.46 m/s. The data show negligible dependence of partitioning on concentration, also consistent with the CGM. The predictions of the Hillert-Sundman model are inconsistent with partitioning results. Using the aperiodic stepwise growth model (ASGM) of Goldman and Aziz, an average over crystallographic orientations with parameters from independent single-crystal experiments is shown to be reasonably consistent with these polycrystalline partitioning results. The results, combined with others, indicate that the CGM without solute drag and its extension to lateral ledge motion, the ASGM, are the only models that fit the data for both solute partioning and kinetic undercooling interface response functions. No current solute drag models can match both partitioning and undercooling measurements.
Cooperativity between various types of polar solute-solvent interactions in aqueous media.
Madeira, Pedro P; Bessa, Ana; Loureiro, Joana A; Álvares-Ribeiro, Luís; Rodrigues, Alírio E; Zaslavsky, Boris Y
2015-08-21
Partition coefficients of seven low molecular weight compounds were measured in multiple aqueous two-phase systems (ATPSs) formed by pairs of different polymers. The ionic composition of each ATPS was varied to include 0.01M sodium phosphate buffer (NaPB), pH 7.4 and 0.1M Na2SO4, 0.15M NaCl, and 0.15M NaClO4 all in 0.01M NaPB, pH 7.4. The differences between the solvent features of the coexisting phases in all the ATPSs were estimated from partitioning of a homologous series of dinitrophenylated-amino acids and by the solvatochromic method. The solute-specific coefficients for the compounds examined were determined by the multiple linear regression analysis using the modified linear solvation energy relationship equation. It is established that the solute specific coefficients characterizing different types of the solute-water interactions (dipole-dipole, dipole-ion, and H-bonding) for a given solute change in the presence of different salt additives in the solute specific manner. It is also found that these characteristics are linearly interrelated. It is suggested that there is a cooperativity between various types of solute-water interactions governed by the solute structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds
Kile, D.E.; Wershaw, R. L.; Chiou, C.T.
1999-01-01
Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxyl-amide-ester carbons. A plot of the measured partition coefficients (Koc) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of Koc values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in Koc between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with Koc illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.
Cross, Sheree E; Magnusson, Beatrice M; Winckle, Gareth; Anissimov, Yuri; Roberts, Michael S
2003-05-01
In order to establish the relationship between solute lipophilicity and skin penetration (including flux and concentration behavior), we examined the in vitro penetration and membrane concentration of a series of homologous alcohols (C2-C10) applied topically in aqueous solutions to human epidermal, full-thickness, and dermal membranes. The partitioning/distribution of each alcohol between the donor solution, stratum corneum, viable epidermis, dermis, and receptor phase compartments was determined during the penetration process and separately to isolated samples of each tissue type. Maximum flux and permeability coefficients are compared for each membrane and estimates of alcohol diffusivity are made based on flux/concentration data and also the related tissue resistance (the reciprocal of permeability coefficient) for each membrane type. The permeability coefficient increased with increasing lipophilicity to alcohol C8 (octanol) with no further increase for C10 (decanol). Log vehicle:stratum corneum partition coefficients were related to logP, and the concentration of alcohols in each of the tissue layers appeared to increase with lipophilicity. No difference was measured in the diffusivity of smaller more polar alcohols in the three membranes; however, the larger more lipophilic solutes showed slower diffusivity values. The study showed that the dermis may be a much more lipophilic environment than originally believed and that distribution of smaller nonionized solutes into local tissues below a site of topical application may be estimated based on knowledge of their lipophilicity alone.
NASA Technical Reports Server (NTRS)
Nagasawa, H.; Schreiber, H. D.; Morris, R. V.
1980-01-01
Experimental determinations of the mineral/liquid partition coefficients of REE (La, Sm, Eu, Gd, Tb, Yb and Lu), Sc and Sr are reported for the minerals perovskite, spinel and melilite in synthetic systems. Perovskite concentrates light REE with respect to the residual liquid but shows no preference for heavy REE. Spinel greatly discriminates against the incorporation of REE, especially light REE, into its crystal structure. The partition of REE into melilite from a silicate liquid is quite dependent upon both the bulk melt and melilite solid-solution (gehlenite and akermanite components) compositions. As such, melilite can be enriched in REE or will reject REE with corresponding strong negative or strong positive Eu anomalies, respectively.
NASA Astrophysics Data System (ADS)
Petrishcheva, E.; Abart, R.
2012-04-01
We address mathematical modeling and computer simulations of phase decomposition in a multicomponent system. As opposed to binary alloys with one common diffusion parameter, our main concern is phase decomposition in real geological systems under influence of strongly different interdiffusion coefficients, as it is frequently encountered in mineral solid solutions with coupled diffusion on different sub-lattices. Our goal is to explain deviations from equilibrium element partitioning which are often observed in nature, e.g., in a cooled ternary feldspar. To this end we first adopt the standard Cahn-Hilliard model to the multicomponent diffusion problem and account for arbitrary diffusion coefficients. This is done by using Onsager's approach such that flux of each component results from the combined action of chemical potentials of all components. In a second step the generalized Cahn-Hilliard equation is solved numerically using finite-elements approach. We introduce and investigate several decomposition scenarios that may produce systematic deviations from the equilibrium element partitioning. Both ideal solutions and ternary feldspar are considered. Typically, the slowest component is initially "frozen" and the decomposition effectively takes place only for two "fast" components. At this stage the deviations from the equilibrium element partitioning are indeed observed. These deviations may became "frozen" under conditions of cooling. The final equilibration of the system occurs on a considerably slower time scale. Therefore the system may indeed remain unaccomplished at the observation point. Our approach reveals the intrinsic reasons for the specific phase separation path and rigorously describes it by direct numerical solution of the generalized Cahn-Hilliard equation.
Analytical solutions for efficient interpretation of single-well push-pull tracer tests
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.
2010-08-01
Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations describing the governing processes acting on a dissolved compound during a modified push-pull test (advection, longitudinal and transverse dispersion, first-order decay, and rate-limited sorption/partitioning in steady, divergent, and convergent flow fields) is developed. The coupling of this solution with inverse modeling to estimate aquifer parameters provides an efficient methodology for subsurface characterization. Synthetic data for single-well push-pull tests are employed to demonstrate the utility of the solution for determining (1) estimates of aquifer longitudinal and transverse dispersivities, (2) sorption distribution coefficients and rate constants, and (3) non-aqueous phase liquid (NAPL) saturations. Employment of the solution to estimate NAPL saturations based on partitioning and non-partitioning tracers is designed to overcome limitations of previous efforts by including rate-limited mass transfer. This solution provides a new tool for use by practitioners when interpreting single-well push-pull test results.
Mochalski, Paweł; King, Julian; Kupferthaler, Alexander; Unterkofler, Karl; Hinterhuber, Hartmann; Amann, Anton
2011-12-01
The aim of this study was to determine the solubility (liquid-to-air ratios) of isoprene in water, human blood and plasma. To this end, an experimental setup combining multiple headspace extraction, solid phase microextraction and gas chromatography-mass spectrometry was applied. The water:air partition coefficients of isoprene were determined for the temperature range 4.5-37 °C and amounted to 1.171-0.277 (g mL(l)(-1)) (g mL(a)(-1))(-1). On the basis of these data, the enthalpy of volatilization was calculated as 29.46 ± 2.83 kJ mol(-1). The blood:air partition coefficients at 37 °C were determined for ten normal healthy volunteers spread around a median value of 0.95 ± 0.09 (g mL(l)(-1)) (g mL(a)(-1))(-1) and were approximately 16% lower than the plasma:air partition coefficients (1.11 ± 0.2). The applied methodology can be particularly attractive for solubility studies targeting species at very low concentrations in the solution, i.e. when headspace sample enrichment is necessary to provide sufficient measurement sensitivity and reliability. This can be especially helpful if environmental or physiological solute levels have to be considered.
Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen
2009-08-15
Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.
Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments
Chiou, C.T.; Mcgroddy, S.E.; Kile, D.E.
1998-01-01
The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM) and water (i.e., K(oc) values) are relatively invariant either for the 'clean' (uncontaminated) soils or for the clean sediments; however, the mean K(oc) values on the sediments are about twice the values on the soils. This disparity is similar to the earlier observation for other nonpolar solutes and reflects the compositional differences between soil and sediment organic matters. No significant differences in K(oc) are observed between a clean coastal marine sediment and freshwater sediments. The coastal sediments that are significantly impacted by organic contaminants exhibit higher K(oc) values. At given K(ow) values (octanol-water), the PAHs exhibit much higher K(oc) values than other relatively nonpolar solutes (e.g., chlorinated hydrocarbons). This effect is shown to result from the enhanced partition of PAHs to SOM rather than from lower K(ow) values of PAHs at given supercooled liquid solute solubilities in water. The enhanced partition of PAHs over other nonpolar solutes in SOM provides an account of the markedly different correlations between log K(oc) and log K(ow) for PAHs and for other nonpolar solutes. The improved partition of PAHs in SOM stems apparently from the enhanced compatibility of their cohesive energy densities with those of the aromatic components in SOM. The approximate aromatic fraction in soil/sediment organic matter has been assessed by solid-state 13C-NMR spectroscopy.The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM) and water (i.e., Koc values) are relatively invariant either for the `clean' (uncontaminated) soils or for the clean sediments; however, the mean Koc values on the sediments are about twice the values on the soils. This disparity is similar to the earlier observation for other nonpolar solutes and reflects the compositional differences between soil and sediment organic matters. No significant differences in Koc are observed between a clean coastal marine sediment and freshwater sediments. The coastal sediments that are significantly impacted by organic contaminants exhibit higher Koc values. At given Kow values (octanol-water), the PAHs exhibit much higher Koc values than other relatively nonpolar solutes (e.g., chlorinated hydrocarbons). This effect is shown to result from the enhanced partition of PAHs to SOM rather than from lower Kow values of PAHs at given supercooled liquid solute solubilities in water. The enhanced partition of PAHs over other nonpolar solutes in SOM provides an account of the markedly different correlations between log Koc and log Kow for PAHs and for other nonpolar solutes. The improved partition of PAHs in SOM stems apparently from the enhanced compatibility of their cohesive energy densities with those of the aromatic components in SOM. The approximate aromatic fraction in soil/sediment organic matter has been assessed by solid-state 13C-NMR spectroscopy.
The SPARC vapor pressure and activity coefficient models were coupled to estimate Henry’s Law Constant (HLC) in water and in hexadecane for a wide range of non-polar and polar solute organic compounds without modification to/or additional parameterization of the vapor pressure or...
Partitioning and lipophilicity in quantitative structure-activity relationships.
Dearden, J C
1985-01-01
The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374
Determination of solute descriptors by chromatographic methods.
Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K
2009-10-12
The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.
Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, D.A.; Luthy, R.G.; Liu, Zhongbao
1991-01-01
Experimental data are presented on the enhanced apparent solubilities of naphthalene, phenanthrene, and pyrene resulting from solubilization in aqueous solutions of four commercial, nonionic surfactants: an alkyl polyoxyethylene (POE) type, two octylphenol POE types, and a nonylphenol POE type. Apparent solubilities of the polycyclic aromatic hydrocarbon (PAH) compounds in surfactant solutions were determined by radiolabeled techniques. Solubilization of each PAH compound commenced at the surfactant critical micelle concentration and was proportional to the concentration of surfactant in micelle form. The partitioning of organic compounds between surfactant micelles and aqueous solution is characterized by a mole fraction micelle-phase/aqueous-phase partition coefficient, K{submore » m}. Values of log K{sub m} for PAH compounds in surfactant solutions of this study range from 4.57 to 6.53. Log K{sub m} appears to be a linear function of log K{sub ow} for a given surfactant solution. A knowledge of partitioning in aqueous surfactant systems is a prerequisite to understanding mechanisms affecting the behavior of hydrophobic organic compounds in soil-water systems in which surfactants play a role in contaminant remediation or facilitated transport.« less
Nonelectrolyte diffusion across lipid bilayer systems
1976-01-01
The permeability coefficients of a homologous series of amides from formamide through valeramide have been measured in spherical bilayers prepared by the method described by Jung. They do not depend directly on the water:ether partition coefficient which increases regularly with chain length. Instead there is a minimum at acetamide. This has been ascribed to the effect of steric hindrance on diffusion within the bilayer which increases with solute molar volume. This factor is of the same magnitude, though opposite in sign to the effect of lipid solubility, thus accounting for the minimum. The resistance to passage across the interface has been compared to the resistance to diffusion within the membrane. As the solute chain length increases the interface becomes more important, until for valeramide it comprises about 90% of the total resistance. Interface resistance is also important in urea permeation, causing urea to permeate much more slowly than an amide of comparable size, after allowance is made for the difference in the water:ether partition coefficient. Amide permeation coefficients have been compared with relative liposome permeation data measured by the rate of liposome swelling. The ratios of the two measures of permeation vary between 3 and 16 for the homologous amides. The apparent enthalpy of liposome permeation has been measured and found to be in the neighborhood of 12 kcal mol-1 essentially independent of chain length. Comparison of the bilayer permeability coefficients with those of red cells shows that red cell permeation by the lipophilic solutes resembles that of the bilayers, whereas permeation by the hydrophilic solutes differs significantly. PMID:1245835
Schröder, Bernd; Freire, Mara G; Varanda, Fatima R; Marrucho, Isabel M; Santos, Luís M N B F; Coutinho, João A P
2011-07-01
The aqueous solubility of hexafluorobenzene has been determined, at 298.15K, using a shake-flask method with a spectrophotometric quantification technique. Furthermore, the solubility of hexafluorobenzene in saline aqueous solutions, at distinct salt concentrations, has been measured. Both salting-in and salting-out effects were observed and found to be dependent on the nature of the cationic/anionic composition of the salt. COSMO-RS, the Conductor-like Screening Model for Real Solvents, has been used to predict the corresponding aqueous solubilities at conditions similar to those used experimentally. The prediction results showed that the COSMO-RS approach is suitable for the prediction of salting-in/-out effects. The salting-in/-out phenomena have been rationalized with the support of COSMO-RS σ-profiles. The prediction potential of COSMO-RS regarding aqueous solubilities and octanol-water partition coefficients has been compared with typically used QSPR-based methods. Up to now, the absence of accurate solubility data for hexafluorobenzene hampered the calculation of the respective partition coefficients. Combining available accurate vapor pressure data with the experimentally determined water solubility, a novel air-water partition coefficient has been derived. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rational design of polymer-based absorbents: application to the fermentation inhibitor furfural.
Nwaneshiudu, Ikechukwu C; Schwartz, Daniel T
2015-01-01
Reducing the amount of water-soluble fermentation inhibitors like furfural is critical for downstream bio-processing steps to biofuels. A theoretical approach for tailoring absorption polymers to reduce these pretreatment contaminants would be useful for optimal bioprocess design. Experiments were performed to measure aqueous furfural partitioning into polymer resins of 5 bisphenol A diglycidyl ether (epoxy) and polydimethylsiloxane (PDMS). Experimentally measured partitioning of furfural between water and PDMS, the more hydrophobic polymer, showed poor performance, with the logarithm of PDMS-to-water partition coefficient falling between -0.62 and -0.24 (95% confidence). In contrast, the fast setting epoxy was found to effectively partition furfural with the logarithm of the epoxy-to-water partition coefficient falling between 0.41 and 0.81 (95% confidence). Flory-Huggins theory is used to predict the partitioning of furfural into diverse polymer absorbents and is useful for predicting these results. We show that Flory-Huggins theory can be adapted to guide the selection of polymer adsorbents for the separation of low molecular weight organic species from aqueous solutions. This work lays the groundwork for the general design of polymers for the separation of a wide range of inhibitory compounds in biomass pretreatment streams.
Mouret, Jean-Roch; Sablayrolles, Jean-Marie; Farines, Vincent
2015-04-01
The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%.
Atomistic simulation of mineral-melt trace-element partitioning
NASA Astrophysics Data System (ADS)
Allan, Neil L.; Du, Zhimei; Lavrentiev, Mikhail Yu.; Blundy, Jon D.; Purton, John A.; van Westrenen, Wim
2003-09-01
We discuss recent advances in computational approaches to trace-element incorporation in minerals and melts. It is crucial to take explicit account of the local structural environment of each ion in the solid and the change in this environment following the introduction of a foreign atom or atoms. Particular attention is paid to models using relaxation (strain) energies and solution energies, and the use of these different models for isovalent and heterovalent substitution in diopside and forsterite. Solution energies are also evaluated for pyrope and grossular garnets, and pyrope-grossular solid solutions. Unfavourable interactions between dodecahedral sites containing ions of the same size and connected by an intervening tetrahedron lead to larger solubilities of trace elements in the garnet solid solution than in either end member compound and to the failure of Goldschmidt's first rule. Our final two examples are the partitioning behaviour of noble gases, which behave as 'ions of zero charge' and the direct calculation of high-temperature partition coefficients between CaO solid and melt via Monte Carlo simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, P.G.; Abernethy, S.; Mackay, D.
1982-01-01
The toxicity of seawater dispersions of a chemical dispersant to two marine crustaceans was investigated in the presence and absence of various quantities of a non-toxic mineral oil. From the results and a physical-chemical partitioning analysis, a limiting value of the oil-water partition coefficient of the toxic compounds is deduced suggesting that essentially all of the toxic compounds in the dispersant will partition into solution in water following dispersant application to an oil spill. This conclusion simplifies interpretation and prediction of the toxic effects of a dispersed oil spill. The combined bioassay-partitioning procedure may have applications to the study ofmore » the toxicity of other complex mixtures such as industrial effluents.« less
Ion exchange of H+, Na+, Mg2+, Ca2+, Mn2+, and Ba2+, on wood pulp
Alan W. Rudie; Alan Ball; Narendra Patel
2006-01-01
Ion exchange selectivity coefficients were measured for the partition of metals between solution and pulp fibers. The method accurately models the ion exchange isotherms for all cation pairs evaluated and is accurate up to approximately 0.05 molar concentrations. Selectivity coefficients were determined for calcium and magnesium with each other and with hydrogen....
Sasaki, Shigeo; Okabe, Satoshi
2011-11-10
The effects of NaCl, NaOH, and HCl on the solubility transition and the phase-separation of N-isopropylacrylamide (NIPA) were investigated for the purpose of clarifying the physicochemical mechanism of salting-out and salting-in phenomena. The discrete change in the solubility of NIPA in the salt-free water at the solubility transition (reported in J. Phys. Chem. B 2010, 114, 14995-15002) decreased with the addition of HCl and disappeared in the HCl solutions at concentrations higher than 2 M, while it increased with additions of NaOH and NaCl. A difference in NIPA concentration between the phase-separated solutions decreases with the addition of HCl and increases with additions of NaOH and NaCl. Partition coefficients of HCl in the phase-separated NIPA-rich solutions are higher than those in the NIPA poor solutions, while partition coefficients of NaCl and NaOH between the NIPA-rich and -poor solutions have trends opposite to those of HCl. The present results clearly indicate that the HCl favors the dehydrated NIPA and stabilizes the H(2)O-poor state of the NIPA molecule more than NaCl.
Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs.
Hohaus, Thorsten; Gensch, Iulia; Kimmel, Joel; Worsnop, Douglas R; Kiendler-Scharr, Astrid
2015-06-14
The composition of secondary organic aerosols (SOAs) formed by β-pinene ozonolysis was experimentally investigated in the Juelich aerosol chamber. Partitioning of oxidation products between gas and particles was measured through concurrent concentration measurements in both phases. Partitioning coefficients (Kp) of 2.23 × 10(-5) ± 3.20 × 10(-6) m(3) μg(-1) for nopinone, 4.86 × 10(-4) ± 1.80 × 10(-4) m(3) μg(-1) for apoverbenone, 6.84 × 10(-4) ± 1.52 × 10(-4) m(3) μg(-1) for oxonopinone and 2.00 × 10(-3) ± 1.13 × 10(-3) m(3) μg(-1) for hydroxynopinone were derived, showing higher values for more oxygenated species. The observed Kp values were compared with values predicted using two different semi-empirical approaches. Both methods led to an underestimation of the partitioning coefficients with systematic differences between the methods. Assuming that the deviation between the experiment and the model is due to non-ideality of the mixed solution in particles, activity coefficients of 4.82 × 10(-2) for nopinone, 2.17 × 10(-3) for apoverbenone, 3.09 × 10(-1) for oxonopinone and 7.74 × 10(-1) for hydroxynopinone would result using the vapour pressure estimation technique that leads to higher Kp. We discuss that such large non-ideality for nopinone could arise due to particle phase processes lowering the effective nopinone vapour pressure such as diol- or dimer formation. The observed high partitioning coefficients compared to modelled results imply an underestimation of SOA mass by applying equilibrium conditions.
40 CFR 799.6755 - TSCA partition coefficient (n-octanol/water), shake flask method.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fact that the P becomes dependent upon the concentration of the solution. Because of the multiple... Potential of Organic Chemicals in Fish. Environmental Science and Technology 8:1113 (1974). (2) Leo, A. et...
Cheruvu, Narayan P. S.; Kompella, Uday B.
2012-01-01
Purpose To determine the influence of the choroid–Bruch’s layer and solute lipophilicity on in vitro transscleral drug permeability in bovine and porcine eyes. Methods The in vitro permeability of two VEGF inhibitory drugs, budesonide and celecoxib, which are lipophilic and neutral at physiologic pH, and of three marker solutes, 3H-mannitol (hydrophilic, neutral), sodium fluorescein (hydrophilic, anionic), and rhodamine 6G (lipophilic, cationic), were determined across freshly excised scleras, with or without the underlying choroid–Bruch’s layer. Select studies were performed using porcine sclera with and without choroid–Bruch’s layer. Neural retina was removed by exposure of the eyecup to isotonic buffer and wherever required, the retinal pigment epithelial (RPE) layer of the preparation was disrupted and removed by exposure to hypertonic buffer. Because of the poor solubility of celecoxib and budesonide, permeability studies were conducted with 5% wt/vol of hydroxypropyl-β-cyclodextrin (HPβCD). For other solutes, permeability studies were conducted, with and without HPβCD. Partitioning of the solutes into bovine sclera and choroid–Bruch’s layer was also determined. Results The calculated log (distribution coefficient) values were −2.89, −0.68, 2.18, 3.12, and 4.02 for mannitol, sodium fluorescein, budesonide, celecoxib, and rhodamine 6G, respectively. Removal of RPE was confirmed by transmission electron microscopy and differences in the transport of mannitol. The order of the permeability coefficients (Papp) across sclera and sclera–choroid–Bruch’s layers in bovine and porcine models was 3H-mannitol > fluorescein > budesonide > celecoxib > rhodamine 6G, with HPβCD, and 3H-mannitol > fluorescein > rhodamine 6G, without HPβCD. The presence of choroid–Bruch’s layer reduced the bovine scleral permeability by 2-, 8-, 16-, 36-, and 50-fold and porcine tissue permeability by 2-, 7-, 15-, 33-, and 40-fold, respectively, for mannitol, sodium fluorescein, budesonide, celecoxib, and rhodamine 6G. The partition coefficients measured in bovine tissues correlated positively with the log (distribution coefficient) and exhibited a trend opposite that of transport. The partition coefficient ratio of bovine choroid–Bruch’s layer to sclera was ~1, 1.5, 1.7, 2, and 3.5, respectively, for the solutes, as listed earlier. Conclusions The choroid–Bruch’s layer is a more significant barrier to drug transport than is sclera. It hinders the transport of lipophilic solutes, especially a cationic solute, more than hydrophilic solutes and in a more dramatic way than does sclera. The reduction in transport across this layer directly correlates with solute binding to the tissue. Understanding the permeability properties of sclera and underlying layers would be beneficial in designing better drugs for transscleral delivery. PMID:17003447
Aroma volatility from aqueous sucrose solutions at low and subzero temperatures.
Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée
2004-11-17
The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.
NASA Astrophysics Data System (ADS)
Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.
2005-12-01
Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.
Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter
Chiou, C.T.; Kile, D.E.
1994-01-01
Vapor sorption capacities on a high-organic-content peat, a model for soil organic matter (SOM), were determined at room temperature for the following liquids: n-hexane, 1,4-dioxane, nitroethane, acetone, acetonitrile, 1-propanol, ethanol, and methanol. The linear organic vapor sorption is in keeping with the dominance of vapor partition in peat SOM. These data and similar results of carbon tetrachloride (CT), trichloroethylene (TCE), benzene, ethylene glycol monoethyl ether (EGME), and water on the same peat from earlier studies are used to evaluate the effect of polarity on the vapor partition in SOM. The extrapolated liquid solubility from the vapor isotherm increases sharply from 3-6 wt % for low-polarity liquids (hexane, CT, and benzene) to 62 wt % for polar methanol and correlates positively with the liquid's component solubility parameters for polar interaction (??P) and hydrogen bonding (??h). The same polarity effect may be expected to influence the relative solubilities of a variety of contaminants in SOM and, therefore, the relative deviations between the SOM-water partition coefficients (Kom) and corresponding octanol-water partition coefficients (Kow) for different classes of compounds. The large solubility disparity in SOM between polar and nonpolar solutes suggests that the accurate prediction of Kom from Kow or Sw (solute water solubility) would be limited to compounds of similar polarity.
Xu, Feng; Liang, Xinmiao; Lin, Bingcheng; Su, Fan; Schramm, Karl-Werner; Kettrup, Antonius
2002-08-01
The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) XYZ0 + mV(I)/100 + spi + bbetam + aalpham, was applied to analyze capacity factors (k'), soil organic partition coefficients (Koc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control logKoc, log P, and logk' (on soil and on C18) are the solute size (V(I)/100) and hydrogen-bond basicity (betam). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpham). Log k' on soil and log Koc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C18 and logP have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, logk' values on C18 have good correlations with logP (r > 0.97), while logk' values on soil have good correlations with logKoc (r > 0.98). Two Koc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC.
Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules.
Endo, Satoshi; Pfennigsdorff, Andrea; Goss, Kai-Uwe
2012-02-07
Salting-out in aqueous NaCl solutions is relevant for the environmental behavior of organic contaminants. In this study, Setschenow (or salting-out) coefficients (K(s) [M(-1)]) for 43 diverse neutral compounds in NaCl solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The results were used to calibrate and evaluate estimation models for K(s). The molar volume of the solute correlated only moderately with K(s) (R(2) = 0.49, SD = 0.052). The polyparameter linear free energy relationship (pp-LFER) model that uses five compound descriptors resulted in a more accurate fit to our data (R(2) = 0.83, SD = 0.031). The pp-LFER analysis revealed that Na(+) and Cl(-) in aqueous solutions increase the cavity formation energy cost and the polar interaction energies toward neutral organic solutes. Accordingly, the salting-out effect increases with the size and decreases with the polarity of the solute molecule. COSMO-RS, a quantum mechanics-based fully predictive model, generally overpredicted the experimental K(s), but the predicted values were moderately correlated with the experimental values (R(2) = 0.66, SD = 0.042). Literature data (n = 93) were predicted by the calibrated pp-LFER and COSMO-RS models with root mean squared errors of 0.047 and 0.050, respectively. This study offers prediction models to estimate K(s), allowing implementation of the salting-out effect in contaminant fate models, linkage of various partition coefficients (such as air-water, sediment-water, and extraction phase-water partition coefficients) measured for fresh water and seawater, and estimation of enhancement of extraction efficiency in analytical procedures.
Padró, Juan M; Ponzinibbio, Agustín; Mesa, Leidy B Agudelo; Reta, Mario
2011-03-01
The partition coefficients, P(IL/w), for different probe molecules as well as for compounds of biological interest between the room-temperature ionic liquids (RTILs) 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF(6)], 1-hexyl-3-methylimidazolium hexafluorophosphate, [HMIM][PF(6)], 1-octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF(4)] and water were accurately measured. [BMIM][PF(6)] and [OMIM][BF(4)] were synthesized by adapting a procedure from the literature to a simpler, single-vessel and faster methodology, with a much lesser consumption of organic solvent. We employed the solvation-parameter model to elucidate the general chemical interactions involved in RTIL/water partitioning. With this purpose, we have selected different solute descriptor parameters that measure polarity, polarizability, hydrogen-bond-donor and hydrogen-bond-acceptor interactions, and cavity formation for a set of specifically selected probe molecules (the training set). The obtained multiparametric equations were used to predict the partition coefficients for compounds not present in the training set (the test set), most being of biological interest. Partial solubility of the ionic liquid in water (and water into the ionic liquid) was taken into account to explain the obtained results. This fact has not been deeply considered up to date. Solute descriptors were obtained from the literature, when available, or else calculated through commercial software. An excellent agreement between calculated and experimental log P(IL/w) values was obtained, which demonstrated that the resulting multiparametric equations are robust and allow predicting partitioning for any organic molecule in the biphasic systems studied.
Landi, S; Held, H R
1965-01-01
Chinosol (8-quinolinol sulfate), which is employed as an antimicrobial agent in tuberculin PPD solutions used for the Mantoux test, is known to disappear from these solutions after storage. It has been established that the loss of this preservative from tuberculin solutions dispensed in glass vials is caused by the rubber stoppers used to seal the vials. All the rubber stoppers tested absorbed Chinosol very readily.The nature of the binding of Chinosol by a rubber stopper is both chemical (irreversible) and physical (reversible). The capacity to bind Chinosol chemically was determined for 12 types of rubber stopper, and was found to vary from 0 to more than 25% by weight of the stopper. This phenomenon can be attributed mainly to metal ingredients in the stopper. The capacity of stoppers to bind Chinosol physically is expressed quantitatively by a partition coefficient. This was determined for 7 types of rubber stopper and found to be high when compared with the partition coefficients of other preservatives.We have shown that all stoppers presaturated in Chinosol can be equilibrated against a buffered solution containing 0.01% Chinosol. Equilibrated silicone, white, and red oxiglazed stoppers can be used satisfactorily for sealing multi-dose vials of tuberculin PPD containing 0.01% Chinosol.
Landi, S.; Held, H. R.
1965-01-01
Chinosol (8-quinolinol sulfate), which is employed as an antimicrobial agent in tuberculin PPD solutions used for the Mantoux test, is known to disappear from these solutions after storage. It has been established that the loss of this preservative from tuberculin solutions dispensed in glass vials is caused by the rubber stoppers used to seal the vials. All the rubber stoppers tested absorbed Chinosol very readily. The nature of the binding of Chinosol by a rubber stopper is both chemical (irreversible) and physical (reversible). The capacity to bind Chinosol chemically was determined for 12 types of rubber stopper, and was found to vary from 0 to more than 25% by weight of the stopper. This phenomenon can be attributed mainly to metal ingredients in the stopper. The capacity of stoppers to bind Chinosol physically is expressed quantitatively by a partition coefficient. This was determined for 7 types of rubber stopper and found to be high when compared with the partition coefficients of other preservatives. We have shown that all stoppers presaturated in Chinosol can be equilibrated against a buffered solution containing 0.01% Chinosol. Equilibrated silicone, white, and red oxiglazed stoppers can be used satisfactorily for sealing multi-dose vials of tuberculin PPD containing 0.01% Chinosol. ImagesFIG. 2 PMID:5294923
Absence of solute drag in solidification
NASA Astrophysics Data System (ADS)
Kittl, J. A.; Aziz, M. J.; Brunco, D. P.; Thompson, M. O.
1994-05-01
The interface response functions for alloy solidification were measured in the nondegenerate regime of partial solute trapping. We used a new technique to measure temperatures and velocities simultaneously during rapid solidification of Si-As alloys induced by pulsed laser melting. In addition, partition coefficients were determined using Rutherford backscattering. The results are in good agreement with predictions of the Continuous Growth Model without solute drag of M. J. Aziz and T. Kaplan [Acta Metall. 36, 1335 (1988)] and are inconsistent with all solute drag models.
Stabilization of aroma compounds through sorption-release by packaging polymers.
Reynier, Alain; Dole, Patrice; Fricoteaux, Florence; Saillard, Philippe; Feigenbaum, Alexandre E
2004-09-08
Plastic packaging materials are often associated to aroma losses and to a decrease of the organoleptic quality of foods. This work defines situations where, on the contrary, plastics play a regulating role on the concentration of reactive aroma compounds in foods. These systems can be described by a two step mechanism; first, aroma is sorbed in the polymer, while the fraction in solution degrades quickly; in a second step, as the concentration is close to zero in the solution, the polymer liberates progressively the sorbed aroma back to the food. A simple numerical model is proposed, describing competitive processes of aroma degradation in solution and sorption by a polymer in contact with a homogeneous aqueous food. The classical limonene/low density polyethylene (LDPE) system is studied experimentally for the validation of the model: in an acidic medium, limonene both degrades quickly and is sorbed quickly, with a large solubility in LDPE. To define which aroma packaging systems could also display this interesting behavior, all types of possible interactions, using thermodynamic and kinetic parameters describing most practical situations, are simulated. For that purpose, 35 values of reference diffusion coefficients and 35 partition coefficients of usual aroma compounds between polymers and water have been measured and combined with the few available data from literature. The situations where polymers regulate the aroma concentration in food correspond to large partition coefficients (above 10), large diffusion coefficients (>10(-9) cm2 x s(-1)), and large degradation constants.
Shoeib, Mahiba; Harner, Tom
2002-05-01
Octanol-air partition coefficients (Koa) were measured directly for 19 organochlorine (OC) pesticides over the temperature range of 5 to 35 degrees C. Values of log Koa at 25 degrees C ranged over three orders of magnitude, from 7.4 for hexachlorobenzene to 10.1 for 1,1-dichloro-2,2-bis(p-chlorophenyl) ethane. Measured values were compared to values calculated as KowRT/H (where R is the ideal gas constant [8.314 J mol(-1) K(-1)], T is absolute temperature, and H is Henry's law constant) were, in general, larger. Discrepancies of up to three orders of magnitude were observed, highlighting the need for direct measurements of Koa. Plots of Koa versus inverse absolute temperature exhibited a log-linear correlation. Enthalpies of phase transition between octanol and air (deltaHoa) were determined from the temperature slopes and were in the range of 56 to 105 kJ mol(-1) K(-1). Activity coefficients in octanol (gamma(o)) were determined from Koa and reported supercooled liquid vapor pressures (pL(o)), and these were in the range of 0.3 to 12, indicating near-ideal solution behavior. Differences in Koa values for structural isomers of hexachlorocyclohexane were also explored. A Koa-based model was described for predicting the partitioning of OC pesticides to aerosols and used to calculate particulate fractions at 25 and -10 degrees C. The model also agreed well with experimental results for several OC pesticides that were equilibrated with urban aerosols in the laboratory. A log-log regression of the particle-gas partition coefficient versus Koa had a slope near unity, indicating that octanol is a good surrogate for the aerosol organic matter.
Liang, Yuzhen; Xiong, Ruichang; Sandler, Stanley I; Di Toro, Dominic M
2017-09-05
Polyparameter Linear Free Energy Relationships (pp-LFERs), also called Linear Solvation Energy Relationships (LSERs), are used to predict many environmentally significant properties of chemicals. A method is presented for computing the necessary chemical parameters, the Abraham parameters (AP), used by many pp-LFERs. It employs quantum chemical calculations and uses only the chemical's molecular structure. The method computes the Abraham E parameter using density functional theory computed molecular polarizability and the Clausius-Mossotti equation relating the index refraction to the molecular polarizability, estimates the Abraham V as the COSMO calculated molecular volume, and computes the remaining AP S, A, and B jointly with a multiple linear regression using sixty-five solvent-water partition coefficients computed using the quantum mechanical COSMO-SAC solvation model. These solute parameters, referred to as Quantum Chemically estimated Abraham Parameters (QCAP), are further adjusted by fitting to experimentally based APs using QCAP parameters as the independent variables so that they are compatible with existing Abraham pp-LFERs. QCAP and adjusted QCAP for 1827 neutral chemicals are included. For 24 solvent-water systems including octanol-water, predicted log solvent-water partition coefficients using adjusted QCAP have the smallest root-mean-square errors (RMSEs, 0.314-0.602) compared to predictions made using APs estimated using the molecular fragment based method ABSOLV (0.45-0.716). For munition and munition-like compounds, adjusted QCAP has much lower RMSE (0.860) than does ABSOLV (4.45) which essentially fails for these compounds.
Mbah, C J
2007-01-01
Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin.
An efficient approach for treating composition-dependent diffusion within organic particles
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.; ...
2017-09-07
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
An efficient approach for treating composition-dependent diffusion within organic particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
Solubility properties of siloxane polymers for chemical sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, J.W.; Abraham, M.H.
1995-05-01
This paper discusses the factors governing the sorption of vapors by organic polymers. The principles have been applied in the past for designing and selecting polymers for acoustic wave sensors; however they apply equally well to sorption of vapors by polymers used on optical chemical sensors. A set of solvation parameters (a table is presented for various organic vapors) have been developed that describe the particular solubility properties of individual solute molecules; they are used in linear solvation energy relationships (LSER) that model the sorption process. LSER coefficients are tabulated for five polysiloxanes; so are individual interaction terms for eachmore » of the 5 polymers. Dispersion interactions play a major role in determining overall partition coefficients; the log L{sup 16} (gas-liquid partition coefficient of solute on hexadecane) value of vapors are important in determining overall sorption. For the detection of basic vapors such as organophosphates, a hydrogen-bond acidic polymers will be most effective at sorbing them. Currently, fiber optic sensors are being developed where the cladding serves as a sorbent layer to collect and concentrate analyte vapors, which will be detected and identified spectroscopically. These solubility models will be used to design the polymers for the cladding for particular vapors.« less
Fabbrizio, Alessandro; Stalder, Roland; Hametner, Kathrin; Günther, Detlef
2013-01-01
Cl partition coefficients between forsterite, enstatite and coexisting Cl-bearing aqueous fluids were determined in a series of high pressure and temperature piston cylinder experiments at 2 GPa between 900 and 1300 °C in the system MgO–SiO2–H2O–NaCl–BaO–C±CaCl2±TiO2±Al2O3±F. Diamond aggregates were added to the experimental capsule set-up in order to separate the fluid from the solid residue and enable in situ analysis of the quenched solute by LA-ICP-MS. The chlorine content of forsterite and enstatite was measured by electron microprobe, and the nature of hydrous defects was investigated by infrared spectroscopy. Partition coefficients show similar incompatibility for Cl in forsterite and enstatite, with DClfo/fl = 0.0012 ± 0.0006, DClen/fl = 0.0018 ± 0.0008 and DClfo/en = 1.43 ± 0.71. The values determined for mineral/fluid partitioning are very similar to previously determined values for mineral/melt. Applying the new mineral/fluid partition coefficients to fluids in subduction zones, a contribution between 0.15% and 20% of the total chlorine from the nominally anhydrous minerals is estimated. Infrared spectra of experimental forsterite show absorption bands at 3525 and 3572 cm−1 that are characteristic for hydroxyl point defects associated with trace Ti substitutions, and strongly suggest that the TiO2 content of the system can influence the chlorine and OH incorporation via the stabilization of Ti-clinohumite-like point defects. The water contents for coexisting forsterite and enstatite in some runs were determined using unpolarized IR spectra and calculated water partition coefficients DH2Ofo/en are between 0.01 and 0.5. PMID:25843971
Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.
Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming
2015-11-01
n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. Copyright © 2015. Published by Elsevier B.V.
Water-soluble drug partitioning and adsorption in HEMA/MAA hydrogels.
Dursch, Thomas J; Taylor, Nicole O; Liu, David E; Wu, Rong Y; Prausnitz, John M; Radke, Clayton J
2014-01-01
Two-photon confocal microscopy and back extraction with UV/Vis-absorption spectrophotometry quantify equilibrium partition coefficients, k, for six prototypical drugs in five soft-contact-lens-material hydrogels over a range of water contents from 40 to 92%. Partition coefficients were obtained for acetazolamide, caffeine, hydrocortisone, Oregon Green 488, sodium fluorescein, and theophylline in 2-hydroxyethyl methacrylate/methacrylic acid (HEMA/MAA, pKa≈5.2) copolymer hydrogels as functions of composition, aqueous pH (2 and 7.4), and salinity. At pH 2, the hydrogels are nonionic, whereas at pH 7.4, hydrogels are anionic due to MAA ionization. Solute adsorption on and nonspecific electrostatic interaction with the polymer matrix are pronounced. To express deviation from ideal partitioning, we define an enhancement or exclusion factor, E ≡ k/φ1, where φ1 is hydrogel water volume fraction. All solutes exhibit E > 1 in 100 wt % HEMA hydrogels owing to strong specific adsorption to HEMA strands. For all solutes, E significantly decreases upon incorporation of anionic MAA into the hydrogel due to lack of adsorption onto charged MAA moieties. For dianionic sodium fluorescein and Oregon Green 488, and partially ionized monoanionic acetazolamide at pH 7.4, however, the decrease in E is more severe than that for similar-sized nonionic solutes. Conversely, at pH 2, E generally increases with addition of the nonionic MAA copolymer due to strong preferential adsorption to the uncharged carboxylic-acid group of MAA. For all cases, we quantitatively predict enhancement factors for the six drugs using only independently obtained parameters. In dilute solution for solute i, Ei is conveniently expressed as a product of individual enhancement factors for size exclusion (Ei(ex)), electrostatic interaction (Ei(el)), and specific adsorption (Ei(ad)):Ei≡Ei(ex)Ei(el)Ei(ad). To obtain the individual enhancement factors, we employ an extended Ogston mesh-size distribution for Ei(ex); Donnan equilibrium for Ei(el); and Henry's law characterizing specific adsorption to the polymer chains for Ei(ad). Predicted enhancement factors are in excellent agreement with experiment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Primary arm spacing in directionally solidified Pb-10 wt percent Sn alloys
NASA Technical Reports Server (NTRS)
Chopra, M. A.; Tewari, S. N.
1990-01-01
The dependence of primary arm spacings on growth speed was investigated for cellular and dendritic arrays in Pb-10 wt percent Sn samples directionally solidified under a constant positive thermal gradient in the melt. The gradient of constitutional supercooling was varied from almost zero (near the break-down of the planar liquid-solid interface at small growth speeds, cellular morphology) to near unity (large growth speeds, dendritic morphology). The spatial arrangements of cells and dendrites, as given by their coordination number, are not very different from each other. It appears that primary arm spacing maxima and the cell to dendrite transition are strongly influenced by the magnitude of the solute partition coefficient. The planar to cellular bifurcation is supercritical in Pb-Sn which has a high partition coefficient, as compared to the subcritical behavior reported in Al-Cu and succinonitrile-acetone, both of which have low partition coefficients. The primary arm spacing model due to Hunt agrees with the experimentally observed trend for the whole growth regime. There is a good quantitative agreement at higher gradients of supercooling. However, the model overpredicts the primary arm spacings at low gradients of constitutional supercooling.
Mendel, J; Thust, R; Schwarz, H
1982-01-01
The alkylating activity, chemical stability in aqueous solution (pH 7.0; 37 degrees C), and partition coefficient (octanol/water) of the following compounds were determined: 1-methyl-3-phenyl-1-nitrosourea (MPNU), 1-ethyl-3-phenyl-1-nitrosourea (EPNU), 1-isopropyl-3-phenyl-1-nitrosourea (i-PrPNU), 1-methyl-3-(p-fluorophenyl)-1-nitrosourea (F-MPNU), 1-methyl-3-(p-chlorophenyl)-1-nitrosourea (Cl-MPNU), 1-methyl-3-(p-bromophenyl)-1-nitrosourea (Br-MPNU), 1,3-dimethyl-3-phenyl-1-nitrosourea (DMPNU), and 1-methyl-3-naphthyl-1-nitrosocarbamate (NCA). 1-Methyl-1-nitrosourea (MNU) and 1-ethyl-1-nitrosourea (ENU) were used for the comparison. THe rate of decomposition in aqueous solution is discussed concerning the influences of the substituents at the 1- and 3-N-atom. The mono- and disubstituted N-nitrosoureas showed a coarse correlation between alkylating activity and SCE induction in Chinese hamster V 79-E cells. On the other hand, this correlation is missing in the case of NCA, which is a potent SCE inducer despite relatively low alkylating activity. DMPNU is the strongest SCE inducer, but this compound shows a high stability in aqueous solution and, consequently, we were not able to detect an alkylating activity.
Impact of Slow-Rate Land Treatment on Groundwater Quality, Toxic Organics
1984-12-01
environmentally significant or mobile in tween the soil or sediment partition coefficient the soil solution . and the partitiop coafficien: for the same sub... soil solution in equi- ment particles and have found a strong correlation librium with an eqaal mass of soil material: between the extent of sorption...then the equilibrium soil solution concen- Pentachlorophenol 2 tration is 0.021 ppm (mg/L). Of a total mass of z m-Nitrotoluene 3 "added to an equal
Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite
Tesoriero, A.J.; Pankow, J.F.
1996-01-01
Although solid solutions play important roles in controlling the concentrations of minor metal ions in natural waters, uncertainties regarding their compositions, thermodynamics, and kinetics usually prevent them from being considered. A range of precipitation rates was used here to study the nonequilibrium and equilibrium partitioning behaviors of Sr2+, Ba2+, and Cd2+ to calcite (CaCO3(s)). The distribution coefficient of a divalent metal ion Me2+ for partitioning from an aqueous solution into calcite is given by DMe = (XMeCO3(s)/[Me2+])/(XCaCO3(s)/[Ca 2+]). The X values are solid-phase mole fractions; the bracketed values are the aqueous molal concentrations. In agreement with prior work, at intermediate to high precipitation rates R (nmol/mg-min), DSr, DBa, and DCd were found to depend strongly on R. At low R, the values of DSr, DBa, and DCd became constant with R. At 25??C, the equilibrium values for DSr, DBa, and DCd for dilute solid solutions were estimated to be 0.021 ?? 0.003, 0.012 ?? 0.005, and 1240 ?? 300, respectively. Calculations using these values were made to illustrate the likely importance of partitioning of these ions to calcite in groundwater systems. Due to its large equilibrium DMe value, movement of Cd2+ will be strongly retarded in aquifers containing calcite; Sr2+ and Ba2+ will not be retarded nearly as much.
Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K
2016-05-17
Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burant, Aniela; Thompson, Christopher; Lowry, Gregory V.
2016-05-17
Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch reactor system with dual spectroscopic detectors: a near infrared spectrometer for measuring the organic analyte in the CO2 phase, and a UV detector for quantifying the analyte inmore » the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly-parameter linear free energy relationship and to develop five new linear free energy relationships for predicting water-sc-CO2 partitioning coefficients. Four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than the model built for the entire dataset.« less
Smedes, Foppe; Rusina, Tatsiana P; Beeltje, Henry; Mayer, Philipp
2017-11-01
Polymers are increasingly used for passive sampling of neutral hydrophobic organic substances (HOC) in environmental media including water, air, soil, sediment and even biological tissue. The equilibrium concentration of HOC in the polymer can be measured and then converted into equilibrium concentrations in other (defined) media, which however requires appropriate polymer to media partition coefficients. We determined thus polymer-lipid partition coefficients (K PL ) of various PCB, PAH and organochlorine pesticides by equilibration of two silicones and low density polyethylene (LDPE) with fish oil and Triolein at 4 °C and 20 °C. We observed (i) that K PL was largely independent of lipid type and temperature, (ii) that lipid diffusion rates in the polymers were higher compared to predictions based on their molecular volume, (iii) that silicones showed higher lipid diffusion and lower lipid sorption compared to LDPE and (iv) that absorbed lipid behaved like a co-solute and did not affect the partitioning of HOC at least for the smaller molecular size HOC. The obtained K PL can convert measured equilibrium concentrations in passive sampling polymers into equilibrium concentrations in lipid, which then can be used (1) for environmental quality monitoring and assessment, (2) for thermodynamic exposure assessment and (3) for assessing the linkage between passive sampling and the traditionally measured lipid-normalized concentrations in biota. LDPE-lipid partition coefficients may also be of use for a thermodynamically sound risk assessment of HOC contained in microplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kavner, A.
2017-12-01
In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.
Studies of Drug Delivery and Drug Release of Dendrimer by Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Lin, Chun-Min; Wu, Yi-Fan; Tsao, Heng-Kwong; Sheng, Yu-Jane
2008-02-01
Dendrimers, like unimolecular micelles, may encapsulate guest biomolecules (drug) and therefore are attractive candidates as carriers in drug delivery applications. Hydrophobic drugs can be complexed within the hydrophobic dendrimer interior to make them water-soluble. The equilibrium partition of hydrophobic solutes into a dendrimer with hydrophobic interior from aqueous solutions is studied by dissipative particle dynamics. The drug is mainly distributed in the vicinity of the interface between hydrophobic interior and hydrophilic exterior within a dendrimer. The partition coefficient, which is defined as the concentration ratio of the drug distributed within dendrimer to aqueous phases, depends on the interaction between drug and hydrophilic dendrimer exterior. Increasing the repulsion between them reduces the solubilization ability associated with the dendrimer.
NASA Technical Reports Server (NTRS)
Murrell, M. T.; Burnett, D. S.
1986-01-01
Experimental partitioning studies are reported of K, U, and Th between silicate and FeFeS liquids designed to test the proposal that actinide partitioning into sulfide liquids is more important then K partitioning in the radioactive heating of planetary cores. For a basaltic liquid at 1450 C and 1.5 GPa, U partitioning into FeFeS liquids is five times greater than K partitioning. A typical value for the liquid partition coefficient for U from a granitic silicate liquid at one atmosphere at 1150 C and low fO2 is about 0.02; the coefficient for Th is similar. At low fO2 and higher temperature, experiments with basaltic liquids produce strong Ca and U partitioning into the sulfide liquid with U coefficient greater than one. The Th coefficient is less strongly affected.
Impacts of environmental conditions on the sorption of volatile organic compounds onto tire powder.
Oh, Dong I; Nam, Kyongphile; Park, Jae W; Khim, Jee H; Kim, Yong K; Kim, Jae Y
2008-05-01
A series of batch tests were performed and the impacts of environmental conditions and phase change on the sorption of volatile organic compounds (VOCs) were investigated. Benzene, trichloroethylene, tetrachloroethylene, and ethylbenzene were selected as target VOCs. Sorption of VOCs onto tire powder was well demonstrated by a linear-partitioning model. Water-tire partition coefficients of VOCs (not tested in this study) could be estimated using a logarithmic relationship between observed water-tire partition coefficients and octanol-water partition coefficients of the VOCs tested. The target VOCs did not seem to compete with other VOCs significantly when sorbed onto the tire powder for the range of concentrations tested. The influence of environmental conditions, such as pH and ionic strength also did not seem to be significant. Water-tire partition coefficients of benzene, trichloroethylene, tetrachloroethylene, and ethylbenzene decreased as the sorbent dosage increased. However, they showed stable values when the sorbent dosage was greater than 10 g/L. Air-tire partition coefficient could be extrapolated from Henry's law constants and water-tire partition coefficient of VOCs.
Temperature affects transport of polysaccharides and proteins in articular cartilage explants.
Moeini, Mohammad; Lee, Kwan-Bong; Quinn, Thomas M
2012-07-26
Solute transport phenomena mediate many aspects of the physiology and contrast agent-based clinical imaging of articular cartilage. Temperatures up to 10°C below standard body temperature (37°C) are common in articulating joints during normal activities and clinically (e.g. cold treatment of injuries). Therefore it is of interest to characterize the effects of temperature changes on solute transport parameters in cartilage. A range of fluorescent solutes including fluorescein isothiocyanate, 4 and 40kDa dextrans, myoglobin, insulin and chondroitin sulfate were prepared and used in assays of solute effective partition coefficient and effective diffusivity in bovine intermediate zone articular cartilage explants maintained at 10, 22 or 37°C. Trends for increasing partition coefficient with increasing temperature were evident for all solutes except chondroitin sulfate, with significant changes between 22 and 37°C for 4kDa dextran, insulin and myoglobin. Diffusivities of most solutes tested also tended to increase with increasing temperature, with significant changes between 10 and 22°C for FITC, 40kDa dextran and myoglobin. Oddly, insulin diffusivity decreased significantly as temperature increased from 22 to 37°C while chondroitin sulfate diffusivity exhibited no clear temperature dependence. These results highlight solute-specific temperature dependences of transport phenomena which may depend upon molecular weight, chemical structure, molecular conformation, and solute-matrix and solute-solute interactions. The articular cartilage explants themselves exhibited small but significant changes in water and glycosaminoglycan contents during experiments, underscoring the importance of solute-matrix interactions. Solute transport parameters in cartilage and their temperature dependences are therefore not easily predicted, and case-by-case experimental determination may be essential. Copyright © 2012 Elsevier Ltd. All rights reserved.
The influence of hydrogen bonding on partition coefficients
NASA Astrophysics Data System (ADS)
Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues
2017-02-01
This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.
ESTIMATING DISSOLVED ORGANIC CARBON PARTITION COEFFICIENTS FOR NONIONIC ORGANIC CHEMICALS
A literature search was performed for dissolved organic carbon/water partition coefficients for nonionic chemicals (Kdoc) and Kdoc data was taken from more than sixty references. The Kdoc data were evaluated as a function of the n-octanol/water partition coefficients (Kow). A pre...
40 CFR 799.6755 - TSCA partition coefficient (n-octanol/water), shake flask method.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Qualifying statements. This method applies only to pure, water soluble substances which do not dissociate or... applies to a pure substance dispersed between two pure solvents. If several different solutes occur in one... applied. The values presented in table 1 of this section are not necessarily representative of the results...
40 CFR 799.6755 - TSCA partition coefficient (n-octanol/water), shake flask method.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Qualifying statements. This method applies only to pure, water soluble substances which do not dissociate or... applied. The values presented in table 1 of this section are not necessarily representative of the results... Law applies only at constant temperature, pressure, and pH for dilute solutions. It strictly applies...
NASA Astrophysics Data System (ADS)
Blundy, Jonathan D.; Wood, Bernard J.
1991-01-01
The isothermal (750°C) experiments of LAGACHE and DUJON (1987) reveal that the partitioning of Sr between plagioclase feldspar and hydrothermal solutions is a funtion of the anorthite (An) content of the plagioclase, indicating that crystal chemistry may exert a powerful influence on trace element partitioning. In order to compare these results with those on trace element partitioning between plagioclase and silicate melts we have compiled from the literature a large dataset of experimental and volcanic distribution coefficients ( D's) for Sr (and Ba). These data, which span a compositional range from lunar basalt to high silica rhyolite and a temperature range of over 650°C, show a relationship between DSr (and DBa) and mole fraction An ( XAn) which is similar to that exhibited by the hydrothermal results obtained at constant temperature. Plots of In DSr and In DBa versus XAn are linear with negative slope, indicating that both elements are more compatible in albite than anorthite. In terms of molar distribution coefficients ( D Sr∗) the hydrothermal and silicate melt data display an identical linear relationship between RT In D Sr∗ (where T is the absolute temperature in K and R is the gas constant, 8.314 JK -1 mol -1) and XAn. We conclude therefore that crystal chemistry provides the dominant control on partitioning of Sr and Ba into plagioclase and that the effects of temperature, pressure, and fluid composition are minor. Apparent relationships between DSr (and DBa) and the reciprocal temperature (1/ T) are artefacts of the linear relationships between XAn and 1/ T in the experimental studies. By defining a Henry's law standard state for the silicate melts and hydrothermal solutions, and considering plagioclases to be ternary regular solutions, we are able to relate the observed relationships between RT In D i∗ (where i is Ba or Sr) and XAn to the excess free energies of the trace element partitioning reactions between plagioclase and melt or hydrothermal solution. The interaction parameters are consistent with simple models in which the larger Ba or Sr cations are accommodated by lattice strain in the host plagioclase lattice, which is assumed to be perfectly elastic and isotropic. Thus D i∗ is a function of the Young's modulus of the host crystal and the size mismatch between trace and host cations. The greater elasticity of albite relative to anorthite accounts for the observed preference of Sr and Ba for sodic plagioclases over calcic plagioclases. For geochemical purposes the weight fraction partition coefficient Di is of more value than its molar counterpart. Regression of the Di data versus XAn yields the semi-empirical relationships RTIn DSr = 26,800 - 26,700 · XAnRTIn DBa = 10,200 - 38,200 · XAn. Thus measurement of the An and trace element (Ba, Sr) contents of a magmatic plagioclase enables calculation of the Ba and Sr contents of the coexisting liquid, which can be extremely important in the deciphering of igneous processes. By reference to plagioclase fractionation in the simple An-Ab binary we show that failure to take into account the compositional dependence of DSr can result in erroneous interpretations of geochemical trends. We also consider applications to three natural igneous suites: the Aden Volcanics; the layered Kiglapait Intrusion, Labrador; and the southern Actamello Massif, Italy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Hardy, D.; Favennec, Y., E-mail: yann.favennec@univ-nantes.fr; Rousseau, B.
The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken intomore » account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.« less
Jakomin, L M; Marbán, L; Grondona, S; Glok Galli, M; Martínez, D E
2015-09-01
The prediction about metals behaviour in soil requires knowledge on their solid-liquid partitioning. Usually it is expressed with an empirical distribution coefficient or Kd, which gives the ratio of the metal concentration in the solid phase to that in the solution. Kd values have been determined for Zn, Pb and Cd from samples representing the two most exploited aquifers in Argentina, Pampeano and Puelche, at three different locations in the province of Buenos Aires. The Pampeano aquifer presented higher Kd values than the Puelche aquifer. Comparing Kd values, different relationships could be observed: (a) Pampeano aquifer: Pb > Zn > Cd, and (b) Puelche aquifer: Pb > Cd > Zn. Kd for Cd seems to be linked to cationic exchange capacity, but solid phases precipitation can be more determining for Pb and Zn.
The impact of aerosol composition on the particle to gas partitioning of reactive mercury.
Rutter, Andrew P; Schauer, James J
2007-06-01
A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.
2012-01-01
Background Contrast enhanced cardiovascular magnetic resonance (CMR) with T1 mapping enables quantification of diffuse myocardial fibrosis. Various factors, however, can interfere with T1 measurements. The purpose of the current study was to assess the effect of co-medication with a typical protein binding drug (Ibuprofen) on T1 values in vitro and in vivo. Methods 50 vials were prepared with different concentrations of gadobenate dimeglumine, Ibuprofen and human serum albumin in physiologic NaCl solution and imaged at 1.5T with a spin echo sequence at multiple TRs to measure T1 values and calculate relaxivities. 10 volunteers (5 men; 31±6.3 years) were imaged at 1.5T. T1 values for myocardium and blood pool were determined for various time points after administration of 0.15mmol/kg gadobenate dimeglumine using a modified look-locker inversion-recovery sequence before and after administration of Ibuprofen over 24 hours. The partition coefficient was calculated as ΔR1myocardium/ΔR1blood, where R1=1/T1. Results In vitro no significant correlation was found between relaxivity and Ibuprofen concentration, neither in absence (r=−0.15, p=0.40) nor in presence of albumin (r=−0.32, p=0.30). In vivo there was no significant difference in post contrast T1 times of myocardium and blood, respectively and also in the partition coefficient between exam 1 and 2 (p>0.05). There was good agreement of the T1 times of myocardium and blood and the partition coefficient, respectively between exam 1 and 2. Conclusions Contrast enhanced T1 mapping is unaffected by co-medication with the protein binding substance Ibuprofen and has an excellent reproducibility. PMID:23067266
Frederiksen, Rikard; Boyer, Nicholas P; Nickle, Benjamin; Chakrabarti, Kalyan S; Koutalos, Yiannis; Crouch, Rosalie K; Oprian, Daniel; Cornwall, M Carter
2012-06-01
We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.
NASA Technical Reports Server (NTRS)
Drake, Michael J.; Boynton, William V.
1988-01-01
The effect of oxygen fugacity on the partitioning of REEs between hibonite and silicate melt is investigated in hibonite-growth experiments at 1470 C. The experimental procedures and apparatus are described, and the results are presented in extensive tables and graphs and characterized in detail. The absolute activity coefficients in hibonite are estimated as 330 for La, 1200 for Eu(3+), and 24,000 for Yb. It is inferred that ideal solution behavior cannot be assumed when calculating REE condensation temperatures for (Ca, Al)-rich inclusions in carbonaceous chondrites.
Solvation descriptors for the polychloronaphthalenes: estimation of some physicochemical properties.
Abraham, M H; al-Hussaini, A J
2001-08-01
Solvation descriptors for the 75 polychloronaphthalenes have been derived from literature data on various properties. These descriptors (S, the dipolarity/polarizability; B, the hydrogen bond basicity; L, the logarithm of the gas-hexadecane partition coefficient; E, the excess molar refraction; V, the McGowan volume) have been used to estimate properties that may be environmentally relevant. Thus, for all 75 polychloronaphthalenes, we estimate values for the water-octanol partition coefficient, as log POCT, the aqueous solubility, as log S, the gas-water partition coefficient, as log KW, and the gas-dry octanol partition coefficient, as log KOCT. We further show that it is trivial to estimate other properties for all 75 polychloronaphthalenes; these properties include a number of gas-solvent and water-solvent partitions, air-plant and water-plant partitions, and permeation of human skin from water.
Formation of ion-pairs in aqueous solutions of diclofenac salts.
Fini, A; Fazio, G; Gonzalez-Rodriguez, M; Cavallari, C; Passerini, N; Rodriguez, L
1999-10-05
In this work we studied the ability of the diclofenac anion to form ion-pairs in aqueous solution in the presence of organic and inorganic cations: ion-pairs have a polarity and hydrophobicity more suitable to the partition than each ion considered separately and can be extracted by a lipid phase. The cations considered were those of the organic bases diethylamine, diethanolamine, pyrrolidine, N-(2-hydroxyethyl) pyrrolidine and N-(2-hydroxyethyl) piperidine; the inorganic cations studied were Li(+), Na(+), K(+), Rb(+), Cs(+). Related to each cation we determined the equilibrium constant (K(XD)) for the ion-pair formation with the diclofenac anion in aqueous solution and the water/n-octanol partition coefficient (P(XD)) for each type of ion-pair formed. Among the alkali metal cations, only Li(+) shows some interaction with the diclofenac anion, in agreement with its physiological behaviour of increasing clearance during the administration of diclofenac. The influence of the ionic radius and desolvation enthalpy of the alkali metal cations on the ion-pair formation and partition was briefly discussed. Organic cations promote the formation of ion-pairs with the diclofenac anion better than the inorganic ones, and improve the partition of the ion-pair according to their hydrophobicity. The values of the equilibrium parameters for the formation and partition of ion-pairs are not high enough to allow the direct detection of their presence in the aqueous solution. Their formation can be appreciated in the presence of a lipid phase that continuously extracts the ion-pair. Extraction constants (E(XD)=P(XD) times K(XD)) increase passing from inorga to organic cations. This study could help to clarify the mechanism of the percutaneous absorption of diclofenac in the form of a salt, a route where the formation of ion-pairs appears to play an important role.
NASA Astrophysics Data System (ADS)
Peiffert, Chantal; nguyen-Trung, Chinh; Cuney, Michel
1996-05-01
The solubility of uranium oxide was investigated in both aqueous halide (Cl, F) fluid and granitic melt in equilibrium in the system uranium oxide-haplogranite-H 2O-NaCl (0.1-5.0 molal), NaF (0.1-0.5 molal) at 770°C, 2 kbar, and fO 2 conditions controlled by Ni-NiO, Fe 3O 4-Fe 2O 3, and Cu 2O- CuO buffers. Three distinct uranium oxides UO (2+ x) with x = 0.01 ± 0.01; 0.12 ± 0.02; and 0.28 ± 0.02, respec- tively, were obtained in both chloride and fluoride systems, under the three fO 2 conditions cited above. Changes in the composition of aqueous solutions and silicate melt were observed after the runs. These changes were more pronounced for the fluoride-bearing experiments. Quench pH decreased from 5.9 to 2.1 with increasing chloride molality from 0.085-4.38 molal. For fluoride solutions, the decrease of pH from 5.4 to 3.4 corresponded to the increase of fluoride molality from 0.02-0.23 molal. The U solubility in chloride solutions was in the range 10-967 ppm. For the same molality, fluoride solutions appeared to dissolve up to twenty times more uranium than chloride solutions. The increase of halide molality and oxidation led to increase the U solubility. The U solubility in silicate glasses was in the range 10-1.8 × 10 4 ppm and increased with increasing oxidation and halide concentration. In addition, increasing agpaicity also increased U solubility in the chloride system. This effect was not observed in the fluoride system. The chloride concentration in the silicate melt increased from 100-790 ppm with increasing initial aqueous chloride concentration from 0.1-5.0 m. The fluoride concentration in the silicate melt increased from 2.8 × 10 3 to 1.1 × 10 4 ppm with increasing initial fluoride concentra- tion from 0.1-0.5 m. In the chloride system, the partition coefficient of U (log D)(U) fluid/melt) increased from -1.2-0 with increasing agpaicity from 0.92-1.36, for increasing chloride concentration from 0.085-4.38 molal and for increasing fO 2 from 10 -15 to 10 -4 bar. In the fluoride system, a linear correlation was established between the partition coefficient of U and the log fO 2. In F-rich system, D(U) fluid/melt values was in the range 2.4 × 10 -2-4.2 × 10 -2 for increasing fluoride concentration from 0.02-0.22 molal and for the same increasing of fO 2. In the chloride system, the partition coefficients of Na ( D (Na) fluid/melt) and K ( D) (K) fluid/melt) are in good agreement up to 1.0 m NaCl with the two linear equations established by Holland (1972) : D (Na) fluid/melt = 0.46 × (Cl)(m) (1) and D(Na) fluid/melt = 0.34 × (Cl)(m) (2). However, in initial 5.0 m NaCl, slopes of Eqns. 1 and 2 decreased to 0.41 and 0.16, respectively. Data obtained in the present study provide useful information for the understanding of the behaviour of U in the fractionation processes of halide rich magmas. Fluid/melt partition coefficients higher than one, favorable for the genesis of magmatic U mineralization, can be reached for peraluminous leucogran- ites in equilibrium with chloride-rich solutions.
NASA Astrophysics Data System (ADS)
Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M.
The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the α-pinene-O 3 reaction was augmented by carrying out smog chamber partitioning experiments on aerosols from meat cooking, and catalyzed and uncatalyzed gasoline engine exhaust. Model compositions for aerosols from meat cooking and gasoline combustion emissions were used to calculate activity coefficients for the SOCs in the organic aerosols and the Pankow absorptive gas/particle partitioning model was used to calculate the partitioning coefficient Kp and quantitate the predictive improvements of using the activity coefficient. The slope of the log K p vs. log p L0 correlation for partitioning on aerosols from meat cooking improved from -0.81 to -0.94 after incorporation of activity coefficients iγ om. A stepwise regression analysis of the partitioning model revealed that for the data set used in this study, partitioning predictions on α-pinene-O 3 secondary aerosol and wood combustion aerosol showed statistically significant improvement after incorporation of iγ om, which can be attributed to their overall polarity. The partitioning model was sensitive to changes in aerosol composition when updated compositions for α-pinene-O 3 aerosol and wood combustion aerosol were used. The octanol-air partitioning coefficient's ( KOA) effectiveness as a partitioning correlator over a variety of aerosol types was evaluated. The slope of the log K p- log K OA correlation was not constant over the aerosol types and SOCs used in the study and the use of KOA for partitioning correlations can potentially lead to significant deviations, especially for polar aerosols.
Caustics, counting maps and semi-classical asymptotics
NASA Astrophysics Data System (ADS)
Ercolani, N. M.
2011-02-01
This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z0(t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain tied random walks on a 1D lattice, and the large time asymptotics of random matrix partition functions.
ERIC Educational Resources Information Center
Crittenden, Barry D.
1991-01-01
A simple liquid-liquid equilibrium (LLE) system involving a constant partition coefficient based on solute ratios is used to develop an algebraic understanding of multistage contacting in a first-year separation processes course. This algebraic approach to the LLE system is shown to be operable for the introduction of graphical techniques…
40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.
Code of Federal Regulations, 2012 CFR
2012-07-01
... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Research of the National Bureau of Standards, 86:361-366 (1981). (7) Fujita, T. et al. “A New Substituent...
40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.
Code of Federal Regulations, 2010 CFR
2010-07-01
... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Research of the National Bureau of Standards, 86:361-366 (1981). (7) Fujita, T. et al. “A New Substituent...
40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.
Code of Federal Regulations, 2011 CFR
2011-07-01
... method, or any other reliable quantitative procedure must be used for those compounds that do not absorb... any other reliable quantitative method, aqueous solutions from the generator column enter a collecting... Research of the National Bureau of Standards, 86:361-366 (1981). (7) Fujita, T. et al. “A New Substituent...
40 CFR 799.6755 - TSCA partition coefficient (n-octanol/water), shake flask method.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and the potential bioaccumulation of the substance. Studies show a highly significant relationship... substances dissolved in the two phases must be determined. A study of the literature on this subject... concentration of the solute in either phase is not more than 0.01 mol/Liter (L). The substance being tested must...
Li, Yong Jie; Cheong, Gema Y L; Lau, Arthur P S; Chan, Chak K
2010-07-15
We investigated the condensed-phase reactions of biogenic VOCs with C double bond C bonds (limonene, C(10)H(16), and terpineol, C(10)H(18)O) catalyzed by sulfuric acid by both bulk solution (BS) experiments and gas-particle (GP) experiments using a flow cell reactor. Product analysis by gas chromatography-mass spectrometry (GC-MS) showed that cationic polymerization led to dimeric and trimeric product formation under conditions of relative humidity (RH) <20% (in the GP experiments) and a sulfuric acid concentration of 57.8 wt % (in the BS experiments), while hydration occurred under conditions of RH > 20% (in the GP experiments) and sulfuric acid concentrations of 46.3 wt % or lower (in the BS experiments). Apparent partitioning coefficients (K(p,rxn)) were estimated from the GP experiments by including the reaction products. Only under extremely low RH conditions (RH < 5%) did the values of K(p,rxn) ( approximately 5 x 10(-6) m(3)/microg for limonene and approximately 2 x 10(-5) m(3)/microg for terpineol) substantially exceed the physical partitioning coefficients (K(p) = 6.5 x 10(-8) m(3)/microg for limonene and =2.3 x 10(-6) m(3)/microg for terpineol) derived from the absorptive partitioning theory. At RH higher than 5%, the apparent partitioning coefficients (K(p,rxn)) of both limonene and terpineol were in the same order of magnitude as the K(p) values derived from the absorptive partitioning theory. Compared with other conditions including VOC concentration and degree of neutralization (by ammonium) of acidic particles, RH is a critical parameter that influences both the reaction mechanisms and the uptake ability (K(p,rxn) values) of these processes. The finding suggests that RH needs to be considered when taking the effects of acid-catalyzed reactions into account in estimating organic aerosol formation from C double bond C containing VOCs.
Thakur, Ashish; Kadam, Rajendra S.
2011-01-01
The influence of drug properties including solubility, lipophilicity, tissue partition coefficients, and in vitro transscleral permeability on ex vivo and in vivo transscleral delivery from corticosteroid suspensions was determined. Solubility, tissue/buffer partition coefficients for bovine sclera and choroid-retinal pigment epithelium (CRPE), and in vitro bovine sclera and sclera-choroid-retinal pigment epithelium (SCRPE) transscleral transport were determined at pH 7.4 for triamcinolone, prednisolone, dexamethasone, fluocinolone acetonide, triamcinolone acetonide, and budesonide in solution. Ex vivo and in vivo transscleral delivery was assessed in Brown Norway rats after posterior subconjunctival injection of a 1 mg/ml suspension of each corticosteroid. Corticosteroid solubility and partition coefficients ranged from ∼17 to 300 μg/ml and 3.0 to 11.4 for sclera and from 7.1 to 35.8 for CRPE, respectively, with the more lipophilic molecules partitioning more into both tissues. Transport across sclera and SCRPE was in the range of 3.9 to 10.7% and 0.3 to 1.8%, respectively, with the transport declining with an increase in lipophilicity. Ex vivo and in vivo transscleral delivery indicated tissue distribution in the order CRPE ≥ sclera > retina > vitreous. Tissue partitioning showed a positive correlation with drug lipophilicity (R2 = 0.66–0.96). Ex vivo and in vivo sclera, CRPE, retina, and vitreous tissue levels of all corticosteroids showed strong positive correlation with drug solubility (R2 = 0.91–1.0) but not lipophilicity (R2 = 0.24–0.41) or tissue partitioning (R2 = 0.24–0.46) when delivered as suspensions. In vivo delivery was lower in all eye tissues assessed than ex vivo delivery, with the in vivo/ex vivo ratios being the lowest in the vitreous (0.085–0.212). Upon exposure to corticosteroid suspensions ex vivo or in vivo, transscleral intraocular tissue distribution was primarily driven by the drug solubility. PMID:21346004
Laboratory investigation and simulation of breakthrough curves in karst conduits with pools
NASA Astrophysics Data System (ADS)
Zhao, Xiaoer; Chang, Yong; Wu, Jichun; Peng, Fu
2017-12-01
A series of laboratory experiments are performed under various hydrological conditions to analyze the effect of pools in pipes on breakthrough curves (BTCs). The BTCs are generated after instantaneous injections of NaCl tracer solution. In order to test the feasibility of reproducing the BTCs and obtain transport parameters, three modeling approaches have been applied: the equilibrium model, the linear graphical method and the two-region nonequilibrium model. The investigation results show that pools induce tailing of the BTCs, and the shapes of BTCs depend on pool geometries and hydrological conditions. The simulations reveal that the two-region nonequilibrium model yields the best fits to experimental BTCs because the model can describe the transient storage in pools by the partition coefficient and the mass transfer coefficient. The model parameters indicate that pools produce high dispersion. The increased tailing occurs mainly because the partition coefficient decreases, as the number of pools increases. When comparing the tracer BTCs obtained using the two types of pools with the same size, the more appreciable BTC tails that occur for symmetrical pools likely result mainly from the less intense exchange between the water in the pools and the water in the pipe, because the partition coefficients for the two types of pools are virtually identical. Dispersivity values decrease as flow rates increase; however, the trend in dispersion is not clear. The reduced tailing is attributed to a decrease in immobile water with increasing flow rate. It provides evidence for hydrodynamically controlled tailing effects.
Pelinger, Judith A.; Eisenreich, Steven J.; Capel, Paul D.
1993-01-01
The sorption of hydrophobic organic chemicals (HOCs) to ??-Al2O3 was investigated with a headspace analysis method. The semiautomated headspace analyzer gave rapid, precise, and accurate results for a homologous series alkylbenzenes even at low percentages of solute mass sorbed (3-50%). Sorption experiments carried out with benzene alone indicated weak interactions with well-characterized aluminum oxide, and a solids concentration effect was observed. When the sorption coefficients for benzene alone obtained by headspace analysis were extrapolated up to the solids concentrations typically used in batch sorption experiments, the measured sorption coefficients agreed with reported sorption coefficients for HOCs and sediments of low fractional organic carbon content. Sorbed concentrations increased exponentially with aqueous concentration in isotherms with mixtures of alkylbenzenes, indicating solute-solute interactions at the mineral surface. Sorption was, however, greater than predicted for partitioning of a solute between its pure liquid phase and water, indicating additional influences of the surface and/or the structured liquid near the mineral surface. ?? 1993 American Chemical Society.
A partition-limited model for the plant uptake of organic contaminants from soil and water
Chiou, C.T.; Sheng, G.; Manes, M.
2001-01-01
In dealing with the passive transport of organic contaminants from soils to plants (including crops), a partition-limited model is proposed in which (i) the maximum (equilibrium) concentration of a contaminant in any location in the plant is determined by partition equilibrium with its concentration in the soil interstitial water, which in turn is determined essentially by the concentration in the soil organic matter (SOM) and (ii) the extent of approach to partition equilibrium, as measured by the ratio of the contaminant concentrations in plant water and soil interstitial water, ??pt (??? 1), depends on the transport rate of the contaminant in soil water into the plant and the volume of soil water solution that is required for the plant contaminant level to reach equilibrium with the external soil-water phase. Through reasonable estimates of plant organic-water compositions and of contaminant partition coefficients with various plant components, the model accounts for calculated values of ??pt in several published crop-contamination studies, including near-equilibrium values (i.e., ??pt ??? 1) for relatively water-soluble contaminants and lower values for much less soluble contaminants; the differences are attributed to the much higher partition coefficients of the less soluble compounds between plant lipids and plant water, which necessitates much larger volumes of the plant water transport for achieving the equilibrium capacities. The model analysis indicates that for plants with high water contents the plant-water phase acts as the major reservoir for highly water-soluble contaminants. By contrast, the lipid in a plant, even at small amounts, is usually the major reservoir for highly water-insoluble contaminants.
Milewski, Mikolaj; Stinchcomb, Audra L.
2012-01-01
An ability to estimate the maximum flux of a xenobiotic across skin is desirable both from the perspective of drug delivery and toxicology. While there is an abundance of mathematical models describing the estimation of drug permeability coefficients, there are relatively few that focus on the maximum flux. This article reports and evaluates a simple and easy-to-use predictive model for the estimation of maximum transdermal flux of xenobiotics based on three common molecular descriptors: logarithm of octanol-water partition coefficient, molecular weight and melting point. The use of all three can be justified on the theoretical basis of their influence on the solute aqueous solubility and the partitioning into the stratum corneum lipid domain. The model explains 81% of the variability in the permeation dataset comprised of 208 entries and can be used to obtain a quick estimate of maximum transdermal flux when experimental data is not readily available. PMID:22702370
Molecular-sieve chromatography and electrophoresis in polyacrylamide gels
Morris, C. J. O. R.; Morris, Peggy
1971-01-01
1. The absolute electrophoretic mobilities of eight proteins have been measured at pH8.76, I 0.05, in polyacrylamide gels of 20 different compositions at 10°C. 2. The partition coefficients of these proteins have been determined chromatographically under the same conditions by using columns of granulated polyacrylamide gel prepared simultaneously. 3. The electrophoretic mobilities are an exponential function of the gel concentrations when the latter are corrected for water uptake. The constants of this function have been determined by curvefitting methods. They have been shown to be related to the free solution mobility and to the mean molecular radius respectively. 4. The reduced mobilities have been shown to be a linear function of the partition coefficients by statistical analyses. 5. The physical significance of the relation between electrophoretic mobility and chromatographic phase distribution in gel media is discussed in the context of these results. PMID:5135238
Mini-columns for Conducting Breakthrough Experiments. Design and Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas
Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.
Effects of sorbents in sorption of agrochemical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasundera, T.; Jayasundera, S.
1996-10-01
Sorption to soil materials is a key process controlling the fate of agrochemicals in the environment. Batch experiments were performed to determine sorption coefficients of metolachlor, alachlor and linuron onto clays, natural organic matter (NOM) coated-clays, and organic sorbents. Our results indicate that the partition coefficient K{sub d} is a function of both sorbent and sorbate properties. The carbon referenced sorption coefficient (K{sub oc}) decreased with increasing polarity of the organic sorbent. Adsorption isotherms onto clays and NOM coated-clays conformed to a Freunlich equation. Studies indicate that at low NOM surface coverage, interactions between NOM and clay surfaces could reducemore » the surface affinity for agrochemical adsorption. Our results suggest that sorption cannot be simply defined as {open_quotes}adsorption{close_quotes} or {open_quotes}partitioning{close_quotes}, but rather there is a continuum of possible interactions. The more polar the solute, the more likely it is that interactions other than hydrophobic will contribute to sorption, causing the currently used K{sub oc}-K{sub ow} correlations to fail.« less
PARTITION COEFFICIENTS FOR METALS IN SURFACE WATER, SOIL, AND WASTE
This report presents metal partition coefficients for the surface water pathway and for the source model used in the Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment (3MRA) technology under development by the U.S. Environmental Protection Agency. Partition ...
The coprecipitation of Pu and other radionuclides with CaCO[sub 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meece, D.E.; Benninger, L.K.
1993-04-01
The record of fallout plutonium concentrations in annual bands of corals is strikingly similar to the record of atmospheric deposition of [sup 90]Sr. This similarity implies that corals may incorporate Pu from seawater with a constant partition coefficient (constant discrimination). To investigate physicochemical aspects of Pu incorporation, the following have been coprecipitated with CaCO[sub 3] (calcite and aragonite): oxidized and reduced Pu; americium, thorium, and uranium as analogs to Pu oxidation states (III, IV, VI), respectively; and [sup 210]Pb as a particle-reactive nuclide which may be incorporated by corals with constant discrimination. Americium, thorium, and lead adsorb onto both calcitemore » and aragonite, with more than 99% of the recovered activity found associated with the solids. Uranium exhibits a behavior consistent with lattice substitution. Partition coefficients for U in aragonite range from 1.8 to 9.8 and vary inversely with pH and/or rate of precipitation. The partition coefficient for U in calcite is less than 0.2 and may be as low as 0.046. Reduced Pu sorbs with 3 to 4% remaining in solution. Oxidized Pu may both sorb and coprecipitate. The coral record for Pb and U results primarily from biological, rather than physicochemical, effects; it is likely that the PU coral record also reflects biological discrimination. 50 refs., 4 figs., 5 tabs.« less
The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...
The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...
Pérez-Payá, E; Porcar, I; Gómez, C M; Pedrós, J; Campos, A; Abad, C
1997-08-01
A thermodynamic approach is proposed to quantitatively analyze the binding isotherms of peptides to model membranes as a function of one adjustable parameter, the actual peptide charge in solution z(p)+. The main features of this approach are a theoretical expression for the partition coefficient calculated from the molar free energies of the peptide in the aqueous and lipid phases, an equation proposed by S. Stankowski [(1991) Biophysical Journal, Vol. 60, p. 341] to evaluate the activity coefficient of the peptide in the lipid phase, and the Debye-Hückel equation that quantifies the activity coefficient of the peptide in the aqueous phase. To assess the validity of this approach we have studied, by means of steady-state fluorescence spectroscopy, the interaction of basic amphipathic peptides such as melittin and its dansylcadaverine analogue (DNC-melittin), as well as a new fluorescent analogue of substance P, SP (DNC-SP) with neutral phospholipid membranes. A consistent quantitative analysis of each binding curve was achieved. The z(p)+ values obtained were always found to be lower than the physical charge of the peptide. These z(p)+ values can be rationalized by considering that the peptide charged groups are strongly associated with counterions in buffer solution at a given ionic strength. The partition coefficients theoretically derived using the z(p)+ values were in agreement with those deduced from the Gouy-Chapman formalism. Ultimately, from the z(p)+ values the molar free energies for the free and lipid-bound states of the peptides have been calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Fang, Hongwei; Xu, Xingya
Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). We formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions, tomore » obtain statistical descriptions of the P concentration and retention in the TGR. The correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. This study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Fang, Hongwei; Xu, Xingya
Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). Here, we formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions,more » to obtain statistical descriptions of the P concentration and retention in the TGR. Furthermore, the correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. Our study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.« less
Huang, Lei; Fang, Hongwei; Xu, Xingya; ...
2017-08-01
Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). Here, we formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions,more » to obtain statistical descriptions of the P concentration and retention in the TGR. Furthermore, the correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. Our study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.« less
Karlsson, David; Zacchi, Guido; Axelsson, Anders
2002-01-01
The aim of this study was to demonstrate electronic speckle pattern interferometry (ESPI) as a powerful tool in determining diffusion coefficients and partition coefficients for proteins in gels. ESPI employs a CCD camera instead of a holographic plate as in conventional holographic interferometry. This gives the advantage of being able to choose the reference state freely. If a hologram at the reference state is taken and compared to a hologram during the diffusion process, an interferometric picture can be generated that describes the refraction index gradients and thus the concentration gradients in the gel as well as in the liquid. MATLAB is then used to fit Fick's law to the experimental data to obtain the diffusion coefficients in gel and liquid. The partition coefficient is obtained from the same experiment from the flux condition at the interface between gel and liquid. This makes the comparison between the different diffusants more reliable than when the measurements are performed in separate experiments. The diffusion and partitioning coefficients of lysozyme, BSA, and IgG in 4% agarose gel at pH 5.6 and in 0.1 M NaCl have been determined. In the gel the diffusion coefficients were 11.2 +/- 1.6, 4.8 +/- 0.6, and 3.0 +/- 0.3 m(2)/s for lysozyme, BSA, and IgG, respectively. The partition coefficients were determined to be 0.65 +/- 0.04, 0.44 +/- 0.06, and 0.51 +/- 0.04 for lysozyme, BSA, and IgG, respectively. The current study shows that ESPI is easy to use and gives diffusion coefficients and partition coefficients for proteins with sufficient accuracy from the same experiment.
Ghoshal, Subhasis; Pasion, Catherine; Alshafie, Mohammed
2004-04-01
Semi-rigid films or skins form at the interface of crude oil and water as a result of the accumulation of asphaltene and resin fractions when the water-immiscible crude oil is contacted with water for a period of time or "aged". The time varying patterns of area-independent mass transfer coefficients of two compounds, benzene and naphthalene, for dissolution from crude oil and gasoline were determined. Aqueous concentrations of the compounds were measured in the eluent from flow-through reactors, where a nondispersed oil phase and constant oil-water interfacial area were maintained. For Brent Blend crude oil and for gasoline amended with asphaltenes and resins, a rapid decrease in both benzene and naphthalene mass transfer coefficients over the first few days of aging was observed. The mass transfer coefficients of the two target solutes were reduced by up to 80% over 35 d although the equilibrium partition coefficients were unchanged. Aging of gasoline, which has negligible amounts of asphaltene and resin, did not result in a change in the solute mass transfer coefficients. The study demonstrates that formation of crude oil-water interfacial films comprised of asphaltenes and resins contribute to time-dependent decreases in rates of release of environmentally relevant solutes from crude oils and may contribute to the persistence of such solutes at crude oil-contaminated sites. It is estimated that the interfacial film has an extremely low film mass transfer coefficient in the range of 10(-6) cm/min.
NASA Astrophysics Data System (ADS)
Tian, Y.; Gauvin, R.; Brochu, M.
2016-07-01
Laser powder deposition was performed on a substrate of Inconel 738 using blended powders of Mar M247 and Amdry DF3 with a ratio of 4:1 for repairing purposes. In the as-deposited condition, continuous secondary phases composed of γ-Ni3B eutectics and discrete (Cr, W)B borides were observed in inter-dendritic regions, and time-dependent nucleation simulation results confirmed that (Cr, W)B was the primary secondary phase formed during rapid solidification. Supersaturated solid solution of B was detected in the γ solid solution dendritic cores. The Kurz-Giovanola-Trivedi model was performed to predict the interfacial morphology and correlate the solidification front velocity (SFV) with dendrite tip radius. It was observed from high-resolution scanning electron microscopy that the dendrite tip radius of the upper region was in the range of 15 to 30 nm, which yielded a SFV of approx 30 cm/s. The continuous growth model for solute trapping behavior developed by Aziz and Kaplan was used to determine that the effective partition coefficient of B was approximately 0.025. Finally, the feasibility of the modeling results were rationalized with the Clyne-Kurz segregation simulation of B, where Clyne-Kurz prediction using a partition coefficient of 0.025 was in good agreement with the electron probe microanalysis results.
Korinth, Gintautas; Wellner, Tanja; Schaller, Karl Heinz; Drexler, Hans
2012-11-23
Aqueous amphiphilic compounds may exhibit enhanced skin penetration compared with neat compounds. Conventional models do not predict this percutaneous penetration behaviour. We investigated the potential of the octanol-water partition coefficient (logP) to predict dermal fluxes for eight compounds applied neat and as 50% aqueous solutions in diffusion cell experiments using human skin. Data for seven other compounds were accessed from literature. In total, seven glycol ethers, three alcohols, two glycols, and three other chemicals were considered. Of these 15 compounds, 10 penetrated faster through the skin as aqueous solutions than as neat compounds. The other five compounds exhibited larger fluxes as neat applications. For 13 of the 15 compounds, a consistent relationship was identified between the percutaneous penetration behaviour and the logP. Compared with the neat applications, positive logP were associated with larger fluxes for eight of the diluted compounds, and negative logP were associated with smaller fluxes for five of the diluted compounds. Our study demonstrates that decreases or enhancements in dermal penetration upon aqueous dilution can be predicted for many compounds from the sign of logP (i.e., positive or negative). This approach may be suitable as a first approximation in risk assessments of dermal exposure. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients
NASA Astrophysics Data System (ADS)
Anderson, Richard L.; Bray, David J.; Ferrante, Andrea S.; Noro, Massimo G.; Stott, Ian P.; Warren, Patrick B.
2017-09-01
We present a systematic, top-down, thermodynamic parametrization scheme for dissipative particle dynamics (DPD) using water-octanol partition coefficients, supplemented by water-octanol phase equilibria and pure liquid phase density data. We demonstrate the feasibility of computing the required partition coefficients in DPD using brute-force simulation, within an adaptive semi-automatic staged optimization scheme. We test the methodology by fitting to experimental partition coefficient data for twenty one small molecules in five classes comprising alcohols and poly-alcohols, amines, ethers and simple aromatics, and alkanes (i.e., hexane). Finally, we illustrate the transferability of a subset of the determined parameters by calculating the critical micelle concentrations and mean aggregation numbers of selected alkyl ethoxylate surfactants, in good agreement with reported experimental values.
NASA Astrophysics Data System (ADS)
Wilmot, M. S.; Candela, P. A.; Piccoli, P. M.; Simon, A. C.; McDonough, W. F.
2006-05-01
The partitioning of ore metals between melt and crystals affects the concentrations of these metals in an evolving ore fluid, and therefore the efficiency of their removal from the magma by hydrothermal processes. Some porphyry-type W-Mo deposits contain recoverable amounts of Bi, whereas others contain only trace amounts. In order to determine the magmatic controls on the ratio of Bi to other commodities in these and other deposits, we examined the partitioning behavior of bismuth between melt, minerals and aqueous phases. Hydrothermal experiments were performed by using externally heated cold seal vessels and employing a double capsule technique. Experiments contained 40 mg of Bishop Tuff glass (SiO2 = 74% ) and 40 mg of either magnetite or pyrrhotite. Bi was added as elemental Bi (< 1 mg). Two different aqueous solutions were used. Initially, the added aqueous phase comprised the solutes HCl, KCl and NaCl in a molar1:1:1 ratio, with a bulk salinity of 10 wt % NaCl eq. The aqueous phase for later experiments contained only the solutes KCl and NaCl in a 1:1 molar ratio. Pre-fractured quartz was added to the experiments to trap fluid inclusions at run PTX conditions. Experiments were performed in Au or Pt capsules held inside Rene 41 cold-seal vessels at 800°C and 100 MPa for durations of up to 36 hours. Analytical data have been collected from the run product solids by using an electron probe microanalyzer (major and trace elements) and laser ablation inductively coupled plasma mass spectrometry (trace elements). Bi in Mt is found in concentrations up to 100 ppm, with higher concentrations in runs where Po decomposed to form magnetite. The Bi concentration in the glass ranges up to 100 ppm. In the Po-bearing runs, data were only collected from Po grains in the experiments containing the HCl-free aqueous solution (the Po grains in the other experiments were too small to analyze). Pyrrhotite contained 10-20 ppm Bi, whereas the glass contained 5-10 ppm. Preliminary Nernst- type partition coefficients for Bi between Mt and melt and Po and melt are approximately 5 and 2, respectively. These data reveal that Bi is only slightly compatible in Mt and Po, and that the Po/melt partition coefficient for Bi is much lower than for Cu, Ag and Au, and is comparable to Mn and Zn. Additional experiments are in progress to more compare the partitioning of Bi with that of W and Mo.
Study of VOCs transport and storage in porous media and assemblies
NASA Astrophysics Data System (ADS)
Xu, Jing
Indoor VOCs concentrations are influenced greatly by the transport and storage of VOCs in building and furnishing materials, majority of which belong to porous media. The transport and storage ability of a porous media for a given VOC can be characterized by its diffusion coefficient and partition coefficient, respectively, and such data are currently lacking. Besides, environmental conditions are another important factor that affects the VOCs emission. The main purposes of this dissertation are: (1) validate the similarity hypothesis between the transport of water vapor and VOCs in porous materials, and help build a database of VOC transport and storage properties with the assistance of the similarity hypothesis; (2) investigate the effect of relative humidity on the diffusion and partition coefficients; (3) develop a numerical multilayer model to simulate the VOCs' emission characteristics in both short and long term. To better understand the similarity and difference between moisture and volatile organic compounds (VOCs) diffusion through porous media, a dynamic dual-chamber experimental system was developed. The diffusion coefficients and partition coefficients of moisture and selected VOCs in materials were compared. Based on the developed similarity theory, the diffusion behavior of each particular VOC in porous media is predictable as long as the similarity coefficient of the VOC is known. Experimental results showed that relative humidity in the 80%RH led to a higher partition coefficient for formaldehyde compared to 50%RH. However, between 25% and 50% RH, there was no significant difference in partition coefficient. The partition coefficient of toluene decreased with the increase of humidity due to competition with water molecules for pore surface area and the non-soluble nature of toluene. The solubility of VOCs was found to correlate well with the partition coefficient of VOCs. The partition coefficient of VOCs was not simply inversely proportional to the vapor pressure of the compound, but also increased with the increase of the Henry's law constant. Experiment results also showed that a higher relative humidity led to a larger effective diffusion coefficient for both conventional wallboard and green wallboard. The partition coefficient (Kma) of formaldehyde in conventional wallboard was larger at 50% RH than at 20% RH, while the difference in partition coefficient between 50% RH and 70% RH was insignificant. For the green wallboard and green carpet, the partition coefficient increased slightly with the increase of relative humidity from 20% to 50% and 70%. Engineered wood products such as particleboard have widely been used with wood veneer and laminate to form multilayer assembly work surfaces or panels. The multilayer model study in this dissertation comprised both numerical and experimental investigation of the VOCs emission from such an assembly. A coupled 1D multilayer model based on CHAMPS (coupled heat, air, moisture and pollutant simulations) was first described. Later, the transport properties of each material layer were determined. Several emission cases from a three-layered heterogeneous work assembly were modeled using a developed simulation model. At last, the numerical model was verified by the experimental data of both hexanal and acetaldehyde emissions in a 50L standard small scale chamber. The model is promising in predicting VOCs' emissions for multilayered porous materials in emission tests.
ERIC Educational Resources Information Center
Burum, Alex D.; Splittgerber, Allan G.
2008-01-01
This article describes a static method as an alternative to gel chromatography, which may be used as an undergraduate laboratory experiment. In this method, a constant mass of Sephadex gel is swollen in a series of protein solutions. UV-vis spectrophotometry is used to find a partition coefficient, KD, that indicates the fraction of the interior…
NASA Astrophysics Data System (ADS)
Li, Yuan; Audétat, Andreas
2012-11-01
The partitioning of 15 major to trace metals between monosulfide solid solution (MSS), sulfide liquid (SL) and mafic silicate melt (SM) was determined in piston-cylinder experiments performed at 1175-1300 °C, 1.5-3.0 GPa and oxygen fugacities ranging from 3.1 log units below to 1.0 log units above the quartz-fayalite-magnetite fO2 buffer, which conditions are representative of partial melting in the upper mantle in different tectonic settings. The silicate melt was produced by partial melting of a natural, amphibole-rich mantle source rock, resulting in hydrous (˜5 wt% H2O) basanitic melts similar to low-degree partial melts of metasomatized mantle, whereas the major element composition of the starting sulfide (˜52 wt% Fe; 39 wt% S; 7 wt% Ni; 2 wt% Cu) was similar to the average composition of sulfides in this environment. SL/SM partition coefficients are high (≥100) for Au, Ni, Cu, Ag, Bi, intermediate (1-100) for Co, Pb, Sn, Sb (±As, Mo), and low (≤1) for the remaining elements. MSS/SM partition coefficients are generally lower than SL/SM partition coefficients and are high (≥100) for Ni, Cu, Au, intermediate (1-100) for Co, Ag (±Bi, Mo), and low (≤1) for the remaining elements. Most sulfide-silicate melt partition coefficients vary as a function of fO2, with Mo, Bi, As (±W) varying by a factor >10 over the investigated fO2 range, Sb, Ag, Sn (±V) varying by a factor of 3-10, and Pb, Cu, Ni, Co, Au, Zn, Mn varying by a factor of 3-10. The partitioning data were used to model the behavior of Cu, Au, Ag, and Bi during partial melting of upper mantle and during fractional crystallization of primitive MORB and arc magmas. Sulfide phase relationships and comparison of the modeling results with reported Cu, Au, Ag, and Bi concentrations from MORB and arc magmas suggest that: (i) MSS is the dominant sulfide in the source region of arc magmas, and thus that Au/Cu ratios in the silicate melt and residual sulfides may decrease with increasing degree of partial melting, (ii) both MSS and sulfide liquid are precipitated during fractional crystallization of MORB, and (iii) fractional crystallization of arc magmas is strongly dominated by MSS.
Morikawa, Go; Suzuka, Chihiro; Shoji, Atsushi; Shibusawa, Yoichi; Yanagida, Akio
2016-01-05
A high-throughput method for determining the octanol/water partition coefficient (P(o/w)) of a large variety of compounds exhibiting a wide range in hydrophobicity was established. The method combines a simple shake-flask method with a novel two-phase solvent system comprising an acetonitrile-phosphate buffer (0.1 M, pH 7.4)-1-octanol (25:25:4, v/v/v; AN system). The AN system partition coefficients (K(AN)) of 51 standard compounds for which log P(o/w) (at pH 7.4; log D) values had been reported were determined by single two-phase partitioning in test tubes, followed by measurement of the solute concentration in both phases using an automatic flow injection-ultraviolet detection system. The log K(AN) values were closely related to reported log D values, and the relationship could be expressed by the following linear regression equation: log D=2.8630 log K(AN) -0.1497(n=51). The relationship reveals that log D values (+8 to -8) for a large variety of highly hydrophobic and/or hydrophilic compounds can be estimated indirectly from the narrow range of log K(AN) values (+3 to -3) determined using the present method. Furthermore, log K(AN) values for highly polar compounds for which no log D values have been reported, such as amino acids, peptides, proteins, nucleosides, and nucleotides, can be estimated using the present method. The wide-ranging log D values (+5.9 to -7.5) of these molecules were estimated for the first time from their log K(AN) values and the above regression equation. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Kil Yong; Burnett, William C
A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahadur, N.P.; Shiu, W.Y.; Boocock, D.G.B.
1999-01-01
Measurements of partition coefficients between tricaprylin (glyceryl tri-n-octanoate) and water are reported for seven chlorobenzenes (1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, 1,2,3,5-tetrachlorobenzene, pentachlorobenzene, and hexachlorobenzene) between 5 and 45 C. The values are compared with reported data on octanol-water and triolein-water partition coefficients. The van`t Hoff plots of log K{sub OW} versus T{sup {minus}1} exhibit linearity with values of K{sub OW} increasing by 5--8% over this temperature range, and the enthalpy of phase change varies from 9.7 to 16 kJ/mol. Several reasons are suggested why tricaprylin-water partition coefficients may be preferable to octanol-water and triolein-water partition coefficients when quantifying a substance`s hydrophobicity.more » The mutual solubilities of tricaprylin and water are less than that of octanol and water. Tricaprylin is easier to purify than triolein and, because of its lower molecular mass, is easier to analyze by gas chromatography.« less
Sorption capacity of plastic debris for hydrophobic organic chemicals.
Lee, Hwang; Shim, Won Joon; Kwon, Jung-Hwan
2014-02-01
The occurrence of microplastics (MPs) in the ocean is an emerging world-wide concern. Due to high sorption capacity of plastics for hydrophobic organic chemicals (HOCs), sorption may play an important role in the transport processes of HOCs. However, sorption capacity of various plastic materials is rarely documented except in the case of those used for environmental sampling purposes. In this study, we measured partition coefficients between MPs and seawater (KMPsw) for 8 polycyclic aromatic hydrocarbons (PAHs), 4 hexachlorocyclohexanes (HCHs) and 2 chlorinated benzenes (CBs). Three surrogate polymers - polyethylene, polypropylene, and polystyrene - were used as model plastic debris because they are the major components of microplastic debris found. Due to the limited solubility of HOCs in seawater and their long equilibration time, a third-phase partitioning method was used for the determination of KMPsw. First, partition coefficients between polydimethylsiloxane (PDMS) and seawater (KPDMSsw) were measured. For the determination of KMPsw, the distribution of HOCs between PDMS or plastics and solvent mixture (methanol:water=8:2 (v/v)) was determined after apparent equilibrium up to 12 weeks. Plastic debris was prepared in a laboratory by physical crushing; the median longest dimension was 320-440 μm. Partition coefficients between polyethylene and seawater obtained using the third-phase equilibrium method agreed well with experimental partition coefficients between low-density polyethylene and water in the literature. The values of KMPsw were generally in the order of polystyrene, polyethylene, and polypropylene for most of the chemicals tested. The ranges of log KMPsw were 2.04-7.87, 2.18-7.00, and 2.63-7.52 for polyethylene, polypropylene, and polystyrene, respectively. The partition coefficients of plastic debris can be as high as other frequently used partition coefficients, such as 1-octanol-water partition coefficients (Kow) and log KMPsw showed good linear correlations with log Kow. High sorption capacity of microplastics implies the importance of MP-associated transport of HOCs in the marine environment. © 2013 Elsevier B.V. All rights reserved.
Barber, L.B.; Thurman, E.M.; Runnells, D.R.; ,
1992-01-01
The effect of particle size, mineralogy and sediment organic carbon (SOC) on solution of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is < 0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.
Xu, Jing; Zhang, Jianshun S; Liu, Xiaoyu; Gao, Zhi
2012-06-01
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings.
Prediction of distribution coefficient from structure. 1. Estimation method.
Csizmadia, F; Tsantili-Kakoulidou, A; Panderi, I; Darvas, F
1997-07-01
A method has been developed for the estimation of the distribution coefficient (D), which considers the microspecies of a compound. D is calculated from the microscopic dissociation constants (microconstants), the partition coefficients of the microspecies, and the counterion concentration. A general equation for the calculation of D at a given pH is presented. The microconstants are calculated from the structure using Hammett and Taft equations. The partition coefficients of the ionic microspecies are predicted by empirical equations using the dissociation constants and the partition coefficient of the uncharged species, which are estimated from the structure by a Linear Free Energy Relationship method. The algorithm is implemented in a program module called PrologD.
Compatibility of amino acids in ice Ih and high-pressure phases: implications for the origin of life
NASA Astrophysics Data System (ADS)
Hao, J.; Giovenco, E.; Pedreira-Segade, U.; Montagnac, G.; Daniel, I.
2017-12-01
Icy environments may have been common on the early Earth due to the faint young sun. Previous studies have proposed that the formation of large icy bodies in the early ocean could concentrate the building blocks of life in eutectic fluids and therefore facilitate the polymerization of monomers. This hypothesis is based on the untested assumption that organic molecules are virtually incompatible in ice Ih. In this study, we conducted freezing experiments to explore the partitioning behavior of selected amino acids (glycine, L-alanine, L-proline, and L-phenylalanine) between ice Ih and aqueous solutions analogous to seawater. We let ice crystals grow slowly from a few seeds in equilibrium with the solution and used Raman spectroscopy to analyze in situ the relative concentrations of amino acids in the ice and aqueous solution. During freezing, there was no precipitation of amino acid crystals, indicating that the concentrations in solution never reached their solubility limit, even when the droplet was mostly frozen. Analyses of the Raman spectra of ice and eutectic solution showed that considerable amounts of amino acids existed in the ice phase with partition coefficients ranging between 0.2 and 0.5. This study also explored the partitioning of amino acids between other phases of ice (ice VI and ice VII) and solutions at high pressures and observed similar results. These observations implied little incompatibility of amino acids in ice during the freezing of the solutions, rendering the hypothesis of a cold origin of life unwarranted. However, incorporation into ice could significantly improve the efficiency of extraterrestrial transport of small organics. Therefore, this study supports the hypothesis of extraterrestrial delivery of organic molecules in the icy comets and asteroids to the primitive Earth as suggested by an increasing number of independent observations.
Estimation of octanol/water partition coefficients using LSER parameters
Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.
1998-01-01
The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.
CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.
Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah
2018-04-01
This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.
Fundamental Flux Equations for Fracture-Matrix Interactions with Linear Diffusion
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Zhou, Q.; Rutqvist, J.; Birkholzer, J. T.
2017-12-01
The conventional dual-continuum models are only applicable for late-time behavior of pressure propagation in fractured rock, while discrete-fracture-network models may explicitly deal with matrix blocks at high computational expense. To address these issues, we developed a unified-form diffusive flux equation for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular matrix blocks (squares, cubes, rectangles, and rectangular parallelepipeds) by partitioning the entire dimensionless-time domain (Zhou et al., 2017a, b). For each matrix block, this flux equation consists of the early-time solution up until a switch-over time after which the late-time solution is applied to create continuity from early to late time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the coefficients dependent on dimensionless area-to-volume ratio and aspect ratios for rectangular blocks. For the late-time solutions, one exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic blocks. The time-partitioning method was also used for calculating pressure/concentration/temperature distribution within a matrix block. The approximate solution contains an error-function solution for early times and an exponential solution for late times, with relative errors less than 0.003. These solutions form the kernel of multirate and multidimensional hydraulic, solute and thermal diffusion in fractured reservoirs.
NASA Technical Reports Server (NTRS)
Jurewicz, Stephen R.; Jones, John H.
1993-01-01
El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.
Quinn, Cristina L; van der Heijden, Stephan A; Wania, Frank; Jonker, Michiel T O
2014-05-20
Whereas octanol, triacylglycerides, and liposomes have all been proposed as surrogates for measuring the affinity of hydrophobic organic contaminants to human lipids, no comparative evaluation of their suitability exists. Here we conducted batch sorption experiments with polyoxymethylene passive samplers to determine the partition coefficients at 37 °C of 18 polychlorinated biphenyls (PCBs) from water into (i) triolein (Ktriolein/water), (ii) eight types of liposomes (Kliposome/water), (iii) human abdominal fat tissues (KAFT/water) from seven individuals, and (iv) human MCF-7 cells cultured in vitro (Kcell/water). Differences between KAFT/water among individuals and between Kliposome/water among liposome types were very small and not correlated to structural attributes of the PCBs. Similarly, the length and degree of saturation of the phospholipid carbon chains, the headgroup, and the composition of the liposome did not affect the partitioning of PCBs into the studied liposomes. Whereas Kliposome/water values were similar to literature values of Koctanol/water adjusted to 37 °C, they both were lower than KAFT/water and Kcell/water by a factor of 3 on average. Partitioning of PCBs into triolein on the other hand closely mimicked that into human lipids, for which triolein is thus a better surrogate than either octanol or liposomes. Previously published polyparameter linear free energy relationships for partitioning from water into storage lipids and liposomes predicted the measured partition coefficients with a root-mean-square error of less than 0.15 log units, if the chosen equations and solute descriptors do not allow chlorine substitution in the ortho-position to influence the prediction. By guiding the selection of (i) a surrogate for the experimental determination and (ii) a method for the prediction of partitioning into human lipids, this study contributes to a better assessment of hydrophobic organic contaminant bioaccumulation in humans.
Castells; Romero; Nardillo
1997-08-01
Thermodynamic properties of solution in 3-methylsydnone (3MS) and of adsorption at the nitrogen/3MS interface were gas chromatographically measured for a group of fifteen hydrocarbons at infinite dilution conditions. Retention volumes were measured at five temperatures within the range 37-52°C in six columns containing different loadings of 3MS on Chromosorb P AW. Partition and adsorption coefficients were calculated and from their temperature dependence the corresponding enthalpies were obtained, although with considerable error; infinite dilution activity coefficients of the hydrocarbons in the bulk and in the surface phases demonstrated a strong correlation. Bulk activity coefficients in 3MS were very much smaller than those previously measured for the same solutes in formamide (FA) and in ethyleneglycol (EG), and were also smaller than what could be predicted on account of 3MS cohesive energy density as estimated from the quotient sigma/v1/3 (sigma, surface tension; v, molar volume). There was not such a large difference between the surface activity coefficients in the three solvents; furthermore, the quotients (surface activity coefficient/bulk activity coefficient) for a given solute in 3MS were twice as large as in FA and about three times larger than in EG. These results make evident the difficulties inherent in the prediction of surface phase properties from those in the bulk and cast doubts on the pertinency of employing the surface tension to compare cohesive energy densities of polar solvents with important chemical differences.
NASA Astrophysics Data System (ADS)
Helmy, Hassan M.; Fonseca, Raúl O. C.
2017-11-01
The behavior of Pt, Pd, Ni and Cu in Se-sulfide system and the role of Se in platinum-group elements (PGE) fractionation have been experimentally investigated at temperatures between 1050 and 700 °C in evacuated silica tubes. At 1050 °C, Se partially partitions into a vapor phase. At 980 °C, monosulfide solid solution (mss) and sulfide melt are the only stable phases. No Pt or Pd-bearing discrete selenide phases form down to 700 °C. Instead cooperite (PtS) forms at 900 °C. Both mss and sulfide melt can accommodate wt.% levels of Se over the whole temperature range covered by the experiments. The addition of Se in the sulfide system leads to an increase in the activity coefficients of Ni and Pd in sulfide melt. This is reflected by an increase in the partition coefficients of Ni and Pd between mss and sulfide melt. The Pt-Se activity coefficient in sulfide melt is lower than that of Pt-S. Owing to selenium's high solubility in sulfides, there never become oversaturated in Se to the extent that discrete selenides form. As such, base metal sulfides are expected to control the geochemical behavior of Se in natural systems. Interestingly, partition coefficients for the platinum-group elements (Os, Ir, Ru, Pt, Rh, Pd) between mss and sulfide melt are undistinguishable regardless of whether Se is present or not. These results imply that Se plays little role in the fractionation of PGE as sulfide melt cools down and crystallize. Furthermore, our experimental results provide evidence that Se is volatile at magmatic temperature and is likely to be degassed like sulfur.
Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott
2015-01-01
Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.
Parker, K; Morrison, G
2016-08-01
Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy
2015-04-30
The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.
Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi
2014-11-28
Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Huihui; Wei, Mengbi; Yang, Xianhai; Yin, Cen; He, Xiao
2017-01-01
Partition coefficients are vital parameters for measuring accurately the chemicals concentrations by passive sampling devices. Given the wide use of low density polyethylene (LDPE) film in passive sampling, we developed a theoretical linear solvation energy relationship (TLSER) model and a quantitative structure-activity relationship (QSAR) model for the prediction of the partition coefficient of chemicals between LDPE and water (K pew ). For chemicals with the octanol-water partition coefficient (log K ow ) <8, a TLSER model with V x (McGowan volume) and qA - (the most negative charge on O, N, S, X atoms) as descriptors was developed, but the model had relatively low determination coefficient (R 2 ) and cross-validated coefficient (Q 2 ). In order to further explore the theoretical mechanisms involved in the partition process, a QSAR model with four descriptors (MLOGP (Moriguchi octanol-water partition coeff.), P_VSA_s_3 (P_VSA-like on I-state, bin 3), Hy (hydrophilic factor) and NssO (number of atoms of type ssO)) was established, and statistical analysis indicated that the model had satisfactory goodness-of-fit, robustness and predictive ability. For chemicals with log K OW >8, a TLSER model with V x and a QSAR model with MLOGP as descriptor were developed. This is the first paper to explore the models for highly hydrophobic chemicals. The applicability domain of the models, characterized by the Euclidean distance-based method and Williams plot, covered a large number of structurally diverse chemicals, which included nearly all the common hydrophobic organic compounds. Additionally, through mechanism interpretation, we explored the structural features those governing the partition behavior of chemicals between LDPE and water. Copyright © 2016 Elsevier B.V. All rights reserved.
Annunziata, Onofrio; Payne, Andrew; Wang, Ying
2008-10-08
Understanding protein solubility is important for a rational design of the conditions of protein crystallization. We report measurements of lysozyme solubility in aqueous solutions as a function of NaCl, KCl, and NH4Cl concentrations at 25 degrees C and pH 4.5. Our solubility results are directly compared to preferential-interaction coefficients of these ternary solutions determined in the same experimental conditions by ternary diffusion. This comparison has provided new important insight on the dependence of protein solubility on salt concentration. We remark that the dependence of the preferential-interaction coefficient as a function of salt concentration is substantially shaped by the common-ion effect. This effect plays a crucial role also on the observed behavior of lysozyme solubility. We find that the dependence of solubility on salt type and concentration strongly correlates with the corresponding dependence of the preferential-interaction coefficient. Examination of both preferential-interaction coefficients and second virial coefficients has allowed us to demonstrate that the solubility dependence on salt concentration is substantially affected by the corresponding change of protein chemical potential in the crystalline phase. We propose a simple model for the crystalline phase based on salt partitioning between solution and the hydrated protein crystal. A novel solubility equation is reported that quantitatively explains the observed experimental dependence of protein solubility on salt concentration.
NASA Technical Reports Server (NTRS)
Jones, J. H.; Walker, D.
1993-01-01
Previously we have reported carbonate liq./silicate liq. partition coefficients (D) for a standard suite of trace elements (Nb, Mo, Ba, Ce, Pb, Th, and U) and Ra and Pa as well. In brief, we have found that immiscible liquid partitioning is a strong function of temperature. As the critical temperature of the carbonate-silicate solvus is approached, all partition coefficients approach unity. Additionally, for the overwhelming majority of the partitioning elements, InD is a linear function of 'ionic field strength,' z/r, where z is the charge of the partitioned cation and r is its ionic radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Richmann, Michael K.; Reed, Donald T.
2015-10-30
The degree of conservatism in the estimated sorption partition coefficients (K ds) used in a performance assessment model is being evaluated based on a complementary batch and column method. The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected at the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV).
Whicker, Jeffrey J; Pinder, John E; Ibrahim, Shawki A; Stone, James M; Breshears, David D; Baker, Kristine N
2007-07-01
The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of Kd for 238U are particularly useful because of the extensive use of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of Kd for 238U are needed because Kd is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diameters<45 microm). The 7-d Kd values, which are those specified in the EPA protocol, ranged from 276-508 mL g-1 for whole soil and from 615-2249 mL g-1 for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of 238U to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d Kd measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in desorption rates from soil to solution (e.g., into groundwater or lung fluid). We also explore potential relationships between wind erosion, soil characteristics, and Kd values. Combined, our results highlight the need for a better mechanistic understanding of soil-solution partitioning kinetics for accurate risk assessment.
Prediction of the sorption capacities and affinities of organic chemicals by XAD-7.
Yang, Kun; Qi, Long; Wei, Wei; Wu, Wenhao; Lin, Daohui
2016-01-01
Macro-porous resins are widely used as adsorbents for the treatment of organic contaminants in wastewater and for the pre-concentration of organic solutes from water. However, the sorption mechanisms for organic contaminants on such adsorbents have not been systematically investigated so far. Therefore, in this study, the sorption capacities and affinities of 24 organic chemicals by XAD-7 were investigated and the experimentally obtained sorption isotherms were fitted to the Dubinin-Ashtakhov model. Linear positive correlations were observed between the sorption capacities and the solubilities (SW) of the chemicals in water or octanol and between the sorption affinities and the solvatochromic parameters of the chemicals, indicating that the sorption of various organic compounds by XAD-7 occurred by non-linear partitioning into XAD-7, rather than by adsorption on XAD-7 surfaces. Both specific interactions (i.e., hydrogen-bonding interactions) as well as nonspecific interactions were considered to be responsible for the non-linear partitioning. The correlation equations obtained in this study allow the prediction of non-linear partitioning using well-known chemical parameters, namely SW, octanol-water partition coefficients (KOW), and the hydrogen-bonding donor parameter (αm). The effect of pH on the sorption of ionizable organic compounds (IOCs) could also be predicted by combining the correlation equations with additional equations developed from the estimation of IOC dissociation rates. The prediction equations developed in this study and the proposed non-linear partition mechanism shed new light on the selective removal and pre-concentration of organic solutes from water and on the regeneration of exhausted XAD-7 using solvent extraction.
NASA Astrophysics Data System (ADS)
Zuend, A.; Marcolli, C.; Peter, T.
2009-04-01
The chemical composition of organic-inorganic aerosols is linked to several processes and specific topics in the field of atmospheric aerosol science. Photochemical oxidation of organics in the gas phase lowers the volatility of semi-volatile compounds and contributes to the particulate matter by gas/particle partitioning. Heterogeneous chemistry and changes in the ambient relative humidity influence the aerosol composition as well. Molecular interactions between condensed phase species show typically non-ideal thermodynamic behavior. Liquid-liquid phase separations into a mainly polar, aqueous and a less polar, organic phase may considerably influence the gas/particle partitioning of semi-volatile organics and inorganics (Erdakos and Pankow, 2004; Chang and Pankow, 2006). Moreover, the phases present in the aerosol particles feed back on the heterogeneous, multi-phase chemistry, influence the scattering and absorption of radiation and affect the CCN ability of the particles. Non-ideal thermodynamic behavior in mixtures is usually described by an expression for the excess Gibbs energy, enabling the calculation of activity coefficients. We use the group-contribution model AIOMFAC (Zuend et al., 2008) to calculate activity coefficients, chemical potentials and the total Gibbs energy of mixed organic-inorganic systems. This thermodynamic model was combined with a robust global optimization module to compute potential liquid-liquid (LLE) and vapor-liquid-liquid equilibria (VLLE) as a function of particle composition at room temperature. And related to that, the gas/particle partitioning of semi-volatile components. Furthermore, we compute the thermodynamic stability (spinodal limits) of single-phase solutions, which provides information on the process type and kinetics of a phase separation. References Chang, E. I. and Pankow, J. F.: Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water - Part 2: Consideration of phase separation effects by an XUNIFAC model, Atmos. Environ., 40, 6422-6436, 2006. Erdakos, G. B. and Pankow, J. F.: Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds, Atmos. Environ., 38, 1005-1013, 2004. Zuend, A., Marcolli, C., Luo, B. P., and Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients, Atmos. Chem. Phys., 8, 4559-4593, 2008.
Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system
Rostad, C.E.; Pereira, W.E.; Hult, M.F.
1985-01-01
Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.
Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya
2018-01-15
Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling of adipose/blood partition coefficient for environmental chemicals.
Papadaki, K C; Karakitsios, S P; Sarigiannis, D A
2017-12-01
A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict the adipose/blood partition coefficient of environmental chemical compounds. The first step of QSAR modeling was the collection of inputs. Input data included the experimental values of adipose/blood partition coefficient and two sets of molecular descriptors for 67 organic chemical compounds; a) the descriptors from Linear Free Energy Relationship (LFER) and b) the PaDEL descriptors. The datasets were split to training and prediction set and were analysed using two statistical methods; Genetic Algorithm based Multiple Linear Regression (GA-MLR) and Artificial Neural Networks (ANN). The models with LFER and PaDEL descriptors, coupled with ANN, produced satisfying performance results. The fitting performance (R 2 ) of the models, using LFER and PaDEL descriptors, was 0.94 and 0.96, respectively. The Applicability Domain (AD) of the models was assessed and then the models were applied to a large number of chemical compounds with unknown values of adipose/blood partition coefficient. In conclusion, the proposed models were checked for fitting, validity and applicability. It was demonstrated that they are stable, reliable and capable to predict the values of adipose/blood partition coefficient of "data poor" chemical compounds that fall within the applicability domain. Copyright © 2017. Published by Elsevier Ltd.
Evidence for a high temperature differentiation in a molten earth: A preliminary appraisal
NASA Technical Reports Server (NTRS)
Murthy, V. Rama
1992-01-01
If the earth were molten during its later stages of accretion as indicated by the present understanding of planetary accretion process, the differentiation that led to the formation of the core and mantle must have occurred at high temperatures in the range of 3000-5000 K because of the effect of pressure on the temperature of melting in the interior of the earth. This calls into question the use of low-temperature laboratory measurements of partition coefficients of trace elements to make inferences about earth accretion and differentiation. The low temperature partition coefficients cannot be directly applied to high temperature fractionations because partition coefficients refer to an equilibrium specific to a temperature for a given reaction, and must change in some proportion to exp 1/RT. There are no laboratory data on partition coefficients at the high temperatures relevant to differentiation in the interior of the earth, and an attempt to estimate high temperature distribution coefficients of siderophile elements was made by considering the chemical potential of a given element at equilibrium and how this potential changes with temperature, under some specific assumptions.
Karunasekara, Thushara; Poole, Colin F
2011-07-15
Partition coefficients for varied compounds were determined for the organic solvent-dimethyl sulfoxide biphasic partition system where the organic solvent is n-heptane or isopentyl ether. These partition coefficient databases are analyzed using the solvation parameter model facilitating a quantitative comparison of the dimethyl sulfoxide-based partition systems with other totally organic partition systems. Dimethyl sulfoxide is a moderately cohesive solvent, reasonably dipolar/polarizable and strongly hydrogen-bond basic. Although generally considered to be non-hydrogen-bond acidic, analysis of the partition coefficient database strongly supports reclassification as a weak hydrogen-bond acid in agreement with recent literature. The system constants for the n-heptane-dimethyl sulfoxide biphasic system provide an explanation of the mechanism for the selective isolation of polycyclic aromatic compounds from mixtures containing low-polarity hydrocarbons based on the capability of the polar interactions (dipolarity/polarizability and hydrogen-bonding) to overcome the opposing cohesive forces in dimethyl sulfoxide that are absent for the interactions with hydrocarbons of low polarity. In addition, dimethyl sulfoxide-organic solvent systems afford a complementary approach to other totally organic biphasic partition systems for descriptor measurements of compounds virtually insoluble in water. Copyright © 2011 Elsevier B.V. All rights reserved.
n-Alcohol/Water Partition Coefficients for Decachlorobiphenyl (PCB 209)
Measurements of n-octanol/water partition coefficients (Kow) for highly hydrophobic chemicals are extremely difficult and are rarely made, in part due to the large volumes of water typically needed to quantify these compounds in the aqueous phase. An extrapolation approach using ...
METHOD FOR MEASURING AIR-IMMISCIBLE LIQUID PARTITION COEFFICIENTS
The principal objective of this work was to measure nonaqueous phase liquid-air partition coefficients for various gas tracer compounds. Known amounts of trichloroethene (TCE) and tracer, as neat compounds, were introduced into glass vials and allowed to equilibrate. The TCE and ...
Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A
2016-06-14
Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Physicochemical properties and solubility of alkyl-(2-hydroxyethyl)-dimethylammonium bromide.
Domańska, Urszula; Bogel-Łukasik, Rafał
2005-06-23
Quaternary ammonium salts, which are precursors of ionic liquids, have been prepared from N,N-dimethylethanolamine as a substrate. The paper includes specific basic characterization of synthesized compounds via the following procedures: nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectra, water content, mass spectroscopy (MS) spectra, temperatures of decompositions, basic thermodynamic properties of pure ionic liquids (the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, glass transition), and the difference in the solute heat capacity between the liquid and solid at the melting temperature determined by differential scanning calorimetry (DSC). The (solid + liquid) phase equilibria of binary mixtures containing (quaternary ammonium salt + water, or + 1-octanol) has been measured by a dynamic method over wide range of temperatures, from 230 K to 560 K. These data were correlated by means of the UNIQUAC ASM and modified nonrandom two-liquid NRTL1 equations utilizing parameters derived from the (solid + liquid) equilibrium. The partition coefficient of ionic liquid in the 1-octanol/water binary system has been calculated from the solubility results. Experimental partition coefficients (log P) were negative at three temperatures.
Environmental Containment Property Estimation Using QSARs in an Expert System
1991-10-15
economical method to estimate aqueous solubility, octanol/ water partition coefficients, vapor pressures, organic carbon, normalized soil sorption...PROPERTY ESTIMATION USING QSARs IN AN EXPERT SYSTEM William J. Doucette Mark S. Holt Doug J. Denne Joan E. McLean Utah State University Utah Water ...persistence of a chemical are aqueous solubility, octanol/ water partition coefficient, soil/ water sorption coefficient, Henry’s Law constant
Trophic Magnification of PCBs and Its Relationship to the Octanol−Water Partition Coefficient
We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism trophic position (TP) at the Lake Hartwell Superfund (South Carolina, USA). We measured PCBs (127 congeners) and stable isotopes (δ15...
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.
2004-01-01
A three-dimensional, high-order, conservative, and efficient discontinuous spectral volume (SV) method for the solutions of Maxwell's equations on unstructured grids is presented. The concept of discontinuous 2nd high-order loca1 representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) method, but instead of using a Galerkin finite-element formulation, the SV method is based on a finite-volume approach to attain a simpler formulation. Conventional unstructured finite-volume methods require data reconstruction based on the least-squares formulation using neighboring cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In the SV method, one starts with a relatively coarse grid of triangles or tetrahedra, called spectral volumes (SVs), and partition each SV into a number of structured subcells, called control volumes (CVs), that support a polynomial expansion of a desired degree of precision. The unknowns are cell averages over CVs. If all the SVs are partitioned in a geometrically similar manner, the reconstruction becomes universal as a weighted sum of unknowns, and only a few universal coefficients need to be stored for the surface integrals over CV faces. Since the solution is discontinuous across the SV boundaries, a Riemann solver is thus necessary to maintain conservation. In the paper, multi-parameter and symmetric SV partitions, up to quartic for triangle and cubic for tetrahedron, are first presented. The corresponding weight coefficients for CV face integrals in terms of CV cell averages for each partition are analytically determined. These discretization formulas are then applied to the integral form of the Maxwell equations. All numerical procedures for outer boundary, material interface, zonal interface, and interior SV face are unified with a single characteristic formulation. The load balancing in a massive parallel computing environment is therefore easier to achieve. A parameter is introduced in the Riemann solver to control the strength of the smoothing term. Important aspects of the data structure and its effects to communication and the optimum use of cache memory are discussed. Results will be presented for plane TE and TM waves incident on a perfectly conducting cylinder for up to fifth order of accuracy, and a plane wave incident on a perfectly conducting sphere for up to fourth order of accuracy. Comparisons are made with exact solutions for these cases.
Padró, Juan M; Pellegrino Vidal, Rocío B; Reta, Mario
2014-12-01
The partition coefficients, P IL/w, of several compounds, some of them of biological and pharmacological interest, between water and room-temperature ionic liquids based on the imidazolium, pyridinium, and phosphonium cations, namely 1-octyl-3-methylimidazolium hexafluorophosphate, N-octylpyridinium tetrafluorophosphate, trihexyl(tetradecyl)phosphonium chloride, trihexyl(tetradecyl)phosphonium bromide, trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium dicyanamide, were accurately measured. In this way, we extended our database of partition coefficients in room-temperature ionic liquids previously reported. We employed the solvation parameter model with different probe molecules (the training set) to elucidate the chemical interactions involved in the partition process and discussed the most relevant differences among the three types of ionic liquids. The multiparametric equations obtained with the aforementioned model were used to predict the partition coefficients for compounds (the test set) not present in the training set, most being of biological and pharmacological interest. An excellent agreement between calculated and experimental log P IL/w values was obtained. Thus, the obtained equations can be used to predict, a priori, the extraction efficiency for any compound using these ionic liquids as extraction solvents in liquid-liquid extractions.
NASA Astrophysics Data System (ADS)
Zhou, BeiBei; Wang, QuanJiu
2017-09-01
Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.
NASA Astrophysics Data System (ADS)
Mann, Ute; Frost, Daniel J.; Rubie, David C.; Becker, Harry; Audétat, Andreas
2012-05-01
The apparent overabundance of the highly siderophile elements (HSEs: Pt-group elements, Re and Au) in the mantles of Earth, Moon and Mars has not been satisfactorily explained. Although late accretion of a chondritic component seems to provide the most plausible explanation, metal-silicate equilibration in a magma ocean cannot be ruled out due to a lack of HSE partitioning data suitable for extrapolations to the relevant high pressure and high temperature conditions. We provide a new data set of partition coefficients simultaneously determined for Ru, Rh, Pd, Re, Ir and Pt over a range of 3.5-18 GPa and 2423-2773 K. In multianvil experiments, molten peridotite was equilibrated in MgO single crystal capsules with liquid Fe-alloy that contained bulk HSE concentrations of 53.2-98.9 wt% (XFe = 0.03-0.67) such that oxygen fugacities of IW - 1.5 to IW + 1.6 (i.e. logarithmic units relative to the iron-wüstite buffer) were established at run conditions. To analyse trace concentrations of the HSEs in the silicate melt with LA-ICP-MS, two silicate glass standards (1-119 ppm Ru, Rh, Pd, Re, Ir, Pt) were produced and evaluated for this study. Using an asymmetric regular solution model we have corrected experimental partition coefficients to account for the differences between HSE metal activities in the multicomponent Fe-alloys and infinite dilution. Based on the experimental data, the P and T dependence of the partition coefficients (D) was parameterized. The partition coefficients of all HSEs studied decrease with increasing pressure and to a greater extent with increasing temperature. Except for Pt, the decrease with pressure is stronger below ˜6 GPa and much weaker in the range 6-18 GPa. This change might result from pressure induced coordination changes in the silicate liquid. Extrapolating the D values over a large range of potential P-T conditions in a terrestrial magma ocean (peridotite liquidus at P ⩽ 60-80 GPa) we conclude that the P-T-induced decrease of D would not have been sufficient to explain HSE mantle abundances by metal-silicate equilibration at a common set of P-T-oxygen fugacity conditions. Therefore, the mantle concentrations of most HSEs cannot have been established during core formation. The comparatively less siderophile Pd might have been partly retained in the magma ocean if effective equilibration pressures reached 35-50 GPa. To a much smaller extent this could also apply to Pt and Rh providing that equilibration pressures reached ⩾60 GPa in the late stage of accretion. With most of the HSE partition coefficients at 60 GPa still differing by 0.5-3 orders of magnitude, metal-silicate equilibration alone cannot have produced the observed near-chondritic HSE abundances of the mantles of the Earth as well as of the Moon or Mars. Our results show that an additional process, such as the accretion of a late veneer composed of some type of chondritic material, was required. The results, therefore, support recent hybrid models, which propose that the observed HSE signatures are a combined result of both metal-silicate partitioning as well as an overprint by late accretion.
Rodríguez-Durán, Luis V; Spelzini, Darío; Boeris, Valeria; Aguilar, Cristóbal N; Picó, Guillermo A
2013-01-01
Tannase from Aspergillus niger was partitioned in aqueous two-phase systems composed by polyethyleneglycol of molar mass 400, 600 and 1000 and potassium phosphate. Tannase was found to be partitioned toward the salt-rich phase in all systems, with partition coefficients lower than 0.5. Partition coefficients values and low entropic and enthalpic changes associated with tannase partition suggest that the entropic effect may be the driving force of the concentration of the enzyme in the bottom phase due to the high molar mass of the enzyme. The process was significantly influenced by the top phase/bottom phase volume ratio. When the fungal culture broth was partitioned in these systems, a good performance was found, since the enzyme recovery in the bottom phase of the system composed by polyethyleneglycol 1000 was around 96% with a 7.0-fold increase in purity. Copyright © 2012 Elsevier B.V. All rights reserved.
Fu, Heyun; Wei, Chenhui; Qu, Xiaolei; Li, Hui; Zhu, Dongqiang
2018-01-01
Dissolved black carbon (DBC), the soluble fraction of black carbon (BC), is an important constituent of dissolved organic matter pool. However, little is known about the binding interactions between hydrophobic organic contaminants (HOCs) and DBC and their significance in the fate process. This study determined the binding ability of DBC released from rice-derived BC for a series of apolar HOCs, including four polycyclic aromatic hydrocarbons and four chlorinated benzenes, using batch sorption and solubility enhancement techniques. Bulk BC and a dissolved soil humic acid (DSHA) were included as benchmark sorbents. The organic carbon-normalized sorption coefficient of phenanthrene to DBC was slightly lower than bulk BC, but was over ten folds higher than DSHA. Consistently, DBC was more effective than DSHA in enhancing the apparent water solubility of the tested HOCs, and the enhancement positively correlated with solute n-octanol-water partition coefficient, indicating the predominance of hydrophobic partition. The much higher binding ability of DBC relative to DSHA was mainly attributed to its higher tendency to form pseudomicellar structures as supported by the fluorescence quenching and the pH-edge data. Our findings suggest that DBC might play a significant role in the environmental fate and transport of HOCs as both sorbent and carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.
78 FR 4844 - Notice of Intent To Suspend Certain Pesticide Registrations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
... water. 830.7550 Partition coefficient (n- 6/16/09 6/25/09 3/16/10 1,3 octanol/water) shake flask method. 830.7570 Partition coefficient (n- 6/16/09 6/25/09 3/16/10 1,3 octanol/water) estimation by liquid...
Measurements of n-octanol/water partition coefficients (KOW) for highly hydrophobic chemicals, i.e., greater than 108, are extremely difficult and are rarely made, in part because the vanishingly small concentrations in the water phase require extraordinary analytical sensitivity...
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...
USDA-ARS?s Scientific Manuscript database
Mannitol is a major deterioration product of Leuconstoc mesenteroides bacterial deterioration of both sugarcane and sugar beet. The effect of crystallization conditions on the mannitol partition coefficient (Keff) between impure sucrose syrup and crystal has been investigated in a batch laboratory c...
77 FR 46289 - Technical Corrections to Organizational Names, Addresses, and OMB Control Numbers
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-03
...]795.232 Inhalation and dermal pharmacokinetics of commercial hexane. * * * * * (c) * * * (2) * * * (i... to read as follows: Sec. 799.6755 TSCA partition coefficient (n-octanol/water), shake flask method... read as follows: Sec. 799.6756 TSCA partition coefficient (n-octanol/water), generator column method...
Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...
Crystal-chemistry and partitioning of REE in whitlockite
NASA Technical Reports Server (NTRS)
Colson, R. O.; Jolliff, B. L.
1993-01-01
Partitioning of Rare Earth Elements (REE) in whitlockite is complicated by the fact that two or more charge-balancing substitutions are involved and by the fact that concentrations of REE in natural whitlockites are sufficiently high such that simple partition coefficients are not expected to be constant even if mixing in the system is completely ideal. The present study combines preexisting REE partitioning data in whitlockites with new experiments in the same compositional system and at the same temperature (approximately 1030 C) to place additional constraints on the complex variations of REE partition coefficients and to test theoretical models for how REE partitioning should vary with REE concentration and other compositional variables. With this data set, and by combining crystallographic and thermochemical constraints with a SAS simultaneous-equation best-fitting routine, it is possible to infer answers to the following questions: what is the speciation on the individual sites Ca(B), Mg, and Ca(IIA) (where the ideal structural formula is Ca(B)18 Mg2Ca(IIA)2P14O56); how are REE's charge-balanced in the crystal; and is mixing of REE in whitlockite ideal or non-ideal. This understanding is necessary in order to extrapolate derived partition coefficients to other compositional systems and provides a broadened understanding of the crystal chemistry of whitlockite.
NASA Astrophysics Data System (ADS)
Nielsen, Roger L.; Ustunisik, Gokce; Weinsteiger, Allison B.; Tepley, Frank J.; Johnston, A. Dana; Kent, Adam J. R.
2017-09-01
Quantitative models of petrologic processes require accurate partition coefficients. Our ability to obtain accurate partition coefficients is constrained by their dependence on pressure temperature and composition, and on the experimental and analytical techniques we apply. The source and magnitude of error in experimental studies of trace element partitioning may go unrecognized if one examines only the processed published data. The most important sources of error are relict crystals, and analyses of more than one phase in the analytical volume. Because we have typically published averaged data, identification of compromised data is difficult if not impossible. We addressed this problem by examining unprocessed data from plagioclase/melt partitioning experiments, by comparing models based on that data with existing partitioning models, and evaluated the degree to which the partitioning models are dependent on the calibration data. We found that partitioning models are dependent on the calibration data in ways that result in erroneous model values, and that the error will be systematic and dependent on the value of the partition coefficient. In effect, use of different calibration datasets will result in partitioning models whose results are systematically biased, and that one can arrive at different and conflicting conclusions depending on how a model is calibrated, defeating the purpose of applying the models. Ultimately this is an experimental data problem, which can be solved if we publish individual analyses (not averages) or use a projection method wherein we use an independent compositional constraint to identify and estimate the uncontaminated composition of each phase.
Partition of nonionic organic compounds in aquatic systems
Smith, James A.; Witkowski, Patrick J.; Chiou, Cary T.
1988-01-01
In aqueous systems, the distribution of many nonionic organic solutes in soil-sediment, aquatic organisms, and dissolved organic matter can be explained in terms of a partition model. The nonionic organic solute is distributed between water and different organic phases that behave as bulk solvents. Factors such as polarity, composition, and molecular size of the solute and organic phase determine the relative importance of partition to the environmental distribution of the solute. This chapter reviews these factors in the context of a partition model and also examines several environmental applications of the partition model for surface- and ground-water systems.
Dissolution of multi-component LNAPL gasolines: The effects of weathering and composition
NASA Astrophysics Data System (ADS)
Lekmine, Greg; Bastow, Trevor P.; Johnston, Colin D.; Davis, Greg B.
2014-05-01
The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer. Weathered gasoline created under controlled evaporation and water washing, and naturally weathered gasoline, were investigated. Equilibrium concentrations in water and molar fractions in the gasoline mixtures were compared with equilibrium concentrations predicted by Raoult's law assuming ideal behaviour of the solutions. The experiments carried out allowed the relative sensitivity of the activity coefficients of key risk drivers such as benzene, toluene, ethylbenzene and xylene (BTEX) compounds to be quantified with respect to the presence of other types of compounds and where the source LNAPL had undergone different types of weathering. Results differed for the mixtures examined but in some cases higher than predicted dissolved equilibrium concentrations showed non-ideal behaviour for toluene, benzene and xylenes. Comparison of the activity coefficients showed that the naturally weathered gasoline and a 50% evaporated unleaded gasoline present a similar range of values varying between 1.0 and 1.2, suggesting close to ideal partitioning between the LNAPL and water. The fresh and water-washed gasoline had higher values for the activity coefficient, from 1.2 to 1.4, indicating non-ideal partitioning. Results from synthetic mixtures demonstrated that these differences could be due to the different molar fractions of the nC5 and nC6 aliphatic hydrocarbons acting on the molecular interactions, while differences in molar volumes seemed to have less of an influence on ideality.
The effect of cholesterol on the partitioning of 1-octanol into POPC vesicles
NASA Astrophysics Data System (ADS)
Zakariaee Kouchaksaraee, Roja
Microcalorimetry has become a method of choice for sensitive characterization of biomolecular interactions. In this study, isothermal titration calorimetry (ITC) was used to measure the partitioning of 1-octanol into lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a semi-unsaturated lipid, and cholesterol, a steroid, as a function of cholesterol molar concentration. The ITC instrument measures the heat evolved or absorbed upon titration of a liposome dispersion, at concentrations ranging from 0 to 40% cholesterol, into a suspension of 1-octanol in water. A model function was fit to the data in order to determine the partition coefficient of octanol into POPC bilayers and the enthalpy of interaction. I found that the partition coefficient increases and the heat of interaction becomes less negative with increasing cholesterol content, in contrast to results found by other groups for partitioning of alcohols into lipid-cholesterol bilayers containing saturated lipids. The heat of dilution of vesicles was also measured. Keywords: Partition coefficient; POPC; 1-Octanol; Cholesterol; Isothermal titration calorimetry; Lipid-alcohol interactions. Subject Terms: Calorimetry; Membranes (Biology); Biophysics; Biology -- Technique; Bilayer lipid membranes -- Biotechnology; Lipid membranes -- Biotechnology.
NASA Technical Reports Server (NTRS)
Irving, A. J.; Merrill, R. B.; Singleton, D. E.
1978-01-01
An experimental study was carried out to measure partition coefficients for two rare-earth elements (Sm and Tm) and Sc among armalcolite, ilmenite, olivine and liquid coexisting in a system modeled on high-Ti mare basalt 74275. This 'primitive' sample was chosen for study because its major and trace element chemistry as well as its equilibrium phase relations at atmospheric pressure are known from previous studies. Beta-track analytical techniques were used so that partition coefficients could be measured in an environment whose bulk trace element composition is similar to that of the natural basalt. Partition coefficients for Cr and Mn were determined in the same experiments by microprobe analysis. The only equilibrium partial melting model appears to be one in which ilmenite is initially present in the source region but is consumed by melting before segregation of the high-Ti mare basalt liquid from the residue.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.
2016-01-01
The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl in apatite.
Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...
OCTANOL/WATER PARTITION COEFFICIENTS AND WATER SOLUBILITIES OF PHTHALATE ESTERS
Measurements of the octanol/water partition coefficients (K-ow) and water solubilities of di-n-octyl phthalate (DnOP) and di-n-decyl phthalate (DnDP) by the slow-stirring method are reported. The water solubility was also measured for di-n-hexyl phthalate (DnHP). The log K-ow val...
We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism tropic position (TP) at the Lake Hartwell Superfund site (South Carolina, USA). We measured PCBs (127 congeners) and stable isotopes (δ
Tacey, Sean A; Xu, Lang; Szilvási, Tibor; Schauer, James J; Mavrikakis, Manos
2018-04-30
Gas-to-particle phase partitioning controls the pathways for oxidized mercury deposition from the atmosphere to the Earth's surface. The propensity of oxidized mercury species to transition between these two phases is described by the partitioning coefficient (K p ). Experimental measurements of K p values for HgCl 2 in the presence of atmospheric aerosols are difficult and time-consuming. Quantum chemical calculations, therefore, offer a promising opportunity to efficiently estimate partitioning coefficients for HgCl 2 on relevant aerosols. In this study, density functional theory (DFT) calculations are used to predict K p values for HgCl 2 on relevant iron-oxide surfaces. The model is first verified using a NaCl(100) surface, showing good agreement between the calculated (2.8) and experimental (29-43) dimensionless partitioning coefficients at room temperature. Then, the methodology is applied to six atmospherically relevant terminations of α-Fe 2 O 3 (0001): OH-Fe-R, (OH) 3 -Fe-R, (OH) 3 -R, O-Fe-R, Fe-O 3 -R, and O 3 -R (where R denotes bulk ordering). The OH-Fe-R termination is predicted to be the most stable under typical atmospheric conditions, and on this surface termination, a dimensionless HgCl 2 K p value of 5.2 × 10 3 at 295 K indicates a strong preference for the particle phase. This work demonstrates DFT as a promising approach to obtain partitioning coefficients, which can lead to improved models for the transport of mercury, as well as for other atmospheric pollutant species, through and between the anthroposphere and troposphere. Copyright © 2018 Elsevier B.V. All rights reserved.
Aerosol hygroscopic growth parameterization based on a solute specific coefficient
NASA Astrophysics Data System (ADS)
Metzger, S.; Steil, B.; Xu, L.; Penner, J. E.; Lelieveld, J.
2011-09-01
Water is a main component of atmospheric aerosols and its amount depends on the particle chemical composition. We introduce a new parameterization for the aerosol hygroscopic growth factor (HGF), based on an empirical relation between water activity (aw) and solute molality (μs) through a single solute specific coefficient νi. Three main advantages are: (1) wide applicability, (2) simplicity and (3) analytical nature. (1) Our approach considers the Kelvin effect and covers ideal solutions at large relative humidity (RH), including CCN activation, as well as concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD). (2) A single νi coefficient suffices to parameterize the HGF for a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. (3) In contrast to previous methods, our analytical aw parameterization depends not only on a linear correction factor for the solute molality, instead νi also appears in the exponent in form x · ax. According to our findings, νi can be assumed constant for the entire aw range (0-1). Thus, the νi based method is computationally efficient. In this work we focus on single solute solutions, where νi is pre-determined with the bisection method from our analytical equations using RHD measurements and the saturation molality μssat. The computed aerosol HGF and supersaturation (Köhler-theory) compare well with the results of the thermodynamic reference model E-AIM for the key compounds NaCl and (NH4)2SO4 relevant for CCN modeling and calibration studies. The equations introduced here provide the basis of our revised gas-liquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), described in a companion paper.
Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.
Berthod, A; Faure, K
2015-04-17
A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.
Soulsby, David; Chica, Jeryl A M
2017-08-01
We have developed a simple, direct and novel method for the determination of partition coefficients and partitioning behavior using 1 H NMR spectroscopy combined with time domain complete reduction to amplitude-frequency tables (CRAFT). After partitioning into water and 1-octanol using standard methods, aliquots from each layer are directly analyzed using either proton or selective excitation NMR experiments. Signal amplitudes for each compound from each layer are then extracted directly from the time domain data in an automated fashion and analyzed using the CRAFT software. From these amplitudes, log P and log D 7.4 values can be calculated directly. Phase, baseline and internal standard issues, which can be problematic when Fourier transformed data are used, are unimportant when using time domain data. Furthermore, analytes can contain impurities because only a single resonance is examined and need not be UV active. Using this approach, we examined a variety of pharmaceutically relevant compounds and determined partition coefficients that are in excellent agreement with literature values. To demonstrate the utility of this approach, we also examined salicylic acid in more detail demonstrating an aggregation effect as a function of sample loading and partition coefficient behavior as a function of pH value. This method provides a valuable addition to the medicinal chemist toolbox for determining these important constants. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed
2017-04-01
Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary layer on top of the silicate mantle. Such a contrasted dynamics in the aqueous-ice VI-ice VII system would greatly influence the migration of nutrients towards the uppermost liquid ocean, thus controlling the habitability of moderate to large H2O-rich planetary bodies in our solar system (e.g., Ganymede, Titan, Calisto) and beyond.
Xu, Chengning; Dong, Wenying; Wan, Junfen; Cao, Xuejun
2016-11-11
Aqueous two-phase systems (ATPS) have the potential application in bioseparation and biocatalysis engineering. In this paper, a recyclable ATPS was developed by two thermo-responsive copolymers, P VBAm and P N . Copolymer P VBAm was copolymerized using N-vinylcaprolactam, Butyl methacrylate and Acrylamide as monomers, and P N was synthesized by N-isopropylacrylamide. The lower critical solution temperature (LCST) of P VBAm and P N were 45.0°C and 33.5°C, respectively. The recoveries of both polymers could achieve over 95.0%. The phase behavior and formation mechanism of P VBAm /P N ATPS was studied. Low-field nuclear magnetic resonance (LF-NMR) was applied in the phase-forming mechanism study in ATPS. In addition, combining the analysis results of surface tension, transmission electron microscopy and dynamic light scattering, the phase-forming of the P VBAm /P N ATPS was proved. The application was performed by partition of ε-polylysine in the 2% P VBAm /2% P N (w/w) ATPS. The results demonstrated that ε-polylysine was extracted into the P N -rich phase, the maximal partition coefficient (1/K) and extraction recovery of pure ε-polylysine were 6.87 and 96.36%, respectively, and 7.41 partition coefficient and 97.85% extraction recovery for ε-polylysine fermentation broth were obtained in the presence of 50mM (NH 4 ) 2 SO 4 at room temperature. And this method can effectively remove the most impurities from fermentation broth when (NH 4 ) 2 SO 4 exists in the ATPS. It is believed that the thermo-responsive recycling ATPS has a good application prospect in the field of bio-separation. Copyright © 2016 Elsevier B.V. All rights reserved.
Gold and copper partitioning in magmatic-hydrothermal systems at 800 °C and 100 MPa
NASA Astrophysics Data System (ADS)
Frank, Mark R.; Simon, Adam C.; Pettke, Thomas; Candela, Philip A.; Piccoli, Philip M.
2011-05-01
Porphyry-type ore deposits sometimes contain fluid inclusion compositions consistent with the partitioning of copper and gold into vapor relative to coexisting brine at the depositional stage. However, this has not been reproduced experimentally at magmatic conditions. In an attempt to determine the conditions under which copper and gold may partition preferentially into vapor relative to brine at temperatures above the solidus of granitic magmas, we performed experiments at 800 °C, 100 MPa, oxygen fugacity ( fO2sys) buffered by Ni-NiO, and aS2sys fixed at either 3.5 × 10 -2 by using intermediate solid solution-pyrrhotite, or 1.2 × 10 -4 by using intermediate solid solution-pyrrhotite-bornite. The coexisting vapor (˜3 wt.% NaCl eq.) and brine (˜68 wt.% NaCl eq.) were composed initially of NaCl + KCl + HCl + H 2O, with starting HCl set to <1000 μg/g in the aqueous mixture. Synthetic vapor and brine fluid inclusions were trapped at run conditions and subsequently analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Our experiments demonstrate that copper and gold partitioned strongly into the magmatic volatile phase(s) (MVP) (i.e., vapor or brine) relative to a silicate melt over the entire imposed range of aS2sys. Nernst style partition coefficients between coexisting brine (b) and melt (m), D b/m (±1 σ), range from 3.6(±2.2) × 10 1 to 4(±2) × 10 2 for copper and from 1.2(±0.6) × 10 2 to 2.4(±2.4) × 10 3 for gold. Partition coefficients between coexisting vapor (v) and melt, D v/m range from 2.1 ± 0.7 to 18 ± 5 and 7(±3) × 10 1 to 1.6(±1.6) × 10 2 for copper and gold, respectively. Partition coefficients for all experiments between coexisting brine and vapor, D b/v (±1 σ), range from 7(±2) to 1.0(±0.4) × 10 2 and 1.7(±0.2) to 15(±2) for copper and gold, respectively. Observed average D b/v at an aS2sys of 1.2 × 10 -4 were elevated, 95(±5) and 15 ± 1 for copper and gold, respectively, relative to those at the higher aS2sys of 3.5 × 10 -2 where D b/v were 10(±5) for copper and 7(±6) for gold. Thus, there is an inverse relationship between the aS2sys and the D b/v for both copper and gold with increasing aS2sys resulting in a decrease in the D b/v signifying increased importance of the vapor phase for copper and gold transport. This suggests that copper and gold may complex with volatile S-species as well as Cl-species at magmatic conditions, however, none of the experiments of our study at 800 °C and 100 MPa had a D b/v ⩽ 1. We did not directly determine speciation, but infer the existence of some metal-sulfur complexes based on the reported data. We suggest that copper and gold partition preferentially into the brine in most instances at or above the wet solidus. However, in most systems, the mass of vapor is greater than the mass of brine, and vapor transport of copper and gold may become more important in the magmatic environment at higher aS2sys, lower fO2sys, or near the critical point in a salt-water system. A D b/v ⩽ 1 at subsolidus hydrothermal conditions may also occur in response to changes in temperature, fO2sys, aS2sys, and/or acidity. Additionally, both copper and gold were observed to partition into intermediate solid solution and bornite much more strongly than into vapor, brine or silicate melt. This suggests that, although vapor and brine are both efficient at removing copper and gold from a silicate melt, the presence of Cu-Fe sulfides can sequester a substantial portion of the copper and gold contained within a silicate melt if the Cu-Fe sulfides are abundant.
NASA Astrophysics Data System (ADS)
Thomas, J. B.; Bodnar, R. J.; Shimizu, N.; Sinha, A. K.
2002-09-01
Partition coefficients ( zircon/meltD M) for rare earth elements (REE) (La, Ce, Nd, Sm, Dy, Er and Yb) and other trace elements (Ba, Rb, B, Sr, Ti, Y and Nb) between zircon and melt have been calculated from secondary ion mass spectrometric (SIMS) analyses of zircon/melt inclusion pairs. The melt inclusion-mineral (MIM) technique shows that D REE increase in compatibility with increasing atomic number, similar to results of previous studies. However, D REE determined using the MIM technique are, in general, lower than previously reported values. Calculated D REE indicate that light REE with atomic numbers less than Sm are incompatible in zircon and become more incompatible with decreasing atomic number. This behavior is in contrast to most previously published results which indicate D > 1 and define a flat partitioning pattern for elements from La through Sm. The partition coefficients for the heavy REE determined using the MIM technique are lower than previously published results by factors of ≈15 to 20 but follow a similar trend. These differences are thought to reflect the effects of mineral and/or glass contaminants in samples from earlier studies which employed bulk analysis techniques. D REE determined using the MIM technique agree well with values predicted using the equations of Brice (1975), which are based on the size and elasticity of crystallographic sites. The presence of Ce 4+ in the melt results in elevated D Ce compared to neighboring REE due to the similar valence and size of Ce 4+ and Zr 4+. Predicted zircon/meltD values for Ce 4+ and Ce 3+ indicate that the Ce 4+/Ce 3+ ratios of the melt ranged from about 10 -3 to 10 -2. Partition coefficients for other trace elements determined in this study increase in compatibility in the order Ba < Rb < B < Sr < Ti < Y < Nb, with Ba, Rb, B and Sr showing incompatible behavior (D M < 1.0), and Ti, Y and Nb showing compatible behavior (D M > 1.0). The effect of partition coefficients on melt evolution during petrogenetic modeling was examined using partition coefficients determined in this study and compared to trends obtained using published partition coefficients. The lower D REE determined in this study result in smaller REE bulk distribution coefficients, for a given mineral assemblage, compared to those calculated using previously reported values. As an example, fractional crystallization of an assemblage composed of 35% hornblende, 64.5% plagioclase and 0.5% zircon produces a melt that becomes increasingly more enriched in Yb using the D Yb from this study. Using D Yb from Fujimaki (1986) results in a melt that becomes progressively depleted in Yb during crystallization.
Partition thermodynamics of ionic surfactants between phosphatidylcholine vesicle and water phases
NASA Astrophysics Data System (ADS)
Chu, Shin-Chi; Hung, Chia-Hui; Wang, Shun-Cheng; Tsao, Heng-Kwong
2003-08-01
The partition of ionic surfactants (sodium alkyl sulfate and alkyl trimethyl ammonium bromide) between phosphatidylcholine vesicles and aqueous phase is investigated by simple conductometry under different temperatures. The experimental results can be well represented by the proposed regular solution theory and the thermodynamic parameters satisfy the thermodynamic consistency. The deviation from ideal partition is manifested through the effective interaction energy between lipid and surfactant wb, which is O(kT) large. It is found that wb rises as the alkyl chain is decreased for a specified head group. This is attributed to significant mismatch of chain lengths between surfactant and lipid molecules. The partition coefficient K declines with increasing temperature. The energy barrier from bilayer to aqueous phase, Δμ/kT∝ln K, is in the range of 16-26 kJ/mol. As the alkyl chain length is decreased for a given head group, Δμ is lowered by 1.3-1.5 kJ/mol per methylene group. Two independent analyses are employed to confirm this result. Using the thermodynamic parameters determined from experiments, the internal energy, entropy, and free energy of the partition process can be derived. Partition is essentially driven by the internal energy gain. The solubilizing ability, which is represented by the maximum surfactant-lipid ratio in the bilayer, Reb also decreases in accord with the K parameter. It is because the change in temperature influences the surfactant incorporation into the bilayer more than the formation of micelles.
Record, M Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael
2013-01-01
Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of
Poole, Colin F
2004-05-28
Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.
NASA Technical Reports Server (NTRS)
Drake, Michael J.; Rubie, David C.; Mcfarlane, Elisabeth A.
1992-01-01
The partitioning of elements amongst lower mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. Because of the technical difficulty in carrying out such measurements, only one direct set of measurements was reported previously, and these results as well as interpretations based on them have generated controversy. Here we report what are to our knowledge only the second set of directly measured trace element partition coefficients for a natural system (KLB-1).
Toropov, A A; Toropova, A P; Raska, I
2008-04-01
Simplified molecular input line entry system (SMILES) has been utilized in constructing quantitative structure-property relationships (QSPR) for octanol/water partition coefficient of vitamins and organic compounds of different classes by optimal descriptors. Statistical characteristics of the best model (vitamins) are the following: n=17, R(2)=0.9841, s=0.634, F=931 (training set); n=7, R(2)=0.9928, s=0.773, F=690 (test set). Using this approach for modeling octanol/water partition coefficient for a set of organic compounds gives a model that is statistically characterized by n=69, R(2)=0.9872, s=0.156, F=5184 (training set) and n=70, R(2)=0.9841, s=0.179, F=4195 (test set).
NASA Astrophysics Data System (ADS)
Gabitov, R. I.; Gaetani, G. A.; Watson, E. B.; Cohen, A. L.; Ehrlich, H. L.
2008-08-01
Results are reported from an experimental study in which the partitioning of U and Mg between aragonite and an aqueous solution were determined as a function of crystal growth rate. Crystals, identified as aragonite by X-ray diffractometry and micro-Raman spectroscopy, were grown by diffusion of CO 2 from an ammonium carbonate source into a calcium-bearing solution at temperatures of 22 and 53 °C. Hemispherical bundles (spherulites) of aragonite crystals were produced, the growth rates of which decreased monotonically from the spherulite interiors to the edges and thus provide the opportunity to examine the influence of growth rate on crystal composition. Element concentration ratios were measured using electron microprobe (EMP) and fluid composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption (AA). Growth rates were determined directly by addition of a Dy spike to the fluid during the experiment that was subsequently located in an experimentally precipitated spherulite using secondary ion mass spectrometry (SIMS). At 22 °C both U/Ca and Mg/Ca partition coefficients exhibited a strong growth rate dependence when crystal growth rates were low, and became independent of growth rate when crystal growth rates were high. The U/Ca ratios in aragonite increase between 22 and 53 °C; in contrast Mg/Ca ratios show inverse dependence on temperature.
NASA Astrophysics Data System (ADS)
Prowatke, S.; Klemme, S.
2003-04-01
The aim of this study is to systematically investigate the influence of melt composition on the partitioning of trace elements between titanite and different silicate melts. Titanite was chosen because of its important role as an accessory mineral, particularly with regard to intermediate to silicic alkaline and calc-alkaline magmas [e.g. 1] and of its relative constant mineral composition over a wide range of bulk compositions. Experiments at atmospheric pressure were performed at temperatures between 1150°C and 1050°C. Bulk compositions were chosen to represent a basaltic andesite (SH3 - 53% SiO2), a dacite (SH2 - 65 SiO2) and a rhyolite (SH1 - 71% SiO2). Furthermore, two additional experimental series were conducted to investigate the effect of Al-Na and the Na-K ratio of melts on partitioning. Starting materials consisted of glasses that were doped with 23 trace elements including some selected rare earth elements (La, Ce, Pr, Sm, Gd, Lu), high field strength elements (Zr, Hf, Nb, Ta) and large ion lithophile elements (Cs, Rb, Ba) and Th and U. The experimental run products were analysed for trace elements using secondary ion mass spectrometry at Heidelberg University. Preliminary results indicate a strong effect of melt composition on trace element partition coefficients. Partition coefficients for rare-earth elements uniformly show a convex-upward shape [2, 3], since titanite accommodates the middle rare-earth elements more readily than the light rare-earth elements or the heavy rare-earth elements. Partition coefficients for the rare-earth elements follow a parabolic trend when plotted against ionic radius. The shape of the parabola is very similar for all studied bulk compositions, the position of the parabola, however, is strongly dependent on bulk composition. For example, isothermal rare-earth element partition coefficients (such as La) are incompatible (D<1) in alkali-rich silicate melts and strongly compatible (D>>1) in alkali-poor melt compositions. From our experimental data we present an model that combines the influence of the crystal lattice on partitioning with the effect of melt composition on trace element partition coefficients. [1] Nakada, S. (1991) Am. Mineral. 76: 548-560 [2] Green, T.H. and Pearson, N.J. (1986) Chem. Geol. 55: 105-119 [3] Tiepolo, M.; Oberti, R. and Vannucci, R. (2002) Chem. Geol. 191: 105-119
Mi, Baoxia; Mariñas, Benito J; Cahill, David G
2007-05-01
The main objective of this study was to apply Rutherford backscattering spectrometry (RBS) for characterizing the partitioning of arsenic(III) from aqueous phase into the active layer of NF/RO membranes. NF/RO membranes with active layer materials including polyamide (PA), PA-polyvinyl alcohol derivative (PVA), and sulfonated-polyethersulfone (SPES) were investigated. The partition coefficient was found to be constant in the investigated As-(III) concentration range of 0.005-0.02 M at each pH investigated. The partitioning of As(III) when predominantly present as H3AsO3 (pH 3.5-8.0) was not affected by pH. In contrast, the partition coefficient of As(III) at pH 10.5, when it was predominantly present as H2AsO3-, was found to be approximately 33-49% lower than that of H3AsO3. The partition coefficients of H3AsO3 and H2AsO3- for membranes containing PA in their active layers were within the respective ranges of 6.2-8.1 and 3.6-5.4, while the corresponding values (4.8 and 3.0, respectively) for the membrane with SPES active layer were approximately 30% lower than the average values for the PA membranes.
Covariate-free and Covariate-dependent Reliability.
Bentler, Peter M
2016-12-01
Classical test theory reliability coefficients are said to be population specific. Reliability generalization, a meta-analysis method, is the main procedure for evaluating the stability of reliability coefficients across populations. A new approach is developed to evaluate the degree of invariance of reliability coefficients to population characteristics. Factor or common variance of a reliability measure is partitioned into parts that are, and are not, influenced by control variables, resulting in a partition of reliability into a covariate-dependent and a covariate-free part. The approach can be implemented in a single sample and can be applied to a variety of reliability coefficients.
NASA Technical Reports Server (NTRS)
Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)
1994-01-01
The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.
2018-01-01
This work focuses on the process development of membrane-assisted solvent extraction of hydrophobic compounds such as monoterpenes. Beginning with the choice of suitable solvents, quantum chemical calculations with the simulation tool COSMO-RS were carried out to predict the partition coefficient (logP) of (S)-(+)-carvone and terpinen-4-ol in various solvent–water systems and validated afterwards with experimental data. COSMO-RS results show good prediction accuracy for non-polar solvents such as n-hexane, ethyl acetate and n-heptane even in the presence of salts and glycerol in an aqueous medium. Based on the high logP value, n-heptane was chosen for the extraction of (S)-(+)-carvone in a lab-scale hollow-fibre membrane contactor. Two operation modes are investigated where experimental and theoretical mass transfer values, based on their related partition coefficients, were compared. In addition, the process is evaluated in terms of extraction efficiency and overall product recovery, and its biotechnological application potential is discussed. Our work demonstrates that the combination of in silico prediction by COSMO-RS with membrane-assisted extraction is a promising approach for the recovery of hydrophobic compounds from aqueous solutions. PMID:29765654
Avalos Ramirez, Antonio; Peter Jones, J; Heitz, Michéle
2009-02-01
Methanol vapours were treated in a biotrickling filter (BTF) packed with inert polypropylene spheres. The effects of the nitrogen concentration in the nutrient solution, the empty bed residence time (EBRT) and the methanol inlet concentration, on the BTF performance, were all examined. The elimination capacity (EC), the biomass and the carbon dioxide production rates were all increased with the rising of the nitrogen concentration and the EBRT. The EC also rose with increasing methanol inlet load (IL) when the methanol inlet concentration and the EBRT were varied, from 0.3 to 37.0 g m(-3), and from 20 to 65 s, respectively. The BTF reached its maximum EC level of 2160 g m(-3) h(-1) when it was operated at an IL level of 3700 g m(-3) h(-1). The input methanol was removed through two mechanisms: biodegradation and absorption in the liquid phase. The partition coefficient for the methanol in the BTF was determined at five EBRTs and along the packed bed. It generally followed the Henry model, having an average value of 2.64 x 10(-4)[mol L(-1)](gas)/[mol L(-1)](liquid).
Effects of physical parameters on the cell-to-dendrite transition in directional solidification
NASA Astrophysics Data System (ADS)
Wei, Lei; Lin, Xin; Wang, Meng; Huang, Wei-Dong
2015-07-01
A quantitative cellular automaton model is used to study the cell-to-dendrite transition (CDT) in directional solidification. We give a detailed description of the CDT by carefully examining the influence of the physical parameters, including: the Gibbs-Thomson coefficient Γ, the solute diffusivity Dl, the solute partition coefficient k0, and the liquidus slope ml. It is found that most of the parameters agree with the Kurz and Fisher (KF) criterion, except for k0. The intrinsic relations among the critical velocity Vcd, the cellular primary spacing λc,max, and the critical spacing λcd are investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 51271213 and 51323008), the National Basic Research Program of China (Grant No. 2011CB610402), the National High Technology Research and Development Program of China (Grant No. 2013AA031103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20116102110016), and the China Postdoctoral Science Foundation (Grant No. 2013M540771).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Qingpeng; Dinan, James; Tirukkovalur, Sravya
2016-01-28
Quantum Monte Carlo (QMC) applications perform simulation with respect to an initial state of the quantum mechanical system, which is often captured by using a cubic B-spline basis. This representation is stored as a read-only table of coefficients and accesses to the table are generated at random as part of the Monte Carlo simulation. Current QMC applications, such as QWalk and QMCPACK, replicate this table at every process or node, which limits scalability because increasing the number of processors does not enable larger systems to be run. We present a partitioned global address space approach to transparently managing this datamore » using Global Arrays in a manner that allows the memory of multiple nodes to be aggregated. We develop an automated data management system that significantly reduces communication overheads, enabling new capabilities for QMC codes. Experimental results with QWalk and QMCPACK demonstrate the effectiveness of the data management system.« less
Local performance optimization for a class of redundant eight-degree-of-freedom manipulators
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1994-01-01
Local performance optimization for joint limit avoidance and manipulability maximization (singularity avoidance) is obtained by using the Jacobian matrix pseudoinverse and by projecting the gradient of an objective function into the Jacobian null space. Real-time redundancy optimization control is achieved for an eight-joint redundant manipulator having a three-axis spherical shoulder, a single elbow joint, and a four-axis spherical wrist. Symbolic solutions are used for both full-Jacobian and wrist-partitioned pseudoinverses, partitioned null-space projection matrices, and all objective function gradients. A kinematic limitation of this class of manipulators and the limitation's effect on redundancy resolution are discussed. Results obtained with graphical simulation are presented to demonstrate the effectiveness of local redundant manipulator performance optimization. Actual hardware experiments performed to verify the simulated results are also discussed. A major result is that the partitioned solution is desirable because of low computation requirements. The partitioned solution is suboptimal compared with the full solution because translational and rotational terms are optimized separately; however, the results show that the difference is not significant. Singularity analysis reveals that no algorithmic singularities exist for the partitioned solution. The partitioned and full solutions share the same physical manipulator singular conditions. When compared with the full solution, the partitioned solution is shown to be ill-conditioned in smaller neighborhoods of the shared singularities.
Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.
Geisler, Anett; Endo, Satoshi; Goss, Kai-Uwe
2011-10-01
The aim of this work was to develop a predictive model for milk/water partition coefficients of neutral organic compounds. Batch experiments were performed for 119 diverse organic chemicals in human milk and raw and processed cow milk at 37°C. No differences (<0.3 log units) in the partition coefficients of these types of milk were observed. The polyparameter linear free energy relationship model fit the calibration data well (SD=0.22 log units). An experimental validation data set including hormones and hormone active compounds was predicted satisfactorily by the model. An alternative modelling approach based on log K(ow) revealed a poorer performance. The model presented here provides a significant improvement in predicting enrichment of potentially hazardous chemicals in milk. In combination with physiologically based pharmacokinetic modelling this improvement in the estimation of milk/water partitioning coefficients may allow a better risk assessment for a wide range of neutral organic chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowdy, D.L.; McKone, T.E.; Hsieh, D.P.H.
1995-12-31
Bioconcentration factors (BCFs) are the ratio of chemical concentration found in an exposed organism (in this case a plant) to the concentration in an air or soil exposure medium. The authors examine here the use of molecular connectivity indices (MCIs) as quantitative structure-activity relationships (QSARS) for predicting BCFs for organic chemicals between plants and air or soil. The authors compare the reliability of the octanol-air partition coefficient (K{sub oa}) to the MC based prediction method for predicting plant/air partition coefficients. The authors also compare the reliability of the octanol/water partition coefficient (K{sub ow}) to the MC based prediction method formore » predicting plant/soil partition coefficients. The results here indicate that, relative to the use of K{sub ow} or K{sub oa} as predictors of BCFs the MC can substantially increase the reliability with which BCFs can be estimated. The authors find that the MC provides a relatively precise and accurate method for predicting the potential biotransfer of a chemical from environmental media into plants. In addition, the MC is much faster and more cost effective than direct measurements.« less
Partitioning and diffusion of PBDEs through an HDPE geomembrane.
Rowe, R Kerry; Saheli, Pooneh T; Rutter, Allison
2016-09-01
Polybrominated diphenyl ether (PBDE) has been measured in MSW landfill leachate and its migration through a modern landfill liner has not been investigated previously. To assure environmental protection, it is important to evaluate the efficacy of landfill liners for controlling the release of PBDE to the environment to a negligible level. The partitioning and diffusion of a commercial mixture of PBDEs (DE-71: predominantly containing six congeners) with respect to a high-density polyethylene (HDPE) geomembrane is examined. The results show that the partitioning coefficients of the six congeners in this mixture range from 700,000 to 7,500,000 and the diffusion coefficients range from 1.3 to 6.0×10(-15)m(2)/s depending on the congener. This combination of very high partitioning coefficients and very low diffusion coefficients suggest that a well constructed HDPE geomembrane liner will be an extremely effective barrier for PBDEs with respect to diffusion from a municipal solid waste landfill, as illustrated by an example. The results for pure diffusion scenario showed that the congeners investigated meet the guidelines by at least a factor of three for an effective geomembrane liner where diffusion is the controlling transport mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chávez-Capilla, Teresa; Maher, William; Kelly, Tamsin; Foster, Simon
2016-11-01
Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species. Copyright © 2016. Published by Elsevier B.V.
The Influence of Oxygen and Sulfur on Uranium Partitioning Into the Core
NASA Astrophysics Data System (ADS)
Moore, R. D., Jr.; Van Orman, J. A.; Hauck, S. A., II
2017-12-01
Uranium, along with K and Th, may provide substantial long-term heating in planetary cores, depending on the magnitude of their partitioning into the metal during differentiation. In general, non-metallic light elements are known to have a large influence on the partitioning of trace elements, and the presence of sulfur is known to enhance the partitioning of uranium into the metal. Data from the steelmaking literature indicate that oxygen also enhances the solubility of oxygen in liquid iron alloys. Here we present experimental data on the partitioning of U between immiscible liquids in the Fe-S-O system, and use these data along with published metal-silicate partitioning data to calibrate a quantitative activity model for U in the metal. We also determined partition coefficients for Th, K, Nb, Nd, Sm, and Yb, but were unable to fully constrain activity models for these elements with available data. A Monte Carlo fitting routine was used to calculate U-S, U-O, and U-S-O interaction coefficients, and their associated uncertainties. We find that the combined interaction of uranium with sulfur and oxygen is predominant, with S and O together enhancing the solubility of uranium to a far greater degree than either element in isolation. This suggests that uranium complexes with sulfite or sulfate species in the metal. For a model Mars core composition containing 14 at% S and 5 at% O, the metal/silicate partition coefficient for U is predicted to be an order of magnitude larger than for a pure Fe-Ni core.
Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI-MS
NASA Astrophysics Data System (ADS)
Aznar, Margarita; Tsachaki, Maroussa; Linforth, Robert S. T.; Ferreira, Vicente; Taylor, Andrew J.
2004-12-01
Measuring the dynamic release of aroma compounds from ethanolic solutions by direct gas phase mass spectrometry (MS) techniques is an important technique for flavor chemists but presents technical difficulties as the changing ethanol concentration in the source makes quantitative measurements impossible. The effect of adding ethanol into the source via the sweep gas (0-565 [mu]L ethanol/L N2), to act as the proton transfer reagent ion and thereby control ionization was studied. With increasing concentrations of ethanol in the source, the water ions were replaced by ethanol ions above 3.2 [mu]L/L. The effect of source ethanol on the ionization of eleven aroma compounds was then measured. Some compounds showed reduced signal (10-40%), others increased signal (150-400%) when ionized via ethanol reagent ions compared to water reagent ions. Noise also increased in most cases so there was no overall increase in sensitivity. Providing the ethanol concentration in the source was >6.5 [mu]L/L N2 and maintained at a fixed value, ionization was consistent and quantitative. The technique was successfully applied to measure the partition of the test volatile compounds from aqueous and 12% ethanol solutions at equilibrium. Ethanolic solutions decreased the partition coefficient of most of the aroma compounds, as a function of hydrophobicity.
Samsudin, Hayati; Auras, Rafael; Mishra, Dharmendra; Dolan, Kirk; Burgess, Gary; Rubino, Maria; Selke, Susan; Soto-Valdez, Herlinda
2018-01-01
Migration studies of chemicals from contact materials have been widely conducted due to their importance in determining the safety and shelf life of a food product in their packages. The US Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA) require this safety assessment for food contact materials. So, migration experiments are theoretically designed and experimentally conducted to obtain data that can be used to assess the kinetics of chemical release. In this work, a parameter estimation approach was used to review and to determine the mass transfer partition and diffusion coefficients governing the migration process of eight antioxidants from poly(lactic acid), PLA, based films into water/ethanol solutions at temperatures between 20 and 50°C. Scaled sensitivity coefficients were calculated to assess simultaneously estimation of a number of mass transfer parameters. An optimal experimental design approach was performed to show the importance of properly designing a migration experiment. Additional parameters also provide better insights on migration of the antioxidants. For example, the partition coefficients could be better estimated using data from the early part of the experiment instead at the end. Experiments could be conducted for shorter periods of time saving time and resources. Diffusion coefficients of the eight antioxidants from PLA films were between 0.2 and 19×10 -14 m 2 /s at ~40°C. The use of parameter estimation approach provided additional and useful insights about the migration of antioxidants from PLA films. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Layer Model of Ethanol Partitioning into Lipid Membranes
Nizza, David T.; Gawrisch, Klaus
2013-01-01
The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid-water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane’s hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane-water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30 – 15 mmol/l, corresponding to one ethanol molecule per 100–200 lipids. PMID:19592710
A layer model of ethanol partitioning into lipid membranes.
Nizza, David T; Gawrisch, Klaus
2009-06-01
The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.
NASA Astrophysics Data System (ADS)
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-02-01
In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.
2012-01-01
unknown functions q and V . To approximate both of them, we use a predictor / corrector -like scheme. First, given an approximation for V , we update q via...coefficient εr(x). This is our predictor -like step. On the corrector -like step we update the tail function V (x, s) via (5.7). Consider a partition of...10] and figures 5.13–5.16 in [6]. We point out that the adaptivity has used the solution of the approximately globally convergent algorithm as the
Gündüz, U; Korkmaz, K
2000-06-23
The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)-dextran 37 500 (6% w/w)-0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20 degrees C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG-dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.
Laboratory actinide partitioning - Whitlockite/liquid and influence of actinide concentration levels
NASA Technical Reports Server (NTRS)
Benjamin, T. M.; Jones, J. H.; Heuser, W. R.; Burnett, D. S.
1983-01-01
The partition coefficients between synthetic whitlockite (beta Ca-phosphate) and coexisting silicate melts are determined for the actinide elements Th, U and Pu. Experiments were performed at 1 bar pressure and 1250 C at oxygen fugacities from 10 to the -8.5 to 10 to the -0.7 bars, and partitioning was determined from trace element radiography combined with conventional electron microprobe analysis. Results show Pu to be more readily incorporated into crystalline phases than U or Th under reducing conditions, which is attributed to the observation that Pu exists primarily in the trivalent state, while U and Th are tetravalent. Corrected partition coefficients for whitlockite of 3.6, less than or equal to 0.6, 1.2, 0.5 and less than or equal to 0.002 are estimated for Pu(+3), Pu(+4), Th(+4), U(+4) and U(+6), respectively. Experiments performed at trace levels and percent levels of UO2 indicate that Si is involved in U substitution in whitlockite, and show a reduced partition coefficient at higher concentrations of U that can be explained by effects on melt structure or the fraction of tetravalent U.
NASA Technical Reports Server (NTRS)
Harrison, W. J.
1981-01-01
An experimental investigation of Ce, Sm and Tm rare earth element (REE) partition coefficients between coexisting garnets (both natural and synthetic) and hydrous liquids shows that Henry's Law may not be obeyed over a range of REE concentrations of geological relevance. Systematic differences between the three REE and the two garnet compositions may be explained in terms of the differences between REE ionic radii and those of the dodecahedral site into which they substitute, substantiating the Harrison and Wood (1980) model of altervalent substitution. Model calculations demonstrate that significant variation can occur in the rare earth contents of melts produced from a garnet lherzolite, if Henry's Law partition coefficients do not apply for the garnet phase.
NASA Technical Reports Server (NTRS)
Colson, R. O.; Mckay, G. A.; Taylor, L. A.
1988-01-01
This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.
Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes
2014-10-01
The interaction between drug products and polymeric packaging materials is an important topic in the pharmaceutical industry and often associated with high costs because of the required elaborative interaction studies. Therefore, a theoretical prediction of such interactions would be beneficial. Often, material parameters such as the octanol water partition coefficient are used to predict the partitioning of migrant molecules between a solvent and a polymeric packaging material. Here, we present the investigation of the partitioning of various migrant molecules between polymers and solvents using molecular dynamics simulations for the calculation of interaction energies. Our results show that the use of a model for the interaction between the migrant and the polymer at atomistic detail can yield significantly better results when predicting the polymer solvent partitioning than a model based on the octanol water partition coefficient. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Mollo, S.; Blundy, J. D.; Giacomoni, P.; Nazzari, M.; Scarlato, P.; Coltorti, M.; Langone, A.; Andronico, D.
2017-07-01
A peculiar characteristic of the paroxysmal sequence that occurred on March 16, 2013 at the New South East Crater of Mt. Etna volcano (eastern Sicily, Italy) was the eruption of siliceous crustal xenoliths representative of the sedimentary basement beneath the volcanic edifice. These xenoliths are quartzites that occur as subspherical bombs enclosed in a thin trachybasaltic lava envelope. At the quartzite-magma interface a reaction corona develops due to the interaction between the Etnean trachybasaltic magma and the partially melted quartzite. Three distinct domains are observed: (i) the trachybasaltic lava itself (Zone 1), including Al-rich clinopyroxene phenocrysts dispersed in a matrix glass, (ii) the hybrid melt (Zone 2), developing at the quartzite-magma interface and feeding the growth of newly-formed Al-poor clinopyroxenes, and (iii) the partially melted quartzite (Zone 3), producing abundant siliceous melt. These features makes it possible to quantify the effect of magma contamination by siliceous crust in terms of clinopyroxene-melt element partitioning. Major and trace element partition coefficients have been calculated using the compositions of clinopyroxene rims and glasses next to the crystal surface. Zone 1 and Zone 2 partition coefficients correspond to, respectively, the chemical analyses of Al-rich phenocrysts and matrix glasses, and the chemical analyses of newly-formed Al-poor crystals and hybrid glasses. For clinopyroxenes from both the hybrid layer and the lava flow expected relationships are observed between the partition coefficient, the valence of the element, and the ionic radius. However, with respect to Zone 1 partition coefficients, values of Zone 2 partition coefficients show a net decrease for transition metals (TE), high-field strength elements (HFSE) and rare earth elements including yttrium (REE + Y), and an increase for large ion lithophile elements (LILE). This variation is associated with coupled substitutions on the M1, M2 and T sites of the type M1(Al, Fe3 +) + TAl = M2(Mg, Fe2 +) + TSi. The different incorporation of trace elements into clinopyroxenes of hybrid origin is controlled by cation substitution reactions reflecting local charge-balance requirements. According to the lattice strain theory, simultaneous cation exchanges across the M1, M2, and T sites have profound effects on REE + Y and HFSE partitioning. Conversely, both temperature and melt composition have only a minor effect when the thermal path of magma is restricted to 70 °C and the value of non-bridging oxygens per tetrahedral cations (NBO/T) shifts moderately from 0.31 to 0.43. As a consequence, Zone 2 partition coefficients for REE + Y and HFSE diverge significantly from those derived for Zone 1, accounting for limited cation incorporation into the newly-formed clinopyroxenes at the quartzite-magma interface.
Counter-current chromatography: simple process and confusing terminology.
Conway, Walter D
2011-09-09
The origin of counter-current chromatography is briefly stated, followed by a description of the mechanism of elution of solutes, which illustrates the elegance and simplicity of the technique. The CCC retention equation can be mentally derived from three facts; that a substance with a distribution coefficient of 0 elutes at the mobile phase solvent front (one mobile phase volume); and one with a distribution coefficient of 1 elutes at the column volume of mobile phase; and solutes with higher distribution coefficients elute at additional multiples of the stationary phase volume. The pattern corresponds to the classical solute retention equation for chromatography, V(R)=V(M)+K(C)V(S), K(C) not being limited to integer values. This allows the entire pattern of solute retention to be visualized on the chromatogram. The high volume fraction of stationary phase in CCC greatly enhances resolution. A survey of the names, symbols and definitions of several widely used chromatography and liquid-liquid distribution parameters in the IUPAC Gold Book and in a recent summary in LC-GC by Majors and Carr revealed numerous conflicts in both names and definitions. These will retard accurate dissemination of CCC research unless the discordance is resolved. It is proposed that the chromatography retention parameter, K(C), be called the distribution coefficient and that a new biphasic distribution parameter, K(Δ(A)), be defined for CCC and be called the species partition ratio. The definition of V(M) should be clarified. V(H) is suggested to represent the holdup volume and V(X) is suggested for the extra-column volume. H(V) and H(L) are suggested to represent the volume and length of a theoretical plate in CCC. Definitions of the phase ratio, β, conflict and should be clarified. Copyright © 2011 Elsevier B.V. All rights reserved.
PARTITIONING, DESORPTION, AND DECHLORINATION OF A PCB CONGENER IN SEDIMENT SLURRY SUPERNATANTS
Partitioning and desorption played specific roles in the dechlorination of 2-chlorobiphenyl (2-ClBP) in sediment slurry supernatants, which are suspensions of disssolved organic matter(DOM). In short-term experiments, the partition coefficient (Kp) was related to the a...
A novel method for measuring polymer-water partition coefficients.
Zhu, Tengyi; Jafvert, Chad T; Fu, Dafang; Hu, Yue
2015-11-01
Low density polyethylene (LDPE) often is used as the sorbent material in passive sampling devices to estimate the average temporal chemical concentration in water bodies or sediment pore water. To calculate water phase chemical concentrations from LDPE concentrations accurately, it is necessary to know the LDPE-water partition coefficients (KPE-w) of the chemicals of interest. However, even moderately hydrophobic chemicals have large KPE-w values, making direct measurement experimentally difficult. In this study we evaluated a simple three phase system from which KPE-w can be determined easily and accurately. In the method, chemical equilibrium distribution between LDPE and a surfactant micelle pseudo-phase is measured, with the ratio of these concentrations equal to the LDPE-micelle partition coefficient (KPE-mic). By employing sufficient mass of polymer and surfactant (Brij 30), the mass of chemical in the water phase remains negligible, albeit in equilibrium. In parallel, the micelle-water partition coefficient (Kmic-w) is determined experimentally. KPE-w is the product of KPE-mic and Kmic-w. The method was applied to measure values of KPE-w for 17 polycyclic aromatic hydrocarbons, 37 polychlorinated biphenyls, and 9 polybrominated diphenylethers. These values were compared to literature values. Mass fraction-based chemical activity coefficients (γ) were determined in each phase and showed that for each chemical, the micelles and LDPE had nearly identical affinity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hadronic density of states from string theory.
Pando Zayas, Leopoldo A; Vaman, Diana
2003-09-12
We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.
Hierarchically partitioned nonlinear equation solvers
NASA Technical Reports Server (NTRS)
Padovan, Joseph
1987-01-01
By partitioning solution space into a number of subspaces, a new multiply constrained partitioned Newton-Raphson nonlinear equation solver is developed. Specifically, for a given iteration, each of the various separate partitions are individually and simultaneously controlled. Due to the generality of the scheme, a hierarchy of partition levels can be employed. For finite-element-type applications, this includes the possibility of degree-of-freedom, nodal, elemental, geometric substructural, material and kinematically nonlinear group controls. It is noted that such partitioning can be continuously updated, depending on solution conditioning. In this context, convergence is ascertained at the individual partition level.
Metal-silicate Partitioning and Its Role in Core Formation and Composition on Super-Earths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Laura; Petaev, M. I.; Sasselov, Dimitar D.
We use a thermodynamic framework for silicate-metal partitioning to determine the possible compositions of metallic cores on super-Earths. We compare results using literature values of the partition coefficients of Si and Ni, as well as new partition coefficients calculated using results from laser shock-induced melting of powdered metal-dunite targets at pressures up to 276 GPa, which approaches those found within the deep mantles of super-Earths. We find that larger planets may have little to no light elements in their cores because the Si partition coefficient decreases at high pressures. The planet mass at which this occurs will depend on themore » metal-silicate equilibration depth. We also extrapolate the equations of state (EOS) of FeO and FeSi alloys to high pressures, and present mass–radius diagrams using self-consistent planet compositions assuming equilibrated mantles and cores. We confirm the results of previous studies that the distribution of elements between mantle and core will not be detectable from mass and radius measurements alone. While observations may be insensitive to interior structure, further modeling is sensitive to compositionally dependent properties, such as mantle viscosity and core freeze-out properties. We therefore emphasize the need for additional high pressure measurements of partitioning as well as EOSs, and highlight the utility of the Sandia Z-facilities for this type of work.« less
Qu, Yanfei; Ma, Yongwen; Wan, Jinquan; Wang, Yan
2018-06-01
The silicon oil-air partition coefficients (K SiO/A ) of hydrophobic compounds are vital parameters for applying silicone oil as non-aqueous-phase liquid in partitioning bioreactors. Due to the limited number of K SiO/A values determined by experiment for hydrophobic compounds, there is an urgent need to model the K SiO/A values for unknown chemicals. In the present study, we developed a universal quantitative structure-activity relationship (QSAR) model using a sequential approach with macro-constitutional and micromolecular descriptors for silicone oil-air partition coefficients (K SiO/A ) of hydrophobic compounds with large structural variance. The geometry optimization and vibrational frequencies of each chemical were calculated using the hybrid density functional theory at the B3LYP/6-311G** level. Several quantum chemical parameters that reflect various intermolecular interactions as well as hydrophobicity were selected to develop QSAR model. The result indicates that a regression model derived from logK SiO/A , the number of non-hydrogen atoms (#nonHatoms) and energy gap of E LUMO and E HOMO (E LUMO -E HOMO ) could explain the partitioning mechanism of hydrophobic compounds between silicone oil and air. The correlation coefficient R 2 of the model is 0.922, and the internal and external validation coefficient, Q 2 LOO and Q 2 ext , are 0.91 and 0.89 respectively, implying that the model has satisfactory goodness-of-fit, robustness, and predictive ability and thus provides a robust predictive tool to estimate the logK SiO/A values for chemicals in application domain. The applicability domain of the model was visualized by the Williams plot.
Huhn, Carolin; Pyell, Ute
2008-07-11
It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.
Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan
2018-01-01
To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Die, Qingqi; Nie, Zhiqiang; Liu, Feng; Tian, Yajun; Fang, Yanyan; Gao, Hefeng; Tian, Shulei; He, Jie; Huang, Qifei
2015-10-01
Gas and particle phase air samples were collected in summer and winter around industrial sites in Shanghai, China, to allow the concentrations, profiles, and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) to be determined. The total 2,3,7,8-substituted PCDD/F and dl-PCB toxic equivalent (TEQ) concentrations were 14.2-182 fg TEQ/m3 (mean 56.8 fg TEQ/m3) in summer and 21.9-479 fg TEQ/m3 (mean 145 fg TEQ/m3) in winter. The PCDD/Fs tended to be predominantly in the particulate phase, while the dl-PCBs were predominantly found in the gas phase, and the proportions of all of the PCDD/F and dl-PCB congeners in the particle phase increased as the temperature decreased. The logarithms of the gas-particle partition coefficients correlated well with the subcooled liquid vapor pressures of the PCDD/Fs and dl-PCBs for most of the samples. Gas-particle partitioning of the PCDD/Fs deviated from equilibrium either in summer or winter close to local sources, and the Junge-Pankow model and predictions made using a model based on the octanol-air partition coefficient fitted the measured particulate PCDD/F fractions well, indicating that absorption and adsorption mechanism both contributed to the partitioning process. However, gas-particle equilibrium of the dl-PCBs was reached more easily in winter than in summer. The Junge-Pankow model predictions fitted the dl-PCB data better than did the predictions made using the model based on the octanol-air partition coefficient, indicating that adsorption mechanism made dominated contribution to the partitioning process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.M.G.; Chen, J.C.
1995-12-31
In this study, solid-gas partitioning coefficients of PAHs on fly ash in stack gas from a municipal incinerator were determined according to elution analysis with gas-solid chromatography. The fly ash from the electrostatic precipitator was sieved and packed into a 1/4 inch (6.3 mm) pyrex column. Elution analysis with gas-solid chromatography was conducted for three PAEs, Napthalene, Anthracene, and Pyrene. The temperature for elution analysis was in the range of 100{degrees}C to 300{degrees}C. Vg, specific retention volume obtained from elution analysis, and S, specific surface area of fly ash measured by a surface area measurement instrument were used to estimatemore » the solid-gas partitioning coefficient KR. In addition, the relationships between KR and temperature and KR and PAH concentrations were investigated.« less
NASA Technical Reports Server (NTRS)
Li, Jin; Hu, Shih-Yao B.; Wiencek, John M.
2001-01-01
Perstractive fermentation is a good way to increase the productivity of bioreactors. Using Propionibacteria as the model system, the feasibility of using supported emulsion liquid membrane (SELM) for perstractive fermentation is assessed in this study. Five industrial solvents were considered as the solvent for preparing the SELM. The more polar a solvent is, the higher the partition coefficient. However, toxicity of a solvent also increases with its polarity. CO-1055 (industrial decanol/octanol blend) has the highest partition coefficient toward propionic acid among the solvents that has no molecular toxicity toward Propionibacteria. A preliminary extraction study was conducted using tetradecane as solvent in a hydrophobic hollow fiber contactor. The result confirmed that SELM eliminates the equilibrium limitation of conventional liquid-liquid extraction, and allows the use of a non-toxic solvent with low partition coefficient.
NASA Astrophysics Data System (ADS)
Brenan, J. M.; Shaw, H. F.; Ryerson, F. J.; Phinney, D. L.
1995-10-01
In order to more fully establish a basis for quantifying the role of amphibole in trace-element fractionation processes, we have measured pargasite/silicate melt partitioning of a variety of trace elements (Rb, Ba, Nb, Ta, Hf, Zr, Ce, Nd, Sm, Yb), including the first published values for U, Th and Pb. Experiments conducted at 1000°C and 1.5 GPa yielded large crystals free of compositional zoning. Partition coefficients were found to be constant at total concentrations ranging from ˜ 1 to > 100 ppm, indicating Henry's Law is oparative over this interval. Comparison of partition coefficients measured in this study with previous determinations yields good agreement for similar compositions at comparable pressure and temperature. The compatibility of U, Th and Pb in amphibole decreases in the order Pb > Th > U. Partial melting or fractional crystallization of amphibole-bearing assemblages will therefore result in the generation of excesses in 238U activity relative to 230Th, similar in magnitude to that produced by clinopyroxene. The compatibility of Pb in amphibole relative to U or Th indicates that melt generation in the presence of residual amphibole will result in the long-term enrichment in Pb relative to U or Th in the residue. This process is therefore incapable of producing the depletion in Pb relative to U or Th inferred from the Pb isotopic composition of MORB and OIB. Comparison of partition coefficients measured in this study with previous values for clinopyroxene allows some distinction to be made between expected trace-element fractionations produced during dry (cpx present) and wet (cpx + amphibole present) melting. Rb, Ba, Nb and Ta are dramatically less compatible in clinopyroxene than in amphibole, whereas Th, U, Hf and Zr have similar compatibilities in both phases. Interelement fractionations, such as DNb/DBa are also different for clinopyroxene and amphibole. Changes in certain ratios, such as Ba/Nb, Ba/Th, and Nb/Th within comagmatic suites may therefore offer a means to discern the loss of amphibole from the melting assemblage. Elastic strain theory is applied to the partitioning data after the approaches of Beattie and Blundy and Wood and is used to predict amphibole/melt partition coefficients at conditions of P, T and composition other than those employed in this study. Given values of DCa, DTi and DK from previous partitioning studies, this approach yields amphibole/melt trace-element partition coefficients that reproduce measured values from the literature to within 40-45%. This degree of reproducibility is considered reasonable given that model parameters are derived from partitioning relations involving iron- and potassium-free amphibole.
Solubility and diffusion of oxygen in phospholipid membranes.
Möller, Matías N; Li, Qian; Chinnaraj, Mathivanan; Cheung, Herbert C; Lancaster, Jack R; Denicola, Ana
2016-11-01
The transport of oxygen and other nonelectrolytes across lipid membranes is known to depend on both diffusion and solubility in the bilayer, and to be affected by changes in the physical state and by the lipid composition, especially the content of cholesterol and unsaturated fatty acids. However, it is not known how these factors affect diffusion and solubility separately. Herein we measured the partition coefficient of oxygen in liposome membranes of dilauroyl-, dimiristoyl- and dipalmitoylphosphatidylcholine in buffer at different temperatures using the equilibrium-shift method with electrochemical detection. The apparent diffusion coefficient was measured following the fluorescence quenching of 1-pyrenedodecanoate inserted in the liposome bilayers under the same conditions. The partition coefficient varied with the temperature and the physical state of the membrane, from below 1 in the gel state to above 2.8 in the liquid-crystalline state in DMPC and DPPC membranes. The partition coefficient was directly proportional to the partial molar volume and was then associated to the increase in free-volume in the membrane as a function of temperature. The apparent diffusion coefficients were corrected by the partition coefficients and found to be nearly the same, with a null dependence on viscosity and physical state of the membrane, probably because the pyrene is disturbing the surrounding lipids and thus becoming insensitive to changes in membrane viscosity. Combining our results with those of others, it is apparent that both solubility and diffusion increase when increasing the temperature or when comparing a membrane in the gel to one in the fluid state. Copyright © 2016 Elsevier B.V. All rights reserved.
Persona, Marek; Kutarov, Vladimir V; Kats, Boris M; Persona, Andrzej; Marczewska, Barbara
2007-01-01
The paper describes the new prediction method of octanol-water partition coefficient, which is based on molecular graph theory. The results obtained using the new method are well correlated with experimental values. These results were compared with the ones obtained by use of ten other structure correlated methods. The comparison shows that graph theory can be very useful in structure correlation research.
Computational prediction of ionic liquid 1-octanol/water partition coefficients.
Kamath, Ganesh; Bhatnagar, Navendu; Baker, Gary A; Baker, Sheila N; Potoff, Jeffrey J
2012-04-07
Wet 1-octanol/water partition coefficients (log K(ow)) predicted for imidazolium-based ionic liquids using adaptive bias force-molecular dynamics (ABF-MD) simulations lie in excellent agreement with experimental values. These encouraging results suggest prospects for this computational tool in the a priori prediction of log K(ow) values of ionic liquids broadly with possible screening implications as well (e.g., prediction of CO(2)-philic ionic liquids).
Calculation of the octanol-water partition coefficient of armchair polyhex BN nanotubes
NASA Astrophysics Data System (ADS)
Mohammadinasab, E.; Pérez-Sánchez, H.; Goodarzi, M.
2017-12-01
A predictive model for determination partition coefficient (log P) of armchair polyhex BN nanotubes by using simple descriptors was built. The relationship between the octanol-water log P and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory electric moments and physico-chemical properties of those nanotubes are calculated.
Dargó, Gergő; Boros, Krisztina; Péter, László; Malanga, Milo; Sohajda, Tamás; Szente, Lajos; Balogh, György T
2018-05-05
The present study was aimed to develop a medium-throughput screening technique for investigation of cyclodextrin (CD)-active pharmaceutical ingredient (API) complexes. Dual-phase potentiometric lipophilicity measurement, as gold standard technique, was combined with the partition coefficient method (plotting the reciprocal of partition coefficients of APIs as a function of CD concentration). A general equation was derived for determination of stability constants of 1:1 CD-API complexes (K 1:1,CD ) based on solely the changes of partition coefficients (logP o/w N -logP app N ), without measurement of the actual API concentrations. Experimentally determined logP value (-1.64) of 6-deoxy-6[(5/6)-fluoresceinylthioureido]-HPBCD (FITC-NH-HPBCD) was used to estimate the logP value (≈ -2.5 to -3) of (2-hydroxypropyl)-ß-cyclodextrin (HPBCD). The results suggested that the amount of HPBCD can be considered to be inconsequential in the octanol phase. The decrease of octanol volume due to the octanol-CD complexation was considered, thus a corrected octanol-water phase ratio was also introduced. The K 1:1,CD values obtained by this developed method showed a good accordance with the results from other orthogonal methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Pfeifer, O; Lohmann, U; Ballschmiter, K
2001-11-01
Halogenated methyl-phenyl ethers (methoxybenzenes, anisoles) are ubiquitous organics in the environment although they are not produced in industrial quantities. Modelling the fate of organic pollutants such as halogenated anisoles requires a knowledge of the fundamental physico-chemical properties of these compounds. The isomer-specific separation and detection of 60 of the 134 possible congeners allowing an environmental fingerprinting are reported in this study. The vapor pressure p0(L) of more than 60 and further physico-chemical properties of 26 available congeners are given. Vapor pressures p0(L), water solubilities S(L)W, and n-octanol/water partition coefficients Kow were determined by capillary HR-GC (High Resolution Gas Chromatography) on a non-polar phase and by RP-HPLC (Reversed Phase High Performance Liquid Chromatography) on a C18 phase with chlorobenzenes as reference standards. From these experimental data the Henry's law constants H, and the gas/water Kgw and gas/n-octanol Kgo partition coefficients were calculated. We found that vapor pressures, water solubilities, and n-octanol/water partition coefficients of the halogenated anisoles are close to those of the chlorobenzenes. A similar environmental fate of both groups can, therefore, be predicted.
Liu, Cong; Kolarik, Barbara; Gunnarsen, Lars; Zhang, Yinping
2015-10-20
Polychlorinated biphenyls (PCBs) have been found to be persistent in the environment and possibly harmful. Many buildings are characterized with high PCB concentrations. Knowledge about partitioning between primary sources and building materials is critical for exposure assessment and practical remediation of PCB contamination. This study develops a C-depth method to determine diffusion coefficient (D) and partition coefficient (K), two key parameters governing the partitioning process. For concrete, a primary material studied here, relative standard deviations of results among five data sets are 5%-22% for K and 42-66% for D. Compared with existing methods, C-depth method overcomes the inability to obtain unique estimation for nonlinear regression and does not require assumed correlations for D and K among congeners. Comparison with a more sophisticated two-term approach implies significant uncertainty for D, and smaller uncertainty for K. However, considering uncertainties associated with sampling and chemical analysis, and impact of environmental factors, the results are acceptable for engineering applications. This was supported by good agreement between model prediction and measurement. Sensitivity analysis indicated that effective diffusion distance, contacting time of materials with primary sources, and depth of measured concentrations are critical for determining D, and PCB concentration in primary sources is critical for K.
NASA Astrophysics Data System (ADS)
Jones, J. H.; Casanova, I.
1993-07-01
We have performed a series of experiments to evaluate the behaviors of As and Sb in metallic systems. Because of the reputed chalcophile nature of these elements, we wrongly anticipated that they would follow S and that, compared to the Fe-X systems [1], (solid metal/liquid metal) partition coefficients would be considerably lower in S-bearing systems. Experimental and Analytical: Experiments were performed in sealed silica tubes as in [2]. Starting materials were high-purity metals, natural pyrite, and natural stibnite. Charges were doped either with As or Sb. Experiments were held at either 950 degrees C for six days or 1250 degrees C for three days. Typical experimental assemblages consisted either of taenite and coexisting Fe-Ni-S-X liquid (1250 degrees and 950 degrees C) or an assemblage of troilite, schreibersite, and Fe-Ni-S-P-X liquid (950 degrees C). The schreibersite-bearing, As-doped charge also contained barringerite (Fe,Ni)2P. Charges were mounted in epoxy, polished, and analyzed using a Cameca SX-50 electron microprobe and standard techniques. Results: Phases appeared homogeneous. Our results, along with partition coefficients inferred for the S-free system, are given in Table 1. Table 1 appears here in the hard copy. Discussion: Our results indicate that As behaves as a siderophile element at low temperatures, very analogous to Au. While the siderophility of Sb increases with decreasing temperature, it remains incompatible in solid metal. In this regard Sb is unique. Both As and Sb are very incompatible in troilite. Arsenic is weakly incompatible in schreibersite and strongly compatible in barringerite. Nickel shows no preference for either phosphide. Nickel partition coefficients for metal and schreibersite are similar to those measured previously [3]. On a lnD vs. ln(1-2 alpha X(S)) diagram [4], the data for Sb and As subparallel each other, indicating similar dependencies on S, despite their very different partition coefficients. Arsenic behaves similarly to P. The As and Sb partition coefficients for the S-free system, inferred for kamacite (alpha-iron) from the Fe-As and Fe-Sb phase diagrams [1], are probably not applicable to taenite (gamma-iron). Extrapolation of our data to zero S indicates that the taenite partition coefficients for As and Sb are likely to be much lower than for kamacite. In discussing the fractional crystallization of iron meteorites, Scott [5] originally grouped Au, As, Sb, and Co and assigned them a (solid metal/liquid metal) partition coefficient of about 0.4. This distinguished them from P, which was given a partition coefficient of 0.2. Given the strong decoupling of As and Sb in our experiments, the general coherence of As and Sb in iron meteorites [5] is surprising. To explore this further, we have derived a new equation for the slopes of LogEl vs. LogNi diagrams, which takes into account changes in D. References: [1] Moffatt W. G. (1986) Handbook of Binary Phase Diagrams, Genium. [2] Jones J. H. and Drake M. J. (1983) GCA, 47, 1199. [3] Jones J. H. et al. (1993) GCA, 57, 453-460. [4] Jones J. H. and Malvin D. J. (1990) Metall. Trans., 21B, 697-706. [5] Scott E. R. D. (1972) GCA, 36, 1205.
NASA Astrophysics Data System (ADS)
Sánchez-Román, Mónica; McKenzie, Judith A.; de Luca Rebello Wagener, Angela; Romanek, Christopher S.; Sánchez-Navas, Antonio; Vasconcelos, Crisógono
2011-02-01
Two strains of moderately halophilic bacteria were grown in aerobic culture experiments containing gel medium to determine the Sr partition coefficient between dolomite and the medium from which it precipitates at 15 to 45 °C. The results demonstrate that Sr incorporation in dolomite does occur not by the substitution of Ca, but rather by Mg. They also suggest that Sr partitioning between the culture medium and the minerals is better described by the Nernst equation ( DSrdol = Sr dol/Sr bmi), instead of the Henderson and Kracek equation ( DSrdol = (Sr/Ca) dol/(Sr/Ca) solution. The maximum value for DSrdol occurs at 15 °C in cultures with and without sulfate, while the minimum values occur at 35 °C, where the bacteria exhibit optimal growth. For experiments at 25, 35 and 45 °C, we observed that DSrdol values are greater in cultures with sulfate than in cultures without sulfate, whereas DSrdol values are smaller in cultures with sulfate than in cultures without sulfate at 15 °C. Together, our observations suggest that DSrdol is apparently related to microbial activity, temperature and sulfate concentration, regardless of the convention used to assess the DSrdol. These results have implications for the interpretation of depositional environments of ancient dolomite. The results of our culture experiments show that higher Sr concentrations in ancient dolomite could reflect microbial mediated primary precipitation. In contrast, previous interpretations concluded that high Sr concentrations in ancient dolomites are an indication of secondary replacement of aragonite, which incorporates high Sr concentrations in its crystal lattice, reflecting a diagenetic process.
Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, W.P.; Roberts, P.V.
1991-07-01
The sorption of tetrachloroethene (PCE) and 1,2,4,5-tetrachlorobenzene (TeCB) was studied on sandy aquifer material from Borden, ON, by using a batch methodology designed to accurately measure sorption over long equilibration periods. Autoclaving was effective in inhibiting biotransformation, and use of fire-sealed glass ampules precluded volatilization losses. Data analysis techniques were developed to accurately account for partitioning to sample headspace and other losses. Sorption isotherms for PCE and TeCB with Borden solids deviated from linearity when a 4-5 order of magnitude range in aqueous concentration was considered. However, in the dilute range (<50 {mu}/l), the deviations from linearity were inconsequential. Themore » sorption of TeCB was approximately 40 times stronger than for PCE, in qualitative accordance with TeCB's approximately 100-fold greater octanol-water partitioning coefficient. For a given solute, the distribution coefficients differed by a factor of 30 among the various size fractions, being greatest for the largest grains. For most Borden solids, the long-term sorption of PCE and TeCB exceeded by more than 1 order of magnitude the predictions of generalized correlations based on hydrophobic partitioning into organic matter. This difference is believed to be partially the result of mineral contributions to sorption, but may also reflect unattainment of equilibrium in previously regressed results - in this study, contact times on the order of tens to hundreds of days were required. For Borden solids, pulverization of solid samples was shown to be a viable expedient to obviate the need for excessively long equilibrations.« less
Cooke, Cindy M; Shaw, George; Collins, Chris D
2004-12-01
Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.
A new weak Galerkin finite element method for elliptic interface problems
Mu, Lin; Wang, Junping; Ye, Xiu; ...
2016-08-26
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A new weak Galerkin finite element method for elliptic interface problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi
2017-07-21
In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.
Ali, Usman; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem
2015-09-01
Levels of polychlorinated biphenyls (PCBs) were assessed in surface soils and passive air samples from the Indus River Basin, and the influential role of black carbon (BC) in the soil-air partitioning process was examined. ∑26-PCBs ranged between 0.002-3.03 pg m(-3) and 0.26-1.89 ng g(-1) for passive air and soil samples, respectively. Lower chlorinated (tri- and tetra-) PCBs were abundant in both air (83.9%) and soil (92.1%) samples. Soil-air partitioning of PCBs was investigated through octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of the paired-t test revealed that both models showed statistically significant agreement between measured and predicted model values for the PCB congeners. Ratios of fBCKBC-AδOCT/fOMKOA>5 explicitly suggested the influential role of black carbon in the retention and soil-air partitioning of PCBs. Lower chlorinated PCBs were strongly adsorbed and retained by black carbon during soil-air partitioning because of their dominance at the sampling sites and planarity effect. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seidensticker, Sven; Zarfl, Christiane; Cirpka, Olaf A; Fellenberg, Greta; Grathwohl, Peter
2017-11-07
In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.
2017-01-01
Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials, and due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources [i.e., 1]. Experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in basaltic systems [e.g., 2- 3], reporting that apatite-melt partitioning of volatiles is best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, exchange coefficients may vary as a function of temperature, pressure, melt composition, and/or oxygen fugacity. Furthermore, exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite [3]. In these regions of ternary space, we anticipate that crystal chemistry could influence partitioning behavior. Consequently, we conducted experiments to investigate the effect of apatite crystal chemistry on apatite-melt partitioning of F, Cl, and OH.
Bidleman, Terry F; Nygren, Olle; Tysklind, Mats
2016-09-01
Partition coefficients of gaseous semivolatile organic compounds (SVOCs) between polyurethane foam (PUF) and air (KPA) are needed in the estimation of sampling rates for PUF disk passive air samplers. We determined KPA in field experiments by conducting long-term (24-48 h) air sampling to saturate PUF traps and shorter runs (2-4 h) to measure air concentrations. Sampling events were done at daily mean temperatures ranging from 1.9 to 17.5 °C. Target compounds were hexachlorobenzene (HCB), alpha-hexachlorocyclohexane (α-HCH), 2,4-dibromoanisole (2,4-DiBA) and 2,4,6-tribromoanisole (2,4,6-TriBA). KPA (mL g(-1)) was calculated from quantities on the PUF traps at saturation (ng g(-1)) divided by air concentrations (ng mL(-1)). Enthalpies of PUF-to-air transfer (ΔHPA, kJ mol(-1)) were determined from the slopes of log KPA/mL g(-1) versus 1/T(K) for HCB and the bromoanisoles, KPA of α-HCH was measured only at 14.3 to 17.5 °C and ΔHPA was not determined. Experimental log KPA/mL g(-1) at 15 °C were HCB = 7.37; α-HCH = 8.08; 2,4-DiBA = 7.26 and 2,4,6-TriBA = 7.26. Experimental log KPA/mL g(-1) were compared with predictions based on an octanol-air partition coefficient (log KOA) model (Shoeib and Harner, 2002a) and a polyparameter linear free relationship (pp-LFER) model (Kamprad and Goss, 2007) using different sets of solute parameters. Predicted KP values varied by factors of 3 to over 30, depending on the compound and the model. Such discrepancies provide incentive for experimental measurements of KPA for other SVOCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Understanding interactions in the adsorption of gaseous organic compounds to indoor materials.
Ongwandee, Maneerat; Chatsuvan, Thabtim; Suksawas Na Ayudhya, Wichitsawat; Morris, John
2017-02-01
We studied adsorption of organic compounds to a wide range of indoor materials, including plastics, gypsum board, carpet, and many others, under various relative humidity conditions by applying a conceptual model of the free energy of interfacial interactions of both van der Waals and Lewis acid-base (e-donor/acceptor) types. Data used for the analyses were partitioning coefficients of adsorbates between surface and gas phase obtained from three sources: our sorption experiments and two other published studies. Target organic compounds included apolars, monopolars, and bipolars. We established correlations of partitioning coefficients of adsorbates for a considered surface with the corresponding hexadecane/air partitioning coefficients of the adsorbates which are used as representative of a van der Waals descriptor instead of vapor pressure. The logarithmic adsorption coefficients of the apolars and weak bases, e.g., aliphatics and aromatics, to indoor materials linearly correlates well with the logarithmic hexadecane/air partitioning coefficients regardless of the surface polarity. The surface polarity in terms of e-donor/acceptor interactions becomes important for adsorption of the strong bases and bipolars, e.g., amines, phenols, and alcohols, to unpainted gypsum board. Under dry or humid conditions, the adsorption to flat plastic materials still linearly correlates well with the van der Waals interactions of the adsorbates, but no correlations were observed for the adsorption to fleecy or plush materials, e.g., carpet. Adsorption of highly bipolar compounds, e.g., phenol and isopropanol, is strongly affected by humidity, attributed to Lewis acid-base interactions with modified surfaces.
NASA Astrophysics Data System (ADS)
Corrigan, Catherine M.; Chabot, Nancy L.; McCoy, Timothy J.; McDonough, William F.; Watson, Heather C.; Saslow, Sarah A.; Ash, Richard D.
2009-05-01
To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems. Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element's natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.
Kamlet, M J; Doherty, R M; Abboud, J L; Abraham, M H; Taft, R W
1986-04-01
Molar solubilities of non-hydrogen bond donor and weak hydrogen bond donor liquid aliphatic solutes in water, or the nearly equivalent quantities, Sg/Kgw, where Kgw is the gas-water partition coefficient and Sg is the solute concentration in the solute saturated vapor (Sg = Patm/24.5) are well correlated by the equation: log Sw congruent to log (Sg/Kgw) = 0.54 - 3.32V/100 + 0.46 pi* + 5.17 (beta or beta m) (at 25 degrees C) n = 105, r = 0.9954, SD = 0.137 V is the solute molar volume (the molecular weight divided by the liquid density at 20 degrees C), and pi* and beta are the solvatochromic parameters that are measures of solute dipolarity-polarizability and hydrogen bond acceptor basicity. The equation, which applies to liquid monofunctional aliphatic solutes is used to calculate additional new beta and beta m values. The beta m values, which are intended to apply to self-associated compounds when acting as "monomer" solutes, are: methanol, 0.42; all primary alkanols, 0.45; all secondary alkanols, 0.51; and all tertiary alkanols, 0.57.
NASA Technical Reports Server (NTRS)
Newsom, H. E.; Drake, M. J.
1983-01-01
An experimental study is reported of the partitioning of Phosphorus between solid metal and basaltic silicate liquid as a function of temperature and oxygen fugacity and of the implications for the earth, moon and eucrite parent body (EPB). The relationship established between the partition coefficient and the fugacity is given at 1190 C by log D(P) = -1.12 log fO2 - 15.95 and by log D(P) = -1.53 log fO2 17.73 at 1300 C. The partition coefficient D(P) was determined, and it is found to be consistent with a valence state of 5 for P in the molten silicate. Using the determined coefficient the low P/La ratios of the earth, moon, and eucrites relative to C1 chondrites can be explained. The lowering of the P/La ratio in the eucrites relative to Cl chondrite by a factor of 40 can be explained by partitioning P into 20-25 wt% sulfur-bearing metallic liquid corresponding to 5-25% of the total metal plus silicate system. The low P/La and W/La ratios in the moon may be explained by the partitioning of P and W into metal during formation of a small core by separation of liquid metal from silicate at low degrees of partial melting of the silicates. These observations are consistent with independent formation of the moon and the earth.
Development and evaluation of geochemical methods for the sourcing of archaeological maize
Benson, L.V.; Taylor, Howard E.; Peterson, K.A.; Shattuck, B.D.; Ramotnik, C.A.; Stein, J.R.
2008-01-01
Strontium (Sr)-isotope values on bone from deer mice pairs from 12 field sites in the Chaco Canyon area, New Mexico, were compared with isotope values of synthetic soil waters from the same fields. The data indicate that mice obtain Sr from near-surface sources and that soil samples collected at depths ranging from 25 to 95 cm contain Sr that is more accessible to the deep roots of maize; thus, synthetic soil solutions provide better data for the sourcing of archaeological maize. However, the Sr-isotope composition of mice may be more valuable in sourcing archaeological remains of animals such as rabbit, turkey, and deer. In a separate study, five Native American maize (Zea mays L. ssp. mays) accessions grown out at New Mexico State University Agricultural Science Center, Farmington, New Mexico were used to determine if soil-water metal pairs partition systematically into cobs and kernels. The sampled maize included landraces from three Native American groups (Acoma, Hopi, Zuni) that still occupy the Four Corners area. Two cobs each were picked from 10 plants of each landrace. Partitioning of the Ba/Mn, Ba/Sr, Ca/Sr, and K/Rb metal pairs from the soil water to the cob appears to behave in a systematic fashion. In addition, 51 rare earth element (REE) pairs also appear to systematically partition from the soil water into cobs; however, the ratios of the REE dissolved in the soil waters are relatively invariant; therefore, the distribution coefficients that describe the partitioning of REE from the soil water to the cob may not apply to archeological cobs grown under chemically heterogeneous conditions. Partitioning of Ba/Rb, Ba/Sr, Mg/P, and Mn/P metal pairs from the soil water to kernels also behaves in a systematic fashion. Given that modern Native American landraces were grown under optimal environmental conditions that may not have been duplicated by prehistoric Native Americans, the distribution coefficients obtained in this study should be used with caution. ?? 2007 Elsevier Ltd. All rights reserved.
SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, A; Michael Paller, M; Danny D. Reible, D
2007-05-10
This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene.more » Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.« less
ERIC Educational Resources Information Center
McCullagh, John
2018-01-01
This sixth-form chemistry activity describes how students can use acid-base titrimetry to investigate how adding salt to the aqueous phase may change the value of the partition coefficient of an organic acid between water and 2-methylpropan-1-ol. While the presence of lithium chloride and sodium chloride increases the value of the partition…
Stability of coefficients in the Kronecker product of a hook and a rectangle
NASA Astrophysics Data System (ADS)
Ballantine, Cristina M.; Hallahan, William T.
2016-02-01
We use recent work of Jonah Blasiak (2012 arXiv:1209.2018) to prove a stability result for the coefficients in the Kronecker product of two Schur functions: one indexed by a hook partition and one indexed by a rectangle partition. We also give nearly sharp bounds for the size of the partition starting with which the Kronecker coefficients are stable. Moreover, we show that once the bound is reached, no new Schur functions appear in the decomposition of Kronecker product. We call this property superstability. Thus, one can recover the Schur decomposition of the Kronecker product from the smallest case in which the superstability holds. The bound for superstability is sharp. Our study of this particular case of the Kronecker product is motivated by its usefulness for the understanding of the quantum Hall effect (Scharf T et al 1994 J. Phys. A: Math. Gen 27 4211-9).
NASA Astrophysics Data System (ADS)
Blanford, W. J.; Neil, L.
2017-12-01
To better evaluate the potential for toxic organic chemicals to migrate upward through the rock strata from hydraulic fracturing zones and into groundwater resources, a series of miscible displacement solute transport studies of cores of Berea Sandstone have been conducted using hydrostatic core holder. These tests involved passing aqueous solutions with natural background level of salts using a high pressure LC pump through 2 in wide by 3 in long unfractured cores held within the holder. Relative solute transport of 100 to 500ml pulses of target solutes including a series of chlorinated solvents and methylated benzenes was measured through in-line UV and fluorescence detectors and manual sampling and analysis with GCMS. The results found these sandstones to result in smooth ideal shaped breakthrough curves. Analysis with 1D transport models (CXTFIT) of the results found strong correlation with chemical parameters (diffusion coefficients, aqueous solubility, and octanol-water partitioning coefficients) showing that these parameter and QSPR relationships can be used to make accurate predictions for such a system. In addition to the results of the studies, lessons learned from this novel use of a coreholder for evaluation of porosity, water-saturated permeability, and solute transport of these sandstones (K = 1.5cm/day) and far less permeable sandstones samples (K = 0.15 cm/yr) from a hydraulic fracturing site in central Pennsylvania will be presented.
A finite volume method for trace element diffusion and partitioning during crystal growth
NASA Astrophysics Data System (ADS)
Hesse, Marc A.
2012-09-01
A finite volume method on a uniform grid is presented to compute the polythermal diffusion and partitioning of a trace element during the growth of a porphyroblast crystal in a uniform matrix and in linear, cylindrical and spherical geometry. The motion of the crystal-matrix interface and the thermal evolution are prescribed functions of time. The motion of the interface is discretized and it advances from one cell boundary to next as the prescribed interface position passes the cell center. The appropriate conditions for the flux across the crystal-matrix interface are derived from discrete mass conservation. Numerical results are benchmarked against steady and transient analytic solutions for isothermal diffusion with partitioning and growth. Two applications illustrate the ability of the model to reproduce observed rare-earth element patterns in garnets (Skora et al., 2006) and water concentration profiles around spherulites in obsidian (Watkins et al., 2009). Simulations with diffusion inside the growing crystal show complex concentration evolutions for trace elements with high diffusion coefficients, such as argon or hydrogen, but demonstrate that rare-earth element concentrations in typical metamorphic garnets are not affected by intracrystalline diffusion.
Karanikolopoulos, Nikos; Zamurovic, Miljana; Pitsikalis, Marinos; Hadjichristidis, Nikos
2010-02-08
We synthesized a series of well-defined poly(dl-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PDLLA-b-PDMAEMA) amphiphilic diblock copolymers by employing a three-step procedure: (a) ring-opening polymerization (ROP) of dl-lactide using n-decanol and stannous octoate, Sn(Oct)(2), as the initiating system, (b) reaction of the PDLLA hydroxyl end groups with bromoisobutyryl bromide, and (c) atom transfer radical polymerization, ATRP, of DMAEMA with the newly created bromoisobutyryl initiating site. The aggregation behavior of the prepared block copolymers was investigated by dynamic light scattering and zeta potential measurements at 25 degrees C in aqueous solutions of different pH values. The hydrophobic drug dipyridamole was efficiently incorporated into the copolymer aggregates in aqueous solutions of pH 7.40. High partition coefficient values were determined by fluorescence spectroscopy.
Warfarin: history, tautomerism and activity
NASA Astrophysics Data System (ADS)
Porter, William R.
2010-06-01
The anticoagulant drug warfarin, normally administered as the racemate, can exist in solution in potentially as many as 40 topologically distinct tautomeric forms. Only 11 of these forms for each enantiomer can be distinguished by selected computational software commonly used to estimate octanol-water partition coefficients and/or ionization constants. The history of studies on warfarin tautomerism is reviewed, along with the implications of tautomerism to its biological properties (activity, protein binding and metabolism) and chemical properties (log P, log D, p K a). Experimental approaches to assessing warfarin tautomerism and computational results for different tautomeric forms are presented.
Bidentate organophosphorus solvent extraction process for actinide recovery and partition
Schulz, Wallace W.
1976-01-01
A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.
NASA Astrophysics Data System (ADS)
Krause, J.; Brügmann, G. E.; Pushkarev, E. V.
2009-04-01
The partitioning of trace elements between rock forming minerals in igneous rocks is largely controlled by physical and chemical parameters e.g. temperature, pressure and chemical composition of the minerals and the coexisting melt. In the present study partition coefficients for REE between hornblende, orthopyroxene, feldspars, apatite and clinopyroxene in a suite of co-genetic alkaline and tholeiitic mafic rocks from the Ural Mountains (Russia) were calculated. The results give insights to the influence of the chemical composition of the parental melt on the partitioning behaviour of the REE. Nepheline-bearing, alkaline melanogabbros (tilaites) are assumed to represent the most fractionated products of the melt that formed the ultramafic cumulates in zoned mafic-ultramafic complexes in the Ural Mountains. Co-genetic with the latter is a suite of olivine gabbros, gabbronorites and hornblende gabbros formed from a tholeiitic parental melt. Negative anomalies for the HFSE along with low Nb and Ta contents and a positive Sr anomaly indicate a subduction related origin of all parental melts. The nepheline gabbros consist predominantly of coarse-grained clinopyroxene phenocrysts in a matrix of fine grained clinopyroxene, olivine, plagioclase, K-feldspar and nepheline with accessory apatite. The tholeiitic gabbros have equigranular to porphyric textures with phenocrysts of olivine, pyroxene and hornblende in a plagioclase rich matrix with olivine hornblende, pyroxene and accessory apatite. Element concentrations of adjacent matrix grains and rims of phenochrysts were measured with LA-ICPMS. The distribution of REE between hornblende and clinopyroxene in the tholeiitic rocks is similar for most of the elements (DHblCpx(La-Tm) = 2.7-2.8, decreasing to 2.6 and 2.4 for Yb and Lu, respectively). These values are about two times higher than published data (e.g. Ionov et al. 1997). Partition coefficients for orthopyroxene/clinopyroxene systematically decrease from the HREE (DOpxCpx(Lu) = 0.31) towards the LREE (DOpxCpx(Nd) = 0.01). The partition coefficients for plagioclase/clinopyroxene and K-feldspar/clinopyroxene in the alkaline melanogabbros decrease from the LREE (DPlgCpx(La) = 0.91, DK-fsCpx(La)=0.26) to the MREE (DPlgCpx(Sm) = 0.02, DK-fsCpx(Sm) = 0.006), but both mineral pairs have similar DEu (DPlgCpx(Eu) = 0.25, DK-fsCpx(Eu) = 0.23). Plagioclase/clinopyroxene partition coefficients for all REE in the tholeiitic gabbros are 3-5 times higher, if compared to those of the alkaline gabbros (DPlgCpx(La) = 1.7, DPlgCpx(Sm) = 0.034). Apatite/clinopyroxene partition coefficients for the REE decrease from the LREE (DApCpx(La) = 65 in alkaline and 120 in tholeiitic gabbro) to the HREE (DApCpx(Lu) = 4.5 in alkaline and 5.3 in tholeiitic gabbro). The lower partition coefficients for apatite/clinopyroxene and plagioclase/clinopyroxene in the alkaline melanogabbros can be explained by higher clinopyroxene/melt partition coefficients in this system. The higher Al2O3-content in clinopyroxene from the alkali gabbros (Al2O3 = 3.5-7 wt.%), if compared to clinopyroxene in the tholeiitic gabbros (Al2O3 = 2.0-4.5 wt.%) can account for a stronger partitioning of the REE into clinopyroxene in the alkaline rocks (e.g. Gaetani and Grove 1995). Experimental data by Gaetani (2004) also indicate a systematic increase of the Cpx/melt partition coefficients for the REE with increasing Al2O3 and Na2O contents of the parental melt in mafic systems. This is in agreement with the assumed compositional differences between the alkaline and the tholeiitic parental melts. Gaetani, G.A., 2004. Contributions to Mineralogy and Petrology, Vol. 147, 511-527. Gaetani, G.A., Grove, T.L, 1995. Geochimica et Cosmochimica Acta, Vol. 59, 1951-1962. Ionov, D.A., Griffin, W.L., O'Reily, S.Y., 1997. Chemical Geology, Vol. 141, 153-184.
Kitt, Jay P; Harris, Joel M
2015-05-19
Octanol-water partitioning is one of the most widely used predictors of hydrophobicity and lipophilicity. Traditional methods for measuring octanol-water partition coefficients (K(ow)), including shake-flasks and generator columns, require hours for equilibration and milliliter quantities of sample solution. These challenges have led to development of smaller-scale methods for measuring K(ow). Recent advances in microfluidics have produced faster and smaller-volume approaches to measuring K(ow). As flowing volumes are reduced, however, separation of water and octanol prior to measurement and detection in small volumes of octanol phase are especially challenging. In this work, we reduce the receiver volume of octanol-water partitioning measurements from current practice by six-orders-of-magnitude, to the femtoliter scale, by using a single octanol-filled reversed-phase, octadecylsilane-modified (C18-silica) chromatographic particle as a collector. The fluid-handling challenges of working in such small volumes are circumvented by eliminating postequilibration phase separation. Partitioning is measured in situ within the pore-confined octanol phase using confocal Raman microscopy, which is capable of detecting and quantifying a wide variety of molecular structures. Equilibration times are fast (less than a minute) because molecular diffusion is efficient over distance scales of micrometers. The demonstrated amount of analyte needed to carry out a measurement is very small, less than 50 fmol, which would be a useful attribute for drug screening applications or testing of small quantities of environmentally sensitive compounds. The method is tested for measurements of pH-dependent octanol-water partitioning of naphthoic acid, and the results are compared to both traditional shake-flask measurements and sorption onto C18-modified silica without octanol present within the pores.
Application of New Partition Coefficients to Modeling Plagioclase
NASA Technical Reports Server (NTRS)
Fagan, A. L.; Neal, C. R.; Rapp, J. F.; Draper, D. S.; Lapen, T. J.
2017-01-01
Previously, studies that determined the partition coefficient for an element, i, between plagioclase and the residual basaltic melt (Di plag) have been conducted using experimental conditions dissimilar from the Moon, and thus these values are not ideal for modeling plagioclase fractionation in a lunar system. However, recent work [1] has determined partition coefficients for plagioclase at lunar oxygen fugacities, and resulted in plagioclase with Anorthite contents =An90; these are significantly more calcic than plagioclase in previous studies, and the An content has a profound effect on partition coefficient values [2,3]. Plagioclase D-values, which are dependent on the An content of the crystal [e.g., 2-6], can be determined using published experimental data and the correlative An contents. Here, we examine new experimental data from [1] to ascertain their effect on the calculation of equilibrium liquids from Apollo 16 sample 60635,2. This sample is a coarse grained, subophitic impact melt composed of 55% plagioclase laths with An94.4-98.7 [7,8], distinctly more calcic than of previous partition coefficient studies (e.g., [3-6, 9-10]). Sample 60635,2 is notable as having several plagioclase trace element analyses containing a negative Europium anomaly (-Eu) in the rare-earth element (REE) profile, rather than the typical positive Eu anomaly (+Eu) [7-8] (Fig. 1). The expected +Eu is due to the similarity in size and charge with Ca2+, thereby allowing Eu2+ to be easily taken up by the plagioclase crystal structure, in contrast to the remaining REE3+. Some 60635,2 plagioclase crystals only have +Eu REE profiles, some only have -Eu REE profiles, and some +Eu and -Eu analyses in different areas on a single crystal [7, 8]. Moreover, there does not seem to be any core-rim association with the +Eu or -Eu analyses, nor does there appear to be a correlation between the size, shape, or location of a particular crystal within the sample and the sign of its Eu anomaly, which suggests a complex evolution. In order to investigate this sample further, we can calculate the equilibrium liquids, but with An contents distinct from previous experimental studies, we must calculate the appropriate partition coefficients for each trace element analysis.
2013-01-01
Background Cardiovascular magnetic resonance (CMR) T1 mapping indices, such as T1 time and partition coefficient (λ), have shown potential to assess diffuse myocardial fibrosis. The purpose of this study was to investigate how scanner and field strength variation affect the accuracy and precision/reproducibility of T1 mapping indices. Methods CMR studies were performed on two 1.5T and three 3T scanners. Eight phantoms were made to mimic the T1/T2 of pre- and post-contrast myocardium and blood at 1.5T and 3T. T1 mapping using MOLLI was performed with simulated heart rate of 40-100 bpm. Inversion recovery spin echo (IR-SE) was the reference standard for T1 determination. Accuracy was defined as the percent error between MOLLI and IR-SE, and scan/re-scan reproducibility was defined as the relative percent mean difference between repeat MOLLI scans. Partition coefficient was estimated by ΔR1myocardium phantom/ΔR1blood phantom. Generalized linear mixed model was used to compare the accuracy and precision/reproducibility of T1 and λ across field strength, scanners, and protocols. Results Field strength significantly affected MOLLI T1 accuracy (6.3% error for 1.5T vs. 10.8% error for 3T, p<0.001) but not λ accuracy (8.8% error for 1.5T vs. 8.0% error for 3T, p=0.11). Partition coefficients of MOLLI were not different between two 1.5T scanners (47.2% vs. 47.9%, p=0.13), and showed only slight variation across three 3T scanners (49.2% vs. 49.8% vs. 49.9%, p=0.016). Partition coefficient also had significantly lower percent error for precision (better scan/re-scan reproducibility) than measurement of individual T1 values (3.6% for λ vs. 4.3%-4.8% for T1 values, approximately, for pre/post blood and myocardium values). Conclusion Based on phantom studies, T1 errors using MOLLI ranged from 6-14% across various MR scanners while errors for partition coefficient were less (6-10%). Compared with absolute T1 times, partition coefficient showed less variability across platforms and field strengths as well as higher precision. PMID:23890156
NASA Astrophysics Data System (ADS)
Wang, Chen; Yuan, Tiange; Wood, Stephen A.; Goss, Kai-Uwe; Li, Jingyi; Ying, Qi; Wania, Frank
2017-06-01
Gas-particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA). The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas-organic and gas-aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC), and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas-organic phase partitioning coefficients (KWIOM/G) by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas-aqueous partitioning (KW/G) are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.
Influence of Permeant Lipophilicity on Permeation Across Human Sclera
Wen, He; Li, S. Kevin
2010-01-01
Purpose The objectives of this study were to determine the effects of permeant lipophilicity on permeant uptake into and transport across human sclera for transscleral delivery. Methods Model permeants with a wide range of lipophilicities were selected and studied with human sclera. Uptake experiments were carried out to measure permeant partitioning into the sclera. Transport experiments were performed in side-by-side diffusion cells, and the permeability coefficients and transport lag times of the permeants across the sclera were evaluated. Results Permeants with higher lipophilicity showed higher partition coefficients to human sclera, and the apparent transport lag time also increased significantly as the permeant lipophilicity increased. No correlation between the permeability coefficients and lipophilicity of the model permeants was observed in this study with human sclera. A hypothesis on the different findings between the present and previous studies was proposed. Conclusions Permeants with higher lipophilicity exhibited stronger binding to human sclera and would therefore lead to larger permeant partitioning to the sclera and longer transport lag time. The steady-state permeability coefficients of the permeants were not significantly affected by permeant lipophilicity. PMID:20734114
A mass-balanced definition of corrected retention volume in gas chromatography.
Kurganov, A
2007-05-25
The mass balance equation of a chromatographic system using a compressible moving phase has been compiled for mass flow of the mobile phase instead of traditional volumetric flow allowing solution of the equation in an analytical form. The relation obtained correlates retention volume measured under ambient conditions with the partition coefficient of the solute. Compared to the relation in the ideal chromatographic system the equation derived contains an additional correction term accounting for the compressibility of the moving phase. When the retention volume is measured under the mean column pressure and column temperature the correction term is reduced to unit and the relation is simplified to those known for the ideal system. This volume according to International Union of Pure and Applied Chemistry (IUPAC) is called the corrected retention volume.
Solute partitioning in multi-component γ/γ' Co–Ni-base superalloys with near-zero lattice misfit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meher, S.; Carroll, L. J.; Pollock, T. M.
The addition of nickel to cobalt-base alloys enables alloys with a near zero γ – γ' lattice misfit. The solute partitioning between ordered γ' precipitates and the disordered γ matrix have been investigated using atom probe tomography. Lastly, the unique shift in solute partitioning in these alloys, as compared to that in simpler Co-base alloys, derives from changes in site substitution of solutes as the relative amounts of Co and Ni change, highlighting new opportunities for the development of advanced tailored alloys.
Solute partitioning in multi-component γ/γ' Co–Ni-base superalloys with near-zero lattice misfit
Meher, S.; Carroll, L. J.; Pollock, T. M.; ...
2015-11-21
The addition of nickel to cobalt-base alloys enables alloys with a near zero γ – γ' lattice misfit. The solute partitioning between ordered γ' precipitates and the disordered γ matrix have been investigated using atom probe tomography. Lastly, the unique shift in solute partitioning in these alloys, as compared to that in simpler Co-base alloys, derives from changes in site substitution of solutes as the relative amounts of Co and Ni change, highlighting new opportunities for the development of advanced tailored alloys.
Toropov, Andrey A; Toropova, Alla P; Raska, Ivan; Benfenati, Emilio
2010-04-01
Three different splits into the subtraining set (n = 22), the set of calibration (n = 21), and the test set (n = 12) of 55 antineoplastic agents have been examined. By the correlation balance of SMILES-based optimal descriptors quite satisfactory models for the octanol/water partition coefficient have been obtained on all three splits. The correlation balance is the optimization of a one-variable model with a target function that provides both the maximal values of the correlation coefficient for the subtraining and calibration set and the minimum of the difference between the above-mentioned correlation coefficients. Thus, the calibration set is a preliminary test set. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.
1982-08-06
mine, and phenytoin . All except the latter and/3-chloralose caused marked decreases in order. The bilayer/buffer partition coefficients of...phenobarbital, phenytoin , and urethane were measured. The change-in-order parameter as a function of total anesthetic concen- tration varied widely but when the...BY GENERAL ANESTHETICS 85 to disorder egg phosphatidylcholine:cholesterol (2:1) bi- Partition coefficients of phenobarbital and phenytoin layers. This
Stenzel, Angelika; Goss, Kai-Uwe; Endo, Satoshi
2013-02-05
Polyparameter linear free energy relationships (pp-LFERs) can predict partition coefficients for a multitude of environmental and biological phases with high accuracy. In this work, the pp-LFER substance descriptors of 40 established and alternative flame retardants (e.g., polybrominated diphenyl ethers, hexabromocyclododecane, bromobenzenes, trialkyl phosphates) were determined experimentally. In total, 251 data for gas-chromatographic (GC) retention times and liquid/liquid partition coefficients (K) were measured and used to calibrate the pp-LFER substance descriptors. Substance descriptors were validated through a comparison between predicted and experimental log K for the systems octanol/water (K(ow)), water/air (K(wa)), organic carbon/water (K(oc)) and liposome/water (K(lipw)), revealing a high reliability of pp-LFER predictions based on our descriptors. For instance, the difference between predicted and experimental log K(ow) was <0.3 log units for 17 out of 21 compounds for which experimental values were available. Moreover, we found an indication that the H-bond acceptor value (B) depends on the solvent for some compounds. Thus, for predicting environmentally relevant partition coefficients it is important to determine B values using measurements in aqueous systems. The pp-LFER descriptors calibrated in this study can be used to predict partition coefficients for which experimental data are unavailable, and the predicted values can serve as references for further experimental measurements.
Partition coefficient of cadmium between organic soils and bean and oat plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddqui, M.F.R.; Courchesne, F.; Kennedy, G.
Environmental fate models require the partition coefficient data of contaminants among two or more environmental compartments. The bioaccumulation of cadmium (Cd) by bean and oat plants grown on organic soils in a controlled growth chamber was investigated to validate the plant/soil partition coefficient. Total Cd was measured in the soils and in the different parts of the plants. The mean total Cd concentrations for soil cultivated with beans and oats were 0.86 and 0.69 {micro}g/g, respectively. Selective extractants (BaCl{sub 2}, Na-pyrophosphate and HNO{sub 3}-hydroxy) were used to evaluate solid phase Cd species in the soil. In the soil cultivated withmore » bean, BaCl{sub 2} exchangeable, Na-pyrophosphate extractable and HNO{sub 3}-NH{sub 2}OH extractable Cd represented 1.2, 1.6 and 50.9% of total soil Cd, respectively. For the soil cultivated with oats, the same extractants gave values of 1.1, 1.8 and 61.9%. Cd concentration levels in bean plants followed the sequence roots > fruits = stems > leaves (p < 0.01) while the following sequence was observed for oat plants: roots > fruits > stems > leaves (p < 0.05). The partition coefficient for total Cd (Cd{sub Plant tissue}/Cd{sub Soil}) was in the range of 0.28--0.55 for bean plants and 1.03--1.86 for oat plants.« less
NASA Technical Reports Server (NTRS)
Schwandt, C. S.; McKay, G. A.
1996-01-01
Determining the petrogenesis of eucrites (basaltic achondrites) and diogenites (orthopyroxenites) and the possible links between the meteorite types was initiated 30 years ago by Mason. Since then, most investigators have worked on this question. A few contrasting theories have emerged, with the important distinction being whether or not there is a direct genetic link between eucrites and diogenites. One theory suggests that diogenites are cumulates resulting from the fractional crystallization of a parent magma with the eucrites crystallizing, from the residual magma after separation from the diogenite cumulates. Another model proposes that diogenites are cumulates formed from partial melts derived from a source region depleted by the prior generation of eucrite melts. It has also been proposed that the diogenites may not be directly linked to the eucrites and that they are cumulates derived from melts that are more orthopyroxene normative than the eucrites. This last theory has recently received more analytical and experimental support. One of the difficulties with petrogenetic modeling is that it requires appropriate partition coefficients for modeling because they are dependent on temperature, pressure, and composition. For this reason, we set out to determine minor- and trace-element partition coefficients for diogenite-like orthopyroxene. We have accomplished this task and now have enstatite/melt partition coefficients for Al, Cr, Ti, La, Ce, Nd, Sm, Eu, Dy, Er, Yb, and La.
Determination of the solubility of inorganic salts by headspace gas chromatography.
Chai, X S; Zhu, J Y
2003-05-09
This work reports a novel method for determination of salt solubility using headspace gas chromatography. A very small amount of volatile compound (such as methanol) is added in the studied solution. Due to the molecular interaction in the solution, the vapor-liquid equilibrium (VLE) partitioning coefficient of the volatile species will change with different salt contents in the solution. Therefore, the concentration of volatile species in the vapor phase is proportional to the salt concentration in the liquid phase, which can be easily determined by headspace gas chromatography. Until the salt concentration in the solution is saturated, the concentration of volatile compound in the vapor phase will continue to increase further and a breakpoint will appear on the VLE curve. The solubility of the salts can be determined by the identification of the breakpoint. It was found that the measured solubility of sodium carbonate and sodium sulfate in aqueous solutions is slightly higher (about 6-7%) than those reported in the literature method. The present method can be easily applied to industrial solution systems.
NASA Astrophysics Data System (ADS)
Li, Wei; Shen, Guofeng; Yuan, Chenyi; Wang, Chen; Shen, Huizhong; Jiang, Huai; Zhang, Yanyan; Chen, Yuanchen; Su, Shu; Lin, Nan; Tao, Shu
2016-05-01
The gas/particle partitioning of nitro-polycyclic aromatic hydrocarbons (nPAHs) and oxy-PAHs (oPAHs) is pivotal to estimate their environmental fate. Simultaneously measured atmospheric concentrations of nPAHs and oPAHs in both gaseous and particulate phases at 18 sites in northern China make it possible to investigate their partitioning process in a large region. The gas/particle partitioning coefficients (Kp) in this study were higher than those measured in the emission exhausts. The Kp for most individual nPAHs was higher than those for their corresponding parent PAHs. Generally higher Kp values were found at rural field sites compared to values in the rural villages and cities. Temperature, subcooled liquid-vapor pressure (Pl0) and octanol-air partition coefficient (Koa) were all significantly correlated with Kp. The slope values between log Kp and log Pl0, ranging from - 0.54 to - 0.34, indicate that the equilibrium of gas/particle partitioning might not be reached, which could be also revealed from a positive correlation between log Kp and particulate matter (PM) concentrations. Underestimation commonly exists in all three partitioning models, but the predicted values of Kp from the dual model are closer to the measured Kp for derivative PAHs in northern China.
Rocha, Maria Victoria; Nerli, Bibiana Beatriz
2013-10-01
The partitioning patterns of papain (PAP) and bromelain (BR), two well-known cysteine-proteases, in polyethyleneglycol/sodium citrate aqueous two-phase systems (ATPSs) were determined. Polyethyleneglycols of different molecular weight (600, 1000, 2000, 4600 and 8000) were assayed. Thermodynamic characterization of partitioning process, spectroscopy measurements and computational calculations of protein surface properties were also carried out in order to explain their differential partitioning behavior. PAP was observed to be displaced to the salt-enriched phase in all the assayed systems with partition coefficients (KpPAP) values between 0.2 and 0.9, while BR exhibited a high affinity for the polymer phase in systems formed by PEGs of low molecular weight (600 and 1000) with partition coefficients (KpBR) values close to 3. KpBR values resulted higher than KpPAP in all the cases. This difference could be assigned neither to the charge nor to the size of the partitioned biomolecules since PAP and BR possess similar molecular weight (23,000) and isoelectric point (9.60). The presence of highly exposed tryptophans and positively charged residues (Lys, Arg and His) in BR molecule would be responsible for a charge transfer interaction between PEG and the protein and, therefore, the uneven distribution of BR in these systems. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Latourrette, T. Z.; Burnett, D. S.
1992-01-01
Experimental measurements of U and the partition coefficients between clinopyroxene and synthetic and natural basaltic liquid are presented. The results demonstrate that crystal-liquid U-Th fractionation is fO2-dependent and that U in terrestrial magmas is not entirely tetravalent. During partial melting, the liquid will have a Th/U ratio less than the clinopyroxene in the source. The observed U-238 - Th-230 disequilibrium in MORB requires that the partial melt should have a U/Th ratio greater than the bulk source and therefore cannot result from clinopyroxene-liquid partitioning. Further, the magnitudes of the measured partition coefficients are too small to generate significant U-Th fractionation in either direction. Assuming that clinopyroxene contains the bulk of the U and Th in the MORB source, the results indicate that U-238 - Th-230 disequilibrium in MORB may not be caused by partial melting at all.
Evaluation of Pharmacokinetic Assumptions Using a 443 ...
With the increasing availability of high-throughput and in vitro data for untested chemicals, there is a need for pharmacokinetic (PK) models for in vitro to in vivo extrapolation (IVIVE). Though some PBPK models have been created for individual compounds using in vivo data, we are now able to rapidly parameterize generic PBPK models using in vitro data to allow IVIVE for chemicals tested for bioactivity via high-throughput screening. However, these new models are expected to have limited accuracy due to their simplicity and generalization of assumptions. We evaluated the assumptions and performance of a generic PBPK model (R package “httk”) parameterized by a library of in vitro PK data for 443 chemicals. We evaluate and calibrate Schmitt’s method by comparing the predicted volume of distribution (Vd) and tissue partition coefficients to in vivo measurements. The partition coefficients are initially over predicted, likely due to overestimation of partitioning into phospholipids in tissues and the lack of lipid partitioning in the in vitro measurements of the fraction unbound in plasma. Correcting for phospholipids and plasma binding improved the predictive ability (R2 to 0.52 for partition coefficients and 0.32 for Vd). We lacked enough data to evaluate the accuracy of changing the model structure to include tissue blood volumes and/or separate compartments for richly/poorly perfused tissues, therefore we evaluated the impact of these changes on model
Bryce, David A; Shao, Hongbo; Cantrell, Kirk J; Thompson, Christopher J
2016-06-07
CO2 injected into depleted oil or gas reservoirs for long-term storage has the potential to mobilize organic compounds and distribute them between sediments and reservoir brines. Understanding this process is important when considering health and environmental risks, but little quantitative data currently exists on the partitioning of organics between supercritical CO2 and water. In this work, a high-pressure, in situ measurement capability was developed to assess the distribution of organics between CO2 and water at conditions relevant to deep underground storage of CO2. The apparatus consists of a titanium reactor with quartz windows, near-infrared and UV spectroscopic detectors, and switching valves that facilitate quantitative injection of organic reagents into the pressurized reactor. To demonstrate the utility of the system, partitioning coefficients were determined for benzene in water/supercritical CO2 over the range 35-65 °C and approximately 25-150 bar. Density changes in the CO2 phase with increasing pressure were shown to have dramatic impacts on benzene's partitioning behavior. Our partitioning coefficients were approximately 5-15 times lower than values previously determined by ex situ techniques that are prone to sampling losses. The in situ methodology reported here could be applied to quantify the distribution behavior of a wide range of organic compounds that may be present in geologic CO2 storage scenarios.
Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning
USDA-ARS?s Scientific Manuscript database
Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, determi...
Correlations between chromatographic parameters and bioactivity predictors of potential herbicides.
Janicka, Małgorzata
2014-08-01
Different liquid chromatography techniques, including reversed-phase liquid chromatography on Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester columns and micellar liqud chromatography with a Purosphere RP-8e column and using buffered sodium dodecyl sulfate-acetonitrile as the mobile phase, were applied to study the lipophilic properties of 15 newly synthesized phenoxyacetic and carbamic acid derivatives, which are potential herbicides. Chromatographic lipophilicity descriptors were used to extrapolate log k parameters (log kw and log km) and log k values. Partitioning lipophilicity descriptors, i.e., log P coefficients in an n-octanol-water system, were computed from the molecular structures of the tested compounds. Bioactivity descriptors, including partition coefficients in a water-plant cuticle system and water-human serum albumin and coefficients for human skin partition and permeation were calculated in silico by ACD/ADME software using the linear solvation energy relationship of Abraham. Principal component analysis was applied to describe similarities between various chromatographic and partitioning lipophilicities. Highly significant, predictive linear relationships were found between chromatographic parameters and bioactivity descriptors. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1996-01-01
The chemical compositions of magmas can be derived from the compositions of their equilibrium minerals through mineral/magma partition coefficients. This method cannot be applied safely to basaltic rocks, either solidified lavas or cumulates, which have chemically equilibrated or partially equilibrated at subsolidus temperatures, i.e., in the absence of magma. Applying mineral/ melt partition coefficients to mineral compositions from such rocks will typically yield 'magma compositions' that are strongly fractionated and unreasonably enriched in incompatible elements (e.g., REE's). In the absence of magma, incompatible elements must go somewhere; they are forced into minerals (e.g., pyroxenes, plagioclase) at abundance levels far beyond those established during normal mineral/magma equilibria. Further, using mineral/magma partition coefficients with such rocks may suggest that different minerals equilibrated with different magmas, and the fractionation sequence of those melts (i.e., enrichment in incompatible elements) may not be consistent with independent constraints on the order of crystallization. Subsolidus equilibration is a reasonable cause for incompatible- element-enriched minerals in some eucrites, diogenites, and martian meteorites and offers a simple alternative to petrogenetic schemes involving highly fractionated magmas or magma infiltration metasomatism.
Awonaike, Boluwatife; Wang, Chen; Goss, Kai-Uwe; Wania, Frank
2017-03-22
Functional groups attached to polycyclic aromatic hydrocarbons (PAHs) can significantly modify the environmental fate of the parent compound. Equilibrium partition coefficients, which are essential for describing the environmental phase distribution of a compound, are largely unavailable for substituted PAHs (SPAHs). Here, COSMOtherm, a software based on quantum-chemical calculations is used to estimate the atmospherically relevant partition coefficients between the gas phase, the aqueous bulk phase, the water surface and the water insoluble organic matter phase, as well as the salting-out coefficients, for naphthalene, anthracene, phenanthrene, benz(a)anthracene, benzo(a)pyrene and dibenz(a,h)anthracene and 62 of their substituted counterparts. They serve as input parameters for the calculation of equilibrium phase distribution of these compounds in aerosols and clouds. Our results, which were compared with available experimental data, show that the effect of salts, the adsorption to the water surface and the dissolution in a bulk aqueous phase can be safely neglected when estimating the gas-particle partitioning of SPAHs in aerosols. However, for small PAHs with more than one polar functional group the aqueous phase can be the dominant reservoir in a cloud.
ERIC Educational Resources Information Center
McCain, Daniel F.; Allgood, Ottie E.; Cox, Jacob T.; Falconi, Audrey E.; Kim, Michael J.; Shih, Wei-Yu
2012-01-01
Only a few pedagogical experiments have been published dealing specifically with the hydrophobic interaction though it plays a central role in biochemistry. A set of experiments is presented in which students partition a variety of colorful indicator dyes in biphasic water/organic solvent mixtures. Students monitor the partitioning visually and…
He, Wei; Yang, Chen; Liu, Wenxiu; He, Qishuang; Wang, Qingmei; Li, Yilong; Kong, Xiangzhen; Lan, Xinyu; Xu, Fuliu
2016-12-01
In the shallow lakes, the partitioning of organic contaminants into the water phase from the solid phase might pose a potential hazard to both benthic and planktonic organisms, which would further damage aquatic ecosystems. This study determined the concentrations of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and phthalate esters (PAEs) in both the sediment and the pore water from Lake Chaohu and calculated the sediment - pore water partition coefficient (K D ) and the organic carbon normalized sediment - pore water partition coefficient (K OC ), and explored the effects of particle size, organic matter content, and parallel factor fluorescent organic matter (PARAFAC-FOM) on K D . The results showed that log K D values of PAHs (2.61-3.94) and OCPs (1.75-3.05) were significantly lower than that of PAEs (4.13-5.05) (p < 0.05). The chemicals were ranked by log K OC as follows: PAEs (6.05-6.94) > PAHs (4.61-5.86) > OCPs (3.62-4.97). A modified MCI model can predict K OC values in a range of log 1.5 at a higher frequency, especially for PAEs. The significantly positive correlation between K OC and the octanol - water partition coefficient (K OW ) were observed for PAHs and OCPs. However, significant correlation was found for PAEs only when excluding PAEs with lower K OW . Sediments with smaller particle sizes (clay and silt) and their organic matter would affect distributions of PAHs and OCPs between the sediment and the pore water. Protein-like fluorescent organic matter (C2) was associated with the K D of PAEs. Furthermore, the partitioning of PARAFAC-FOM between the sediment and the pore water could potentially affect the distribution of organic pollutants. The partitioning mechanism of PAEs between the sediment and the pore water might be different from that of PAHs and OCPs, as indicated by their associations with influencing factors and K OW . Copyright © 2016 Elsevier Ltd. All rights reserved.
Metal/Silicate Partitioning at High Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.
2010-01-01
The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.
Mantle Mineral/Silicate Melt Partitioning
NASA Astrophysics Data System (ADS)
McFarlane, E. A.; Drake, M. J.
1992-07-01
Introduction: The partitioning of elements among mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. It has been proposed that the elevated Mg/Si ratio of the upper mantle of the Earth is a consequence of the flotation of olivine into the upper mantle (Agee and Walker, 1988). Agee and Walker (1988) have generated a model via mass balance by assuming average mineral compositions to generate upper mantle peridotite. This model determines that upper mantle peridotite could result from the addition of 32.7% olivine and 0.9% majorite garnet into the upper mantle, and subtraction of 27.6% perovskite from the upper mantle (Agee and Walker, 1988). The present contribution uses experimental data to examine the consequences of such multiple phase fractionations enabling an independent evaluation of the above mentioned model. Here we use Mg-perovskite/melt partition coefficients from both a synthetic and a natural system (KLB-1) obtained from this laboratory. Also used are partition coefficient values for majorite garnet/melt, beta spinel/melt and olivine/melt partitioning (McFarlane et al., 1991b; McFarlane et al., 1992). Multiple phase fractionations are examined using the equilibrium crystallization equation and partition coefficient values. The mineral proportions determined by Agee and Walker (1988) are converted into weight fractions and used to compute a bulk partition coefficient value. Discussion: There has been a significant debate concerning whether measured values of trace element partition coefficients permit large-scale fractionation of liquidus phases from an early terrestrial magma ocean (Kato et al., 1988a,b; Walker and Agee, 1989; Drake, 1989; Drake et al., 1991; McFarlane et al., 1990, 1991). It should be noted that it is unclear which, if any, numerical values of partition coefficients are appropriate for examining this question, and certainly the assumptions for the current model must be more fully examined. However, our preliminary calculations do not appear to be consistent with large scale fractionation of phases in the proportions postulated from an early ocean, because approximately chondritic ratios and abundances of refractory lithophile elements inferred for the primitive upper mantle of the Earth would not be preserved. References: Agee, C.B. and Walker, D. (1988) Earth. Planet. Sci. Lett. 90, 144-156. Drake, M.J. (1989) Z. Naturforsch., 44a, 883-890. Drake, M.J. et al. (1991) Magma Oceans Workshop. Drake, M.J. et al. (1989) Geochim. Cosmochim. Acta, 53, 2101-2111. Kato, T. et al. (1988a) Earth. Planet. Sci. Lett. 89, 123-145. Kato, T. et al. (1988b) Earth. Planet. Sci. Lett. 90, 65-68. McFarlane, E.A. et al. (1990) Lunar and Planetary Science 21, 759-760. McFarlane, E.A. et al. (199la) Magma Oceans Workshop. McFarlane, E.A. et al. (199lb) Lunar and Planetary Science 22, 875-876. McFarlane, E.A. et al. (1992) Lunar and Planetary Science 23, 883-884. Walker, D. and Agee, C.B. (1989) Earth. Planet. Sci. Lett. 96, 49-60.
1999-08-01
Funding for the work was provided in part by Dr. Harry Salem , SBCCOM/ECBC, Aberdeen Proving Grounds, Maryland. The research described in this report... PFA ) " CA Figure I - Physiologicallly Based Pharmacokinetic Model of the Pig (Sus scrofa). Abbreviations: CA, arterial concentration; CX, exhaled...order metabol. rate constant (/hr-1 kg)’ CONSTANT PLA=3.29 $ ’Liver/air partition coefficient’ CONSTANT PFA =70.27 $ ’Fat/air partition coefficient
Kadam, Rajendra S.
2010-01-01
In vitro bovine eye tissue/phosphate-buffered saline, pH 7.4, partition coefficients (Kt:b), in vitro binding to natural melanin, and in vivo delivery at 1 h after posterior subconjunctival injection in Brown Norway rats were determined for eight β-blockers. The Kt:b was in the order intact tissue, dry weight method ≥ intact tissue, wet weight method corrected for tissue water and drug in tissue water ≫ intact tissue, wet weight method > homogenized tissue. In intact tissue methods, Kt:b followed the order choroid-retinal pigment epithelium (RPE) > trabecular meshwork > retina > sclera ∼ optic nerve; propranolol > betaxolol > pindolol ∼ timolol ∼ metoprolol > sotalol ∼ atenolol ∼ nadolol. Intact tissue, wet weight log (Kt:b) correlated positively with log D for all tissues (R2 of 0.7–0.9). Log (melanin binding capacity) correlated positively with choroid-RPE log (Kt:b) (R2 of 0.5). With an increase in concentration, Kt:b decreased in trabecular meshwork for all β-blockers and for some lipophilic β-blockers in choroid-RPE and sclera. With an increase in drug lipophilicity, in vivo tissue distribution increased in choroid-RPE, iris-ciliary body, sclera, and cornea but exhibited a declining trend in retina, vitreous, and lens. In vitro bovine intact tissue, wet weight Kt:b correlated positively with rat in vivo tissue/vitreous humor distribution for sclera, choroid-RPE, and retina (R2 of 0.985–0.993). In vitro tissue partition coefficients might be useful in predicting in vivo drug distribution after trans-scleral delivery. Less lipophilic solutes exhibiting limited nonproductive binding in choroid-RPE might exhibit greater trans-scleral delivery to the retina and vitreous. PMID:19926800
Caupos, Emilie; Touffet, Arnaud; Mazellier, Patrick; Croue, Jean-Philippe
2015-03-01
Solid-phase microextraction (SPME) was used to determine the equilibrium association constant for a pesticide, trifluralin (TFR), with dissolved organic matter (DOM). After optimization of the SPME method for the analysis of TFR, partition coefficients (K DOM) with three different sources of DOM were determined in buffered solutions at pH 7. Commercial humic acids and DOM fractions isolated from two surface waters were used. The values of log K DOM varied from 4.3 to 5.8, depending on the nature of the organic material. A good correlation was established between log K DOM and DOM properties (as measured with the H/O atomic ratio and UV absorbance), in agreement with literature data. This is consistent with the effect of polarity and aromaticity for governing DOM-pollutant associations, regardless of the origin of DOM. This association phenomenon is relevant to better understand the behavior of pesticides in the environment since it controls part of pesticide leaching and fate in aquatic systems.
Yost, Sally L; Pennington, Judith C; Brannon, James M; Hayes, Charolett A
2007-08-01
Process descriptors were determined for picric acid, TNT, and the TNT-related compounds 2,4DNT, 2,6DNT, 2ADNT, 4ADNT, 2,4DANT, 2,6DANT, TNB and DNB in marine sediment slurries. Three marine sediments of various physical characteristics (particle size ranging from 15 to >90% fines and total organic carbon ranging from <0.10 to 3.60%) were kept in suspension with 20ppt saline water. Concentrations of TNT and its related compounds decreased immediately upon contact with the marine sediment slurries, with aqueous concentrations slowly declining throughout the remaining test period. Sediment-water partition coefficients could not be determined for these compounds since solution phase concentrations were unstable. Kinetic rates and half-lives were influenced by the sediment properties, with the finer grained, higher organic carbon sediment being the most reactive. Aqueous concentrations of picric acid were very stable, demonstrating little partitioning to the sediments. Degradation to picramic acid was minimal, exhibiting concentrations at or just above the detection limit.
Octanol-water partition coefficients for predicting the effects of tannins in ruminant nutrition.
Mueller-Harvey, Irene; Mlambo, Victor; Sikosana, Joe L N; Smith, Tim; Owen, Emyr; Brown, Ron H
2007-07-11
Tannins can cause beneficial or harmful nutritional effects, but their great diversity has until now prevented a rational distinction between tannin structures and their nutritional responses. An attempt has been made to study this problem by examining the octanol-water solubilities of tannins. A relatively simple HPLC method has been developed for screening mixtures of plant tannins for their octanol-water partition coefficients (Kow coefficients). Tannins were isolated from the fruits and leaves of different Acacia, Calliandra, Dichrostachys, and Piliostigma species, which are known to produce beneficial or harmful effects. The Kow coefficients of these tannins ranged from 0.061 to 13.9, average coefficients of variation were 9.2% and recoveries were 107%. Acacia nilotica fruits and leaves had the highest Kow coefficients, that is, 2.0 and 13.9, respectively. These A. nilotica products also have high concentrations of tannins. The combined effects of high octanol solubilities and high tannin concentrations may explain their negative effects on animal nutrition and health. It is known that compounds with high octanol solubilities are more easily absorbed into tissues, and it is, therefore, proposed that such compounds are more likely to cause toxicity problems especially if consumed in large quantities. According to the literature, tannins in human foods tend to have low Kow coefficients, and this was confirmed for the tannins in Piliostigma thonningii fruits. Therefore, unconventional feeds or browse products should be screened not only for their tannin concentrations but also for low octanol-water partition coefficients in order to identify nutritionally safe feeds and to avoid potentially toxic feeds.
Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin
2012-12-01
Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Ji; Gray, B.R.; Bates, D.M.
2008-01-01
Partitioning the variance of a response by design levels is challenging for binomial and other discrete outcomes. Goldstein (2003) proposed four definitions for variance partitioning coefficients (VPC) under a two-level logistic regression model. In this study, we explicitly derived formulae for multi-level logistic regression model and subsequently studied the distributional properties of the calculated VPCs. Using simulations and a vegetation dataset, we demonstrated associations between different VPC definitions, the importance of methods for estimating VPCs (by comparing VPC obtained using Laplace and penalized quasilikehood methods), and bivariate dependence between VPCs calculated at different levels. Such an empirical study lends an immediate support to wider applications of VPC in scientific data analysis.
Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments
NASA Technical Reports Server (NTRS)
Schwandt, Craig S.; McKay, Gordon A.
1997-01-01
Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.
The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the Using eddy covariance and flux partitioning to assess basal, soil, and stress coefficients for crop evapotranspiration models
USDA-ARS?s Scientific Manuscript database
Current approaches to scheduling crop irrigation using reference evapotranspiration (ET0) recommend using a dual-coefficient approach using basal (Kcb) and soil (Ke) coefficients along with a stress coefficient (Ks) to model crop evapotranspiration (ETc), [e.g. ETc=(Ks*Kcb+Ke)*ET0]. However, indepe...
Extraction of organic compounds with room temperature ionic liquids.
Poole, Colin F; Poole, Salwa K
2010-04-16
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.
The role of charge in the surfactant-assisted stabilization of the natural product curcumin.
Wang, Zifan; Leung, Mandy H M; Kee, Tak W; English, Douglas S
2010-04-20
Colloidal solutions of surfactants that form micelles or vesicles are useful for solubilizing and stabilizing hydrophobic molecules that are otherwise sparingly soluble in aqueous solutions. In this paper we investigate the use of micelles and vesicles prepared from ionic surfactants for solubilizing and stabilizing curcumin, a medicinal natural product that undergoes alkaline hydrolysis in water. We identify spectroscopic signatures to evaluate curcumin partitioning and deprotonation in surfactant mixtures containing micelles or vesicles. These spectroscopic signatures allow us to monitor the interaction of curcumin with charged surfactants over a wide range of pH values. Titration data are presented to show the pH dependence of curcumin interactions with negatively and positively charged micelles and vesicles. In solutions of cationic micelles or positively charged vesicles, strong interaction between the Cur(-1) phenoxide ion and the positively charged surfactants results in a change in the acidity of the phenolic hydrogen and a lowering of the apparent lowest pK(a) value for curcumin. In the microenvironments formed by anionic micelles or negatively charged bilayers, our data indicates that curcumin partitions as the Cur(0) species, which is stabilized by interactions with the respective surfactant aggregates, and this leads to an increase in the apparent pK(a) values. Our results may explain some of the discrepancies within the literature with respect to reported pK(a) values and the acidity of the enolic versus phenolic protons. Hydrolysis rates, quantum yields, and molar absorption coefficients are reported for curcumin in a variety of solutions.
Atta, Khan Rashid; Gavril, Dimitrios; Loukopoulos, Vassilios; Karaiskakis, George
2004-01-16
The experimental technique of the reversed-flow version of inverse gas chromatography was applied for the study of effects of surfactants in reducing air-water exchange rates. The vinyl chloride (VC)-water system was used as a model, which is of great importance in environmental chemistry. Using suitable mathematical analysis, various physicochemical quantities were calculated, among which the most significant are: Partition coefficients of the VC gas between the surfactant interface and the carrier gas nitrogen, as well as between the bulk of the water + surfactant solution and the carrier gas nitrogen, overall mass transfer coefficients of VC in the liquid (water + surfactant) and the gas (nitrogen) phases, water and surfactant film transfer coefficients, nitrogen, water and surfactant phase resistances for the transfer of VC into the water solution, relative resistance of surfactant in the transfer of VC into the bulk of solution, exchange velocity of VC between nitrogen and the liquid solution, and finally the thickness of the surfactant stagnant film in the liquid phase, according to the three phase resistance model. From the variation of the above parameters with the surfactant's concentration, important conclusions concerning the effects of surfactants on the transfer of a gas at the air-liquid interface, as well as to the bulk of the liquid were extracted. An interesting finding of this work was also that by successive addition of surfactant, the critical micelle concentration of surfactant was obtained, after which follows a steady-state for the transfer of the gas into the water body, which could be attributed to the transition from mono- to multi-layer state.
Maia, Joaquim; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Cruz, José Manuel; Seiler, Annika; Franz, Roland; Simoneau, Catherine; Castle, Laurence; Driffield, Malcolm; Mercea, Peter; Oldring, Peter; Tosa, Valer; Paseiro, Perfecto
2016-01-01
The mass transport process (migration) of a model substance, benzophenone (BZP), from LDPE into selected foodstuffs at three temperatures was studied. A mathematical model based on Fick's Second Law of Diffusion was used to simulate the migration process and a good correlation between experimental and predicted values was found. The acquired results contribute to a better understanding of this phenomenon and the parameters so-derived were incorporated into the migration module of the recently launched FACET tool (Flavourings, Additives and Food Contact Materials Exposure Tool). The migration tests were carried out at different time-temperature conditions, and BZP was extracted from LDPE and analysed by HPLC-DAD. With all data, the parameters for migration modelling (diffusion and partition coefficients) were calculated. Results showed that the diffusion coefficients (within both the polymer and the foodstuff) are greatly affected by the temperature and food's physical state, whereas the partition coefficient was affected significantly only by food characteristics, particularly fat content.
Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming
2013-10-04
A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Li; Wang, Qiang; Qiu, Xinghua; Dong, Yian; Jia, Shenglan; Hu, Jianxin
2014-07-15
Characterizing pseudo equilibrium-status soil/vegetation partition coefficient KSV, the quotient of respective concentrations in soil and vegetation of a certain substance at remote background areas, is essential in ecological risk assessment, however few previous attempts have been made for field determination and developing validated and reproducible structure-based estimates. In this study, KSV was calculated based on measurements of seventeen 2,3,7,8-substituted PCDD/F congeners in soil and moss (Dicranum angustum), and rouzi grass (Thylacospermum caespitosum) of two background sites, Ny-Ålesund of the Arctic and Zhangmu-Nyalam region of the Tibet Plateau, respectively. By both fugacity modeling and stepwise regression of field data, the air-water partition coefficient (KAW) and aqueous solubility (SW) were identified as the influential physicochemical properties. Furthermore, validated quantitative structure-property relationship (QSPR) model was developed to extrapolate the KSV prediction to all 210 PCDD/F congeners. Molecular polarizability, molecular size and molecular energy demonstrated leading effects on KSV. Copyright © 2014 Elsevier B.V. All rights reserved.
Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro
2012-01-01
A new series of organic-high ionic strength aqueous two-phase solvents systems was designed for separation of highly polar compounds by spiral high-speed counter-current chromatography. A total of 21 solvent systems composed of 1-butanol-ethanol-saturated ammonium sulfate-water at various volume ratios are arranged according to an increasing order of polarity. Selection of the two-phase solvent system for a single compound or a multiple sample mixture can be achieved by two steps of partition coefficient measurements using a graphic method. The capability of the method is demonstrated by optimization of partition coefficient for seven highly polar samples including tartrazine (K=0.77), tryptophan (K=1.00), methyl green (K= 0.93), tyrosine (0.81), metanephrine (K=0.89), tyramine (K=0.98), and normetanephrine (K=0.96). Three sulfonic acid components in D&C Green No. 8 were successfully separated by HSCCC using the graphic selection of the two-phase solvent system. PMID:23467197
Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.
Jafvert, Chad T; Kulkarni, Pradnya P
2008-08-15
To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.
Zia, Afia; van den Berg, Leon; Ahmad, Muhammad Nauman; Riaz, Muhammad; Zia, Dania; Ashmore, Mike
2018-05-31
A significant body of knowledge suggests that soil solution pH and dissolved organic carbon (DOC) strongly influence metal concentrations and speciation in porewater, however, these effects vary between different metals. This study investigated the factors influencing soil and soil solution concentrations of copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) under field conditions in upland soils from UK having a wide range of pH, DOC and organic matter contents. The study primarily focussed on predicting soil and soil solution metal concentrations from the data on total soil metal concentrations (HNO 3 extracts) and soil and soil solution properties (pH, DOC and organic matter content). We tested the multiple regression models proposed by Tipping et al. (2003) to predict heavy metal concentrations in soil solutions and the results indicated a better fit (higher R 2 values) in both studies for Pb compared to the Zn and Cu concentrations. Both studies observed consistent negative relationships of metals with pH and loss on ignition (LOI) suggesting an increase in soil solution metal concentrations with increasing acidity. The positive relationship between Pb concentrations in porewater and HNO 3 extracts was similar for both studies, however, similar relationships were not found for the Zn and Cu concentrations because of the negative coefficients for these metals in our study. The results of this study conclude that the predictive equations of Tipping et al. (2003) may not be applicable to the field sites where the range of DOC and metal concentrations is much lower than their study. Our study also suggests that the extent to which metals are partitioned into soil solution is lower in soils with a higher organic matter contents due to binding of these metals to soil organic matter. Copyright © 2018 Elsevier Ltd. All rights reserved.
Si and O partitioning between core metal and lower mantle minerals during core formation
NASA Astrophysics Data System (ADS)
Nakajima, Y.; Frost, D. J.; Rubie, D. C.
2010-12-01
In addition to Fe and Ni, the Earth’s core contains light alloying elements (e.g., H, C, O, Si, and/or S) in order to explain the 10% core density deficit (e.g., Birch, 1964, JGR). Experimental data on the partitioning behavior of siderophile elements such as Ni and Co between liquid Fe and mantle minerals indicate that equilibration between core-forming metal and a silicate magma ocean likely occurred at lower-mantle pressures (e.g., Li and Agee, 1996 Nature). If core-mantle differentiation has occurred under such conditions, significant quantities of O or Si could have entered the core. At these conditions the nature of the dominant light element in the core will depend strongly on the oxygen fugacity at which equilibration occurred. High pressure experiments were carried out at 25 GPa and 2400-2950 K using a Kawai-type multi-anvil apparatus in order to investigate the partitioning of Si and O between liquid Fe and (Mg,Fe)SiO3 perovskite (Pv), silicate melt, and (Mg,Fe)O ferropericlace (Fp). Starting materials consisting of metallic Fe (+-Si) and olivine (Fo70-95) were contained in single-crystal MgO capsules. Over the oxygen fugacity range IW-0.5 to -3, the Si molar partition coefficient D* (= [Si]metal /[Si]silicate) between metal and Pv increases linearly with decreasing oxygen fugacity at a fixed given temperature. The partition coefficient between metal and silicate melt is of a similar magnitude but is less dependent on the oxygen fugacity. The obtained oxygen distribution coefficient Kd (= [Fe]metal[O]metal /[FeO]Fp) is in agreement with that determined in the Fe-Fp binary system (Asahara et al., 2007 EPSL) below the silicate liquidus temperature. In contrast, a correlation between the O partitioning and Si concentration in Fe is observed above 2700 K where liquid metal coexists with silicate melt + Fp. With an increasing concentration of Si in the liquid metal, O partitioning into Fp is strongly enhanced. Five atomic% Si in the metal reduces the metal-silicate O partition coefficient by about 1 order magnitude. Near the base of a deep magma ocean where pressures exceed 20 GPa, liquid metal could have coexisted with silicate melt, Pv, and Fp. Our results show that Si would readily partitioned into core-forming metal from both perovskite and silicate liquid at a relevant oxygen fugacity (e.g., IW-2). Simultaneously, the Si solubility would hinder the dissolution of O in the liquid metal. This implies that the presence of Si in liquid metal must be included in models of O partitioning.
Colloidal mode of transport in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Similarly to the particulate phase the colloidal phase may play an important role in the organic contaminant transport downstream the river. The colloidal phase consisting of microparticles and micromolecules which are small enough to be mobile and large enough to attract pollutants can absorb nonpolar organic compounds similarly as do soil and sediment particles. To test the hypothesis three river water samples have been analyzed for PAH content in the dissolved, the colloidal, and the particulate phase. The first sample was collected at the Blue Ridge province of Potomac River watershed, at Point of Rocks, the second one in themore » Pidmont province, at Riverbend Park, and the third sample at Coastal Plane, at Dyke Marsh (Belle Heven marina). In the laboratory environment each water sample was prefiltered to separate the particulate phase form the dissolved and colloidal phase. One part of the prefiltered water sample was ultrafiltered to separate colloids while the second part of the water was Goulden extracted. The separated colloidal phase was liquid-liquid extracted (LLE) while filters containing the suspended solids were Soxhlet extracted. The extracts of the particulate phase, the colloidal phase, and the dissolved plus colloidal phase were analyzed for selected PAHs via GC/MS. It is planned that concentrations of selected PAHs in three phases will be used for calculations of the partition coefficients, the colloid/dissolved partition coefficient and the particle/dissolved partition coefficient. Both partition coefficients will be compared to define the significance of organic contaminant transport by aquatic colloids.« less
Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring.
Benning, Jennifer L; Liu, Zhe; Tiwari, Andrea; Little, John C; Marr, Linsey C
2013-03-19
Phthalates are widely used as plasticizers, and improved ability to predict emissions of phthalates is of interest because of concern about their health effects. An experimental chamber was used to measure emissions of di-2-ethylhexyl-phthalate (DEHP) from vinyl flooring, with ammonium sulfate particles introduced to examine their influence on the emission rate and to measure the partitioning of DEHP onto airborne particles. When particles were introduced to the chamber at concentrations of 100 to 245 μg/m(3), the total (gas + particle) DEHP concentrations increased by a factor of 3 to 8; under these conditions, emissions were significantly enhanced compared to the condition without particles. The measured DEHP partition coefficient to ammonium sulfate particles with a median diameter of 45 ± 5 nm was 0.032 ± 0.003 m(3)/μg (95% confidence interval). The DEHP-particle sorption equilibration time was demonstrated to be less than 1 min. Both the partition coefficient and equilibration time agree well with predictions from the literature. This study represents the first known measurements of the particle-gas partition coefficient for DEHP. Furthermore, the results demonstrate that the emission rate of DEHP is substantially enhanced in the presence of particles. The particles rapidly sorb DEHP from the gas phase, allowing more to be emitted from the source, and also appear to enhance the convective mass-transfer coefficient itself. Airborne particles can influence SVOC fate and transport in the indoor environment, and these mechanisms must be considered in evaluating exposure and human health.
Dermal uptake of phthalates from clothing: Comparison of model to human participant results.
Morrison, G C; Weschler, C J; Bekö, G
2017-05-01
In this research, we extend a model of transdermal uptake of phthalates to include a layer of clothing. When compared with experimental results, this model better estimates dermal uptake of diethylphthalate and di-n-butylphthalate (DnBP) than a previous model. The model predictions are consistent with the observation that previously exposed clothing can increase dermal uptake over that observed in bare-skin participants for the same exposure air concentrations. The model predicts that dermal uptake from clothing of DnBP is a substantial fraction of total uptake from all sources of exposure. For compounds that have high dermal permeability coefficients, dermal uptake is increased for (i) thinner clothing, (ii) a narrower gap between clothing and skin, and (iii) longer time intervals between laundering and wearing. Enhanced dermal uptake is most pronounced for compounds with clothing-air partition coefficients between 10 4 and 10 7 . In the absence of direct measurements of cotton cloth-air partition coefficients, dermal exposure may be predicted using equilibrium data for compounds in equilibrium with cellulose and water, in combination with computational methods of predicting partition coefficients. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
High Pressure/Temperature Metal Silicate Partitioning of Tungsten
NASA Technical Reports Server (NTRS)
Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.
2010-01-01
The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.
The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less
Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.; ...
2018-05-14
The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less
Kitt, Jay P; Bryce, David A; Minteer, Shelley D; Harris, Joel M
2018-06-05
The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.
NASA Astrophysics Data System (ADS)
Salthammer, Tunga; Schripp, Tobias
2015-04-01
In the indoor environment, distribution and dynamics of an organic compound between gas phase, particle phase and settled dust must be known for estimating human exposure. This, however, requires a detailed understanding of the environmentally important compound parameters, their interrelation and of the algorithms for calculating partitioning coefficients. The parameters of major concern are: (I) saturation vapor pressure (PS) (of the subcooled liquid); (II) Henry's law constant (H); (III) octanol/water partition coefficient (KOW); (IV) octanol/air partition coefficient (KOA); (V) air/water partition coefficient (KAW) and (VI) settled dust properties like density and organic content. For most of the relevant compounds reliable experimental data are not available and calculated gas/particle distributions can widely differ due to the uncertainty in predicted Ps and KOA values. This is not a big problem if the target compound is of low (<10-6 Pa) or high (>10-2 Pa) volatility, but in the intermediate region even small changes in Ps or KOA will have a strong impact on the result. Moreover, the related physical processes might bear large uncertainties. The KOA value can only be used for particle absorption from the gas phase if the organic portion of the particle or dust is high. The Junge- and Pankow-equation for calculating the gas/particle distribution coefficient KP do not consider the physical and chemical properties of the particle surface area. It is demonstrated by error propagation theory and Monte-Carlo simulations that parameter uncertainties from estimation methods for molecular properties and variations of indoor conditions might strongly influence the calculated distribution behavior of compounds in the indoor environment.
Thermosolutal convection during cellular arrayed growth of Pb-Sn alloys
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Shah, Rajesh; Chopra, M. A.
1993-01-01
Thermosolutal convection caused by the solute build up ahead of the growing arrays of cells and dendrites results in macrosegregation along the length of the Pb-Sn alloy (10 to 58 wt pct Sn) specimens when they are directionally solidified in a positive thermal gradient (melt on top, solid below, and gravity pointing down). At a constant thermal gradient, the extent of macrosegregation increases with decreasing growth speed as the microstructure changes from dendritic, to cellular and to planar. An empirical parameter, effective partition coefficient, obtained from the dependence of the longitudinal macrosegregation on fraction distance solidified can be used to represent the extent of macrosegregation.
The Solidification Velocity of Undercooled Nickel and Titanium Alloys with Dilute Solute
NASA Technical Reports Server (NTRS)
Algoso, Paul R.; Altgilbers, A. S.; Hofmeister, William H.; Bayuzick, Robert J.
2003-01-01
The study of solidification velocity is important for two reasons. First, understanding the manner in which the degree of undercooling of the liquid and solidification velocity affect the microstructure of the solid is fundamental. Second, there is disagreement between theoretical predictions of the relationship between undercooling and solidification velocity and experimental results. Thus, the objective of this research is to accurately and systematically quantify the solidification velocity as a function of undercooling for dilute nickel-and titanium-based alloys. The alloys chosen for study cover a wide range of equilibrium partition coefficients, and the results are compared to current theory.
González, F R; Pérez-Parajón, J; García-Domínguez, J A
2002-04-12
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.
Transport of organic solutes through amorphous teflon AF films.
Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G
2005-11-02
Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.
NASA Technical Reports Server (NTRS)
King, C.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.
2010-01-01
Currently there are several hypotheses for the thermal state of the early Earth. Some hypothesize a shallow magma ocean, or deep magma ocean, or heterogeneous accretion which requires no magma ocean at all. Previous models are unable to account for Ge depletion in Earth's mantle relative to CI chondrites. In this study, the element Ge is used to observe the way siderophile elements partition into the metallic core. The purpose of this research is to provide new data for Ge and to further test these models for Earth's early stages. The partition coefficients (D(sub Ge) = c(sub metal)/c(sub silicate), where D = partition coefficient of Ge and c = concentration of Ge in the metal and silicate, respectively) of siderophile elements were studied by performing series of high pressure, high temperature experiments. They are also dependent on oxygen fugacity, and metal and silicate composition. Ge is a moderately siderophile element found in both the mantle and core, and has yet to be studied systematically at high temperatures. Moreover, previous work has been limited by the low solubility of Ge in silicate melts (less than 100 ppm and close to detection limits for electron microprobe analysis). Reported here are results from 14 experiments studying the partitioning of Ge between silicate and metallic liquids. The Ge concentrations were then analyzed using Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) which is sensitive enough to detect ppm levels of Ge in the silicate melt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryce, David A.; Shao, Hongbo; Cantrell, Kirk J.
2016-06-07
CO2 injected into depleted oil or gas reservoirs for long-term storage has the potential to mobilize organic compounds and distribute them between sediments and reservoir brines. Understanding this process is important when considering health and environmental risks, but little quantitative data currently exists on the partitioning of organics between supercritical CO2 and water. In this work, a high-pressure, in situ measurement capability was developed to assess the distribution of organics between CO2 and water at conditions relevant to deep underground storage of CO2. The apparatus consists of a titanium reactor with quartz windows, near-infrared and UV spectroscopic detectors, and switchingmore » valves that facilitate quantitative injection of organic reagents into the pressurized reactor. To demonstrate the utility of the system, partitioning coefficients were determined for benzene in water/supercritical CO2 over the range 35-65 °C and approximately 25-150 bar. Density changes in the CO2 phase with increasing pressure were shown to have dramatic impacts on benzene's partitioning behavior. Our partitioning coefficients were approximately 5-15 times lower than values previously determined by ex situ techniques that are prone to sampling losses. The in situ methodology reported here could be applied to quantify the distribution behavior of a wide range of organic compounds that may be present in geologic CO2 storage scenarios.« less
Lucangioli, S E; Carducci, C N; Tripodi, V P; Kenndler, E
2001-12-25
The capacity factors of 16 anionic cholates (from six bile salts, including their glyco- and tauro-conjugates) were determined in a micellar electrokinetic chromatography (MEKC) system consisting of buffer, pH 7.5 (phosphate-boric acid; 20 mmol/l) with 50 mmol/l sodium dodecyl sulfate (SDS) as micelle former and 10% acetonitrile as organic modifier. The capacity factors of the fully dissociated, negatively charged analytes (ranging between 0.2 and 60) were calculated from their mobilities, with a reference background electrolyte (BGE) without SDS representing "free" solution. For comparison, the capacity factors were derived for a second reference BGE where the SDS concentration (5 mmol/l) is close to the critical micellar concentration (CMC). The capacity factors are compared with the logarithm of the octanol-water partition coefficient, log Pow, as measure for lipophilicity. Clear disagreement between these two parameters is found especially for epimeric cholates with the hydroxy group in position 7. In contrast, fair relation between the capacity factor of the analytes and their CMC is observed both depending strongly on the orientation of the OH groups, and tauro-conjugation as well. In this respect the retention behaviour of the bile salts in MEKC seems to reflect their role as detergents in living systems, and might serve as model parameter beyond lipophilicity.
Zone fluidics for measurement of octanol-water partition coefficient of drugs.
Wattanasin, Panwadee; Saetear, Phoonthawee; Wilairat, Prapin; Nacapricha, Duangjai; Teerasong, Saowapak
2015-02-20
A novel zone fluidics (ZF) system for the determination of the octanol-water partition coefficient (Pow) of drugs was developed. The ZF system consisted of a syringe pump with a selection valve, a holding column, a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between air segments, were sequentially loaded into the vertically aligned holding column. Distribution of the drug between the aqueous and octanol phases occurred by the oscillation movement of the syringe pump piston. Phase separation occurred due to the difference in densities. The liquid zones were then pushed into the detection flow cell. In this method, absorbance measurements in only one of the phase (octanol or aqueous) were employed, which together with the volumes of the solvents and pure drug sample, allowed the calculation of the Pow. The developed system was applied to the determination of the Pow of some common drugs. The log (Pow) values agreed well with a batch method (R(2)=0.999) and literature (R(2)=0.997). Standard deviations for intra- and inter-day analyses were both less than 0.1log unit. This ZF system provides a robust and automated method for screening of Pow values in the drug discovery process. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bravo, Teresa; Maury, Cédric
2018-07-01
Enhancing the attenuation or the absorption of low-frequency noise using lightweight bulk-reacting liners is still a demanding task in surface and air transport systems. The aim of this study is to understand the physical mechanisms involved in the attenuation and absorption properties of partitions made up of a thin micro-perforated panel (MPP) rigidly backed by a cavity filled with anisotropic fibrous material. Such a layout is denoted as a MPPF partition. Analytical models are formulated in the flow and no-flow cases to predict the axial damping of the least attenuated wave in a MPPF partition as well as the plane wave absorption coefficient. They account for a rigid or an elastic MPP facing a bulk-reacting fully-anisotropic material. A cost-efficient solution of the propagation constant for the least attenuated mode is obtained using a simulated annealing search method as well as a low-frequency approximation to the axial attenuation. The normal incidence absorption model is assessed in the no-flow case against pressure-velocity measurements of the surface impedance over a MPPF partition filled with fibreglass material. A parametric study is conducted to evaluate the MPP and the cavity constitutive parameters that mostly enhance the axial attenuation and sound absorption properties, with special interest on the MPP airframe relative velocity. This sensitivity study provides guidelines that could be used to further reduce the search space in parametric or impedance optimization studies.
Wong, Fiona; Wania, Frank
2011-06-01
Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.
Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon.
Carmosini, Nadia; Lee, Linda S
2008-09-01
Interest in the environmental fate of fluorotelomer alcohols (FTOHs) has spurred efforts to understand their equilibrium partitioning behavior. Experimentally determined partition coefficients for FTOHs between soil/water and air/water have been reported, but direct measurements of partition coefficients for dissolved organic carbon (DOC)/water (K(doc)) and octanol/ water(K(ow)) have been lacking. Here we measured the partitioning of 8:2 and 6:2 FTOH between one or more types of DOC and water using enhanced solubility or dialysis bag techniques, and also quantified K(ow) values for 4:2 to 8:2 FTOH using a batch equilibration method. The range in measured log K(doc) values for 8:2 FTOH using the enhanced solubility technique with DOC derived from two soils, two biosolids, and three reference humic acids is 2.00-3.97 with the lowest values obtained for the biosolids and an average across all other DOC sources (biosolid DOC excluded) of 3.54 +/- 0.29. For 6:2 FTOH and Aldrich humic acid, a log K(doc) value of 1.96 +/- 0.45 was measured using the dialysis technique. These average values are approximately 1 to 2 log units lower than previously indirectly estimated K(doc) values. Overall, the affinity for DOC tends to be slightly lower than that for particulate soil organic carbon. Measured log K(ow) values for 4:2 (3.30 +/- 0.04), 6:2 (4.54 +/- 0.01), and 8:2 FTOH (5.58 +/- 0.06) were in good agreement with previously reported estimates. Using relationships between experimentally measured partition coefficients and C-atom chain length, we estimated K(doc) and K(ow) values for shorter and longer chain FTOHs, respectively, that we were unable to measure experimentally.
NASA Technical Reports Server (NTRS)
McCubbin, Francis M.; Barnes, Jessica J.; Vander Kaaden, Kathleen E.; Boyce, Jeremy W.; Ustunisik, Gokce; Whitson, Eric S.
2017-01-01
The mineral apatite is present in a wide range of planetary materials. The presence of volatiles (F, Cl, and OH) within its crystal structure (X-site) have motivated numerous studies to investigate the partitioning behavior of F, Cl, and OH between apatite and silicate melt with the end goal of using apatite to constrain the volatile contents of planetary magmas and mantle sources. A number of recent experimental studies have investigated the apatite-melt partitioning behavior of F, Cl, and OH in magmatic systems. Apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, the partitioning behavior is likely to change as a function of temperature, pressure, oxygen fugacity, apatite composition, and melt composition. In the present study, we have conducted experiments to assess the partitioning behavior of F, Cl, and OH between apatite and silicate melt over a pressure range of 0-6 gigapascals, a temperature range of 950-1500 degrees Centigrade, and a wide range of apatite ternary compositions. All of the experiments were conducted between iron-wustite oxidation potentials IW minus 1 and IW plus 2 in a basaltic melt composition. The experimental run products were analyzed by a combination of electron probe microanalysis and secondary ion mass spectrometry (NanoSIMS). Temperature, apatite crystal chemistry, and pressure all play important roles in the partitioning behavior of F, Cl, and OH between apatite and silicate melt. In portions of apatite ternary space that undergo ideal mixing of F, Cl, and OH, exchange coefficients remain constant at constant temperature and pressure. However, exchange coefficients vary at constant temperature (T) and pressure (P) in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. The variation in exchange coefficients exhibited by apatite that does not undergo ideal mixing far exceeds the variations induced by changes in temperature (T) or pressure (P) . In regions where apatite undergoes ideal mixing of F, Cl, and OH, temperature has a stronger effect than pressure on the partitioning behavior, but both are important. Furthermore, fluorine becomes less compatible in apatite with increasing pressure and temperature. We are still in the process of analyzing our experimental run products, but we plan to quantify the effects of P and T on apatite-melt partitioning of F, Cl, and OH.
Heisig, M; Lieckfeldt, R; Wittum, G; Mazurkevich, G; Lee, G
1996-03-01
The diffusion equation should be solved for the non-steady-state problem of drug diffusion within a two-dimensional, biphasic stratum corneum membrane having homogeneous lipid and corneocyte phases. A numerical method was developed for a brick-and-mortar SC-geometry, enabling an explicit solution for time-dependent drug concentration within both phases. The lag time and permeability were calculated. It is shown how the barrier property of this model membrane depends on relative phase permeability, corneocyte alignment, and corneocyte-lipid partition coefficient. Additionally, the time-dependent drug concentration profiles within the membrane can be observed during the lag and steady-state phases. The model SC-membrane predicts, from purely morphological principles, lag times and permeabilities that are in good agreement with experimental values. The long lag times and very small permeabilities reported for human SC can only be predicted for a highly-staggered corneocyte geometry and corneocytes that are 1000 times less permeable than the lipid phase. Although the former conclusion is reasonable, the latter is questionable. The elongated, flattened corneocyte shape renders lag time and permeability insensitive to large changes in their alignment within the SC. Corneocyte/lipid partitioning is found to be fundamentally different to SC/donor partitioning, since increasing drug lipophilicity always reduces both lag time and permeability.
Partitioning of Aromatic Constituents into Water from Jet Fuels.
Tien, Chien-Jung; Shu, Youn-Yuen; Ciou, Shih-Rong; Chen, Colin S
2015-08-01
A comprehensive study of the most commonly used jet fuels (i.e., Jet A-1 and JP-8) was performed to properly assess potential contamination of the subsurface environment from a leaking underground storage tank occurred in an airport. The objectives of this study were to evaluate the concentration ranges of the major components in the water-soluble fraction of jet fuels and to estimate the jet fuel-water partition coefficients (K fw) for target compounds using partitioning experiments and a polyparameter linear free-energy relationship (PP-LFER) approach. The average molecular weight of Jet A-1 and JP-8 was estimated to be 161 and 147 g/mole, respectively. The density of Jet A-1 and JP-8 was measured to be 786 and 780 g/L, respectively. The distribution of nonpolar target compounds between the fuel and water phases was described using a two-phase liquid-liquid equilibrium model. Models were derived using Raoult's law convention for the activity coefficients and the liquid solubility. The observed inverse, log-log linear dependence of the K fw values on the aqueous solubility were well predicted by assuming jet fuel to be an ideal solvent mixture. The experimental partition coefficients were generally well reproduced by PP-LFER.
Performance of chromatographic systems to model soil-water sorption.
Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí
2012-08-24
A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bailey, Edward; Drake, Michael J.
2004-01-01
The distinctive pattern of element concentrations in the upper mantle provides essential evidence in our attempts to understand the accretion and differentiation of the Earth (e.g., Drake and Righter, 2002; Jones and Drake, 1986; Righter et al., 1997; Wanke 1981). Core formation is best investigated through use of metal/silicate partition coefficients for siderophile elements. The variables influencing partition coefficients are temperature, pressure, the major element compositions of the silicate and metal phases, and oxygen fugacity. Examples of studies investigating the effects of these variables on partitioning behavior are: composition of the metal phase by Capobianco et al. (1999) and Righter et al. (1997); silicate melt composition by Watson (1976), Walter and Thibault (1995), Hillgren et al. (1996), Jana and Walker (1997), and Jaeger and Drake (2000); and oxygen fugacity by Capobianco et al. (1999), and Walter and Thibault (1995). Here we address the relative influences of silicate melt composition, pressure and temperature.
Toward prediction of alkane/water partition coefficients.
Toulmin, Anita; Wood, J Matthew; Kenny, Peter W
2008-07-10
Partition coefficients were measured for 47 compounds in the hexadecane/water ( P hxd) and 1-octanol/water ( P oct) systems. Some types of hydrogen bond acceptor presented by these compounds to the partitioning systems are not well represented in the literature of alkane/water partitioning. The difference, DeltalogP, between logP oct and logP hxd is a measure of the hydrogen bonding potential of a molecule and is identified as a target for predictive modeling. Minimized molecular electrostatic potential ( V min) was shown to be an effective predictor of the contribution of hydrogen bond acceptors to DeltalogP. Carbonyl oxygen atoms were found to be stronger hydrogen bond acceptors for their electrostatic potential than heteroaromatic nitrogen or oxygen bound to hypervalent sulfur or nitrogen. Values of V min calculated for hydrogen-bonded complexes were used to explore polarization effects. Predicted logP hxd and DeltalogP were shown to be more effective than logP oct for modeling brain penetration for a data set of 18 compounds.
NASA Astrophysics Data System (ADS)
Menichetti, Roberto; Kanekal, Kiran H.; Kremer, Kurt; Bereau, Tristan
2017-09-01
The partitioning of small molecules in cell membranes—a key parameter for pharmaceutical applications—typically relies on experimentally available bulk partitioning coefficients. Computer simulations provide a structural resolution of the insertion thermodynamics via the potential of mean force but require significant sampling at the atomistic level. Here, we introduce high-throughput coarse-grained molecular dynamics simulations to screen thermodynamic properties. This application of physics-based models in a large-scale study of small molecules establishes linear relationships between partitioning coefficients and key features of the potential of mean force. This allows us to predict the structure of the insertion from bulk experimental measurements for more than 400 000 compounds. The potential of mean force hereby becomes an easily accessible quantity—already recognized for its high predictability of certain properties, e.g., passive permeation. Further, we demonstrate how coarse graining helps reduce the size of chemical space, enabling a hierarchical approach to screening small molecules.
Partition coefficients of some purine derivatives and its application to pharmacokinetics.
Chrzanowska, M; Sobiak, J; Kuehn, M; Dorawa, E; Hermann, T
2009-12-01
Metazathioprine (MAZA), a methylated derivative of azathioprine (AZA), demonstrated the greatest values of apparent and specific partition coefficients in n-octanol/phosphate buffer at pH 5.7 and pH 7.4 among purine derivatives such as 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and AZA. Introduction of a methyl group into the imidazole ring of AZA increases lipophilic properties of MAZA compared to AZA. Mass balance of purine derivatives in n-octanol and in phosphate buffer indicated their chemical stability in those media.
Purification of biomaterials by phase partitioning
NASA Technical Reports Server (NTRS)
Harris, J. M.
1984-01-01
A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.
Effect of water saturation in soil organic matter on the partition of organic compounds
Rutherford, D.W.; Chlou, G.T.
1992-01-01
The sorption of benzene, trichloroethylene, and carbon tetrachloride at room temperature from water solution and from vapor on two high-organic-content soils (peat and muck) was determined in order to evaluate the effect of water saturation on the solute partition in soil organic matter (SOM). The uptake of water vapor was similarly determined to define the amounts of water in the saturated soil samples. In such high-organic-content soils the organic vapor sorption and the respective solute sorption from water exhibit linear isotherms over a wide range of relative concentrations. This observation, along with the low BET surface areas of the samples, suggests that partition in the SOM of the samples is the dominant process in the uptake of these liquids. A comparison of the sorption from water solution and from vapor phase shows that water saturation reduces the sorption (partition) efficiency of SOM by ?? 42%; the saturated water content is ??38% by weight of dry SOM. This reduction is relatively small when compared with the almost complete suppression by water of organic compound adsorption on soil minerals. While the effect of water saturation on solute uptake by SOM is much expected in terms of solute partition in SOM, the influence of water on the solubility behavior of polar SOM can be explained only qualitatively by regular solution theory. The results suggest that the major effect of water in a drying-wetting cycle on the organic compound uptake by normal low-organic-content soils (and the associated compound's activity) is the suppression of adsorption by minerals rather than the mitigation of the partition effect in SOM.
Laser induced heat source distribution in bio-tissues
NASA Astrophysics Data System (ADS)
Li, Xiaoxia; Fan, Shifu; Zhao, Youquan
2006-09-01
During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.
2015-01-01
The effects of different anions on the extent of electrothermal supercharging of proteins from aqueous ammonium and sodium salt solutions were investigated. Sulfate and hydrogen phosphate are the most effective anions at producing high charge state protein ions from buffered aqueous solution, whereas iodide and perchlorate are ineffective with electrothermal supercharging. The propensity for these anions to produce high charge state protein ions follows the following trend: sulfate > hydrogen phosphate > thiocyanate > bicarbonate > chloride > formate ≈ bromide > acetate > iodide > perchlorate. This trend correlates with the reverse Hofmeister series over a wide range of salt concentrations (1 mM to 2 M) and with several physical properties, including solvent surface tension, anion viscosity B-coefficient, and anion surface/bulk partitioning coefficient, all of which are related to the Hofmeister series. The effectiveness of electrothermal supercharging does not depend on bubble formation, either from thermal degradation of the buffer or from coalescence of dissolved gas. These results provide evidence that the effect of different ions in the formation of high charge state ions by electrothermal supercharging is largely a result of Hofmeister effects on protein stability leading to protein unfolding in the heated ESI droplet. PMID:24410546
Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viamajala, S.; Peyton, B. M.; Richards, L. A.
Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energymore » of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.« less
75 FR 67714 - Notice of Intent To Suspend Certain Pesticide Registrations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
.... August 30, 2008.. No data received. coefficient (n- octanol/water) shake flask method. 830.7570 Partition December 14, 2007. December 24, 2007. August 30, 2008.. No data received. coefficient (n- octanol/water...
Jenke, Dennis; Couch, Tom; Gillum, Amy; Sadain, Salma
2009-01-01
Material/water equilibrium binding constants (Eb) were determined for 14 organic solutes and 17 plastic raw materials that could be used in pharmaceutical product container systems. Correlations between the measured binding constants and the organic solute's octanol/water and hexane/water partition coefficients were obtained. In general, while the materials examined exhibited a wide range of binding characteristics, the tested materials by and large fell within two broad classes: (1) those that were octanol-like in their binding characteristics, and (2) those that were hexane-like. Materials of the same class (e.g., polypropylenes) generally had binding models that were very similar. Rank ordering of the materials in terms of their magnitude of drug binding (least binding to most binding) was as follows: polypropylene < polyethylene < polyamide < styrene-ethylene-butylene-styrene < copolyester ether elastomer approximately equal to amine-terminated poly fatty acid amide polymer. The utilization of the developed models to estimate drug loss via sorption by the container is discussed.
Yang, Bin; Li, Zhongjian; Lei, Lecheng; Sun, Feifei; Zhu, Jingke
2016-02-01
The solubilities of 19 different kinds of N-heteroaromatic compounds in aqueous solutions with different concentrations of NaCl were determined at 298.15 K with a UV-vis spectrophotometry and titration method, respectively. Setschenow constants, Ks, were employed to describe the solubility behavior, and it is found that the higher ring numbers of N-heteroaromatics gave rise to the lower values of Ks. Moreover, Ks showed a good linear relationship with the partial charge on the nitrogen atom (QN) for either QN > 0 or QN < 0 N-heteroaromatics. It further revealed that QN was well-matched in the prediction of salting-out effect for N-heteroaromatics compared to the conventional descriptors such as molar volume (VH) and the octanol-water partition coefficient (Kow). The heterocyclic N in N-heteroaromatics may interact with Na(+) ions in NaCl solution for QN < 0 and with Cl(-) for QN > 0.
NASA Astrophysics Data System (ADS)
Panda, Manorama; Fatma, Nazish; Kabir-ud-Din
2016-07-01
Three homologues of a novel biodegradable diester-linked cationic gemini surfactant series, CmH2m+1 (CH3)2N+(CH2COOCH2)2N+(CH3)2CmH2m+1.2Cl- (m-E2-m; m = 12, 14, 16), were used for investigation of the solubilization of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, anthracene and pyrene in single as well as binary surfactant solutions. Physicochemical parameters of the pure/mixed systems were derived by conductivity and surface tension measurements. Dissolution capacity of the equimolar binary surfactant solutions towards the PAHs was studied from the molar solubilization ratio (MSR), micelle-water partition coefficient (Km) and free energy of solubilization (ΔGs0) of the solubilizates. Influence of hydrophobic chain length of the dimeric surfactants on solubilization was characterized. Aqueous solubility of the PAHs was enhanced linearly with concentration of the surfactant in all the pure and mixed gemini-gemini surfactant systems.
The effect of solute concentration on hindered gradient diffusion in polymeric gels
NASA Astrophysics Data System (ADS)
Buck, Kristan K. S.; Dungan, Stephanie R.; Phillips, Ronald J.
1999-10-01
The effect of solute concentration on hindered diffusion of sphere-like colloidal solutes in stiff polymer hydrogels is examined theoretically and experimentally. In the theoretical development, it is shown that the presence of the gel fibres enhances the effect of concentration on the thermodynamic driving force for gradient diffusion, while simultaneously reducing the effect of concentration on the hydrodynamic drag. The result is that gradient diffusion depends more strongly on solute concentration in gels than it does in pure solution, by an amount that depends on the partition coefficient and hydraulic permeability of the gel solute system. Quantitative calculations are made to determine the concentration-dependent diffusivity correct to first order in solute concentration. In order to compare the theoretical predictions with experimental data, rates of diffusion have been measured for nonionic micelles and globular proteins in solution and agarose hydrogels at two gel concentrations. The measurements were performed by using holographic interferometry, through which one monitors changes in refractive index as gradient diffusion takes place within a transparent gel. If the solutes are modelled as spheres with short-range repulsive interactions, then the experimentally measured concentration dependence of the diffusivities of both the protein and micelles is in good agreement with the theoretical predictions.
Ambient gas-particle partitioning of atmospheric carbonyl at an urban site in Beijing
NASA Astrophysics Data System (ADS)
Shen, H.; Chen, Z.
2017-12-01
Carbonyls are important oxidation intermediates of hydrocarbons and major carcinogenic and genotoxic compounds in urban areas. While their health and climate impacts are primarily associated with their gas-particle conversion such as oligomers and brown carbon formation in particle phase, however, observations of their actual ambient gas-particle partitioning are sparse. In this study, the Sep-Pak DNPH-Silica Gel Cartridges and a four-channel particle sampler were used to collect carbonyls in gaseous and particle (PM2.5) phases simultaneously. Six carbonyls (formaldehyde, acetaldehyde, acetone, propionaldehyde and two dicarbonyls, glyoxal and methylglyoxal) of the ten observed in gas phase (plus butyraldehyde, methacrolein, methyl vinyl ketone, benzaldehyde) were detected in ambient particles. The measured gas/particle (G/P) partitioning coefficients (Kp,field) of the six carbonyls were calculated and compared to their predicted G/P partitioning coefficients (Kp,theor) based on the absorptive partitioning theory. The values of Kp,field are 105-106 times higher than Kp,theor and the Kp,field of the measured total carbonyls were determined to be as high as (0.3-11)×10-4 m3 µg-1, indicating that small carbonyls were much easier to enter the particle phase than previously expected and their distribution between gas and particles varied greatly with environmental conditions. The measured Kp,CHOCHO > Kp,CH3COCHO > Kp,CH3CH3CHO > Kp,CH3CHO ≈ Kp,HCHO > Kp,CH3COCH3, suggesting that the aldehyde group, to some extent, is more likely to promote the carbonyl compounds into particle phase than ketone group and methyl group. The variation trends of the measured G/P partitioning coefficients were very consistent and significantly correlated, and did not reflect the different salting effect for glyoxal and methylglyoxal ("salting-in" for glyoxal and "salting-out" for methylglyoxal), which indicated that the factors affecting the gas-particle partitioning of carbonyls in the ambient air may be similar in ambient urban atmosphere. These results contribute to a better understanding of the partitioning of small carbonyls in gaseous and particle phases as well as their health and climate impacts.
Ahmadi, Fardin; Sparham, Chris; Pawliszyn, Janusz
2017-11-01
In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log K DOC ) ranged from 20 to 98% and 3.71-6.72, respectively. Furthermore, sediment-water partition coefficients (K d ), organic-carbon normalized partition coefficients (Log K OC ), and DOC distribution coefficients (Log K DOC ) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31-5.24 and 4.52-5.75 Lkg -1 , respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding information for compounds with high log K OW values. This information is useful for study of fate, transport, and ecotoxicological effects of UV filters and biocides in aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hussain, Tarique; Dragulescu, Andreea; Benson, Lee; Yoo, Shi-Joon; Meng, Howard; Windram, Jonathan; Wong, Derek; Greiser, Andreas; Friedberg, Mark; Mertens, Luc; Seed, Michael; Redington, Andrew; Grosse-Wortmann, Lars
2015-06-01
The purpose of this study was to evaluate the presence of diffuse myocardial fibrosis in children and adolescents with hypertrophic cardiomyopathy (HCM) and to assess associations with echocardiographic and clinical parameters of disease. While a common end point in adults with HCM, it is unclear whether diffuse myocardial fibrosis occurs early in the disease. Cardiac magnetic resonance (CMR) estimation of myocardial post-contrast longitudinal relaxation time (T1) is an increasingly used method to estimate diffuse fibrosis. T1 measurements were taken using standard multi-breath-hold spoiled gradient echo phase-sensitive inversion-recovery CMR before and 15 min after the injection of gadolinium. The tissue-blood partition coefficient was calculated as a function of the ratio of T1 change of myocardium compared with blood. An echocardiogram and blood brain natriuretic peptide (BNP) levels were obtained on the day of the CMR. Twelve controls (mean age 12.8 years; 7 male) and 28 patients with HCM (mean age 12.8 years; 21 male) participated. The partition coefficient for both septal (0.27 ± 0.17 vs. 0.13 ± 0.09; p = 0.03) and lateral walls (0.22 ± 0.09 vs. 0.07 ± 0.10; p < 0.001) was increased in patients compared with controls. Eight patients had overt areas of late gadolinium enhancement (LGE). These patients did not show increased partition coefficient compared with those without LGE (0.27 ± 0.15 vs. 0.27 ± 0.19 and 0.22 ± 0.09 vs. 0.22 ± 0.09; p = 0.95 and 0.98, respectively). However, patients who were symptomatic (dyspnea, arrhythmia and/or chest pain) had higher lateral wall partition coefficient than asymptomatic HCM patients (0.27 ± 0.08 vs. 0.17 ± 0.08; p = 0.006). Similarly, patients with raised BNP (>100 pg/ml) had raised lateral wall coefficients (0.27 ± 0.07 vs. 0.20 ± 0.07; p = 0.03), as did those with traditional risk factors for sudden death (0.27 ± 0.06 vs. 0.18 ± 0.08; p = 0.007). Diffuse fibrosis, measured by the partition coefficient technique, is demonstrable in children and adolescents with HCM. Markers of fibrosis show an association with symptoms and raised serum BNP. Further study of the prognostic implication of this technique in young patients with HCM is warranted.
An Efficient Algorithm for Partitioning and Authenticating Problem-Solutions of eLeaming Contents
ERIC Educational Resources Information Center
Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn
2013-01-01
Content authenticity and correctness is one of the important challenges in eLearning as there can be many solutions to one specific problem in cyber space. Therefore, the authors feel it is necessary to map problems to solutions using graph partition and weighted bipartite matching. This article proposes an efficient algorithm to partition…
NASA Astrophysics Data System (ADS)
Lüdemann, L.; Sreenivasa, G.; Michel, R.; Rosner, C.; Plotkin, M.; Felix, R.; Wust, P.; Amthauer, H.
2006-06-01
Assessment of perfusion with 15O-labelled water (H215O) requires measurement of the arterial input function (AIF). The arterial time activity curve (TAC) measured using the peripheral sampling scheme requires corrections for delay and dispersion. In this study, parametrizations with and without arterial spillover correction for fitting of the tissue curve are evaluated. Additionally, a completely noninvasive method for generation of the AIF from a dynamic positron emission tomography (PET) acquisition is applied to assess perfusion of pelvic tumours. This method uses a volume of interest (VOI) to extract the TAC from the femoral artery. The VOI TAC is corrected for spillover using a separate tissue TAC and for recovery by determining the recovery coefficient on a coregistered CT data set. The techniques were applied in five patients with pelvic tumours who underwent a total of 11 examinations. Delay and dispersion correction of the blood TAC without arterial spillover correction yielded in seven examinations solutions inconsistent with physiology. Correction of arterial spillover increased the fitting accuracy and yielded consistent results in all patients. Generation of an AIF from PET image data was investigated as an alternative to arterial blood sampling and was shown to have an intrinsic potential to determine the AIF noninvasively and reproducibly. The AIF extracted from a VOI in a dynamic PET scan was similar in shape to the blood AIF but yielded significantly higher tissue perfusion values (mean of 104.0 ± 52.0%) and lower partition coefficients (-31.6 ± 24.2%). The perfusion values and partition coefficients determined with the VOI technique have to be corrected in order to compare the results with those of studies using a blood AIF.
Paula, S; Volkov, A G; Van Hoek, A N; Haines, T H; Deamer, D W
1996-01-01
Two mechanisms have been proposed to account for solute permeation of lipid bilayers. Partitioning into the hydrophobic phase of the bilayer, followed by diffusion, is accepted by many for the permeation of water and other small neutral solutes, but transient pores have also been proposed to account for both water and ionic solute permeation. These two mechanisms make distinctively different predictions about the permeability coefficient as a function of bilayer thickness. Whereas the solubility-diffusion mechanism predicts only a modest variation related to bilayer thickness, the pore model predicts an exponential relationship. To test these models, we measured the permeability of phospholipid bilayers to protons, potassium ions, water, urea, and glycerol. Bilayers were prepared as liposomes, and thickness was varied systematically by using unsaturated lipids with chain lengths ranging from 14 to 24 carbon atoms. The permeability coefficient of water and neutral polar solutes displayed a modest dependence on bilayer thickness, with an approximately linear fivefold decrease as the carbon number varied from 14 to 24 atoms. In contrast, the permeability to protons and potassium ions decreased sharply by two orders of magnitude between 14 and 18 carbon atoms, and leveled off, when the chain length was further extended to 24 carbon atoms. The results for water and the neutral permeating solutes are best explained by the solubility-diffusion mechanism. The results for protons and potassium ions in shorter-chain lipids are consistent with the transient pore model, but better fit the theoretical line predicted by the solubility-diffusion model at longer chain lengths. PMID:8770210
NASA Technical Reports Server (NTRS)
Paula, S.; Volkov, A. G.; Van Hoek, A. N.; Haines, T. H.; Deamer, D. W.
1996-01-01
Two mechanisms have been proposed to account for solute permeation of lipid bilayers. Partitioning into the hydrophobic phase of the bilayer, followed by diffusion, is accepted by many for the permeation of water and other small neutral solutes, but transient pores have also been proposed to account for both water and ionic solute permeation. These two mechanisms make distinctively different predictions about the permeability coefficient as a function of bilayer thickness. Whereas the solubility-diffusion mechanism predicts only a modest variation related to bilayer thickness, the pore model predicts an exponential relationship. To test these models, we measured the permeability of phospholipid bilayers to protons, potassium ions, water, urea, and glycerol. Bilayers were prepared as liposomes, and thickness was varied systematically by using unsaturated lipids with chain lengths ranging from 14 to 24 carbon atoms. The permeability coefficient of water and neutral polar solutes displayed a modest dependence on bilayer thickness, with an approximately linear fivefold decrease as the carbon number varied from 14 to 24 atoms. In contrast, the permeability to protons and potassium ions decreased sharply by two orders of magnitude between 14 and 18 carbon atoms, and leveled off, when the chain length was further extended to 24 carbon atoms. The results for water and the neutral permeating solutes are best explained by the solubility-diffusion mechanism. The results for protons and potassium ions in shorter-chain lipids are consistent with the transient pore model, but better fit the theoretical line predicted by the solubility-diffusion model at longer chain lengths.
Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver.
Xie, Mingjie; Hannigan, Michael P; Barsanti, Kelley C
2014-01-01
In this study, a medium volume sampler incorporating quartz fiber filters (QFFs) and a polyurethane foam (PUF)/XAD/PUF sandwich (PXP) was used to collect 2-methyltetrols (isoprene tracer) and levoglucosan (biomass burning tracer) in gaseous and particle (PM2.5) phases. The measured gas/particle (G/P) partitioning coefficients (Kp,OMm) of 2-methyltetrols and levoglucosan were calculated and compared to their predicted G/P partitioning coefficients (Kp,OMt) based on an absorptive partitioning theory. The breakthrough experiments showed that gas-phase 2-methyltetrols and levoglucosan could be collected using the PXP or PUF adsorbent alone, with low breakthrough; however, the recoveries of levoglucosan in PXP samples were lower than 70% (average of 51.9–63.3%). The concentration ratios of 2-methyltetrols and levoglucosan in the gas phase to those in the particle phase were often close to or higher than unity in summer, indicating that these polar species are semi-volatile and their G/P partitioning should be considered when applying particle-phase data for source apportionment. The Kp,OMm values of 2-methyltetrols had small variability in summer Denver, which was ascribed to large variations in concentrations of particulate organic matter (5.14 ± 3.29 μg m–3) and small changes in ambient temperature (21.8 ± 4.05 °C). The regression between log Kp,OMm and log Kp,OMt suggested that the absorptive G/P partitioning theory could reasonably predict the measured G/P partitioning of levoglucosan in ambient samples.
Penny, William M; Steele, Harmen B; Ross, J B Alexander; Palmer, Christopher P
2017-03-01
Phospholipid bilayer nanodiscs composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and synthetic maleic acid-styrene copolymer belts have been introduced as a pseudostationary phase (PSP) in electrokinetic chromatography and demonstrated good performance. The nanodiscs provide a suitable migration range and high theoretical plate counts. Using this nanodisc pseudostationary phase, the affinity of the bilayer structure for probe solutes was determined and characterized. Good correlation is observed between retention factors and octanol water partition coefficients for particular categories of solutes, but the general correlation is weak primarily because the nanodiscs show stronger affinity than octanol for hydrogen bond donors. This suggests that a more appropriate application of this technology is to measure and characterize interactions between solutes and lipid bilayers directly. Linear solvation energy relationship analysis of the nanodisc-solute interactions in this study demonstrates that the nanodiscs provide a solvation environment with low cohesivity and weak hydrogen bond donating ability, and provide relatively strong hydrogen bond acceptor strength. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EMPIRICAL MODELS OF PB AND CD PARTITIONING USING DATA FROM 13 SOILS, SEDIMENTS AND AQUIFER MATERIALS
Lead (Pb) and cadmium (Cd) are two of the most common toxicants found in contaminated environments. Because solubilization of these metallic elements from the solid phase can influence their fate, transport and bioavailability, the partitioning coefficient (Kd) for these metals ...
The optical properties and geochemical cycling of chromophoric dissolved organic matter (CDOM) are altered by its sorption to freshwater and estuarine sediments. Measured partition coefficients (Kp) of Satilla River (Georgia) and Cape Fear River estuary (North Carolina) CDOM ran...
NASA Technical Reports Server (NTRS)
Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.
2000-01-01
Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.
A Henry's Law Test for Experimental Partitioning Studies of Iron Meteorites
NASA Technical Reports Server (NTRS)
Chabot, N. L.; Campbell, A. J.; Humayun, M.; Agee, C. B.
2001-01-01
Low-level doped solid metal/liquid metal experiments analyzed by laser ablation ICP-MS allow Henry's Law to be tested. The results indicate Henry's Law is obeyed and the experimental partition coefficients can be applied to iron meteorites. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Mckay, G.; Wagstaff, J.; Yang, S.-R.
1986-01-01
Partition coefficients were determined for Gd, Lu, Hf and Zr among ilmenite, armalcolite, and synthetic high-Ti mare basaltic melts at temperatures from 1122 deg to 1150 deg, and at oxygen fugacities of IW x 10 exp 0.5, by in situ analysis with an electron microprobe, using samples doped to present concentration levels. Coefficients for Zr were also measured for samples containing 600-1600 ppm Zr using this microprobe. In addition, coefficients were determined for Hf and Zr between chromian ulvospinel and melt, for Hf between pigeonite and melt, and for Lu between olivine and melt by microprobe analysis of samples doped to present levels. Values measured using the microprobe were in agreement with the values measured by analyzing mineral separates from the same run products by isotope dilution. Coefficient values for ilmenite are less than 0.01 for the LREE, are around 0.1 for the HREE, and are several times greater than this for Zr and Hf.
Golmohammadi, Hassan
2009-11-30
A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Evans, Thomas M.; O'Neill, Hugh St. C.; Tuff, James
2008-12-01
Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg 2SiO 4) and ten melt compositions in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients (DREEol/melt) decrease with increasing silica in the melt, indicating strong bonding between REEO 1.5 and SiO 2 in the melt. The variation of DREEol/melt as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO 1.5-SiO 2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that DScol/melt deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.
Samsudin, Hayati; Auras, Rafael; Burgess, Gary; Dolan, Kirk; Soto-Valdez, Herlinda
2018-03-01
A two-step solution based on the boundary conditions of Crank's equations for mass transfer in a film was developed. Three driving factors, the diffusion (D), partition (K p,f ) and convective mass transfer coefficients (h), govern the sorption and/or desorption kinetics of migrants from polymer films. These three parameters were simultaneously estimated. They provide in-depth insight into the physics of a migration process. The first step was used to find the combination of D, K p,f and h that minimized the sums of squared errors (SSE) between the predicted and actual results. In step 2, an ordinary least square (OLS) estimation was performed by using the proposed analytical solution containing D, K p,f and h. Three selected migration studies of PLA/antioxidant-based films were used to demonstrate the use of this two-step solution. Additional parameter estimation approaches such as sequential and bootstrap were also performed to acquire a better knowledge about the kinetics of migration. The proposed model successfully provided the initial guesses for D, K p,f and h. The h value was determined without performing a specific experiment for it. By determining h together with D, under or overestimation issues pertaining to a migration process can be avoided since these two parameters are correlated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Permeability of uncharged organic molecules in reverse osmosis desalination membranes.
Dražević, Emil; Košutić, Krešimir; Svalina, Marin; Catalano, Jacopo
2017-06-01
Reverse osmosis (RO) membranes are primarily designed for removal of salts i.e. for desalination of brackish and seawater, but they have also found applications in removal of organic molecules. While it is clear that steric exclusion is the dominant removal mechanism, the fundamental explanation for how and why the separation occurs remains elusive. Until recently there was no strong microscopic evidences elucidating the structure of the active polyamide layers of RO membranes, and thus they have been conceived as "black boxes"; or as an array of straight capillaries with a distribution of radii; or as polymers with a small amount of polymer free domains. The knowledge of diffusion and sorption coefficients is a prerequisite for understanding the intrinsic permeability of any organic solute in any polymer. At the same time, it is technically challenging to accurately measure these two fundamental parameters in very thin (20-300 nm) water-swollen active layers. In this work we have measured partition and diffusion coefficients and RO permeabilities of ten organic solutes in water-swollen active layers of two types of RO membranes, low (SWC4+) and high flux (XLE). We deduced from our results and recent microscopic studies that the solute flux of organic molecules in polyamide layer of RO membranes occurs in two domains, dense polymer (the key barrier layer) and the water filled domains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shweshein, Khalil Salem A. M.; Andrić, Filip; Radoičić, Aleksandra; Gruden-Pavlović, Maja; Tešić, Živoslav; Milojković-Opsenica, Dušanka
2014-01-01
The lipophilicity of ten ruthenium(II)-arene complexes was assessed by reversed-phase thin-layer chromatography (RP-TLC) on octadecyl silica stationary phase. The binary solvent systems composed of water and acetonitrile were used as mobile phase in order to determine chromatographic descriptors for lipophilicity estimation. Octanol-water partition coefficient, logK OW, of tested complexes was experimentally determined using twenty-eight standard solutes which were analyzed under the same chromatographic conditions as target substances. In addition, ab initio density functional theory (DFT) computational approach was employed to calculate logK OW values from the differences in Gibbs' free solvation energies of the solute transfer from n-octanol to water. A good overall agreement between DFT calculated and experimentally determined logK OW values was established (R 2 = 0.8024–0.9658). PMID:24587761
Trace element partitioning between ionic crystal and liquid
NASA Technical Reports Server (NTRS)
Tsang, T.; Philpotts, J. A.; Yin, L.
1978-01-01
The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Lesoinne, Michel
1993-01-01
Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.
NASA Astrophysics Data System (ADS)
Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya
2015-06-01
In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM > FT > PFF > PCF > IFP > CFVP > FNT ⩾ DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R2 = 0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.
Mbah, C J
2005-11-01
The aqueous solubility and partition coefficient of valsartan were determined at room temperature. The effect of ethyl alcohol, propylene glycol and pH on its solubility was also investigated. It was found that both solvents increased the solubility of the drug in water. The solubilizing power of ethyl alcohol was found to be higher than that of propylene glycol. Valsartan solubility was also observed to increase at high pH values and its lipophilicity wasdemonstrated by the high positive value of the logarithm of partition coefficient.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Barnes, J. J.; Vander Kaaden, K. E.; Boyce, J. W.
2017-01-01
Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (Xsite), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to accurately determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multicomponent silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al., recently reported that the exchange coefficients vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing, and McCubbin et al. reported substantial deviations in the Cl-F exchange Kd along the F-Cl apatite join that could be explained by the preferential incorporation of F into apatite. In the present study, we assess the effect of apatite crystal chemistry on F-Cl exchange equilibria between apatite and melt at 4 GPa over the temperature range of 1300-1500 C. The goal of these experiments is to assess the variation in the Ap-melt Cl-F exchange Kd over a broad range of F:Cl ratios in apatite. The results of these experiments could be used to understand at what composition apatite shifts from a hexagonal unit cell with space group P63/m to a unit cell with monoclinic symmetry within space group P21/b. We anticipate that this transition occurs at >70% chlorapatite based on solution calorimetry data.
Hydromagnetic Rarefied Fluid Flow over a Wedge in the Presence of Surface Slip and Thermal Radiation
NASA Astrophysics Data System (ADS)
Das, K.; Sharma, R. P.; Duari, P. R.
2017-12-01
An analysis is presented to investigate the effects of thermal radiation on a convective slip flow of an electrically conducting slightly rarefied fluid, having temperature dependent fluid properties, over a wedge with a thermal jump at the surface of the boundary in the presence of a transverse magnetic field. The reduced equations are solved numerically using the finite difference code that implements the 3-stage Lobatto IIIa formula for the partitioned Runge-Kutta method. Numerical results for the dimensionless velocity and temperature as well as for the skin friction coefficient and the Nusselt number are presented through graphs and tables for pertinent parameters to show interesting aspects of the solution.
An analytical solution for percutaneous drug absorption: application and removal of the vehicle.
Simon, L; Loney, N W
2005-10-01
The methods of Laplace transform were used to solve a mathematical model developed for percutaneous drug absorption. This model includes application and removal of the vehicle from the skin. A system of two linear partial differential equations was solved for the application period. The concentration of the medicinal agent in the skin at the end of the application period was used as the initial condition to determine the distribution of the drug in the skin following instantaneous removal of the vehicle. The influences of the diffusion and partition coefficients, clearance factor and vehicle layer thickness on the amount of drug in the vehicle and the skin were discussed.
NASA Astrophysics Data System (ADS)
Murrell, M. T.; Burnett, D. S.
1986-07-01
The possibility of heating of planetary cores by K radioactivity has been extensively discussed, as well as the possibility that K partitioning into the terrestrial core is the reason for the difference between the terrestrial and chondritic K/U. We had previously suggested that U and Th partitioning into FeFeS liquids was more important than K. Laboratory FeFeS liquid, silicate liquid partition coefficient measurements (D) for K, U, and Th were made to test this suggestion. For a basaltic liquid at 1450°C and 1.5 GPa, DU is 0.013 and DK is 0.0026; thus U partitioning into FeFeS liquids is 5 times greater than K partitioning under these conditions. There are problems with 1-atm experiments in that they do not appear to equilibrate or reverse. However, measurable U and Th partitioning into sulfide was nearly always observed, but K partitioning was normally not observed (DK <~ 10-4). A typical value for DU from a granitic silicate liquid at one atmosphere, 1150°C, and low f02 is about 0.02; DTh is similar. At low f02 and higher temperature, experiments with basaltic liquids produce strong Ca and U partitioning into the sulfide liquid with DU > 1. DTh is less strongly affected. Because of the consistently low DK/DU, pressure effects near the core-mantle boundary would need to increase DK by factors of ~103 with much smaller increases in DU in order to have the terrestrial K and U abundances at chondritic levels. In addition, if radioactive heating is important for planetary cores, U and Th will be more important than K unless the lower mantle has K/U greater than 10 times chondritic or large changes in partition coefficients with conditions reverse the relative importance of K versus U and Th from our measurements.
Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan
2011-02-15
Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.
2010-01-01
Background The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Methods Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Results Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. Conclusions These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This is especially important for the highly fat soluble persistent organic chemicals (e.g. polychlorinated biphenyls, dioxins) whose pharmacokinetics are primarily determined by the adipose-blood exchange kinetics. PMID:20055995
Levitt, David G
2010-01-07
The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This is especially important for the highly fat soluble persistent organic chemicals (e.g. polychlorinated biphenyls, dioxins) whose pharmacokinetics are primarily determined by the adipose-blood exchange kinetics.
Time-partitioning simulation models for calculation on parallel computers
NASA Technical Reports Server (NTRS)
Milner, Edward J.; Blech, Richard A.; Chima, Rodrick V.
1987-01-01
A technique allowing time-staggered solution of partial differential equations is presented in this report. Using this technique, called time-partitioning, simulation execution speedup is proportional to the number of processors used because all processors operate simultaneously, with each updating of the solution grid at a different time point. The technique is limited by neither the number of processors available nor by the dimension of the solution grid. Time-partitioning was used to obtain the flow pattern through a cascade of airfoils, modeled by the Euler partial differential equations. An execution speedup factor of 1.77 was achieved using a two processor Cray X-MP/24 computer.
NaSi⇌CaAl exchange equilibrium between plagioclase and amphibole
NASA Astrophysics Data System (ADS)
Spear, Frank S.
1980-03-01
The exchange equilibrium between plagioclase and amphibole, 2 albite+tschermakite=2 anorthite+glaucophane, has been calibrated empirically using data from natural amphibolites. The partition coefficient, K D, for the exchange reaction is ( X an/ X ab)plag ·(Na, M4/Ca, M4)amph.. Partitioning is systematic between plagioclase and amphibole in suites collected from single exposures, but the solid solutions are highly non-ideal: values of In K D range from -3.0 at X an=0.30 to -1.0 at X an=0.90 in samples from a single roadcut. Changes in both K D and the topology of the ternary reciprocal exchange diagram occur with increasing metamorphic grade. Temperature dependence of In K D is moderate with Δ ¯H≃35 to 47 kcal at X an=0.25; pressure dependence is small with Δ ¯V≃ -0.24 cal/bar. Usefulness of this exchange equilibrium as a geothermometer is restricted by uncertainties in the calculation of the amphibole formula from a microprobe analysis, especially with regard to Na, M4 in amphibole, to approximately ±50 ° C.
Barber, Larry B.; Thurman, E. Michael; Runnells, Donald D.
1992-01-01
The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5–25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.
NASA Astrophysics Data System (ADS)
Holzheid, A.; Lodders, K.
2001-06-01
The solubility of Cu in silicate melts coexisting with liquid Cu(Fe) metal and liquid Cu(Fe) sulfide was determined experimentally at oxygen fugacities ranging from 10 -9.1 to 10 -13.6 bar and sulfur fugacities ranging from 10 -2.5 to 10 -6.3 bar at 1300°C. An iron oxide-free silicate of anorthite-diopside eutectic composition and a synthetic MgO-rich basaltic silicate (FeO-bearing) were used in the partitioning experiments. In S-containing systems, some of the metal reacted to metal sulfide. The silicates in the four systems investigated (Fe-free and S-free; Fe-containing and S-free; Fe-free and S-containing; Fe-containing and S-containing) had different colors depending on the dissolved Cu species and the presence of iron and/or sulfur. Irrespective of the presence of sulfur, the solubility of Cu in the silicate increases with increasing oxygen fugacity and metal/silicate partition coefficients for Cu decrease. Increasing the temperature from 1300°C to 1514°C increases the Cu solubility (decreases the metal/silicate partition coefficient) at an oxygen fugacity 0.5 log units below the iron-wüstite (IW) equilibrium in the Fe-free, S-free and Fe-containing, S-free systems. We infer the presence of monovalent Cu + ("CuO 0.5") in the silicate melt on the basis of the solubility of Cu as function of oxygen fugacity. Experiments containing iron yield a formal valence of ˜0.5 for Cu at very low oxygen fugacities, which is not observed in Fe-free systems. The low formal valence is explained by redox reactions between iron and copper in the silicate melts. There is no evidence for sulfidic dissolution of Cu in the silicates but sulfur has indirect effects on Cu partitioning. Iron metal/silicate partition coefficients depend on oxygen fugacity and on sulfur fugacity. Sulfidic dissolution of iron and oxide-sulfide exchange reactions with Cu cause a small increase in Cu metal/silicate partition coefficients. We derive an activity coefficient (γ CuO 0.5) of 10 ± 1 for liquid CuO 0.5 at 1300°C for the silicate melts used here. A comparison with literature data shows that log γ CuO 0.5 increases in proportion to the mass percentages [CaO +(Al 2O 3)/2] in silicate melts. We recommend the following equations for Cu metal/silicate and sulfide/silicate partitioning for geochemical and cosmochemical modeling if silicate composition and the activity of Cu in the metal or sulfide is known: log D met/sil = -0.48 - 0.25 · log fO 2 - log γ Cu metal + 0.02 · [CaO + (Al 2O 3)/2; wt%] silicate logD sul/sil=+0.76-0.25 · logfO 2+0.25logfS 2-logγ CS 0.5,sulfide +0.02 · [CaO+Al 2O 3/2;wt%] silicate. The derived Cu metal/silicate and metal/sulfide partition coefficients are applied to core formation in the Earth and Mars. The observed Cu abundances in the Earth cannot be easily explained by simple core-mantle equilibrium, but the observed Cu abundances for Mars are consistent with core-mantle equilibrium at low pressure and temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Zhi-Qiang; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu; Mewes, Jan-Michael
2015-11-28
The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations failsmore » to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.« less
Partitioning behavior of aromatic components in jet fuel into diverse membrane-coated fibers.
Baynes, Ronald E; Xia, Xin-Rui; Barlow, Beth M; Riviere, Jim E
2007-11-01
Jet fuel components are known to partition into skin and produce occupational irritant contact dermatitis (OICD) and potentially adverse systemic effects. The purpose of this study was to determine how jet fuel components partition (1) from solvent mixtures into diverse membrane-coated fibers (MCFs) and (2) from biological media into MCFs to predict tissue distribution. Three diverse MCFs, polydimethylsiloxane (PDMS, lipophilic), polyacrylate (PA, polarizable), and carbowax (CAR, polar), were selected to simulate the physicochemical properties of skin in vivo. Following an appropriate equilibrium time between the MCF and dosing solutions, the MCF was injected directly into a gas chromatograph/mass spectrometer (GC-MS) to quantify the amount that partitioned into the membrane. Three vehicles (water, 50% ethanol-water, and albumin-containing media solution) were studied for selected jet fuel components. The more hydrophobic the component, the greater was the partitioning into the membranes across all MCF types, especially from water. The presence of ethanol as a surrogate solvent resulted in significantly reduced partitioning into the MCFs with discernible differences across the three fibers based on their chemistries. The presence of a plasma substitute (media) also reduced partitioning into the MCF, with the CAR MCF system being better correlated to the predicted partitioning of aromatic components into skin. This study demonstrated that a single or multiple set of MCF fibers may be used as a surrogate for octanol/water systems and skin to assess partitioning behavior of nine aromatic components frequently formulated with jet fuels. These diverse inert fibers were able to assess solute partitioning from a blood substitute such as media into a membrane possessing physicochemical properties similar to human skin. This information may be incorporated into physiologically based pharmacokinetic (PBPK) models to provide a more accurate assessment of tissue dosimetry of related toxicants.
FLUXPART: An FOSS solution for Eddy covariance flux partitioning
USDA-ARS?s Scientific Manuscript database
We report on efforts to develop a FOSS solution for a particular geoscience application. Eddy covariance (EC) instruments are routinely used to measure field-scale evapotranspiration and CO2 fluxes. For many applications, it is desirable to partition the measured evapotranspiration flux into its c...
77 FR 10520 - Notice of Intent To Suspend Certain Pesticide Registrations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
.../2007 12/24/2007 8/20/2008 No data coefficient (n- received. octanol/water) shake flask method. 19713-72......... 830.7570 Partition 12/14/2007 12/24/2007 8/20/2008 No data coefficient (n- received. octanol/water...
Tahar, A; Choubert, J M; Miège, C; Esperanza, M; Le Menach, K; Budzinski, H; Wisniewski, C; Coquery, M
2014-04-01
Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.
Accumulation of gas-phase methamphetamine on clothing, toy fabrics, and skin oil.
Morrison, G; Shakila, N V; Parker, K
2015-08-01
To better understand methamphetamine exposure and risk for occupants of former residential clandestine methamphetamine laboratories, we measured the dynamic accumulation of methamphetamine in skin oil, cotton and polyester (PE) clothing, upholstery, and toy fabric (substrates) exposed to 15-30 ppb (91-183 μg/m(3)) neutral methamphetamine in air for up to 60 days. The average equilibrium partition coefficients at 30% RH, in units of μg of methamphetamine per gram of substrate per ppb, are 3.0 ± 0.2 for a PE baby blanket, 5.6 ± 3.5 for a PE fabric toy, 3.7 ± 0.2 for a PE shirt, 18.3 ± 8.0 for a PE/cotton upholstery fabric, and 1200 ± 570 in skin oil. The partition coefficients at 60% RH are 4.5 ± 0.4, 5.2 ± 2.1, 4.5 ± 0.6, 36.1 ± 3.6, and 1600 ± 1100 μg/(g ppb), respectively. There was no difference in the partition coefficient for a clean and skin-oil-soiled cotton shirt [15.3 ± 2.1 μg/(g ppb) @ 42 days]. Partition coefficients for skin oil may be sensitive to composition. 'Mouthing' of cloth is predicted to be the dominant exposure pathway [60 μg/(kg body weight*ppb)] for a toddler in former meth lab, and indoor air concentrations would have to be very low (0.001 ppb) to meet the recommended reference dose for children. Gas-phase methamphetamine transfers to and accumulates on clothing, toys and other fabrics significantly increases risk of ingestion of methamphetamine. Current remediation methods should consider measurement of postremediation gas-phase air concentrations of methamphetamine in addition to surface wipe samples. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Stang, Christoph; Bakanov, Nikita; Schulz, Ralf
2016-01-01
Knowledge on the dynamics and the durability of the processes governing the mitigation of pesticide loads by aquatic vegetation in vegetated streams, which are characterized by dynamic discharge regimes and short chemical residence times, is scarce. In a static long-term experiment (48 h), the dissipation of five pesticides from the aqueous phase followed a biphasic pattern in the presence of aquatic macrophytes. A dynamic concentration decrease driven by sorption to the macrophytes ranged from 8.3 to 60.4% for isoproturon and bifenox, respectively, within the first 2 h of exposure. While the aqueous concentrations of imidacloprid, isoproturon, and tebufenozide remained constant thereafter, the continuous but decelerated concentration decrease of difenoconazole and bifenox in the water-macrophyte systems used here was assumed to be attributed to macrophyte-induced degradation processes. In addition, a semi-static short-term experiment was conducted, where macrophytes were transferred to uncontaminated medium after 2 h of exposure to simulate a transient pesticide peak. In the first part of the experiment, adsorption to macrophytes resulted in partitioning coefficients (logK D_Adsorp) ranging from 0.2 for imidacloprid to 2.2 for bifenox. One hour after the macrophytes were transferred to the uncontaminated medium, desorption of the compounds from the macrophytes resulted in a new phase equilibrium and K D_Desorp values of 1.46 for difenoconazole and 1.95 for bifenox were determined. A correlation analysis revealed the best match between the compound affinity to adsorb to macrophytes (expressed as K D_Adsorp) and their soil organic carbon-water partitioning coefficient (K OC) compared to their octanol-water partitioning coefficient (K OW) or a mathematically derived partitioning coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmins, T.H.; Mason, E.A.
1963-04-01
An investigation of the solvent extraction characteristics of nitric acid and the nitrato complexes of nitrosylruthenium was conducted, using alkyl amines as extractants. The alkyl amines used were a primary amine Primene JMT, a tertiary amine trilaurylamine (TLA), and a quaternary amine Aliquat 336. The organic phase concentrations of HNO/sub 3/ resulting during extraction by alkyl amines were found to correlate well on the basis of the undissociated aqueous HNO/ sub 3/ activity for both salted (NaNO/sub 3/) and unsalted aqueous phases. The distribution ratios for Ru extraction showed better correlation on this basis than on the basis of aqueousmore » phase nitrate and nitric acid. The order of decreasing Ru extraction at low HNO/sub 3/ concentration (2N) was found to be Aliquat 336, TLA, and Primene JMT. At high HNO/sub 3/ concentration (9N). Primene JMT had the highest Ru extractability. Hapid dilution experiments were utilized to determine the number and aqueous phase concentrations of the extractable species of Ru, and the amine partition coefficients for the species. It was found that two Ru species are extractable, and the more extractable species is present in the aqueous phase at lower concentration than the less extractable species. The mole fractions of both species were found to increase with increasing HNO/sub 3/ concentration. The TLA partition coefficients for the extractable species were found to decrease with increasing HNO/sub 3/ concentration. The quaternary amine, Aliquat 336, was found to have partition coefficients an order of magnitude greater than the tertiary amine, TLA. Equations for the mole fractions and TLA partition coefficients in the region of HNO/sub 3/ concentration investigated were developed. (auth)« less
Partitioning of functional gene expression data using principal points.
Kim, Jaehee; Kim, Haseong
2017-10-12
DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex dynamics of biological systems in functional genomics.
Niether, Doreen; Di Lecce, Silvia; Bresme, Fernando; Wiegand, Simone
2018-01-03
Urea is widely used as a protein denaturant in aqueous solutions. Experimental and computer simulation studies have shown that it dissolves in water almost ideally at high concentrations, introducing little disruption in the water hydrogen bonded structure. However, at concentrations of the order of 5 M or higher, urea induces denaturation in a wide range of proteins. The origin of this behaviour is not completely understood, but it is believed to stem from a balance between urea-protein and urea-water interactions, with urea becoming possibly hydrophobic at a specific concentration range. The small changes observed in the water structure make it difficult to connect the denaturation effects to the solvation properties. Here we show that the exquisite sensitivity of thermodiffusion to solute-water interactions allows the identification of the onset of hydrophobicity of urea-water mixtures. The hydrophobic behaviour is reflected in a sign reversal of the temperature dependent slope of the Soret coefficient, which is observed, both in experiments and non-equilibrium computer simulations at ∼5 M concentration of urea in water. This concentration regime corresponds to the one where abrupt changes in the denaturation of proteins are commonly observed. We show that the onset of hydrophobicity is intrinsically connected to the urea-water interactions. Our results allow us to identify correlations between the Soret coefficient and the partition coefficient, log P, hence establishing the thermodiffusion technique as a powerful approach to study hydrophobicity.
NASA Technical Reports Server (NTRS)
Righter, K.; Leeman, W. P.; Hervig, R. L.
2006-01-01
Partitioning of Ni, Co and V between Cr-rich spinels and basaltic melt has been studied experimentally between 1150 and 1325 C, and at controlled oxygen fugacity from the Co-CoO buffer to slightly above the hematite magnetite buffer. These new results, together with new Ni, Co and V analyses of experimental run products from Leeman [Leeman, W.P., 1974. Experimental determination of the partitioning of divalent cations between olivine and basaltic liquid, Pt. II. PhD thesis, Univ. Oregon, 231 - 337.], show that experimentally determined spinel melt partition coefficients (D) are dependent upon temperature (T), oxygen fugacity (fO2) and spinel composition. In particular, partition coefficients determined on doped systems are higher than those in natural (undoped) systems, perhaps due to changing activity coefficients over the composition range defined by the experimental data. Using our new results and published runs (n =85), we obtain a multilinear regression equation that predicts experimental D(V) values as a function of T, fO2, concentration of V in melt and spinel composition. This equation allows prediction of D(V) spinel/melt values for natural mafic liquids at relevant crystallization conditions. Similarly, D(Ni) and D(Co) values can be inferred from our experiments at redox conditions approaching the QFM buffer, temperatures of 1150 to 1250 C and spinel composition (early Cr-bearing and later Ti-magnetite) appropriate for basic magma differentiation. When coupled with major element modelling of liquid lines of descent, these values (D(Ni) sp/melt=10 and D(Co) sp/melt=5) closely reproduce the compositional variation observed in komatiite, mid-ocean ridge basalt (MORB), ocean island basalt (OIB) and basalt to rhyolite suites.
Chang, E-E; Wan, Jan-Chi; Kim, Hyunook; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi
2015-01-01
The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K(ow). The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K(ow) was replaced by the one with larger K(ow). Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores.
Single-layer model to predict the source/sink behavior of diffusion-controlled building materials.
Kumar, Deept; Little, John C
2003-09-01
Building materials may act as both sources of and sinks forvolatile organic compounds (VOCs) in indoor air. A strategy to characterize the rate of absorption and desorption of VOCs by diffusion-controlled building materials is validated. A previously developed model that predicts mass transfer between a flat slab of material and the well-mixed air within a chamber or room is extended. The generalized model allows a nonuniform initial material-phase concentration and a transient influent gas-phase concentration to be simultaneously considered. An analytical solution to the more general model is developed. Experimental data are obtained by placing samples of vinyl flooring inside a small stainless steel chamber and exposing them to absorption/desorption cycles of n-dodecane and phenol. Measured values for the material-air partition coefficient and the material-phase diffusion coefficient were obtained previously in a series of completely independent experiments. The a priori model predictions are in close agreement with the observed experimental data.
Chang, E.-E.; Wan, Jan-Chi; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi
2015-01-01
The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K ow. The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K ow was replaced by the one with larger K ow. Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores. PMID:26078989
A practical extension of hydrodynamic theory of porous transport for hydrophilic solutes.
Bassingthwaighte, James B
2006-03-01
The equations for transport of hydrophilic solutes through aqueous pores provide a fundamental basis for examining capillary-tissue exchange and water and solute flux through transmembrane channels, but the theory remains incomplete for ratios, alpha, of sphere diameters to pore diameters greater than 0.4. Values for permeabilities, P, and reflection coefficients, sigma, from Lewellen, working with Lightfoot et al., at alpha = 0.5 and 0.95, were combined with earlier values for alpha < 0.4, and the physically required values at alpha = 1.0, to provide accurate expressions over the whole range of 0 < alpha < 1. The "data" were the long-accepted theory for alpha < 0.2 and the computational results from Lewellen and Lightfoot et al. on hard spheres (of 5 different alpha's) moving by convection and diffusion through a tight cylindrical pore, accounting for molecular exclusion, viscous forces, pressure drop, torque and rotation of spheres off the center line (averaging across all accessible radial positions), and the asymptotic values at alpha = 1.0. Coefficients for frictional hindrance to diffusion, F(alpha), and drag, G(alpha), and functions for sigma(alpha) and P(alpha), were represented by power law functions and the parameters optimized to give best fits to the combined "data." The reflection coefficient sigma = {1 - [1 - (1 - phi)2]G'(alpha)} + 2alpha2 phi F'(alpha), and the relative permeability P/Pmax = phi F '(alpha)[1 + 9alpha5.5 x (1.0 - alpha5)0.02], where phi is the partition coefficient or volume fraction of the pore available to solute. The new expression for the diffusive hindrance is F'(alpha) = (1 - alpha2)(3/2) phi/[1 + 0.2 x alpha2 x (1 - alpha2)16], and for the drag factor is G'(alpha) = (1 - 2alpha(2)/3 - 0.20217 alpha5)/(1 - 0.75851 alpha5) - 0.0431[1 - (1 - alpha10)]. All of these converge monotonically to the correct limits at alpha = 1. These are the first expressions providing hydrodynamically based estimates of sigma(alpha) and P(alpha) over 0 < alpha < 1 They should be accurate to within 1-2%.
Arp, Hans Peter H; Lundstedt, Staffan; Josefsson, Sarah; Cornelissen, Gerard; Enell, Anja; Allard, Ann-Sofie; Kleja, Dan Berggren
2014-10-07
Soil quality standards are based on partitioning and toxicity data for laboratory-spiked reference soils, instead of real world, historically contaminated soils, which would be more representative. Here 21 diverse historically contaminated soils from Sweden, Belgium, and France were obtained, and the soil-porewater partitioning along with the bioaccumulation in exposed worms (Enchytraeus crypticus) of native polycyclic aromatic compounds (PACs) were quantified. The native PACs investigated were polycyclic aromatic hydrocarbons (PAHs) and, for the first time to be included in such a study, oxygenated-PAHs (oxy-PAHs) and nitrogen containing heterocyclic PACs (N-PACs). The passive sampler polyoxymethylene (POM) was used to measure the equilibrium freely dissolved porewater concentration, Cpw, of all PACs. The obtained organic carbon normalized partitioning coefficients, KTOC, show that sorption of these native PACs is much stronger than observed in laboratory-spiked soils (typically by factors 10 to 100), which has been reported previously for PAHs but here for the first time for oxy-PAHs and N-PACs. A recently developed KTOC model for historically contaminated sediments predicted the 597 unique, native KTOC values in this study within a factor 30 for 100% of the data and a factor 3 for 58% of the data, without calibration. This model assumes that TOC in pyrogenic-impacted areas sorbs similarly to coal tar, rather than octanol as typically assumed. Black carbon (BC) inclusive partitioning models exhibited substantially poorer performance. Regarding bioaccumulation, Cpw combined with liposome-water partition coefficients corresponded better with measured worm lipid concentrations, Clipid (within a factor 10 for 85% of all PACs and soils), than Cpw combined with octanol-water partition coefficients (within a factor 10 for 76% of all PACs and soils). E. crypticus mortality and reproducibility were also quantified. No enhanced mortality was observed in the 21 historically contaminated soils despite expectations from PAH spiked reference soils. Worm reproducibility weakly correlated to Clipid of PACs, though the contributing influence of metal concentrations and soil texture could not be taken into account. The good agreement of POM-derived Cpw with independent soil and lipid partitioning models further supports that soil risk assessments would improve by accounting for bioavailability. Strategies for including bioavailability in soil risk assessment are presented.
NASA Astrophysics Data System (ADS)
Churnet, Habte G.; Misra, Kula C.
1981-11-01
The Lower Ordovician, Upper Knox Group rocks (the Kingsport and Mascot formations) in the Copper Ridge district consist predominantly of fine-grained dolostones, medium and coarser grained dolostones, and limestones. Dolomite crystals of medium and coarser grained dolostones show up to eight cathodoluminescent zones of variable width and intensity. Electron microprobe analyses indicate that the zoning is related to variation in Fe/Mn ratios, the brighter luminescent zones corresponding to lower ratios. Superposed on this growth zoning is a compositional zoning characterized by a general increase in Fe from core to rim of individual dolomite crystals. Field and petrographic studies (Churnet, 1979; Churnet et al., 1981) indicate that the fine-grained dolostones formed in supratidal to upper intratidal environments, whereas the precursor lime muds of the limestones as well as of the medium and coarser grained dolostones formed in shallow subtidal to lower intertidal environments. The large areal extent of the dolostones must have required a regionally abundant source of Mg such as marine water. Yet, both limestones and dolostones have low Na and Sr contents suggestive of their formation in solutions more dilute than normal marine water. It is proposed that the fine-grained dolostones formed by aggradation of initially very fine-grained dolostones in presence of fresh water, and that the limestones stabilized and the medium and coarser grained dolostones formed in environments of mixed marine and fresh waters. Considered in the light of ordering of partition coefficients, such a mixing model can account for the observed correlation pattern of trace elements (especially, SMn and SrFe) as well as the Fe distribution in the zoned dolomite crystals. Variation of the partition coefficient of Mn due to fluctuations in the relative proportions of fresh and marine waters in the diagenetic solution may explain the different Fe/Mn ratios observed in the growth zones (luminescence bands) of zoned dolomite crystals.
Partitioning of mercury in aqueous biphasic systems and on ABEC resins.
Rogers, R D; Griffin, S T
1998-06-26
Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABS) can be utilized to separate and recover metal ions in environmental and hydrometallurgical applications. A concurrent study was conducted comparing the partitioning of mercury between aqueous layers in an ABS [Me-PEG-5000/(NH4)2SO4] and partitioning of mercury from aqueous solutions to aqueous biphasic extraction chromatographic (ABEC-5000) resins. In ammonium sulfate solutions, mercury partitions to the salt-rich phase in ABS, but by using halide ion extractants, mercury will partition to the PEG-rich phase after formation of a chloro, bromo or iodo complex. The efficacy of the extractant increases in the order Cl-
Prediction of soil organic carbon partition coefficients by soil column liquid chromatography.
Guo, Rongbo; Liang, Xinmiao; Chen, Jiping; Wu, Wenzhong; Zhang, Qing; Martens, Dieter; Kettrup, Antonius
2004-04-30
To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (KOC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (KOW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for KOC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (ksoil) and KOC measured by batch equilibrium method were studied. Good correlations were achieved between ksoil and KOC for three types of soils with different properties. All the square of the correlation coefficients (R2) of the linear regression between log ksoil and log KOC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of KOC from KOW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (kCN) was comparatively evaluated for the three types of soils. The results show that the prediction of KOC from kCN and KOW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the KOC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict KOC largely depends on the properties of soil concerned.
Moradkhani, Hamed; Izadkhah, Mir-Shahabeddin; Anarjan, Navideh
2017-02-01
In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard "k-ε" Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie's penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).
NASA Astrophysics Data System (ADS)
Wu, Zilan; Lin, Tian; Li, Zhongxia; Li, Yuanyuan; Guo, Tianfeng; Guo, Zhigang
2017-10-01
Ship-board air samples were collected during March to May 2015 from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) to explore the atmospheric occurrence and gas-particle partitioning of polychlorinated biphenyls (PCBs) when the westerly East Asian Monsoon prevailed. Total PCB concentrations in the atmosphere ranged from 56.8 to 261 pg m-3. Higher PCB levels were observed off the coast and minor temperature-induced changes showed that continuous emissions from East Asia remain as an important source to the regional atmosphere. A significant relationship between Koa (octanol-air partition coefficient) and KP (gas-particle partition coefficient) for PCBs was observed under continental air masses, suggesting that land-derived organic aerosols affected the PCB gas-particle partitioning after long-range transport, while an absence of this correlation was identified in marine air masses. The PCB partitioning cannot be fully explained by the absorptive mechanism as the predicted KP were found to be 2-3 orders of magnitude lower than the measured Kp, while the prediction was closely matched when soot adsorption was considered. The results suggested the importance of soot carbon as a transport medium for PCBs during their long-range transport and considerable impacts of continental outflows on PCBs across the downwind area. The estimated transport mass of particulate PCBs into the ECS and NWP totals 2333 kg during the spring, constituting ca. 17% of annual emission inventories of unintentionally produced PCB in China.
Pegoraro, César N; Chiappero, Malisa S; Montejano, Hernán A
2015-11-01
2-Ethylhexyl 4-methoxycinnamate is one of the UVB blocking agents more widely used in a variety of industrial fields. There are more than one hundred industrial suppliers worldwide. Given the enormous annual consumption of octinoxate, problems that arise due to the accumulation of this compound in nature should be taken into consideration. The GC-RT was used in this work with the aim of determining the vapor pressure, enthalpies of vaporization and octanol-air partition coefficient, for the BBP, DOP, E- and Z-EHMC esters. The results showed that Z-EHMC is almost five times more volatile than E-EHMC. Moreover, BBP, Z-EHMC and E-EHMC can be classified as substances with a relatively low mobility since they lie within the range of 8
NASA Astrophysics Data System (ADS)
Turk Sekulić, Maja; Okuka, Marija; Šenk, Nevena; Radonić, Jelena; Vojinović Miloradov, Mirjana; Vidicki, Branko
2013-07-01
In this paper, a comparison of experimentally obtained and SPARC software v4.6 modelled values of gas/particle partitioning coefficients was conducted to determine whether the evaluation of atmospheric distribution of PAH molecules can be performed using a molecular structure model. Partitioning coefficients were calculated for sixteen EPA PAHs, in thirty-nine samples of ambient air collected at nineteen urban, industrial, highly contaminated and background sites in the Republic of Serbia and Bosnia and Herzegovina. For obtaining samples of ambient air, the conventional high volume (Hi-Vol) methodology was applied, whereby gaseous and particulate phase data collection was conducted simultaneously by glass fibre filters (GFFs) and polyurethane foam filters (PUFs). The best prediction was for PAHs with 5 or more rings (benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)perylene and benzo(ghi)perylene). For evaluating the applicability of SPARC software predictions of gas/particle partitioning coefficients for the existing conditions, the results were compared with those obtained by applying other frequently used and highly ranked theoretical models of phase distributions, namely Junge-Pankow adsorption model, KOA absorption model, Dachs-Eisenreich dual model and PP-LFER model.
NASA Astrophysics Data System (ADS)
Dailey, S. R.; Christiansen, E. H.; Dorais, M.; Fernandez, D. P.
2015-12-01
The Miocene topaz rhyolite at Spor Mountain in western Utah hosts one of the largest beryllium deposits in the world and was responsible for producing 85% of the beryllium mined worldwide in 2010 (Boland, 2012). The Spor Mountain rhyolite is composed primarily of Ca-poor plagioclase (An8), sodic sanidine (Or40), Fe-rich biotite (Fe/(Fe+Mg)>0.95; Al 1.2-1.4 apfu), and Ti-poor quartz, along with several trace-element rich accessory phases including zircon, monazite, thorite, columbite, and allanite. Cathodoluminescence (CL) studies of quartz show oscillatory zoning, with 80% of the examined crystals displaying euhedral edges and slightly darker rims. CL images were used to guide laser ablation (LA) ICP-MS analysis of quartz, along with analyses of plagioclase, sanidine, biotite, and glass. Ti concentrations in quartz are 20±6 ppm; there is no quantifiable variation of Ti from core to rim within the diameter of the laser spot (53 microns). Temperatures, calculated using Ti in quartz (at 2 kb, aTiO2=0.34), vary between 529±10 C (Thomas et al., 2011), 669±13 C (Huang and Audetat, 2012), and 691±13 C (Wark and Watson, 2006). Two feldspar thermometry yield temperatures of 686±33 C (Elkins and Grove, 1990) and 670±41 C (Benisek et al., 2010). Zr saturation temperatures (Watson and Harrison, 1983) average 711±28 C. Analysis of the glass reveal the Spor Mountain rhyolite is greatly enriched in rare elements (i.e. Li, Be, F, Ga, Rb, Nb, Mo, Sn, and Ta) compared to average continental crust (Rudnick and Gao, 2003). Be in the glass can have as much as 100 ppm, nearly 50 times the concentration in continental crust. REE partition coefficients for sanidine are 2 to 3 times higher in the Spor Mountain rhyolite when compared to other silicic magmas (Nash and Crecraft, 1985; Mahood and Hildreth, 1983), although plagioclase tends to have lower partition coefficients; biotite has lower partition coefficients for LREE and higher partition coefficients for HREE. The patterns of trace element enrichment and depletion are similar to those of the measured partition coefficients, consistent with a major role for extensive fractional crystallization in the origin of the Be enriched magma.
NASA Astrophysics Data System (ADS)
Li, Y.-F.; Ma, W.-L.; Yang, M.
2014-09-01
Gas/particle (G / P) partitioning for most semivolatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport potential, and their routs to enter human body. All previous studies on this issue have been hypothetically derived from equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G / P partitioning behavior for polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) for PBDE congeners (log KPS = log KPE + logα) was developed, in which an equilibrium term (log KPE = log KOA + logfOM -11.91, where fOM is organic matter content of the particles) and a nonequilibrium term (logα, mainly caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included, and the equilibrium is a special case of steady state when the nonequilibrium term equals to zero. A criterion to classify the equilibrium and nonequilibrium status for PBDEs was also established using two threshold values of log KOA, log KOA1 and log KOA2, which divide the range of log KOA into 3 domains: equilibrium, nonequilibrium, and maximum partition domains; and accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same 3 domains for each BDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G / P partition coefficients of PBDEs for the published monitoring data worldwide, including Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that, the new developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G / P partitioning behavior in decades. We suggest that, the investigation on G / P partitioning behavior for PBDEs should be based on steady state, not equilibrium state, and equilibrium is just a special case of steady state when nonequilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G / P partitioning for PBDEs and can be extended to predict G / P partitioning behavior for other SVOCs as well.
Fisicaro, E; Braibanti, A; Lamb, J D; Oscarson, J L
1990-05-01
The relationships between the chemical properties of a system and the partition function algorithm as applied to the description of multiple equilibria in solution are explained. The partition functions ZM, ZA, and ZH are obtained from powers of the binary generating functions Jj = (1 + kappa j gamma j,i[Y])i tau j, where i tau j = p tau j, q tau j, or r tau j represent the maximum number of sites in sites in class j, for Y = M, A, or H, respectively. Each term of the generating function can be considered an element (ij) of a vector Jj and each power of the cooperativity factor gamma ij,i can be considered an element of a diagonal cooperativity matrix gamma j. The vectors Jj are combined in tensor product matrices L tau = (J1) [J2]...[Jj]..., thus representing different receptor-ligand combinations. The partition functions are obtained by summing elements of the tensor matrices. The relationship of the partition functions with the total chemical amounts TM, TA, and TH has been found. The aim is to describe the total chemical amounts TM, TA, and TH as functions of the site affinity constants kappa j and cooperativity coefficients bj. The total amounts are calculated from the sum of elements of tensor matrices Ll. Each set of indices (pj..., qj..., rj...) represents one element of a tensor matrix L tau and defines each term of the summation. Each term corresponds to the concentration of a chemical microspecies. The distinction between microspecies MpjAqjHrj with ligands bound on specific sites and macrospecies MpAqHR corresponding to a chemical stoichiometric composition is shown. The translation of the properties of chemical model schemes into the algorithms for the generation of partition functions is illustrated with reference to a series of examples of gradually increasing complexity. The equilibria examined concern: (1) a unique class of sites; (2) the protonation of a base with two classes of sites; (3) the simultaneous binding of ligand A and proton H to a macromolecule or receptor M with four classes of sites; and (4) the binding to a macromolecule M of ligand A which is in turn a receptor for proton H. With reference to a specific example, it is shown how a computer program for least-squares refinement of variables kappa j and bj can be organized. The chemical model from the free components M, A, and H to the saturated macrospecies MpAQHR, with possible complex macrospecies MpAq and AHR, is defined first.(ABSTRACT TRUNCATED AT 250 WORDS)
Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya
2015-06-15
In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM>FT>PFF>PCF>IFP>CFVP>FNT⩾DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R(2)=0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes. Copyright © 2015 Elsevier B.V. All rights reserved.
Pegi, Ahlin; Julijana, Kristl; Slavko, Pecar; Janez, Strancar; Marjeta, Sentjurc
2003-01-01
Solid lipid nanoparticles (SLN) constitute an attractive drug carrier system. The aim of this study was to investigate the influence of lipophilicity and structure of different model molecules on their distribution in SLN dispersions. SLN composed of glyceryl tripalmitate as lipid and soybean lecithin and poloxamer 188 as stabilizers were prepared by a melt-emulsification process. PC(10,3), MeFASL(10,3), C(14)-Tempo, and Tempol were incorporated into SLN as spin-labeled compounds. The partition of SP between triglyceride and water was determined experimentally by electron paramagnetic resonance (EPR) and compared with calculated partition coefficients. The distribution of molecules in SLN dispersions was determined from the parameters of EPR spectra, from the reduction kinetics of the spin-labeled compounds with sodium ascorbate, and by computer simulation of EPR spectral line shapes. The experimentally obtained partition coefficients increase in the order Tempol < MeFASL(10,3) < C(14)-Tempo, showing the same trend as the partition coefficients calculated according to Rekker. In SLN dispersions, it was estimated that the ratio of SP between solid lipid core, phospholipid layers (deeper in SLN layer or in liposomes and closer to the surface of SLN), and water is for Tempol 0:0:100, for C(14)-Tempo 46:54(20:34):0, for MeFASL(10,3) 34:65(38:27):1, and for PC(10,3) 10:89(26:3:60):1. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association
Jenke, Dennis; Odufu, Alex; Poss, Mitchell
2006-02-01
Material/water equilibrium interaction constants (E(b)) were determined for 12 organic model solutes and a plastic material used in pharmaceutical product containers (non-PVC polyolefin). An excellent correlation was obtained between the measured interaction constants and the organic solute's octanol/water partition coefficient. The effect of solvent polarity on E(b) was assessed by examining the interaction between the plastic and selected model solutes in binary ethanol/water mixtures. In general, logE(b) could be linearily related to the polarity of the ethanol/water mixture. This information, coupled with the interaction model, was used to estimate the levels to which container leachables could accumulate in contacted solutions. Such estimates were made for six known leachables of the polyolefin material and compared to the leachable's measured accumulation levels in binary ethanol/water systems. In general, the accumulation level of the leachables increased with increasing solution polarity. For most of the leachables, the measured accumulation level was less than the calculated levels, suggesting that equilibrium was not achieved in the leaching portion of this study. This lack of equilibrium is attributable to the layered structure of the material studied, as such layering retards the migration of the leachables that are derived from the material's non-solution contact layers.
NASA Astrophysics Data System (ADS)
Cheema, Mohammad Arif; Barbosa, Silvia; Taboada, Pablo; Castro, Emilio; Siddiq, Mohammad; Mosquera, Víctor
2006-09-01
The thermodynamic properties of aqueous solutions of the tricyclic antidepressant amphiphilic phenothiazine drug thioridazine hydrochloride in the temperature range 20-50 °C and in the presence of ethanol have been measured. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups. Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of its physico-chemical properties with temperature and with the surrounding environment to understand the action mechanism of the drug. Densities, conductivities, and surface tension were measured to obtain surface and bulk solution properties. Critical concentrations, cc, at different temperatures and in the presence of ethanol, and partition coefficients, K, have been calculated, the latter using an indirect method based in the pseudophase model with the help of apparent molar volume data. This method has the advantage that allows calculating the distribution coefficients at solubilizate concentrations below the saturation. Conductivity data show two critical concentrations. The second critical concentration is not clear by density data. The effect of the alcohol is to decrease the first critical concentration due to a decrease in headgroup repulsion. The molar apparent volumes at infinite dilution and in the aggregate in water and in presence of ethanol have been also obtained.
Singh, P; Roberts, M S
1994-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are being administered increasingly by transdermal drug delivery for the treatment of local muscle inflammation. The human epidermal permeabilities of different NSAIDs (salicylic acid, diethylamine salicylate, indomethacin, naproxen, diclofenac and piroxicam) from aqueous solutions is dependent on the drug's lipophilicity. A parabolic relationship was observed when the logarithms of NSAID permeability coefficients were plotted against the logarithms of NSAID octanol-water partition coefficients (log P), the optimum log P being around 3. The local tissue concentrations of these drugs after dermal application in aqueous solutions were then determined in a rat model. The extent of local, as distinct from systemic delivery, for each NSAID was assessed by comparing the tissue concentrations obtained below a treated site to those in contralateral tissues. Local direct penetration was evident for all NSAIDs up to a depth of about 3 to 4 mm below the applied site, with distribution to deeper tissues being mainly through the systemic blood supply. A comparison of the predicted tissue concentrations of each NSAID after its application to human epidermis was then made by a convolution of the epidermal and underlying tissue concentration-time profiles. The estimated tissue concentrations after epidermal application of NSAIDs could be related to their maximal fluxes across epidermis from an applied vehicle.
Stencils and problem partitionings: Their influence on the performance of multiple processor systems
NASA Technical Reports Server (NTRS)
Reed, D. A.; Adams, L. M.; Patrick, M. L.
1986-01-01
Given a discretization stencil, partitioning the problem domain is an important first step for the efficient solution of partial differential equations on multiple processor systems. Partitions are derived that minimize interprocessor communication when the number of processors is known a priori and each domain partition is assigned to a different processor. This partitioning technique uses the stencil structure to select appropriate partition shapes. For square problem domains, it is shown that non-standard partitions (e.g., hexagons) are frequently preferable to the standard square partitions for a variety of commonly used stencils. This investigation is concluded with a formalization of the relationship between partition shape, stencil structure, and architecture, allowing selection of optimal partitions for a variety of parallel systems.
van Noort, Paul C M
2012-04-01
Abraham solvation equations find widespread use in environmental chemistry. Until now, the intercept in these equations was determined by fitting experimental data. To simplify the determination of the coefficients in Abraham solvation equations, this study derives theoretical expressions for the value of the intercept for various partition processes. To that end, a modification of the description of the Ben-Naim standard state into the van der Waals volume is proposed. Differences between predicted and fitted values of the Abraham solvation equation intercept for the enthalpy of solvation, the entropy of solvation, solvent-water partitioning, air-solvent partitioning, partitioning into micelles, partitioning into lipid membranes and lipids, and chromatographic retention indices are comparable to experimental uncertainties in these values. Copyright © 2011 Elsevier Ltd. All rights reserved.
Partitioning of H2O on high pressure phase transformation of olivine
NASA Astrophysics Data System (ADS)
Inoue, T.; Wada, T.; Sasaki, R.; Irifune, T.; Yurimoto, H.
2003-12-01
Water is the most abundant volatile component on the Earth's surface, and it has been supplied to the Earth's interiors by subducted slab. Water influences the physical properties and melting temperature of minerals. Olivine is the most abundant mineral in the mantle, and it is clarified that the high-pressure polymorphs of olivine, wadsleyite and ringwoodite, can contain 3wt% of H2O in their crystal structures (e.g. Inoue et al., 1995, 1998). However, the partitioning of H2O among these minerals has not been clarified yet except for olivine-wadsleyite transformation (Chen et al., 2003). We have determined the partitioning of H2O between wadsleyite and ringwoodite and between ringwoodite and perovskite, and clarified the distribution of H2O among upper mantle, mantle transition zone and lower mantle. High-pressure experiments were conducted by MA-8 type (Kawai-type) high-pressure apparatus in Ehime University, and the chemical compositions were determined by EPMA. The water contents of minerals were measured by SIMS in Tokyo Institute of Technology. We succeeded to synthesize large (approximately 50 μ m) coexisting crystals of wadsleyite and ringwoodite, and of ringwoodite and perovskite, and we could clarify the partitioning of H2O between those coexisting minerals. The partition coefficients between wadsleyite and ringwoodite and between ringwoodite and perovskite were about 2 and about 10 or more, respectively. We (Chen et al., 2003) have already determined that the partition coefficients between wadsleyite and olivine is about 5, so the partitioning among upper mantle, 410-520km and 520-660km of mantle transition zone, and lower mantle are 4:20:10:1. Thus the mantle transition zone should be a strong water reservoir in the Earth's interiors.
Mecklenfeld, Andreas; Raabe, Gabriele
2017-12-12
The calculation of solvation free energies ΔG solv by molecular simulations is of great interest as they are linked to other physical properties such as relative solubility, partition coefficient, and activity coefficient. However, shortcomings in molecular models can lead to ΔG solv deviations from experimental data. Various studies have demonstrated the impact of partial charges on free energy results. Consequently, calculation methods for partial charges aimed at more accurate ΔG solv predictions are the subject of various studies in the literature. Here we compare two methods to derive partial charges for the general AMBER force field (GAFF), i.e. the default RESP as well as the physically motivated IPolQ-Mod method that implicitly accounts for polarization costs. We study 29 solutes which include characteristic functional groups of drug-like molecules, and 12 diverse solvents were examined. In total, we consider 107 solute/solvent pairs including two water models TIP3P and TIP4P/2005. Comparison with experimental results yields better agreement for TIP3P, regardless of the partial charge scheme. The overall performance of GAFF/RESP and GAFF/IPolQ-Mod is similar, though specific shortcomings in the description of ΔG solv for both RESP and IPolQ-Mod can be identified. However, the high correlation between free energies obtained with GAFF/RESP and GAFF/IPolQ-Mod demonstrates the compatibility between the modified charges and remaining GAFF parameters.
Kadam, Yogesh; Yerramilli, Usha; Bahadur, Anita
2009-08-01
The solubilization of a poorly water-soluble antiepileptic drug, carbamazepine (CBZ), in a series of micelle-forming PEO-PPO-PEO block copolymers with combinations of blocks having different molecular weight was studied. The drug solubility and micelle-water partition coefficient (P) were determined using UV-vis spectroscopy. Dynamic light scattering on copolymer solutions was used to measure size and polydispersity of nanoaggregates. Solubilization of carbamezapine increased with the rise in temperature and concentration of block copolymers, but no significant increase was observed with added salt (NaCl). The solubilization is also discussed from a thermodynamics viewpoint, by considering the standard free energy of solubilization (DeltaG degrees ).
Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; ...
2015-01-31
Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less
Ghoufi, Aziz; Dražević, Emil; Szymczyk, Anthony
2017-03-07
In this work we have examined a computational approach in predicting the interactions between uncharged organic solutes and polyamide membranes. We used three model organic molecules with identical molecular weights (100.1 g/mol), 4-aminopiperidine, 3,3-dimethyl-2-butanone (pinacolone) and methylisobutyl ketone for which we obtained experimental data on partitioning, diffusion and separation on a typical seawater reverse osmosis (RO) membrane. The interaction energy between the solutes and the membrane phase (fully aromatic polyamide) was computed from molecular dynamics (MD) simulations and the resulting sequence was found to correlate well with the experimental rejections and sorption data. Sorption of the different organic solutes within the membrane skin layer determined from attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) nicely agreed with interaction energies computed from molecular simulations. Qualitative information about solute diffusivity inside the membrane was also extracted from MD simulations while ATR-FTIR experiments indicated strongly hindered diffusion with diffusion coefficients in the membrane about 10 -15 m 2 /s. The computational approach presented here could be a first step toward predicting rejections trends of, for example, hormones and pharmaceuticals by RO dense membranes.
Substituted benzotriazoles as inhibitors of copper corrosion in borate buffer solutions
NASA Astrophysics Data System (ADS)
Agafonkina, M. O.; Andreeva, N. P.; Kuznetsov, Yu. I.; Timashev, S. F.
2017-08-01
The adsorption of substituted 1,2,3-benzotriazoles (R-BTAs) onto copper is measured via ellipsometry in a pure borate buffer (pH 7.4) and satisfactorily described by Temkin's isotherm. The adsorption free energy (-Δ G a 0 ) values of these azoles are determined. The (-Δ G a 0 ) values are found to rise as their hydrophobicity, characterized by the logarithm of the partition coefficient of a substituted BTA in a model octanol-water system (log P), grows. The minimum concentration sufficient for the spontaneous passivation of copper ( C min) and a shift in the potential of local copper depassivation with chlorides ( E pt) after an azole is added to the solution (i.e., Δ E = E pt in - E pt backgr characterizing the ability of its adsorption to stabilize passivation) are determined in the same solution containing a corrosion additive (0.01M NaCl) for each azole under study. Both criteria of the passivating properties of azoles (log C min and Δ E) are shown to correlate linearly with log P, testifying to the role played by surface activity of this family of organic inhibitors in protecting copper in an aqueous solution.
NASA Astrophysics Data System (ADS)
Yuan, Quan; Ma, Guangcai; Xu, Ting; Serge, Bakire; Yu, Haiying; Chen, Jianrong; Lin, Hongjun
2016-10-01
Poly-/perfluoroalkyl substances (PFASs) are a class of synthetic fluorinated organic substances that raise increasing concern because of their environmental persistence, bioaccumulation and widespread presence in various environment media and organisms. PFASs can be released into the atmosphere through both direct and indirect sources, and the gas/particle partition coefficient (KP) is an important parameter that helps us to understand their atmospheric behavior. In this study, we developed a temperature-dependent predictive model for log KP of PFASs and analyzed the molecular mechanism that governs their partitioning equilibrium between gas phase and particle phase. All theoretical computation was carried out at B3LYP/6-31G (d, p) level based on neutral molecular structures by Gaussian 09 program package. The regression model has a good statistical performance and robustness. The application domain has also been defined according to OECD guidance. The mechanism analysis shows that electrostatic interaction and dispersion interaction play the most important role in the partitioning equilibrium. The developed model can be used to predict log KP values of neutral fluorotelomer alcohols and perfluor sulfonamides/sulfonamidoethanols with different substitutions at nitrogen atoms, providing basic data for their ecological risk assessment.
Ali, Usman; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Katsoyiannis, Athanasios; Jones, Kevin C; Malik, Riffat Naseem
2015-06-01
Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002-0.53 ng g(-1) in the surface soils while 1.43-22.1 and 0.19-7.59 pg m(-3) in the passive air samples, respectively. Black carbon (fBC) and total organic carbon (fTOC) fractions were also measured and ranged between 0.73 and 1.75 and 0.04-0.2%, respectively. The statistical analysis revealed strong influence of fBC than fTOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta-bromodiphenylether (DE-71) commercial formulation in the study area. Soil-air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. Copyright © 2015 Elsevier Ltd. All rights reserved.
High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis
NASA Technical Reports Server (NTRS)
Righter, Kevin; Pando, K.; Humayun, M.; Danielson, L.
2011-01-01
The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred.
Improved image decompression for reduced transform coding artifacts
NASA Technical Reports Server (NTRS)
Orourke, Thomas P.; Stevenson, Robert L.
1994-01-01
The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.
Novel Lutein Loaded Lipid Nanoparticles on Porcine Corneal Distribution
Liu, Chi-Hsien; Chiu, Hao-Che; Wu, Wei-Chi; Sahoo, Soubhagya Laxmi; Hsu, Ching-Yun
2014-01-01
Topical delivery has the advantages including being user friendly and cost effective. Development of topical delivery carriers for lutein is becoming an important issue for the ocular drug delivery. Quantification of the partition coefficient of drug in the ocular tissue is the first step for the evaluation of delivery efficacy. The objectives of this study were to evaluate the effects of lipid nanoparticles and cyclodextrin (CD) on the corneal lutein accumulation and to measure the partition coefficients in the porcine cornea. Lipid nanoparticles combined with 2% HPβCD could enhance lutein accumulation up to 209.2 ± 18 (μg/g) which is 4.9-fold higher than that of the nanoparticles. CD combined nanoparticles have 68% of drug loading efficiency and lower cytotoxicity in the bovine cornea cells. From the confocal images, this improvement is due to the increased partitioning of lutein to the corneal epithelium by CD in the lipid nanoparticles. The novel lipid nanoparticles could not only improve the stability and entrapment efficacy of lutein but also enhance the lutein accumulation and partition in the cornea. Additionally the corneal accumulation of lutein was further enhanced by increasing the lutein payload in the vehicles. PMID:25101172
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casana, Rodolfo; Ferreira, Manoel M. Jr; Rodrigues, Josberg S.
2009-10-15
In this work, we examine the finite temperature properties of the CPT-even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}F{sup {alpha}}{sup {nu}}F{sup {rho}}{sup {phi}}. We begin analyzing the Hamiltonian structure following the Dirac's procedure for constrained systems and construct a well-defined and gauge invariant partition function in the functional integral formalism. Next, we specialize for the nonbirefringent coefficients of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. In the sequel, the partition function is explicitly carried out for the parity-even sector of the tensor W{sub {alpha}}{sub {nu}}{sub {rho}}{sub {phi}}. The modifiedmore » partition function is a power of the Maxwell's partition function. It is observed that the LIV coefficients induce an anisotropy in the black body angular energy density distribution. The Planck's radiation law, however, retains its frequency dependence and the Stefan-Boltzmann law keeps the usual form, except for a change in the Stefan-Boltzmann constant by a factor containing the LIV contributions.« less
Henneberger, Luise; Goss, Kai-Uwe; Endo, Satoshi
2016-07-05
The in vivo partitioning behavior of ionogenic organic chemicals (IOCs) is of paramount importance for their toxicokinetics and bioaccumulation. Among other proteins, structural proteins including muscle proteins could be an important sorption phase for IOCs, because of their high quantity in the human and other animals' body and their polar nature. Binding data for IOCs to structural proteins are, however, severely limited. Therefore, in this study muscle protein-water partition coefficients (KMP/w) of 51 systematically selected organic anions and cations were determined experimentally. A comparison of the measured KMP/w with bovine serum albumin (BSA)-water partition coefficients showed that anionic chemicals sorb more strongly to BSA than to muscle protein (by up to 3.5 orders of magnitude), while cations sorb similarly to both proteins. Sorption isotherms of selected IOCs to muscle protein are linear (i.e., KMP/w is concentration independent), and KMP/w is only marginally influenced by pH value and salt concentration. Using the obtained data set of KMP/w a polyparameter linear free energy relationship (PP-LFER) model was established. The derived equation fits the data well (R(2) = 0.89, RMSE = 0.29). Finally, it was demonstrated that the in vitro measured KMP/w values of this study have the potential to be used to evaluate tissue-plasma partitioning of IOCs in vivo.
Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece
NASA Astrophysics Data System (ADS)
Salapasidou, M.; Samara, C.; Voutsa, D.
2011-07-01
The aim of this study was to investigate the occurrence of endocrine disrupting compounds (EDCs) in a complex urban atmosphere. Target compounds were alkylphenols (NP, tOP, nOP), nonylphenol monoethoxylate (NP1EO), bisphenol A (BPA), tetrabromobisphenol A (TBBPA), and phthalates (DMP, DEP, DBP, BBP, DEHP, DNOP). EDCs were determined in ambient PM10 from two sampling sites, one urban-traffic and one urban-industrial, located in the city of Thessaloniki, northern Greece. At both sites, DEHP and NP were found to be the predominant EDCs in airborne PM10. Concentrations of NP did not exhibit any spatial difference, whereas concentrations of DEHP were significantly higher at the urban-traffic site. Wind direction was not found to have any significant effect on ambient EDCs concentrations suggesting impact from local sources rather than transport; however some peak concentrations might be attributed to short-distance sources. The gas/particle partition coefficient, Kp, and the gaseous phase of EDCs were calculated by employing two approaches based on literature data (a) for the subcooled liquid vapor pressure ( PL0) and (b) the octanol-air partition coefficient ( KOA). It appeared that the g/ p partition of phthalates estimated by the KOA approach is in better agreement with experimental partition data reported by other investigators. Absorption in organic matter was found to be significant partition mechanism at the urban-traffic site.
Missel, P J
2000-01-01
Four methods are proposed for modeling diffusion in heterogeneous media where diffusion and partition coefficients take on differing values in each subregion. The exercise was conducted to validate finite element modeling (FEM) procedures in anticipation of modeling drug diffusion with regional partitioning into ocular tissue, though the approach can be useful for other organs, or for modeling diffusion in laminate devices. Partitioning creates a discontinuous value in the dependent variable (concentration) at an intertissue boundary that is not easily handled by available general-purpose FEM codes, which allow for only one value at each node. The discontinuity is handled using a transformation on the dependent variable based upon the region-specific partition coefficient. Methods were evaluated by their ability to reproduce a known exact result, for the problem of the infinite composite medium (Crank, J. The Mathematics of Diffusion, 2nd ed. New York: Oxford University Press, 1975, pp. 38-39.). The most physically intuitive method is based upon the concept of chemical potential, which is continuous across an interphase boundary (method III). This method makes the equation of the dependent variable highly nonlinear. This can be linearized easily by a change of variables (method IV). Results are also given for a one-dimensional problem simulating bolus injection into the vitreous, predicting time disposition of drug in vitreous and retina.
Bras, Eduardo J S; Soares, Ruben R G; Azevedo, Ana M; Fernandes, Pedro; Arévalo-Rodríguez, Miguel; Chu, Virginia; Conde, João P; Aires-Barros, M Raquel
2017-09-15
Antibodies and other protein products such as interferons and cytokines are biopharmaceuticals of critical importance which, in order to be safely administered, have to be thoroughly purified in a cost effective and efficient manner. The use of aqueous two-phase extraction (ATPE) is a viable option for this purification, but these systems are difficult to model and optimization procedures require lengthy and expensive screening processes. Here, a methodology for the rapid screening of antibody extraction conditions using a microfluidic channel-based toolbox is presented. A first microfluidic structure allows a simple negative-pressure driven rapid screening of up to 8 extraction conditions simultaneously, using less than 20μL of each phase-forming solution per experiment, while a second microfluidic structure allows the integration of multi-step extraction protocols based on the results obtained with the first device. In this paper, this microfluidic toolbox was used to demonstrate the potential of LYTAG fusion proteins used as affinity tags to optimize the partitioning of antibodies in ATPE processes, where a maximum partition coefficient (K) of 9.2 in a PEG 3350/phosphate system was obtained for the antibody extraction in the presence of the LYTAG-Z dual ligand. This represents an increase of approx. 3.7 fold when compared with the same conditions without the affinity molecule (K=2.5). Overall, this miniaturized and versatile approach allowed the rapid optimization of molecule partition followed by a proof-of-concept demonstration of an integrated back extraction procedure, both of which are critical procedures towards obtaining high purity biopharmaceuticals using ATPE. Copyright © 2017 Elsevier B.V. All rights reserved.
Isotopic fractionation of volatile species during bubble growth in magmas
NASA Astrophysics Data System (ADS)
Watson, E. B.
2016-12-01
Bubbles grow in decompressing magmas by simple expansion and also by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate isotopes, raising the possibility that the isotopic character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the complete absence of equilibrium vapor/melt isotopic fractionation. None of the foregoing is conceptually new, but recent experimental studies have established the existence of isotope mass effects on diffusion in silicate melts for several elements (Li, Mg, Ca, Fe), and this finding has now been extended to the volatile (anionic) element chlorine (Fortin et al. 2016; this meeting). Knowledge of isotope mass effects on diffusion of volatile species opens the way for quantitative models of diffusive fractionation during bubble growth. Significantly different effects are anticipated for "passive" volatiles (e.g., noble gases and Cl) that are partitioned into existing bubbles but play little role in nucleation and growth, as opposed to "active" volatiles whose limited solubilities lead to bubble nucleation during magma decompression. Numerical solution of the appropriate diffusion/mass-conservation equations reveals that the isotope effect on passive volatiles partitioned into bubbles growing at a constant rate in a static system depends (predictably) upon R/D, Kd and D1/D2 (R = growth rate; D = diffusivity; Kd = bubble/melt partition coefficient; D1/D2 = diffusivity ratio of the isotopes of interest). Constant R is unrealistic, but other scenarios can be explored by including the solubility and EOS of an "active" volatile (e.g., CO2) in numerical simulations of bubble growth. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble.
Solvation models, based on fundamental chemical structure theory, were developed in the SPARC mechanistic tool box to predict a large array of physical properties of organic compounds in water and in non-aqueous solvents strictly from molecular structure. The SPARC self-interact...
PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL
The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...
Prediction of Log "P": ALOGPS Application in Medicinal Chemistry Education
ERIC Educational Resources Information Center
Kujawski, Jacek; Bernard, Marek K.; Janusz, Anna; Kuzma, Weronika
2012-01-01
Molecular hydrophobicity (lipophilicity), usually quantified as log "P" where "P" is the partition coefficient, is an important molecular characteristic in medicinal chemistry and drug design. The log "P" coefficient is one of the principal parameters for the estimation of lipophilicity of chemical compounds and pharmacokinetic properties. The…
On the enrichment of hydrophobic organic compounds in fog droplets
NASA Astrophysics Data System (ADS)
Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.
The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.
Octanol-air partition coefficients of polybrominated biphenyls.
Hongxia, Zhao; Jingwen, Chen; Xie, Quan; Baocheng, Qu; Xinmiao, Liang
2009-03-01
The octanol-air partition coefficients (K(OA)) for PBB15, PBB26, PBB31, PBB49, PBB103 and PBB153 were determined as a function of temperature using a gas chromatographic retention time technique with 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p'-DDT) as a reference substance. The internal energies of phase change from octanol to air (Delta(OA)U) were calculated for the six compounds and were in the range from 74 to 116 kJ mol(-1). Simple regression equations of log K(OA) versus relative retention times (RRTs) on gas chromatography (GC), and log K(OA) versus molecular connectivity indexes (MCI) were obtained, for which the correlation coefficients (r(2)) were greater than 0.985 at 283.15K and 298.15K. Thus the K(OA) values of the remaining PBBs can be predicted by using their RRTs and MCI according to these relationships.
NASA Astrophysics Data System (ADS)
Ripley, Edward M.; Brophy, James G.; Li, Chusi
2002-09-01
The solubility of copper in a sulfur-saturated basaltic melt has been determined at 1245°C as a function of fO 2 and fS 2. Copper solubilities at log fO 2 values between -8 and -11 fall into two distinct populations as a function of fS 2. At log fS 2 values < -1.65, sulfide liquid that coexists with the basaltic glass quenches to sulfur-poor bornite solid solution. At log fS 2 values in excess of -1.65, the sulfide liquid quenches to a complex intergrowth of sulfur-rich bornite and intermediate solid solution. Copper solubilities in the low-fS 2 population range from 594 to 1550 ppm, whereas those in the high-fS 2 population range from 80 to 768 ppm. Sulfide liquid/silicate liquid partition coefficients (D) for Cu and Fe range from 480 to 1303 and 0.7 to 13.6, respectively. Metal-sulfur complexing in the silicate liquid is shown to be insignificant relative to metal-oxide complexing for Fe but permissible for Cu at high fS 2 values. On log D Fe (sulfide-silicate) and log D Cu (sulfide-silicate) vs. 1/2 (log fS 2 - log fO 2) diagrams, both fS 2 populations show distinct but parallel trends. The observation of two D values for any fS 2/fO 2 ratio indicates nonideal mixing of species involved in the exchange reaction. The two distinct trends observed for both Cu and Fe are thought to be due to variations in activity coefficient ratios (e.g., γ FeO/γ FeS and γ CuO 0.5/γ CuS 0.5). Results of the experiments suggest that accurate assessments of fS 2/fO 2 ratios are required for the successful numerical modeling of processes such as the partial melting of sulfide-bearing mantle and the crystallization of sulfide-bearing magmas, as well as the interpretation of sulfide mineralogical zoning. In addition, the experiments provide evidence for oxide or oxy-sulfide complexing for Cu in silicate magmas and suggest that the introduction of externally derived sulfur to mafic magma may be an important process for the formation of Cu-rich disseminated magmatic sulfide ore deposits.
Characterization and Application of Passive Samplers for Monitoring of Pesticides in Water.
Ahrens, Lutz; Daneshvar, Atlasi; Lau, Anna E; Kreuger, Jenny
2016-08-03
Five different water passive samplers were calibrated under laboratory conditions for measurement of 124 legacy and current used pesticides. This study provides a protocol for the passive sampler preparation, calibration, extraction method and instrumental analysis. Sampling rates (RS) and passive sampler-water partition coefficients (KPW) were calculated for silicone rubber, polar organic chemical integrative sampler POCIS-A, POCIS-B, SDB-RPS and C18 disk. The uptake of the selected compounds depended on their physicochemical properties, i.e., silicone rubber showed a better uptake for more hydrophobic compounds (log octanol-water partition coefficient (KOW) > 5.3), whereas POCIS-A, POCIS-B and SDB-RPS disk were more suitable for hydrophilic compounds (log KOW < 0.70).
NASA Astrophysics Data System (ADS)
Naseem, Bushra; Shah, S. W. H.; Hasan, Aurangzeb; Sakhawat Shah, S.
2010-04-01
Quantitative parameters for interaction of flavonoids—the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, Kc. Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities.
Diehl, Roger C.; Guinn, Emily J.; Capp, Michael W.; Tsodikov, Oleg V.; Record, M. Thomas
2013-01-01
To quantify interactions of the osmolyte L-proline with protein functional groups and predict its effects on protein processes, we use vapor pressure osmometry to determine chemical potential derivatives dµ2/dm3 = µ23 quantifying preferential interactions of proline (component 3) with 21 solutes (component 2) selected to display different combinations of aliphatic or aromatic C, amide, carboxylate, phosphate or hydroxyl O, and/or amide or cationic N surface. Solubility data yield µ23 values for 4 less-soluble solutes. Values of µ23 are dissected using an ASA-based analysis to test the hypothesis of additivity and obtain α-values (proline interaction potentials) for these eight surface types and three inorganic ions. Values of µ23 predicted from these α-values agree with experiment, demonstrating additivity. Molecular interpretation of α-values using the solute partitioning model yields partition coefficients (Kp) quantifying the local accumulation or exclusion of proline in the hydration water of each functional group. Interactions of proline with native protein surface and effects of proline on protein unfolding are predicted from α-values and ASA information and compared with experimental data, with results for glycine betaine and urea, and with predictions from transfer free energy analysis. We conclude that proline stabilizes proteins because of its unfavorable interactions with (exclusion from) amide oxygens and aliphatic hydrocarbon surface exposed in unfolding, and that proline is an effective in vivo osmolyte because of the osmolality increase resulting from its unfavorable interactions with anionic (carboxylate and phosphate) and amide oxygens and aliphatic hydrocarbon groups on the surface of cytoplasmic proteins and nucleic acids. PMID:23909383
Relationship between refractive index and mineral content of enamel and dentin using SS-OCT and TMR
NASA Astrophysics Data System (ADS)
Hariri, Ilnaz; Sadr, Alireza; Shimada, Yasushi; Nakashima, Syozi; Sumi, Yasunori; Tagami, Junji
2012-01-01
The aim of this work was to investigate relationship between refractive index (n) and mineral content (MC) (vol %) of enamel and dentin using swept-source optical coherence tomography (SS-OCT) and transverse microradiography (TMR). Enamel and dentin blocks were partitioned into three regions. The middle partition of each sample was covered with a nail polish to protect the sound area during exposure to the treatment solutions. Samples were demineralized in a demineralizing solution, which was refreshed once a week, for 2 months. One window was covered with acid-resistant varnish, leaving the other window exposed; the samples were placed in a solution for remineralization. Samples then were sliced into disks with thickness of 300 μm to 400 μm and placed on metal plate in order to capture cross-sectional images of sound, demineralized and remineralized regions by OCT at 1319 nm center wavelength. The n then was calculated via formula using image analysis software. Following n measurement, these specimens were further polished for the TMR analysis. Correlation between OCT n and TMR MC was examined. A significant and highly positive correlation was found between the measured n and the actual MC at the corresponding locations (Pearson correlation coefficients (r) were 0.94 and 0.97 in enamel and 0.95 and 0.91 in dentin after de-/remineralization process, respectively p < 0.05). OCT showed a potential for quantitative analysis of the mineral loss or gain by measuring of the n in vitro. Supported by the grant from the Japanese Ministry of Education, Global Center of Excellence (GCOE) Program, "International Research Center for Molecular Science in Tooth and Bone Diseases."
Relation of organic contaminant equilibrium sorption and kinetic uptake in plants
Li, H.; Sheng, G.; Chiou, C.T.; Xu, O.
2005-01-01
Plant uptake is one of the environmental processes that influence contaminant fate. Understanding the magnitude and rate of plant uptake is critical to assessing potential crop contamination and the development of phytoremediation technologies. We determined (1) the partition-dominated equilibrium sorption of lindane (LDN) and hexachlorobenzene (HCB) by roots and shoots of wheat seedlings, (2) the kinetic uptake of LDN and HCB by roots and shoots of wheat seedlings, (3) the kinetic uptake of HCB, tetrachloroethylene (PCE), and trichloroethylene (TCE) by roots and shoots of ryegrass seedlings, and (4) the lipid, carbohydrate, and water contents of the plants. Although the determined sorption and the plant composition together suggest the predominant role of plant lipids for the sorption of LDN and HCB, the predicted partition with lipids of LDN and HCB using the octanol-water partition coefficients is notably lower than the measured sorption, due presumably to underestimation of the plant lipid contents and to the fact that octanol is less effective as a partition medium than plant lipids. The equilibrium sorption or the estimated partition can be viewed as the kinetic uptake limits. The uptakes of LDN, PCE, and TCE from water at fixed concentrations increased with exposure time in approach to steady states. The uptake of HCB did not reach a plateau within the tested time because of its exceptionally high partition coefficient. In all of the cases, the observed uptakes were lower than their respective limits, due presumably to contaminant dissipation in and limited water transpiration by the plants. ?? 2005 American Chemical Society.
Experimental Study of the Partitioning of Siderophile Elements in a Crystallizing Lunar Magma Ocean
NASA Technical Reports Server (NTRS)
Galenas, M.; Righter, K.; Danielson, L.; Pando, K.; Walker, R. J.
2012-01-01
The distributions of trace elements between the lunar interior and pristine crustal rocks were controlled by the composition of starting materials, lunar core formation, and crystallization of the lunar magma ocean (LMO) [1]. This study focuses on the partitioning of highly siderophile elements (HSE) including Re, Os, Ir, Ru, Pt, Rh, Pd and Au as well as the moderately siderophile elements Mo and W, and the lithophile elements of Hf and Sr. Our experiments also include Ga, which can be slightly siderophile, but is mostly considered to be chalcophile. Partitioning of these elements is not well known at the conditions of a crystallizing LMO. Previous studies of HSE partitioning in silicate systems have yielded highly variable results for differing oxygen fugacity (fO2) and pressure [2-4]. For example, under certain conditions Pt is compatible in clinopy-roxene [2] and Rh and Ru are compatible in olivine [3]. The silicate compositions used for these experiments were nominally basaltic. Ruthenium, Rh, and Pd are incompatible in plagioclase under these conditions[4]. However, this latter study was done at extremely oxidizing conditions and at atmospheric pressure, possibly limiting the applicability for consideration of conditions of a crystallizing LMO. In this study we address the effects of pressure and oxygen fugacity on the crystal/liquid partition coefficients of these trace elements. We are especially interested in the plagioclase/melt partition coefficients so that it may be possible to use reverse modeling to constrain the concentrations of these elements in the lunar mantle through their abundances in pristine crustal rocks.
Yang, Yang; Wang, Meie; Chen, Weiping; Li, Yanling; Peng, Chi
2017-07-12
Solid-solution partitioning coefficient (K d ) and plant uptake factor (PUF) largely determine the solubility and mobility of soil Cd to food crops. A four-year regional investigation was conducted in contaminated vegetable and paddy fields of southern China to quantify the variability in K d and PUF. The distributions of K d and PUF characterizing transfers of Cd from soil to vegetable and rice are probabilistic in nature. Dynamics in soil pH and soil Zn greatly affected the variations of K d . In addition to soil pH, soil organic matter had a major influence on PUF variations in vegetables. Heavy leaching of soil Mn caused a higher Cd accumulation in rice grain. Dietary ingestion of 85.5% of the locally produced vegetable and rice would have adverse health risks, with rice consumption contributing 97.2% of the risk. A probabilistic risk analysis based on derived transfer function reveals the amorphous Mn oxide content exerts a major influence on Cd accumulation in rice in pH conditions below 5.5. Risk estimation and field experiments show that to limit the Cd concentration in rice grains, soil management strategies should include improving the pH and soil Mn concentration to around 6.0 and 345 mg kg -1 , respectively. Our work illustrates that re-establishing a balance in trace elements in soils' labile pool provides an effective risk-based approach for safer crop practices.
Puglia, C; Bonina, F; Trapani, G; Franco, M; Ricci, M
2001-10-09
Clonazepam and lorazepam are two anxiolytics, antidepressant agents, having suitable features for transdermal delivery. The objectives of this study were to evaluate the in vitro percutaneous absorption of these drugs through excised human skin (stratum corneum and epidermis, SCE) and to determine their in vitro permeation behavior from a series of hydro-alcoholic gel formulations containing various enhancing agents. The best permeation profile was obtained for both drugs applying them together with Azone in combination with propylene glycol (PG): these enhancers were able to increase the clonazepam and lorazepam percutaneous fluxes at steady-state about threefold, compared to the free enhancer formulations (Control). To explain the mechanism of the used promoters, the benzodiazepine diffusion and partitioning coefficients from the gel containing the enhancers were calculated. The results indicated that the Azone in combination with PG could act by increasing the benzodiazepine diffusion coefficients, Transcutol increased only the SC/vehicle partition coefficients, limonene in combination with PG appeared to increase both partition and diffusion coefficients moderately, while PG did not increase both the parameters. Furthermore, to evaluate the potential application of tested benzodiazepine formulations containing Azone in combination with PG using the flux values from the in vitro experiments, the corresponding steady-state plasma concentrations (C(SS)) were calculated. The obtained calculated C(SS) values are within the lorazepam therapeutic range and suggest that transdermal delivery of this drug could be regarded as feasible.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Yang, S.; Humayun, M.
2018-01-01
Metallic cores contain light alloying elements that can be a combination of S, C, Si, and O, all of which have important chemical and physical influences. For Earth, Si may be the most abundant light element in the core. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE), and thus the partitioning behavior of those elements between core and mantle. The effect of Si on the highly siderophile elements is only beginning to be studied and the effects on Au, Pd and Pt are significant. Here we report new experiments designed to quantify the effect of Si on the partitioning of Re between metal and silicate melt. A solid understanding of Re partitioning is required for a complete understanding of the Re-Os isotopic systems. The results will be applied to understanding the HSEs and Os isotopic data for planetary mantles, and especially Earth.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.
2017-01-01
Earth's core contains approximately 10% of a light element that is likely a combination of S, C, Si, and O, with Si possibly being the most abundant light element. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Pt (with Re and Ru in progress or planned) between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle Pt concentrations.
NASA Technical Reports Server (NTRS)
Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.
2016-01-01
Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.
Román, Iván P; Mastromichali, Anna; Tyrovola, Konstantina; Canals, Antonio; Psillakis, Elefteria
2014-02-21
Vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography (HPLC) is proposed here for the rapid determination of octanol-water partitioning coefficients (Kow). VALLME uses vortex agitation, a mild emulsification procedure, to disperse microvolumes of octanol in the aqueous phase thus increasing the interfacial contact area and ensuring faster partitioning rates. With VALLME, 2min were enough to achieve equilibrium conditions between the octanolic and aqueous phases. Upon equilibration, separation was achieved using centrifugation and the octanolic microdrop was collected and analyzed in a HPLC system. Six model compounds with logKow values ranging between ∼0.5 and 3.5 were used during the present investigations. The proposed method produced logKow values that were consistent with previously published values and the recorded uncertainty was well within the acceptable log unit range. Overall, the key features of the proposed Kow determination procedure comprised speed, reliability, simplicity, low cost and minimal solvent consumption. Copyright © 2014 Elsevier B.V. All rights reserved.
Pereira, W.E.; Rostad, C.E.; Chiou, C.T.; Brinton, T.I.; Barber, L.B.; Demcheck, D.K.; Demas, C.R.
1988-01-01
Studies conducted in the vicinity of an industrial outfall in the Calcasieu River estuary, Louisiana, have shown that water, bottom and suspended sediment, and four different species of biota are contaminated with halogenated organic compounds (HOC) including haloarenes. A "salting-out" effect in the estuary moderately enhanced the partitioning tendency of the contaminants into biota and sediments. Contaminant concentrations in water, suspended sediments, and biota were found to be far below the values predicted on the basis of the assumption of phase equilibria with respect to concentrations in bottom sediment. Relative concentration factors of HOC between biota (catfish) and bottom sediment increased with increasing octanol/estuarine water partition coefficients (Kow*), maximizing at log Kow* of about 5, although these ratios were considerably less than equilibrium values. In contrast, contaminant concentrations in water, biota, and suspended sediments were much closer to equilibrium values. Bioconcentration factors of HOC determined on the basis of lipid content for four different biotic species correlated reasonably well with equilibrium triolein/water partition coefficients (Ktw).
NASA Astrophysics Data System (ADS)
Wu, Jia; Koga, Kenneth T.
2013-10-01
Mechanisms of volatile element transfer from subducting slab to the melting region beneath arc volcanoes are probably the least understood process in arc magma genesis. Fluorine, which suffers minimal degassing in arc primitive melt inclusions, is highly enriched in arc lavas and retains information about the role of volatiles during magma genesis at depth. Experimentally determined solubility of F in aqueous fluids, and partition coefficients of F between fluid and minerals provide first order geochemical constraints about the character of the volatile-transporting agent. We present experimentally determined F solubility in fluid in equilibrium with hornblende and a humite group mineral at 1 GPa, from 770 to 947 °C, and partition coefficients between these phases. The composition of the fluid is determined by mass-balance calculations and consistency is verified by high pressure liquid chromatography measurements of the quenched fluids. The partition coefficient DFFlu /Hb can be represented by a single value of 0.13 ± 0.03. The average F concentration in the fluid is 2700 ppm for F-rich experiments, constraining the maximum amount of F carried by fluid in the presence of amphibole. Where the initial natural F concentrations in the slab are much lower than in our experiments, the increase of F concentration in the sub-arc mantle by a fluid in equilibrium with hornblende is expected to be no more than a few ppm. Thus significant arc lava F enrichments cannot result from aqueous fluids deriving from an amphibole-bearing subducting slab.
NASA Astrophysics Data System (ADS)
Li, Y.-F.; Ma, W.-L.; Yang, M.
2015-02-01
Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM -11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring Program, Phase 2 (China-SAMP-II) program and other monitoring programs worldwide, including in Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that the newly developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G/P partitioning behavior over decades. We suggest that the investigation on G/P partitioning behavior for PBDEs should be based onsteady-state, not equilibrium state, and equilibrium is just a special case of steady-state when non-equilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G/P partitioning of PBDEs and can be extended to predict G/P partitioning behavior for other SVOCs as well.
NASA Astrophysics Data System (ADS)
Edmonds, Marie
2015-02-01
An enigmatic record of light lithophile element (LLE) zoning in pyroxenes in basaltic shergottite meteorites, whereby LLE concentrations decrease dramatically from the cores to the rims, has been interpreted as being due to partitioning of LLE into a hydrous vapor during magma ascent to the surface on Mars. These trends are used as evidence that Martian basaltic melts are water-rich (McSween et al., 2001). Lithium and boron are light lithophile elements (LLE) that partition into volcanic minerals and into vapor from silicate melts, making them potential tracers of degassing processes during magma ascent to the surface of Earth and of other planets. While LLE degassing behavior is relatively well understood for silica-rich melts, where water and LLE concentrations are relatively high, very little data exists for LLE abundance, heterogeneity and degassing in basaltic melts. The lack of data hampers interpretation of the trends in the shergottite meteorites. Through a geochemical study of LLE, volatile and trace elements in olivine-hosted melt inclusions from Kilauea Volcano, Hawaii, it can be demonstrated that lithium behaves similarly to the light to middle rare Earth elements during melting, magma mixing and fractionation. Considerable heterogeneity in lithium and boron is inherited from mantle-derived primary melts, which is dominant over the fractionation and degassing signal. Lithium and boron are only very weakly volatile in basaltic melt erupted from Kilauea Volcano, with vapor-melt partition coefficients <0.1. Degassing of LLE is further inhibited at high temperatures. Pyroxene and associated melt inclusion LLE concentrations from a range of volcanoes are used to quantify lithium pyroxene-melt partition coefficients, which correlate negatively with melt H2O content, ranging from 0.13 at low water contents to <0.08 at H2O contents >4 wt%. The observed terrestrial LLE partitioning behavior is extrapolated to Martian primitive melts through modeling. The zoning observed in the shergottite pyroxenes is only consistent with degassing of LLE from a Martian melt near its liquidus temperature if the vapor-melt partition coefficient was an order of magnitude larger than observed on Earth. The range in LLE and trace elements observed in shergottite pyroxenes are instead consistent with concurrent mixing and fractionation of heterogeneous melts from the mantle.
The Installation Restoration Program Toxicology Guide. Volume 4
1989-07-01
64.15 64-5 JP-4 Fuel-Water Partition Coefficients (K,) for Selected Hydrocarbons .......................... 64-20 04-6 Acute Toxicity of Components of JP...65.11 65-3 Equilibrium Partitioning of Select Gasoline Hydrocarbons in Model Environments ............... 65-14 65-4 Acute Toxicity of Components o...66-27 66-5 Acute Toxicity of Components of Fuel Oils ............ 66-37 67-1 Composition Dat,- for Stoddard Solvent
Chiou, C.T.; Shoup, T.D.; Porter, P.E.
1985-01-01
Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.
Lomond, Jasmine S; Tong, Anthony Z
2011-01-01
Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polder, M.D.; Hulzebos, E.M.; Jager, D.T.
1998-01-01
This literature study is performed to support the implementation of two models in a risk assessment system for the evaluation of chemicals and their risk for human health and the environment. One of the exposure pathways for humans and cattle is the uptake of chemicals by plants. In this risk assessment system the transfer of gaseous organic substances from air to plants modeled by Riederer is included. A similar model with a more refined approach, including dilution by growth, is proposed by Trapp and Matthies, which was implemented in the European version of this risk assessment system (EUSES). In thismore » study both models are evaluated by comparison with experimental data on leaf/air partition coefficients found in the literature. For herbaceous plants both models give good estimations for the leaf/air partition coefficient up to 10{sup 7}, with deviations for most substances within a factor of five. For the azalea and spruce group the fit between experimental BCF values and the calculated model values is less adequate. For substances for which Riederer estimates a leaf/air partition coefficient above 10{sup 7}, the approach of Trapp and Matthies seems more adequate; however, few data were available.« less
Hamad, Samera Hussein; Schauer, James Jay; Shafer, Martin Merrill; Abed Al-Raheem, Esam; Satar, Hyder
2012-01-01
The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world) within Baghdad city and in its major tributary (Diyala River) from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt) in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40) > Th(35) > Fe(15) > Al(13) > Pb(4.5)] ∗ 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L). A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris. PMID:23304083
Godayol, Anna; Alonso, Mònica; Sanchez, Juan M; Anticó, Enriqueta
2013-03-01
A quantification method based on solid-phase microextraction followed by GC coupled to MS was developed for the determination of gas-liquid partition coefficients and for the air monitoring of a group of odour-causing compounds that had previously been found in wastewater samples including dimethyl disulphide, phenol, indole, skatole, octanal, nonanal, benzothiazole and some terpenes. Using a divinylbenzene/carboxen/polydimethylsiloxane fibre, adsorption kinetics have been studied to define an extraction time that would avoid coating saturation. It was found that for an extraction time of 10 min, external calibration could be performed in the range of 0.4-100 μg/m(3), with detection limits between 0.1 and 20 μg/m(3). Inter-day precision of the developed method was evaluated (n = 5) and RSD values between 12 and 24% were obtained for all compounds. The proposed method has been applied to the analysis of air samples surrounding a wastewater treatment plant in Catalonia (Spain). In all air samples evaluated, dimethyl disulphide, limonene and phenol were detected, and the first two were the compounds that showed the highest partition coefficients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Population pharmacokinetics of phenytoin in critically ill children.
Hennig, Stefanie; Norris, Ross; Tu, Quyen; van Breda, Karin; Riney, Kate; Foster, Kelly; Lister, Bruce; Charles, Bruce
2015-03-01
The objective was to study the population pharmacokinetics of bound and unbound phenytoin in critically ill children, including influences on the protein binding profile. A population pharmacokinetic approach was used to analyze paired protein-unbound and total phenytoin plasma concentrations (n = 146 each) from 32 critically ill children (0.08-17 years of age) who were admitted to a pediatric hospital, primarily intensive care unit. The pharmacokinetics of unbound and bound phenytoin and the influence of possible influential covariates were modeled and evaluated using visual predictive checks and bootstrapping. The pharmacokinetics of protein-unbound phenytoin was described satisfactorily by a 1-compartment model with first-order absorption in conjunction with a linear partition coefficient parameter to describe the binding of phenytoin to albumin. The partitioning coefficient describing protein binding and distribution to bound phenytoin was estimated to be 8.22. Nonlinear elimination of unbound phenytoin was not supported in this patient group. Weight, allometrically scaled for clearance and volume of distribution for the unbound and bound compartments, and albumin concentration significantly influenced the partition coefficient for protein binding of phenytoin. The population model can be applied to estimate the fraction of unbound phenytoin in critically ill children given an individual's albumin concentration. © 2014, The American College of Clinical Pharmacology.
Allgayer, H; Sonnenbichler, J; Kruis, W; Paumgartner, G
1985-01-01
Sulphasalazine (SASP), used in the treatment of inflammatory bowel disease, is split into sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) in the colon. Lower plasma levels of SASP and 5-ASA as compared to those of SP may be due to different absorption rates from the colon because of different pK values and pH dependent lipid-water partition coefficients. In this study we determined the pK values of 5-ASA and its major metabolite, N-acetyl amino-salicylic acid (AcASA), by 13C-NMR spectroscopy and compared the pH dependent apparent benzene-water partition coefficients (Papp) of SASP, SP and 5-ASA with respect to their different plasma levels. The COOH group of 5-ASA had a pK value of 3.0, the -NH3+ group had 6.0, the -OH group 13.9; the -COOH group of AcASA had 2.7 and the -OH group 12.9; The Papp of SASP (0.042 +/- 0.004) and 5-ASA (0.059 +/- 0.01) were significantly lower than that of SP (0.092 +/- 0.03) (at pH 5.5).