MAG3D and its application to internal flowfield analysis
NASA Technical Reports Server (NTRS)
Lee, K. D.; Henderson, T. L.; Choo, Y. K.
1992-01-01
MAG3D (multiblock adaptive grid, 3D) is a 3D solution-adaptive grid generation code which redistributes grid points to improve the accuracy of a flow solution without increasing the number of grid points. The code is applicable to structured grids with a multiblock topology. It is independent of the original grid generator and the flow solver. The code uses the coordinates of an initial grid and the flow solution interpolated onto the new grid. MAG3D uses a numerical mapping and potential theory to modify the grid distribution based on properties of the flow solution on the initial grid. The adaptation technique is discussed, and the capability of MAG3D is demonstrated with several internal flow examples. Advantages of using solution-adaptive grids are also shown by comparing flow solutions on adaptive grids with those on initial grids.
NASA Technical Reports Server (NTRS)
Nakamura, S.
1983-01-01
The effects of truncation error on the numerical solution of transonic flows using the full potential equation are studied. The effects of adapting grid point distributions to various solution aspects including shock waves is also discussed. A conclusion is that a rapid change of grid spacing is damaging to the accuracy of the flow solution. Therefore, in a solution adaptive grid application an optimal grid is obtained as a tradeoff between the amount of grid refinement and the rate of grid stretching.
On Accuracy of Adaptive Grid Methods for Captured Shocks
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2002-01-01
The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.
The use of solution adaptive grids in solving partial differential equations
NASA Technical Reports Server (NTRS)
Anderson, D. A.; Rai, M. M.
1982-01-01
The grid point distribution used in solving a partial differential equation using a numerical method has a substantial influence on the quality of the solution. An adaptive grid which adjusts as the solution changes provides the best results when the number of grid points available for use during the calculation is fixed. Basic concepts used in generating and applying adaptive grids are reviewed in this paper, and examples illustrating applications of these concepts are presented.
A solution-adaptive hybrid-grid method for the unsteady analysis of turbomachinery
NASA Technical Reports Server (NTRS)
Mathur, Sanjay R.; Madavan, Nateri K.; Rajagopalan, R. G.
1993-01-01
A solution-adaptive method for the time-accurate analysis of two-dimensional flows in turbomachinery is described. The method employs a hybrid structured-unstructured zonal grid topology in conjunction with appropriate modeling equations and solution techniques in each zone. The viscous flow region in the immediate vicinity of the airfoils is resolved on structured O-type grids while the rest of the domain is discretized using an unstructured mesh of triangular cells. Implicit, third-order accurate, upwind solutions of the Navier-Stokes equations are obtained in the inner regions. In the outer regions, the Euler equations are solved using an explicit upwind scheme that incorporates a second-order reconstruction procedure. An efficient and robust grid adaptation strategy, including both grid refinement and coarsening capabilities, is developed for the unstructured grid regions. Grid adaptation is also employed to facilitate information transfer at the interfaces between unstructured grids in relative motion. Results for grid adaptation to various features pertinent to turbomachinery flows are presented. Good comparisons between the present results and experimental measurements and earlier structured-grid results are obtained.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
Comparing Anisotropic Output-Based Grid Adaptation Methods by Decomposition
NASA Technical Reports Server (NTRS)
Park, Michael A.; Loseille, Adrien; Krakos, Joshua A.; Michal, Todd
2015-01-01
Anisotropic grid adaptation is examined by decomposing the steps of flow solution, ad- joint solution, error estimation, metric construction, and simplex grid adaptation. Multiple implementations of each of these steps are evaluated by comparison to each other and expected analytic results when available. For example, grids are adapted to analytic metric fields and grid measures are computed to illustrate the properties of multiple independent implementations of grid adaptation mechanics. Different implementations of each step in the adaptation process can be evaluated in a system where the other components of the adaptive cycle are fixed. Detailed examination of these properties allows comparison of different methods to identify the current state of the art and where further development should be targeted.
Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Pulliam, Thomas H.
2011-01-01
An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.
Near-Body Grid Adaption for Overset Grids
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Pulliam, Thomas H.
2016-01-01
A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.
Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockard, David P.
2013-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.
New multigrid approach for three-dimensional unstructured, adaptive grids
NASA Technical Reports Server (NTRS)
Parthasarathy, Vijayan; Kallinderis, Y.
1994-01-01
A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Everton, Eric L.
1990-01-01
An interactive grid adaption method is developed, discussed and applied to the unsteady flow about an oscillating airfoil. The user is allowed to have direct interaction with the adaption of the grid as well as the solution procedure. Grid points are allowed to adapt simultaneously to several variables. In addition to the theory and results, the hardware and software requirements are discussed.
SAGE - MULTIDIMENSIONAL SELF-ADAPTIVE GRID CODE
NASA Technical Reports Server (NTRS)
Davies, C. B.
1994-01-01
SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is acceptable since it makes possible an overall and local error reduction through grid redistribution. SAGE includes the ability to modify the adaption techniques in boundary regions, which substantially improves the flexibility of the adaptive scheme. The vectorial approach used in the analysis also provides flexibility. The user has complete choice of adaption direction and order of sequential adaptions without concern for the computational data structure. Multiple passes are available with no restraint on stepping directions; for each adaptive pass the user can choose a completely new set of adaptive parameters. This facility, combined with the capability of edge boundary control, enables the code to individually adapt multi-dimensional multiple grids. Zonal grids can be adapted while maintaining continuity along the common boundaries. For patched grids, the multiple-pass capability enables complete adaption. SAGE is written in FORTRAN 77 and is intended to be machine independent; however, it requires a FORTRAN compiler which supports NAMELIST input. It has been successfully implemented on Sun series computers, SGI IRIS's, DEC MicroVAX computers, HP series computers, the Cray YMP, and IBM PC compatibles. Source code is provided, but no sample input and output files are provided. The code reads three datafiles: one that contains the initial grid coordinates (x,y,z), one that contains corresponding flow-field variables, and one that contains the user control parameters. It is assumed that the first two datasets are formatted as defined in the plotting software package PLOT3D. Several machine versions of PLOT3D are available from COSMIC. The amount of main memory is dependent on the size of the matrix. The standard distribution medium for SAGE is a 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. SAGE was developed in 1989, first released as a 2D version in 1991 and updated to 3D in 1993.
An adaptive grid algorithm for one-dimensional nonlinear equations
NASA Technical Reports Server (NTRS)
Gutierrez, William E.; Hills, Richard G.
1990-01-01
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme.
Adaptive EAGLE dynamic solution adaptation and grid quality enhancement
NASA Technical Reports Server (NTRS)
Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.
1992-01-01
In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.
Dynamic mesh adaption for triangular and tetrahedral grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
The following topics are discussed: requirements for dynamic mesh adaption; linked-list data structure; edge-based data structure; adaptive-grid data structure; three types of element subdivision; mesh refinement; mesh coarsening; additional constraints for coarsening; anisotropic error indicator for edges; unstructured-grid Euler solver; inviscid 3-D wing; and mesh quality for solution-adaptive grids. The discussion is presented in viewgraph form.
Dynamic grid refinement for partial differential equations on parallel computers
NASA Technical Reports Server (NTRS)
Mccormick, S.; Quinlan, D.
1989-01-01
The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids to provide adaptive resolution and fast solution of PDEs. An asynchronous version of FAC, called AFAC, that completely eliminates the bottleneck to parallelism is presented. This paper describes the advantage that this algorithm has in adaptive refinement for moving singularities on multiprocessor computers. This work is applicable to the parallel solution of two- and three-dimensional shock tracking problems.
The block adaptive multigrid method applied to the solution of the Euler equations
NASA Technical Reports Server (NTRS)
Pantelelis, Nikos
1993-01-01
In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.
ICASE/LaRC Workshop on Adaptive Grid Methods
NASA Technical Reports Server (NTRS)
South, Jerry C., Jr. (Editor); Thomas, James L. (Editor); Vanrosendale, John (Editor)
1995-01-01
Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field.
A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows
NASA Technical Reports Server (NTRS)
Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert
1996-01-01
The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.
An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Erickson, Larry L.
1994-01-01
A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.
Topology and grid adaption for high-speed flow computations
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Tiwari, Surendra N.
1989-01-01
This study investigates the effects of grid topology and grid adaptation on numerical solutions of the Navier-Stokes equations. In the first part of this study, a general procedure is presented for computation of high-speed flow over complex three-dimensional configurations. The flow field is simulated on the surface of a Butler wing in a uniform stream. Results are presented for Mach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type grids have been used for this study, and the results are compared together and with other theoretical and experimental results. The results demonstrate that while the H-type grid is suitable for the leading and trailing edges, a more accurate solution can be obtained for the middle part of the wing with an O-type grid. In the second part of this study, methods of grid adaption are reviewed and a method is developed with the capability of adapting to several variables. This method is based on a variational approach and is an algebraic method. Also, the method has been formulated in such a way that there is no need for any matrix inversion. This method is used in conjunction with the calculation of hypersonic flow over a blunt-nose body. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.
1995-01-01
This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.
Adaptive grid generation in a patient-specific cerebral aneurysm
NASA Astrophysics Data System (ADS)
Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan
2013-11-01
Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce computational time for patient-specific hemodynamics simulations, which are used to help assess the likelihood of aneurysm rupture using CFD calculated flow patterns.
Grid generation for the solution of partial differential equations
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Erlebacher, Gordon
1989-01-01
A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.
Grid generation for the solution of partial differential equations
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Erlebacher, Gordon
1987-01-01
A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.
Grid adaption using Chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1993-01-01
The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.
Grid adaptation using chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1994-01-01
The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.
Grid adaptation using Chimera composite overlapping meshes
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1993-01-01
The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.
SAGE: The Self-Adaptive Grid Code. 3
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1999-01-01
The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
Adaptive 3D single-block grids for the computation of viscous flows around wings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.; Kok, J.C.
1996-12-31
A robust algorithm for the adaption of a 3D single-block structured grid suitable for the computation of viscous flows around a wing is presented and demonstrated by application to the ONERA M6 wing. The effects of grid adaption on the flow solution and accuracy improvements is analyzed. Reynolds number variations are studied.
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme?the piecewise parabolic method (PPM)?for computing advective solution fields; a weight function capable of promoting grid node clustering ...
2-dimensional implicit hydrodynamics on adaptive grids
NASA Astrophysics Data System (ADS)
Stökl, A.; Dorfi, E. A.
2007-12-01
We present a numerical scheme for two-dimensional hydrodynamics computations using a 2D adaptive grid together with an implicit discretization. The combination of these techniques has offered favorable numerical properties applicable to a variety of one-dimensional astrophysical problems which motivated us to generalize this approach for two-dimensional applications. Due to the different topological nature of 2D grids compared to 1D problems, grid adaptivity has to avoid severe grid distortions which necessitates additional smoothing parameters to be included into the formulation of a 2D adaptive grid. The concept of adaptivity is described in detail and several test computations demonstrate the effectivity of smoothing. The coupled solution of this grid equation together with the equations of hydrodynamics is illustrated by computation of a 2D shock tube problem.
NASA Astrophysics Data System (ADS)
Re, B.; Dobrzynski, C.; Guardone, A.
2017-07-01
A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian-Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.
NASA Technical Reports Server (NTRS)
Coirier, William John
1994-01-01
A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.
Grid adaption for hypersonic flow
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Tiwari, Surendra N.; Smith, Robert E.
1987-01-01
The methods of grid adaption are reviewed and a method is developed with the capability of adaption to several flow variables. This method is based on a variational approach and is an algebraic method which does not require the solution of partial differential equations. Also the method has been formulated in such a way that there is no need for any matrix inversion. The method is used in conjunction with the calculation of hypersonic flow over a blunt nose body. The equations of motion are the compressible Navier-Stokes equations where all viscous terms are retained. They are solved by the MacCormack time-splitting method. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.
A self-adaptive-grid method with application to airfoil flow
NASA Technical Reports Server (NTRS)
Nakahashi, K.; Deiwert, G. S.
1985-01-01
A self-adaptive-grid method is described that is suitable for multidimensional steady and unsteady computations. Based on variational principles, a spring analogy is used to redistribute grid points in an optimal sense to reduce the overall solution error. User-specified parameters, denoting both maximum and minimum permissible grid spacings, are used to define the all-important constants, thereby minimizing the empiricism and making the method self-adaptive. Operator splitting and one-sided controls for orthogonality and smoothness are used to make the method practical, robust, and efficient. Examples are included for both steady and unsteady viscous flow computations about airfoils in two dimensions, as well as for a steady inviscid flow computation and a one-dimensional case. These examples illustrate the precise control the user has with the self-adaptive method and demonstrate a significant improvement in accuracy and quality of the solutions.
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Wurigen; Shashkov, Mikhail
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less
Adaptive reconnection-based arbitrary Lagrangian Eulerian method
Bo, Wurigen; Shashkov, Mikhail
2015-07-21
We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less
Grid adaption for bluff bodies
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid S.; Tiwari, Surendra N.
1986-01-01
Methods of grid adaptation are reviewed and a method is developed with the capability of adaptation to several flow variables. This method is based on a variational approach and is an algebraic method which does not require the solution of partial differential equations. Also the method was formulated in such a way that there is no need for any matrix inversion. The method is used in conjunction with the calculation of hypersonic flow over a blunt nose. The equations of motion are the compressible Navier-Stokes equations where all viscous terms are retained. They are solved by the MacCormack time-splitting method and a movie was produced which shows simulataneously the transient behavior of the solution and the grid adaptation. The results are compared with the experimental and other numerical results.
2015-09-01
Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations. Michal A. Koperaa,∗, Francis X...mass conservation, as it is an important feature for many atmospheric applications . We believe this is a good metric because, for smooth solutions
Adaption of unstructured meshes using node movement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, J.G.; McRae, V.D.S.
1996-12-31
The adaption algorithm of Benson and McRae is modified for application to unstructured grids. The weight function generation was modified for application to unstructured grids and movement was limited to prevent cross over. A NACA 0012 airfoil is used as a test case to evaluate the modified algorithm when applied to unstructured grids and compared to results obtained by Warren. An adaptive mesh solution for the Sudhoo and Hall four element airfoil is included as a demonstration case.
Using adaptive grid in modeling rocket nozzle flow
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Jin, Kang-Ren
1992-01-01
The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which cannot be solved analytically. However, this system of equations called the Navier-Stokes equations can be solved numerically. The accuracy and the convergence of the solution of the system of equations will depend largely on how precisely the sharp gradients in the domain of interest can be resolved. With the advances in computer technology, more sophisticated algorithms are available to improve the accuracy and convergence of the solutions. An adaptive grid generation is one of the schemes which can be incorporated into the algorithm to enhance the capability of numerical modeling. It is equivalent to putting intelligence into the algorithm to optimize the use of computer memory. With this scheme, the finite difference domain of the flow field called the grid does neither have to be very fine nor strategically placed at the location of sharp gradients. The grid is self adapting as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzles by taking the refinement part of grid generation out of the hands of computational fluid dynamics (CFD) specialists and place it into the computer algorithm itself.
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R W; Pember, R B; Elliott, N S
2001-10-22
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditionalmore » AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.« less
SIMULATION OF A REACTING POLLUTANT PUFF USING AN ADAPTIVE GRID ALGORITHM
A new dynamic solution adaptive grid algorithm DSAGA-PPM, has been developed for use in air quality modeling. In this paper, this algorithm is described and evaluated with a test problem. Cone-shaped distributions of various chemical species undergoing chemical reactions are rota...
Adaptive Mesh Refinement in Curvilinear Body-Fitted Grid Systems
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Modiano, David; Colella, Phillip
1995-01-01
To be truly compatible with structured grids, an AMR algorithm should employ a block structure for the refined grids to allow flow solvers to take advantage of the strengths of unstructured grid systems, such as efficient solution algorithms for implicit discretizations and multigrid schemes. One such algorithm, the AMR algorithm of Berger and Colella, has been applied to and adapted for use with body-fitted structured grid systems. Results are presented for a transonic flow over a NACA0012 airfoil (AGARD-03 test case) and a reflection of a shock over a double wedge.
NASA Astrophysics Data System (ADS)
Foo, Kam Keong
A two-dimensional dual-mode scramjet flowpath is developed and evaluated using the ANSYS Fluent density-based flow solver with various computational grids. Results are obtained for fuel-off, fuel-on non-reacting, and fuel-on reacting cases at different equivalence ratios. A one-step global chemical kinetics hydrogen-air model is used in conjunction with the eddy-dissipation model. Coarse, medium and fine computational grids are used to evaluate grid sensitivity and to investigate a lack of grid independence. Different grid adaptation strategies are performed on the coarse grid in an attempt to emulate the solutions obtained from the finer grids. The goal of this study is to investigate the feasibility of using various mesh adaptation criteria to significantly decrease computational efforts for high-speed reacting flows.
Aerodynamics of Engine-Airframe Interaction
NASA Technical Reports Server (NTRS)
Caughey, D. A.
1986-01-01
The report describes progress in research directed towards the efficient solution of the inviscid Euler and Reynolds-averaged Navier-Stokes equations for transonic flows through engine inlets, and past complete aircraft configurations, with emphasis on the flowfields in the vicinity of engine inlets. The research focusses upon the development of solution-adaptive grid procedures for these problems, and the development of multi-grid algorithms in conjunction with both, implicit and explicit time-stepping schemes for the solution of three-dimensional problems. The work includes further development of mesh systems suitable for inlet and wing-fuselage-inlet geometries using a variational approach. Work during this reporting period concentrated upon two-dimensional problems, and has been in two general areas: (1) the development of solution-adaptive procedures to cluster the grid cells in regions of high (truncation) error;and (2) the development of a multigrid scheme for solution of the two-dimensional Euler equations using a diagonalized alternating direction implicit (ADI) smoothing algorithm.
ADAPTIVE TETRAHEDRAL GRID REFINEMENT AND COARSENING IN MESSAGE-PASSING ENVIRONMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallberg, J.; Stagg, A.
2000-10-01
A grid refinement and coarsening scheme has been developed for tetrahedral and triangular grid-based calculations in message-passing environments. The element adaption scheme is based on an edge bisection of elements marked for refinement by an appropriate error indicator. Hash-table/linked-list data structures are used to store nodal and element formation. The grid along inter-processor boundaries is refined and coarsened consistently with the update of these data structures via MPI calls. The parallel adaption scheme has been applied to the solution of a transient, three-dimensional, nonlinear, groundwater flow problem. Timings indicate efficiency of the grid refinement process relative to the flow solvermore » calculations.« less
NASA Astrophysics Data System (ADS)
Gotovac, Hrvoje; Srzic, Veljko
2014-05-01
Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large linear system on adaptive grid because each Fup coefficient is obtained by predefined formulas equalizing Fup expansion around corresponding collocation point and particular collocation operator based on few surrounding solution values. Furthermore, each Fup coefficient can be obtained independently which is perfectly suited for parallel processing. Adaptive grid in each time step is obtained from solution of the last time step or initial conditions and advective Lagrangian step in the current time step according to the velocity field and continuous streamlines. On the other side, we implement explicit stabilized routine SERK2 for dispersive Eulerian part of solution in the current time step on obtained spatial adaptive grid. Overall adaptive concept does not require the solving of large linear systems for the spatial and temporal approximation of conservative transport. Also, this new Eulerian-Lagrangian-Collocation scheme resolves all mentioned numerical problems due to its adaptive nature and ability to control numerical errors in space and time. Proposed method solves advection in Lagrangian way eliminating problems in Eulerian methods, while optimal collocation grid efficiently describes solution and boundary conditions eliminating usage of large number of particles and other problems in Lagrangian methods. Finally, numerical tests show that this approach enables not only accurate velocity field, but also conservative transport even in highly heterogeneous porous media resolving all spatial and temporal scales of concentration field.
Adaptive grid methods for RLV environment assessment and nozzle analysis
NASA Technical Reports Server (NTRS)
Thornburg, Hugh J.
1996-01-01
Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation, forcing functions to attract/repel points in an elliptic system, or to trigger local refinement, based upon application of an equidistribution principle. The popularity of solution-adaptive techniques is growing in tandem with unstructured methods. The difficultly of precisely controlling mesh densities and orientations with current unstructured grid generation systems has driven the use of solution-adaptive meshing. Use of derivatives of density or pressure are widely used for construction of such weight functions, and have been proven very successful for inviscid flows with shocks. However, less success has been realized for flowfields with viscous layers, vortices or shocks of disparate strength. It is difficult to maintain the appropriate mesh point spacing in the various regions which require a fine spacing for adequate resolution. Mesh points often migrate from important regions due to refinement of dominant features. An example of this is the well know tendency of adaptive methods to increase the resolution of shocks in the flowfield around airfoils, but in the incorrect location due to inadequate resolution of the stagnation region. This problem has been the motivation for this research.
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.; Lytle, John K.
1989-01-01
An algebraic adaptive grid scheme based on the concept of arc equidistribution is presented. The scheme locally adjusts the grid density based on gradients of selected flow variables from either finite difference or finite volume calculations. A user-prescribed grid stretching can be specified such that control of the grid spacing can be maintained in areas of known flowfield behavior. For example, the grid can be clustered near a wall for boundary layer resolution and made coarse near the outer boundary of an external flow. A grid smoothing technique is incorporated into the adaptive grid routine, which is found to be more robust and efficient than the weight function filtering technique employed by other researchers. Since the present algebraic scheme requires no iteration or solution of differential equations, the computer time needed for grid adaptation is trivial, making the scheme useful for three-dimensional flow problems. Applications to two- and three-dimensional flow problems show that a considerable improvement in flowfield resolution can be achieved by using the proposed adaptive grid scheme. Although the scheme was developed with steady flow in mind, it is a good candidate for unsteady flow computations because of its efficiency.
SIMULATION OF DISPERSION OF A POWER PLANT PLUME USING AN ADAPTIVE GRID ALGORITHM. (R827028)
A new dynamic adaptive grid algorithm has been developed for use in air quality modeling. This algorithm uses a higher order numerical scheme––the piecewise parabolic method (PPM)––for computing advective solution fields; a weight function capable o...
Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.
A Solution Adaptive Technique Using Tetrahedral Unstructured Grids
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2000-01-01
An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.
NASA Technical Reports Server (NTRS)
Mccormick, S.; Quinlan, D.
1989-01-01
The fast adaptive composite grid method (FAC) is an algorithm that uses various levels of uniform grids (global and local) to provide adaptive resolution and fast solution of PDEs. Like all such methods, it offers parallelism by using possibly many disconnected patches per level, but is hindered by the need to handle these levels sequentially. The finest levels must therefore wait for processing to be essentially completed on all the coarser ones. A recently developed asynchronous version of FAC, called AFAC, completely eliminates this bottleneck to parallelism. This paper describes timing results for AFAC, coupled with a simple load balancing scheme, applied to the solution of elliptic PDEs on an Intel iPSC hypercube. These tests include performance of certain processes necessary in adaptive methods, including moving grids and changing refinement. A companion paper reports on numerical and analytical results for estimating convergence factors of AFAC applied to very large scale examples.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1994-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.
Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1996-01-01
A Cartesian cell-based approach for adaptively refined solutions of the Euler and Navier-Stokes equations in two dimensions is presented. Grids about geometrically complicated bodies are generated automatically, by the recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal cut cells are created using modified polygon-clipping algorithms. The grid is stored in a binary tree data structure that provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite volume formulation. The convective terms are upwinded: A linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The results of a study comparing the accuracy and positivity of two classes of cell-centered, viscous gradient reconstruction procedures is briefly summarized. Adaptively refined solutions of the Navier-Stokes equations are shown using the more robust of these gradient reconstruction procedures, where the results computed by the Cartesian approach are compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
Solution adaptive grids applied to low Reynolds number flow
NASA Astrophysics Data System (ADS)
de With, G.; Holdø, A. E.; Huld, T. A.
2003-08-01
A numerical study has been undertaken to investigate the use of a solution adaptive grid for flow around a cylinder in the laminar flow regime. The main purpose of this work is twofold. The first aim is to investigate the suitability of a grid adaptation algorithm and the reduction in mesh size that can be obtained. Secondly, the uniform asymmetric flow structures are ideal to validate the mesh structures due to mesh refinement and consequently the selected refinement criteria. The refinement variable used in this work is a product of the rate of strain and the mesh cell size, and contains two variables Cm and Cstr which determine the order of each term. By altering the order of either one of these terms the refinement behaviour can be modified.
A new solution-adaptive grid generation method for transonic airfoil flow calculations
NASA Technical Reports Server (NTRS)
Nakamura, S.; Holst, T. L.
1981-01-01
The clustering algorithm is controlled by a second-order, ordinary differential equation which uses the airfoil surface density gradient as a forcing function. The solution to this differential equation produces a surface grid distribution which is automatically clustered in regions with large gradients. The interior grid points are established from this surface distribution by using an interpolation scheme which is fast and retains the desirable properties of the original grid generated from the standard elliptic equation approach.
Landázuri, Andrea C.; Sáez, A. Eduardo; Anthony, T. Renée
2016-01-01
This work presents fluid flow and particle trajectory simulation studies to determine the aspiration efficiency of a horizontally oriented occupational air sampler using computational fluid dynamics (CFD). Grid adaption and manual scaling of the grids were applied to two sampler prototypes based on a 37-mm cassette. The standard k–ε model was used to simulate the turbulent air flow and a second order streamline-upwind discretization scheme was used to stabilize convective terms of the Navier–Stokes equations. Successively scaled grids for each configuration were created manually and by means of grid adaption using the velocity gradient in the main flow direction. Solutions were verified to assess iterative convergence, grid independence and monotonic convergence. Particle aspiration efficiencies determined for both prototype samplers were undistinguishable, indicating that the porous filter does not play a noticeable role in particle aspiration. Results conclude that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail. It was verified that adaptive grids provided a higher number of locations with monotonic convergence than the manual grids and required the least computational effort. PMID:26949268
NASA Astrophysics Data System (ADS)
Popov, Igor; Sukov, Sergey
2018-02-01
A modification of the adaptive artificial viscosity (AAV) method is considered. This modification is based on one stage time approximation and is adopted to calculation of gasdynamics problems on unstructured grids with an arbitrary type of grid elements. The proposed numerical method has simplified logic, better performance and parallel efficiency compared to the implementation of the original AAV method. Computer experiments evidence the robustness and convergence of the method to difference solution.
Solving Partial Differential Equations on Overlapping Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henshaw, W D
2008-09-22
We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less
Generation of unstructured grids and Euler solutions for complex geometries
NASA Technical Reports Server (NTRS)
Loehner, Rainald; Parikh, Paresh; Salas, Manuel D.
1989-01-01
Algorithms are described for the generation and adaptation of unstructured grids in two and three dimensions, as well as Euler solvers for unstructured grids. The main purpose is to demonstrate how unstructured grids may be employed advantageously for the economic simulation of both geometrically as well as physically complex flow fields.
Adaptive refinement tools for tetrahedral unstructured grids
NASA Technical Reports Server (NTRS)
Pao, S. Paul (Inventor); Abdol-Hamid, Khaled S. (Inventor)
2011-01-01
An exemplary embodiment providing one or more improvements includes software which is robust, efficient, and has a very fast run time for user directed grid enrichment and flow solution adaptive grid refinement. All user selectable options (e.g., the choice of functions, the choice of thresholds, etc.), other than a pre-marked cell list, can be entered on the command line. The ease of application is an asset for flow physics research and preliminary design CFD analysis where fast grid modification is often needed to deal with unanticipated development of flow details.
Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.
1994-11-01
A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Slater, John W.; Henderson, Todd L.; Bidwell, Colin S.; Braun, Donald C.; Chung, Joongkee
1998-01-01
TURBO-GRD is a software system for interactive two-dimensional boundary/field grid generation. modification, and refinement. Its features allow users to explicitly control grid quality locally and globally. The grid control can be achieved interactively by using control points that the user picks and moves on the workstation monitor or by direct stretching and refining. The techniques used in the code are the control point form of algebraic grid generation, a damped cubic spline for edge meshing and parametric mapping between physical and computational domains. It also performs elliptic grid smoothing and free-form boundary control for boundary geometry manipulation. Internal block boundaries are constructed and shaped by using Bezier curve. Because TURBO-GRD is a highly interactive code, users can read in an initial solution, display its solution contour in the background of the grid and control net, and exercise grid modification using the solution contour as a guide. This process can be called an interactive solution-adaptive grid generation.
FUN3D and CFL3D Computations for the First High Lift Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Lee-Rausch, Elizabeth M.; Rumsey, Christopher L.
2011-01-01
Two Reynolds-averaged Navier-Stokes codes were used to compute flow over the NASA Trapezoidal Wing at high lift conditions for the 1st AIAA CFD High Lift Prediction Workshop, held in Chicago in June 2010. The unstructured-grid code FUN3D and the structured-grid code CFL3D were applied to several different grid systems. The effects of code, grid system, turbulence model, viscous term treatment, and brackets were studied. The SST model on this configuration predicted lower lift than the Spalart-Allmaras model at high angles of attack; the Spalart-Allmaras model agreed better with experiment. Neglecting viscous cross-derivative terms caused poorer prediction in the wing tip vortex region. Output-based grid adaptation was applied to the unstructured-grid solutions. The adapted grids better resolved wake structures and reduced flap flow separation, which was also observed in uniform grid refinement studies. Limitations of the adaptation method as well as areas for future improvement were identified.
A multigrid method for steady Euler equations on unstructured adaptive grids
NASA Technical Reports Server (NTRS)
Riemslagh, Kris; Dick, Erik
1993-01-01
A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.
On the dynamics of some grid adaption schemes
NASA Technical Reports Server (NTRS)
Sweby, Peter K.; Yee, Helen C.
1994-01-01
The dynamics of a one-parameter family of mesh equidistribution schemes coupled with finite difference discretisations of linear and nonlinear convection-diffusion model equations is studied numerically. It is shown that, when time marched to steady state, the grid adaption not only influences the stability and convergence rate of the overall scheme, but can also introduce spurious dynamics to the numerical solution procedure.
A grid generation and flow solution method for the Euler equations on unstructured grids
NASA Astrophysics Data System (ADS)
Anderson, W. Kyle
1994-01-01
A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a National Advisory Committee for Aeronautics (NACA) 0012 airfoil as well as a two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed.
Three-Dimensional Unsteady Separation at Low Reynolds Numbers
1990-07-01
novel, robust adaptive- grid technique for incompressible flow (Shen & Reed 1990a "Shepard’s Interpolation for Solution-Adaptive Methods" submitted to...3-D adaptive- grid schemes developed for flat plate for full, unsteady, incompressible Navier Stokes. 4. 2-D and 3-D unsteady, vortex-lattice code...perforated to tailor suction through wall. Honeycomb and contractiong uide flow uniformly crons "a dn muwet a m Fiur32 c ic R n R ev lving -disc seals
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.
A robust, efficient equidistribution 2D grid generation method
NASA Astrophysics Data System (ADS)
Chacon, Luis; Delzanno, Gian Luca; Finn, John; Chung, Jeojin; Lapenta, Giovanni
2007-11-01
We present a new cell-area equidistribution method for two- dimensional grid adaptation [1]. The method is able to satisfy the equidistribution constraint to arbitrary precision while optimizing desired grid properties (such as isotropy and smoothness). The method is based on the minimization of the grid smoothness integral, constrained to producing a given positive-definite cell volume distribution. The procedure gives rise to a single, non-linear scalar equation with no free-parameters. We solve this equation numerically with the Newton-Krylov technique. The ellipticity property of the linearized scalar equation allows multigrid preconditioning techniques to be effectively used. We demonstrate a solution exists and is unique. Therefore, once the solution is found, the adapted grid cannot be folded due to the positivity of the constraint on the cell volumes. We present several challenging tests to show that our new method produces optimal grids in which the constraint is satisfied numerically to arbitrary precision. We also compare the new method to the deformation method [2] and show that our new method produces better quality grids. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Y. Chung, G. Lapenta, A new, robust equidistribution method for two-dimensional grid generation, in preparation. [2] G. Liao and D. Anderson, A new approach to grid generation, Appl. Anal. 44, 285--297 (1992).
Adaptive grid embedding for the two-dimensional flux-split Euler equations. M.S. Thesis
NASA Technical Reports Server (NTRS)
Warren, Gary Patrick
1990-01-01
A numerical algorithm is presented for solving the 2-D flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for a subcritical airfoil and a transonic airfoil with 3 levels of adaptation. Comparisons are made with a structured upwind Euler code which uses the same flux integration techniques of the present algorithm. Good agreement is obtained with converged surface pressure coefficients. The lift coefficients of the adaptive code are within 2 1/2 percent of the structured code for the sub-critical case and within 4 1/2 percent of the structured code for the transonic case using approximately one-third the number of grid points.
Multiscale computations with a wavelet-adaptive algorithm
NASA Astrophysics Data System (ADS)
Rastigejev, Yevgenii Anatolyevich
A wavelet-based adaptive multiresolution algorithm for the numerical solution of multiscale problems governed by partial differential equations is introduced. The main features of the method include fast algorithms for the calculation of wavelet coefficients and approximation of derivatives on nonuniform stencils. The connection between the wavelet order and the size of the stencil is established. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution which are used in conjunction with an appropriate threshold criteria to adapt the collocation grid. The efficient data structures for grid representation as well as related computational algorithms to support grid rearrangement procedure are developed. The algorithm is applied to the simulation of phenomena described by Navier-Stokes equations. First, we undertake the study of the ignition and subsequent viscous detonation of a H2 : O2 : Ar mixture in a one-dimensional shock tube. Subsequently, we apply the algorithm to solve the two- and three-dimensional benchmark problem of incompressible flow in a lid-driven cavity at large Reynolds numbers. For these cases we show that solutions of comparable accuracy as the benchmarks are obtained with more than an order of magnitude reduction in degrees of freedom. The simulations show the striking ability of the algorithm to adapt to a solution having different scales at different spatial locations so as to produce accurate results at a relatively low computational cost.
Cooperative solutions coupling a geometry engine and adaptive solver codes
NASA Technical Reports Server (NTRS)
Dickens, Thomas P.
1995-01-01
Follow-on work has progressed in using Aero Grid and Paneling System (AGPS), a geometry and visualization system, as a dynamic real time geometry monitor, manipulator, and interrogator for other codes. In particular, AGPS has been successfully coupled with adaptive flow solvers which iterate, refining the grid in areas of interest, and continuing on to a solution. With the coupling to the geometry engine, the new grids represent the actual geometry much more accurately since they are derived directly from the geometry and do not use refits to the first-cut grids. Additional work has been done with design runs where the geometric shape is modified to achieve a desired result. Various constraints are used to point the solution in a reasonable direction which also more closely satisfies the desired results. Concepts and techniques are presented, as well as examples of sample case studies. Issues such as distributed operation of the cooperative codes versus running all codes locally and pre-calculation for performance are discussed. Future directions are considered which will build on these techniques in light of changing computer environments.
PLUM: Parallel Load Balancing for Unstructured Adaptive Meshes. Degree awarded by Colorado Univ.
NASA Technical Reports Server (NTRS)
Oliker, Leonid
1998-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for computing large-scale problems that require grid modifications to efficiently resolve solution features. By locally refining and coarsening the mesh to capture physical phenomena of interest, such procedures make standard computational methods more cost effective. Unfortunately, an efficient parallel implementation of these adaptive methods is rather difficult to achieve, primarily due to the load imbalance created by the dynamically-changing nonuniform grid. This requires significant communication at runtime, leading to idle processors and adversely affecting the total execution time. Nonetheless, it is generally thought that unstructured adaptive- grid techniques will constitute a significant fraction of future high-performance supercomputing. Various dynamic load balancing methods have been reported to date; however, most of them either lack a global view of loads across processors or do not apply their techniques to realistic large-scale applications.
NASA Technical Reports Server (NTRS)
Brislawn, Kristi D.; Brown, David L.; Chesshire, Geoffrey S.; Saltzman, Jeffrey S.
1995-01-01
Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference methods have been used effectively on a variety of problems in two and three dimensions. In this paper we introduce an approach for resolving problems that involve complex geometries in which resolution of boundary geometry is important. The complex geometry is represented by using the method of overlapping grids, while local resolution is obtained by refining each component grid with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid structure for the underlying mesh.
Summary of Data from the Sixth AIAA CFD Drag Prediction Workshop: CRM Cases 2 to 5
NASA Technical Reports Server (NTRS)
Tinoco, Edward N.; Brodersen, Olaf P.; Keye, Stefan; Laflin, Kelly R.; Feltrop, Edward; Vassberg, John C.; Mani, Mori; Rider, Ben; Wahls, Richard A.; Morrison, Joseph H.;
2017-01-01
Results from the Sixth AIAA CFD Drag Prediction Workshop Common Research Model Cases 2 to 5 are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. Cases 2 to 5 focused on force/moment and pressure predictions for the NASA Common Research Model wing-body and wing-body-nacelle-pylon configurations, including Case 2 - a grid refinement study and nacelle-pylon drag increment prediction study; Case 3 - an angle-of-attack buffet study; Case 4 - an optional wing-body grid adaption study; and Case 5 - an optional wing-body coupled aero-structural simulation. The Common Research Model geometry differed from previous workshops in that it was deformed to the appropriate static aeroelastic twist and deflection at each specified angle-of-attack. The grid refinement study used a common set of overset and unstructured grids, as well as user created Multiblock structured, unstructured, and Cartesian based grids. For the supplied common grids, six levels of refinement were created resulting in grids ranging from 7x10(exp 6) to 208x10(exp 6) cells. This study (Case 2) showed further reduced scatter from previous workshops, and very good prediction of the nacelle-pylon drag increment. Case 3 studied buffet onset at M=0.85 using the Medium grid (20 to 40x10(exp 6) nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Although the use of the prescribed aeroelastic twist and deflection at each angle-of-attack greatly improved the wing pressure distribution agreement with test data, many solutions still exhibited premature flow separation. The remaining solutions exhibited a significant spread of lift and pitching moment at each angle-of-attack, much of which can be attributed to excessive aft pressure loading and shock location variation. Four Case 4 grid adaption solutions were submitted. Starting with grids less than 2x10(exp 6) grid points, two solutions showed a rapid convergence to an acceptable solution. Four Case 5 coupled aerostructural solutions were submitted. Both showed good agreement with experimental data. Results from this workshop highlight the continuing need for CFD improvement, particularly for conditions with significant flow separation. These comparisons also suggest the need for improved experimental diagnostics to guide future CFD development.
Advanced Unstructured Grid Generation for Complex Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2008-01-01
A new approach for distribution of grid points on the surface and in the volume has been developed and implemented in the NASA unstructured grid generation code VGRID. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.
The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations
Mitchell, William F.
1998-01-01
Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given. PMID:28009355
The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations.
Mitchell, William F
1998-01-01
Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given.
An Exact Dual Adjoint Solution Method for Turbulent Flows on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Lu, James; Park, Michael A.; Darmofal, David L.
2003-01-01
An algorithm for solving the discrete adjoint system based on an unstructured-grid discretization of the Navier-Stokes equations is presented. The method is constructed such that an adjoint solution exactly dual to a direct differentiation approach is recovered at each time step, yielding a convergence rate which is asymptotically equivalent to that of the primal system. The new approach is implemented within a three-dimensional unstructured-grid framework and results are presented for inviscid, laminar, and turbulent flows. Improvements to the baseline solution algorithm, such as line-implicit relaxation and a tight coupling of the turbulence model, are also presented. By storing nearest-neighbor terms in the residual computation, the dual scheme is computationally efficient, while requiring twice the memory of the flow solution. The scheme is expected to have a broad impact on computational problems related to design optimization as well as error estimation and grid adaptation efforts.
Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.; ...
2015-12-20
We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Some novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. Furthermore, these considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution ofmore » a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities.« less
Vortical Flow Prediction Using an Adaptive Unstructured Grid Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2001-01-01
A computational fluid dynamics (CFD) method has been employed to compute vortical flows around slender wing/body configurations. The emphasis of the paper is on the effectiveness of an adaptive grid procedure in "capturing" concentrated vortices generated at sharp edges or flow separation lines of lifting surfaces flying at high angles of attack. The method is based on a tetrahedral unstructured grid technology developed at the NASA Langley Research Center. Two steady-state, subsonic, inviscid and Navier-Stokes flow test cases are presented to demonstrate the applicability of the method for solving practical vortical flow problems. The first test case concerns vortex flow over a simple 65deg delta wing with different values of leading-edge bluntness, and the second case is that of a more complex fighter configuration. The superiority of the adapted solutions in capturing the vortex flow structure over the conventional unadapted results is demonstrated by comparisons with the windtunnel experimental data. The study shows that numerical prediction of vortical flows is highly sensitive to the local grid resolution and that the implementation of grid adaptation is essential when applying CFD methods to such complicated flow problems.
Transformation of two and three-dimensional regions by elliptic systems
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1991-01-01
A reliable linear system is presented for grid generation in 2-D and 3-D. The method is robust in the sense that convergence is guaranteed but is not as reliable as other nonlinear elliptic methods in generating nonfolding grids. The construction of nonfolding grids depends on having reasonable approximations of cell aspect ratios and an appropriate distribution of grid points on the boundary of the region. Some guidelines are included on approximating the aspect ratios, but little help is offered on setting up the boundary grid other than to say that in 2-D the boundary correspondence should be close to that generated by a conformal mapping. It is assumed that the functions which control the grid distribution depend only on the computational variables and not on the physical variables. Whether this is actually the case depends on how the grid is constructed. In a dynamic adaptive procedure where the grid is constructed in the process of solving a fluid flow problem, the grid is usually updated at fixed iteration counts using the current value of the control function. Since the control function is not being updated during the iteration of the grid equations, the grid construction is a linear procedure. However, in the case of a static adaptive procedure where a trial solution is computed and used to construct an adaptive grid, the control functions may be recomputed at every step of the grid iteration.
Parallel implementation of an adaptive scheme for 3D unstructured grids on the SP2
NASA Technical Reports Server (NTRS)
Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.0X speedup on 64 processors when 10 percent of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all the mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.
Parallel Implementation of an Adaptive Scheme for 3D Unstructured Grids on the SP2
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Strawn, Roger C.
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.OX speedup on 64 processors when 10% of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.
Advanced Unstructured Grid Generation for Complex Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
2010-01-01
A new approach for distribution of grid points on the surface and in the volume has been developed. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.
Adaptive triangular mesh generation
NASA Technical Reports Server (NTRS)
Erlebacher, G.; Eiseman, P. R.
1984-01-01
A general adaptive grid algorithm is developed on triangular grids. The adaptivity is provided by a combination of node addition, dynamic node connectivity and a simple node movement strategy. While the local restructuring process and the node addition mechanism take place in the physical plane, the nodes are displaced on a monitor surface, constructed from the salient features of the physical problem. An approximation to mean curvature detects changes in the direction of the monitor surface, and provides the pulling force on the nodes. Solutions to the axisymmetric Grad-Shafranov equation demonstrate the capturing, by triangles, of the plasma-vacuum interface in a free-boundary equilibrium configuration.
Operational adaptability evaluation index system of pumped storage in UHV receiving-end grids
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Feng, Junshu
2017-01-01
Pumped storage is an effective solution to deal with the emergency reserve shortage, renewable energy accommodating and peak-shaving problems in ultra-high voltage (UHV) transmission receiving-end grids. However, governments and public opinion in China tend to evaluate the operational effectiveness of pumped storage using annual utilization hour, which may result in unreasonable and unnecessary dispatch of pumped storage. This paper built an operational adaptability evaluation index system for pumped storage in UHV-receiving end grids from three aspects: security insurance, peak-shaving and renewable energy accommodating, which can provide a comprehensive and objective way to evaluate the operational performance of a pumped storage station.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2010-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom.
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids
Boschitsch, Alexander H.; Fenley, Marcia O.
2011-01-01
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent – analytical solutions are available for this case, thus allowing rigorous assessment of the solution accuracy; (ii) a pair of low dielectric charged spheres embedded in a ionic solvent to compute electrostatic interaction free energies as a function of the distance between sphere centers; (iii) surface potentials of proteins, nucleic acids and their larger-scale assemblies such as ribosomes; and (iv) electrostatic solvation free energies and their salt sensitivities – obtained with both linear and nonlinear Poisson-Boltzmann equation – for a large set of proteins. These latter results along with timings can serve as benchmarks for comparing the performance of different PBE solvers. PMID:21984876
A grid-embedding transonic flow analysis computer program for wing/nacelle configurations
NASA Technical Reports Server (NTRS)
Atta, E. H.; Vadyak, J.
1983-01-01
An efficient grid-interfacing zonal algorithm was developed for computing the three-dimensional transonic flow field about wing/nacelle configurations. the algorithm uses the full-potential formulation and the AF2 approximate factorization scheme. The flow field solution is computed using a component-adaptive grid approach in which separate grids are employed for the individual components in the multi-component configuration, where each component grid is optimized for a particular geometry such as the wing or nacelle. The wing and nacelle component grids are allowed to overlap, and flow field information is transmitted from one grid to another through the overlap region using trivariate interpolation. This report represents a discussion of the computational methods used to generate both the wing and nacelle component grids, the technique used to interface the component grids, and the method used to obtain the inviscid flow solution. Computed results and correlations with experiment are presented. also presented are discussions on the organization of the wing grid generation (GRGEN3) and nacelle grid generation (NGRIDA) computer programs, the grid interface (LK) computer program, and the wing/nacelle flow solution (TWN) computer program. Descriptions of the respective subroutines, definitions of the required input parameters, a discussion on interpretation of the output, and the sample cases illustrating application of the analysis are provided for each of the four computer programs.
An object-oriented approach for parallel self adaptive mesh refinement on block structured grids
NASA Technical Reports Server (NTRS)
Lemke, Max; Witsch, Kristian; Quinlan, Daniel
1993-01-01
Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.
Modeling flow at the nozzle of a solid rocket motor
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Jin, Kang-Ren
1991-01-01
The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which can be solved numerically. The accuracy and the convergence of the solution of the system of equations depends largely on how precisely the sharp gradients can be resolved. An adaptive grid generation scheme is incorporated into the computer algorithm to enhance the capability of numerical modeling. With this scheme, the grid is refined as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzle by putting the refinement part of grid generation into the computer algorithm.
Methods for prismatic/tetrahedral grid generation and adaptation
NASA Technical Reports Server (NTRS)
Kallinderis, Y.
1995-01-01
The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.
Development of Three-Dimensional DRAGON Grid Technology
NASA Technical Reports Server (NTRS)
Zheng, Yao; Kiou, Meng-Sing; Civinskas, Kestutis C.
1999-01-01
For a typical three dimensional flow in a practical engineering device, the time spent in grid generation can take 70 percent of the total analysis effort, resulting in a serious bottleneck in the design/analysis cycle. The present research attempts to develop a procedure that can considerably reduce the grid generation effort. The DRAGON grid, as a hybrid grid, is created by means of a Direct Replacement of Arbitrary Grid Overlapping by Nonstructured grid. The DRAGON grid scheme is an adaptation to the Chimera thinking. The Chimera grid is a composite structured grid, composing a set of overlapped structured grids, which are independently generated and body-fitted. The grid is of high quality and amenable for efficient solution schemes. However, the interpolation used in the overlapped region between grids introduces error, especially when a sharp-gradient region is encountered. The DRAGON grid scheme is capable of completely eliminating the interpolation and preserving the conservation property. It maximizes the advantages of the Chimera scheme and adapts the strengths of the unstructured and while at the same time keeping its weaknesses minimal. In the present paper, we describe the progress towards extending the DRAGON grid technology into three dimensions. Essential and programming aspects of the extension, and new challenges for the three-dimensional cases, are addressed.
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.
2002-01-01
Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.
A New Method for 3D Radiative Transfer with Adaptive Grids
NASA Astrophysics Data System (ADS)
Folini, D.; Walder, R.; Psarros, M.; Desboeufs, A.
2003-01-01
We present a new method for 3D NLTE radiative transfer in moving media, including an adaptive grid, along with some test examples and first applications. The central features of our approach we briefly outline in the following. For the solution of the radiative transfer equation, we make use of a generalized mean intensity approach. In this approach, the transfer eqation is solved directly, instead of using the moments of the transfer equation, thus avoiding the associated closure problem. In a first step, a system of equations for the transfer of each directed intensity is set up, using short characteristics. Next, the entity of systems of equations for each directed intensity is re-formulated in the form of one system of equations for the angle-integrated mean intensity. This system then is solved by a modern, fast BiCGStab iterative solver. An additional advantage of this procedure is that convergence rates barely depend on the spatial discretization. For the solution of the rate equations we use Housholder transformations. Lines are treated by a 3D generalization of the well-known Sobolev-approximation. The two parts, solution of the transfer equation and solution of the rate equations, are iteratively coupled. We recently have implemented an adaptive grid, which allows for recursive refinement on a cell-by-cell basis. The spatial resolution, which is always a problematic issue in 3D simulations, we can thus locally reduce or augment, depending on the problem to be solved.
Adaptive hierarchical grid model of water-borne pollutant dispersion
NASA Astrophysics Data System (ADS)
Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.
Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.
Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling
NASA Astrophysics Data System (ADS)
Rastigejev, Y.
2011-12-01
Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems including numerical simulation of transpacific traveling pollution plumes. The generated pollution plumes are diluted due to turbulent mixing as they are advected downwind. Despite this dilution, it was recently discovered that pollution plumes in the remote troposphere can preserve their identity as well-defined structures for two weeks or more as they circle the globe. Present Global Chemical Transport Models (CTMs) implemented for quasi-uniform grids are completely incapable of reproducing these layered structures due to high numerical plume dilution caused by numerical diffusion combined with non-uniformity of atmospheric flow. It is shown that WAMR algorithm solutions of comparable accuracy as conventional numerical techniques are obtained with more than an order of magnitude reduction in number of grid points, therefore the adaptive algorithm is capable to produce accurate results at a relatively low computational cost. The numerical simulations demonstrate that WAMR algorithm applied the traveling plume problem accurately reproduces the plume dynamics unlike conventional numerical methods that utilizes quasi-uniform numerical grids.
NASA Astrophysics Data System (ADS)
Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.
2018-02-01
Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.
Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations
NASA Astrophysics Data System (ADS)
van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.
2018-02-01
We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.
Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations
NASA Astrophysics Data System (ADS)
van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.
2018-06-01
We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.
Solving Upwind-Biased Discretizations. 2; Multigrid Solver Using Semicoarsening
NASA Technical Reports Server (NTRS)
Diskin, Boris
1999-01-01
This paper studies a novel multigrid approach to the solution for a second order upwind biased discretization of the convection equation in two dimensions. This approach is based on semi-coarsening and well balanced explicit correction terms added to coarse-grid operators to maintain on coarse-grid the same cross-characteristic interaction as on the target (fine) grid. Colored relaxation schemes are used on all the levels allowing a very efficient parallel implementation. The results of the numerical tests can be summarized as follows: 1) The residual asymptotic convergence rate of the proposed V(0, 2) multigrid cycle is about 3 per cycle. This convergence rate far surpasses the theoretical limit (4/3) predicted for standard multigrid algorithms using full coarsening. The reported efficiency does not deteriorate with increasing the cycle, depth (number of levels) and/or refining the target-grid mesh spacing. 2) The full multi-grid algorithm (FMG) with two V(0, 2) cycles on the target grid and just one V(0, 2) cycle on all the coarse grids always provides an approximate solution with the algebraic error less than the discretization error. Estimates of the total work in the FMG algorithm are ranged between 18 and 30 minimal work units (depending on the target (discretizatioin). Thus, the overall efficiency of the FMG solver closely approaches (if does not achieve) the goal of the textbook multigrid efficiency. 3) A novel approach to deriving a discrete solution approximating the true continuous solution with a relative accuracy given in advance is developed. An adaptive multigrid algorithm (AMA) using comparison of the solutions on two successive target grids to estimate the accuracy of the current target-grid solution is defined. A desired relative accuracy is accepted as an input parameter. The final target grid on which this accuracy can be achieved is chosen automatically in the solution process. the actual relative accuracy of the discrete solution approximation obtained by AMA is always better than the required accuracy; the computational complexity of the AMA algorithm is (nearly) optimal (comparable with the complexity of the FMG algorithm applied to solve the problem on the optimally spaced target grid).
An adaptive method for a model of two-phase reactive flow on overlapping grids
NASA Astrophysics Data System (ADS)
Schwendeman, D. W.
2008-11-01
A two-phase model of heterogeneous explosives is handled computationally by a new numerical approach that is a modification of the standard Godunov scheme. The approach generates well-resolved and accurate solutions using adaptive mesh refinement on overlapping grids, and treats rationally the nozzling terms that render the otherwise hyperbolic model incapable of a conservative representation. The evolution and structure of detonation waves for a variety of one and two-dimensional configurations will be discussed with a focus given to problems of detonation diffraction and failure.
Refined numerical solution of the transonic flow past a wedge
NASA Technical Reports Server (NTRS)
Liang, S.-M.; Fung, K.-Y.
1985-01-01
A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.
Streamline integration as a method for two-dimensional elliptic grid generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.
We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less
NASA Technical Reports Server (NTRS)
Pflaum, Christoph
1996-01-01
A multilevel algorithm is presented that solves general second order elliptic partial differential equations on adaptive sparse grids. The multilevel algorithm consists of several V-cycles. Suitable discretizations provide that the discrete equation system can be solved in an efficient way. Numerical experiments show a convergence rate of order Omicron(1) for the multilevel algorithm.
A new procedure for dynamic adaption of three-dimensional unstructured grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
A new procedure is presented for the simultaneous coarsening and refinement of three-dimensional unstructured tetrahedral meshes. This algorithm allows for localized grid adaption that is used to capture aerodynamic flow features such as vortices and shock waves in helicopter flowfield simulations. The mesh-adaption algorithm is implemented in the C programming language and uses a data structure consisting of a series of dynamically-allocated linked lists. These lists allow the mesh connectivity to be rapidly reconstructed when individual mesh points are added and/or deleted. The algorithm allows the mesh to change in an anisotropic manner in order to efficiently resolve directional flow features. The procedure has been successfully implemented on a single processor of a Cray Y-MP computer. Two sample cases are presented involving three-dimensional transonic flow. Computed results show good agreement with conventional structured-grid solutions for the Euler equations.
A distributed algorithm for demand-side management: Selling back to the grid.
Latifi, Milad; Khalili, Azam; Rastegarnia, Amir; Zandi, Sajad; Bazzi, Wael M
2017-11-01
Demand side energy consumption scheduling is a well-known issue in the smart grid research area. However, there is lack of a comprehensive method to manage the demand side and consumer behavior in order to obtain an optimum solution. The method needs to address several aspects, including the scale-free requirement and distributed nature of the problem, consideration of renewable resources, allowing consumers to sell electricity back to the main grid, and adaptivity to a local change in the solution point. In addition, the model should allow compensation to consumers and ensurance of certain satisfaction levels. To tackle these issues, this paper proposes a novel autonomous demand side management technique which minimizes consumer utility costs and maximizes consumer comfort levels in a fully distributed manner. The technique uses a new logarithmic cost function and allows consumers to sell excess electricity (e.g. from renewable resources) back to the grid in order to reduce their electric utility bill. To develop the proposed scheme, we first formulate the problem as a constrained convex minimization problem. Then, it is converted to an unconstrained version using the segmentation-based penalty method. At each consumer location, we deploy an adaptive diffusion approach to obtain the solution in a distributed fashion. The use of adaptive diffusion makes it possible for consumers to find the optimum energy consumption schedule with a small number of information exchanges. Moreover, the proposed method is able to track drifts resulting from changes in the price parameters and consumer preferences. Simulations and numerical results show that our framework can reduce the total load demand peaks, lower the consumer utility bill, and improve the consumer comfort level.
Space-time mesh adaptation for solute transport in randomly heterogeneous porous media.
Dell'Oca, Aronne; Porta, Giovanni Michele; Guadagnini, Alberto; Riva, Monica
2018-05-01
We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which provides the advective component of transport, is obtained through the numerical solution of Darcy's law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are respectively grounded on the definition of the guiding error estimator through the spatial gradients of: (i) the concentration field only; (ii) both concentration and velocity components. We test the approach for two-dimensional computational scenarios with moderate and high levels of heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference against which we test our results, we consider corresponding solutions associated with uniform space-time grids whose level of refinement is established through a detailed convergence study. We find a satisfactory comparison between results for the adaptive methodologies and such reference solutions, our adaptive technique being associated with a markedly reduced computational cost. Comparison of the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on concentration fields yields some advantages in grasping the key features of solute transport taking place within low velocity regions, where diffusion-dispersion mechanisms are dominant; and (ii) embedding the velocity field in the error estimator guiding strategy yields an improved characterization of the forward fringe of solute fronts which propagate through high velocity regions. Copyright © 2017 Elsevier B.V. All rights reserved.
Time-dependent grid adaptation for meshes of triangles and tetrahedra
NASA Technical Reports Server (NTRS)
Rausch, Russ D.
1993-01-01
This paper presents in viewgraph form a method of optimizing grid generation for unsteady CFD flow calculations that distributes the numerical error evenly throughout the mesh. Adaptive meshing is used to locally enrich in regions of relatively large errors and to locally coarsen in regions of relatively small errors. The enrichment/coarsening procedures are robust for isotropic cells; however, enrichment of high aspect ratio cells may fail near boundary surfaces with relatively large curvature. The enrichment indicator worked well for the cases shown, but in general requires user supervision for a more efficient solution.
The multidimensional Self-Adaptive Grid code, SAGE, version 2
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1995-01-01
This new report on Version 2 of the SAGE code includes all the information in the original publication plus all upgrades and changes to the SAGE code since that time. The two most significant upgrades are the inclusion of a finite-volume option and the ability to adapt and manipulate zonal-matching multiple-grid files. In addition, the original SAGE code has been upgraded to Version 1.1 and includes all options mentioned in this report, with the exception of the multiple grid option and its associated features. Since Version 2 is a larger and more complex code, it is suggested (but not required) that Version 1.1 be used for single-grid applications. This document contains all the information required to run both versions of SAGE. The formulation of the adaption method is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code. The third section provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simple but extensive input options make this a flexible and user-friendly code. The SAGE code can accommodate two-dimensional and three-dimensional, finite-difference and finite-volume, single grid, and zonal-matching multiple grid flow problems.
Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.
Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.
1983-12-01
numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for
NASA Astrophysics Data System (ADS)
Dönmez, Orhan
2004-09-01
In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.
Smart Grid Development: Multinational Demo Project Analysis
NASA Astrophysics Data System (ADS)
Oleinikova, I.; Mutule, A.; Obushevs, A.; Antoskovs, N.
2016-12-01
This paper analyses demand side management (DSM) projects and stakeholders' experience with the aim to develop, promote and adapt smart grid tehnologies in Latvia. The research aims at identifying possible system service posibilites, including demand response (DR) and determining the appropriate market design for such type of services to be implemented at the Baltic power system level, with the cooperation of distribution system operator (DSO) and transmission system operator (TSO). This paper is prepared as an extract from the global smart grid best practices, smart solutions and business models.
Development of a pressure based multigrid solution method for complex fluid flows
NASA Technical Reports Server (NTRS)
Shyy, Wei
1991-01-01
In order to reduce the computational difficulty associated with a single grid (SG) solution procedure, the multigrid (MG) technique was identified as a useful means for improving the convergence rate of iterative methods. A full MG full approximation storage (FMG/FAS) algorithm is used to solve the incompressible recirculating flow problems in complex geometries. The algorithm is implemented in conjunction with a pressure correction staggered grid type of technique using the curvilinear coordinates. In order to show the performance of the method, two flow configurations, one a square cavity and the other a channel, are used as test problems. Comparisons are made between the iterations, equivalent work units, and CPU time. Besides showing that the MG method can yield substantial speed-up with wide variations in Reynolds number, grid distributions, and geometry, issues such as the convergence characteristics of different grid levels, the choice of convection schemes, and the effectiveness of the basic iteration smoothers are studied. An adaptive grid scheme is also combined with the MG procedure to explore the effects of grid resolution on the MG convergence rate as well as the numerical accuracy.
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.
Implicit schemes and parallel computing in unstructured grid CFD
NASA Technical Reports Server (NTRS)
Venkatakrishnam, V.
1995-01-01
The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
NASA Astrophysics Data System (ADS)
Schwing, Alan Michael
For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable comparisons across a range of regimes. Unsteady and steady applications are considered in both subsonic and supersonic flows. Inviscid and viscous simulations achieve similar results at a much reduced cost when employing dynamic mesh adaptation. Several techniques for guiding adaptation are compared. Detailed analysis of statistics from the instrumented solver enable understanding of the costs associated with adaptation. Adaptive mesh refinement shows promise for the test cases presented here. It can be considerably faster than using conventional grids and provides accurate results. The procedures for adapting the grid are light-weight enough to not require significant computational time and yield significant reductions in grid size.
The Center for Multiscale Plasma Dynamics, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gombosi, Tamas I.
The University of Michigan participated in the joint UCLA/Maryland fusion science center focused on plasma physics problems for which the traditional separation of the dynamics into microscale and macroscale processes breaks down. These processes involve large scale flows and magnetic fields tightly coupled to the small scale, kinetic dynamics of turbulence, particle acceleration and energy cascade. The interaction between these vastly disparate scales controls the evolution of the system. The enormous range of temporal and spatial scales associated with these problems renders direct simulation intractable even in computations that use the largest existing parallel computers. Our efforts focused on twomore » main problems: the development of Hall MHD solvers on solution adaptive grids and the development of solution adaptive grids using generalized coordinates so that the proper geometry of inertial confinement can be taken into account and efficient refinement strategies can be obtained.« less
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Modiano, David; Colella, Phillip
1994-01-01
A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Papadakis, Michael
2005-01-01
Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25 percent scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data. In general, the calculated flow and collection efficiencies compared well with experiment, and the ice shapes appeared representative of the rime and mixed icing conditions for which they were calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Hany F; Lashway, Christopher R; Mohammed, Osama A
One main challenge in the practical implementation of a microgrid is the design of an adequate protection scheme in both grid connected and islanded modes. Conventional overcurrent protection schemes face selectivity and sensitivity issues during grid and microgrid faults since the fault current level is different in both cases for the same relay. Various approaches have been implemented in the past to deal with this problem, yet the most promising ones are the implementation of adaptive protection techniques abiding by the IEC 61850 communication standard. This paper presents a critical review of existing adaptive protection schemes, the technical challenges formore » the use of classical protection techniques and the need for an adaptive, smart protection system. However, the risk of communication link failures and cyber security threats still remain a challenge in implementing a reliable adaptive protection scheme. A contingency is needed where a communication issue prevents the relay from adjusting to a lower current level during islanded mode. An adaptive protection scheme is proposed that utilizes energy storage (ES) and hybrid ES (HESS) already available in the network as a mechanism to source the higher fault current. Four common grid ES and HESS are reviewed for their suitability in feeding the fault while some solutions are proposed.« less
NASA Technical Reports Server (NTRS)
Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.
1994-01-01
An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.
Three Dimensional Grid Generation for Complex Configurations - Recent Progress
1988-03-01
Navier/Stokes finite difference calculations currently of interest. It has been amply demonstrated that the viability of a numerical solution depends...such as advanced fighters or logistic transports, where a multiblock mesh, for example, is necessary. There exist numerous reports and books on the...MESHES I 3.10 ADAPTIVE GRID SCHEMES 10 3.11 REFERENCES 12 4. CONTRIBUTIONS 13 4.1 SOLICITATION AND OVERVIEW 13 4.2 LESSONS LEARNED IN THE MESH
NASA Technical Reports Server (NTRS)
Kim, Hyoungin; Liou, Meng-Sing
2011-01-01
In this paper, we demonstrate improved accuracy of the level set method for resolving deforming interfaces by proposing two key elements: (1) accurate level set solutions on adapted Cartesian grids by judiciously choosing interpolation polynomials in regions of different grid levels and (2) enhanced reinitialization by an interface sharpening procedure. The level set equation is solved using a fifth order WENO scheme or a second order central differencing scheme depending on availability of uniform stencils at each grid point. Grid adaptation criteria are determined so that the Hamiltonian functions at nodes adjacent to interfaces are always calculated by the fifth order WENO scheme. This selective usage between the fifth order WENO and second order central differencing schemes is confirmed to give more accurate results compared to those in literature for standard test problems. In order to further improve accuracy especially near thin filaments, we suggest an artificial sharpening method, which is in a similar form with the conventional re-initialization method but utilizes sign of curvature instead of sign of the level set function. Consequently, volume loss due to numerical dissipation on thin filaments is remarkably reduced for the test problems
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.
2012-01-01
An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.
Gasdynamic model of turbulent combustion in an explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A.L.; Ferguson, R.E.; Chien, K.Y.
1994-08-31
Proposed here is a gasdynamic model of turbulent combustion in explosions. It is used to investigate turbulent mixing aspects of afterburning found in TNT charges detonated in air. Evolution of the turbulent velocity field was calculated by a high-order Godunov solution of the gasdynamic equations. Adaptive Mesh Refinement (AMR) was used to follow convective-mixing processes on the computational grid. Combustion was then taken into account by a simplified sub-grid model, demonstrating that it was controlled by turbulent mixing. The rate of fuel consumption decayed inversely with time, and was shown to be insensitive to grid resolution.
Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
2003-01-01
An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.
Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.
1993-01-01
Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. A detailed description of the enrichment and coarsening procedures are presented and comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.
Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.
1993-01-01
Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. The paper gives a detailed description of the enrichment and coarsening procedures and presents comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.
Assessment of Preconditioner for a USM3D Hierarchical Adaptive Nonlinear Method (HANIM) (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.
Numerical Simulations For the F-16XL Aircraft Configuration
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa A.; Abdol-Hamid, Khaled; Cavallo, Peter A.; Parlette, Edward B.
2014-01-01
Numerical simulations of flow around the F-16XL are presented as a contribution to the Cranked Arrow Wing Aerodynamic Project International II (CAWAPI-II). The NASA Tetrahedral Unstructured Software System (TetrUSS) is used to perform numerical simulations. This CFD suite, developed and maintained by NASA Langley Research Center, includes an unstructured grid generation program called VGRID, a postprocessor named POSTGRID, and the flow solver USM3D. The CRISP CFD package is utilized to provide error estimates and grid adaption for verification of USM3D results. A subsonic high angle-of-attack case flight condition (FC) 25 is computed and analyzed. Three turbulence models are used in the calculations: the one-equation Spalart-Allmaras (SA), the two-equation shear stress transport (SST) and the ke turbulence models. Computational results, and surface static pressure profiles are presented and compared with flight data. Solution verification is performed using formal grid refinement studies, the solution of Error Transport Equations, and adaptive mesh refinement. The current study shows that the USM3D solver coupled with CRISP CFD can be used in an engineering environment in predicting vortex-flow physics on a complex configuration at flight Reynolds numbers.
NASA Technical Reports Server (NTRS)
Andrews, Alison E.
1987-01-01
An approach to analyzing CFD knowledge-based systems is proposed which is based, in part, on the concept of knowledge-level analysis. Consideration is given to the expert cooling fan design system, the PAN AIR knowledge system, grid adaptation, and expert zonal grid generation. These AI/CFD systems demonstrate that current AI technology can be successfully applied to well-formulated problems that are solved by means of classification or selection of preenumerated solutions.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2009-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.
Recent Progress on the Parallel Implementation of Moving-Body Overset Grid Schemes
NASA Technical Reports Server (NTRS)
Wissink, Andrew; Allen, Edwin (Technical Monitor)
1998-01-01
Viscous calculations about geometrically complex bodies in which there is relative motion between component parts is one of the most computationally demanding problems facing CFD researchers today. This presentation documents results from the first two years of a CHSSI-funded effort within the U.S. Army AFDD to develop scalable dynamic overset grid methods for unsteady viscous calculations with moving-body problems. The first pan of the presentation will focus on results from OVERFLOW-D1, a parallelized moving-body overset grid scheme that employs traditional Chimera methodology. The two processes that dominate the cost of such problems are the flow solution on each component and the intergrid connectivity solution. Parallel implementations of the OVERFLOW flow solver and DCF3D connectivity software are coupled with a proposed two-part static-dynamic load balancing scheme and tested on the IBM SP and Cray T3E multi-processors. The second part of the presentation will cover some recent results from OVERFLOW-D2, a new flow solver that employs Cartesian grids with various levels of refinement, facilitating solution adaption. A study of the parallel performance of the scheme on large distributed- memory multiprocessor computer architectures will be reported.
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.
Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow
NASA Astrophysics Data System (ADS)
Henshaw, William D.; Schwendeman, Donald W.
2006-08-01
We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows that demonstrate the use and accuracy of the numerical approach.
An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods
NASA Astrophysics Data System (ADS)
Posa, Antonio; Vanella, Marcos; Balaras, Elias
2017-12-01
Lagrangian, direct-forcing, immersed boundary (IB) methods have been receiving increased attention due to their robustness in complex fluid-structure interaction problems. They are very sensitive, however, on the selection of the Lagrangian grid, which is typically used to define a solid or flexible body immersed in a fluid flow. In the present work we propose a cost-efficient solution to this problem without compromising accuracy. Central to our approach is the use of isoparametric mapping to bridge the relative resolution requirements of Lagrangian IB, and Eulerian grids. With this approach, the density of surface Lagrangian markers, which is essential to properly enforce boundary conditions, is adapted dynamically based on the characteristics of the underlying Eulerian grid. The markers are not stored and the Lagrangian data-structure is not modified. The proposed scheme is implemented in the framework of a moving least squares reconstruction formulation, but it can be adapted to any Lagrangian, direct-forcing formulation. The accuracy and robustness of the approach is demonstrated in a variety of test cases of increasing complexity.
A Note on Multigrid Theory for Non-nested Grids and/or Quadrature
NASA Technical Reports Server (NTRS)
Douglas, C. C.; Douglas, J., Jr.; Fyfe, D. E.
1996-01-01
We provide a unified theory for multilevel and multigrid methods when the usual assumptions are not present. For example, we do not assume that the solution spaces or the grids are nested. Further, we do not assume that there is an algebraic relationship between the linear algebra problems on different levels. What we provide is a computationally useful theory for adaptively changing levels. Theory is provided for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse to fine grid with no correction iterations) schemes. We include examples showing the applicability of this theory: finite element examples using quadrature in the matrix assembly and finite volume examples with non-nested grids. Our theory applies directly to other discretizations as well.
Residential photovoltaic power conditioning technology for grid connected applications
NASA Technical Reports Server (NTRS)
Key, T. S.; Klein, J. W.
1982-01-01
Major advances in photovoltaic (PV) Power Conditioning (PC) with respect to performance and low-cost potential have been made. Solutions have been obtained to interface and control problems related to adapting available inverter designs to the grid-connected, residential photovoltaic experiments. A description is presented to contributing research and development activities. Attention is given to aspects of residential systems experience, conceptual design studies, questions of optimum topology development, and promising advanced designs for residential PV provided by development efforts of the private sector.
Arc-Length Continuation and Multi-Grid Techniques for Nonlinear Elliptic Eigenvalue Problems,
1981-03-19
size of the finest grid. We use the (AM) adaptive version of the Cycle C algorithm , unless otherwise stated. The first modified algorithm is the...by computing the derivative, uk, at a known solution and use it to get a better initial guess for the next value of X in a predictor - corrector fashion...factorization of the Jacobian Gu computed already in the Newton step. Using such a predictor - corrector method will often allow us to take a much bigger step
A modified adjoint-based grid adaptation and error correction method for unstructured grid
NASA Astrophysics Data System (ADS)
Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi
2018-05-01
Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.
Space-time adaptive solution of inverse problems with the discrete adjoint method
NASA Astrophysics Data System (ADS)
Alexe, Mihai; Sandu, Adrian
2014-08-01
This paper develops a framework for the construction and analysis of discrete adjoint sensitivities in the context of time dependent, adaptive grid, adaptive step models. Discrete adjoints are attractive in practice since they can be generated with low effort using automatic differentiation. However, this approach brings several important challenges. The space-time adjoint of the forward numerical scheme may be inconsistent with the continuous adjoint equations. A reduction in accuracy of the discrete adjoint sensitivities may appear due to the inter-grid transfer operators. Moreover, the optimization algorithm may need to accommodate state and gradient vectors whose dimensions change between iterations. This work shows that several of these potential issues can be avoided through a multi-level optimization strategy using discontinuous Galerkin (DG) hp-adaptive discretizations paired with Runge-Kutta (RK) time integration. We extend the concept of dual (adjoint) consistency to space-time RK-DG discretizations, which are then shown to be well suited for the adaptive solution of time-dependent inverse problems. Furthermore, we prove that DG mesh transfer operators on general meshes are also dual consistent. This allows the simultaneous derivation of the discrete adjoint for both the numerical solver and the mesh transfer logic with an automatic code generation mechanism such as algorithmic differentiation (AD), potentially speeding up development of large-scale simulation codes. The theoretical analysis is supported by numerical results reported for a two-dimensional non-stationary inverse problem.
Fairbank, Michael; Li, Shuhui; Fu, Xingang; Alonso, Eduardo; Wunsch, Donald
2014-01-01
We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets. The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael J. Bockelie
2002-01-04
This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requiresmore » a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International; -mesh adaption, data management, and parallelization software and technology being developed by users of the BoxLib library at LBNL; and -solution methods for problems formulated on block structured grids that were being developed in collaboration with technical staff members at the University of Utah Center for High Performance Computing (CHPC) and at LBNL. The combustion modeling software used by Reaction Engineering International represents an investment of over fifty man-years of development, conducted over a period of twenty years. Thus, it was impractical to achieve our objective by starting from scratch. The research program resulted in an adaptive grid, reacting CFD flow solver that can be used only on limited problems. In current form the code is appropriate for use on academic problems with simplified geometries. The new solver is not sufficiently robust or sufficiently general to be used in a ''production mode'' for industrial applications. The principle difficulty lies with the multi-level solver technology. The use of multi-level solvers on adaptive grids with embedded boundaries is not yet a mature field and there are many issues that remain to be resolved. From the lessons learned in this SBIR program, we have started work on a new flow solver with an AMR capability. The new code is based on a conventional cell-by-cell mesh refinement strategy used in unstructured grid solvers that employ hexahedral cells. The new solver employs several of the concepts and solution strategies developed within this research program. The formulation of the composite grid problem for the new solver has been designed to avoid the embedded boundary complications encountered in this SBIR project. This follow-on effort will result in a reacting flow CFD solver with localized mesh capability that can be used to perform engineering calculations on industrial problems in a production mode.« less
NASA Technical Reports Server (NTRS)
Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.
1991-01-01
An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.
NASA Astrophysics Data System (ADS)
Szabó, S.; Bódis, K.; Huld, T.; Moner-Girona, M.
2011-07-01
Three rural electrification options are analysed showing the cost optimal conditions for a sustainable energy development applying renewable energy sources in Africa. A spatial electricity cost model has been designed to point out whether diesel generators, photovoltaic systems or extension of the grid are the least-cost option in off-grid areas. The resulting mapping application offers support to decide in which regions the communities could be electrified either within the grid or in an isolated mini-grid. Donor programs and National Rural Electrification Agencies (or equivalent governmental departments) could use this type of delineation for their program boundaries and then could use the local optimization tools adapted to the prevailing parameters. The views expressed in this paper are those of the authors and do not necessarily represent European Commission and UNEP policy.
An efficient unstructured WENO method for supersonic reactive flows
NASA Astrophysics Data System (ADS)
Zhao, Wen-Geng; Zheng, Hong-Wei; Liu, Feng-Jun; Shi, Xiao-Tian; Gao, Jun; Hu, Ning; Lv, Meng; Chen, Si-Cong; Zhao, Hong-Da
2018-03-01
An efficient high-order numerical method for supersonic reactive flows is proposed in this article. The reactive source term and convection term are solved separately by splitting scheme. In the reaction step, an adaptive time-step method is presented, which can improve the efficiency greatly. In the convection step, a third-order accurate weighted essentially non-oscillatory (WENO) method is adopted to reconstruct the solution in the unstructured grids. Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids, while high order accuracy can be achieved in the smooth region. In addition, the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.
Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun
2016-02-01
As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.
The computation of three-dimensional flows using unstructured grids
NASA Technical Reports Server (NTRS)
Morgan, K.; Peraire, J.; Peiro, J.; Hassan, O.
1991-01-01
A general method is described for automatically discretizing, into unstructured assemblies of tetrahedra, the three-dimensional solution domains of complex shape which are of interest in practical computational aerodynamics. An algorithm for the solution of the compressible Euler equations which can be implemented on such general unstructured tetrahedral grids is described. This is an explicit cell-vertex scheme which follows a general Taylor-Galerkin philosophy. The approach is employed to compute a transonic inviscid flow over a standard wing and the results are shown to compare favorably with experimental observations. As a more practical demonstration, the method is then applied to the analysis of inviscid flow over a complete modern fighter configuration. The effect of using mesh adaptivity is illustrated when the method is applied to the solution of high speed flow in an engine inlet.
NASA Technical Reports Server (NTRS)
Thompson David S.; Soni, Bharat K.
2001-01-01
An integrated geometry/grid/simulation software package, ICEG2D, is being developed to automate computational fluid dynamics (CFD) simulations for single- and multi-element airfoils with ice accretions. The current version, ICEG213 (v2.0), was designed to automatically perform four primary functions: (1) generate a grid-ready surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generate high-quality structured and generalized grids starting from a defined surface definition, (3) generate the input and restart files needed to run the structured grid CFD solver NPARC or the generalized grid CFD solver HYBFL2D, and (4) using the flow solutions, generate solution-adaptive grids. ICEG2D (v2.0) can be operated in either a batch mode using a script file or in an interactive mode by entering directives from a command line within a Unix shell. This report summarizes activities completed in the first two years of a three-year research and development program to address automation issues related to CFD simulations for airfoils with ice accretions. As well as describing the technology employed in the software, this document serves as a users manual providing installation and operating instructions. An evaluation of the software is also presented.
NASA Astrophysics Data System (ADS)
Aftosmis, Michael J.
1992-10-01
A new node based upwind scheme for the solution of the 3D Navier-Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three-dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.
Adaptive finite element method for turbulent flow near a propeller
NASA Astrophysics Data System (ADS)
Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois
1994-11-01
This paper presents an adaptive finite element method based on remeshing to solve incompressible turbulent free shear flow near a propeller. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Turbulence is modeled by a mixing length formulation. Two general purpose error estimators, which take into account swirl and the variation of the eddy viscosity, are presented and applied to the turbulent wake of a propeller. Predictions compare well with experimental measurements. The proposed adaptive scheme is robust, reliable and cost effective.
Unstructured Mesh Methods for the Simulation of Hypersonic Flows
NASA Technical Reports Server (NTRS)
Peraire, Jaime; Bibb, K. L. (Technical Monitor)
2001-01-01
This report describes the research work undertaken at the Massachusetts Institute of Technology. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of hypersonic viscous flows about re-entry vehicles. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use, of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the, code which incorporates real gas effects, has been produced. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. In figures I and 2, we show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although these initial results were encouraging, it became apparent that in order to develop a fully functional capability for viscous flows, several advances in gridding, solution accuracy, robustness and efficiency were required. As part of this research we have developed: 1) automatic meshing techniques and the corresponding computer codes have been delivered to NASA and implemented into the GridEx system, 2) a finite element algorithm for the solution of the viscous compressible flow equations which can solve flows all the way down to the incompressible limit and that can use higher order (quadratic) approximations leading to highly accurate answers, and 3) and iterative algebraic multigrid solution techniques.
Current Grid operation and future role of the Grid
NASA Astrophysics Data System (ADS)
Smirnova, O.
2012-12-01
Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place, Grid will become limited to HEP; if however the current multitude of Grid-like systems will converge to a generic, modular and extensible solution, Grid will become true to its name.
Smart grid as a service: a discussion on design issues.
Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.
Smart Grid as a Service: A Discussion on Design Issues
Tsai, Chen-Chou; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as “smart” as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system. PMID:25243214
Computational Aerothermodynamic Simulation Issues on Unstructured Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; White, Jeffery A.
2004-01-01
The synthesis of physical models for gas chemistry and turbulence from the structured grid codes LAURA and VULCAN into the unstructured grid code FUN3D is described. A directionally Symmetric, Total Variation Diminishing (STVD) algorithm and an entropy fix (eigenvalue limiter) keyed to local cell Reynolds number are introduced to improve solution quality for hypersonic aeroheating applications. A simple grid-adaptation procedure is incorporated within the flow solver. Simulations of flow over an ellipsoid (perfect gas, inviscid), Shuttle Orbiter (viscous, chemical nonequilibrium) and comparisons to the structured grid solvers LAURA (cylinder, Shuttle Orbiter) and VULCAN (flat plate) are presented to show current capabilities. The quality of heating in 3D stagnation regions is very sensitive to algorithm options in general, high aspect ratio tetrahedral elements complicate the simulation of high Reynolds number, viscous flow as compared to locally structured meshes aligned with the flow.
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
NASA Technical Reports Server (NTRS)
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.
Parallel grid library for rapid and flexible simulation development
NASA Astrophysics Data System (ADS)
Honkonen, I.; von Alfthan, S.; Sandroos, A.; Janhunen, P.; Palmroth, M.
2013-04-01
We present an easy to use and flexible grid library for developing highly scalable parallel simulations. The distributed cartesian cell-refinable grid (dccrg) supports adaptive mesh refinement and allows an arbitrary C++ class to be used as cell data. The amount of data in grid cells can vary both in space and time allowing dccrg to be used in very different types of simulations, for example in fluid and particle codes. Dccrg transfers the data between neighboring cells on different processes transparently and asynchronously allowing one to overlap computation and communication. This enables excellent scalability at least up to 32 k cores in magnetohydrodynamic tests depending on the problem and hardware. In the version of dccrg presented here part of the mesh metadata is replicated between MPI processes reducing the scalability of adaptive mesh refinement (AMR) to between 200 and 600 processes. Dccrg is free software that anyone can use, study and modify and is available at https://gitorious.org/dccrg. Users are also kindly requested to cite this work when publishing results obtained with dccrg. Catalogue identifier: AEOM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License version 3 No. of lines in distributed program, including test data, etc.: 54975 No. of bytes in distributed program, including test data, etc.: 974015 Distribution format: tar.gz Programming language: C++. Computer: PC, cluster, supercomputer. Operating system: POSIX. The code has been parallelized using MPI and tested with 1-32768 processes RAM: 10 MB-10 GB per process Classification: 4.12, 4.14, 6.5, 19.3, 19.10, 20. External routines: MPI-2 [1], boost [2], Zoltan [3], sfc++ [4] Nature of problem: Grid library supporting arbitrary data in grid cells, parallel adaptive mesh refinement, transparent remote neighbor data updates and load balancing. Solution method: The simulation grid is represented by an adjacency list (graph) with vertices stored into a hash table and edges into contiguous arrays. Message Passing Interface standard is used for parallelization. Cell data is given as a template parameter when instantiating the grid. Restrictions: Logically cartesian grid. Running time: Running time depends on the hardware, problem and the solution method. Small problems can be solved in under a minute and very large problems can take weeks. The examples and tests provided with the package take less than about one minute using default options. In the version of dccrg presented here the speed of adaptive mesh refinement is at most of the order of 106 total created cells per second. http://www.mpi-forum.org/. http://www.boost.org/. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data management services for parallel dynamic applications, Comput. Sci. Eng. 4 (2002) 90-97. http://dx.doi.org/10.1109/5992.988653. https://gitorious.org/sfc++.
A Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF)
NASA Astrophysics Data System (ADS)
Trotta, Francesco; Fenu, Elisa; Pinardi, Nadia; Bruciaferri, Diego; Giacomelli, Luca; Federico, Ivan; Coppini, Giovanni
2016-11-01
We present a numerical platform named Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF). The platform is developed for short-time forecasts and is designed to be embedded in any region of the large-scale Mediterranean Forecasting System (MFS) via downscaling. We employ CTD data collected during a campaign around the Elba island to calibrate and validate SURF. The model requires an initial spin up period of a few days in order to adapt the initial interpolated fields and the subsequent solutions to the higher-resolution nested grids adopted by SURF. Through a comparison with the CTD data, we quantify the improvement obtained by SURF model compared to the coarse-resolution MFS model.
NASA Astrophysics Data System (ADS)
Raeli, Alice; Bergmann, Michel; Iollo, Angelo
2018-02-01
We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.
NASA Astrophysics Data System (ADS)
Do, Seongju; Li, Haojun; Kang, Myungjoo
2017-06-01
In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.
Parallel architectures for iterative methods on adaptive, block structured grids
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1983-01-01
A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.; Karman, Steve L., Jr.
1996-01-01
The objective of the second phase of the Euler Technology Assessment program was to evaluate the ability of Euler computational fluid dynamics codes to predict compressible flow effects over a generic fighter wind tunnel model. This portion of the study was conducted by Lockheed Martin Tactical Aircraft Systems, using an in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaption of the volume grid during the solution to resolve high-gradient regions. The SPLITFLOW code predictions of configuration forces and moments are shown to be adequate for preliminary design, including predictions of sideslip effects and the effects of geometry variations at low and high angles-of-attack. The transonic pressure prediction capabilities of SPLITFLOW are shown to be improved over subsonic comparisons. The time required to generate the results from initial surface data is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaptation on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load inbalances among processors on a parallel machine. This paper described the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution coast is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35 percent of the mesh is randomly adapted. For large scale scientific computations, our load balancing strategy gives an almost sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remappier yields processor assignments that are less than 3 percent of the optimal solutions, but requires only 1 percent of the computational time.
FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.
2010-01-01
This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.
The GeoClaw software for depth-averaged flows with adaptive refinement
Berger, M.J.; George, D.L.; LeVeque, R.J.; Mandli, Kyle T.
2011-01-01
Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems of this nature, consisting of open source Fortran programs together with Python tools for the user interface and flow visualization. This software uses high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude-longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incorporates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems. Examples are given illustrating its use for modeling tsunamis and dam-break flooding problems. Documentation and download information is available at www.clawpack.org/geoclaw. ?? 2011.
Progress in Grid Generation: From Chimera to DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Kao, Kai-Hsiung
1994-01-01
Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are discretized using the newly proposed flux scheme, AUSM+, which will be briefly described herein. Numerical tests on representative 2D inviscid flows are given for demonstration. Finally, extension to 3D is underway, only paced by the availability of the 3D unstructured grid generator.
Multiresolution strategies for the numerical solution of optimal control problems
NASA Astrophysics Data System (ADS)
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a nonlinear programming (NLP) problem that is solved using standard NLP codes. The novelty of the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP problem is solved, which tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with ease, and without any additional computational complexity. The proposed algorithm is based on a simple and intuitive method to balance several conflicting objectives, such as accuracy of the solution, convergence, and speed of the computations. The benefits of the proposed algorithm over uniform grid implementations are demonstrated with the help of several nontrivial examples. Furthermore, two sequential multiresolution trajectory optimization algorithms for solving problems with moving targets and/or dynamically changing environments have been developed. For such problems, high accuracy is desirable only in the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory generation for such situations is thus enabled by introducing the idea of multigrid temporal resolution to solve the associated trajectory optimization problem on a non-uniform grid across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state and control variables.
Computations of ideal and real gas high altitude plume flows
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Venkatapathy, Ethiraj
1988-01-01
In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.
Decentralized DC Microgrid Monitoring and Optimization via Primary Control Perturbations
NASA Astrophysics Data System (ADS)
Angjelichinoski, Marko; Scaglione, Anna; Popovski, Petar; Stefanovic, Cedomir
2018-06-01
We treat the emerging power systems with direct current (DC) MicroGrids, characterized with high penetration of power electronic converters. We rely on the power electronics to propose a decentralized solution for autonomous learning of and adaptation to the operating conditions of the DC Mirogrids; the goal is to eliminate the need to rely on an external communication system for such purpose. The solution works within the primary droop control loops and uses only local bus voltage measurements. Each controller is able to estimate (i) the generation capacities of power sources, (ii) the load demands, and (iii) the conductances of the distribution lines. To define a well-conditioned estimation problem, we employ decentralized strategy where the primary droop controllers temporarily switch between operating points in a coordinated manner, following amplitude-modulated training sequences. We study the use of the estimator in a decentralized solution of the Optimal Economic Dispatch problem. The evaluations confirm the usefulness of the proposed solution for autonomous MicroGrid operation.
Three dimensional unstructured multigrid for the Euler equations
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1991-01-01
The three dimensional Euler equations are solved on unstructured tetrahedral meshes using a multigrid strategy. The driving algorithm consists of an explicit vertex-based finite element scheme, which employs an edge-based data structure to assemble the residuals. The multigrid approach employs a sequence of independently generated coarse and fine meshes to accelerate the convergence to steady-state of the fine grid solution. Variables, residuals and corrections are passed back and forth between the various grids of the sequence using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using an efficient graph traversal algorithm. The preprocessing operation is shown to require a negligible fraction of the CPU time required by the overall solution procedure, while gains in overall solution efficiencies greater than an order of magnitude are demonstrated on meshes containing up to 350,000 vertices. Solutions using globally regenerated fine meshes as well as adaptively refined meshes are given.
An adaptive embedded mesh procedure for leading-edge vortex flows
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.; Beer, Michael A.; Law, Glenn W.
1989-01-01
A procedure for solving the conical Euler equations on an adaptively refined mesh is presented, along with a method for determining which cells to refine. The solution procedure is a central-difference cell-vertex scheme. The adaptation procedure is made up of a parameter on which the refinement decision is based, and a method for choosing a threshold value of the parameter. The refinement parameter is a measure of mesh-convergence, constructed by comparison of locally coarse- and fine-grid solutions. The threshold for the refinement parameter is based on the curvature of the curve relating the number of cells flagged for refinement to the value of the refinement threshold. Results for three test cases are presented. The test problem is that of a delta wing at angle of attack in a supersonic free-stream. The resulting vortices and shocks are captured efficiently by the adaptive code.
Techniques for grid manipulation and adaptation. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.
1992-01-01
Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.
Adaptive mesh refinement for characteristic grids
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan
2011-05-01
I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.
A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility.
Zaballos, Agustín; Navarro, Joan; Martín De Pozuelo, Ramon
2018-02-28
Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid's data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
Subsonic Analysis of 0.04-Scale F-16XL Models Using an Unstructured Euler Code
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
1996-01-01
The subsonic flow field about an F-16XL airplane model configuration was investigated with an inviscid unstructured grid technique. The computed surface pressures were compared to wind-tunnel test results at Mach 0.148 for a range of angles of attack from 0 deg to 20 deg. To evaluate the effect of grid dependency on the solution, a grid study was performed in which fine, medium, and coarse grid meshes were generated. The off-surface vortical flow field was locally adapted and showed improved correlation to the wind-tunnel data when compared to the nonadapted flow field. Computational results are also compared to experimental five-hole pressure probe data. A detailed analysis of the off-body computed pressure contours, velocity vectors, and particle traces are presented and discussed.
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, I; Pember, R; Greenough, J
2005-10-18
We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less
Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions
NASA Astrophysics Data System (ADS)
Kurtz, Jason Patrick
We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.
Adaptive Implicit Non-Equilibrium Radiation Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Bobby; Wang, Zhen; Berrill, Mark A
2013-01-01
We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Colella, Phillip
2007-11-01
We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.
NASA Technical Reports Server (NTRS)
Vemaganti, Gururaja R.
1994-01-01
This report presents computations for the Type 4 shock-shock interference flow under laminar and turbulent conditions using unstructured grids. Mesh adaptation was accomplished by remeshing, refinement, and mesh movement. Two two-equation turbulence models were used to analyze turbulent flows. The mean flow governing equations and the turbulence governing equations are solved in a coupled manner. The solution algorithm and the details pertaining to its implementation on unstructured grids are described. Computations were performed at two different freestream Reynolds numbers at a freestream Mach number of 11. Effects of the variation in the impinging shock location are studied. The comparison of the results in terms of wall heat flux and wall pressure distributions is presented.
Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar
2018-01-30
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities.
Bilich, Andrew; Langham, Kevin; Geyer, Roland; Goyal, Love; Hansen, James; Krishnan, Anjana; Bergesen, Joseph; Sinha, Parikhit
2017-01-17
Access to a reliable source of electricity creates significant benefits for developing communities. Smaller versions of electricity grids, known as microgrids, have been developed as a solution to energy access problems. Using attributional life cycle assessment, this project evaluates the environmental and energy impacts of three photovoltiac (PV) microgrids compared to other energy options for a model village in Kenya. When normalized per kilowatt hour of electricity consumed, PV microgrids, particularly PV-battery systems, have lower impacts than other energy access solutions in climate change, particulate matter, photochemical oxidants, and terrestrial acidification. When compared to small-scale diesel generators, PV-battery systems save 94-99% in the above categories. When compared to the marginal electricity grid in Kenya, PV-battery systems save 80-88%. Contribution analysis suggests that electricity and primary metal use during component, particularly battery, manufacturing are the largest contributors to overall PV-battery microgrid impacts. Accordingly, additional savings could be seen from changing battery manufacturing location and ensuring end of life recycling. Overall, this project highlights the potential for PV microgrids to be feasible, adaptable, long-term energy access solutions, with health and environmental advantages compared to traditional electrification options.
Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, B.; Yee, H. C.
2001-01-01
Grid convergence of several high order methods for the computation of rapidly developing complex unsteady viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-order weighted ENO (WENO) scheme. The two 2-D compressible full Navier-Stokes models considered do not possess known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL scheme with limiters are used as reference solutions. The first model is a 2-D viscous analogue of a shock tube problem which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales as well as the chemical reaction scales.
Multiscale Simulations of Magnetic Island Coalescence
NASA Technical Reports Server (NTRS)
Dorelli, John C.
2010-01-01
We describe a new interactive parallel Adaptive Mesh Refinement (AMR) framework written in the Python programming language. This new framework, PyAMR, hides the details of parallel AMR data structures and algorithms (e.g., domain decomposition, grid partition, and inter-process communication), allowing the user to focus on the development of algorithms for advancing the solution of a systems of partial differential equations on a single uniform mesh. We demonstrate the use of PyAMR by simulating the pairwise coalescence of magnetic islands using the resistive Hall MHD equations. Techniques for coupling different physics models on different levels of the AMR grid hierarchy are discussed.
Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Ali R.; Kleb, Bill
2007-01-01
Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.
Three-dimensional self-adaptive grid method for complex flows
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Deiwert, George S.
1988-01-01
A self-adaptive grid procedure for efficient computation of three-dimensional complex flow fields is described. The method is based on variational principles to minimize the energy of a spring system analogy which redistributes the grid points. Grid control parameters are determined by specifying maximum and minimum grid spacing. Multidirectional adaptation is achieved by splitting the procedure into a sequence of successive applications of a unidirectional adaptation. One-sided, two-directional constraints for orthogonality and smoothness are used to enhance the efficiency of the method. Feasibility of the scheme is demonstrated by application to a multinozzle, afterbody, plume flow field. Application of the algorithm for initial grid generation is illustrated by constructing a three-dimensional grid about a bump-like geometry.
Thermocapillary motion of deformable drops
NASA Technical Reports Server (NTRS)
Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali
1994-01-01
The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.
Vernet, David; Corral, Guiomar
2018-01-01
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Wang, Y.; Shu, C.
2017-12-01
This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.
INITIAL APPL;ICATION OF THE ADAPTIVE GRID AIR POLLUTION MODEL
The paper discusses an adaptive-grid algorithm used in air pollution models. The algorithm reduces errors related to insufficient grid resolution by automatically refining the grid scales in regions of high interest. Meanwhile the grid scales are coarsened in other parts of the d...
McCorquodale, Peter; Ullrich, Paul; Johansen, Hans; ...
2015-09-04
We present a high-order finite-volume approach for solving the shallow-water equations on the sphere, using multiblock grids on the cubed-sphere. This approach combines a Runge--Kutta time discretization with a fourth-order accurate spatial discretization, and includes adaptive mesh refinement and refinement in time. Results of tests show fourth-order convergence for the shallow-water equations as well as for advection in a highly deformational flow. Hierarchical adaptive mesh refinement allows solution error to be achieved that is comparable to that obtained with uniform resolution of the most refined level of the hierarchy, but with many fewer operations.
NASA Astrophysics Data System (ADS)
Penven, Pierrick; Debreu, Laurent; Marchesiello, Patrick; McWilliams, James C.
What most clearly distinguishes near-shore and off-shore currents is their dominant spatial scale, O (1-30) km near-shore and O (30-1000) km off-shore. In practice, these phenomena are usually both measured and modeled with separate methods. In particular, it is infeasible for any regular computational grid to be large enough to simultaneously resolve well both types of currents. In order to obtain local solutions at high resolution while preserving the regional-scale circulation at an affordable computational cost, a 1-way grid embedding capability has been integrated into the Regional Oceanic Modeling System (ROMS). It takes advantage of the AGRIF (Adaptive Grid Refinement in Fortran) Fortran 90 package based on the use of pointers. After a first evaluation in a baroclinic vortex test case, the embedding procedure has been applied to a domain that covers the central upwelling region off California, around Monterey Bay, embedded in a domain that spans the continental U.S. Pacific Coast. Long-term simulations (10 years) have been conducted to obtain mean-seasonal statistical equilibria. The final solution shows few discontinuities at the parent-child domain boundary and a valid representation of the local upwelling structure, at a CPU cost only slightly greater than for the inner region alone. The solution is assessed by comparison with solutions for the whole US Pacific Coast at both low and high resolutions and to solutions for only the inner region at high resolution with mean-seasonal boundary conditions.
Adaptive and dynamic meshing methods for numerical simulations
NASA Astrophysics Data System (ADS)
Acikgoz, Nazmiye
For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad-hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging multi-physics and multi-field problems that are unsteady in nature are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, which typically occurs when implicit time marching procedures are used, degenerate elements are easily formed in the grid such that frequent remeshing is required. To deal with this problem, in the second part of this work, we propose a new r-adaptation methodology. The new technique is valid for both simplicial (e.g., triangular, tet) and non-simplicial (e.g., quadrilateral, hex) deforming grids that undergo large imposed displacements at their boundaries. A two- or three-dimensional grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. This is accomplished by confining each vertex to its ball through springs that are attached to the vertex and its projection on the ball entities. The resulting linear problem is solved using a preconditioned conjugate gradient method. The new method is compared with the classical spring analogy technique in two- and three-dimensional examples, highlighting the performance improvements achieved by the new method. Meshes are an important part of numerical simulations. Depending on the geometry and flow conditions, the most suitable mesh for each particular problem is different. Meshes are usually generated by either using a suitable software package or solving a PDE. In both cases, engineering intuition plays a significant role in deciding where clusterings should take place. In addition, for unsteady problems, the gradients vary for each time step, which requires frequent remeshing during simulations. Therefore, in order to minimize user intervention and prevent frequent remeshings, we conclude this work by defining a novel mesh adaptation technique that integrates metric based target mesh definitions with the ball-vertex mesh deformation method. In this new approach, the entire mesh is deformed based on either an a-priori or an a-posteriori error estimator. In other words, nodal points are repositioned upon application of a force field in order to comply with the target mesh or to get more accurate solutions. The method has been tested for two-dimensional problems of a-priori metric definitions as well as for oblique shock clusterings.
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frinks, Neal T.
2016-01-01
Several improvements to the mixed-elementUSM3Ddiscretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.
1991-01-01
Spatial adaption procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaption procedures were developed and implemented within a two-dimensional unstructured-grid upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in a high gradient region or the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational costs. A detailed description is given of the enrichment and coarsening procedures and comparisons with alternative results and experimental data are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady transonic results, obtained using spatial adaption for the NACA 0012 airfoil, are shown to be of high spatial accuracy, primarily in that the shock waves are very sharply captured. The results were obtained with a computational savings of a factor of approximately fifty-three for a steady case and as much as twenty-five for the unsteady cases.
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Yang, Henry T. Y.; Batina, John T.
1991-01-01
Spatial adaption procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaption procedures were developed and implemented within a two-dimensional unstructured-grid upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. The paper gives a detailed description of the enrichment and coarsening procedures and presents comparisons with alternative results and experimental data to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady transonic results, obtained using spatial adaption for the NACA 0012 airfoil, are shown to be of high spatial accuracy, primarily in that the shock waves are very sharply captured. The results were obtained with a computational savings of a factor of approximately fifty-three for a steady case and as much as twenty-five for the unsteady cases.
Novel Concept for Flexible and Resilient Large Power Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Parag; Englebretson, Steven; Ramanan, V. R. R.
This feasibility study investigates a flexible and adaptable LPT design solution which can facilitate long-term replacement in the event of both catastrophic failures as well as scheduled replacements, thereby increasing grid resilience. The scope of this project has been defined based on an initial system study and identification of the transformer requirements from an overall system load flow perspective.
NASA Astrophysics Data System (ADS)
Dalguer, L. A.; Day, S. M.
2006-12-01
Accuracy in finite difference (FD) solutions to spontaneous rupture problems is controlled principally by the scheme used to represent the fault discontinuity, and not by the grid geometry used to represent the continuum. We have numerically tested three fault representation methods, the Thick Fault (TF) proposed by Madariaga et al (1998), the Stress Glut (SG) described by Andrews (1999), and the Staggered-Grid Split-Node (SGSN) methods proposed by Dalguer and Day (2006), each implemented in a the fourth-order velocity-stress staggered-grid (VSSG) FD scheme. The TF and the SG methods approximate the discontinuity through inelastic increments to stress components ("inelastic-zone" schemes) at a set of stress grid points taken to lie on the fault plane. With this type of scheme, the fault surface is indistinguishable from an inelastic zone with a thickness given by a spatial step dx for the SG, and 2dx for the TF model. The SGSN method uses the traction-at-split-node (TSN) approach adapted to the VSSG FD. This method represents the fault discontinuity by explicitly incorporating discontinuity terms at velocity nodes in the grid, with interactions between the "split nodes" occurring exclusively through the tractions (frictional resistance) acting between them. These tractions in turn are controlled by the jump conditions and a friction law. Our 3D tests problem solutions show that the inelastic-zone TF and SG methods show much poorer performance than does the SGSN formulation. The SG inelastic-zone method achieved solutions that are qualitatively meaningful and quantitatively reliable to within a few percent. The TF inelastic-zone method did not achieve qualitatively agreement with the reference solutions to the 3D test problem, and proved to be sufficiently computationally inefficient that it was not feasible to explore convergence quantitatively. The SGSN method gives very accurate solutions, and is also very efficient. Reliable solution of the rupture time is reached with a median resolution of the cohesive zone of only ~2 grid points, and efficiency is competitive with the Boundary Integral (BI) method. The results presented here demonstrate that appropriate fault representation in a numerical scheme is crucial to reduce uncertainties in numerical simulations of earthquake source dynamics and ground motion, and therefore important to improving our understanding of earthquake physics in general.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.
1995-01-01
This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
Multiple-block grid adaption for an airplane geometry
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid Samareh; Smith, Robert E.
1988-01-01
Grid-adaption methods are developed with the capability of moving grid points in accordance with several variables for a three-dimensional multiple-block grid system. These methods are algebraic, and they are implemented for the computation of high-speed flow over an airplane configuration.
A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory
NASA Technical Reports Server (NTRS)
Prozan, R. J.
1982-01-01
The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.
NASA Astrophysics Data System (ADS)
Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William
2017-11-01
The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.
Mapped grid methods for long-range molecules and cold collisions
NASA Astrophysics Data System (ADS)
Willner, K.; Dulieu, O.; Masnou-Seeuws, F.
2004-01-01
The paper discusses ways of improving the accuracy of numerical calculations for vibrational levels of diatomic molecules close to the dissociation limit or for ultracold collisions, in the framework of a grid representation. In order to avoid the implementation of very large grids, Kokoouline et al. [J. Chem. Phys. 110, 9865 (1999)] have proposed a mapping procedure through introduction of an adaptive coordinate x subjected to the variation of the local de Broglie wavelength as a function of the internuclear distance R. Some unphysical levels ("ghosts") then appear in the vibrational series computed via a mapped Fourier grid representation. In the present work the choice of the basis set is reexamined, and two alternative expansions are discussed: Sine functions and Hardy functions. It is shown that use of a basis set with fixed nodes at both grid ends is efficient to eliminate "ghost" solutions. It is further shown that the Hamiltonian matrix in the sine basis can be calculated very accurately by using an auxiliary basis of cosine functions, overcoming the problems arising from numerical calculation of the Jacobian J(x) of the R→x coordinate transformation.
Moving and adaptive grid methods for compressible flows
NASA Technical Reports Server (NTRS)
Trepanier, Jean-Yves; Camarero, Ricardo
1995-01-01
This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.
A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility
2018-01-01
Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid’s data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29495599
Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.
1999-01-01
The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.
Navier-Stokes Aerodynamic Simulation of the V-22 Osprey on the Intel Paragon MPP
NASA Technical Reports Server (NTRS)
Vadyak, Joseph; Shrewsbury, George E.; Narramore, Jim C.; Montry, Gary; Holst, Terry; Kwak, Dochan (Technical Monitor)
1995-01-01
The paper will describe the Development of a general three-dimensional multiple grid zone Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent application of this method to the prediction of the viscous flowfield about the V-22 Osprey tiltrotor vehicle. The flowfield simulation code solves the thin Layer or full Navier-Stoke's equation - for viscous flow modeling, or the Euler equations for inviscid flow modeling on a structured multi-zone mesh. In the present paper only viscous simulations will be shown. The governing difference equations are solved using a time marching implicit approximate factorization method with either TVD upwind or central differencing used for the convective terms and central differencing used for the viscous diffusion terms. Steady state or Lime accurate solutions can be calculated. The present paper will focus on steady state applications, although time accurate solution analysis is the ultimate goal of this effort. Laminar viscosity is calculated using Sutherland's law and the Baldwin-Lomax two layer algebraic turbulence model is used to compute the eddy viscosity. The Simulation method uses an arbitrary block, curvilinear grid topology. An automatic grid adaption scheme is incorporated which concentrates grid points in high density gradient regions. A variety of user-specified boundary conditions are available. This paper will present the application of the scalable and superscalable versions to the steady state viscous flow analysis of the V-22 Osprey using a multiple zone global mesh. The mesh consists of a series of sheared cartesian grid blocks with polar grids embedded within to better simulate the wing tip mounted nacelle. MPP solutions will be shown in comparison to equivalent Cray C-90 results and also in comparison to experimental data. Discussions on meshing considerations, wall clock execution time, load balancing, and scalability will be provided.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1986-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
NASA Astrophysics Data System (ADS)
Lewis, Bryan; Cimbala, John; Wouden, Alex
2011-11-01
Turbulence models are generally developed to study common academic geometries, such as flat plates and channels. Creating quality computational grids for such geometries is trivial, and allows stringent requirements to be met for boundary layer grid refinement. However, engineering applications, such as flow through hydroturbines, require the analysis of complex, highly curved geometries. To produce body-fitted grids for such geometries, the mesh quality requirements must be relaxed. Relaxing these requirements, along with the complexity of rotating flows, forces turbulence models to be employed beyond their developed scope. This study explores the solution sensitivity to boundary layer grid quality for various turbulence models and boundary conditions currently implemented in OpenFOAM. The following models are resented: k-omega, k-omega SST, k-epsilon, realizable k-epsilon, and RNG k-epsilon. Standard wall functions, adaptive wall functions, and sub-grid integration are compared using various grid refinements. The chosen geometry is the GAMM Francis Turbine because experimental data and comparison computational results are available for this turbine. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1989-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu
2015-05-01
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL -
Video Text Version | Energy Systems Integration Facility | NREL Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version Smarter Grid Solutions Demonstrates Smart Campus Power Control at NREL - Video Text Version This is the text version for the Smarter Grid Solutions
NASA Astrophysics Data System (ADS)
Alvarez, Alejandro; Beche, Alexandre; Furano, Fabrizio; Hellmich, Martin; Keeble, Oliver; Rocha, Ricardo
2012-12-01
The Disk Pool Manager (DPM) is a lightweight solution for grid enabled disk storage management. Operated at more than 240 sites it has the widest distribution of all grid storage solutions in the WLCG infrastructure. It provides an easy way to manage and configure disk pools, and exposes multiple interfaces for data access (rfio, xroot, nfs, gridftp and http/dav) and control (srm). During the last year we have been working on providing stable, high performant data access to our storage system using standard protocols, while extending the storage management functionality and adapting both configuration and deployment procedures to reuse commonly used building blocks. In this contribution we cover in detail the extensive evaluation we have performed of our new HTTP/WebDAV and NFS 4.1 frontends, in terms of functionality and performance. We summarize the issues we faced and the solutions we developed to turn them into valid alternatives to the existing grid protocols - namely the additional work required to provide multi-stream transfers for high performance wide area access, support for third party copies, credential delegation or the required changes in the experiment and fabric management frameworks and tools. We describe new functionality that has been added to ease system administration, such as different filesystem weights and a faster disk drain, and new configuration and monitoring solutions based on the industry standards Puppet and Nagios. Finally, we explain some of the internal changes we had to do in the DPM architecture to better handle the additional load from the analysis use cases.
An Efficient Means of Adaptive Refinement Within Systems of Overset Grids
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1996-01-01
An efficient means of adaptive refinement within systems of overset grids is presented. Problem domains are segregated into near-body and off-body fields. Near-body fields are discretized via overlapping body-fitted grids that extend only a short distance from body surfaces. Off-body fields are discretized via systems of overlapping uniform Cartesian grids of varying levels of refinement. a novel off-body grid generation and management scheme provides the mechanism for carrying out adaptive refinement of off-body flow dynamics and solid body motion. The scheme allows for very efficient use of memory resources, and flow solvers and domain connectivity routines that can exploit the structure inherent to uniform Cartesian grids.
The fundamentals of adaptive grid movement
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.
1990-01-01
Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.
Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.
2008-01-01
This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.
Artificial Intelligence In Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1991-01-01
Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.
A generic efficient adaptive grid scheme for rocket propulsion modeling
NASA Technical Reports Server (NTRS)
Mo, J. D.; Chow, Alan S.
1993-01-01
The objective of this research is to develop an efficient, time-accurate numerical algorithm to discretize the Navier-Stokes equations for the predictions of internal one-, two-dimensional and axisymmetric flows. A generic, efficient, elliptic adaptive grid generator is implicitly coupled with the Lower-Upper factorization scheme in the development of ALUNS computer code. The calculations of one-dimensional shock tube wave propagation and two-dimensional shock wave capture, wave-wave interactions, shock wave-boundary interactions show that the developed scheme is stable, accurate and extremely robust. The adaptive grid generator produced a very favorable grid network by a grid speed technique. This generic adaptive grid generator is also applied in the PARC and FDNS codes and the computational results for solid rocket nozzle flowfield and crystal growth modeling by those codes will be presented in the conference, too. This research work is being supported by NASA/MSFC.
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Biswas, Rupak; Simon, Horst D.
1996-01-01
The computational requirements for an adaptive solution of unsteady problems change as the simulation progresses. This causes workload imbalance among processors on a parallel machine which, in turn, requires significant data movement at runtime. We present a new dynamic load-balancing framework, called JOVE, that balances the workload across all processors with a global view. Whenever the computational mesh is adapted, JOVE is activated to eliminate the load imbalance. JOVE has been implemented on an IBM SP2 distributed-memory machine in MPI for portability. Experimental results for two model meshes demonstrate that mesh adaption with load balancing gives more than a sixfold improvement over one without load balancing. We also show that JOVE gives a 24-fold speedup on 64 processors compared to sequential execution.
Direct adaptive control of wind energy conversion systems using Gaussian networks.
Mayosky, M A; Cancelo, I E
1999-01-01
Grid connected wind energy conversion systems (WECS) present interesting control demands, due to the intrinsic nonlinear characteristics of windmills and electric generators. In this paper a direct adaptive control strategy for WECS control is proposed. It is based on the combination of two control actions: a radial basis zfunction network-based adaptive controller, which drives the tracking error to zero with user specified dynamics, and a supervisory controller, based on crude bounds of the system's nonlinearities. The supervisory controller fires when the finite neural-network approximation properties cannot be guaranteed. The form of the supervisor control and the adaptation law for the neural controller are derived from a Lyapunov analysis of stability. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.
NASA Astrophysics Data System (ADS)
Fairbanks, Hillary R.; Doostan, Alireza; Ketelsen, Christian; Iaccarino, Gianluca
2017-07-01
Multilevel Monte Carlo (MLMC) is a recently proposed variation of Monte Carlo (MC) simulation that achieves variance reduction by simulating the governing equations on a series of spatial (or temporal) grids with increasing resolution. Instead of directly employing the fine grid solutions, MLMC estimates the expectation of the quantity of interest from the coarsest grid solutions as well as differences between each two consecutive grid solutions. When the differences corresponding to finer grids become smaller, hence less variable, fewer MC realizations of finer grid solutions are needed to compute the difference expectations, thus leading to a reduction in the overall work. This paper presents an extension of MLMC, referred to as multilevel control variates (MLCV), where a low-rank approximation to the solution on each grid, obtained primarily based on coarser grid solutions, is used as a control variate for estimating the expectations involved in MLMC. Cost estimates as well as numerical examples are presented to demonstrate the advantage of this new MLCV approach over the standard MLMC when the solution of interest admits a low-rank approximation and the cost of simulating finer grids grows fast.
Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations
NASA Technical Reports Server (NTRS)
Moon, Young J.; Liou, Meng-Sing
1989-01-01
Conservative algorithms for boundary interfaces of overlaid grids are presented. The basic method is zeroth order, and is extended to a higher order method using interpolation and subcell decomposition. The present method, strictly based on a conservative constraint, is tested with overlaid grids for various applications of unsteady and steady supersonic inviscid flows with strong shock waves. The algorithm is also applied to a multi-level grid adaptation in which the next level finer grid is overlaid on the coarse base grid with an arbitrary orientation.
Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Morgenstern, John M.
2014-01-01
A summary is provided for the First AIAA Sonic Boom Workshop held 11 January 2014 in conjunction with AIAA SciTech 2014. Near-field pressure signatures extracted from computational fluid dynamics solutions are gathered from nineteen participants representing three countries for the two required cases, an axisymmetric body and simple delta wing body. Structured multiblock, unstructured mixed-element, unstructured tetrahedral, overset, and Cartesian cut-cell methods are used by the participants. Participants provided signatures computed on participant generated and solution adapted grids. Signatures are also provided for a series of uniformly refined workshop provided grids. These submissions are propagated to the ground and loudness measures are computed. This allows the grid convergence of a loudness measure and a validation metric (dfference norm between computed and wind tunnel measured near-field signatures) to be studied for the first time. Statistical analysis is also presented for these measures. An optional configuration includes fuselage, wing, tail, flow-through nacelles, and blade sting. This full configuration exhibits more variation in eleven submissions than the sixty submissions provided for each required case. Recommendations are provided for potential improvements to the analysis methods and a possible subsequent workshop.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Hixon, Duane; Sankar, L. N.
1993-01-01
During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines.
Turbulent Output-Based Anisotropic Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Carlson, Jan-Renee
2010-01-01
Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.
CFD Script for Rapid TPS Damage Assessment
NASA Technical Reports Server (NTRS)
McCloud, Peter
2013-01-01
This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.
Integrating PV in Distributed Grids: Solutions and Technologies Workshop |
Energy Systems Integration Facility | NREL Integrating PV in Distributed Grids: Solutions and Technologies Workshop Integrating PV in Distributed Grids: Solutions and Technologies Workshop In October 2015 (PV) onto the grid. The workshop was held at the Energy Systems Integration Facility. Presenters from
Parallel, Gradient-Based Anisotropic Mesh Adaptation for Re-entry Vehicle Configurations
NASA Technical Reports Server (NTRS)
Bibb, Karen L.; Gnoffo, Peter A.; Park, Michael A.; Jones, William T.
2006-01-01
Two gradient-based adaptation methodologies have been implemented into the Fun3d refine GridEx infrastructure. A spring-analogy adaptation which provides for nodal movement to cluster mesh nodes in the vicinity of strong shocks has been extended for general use within Fun3d, and is demonstrated for a 70 sphere cone at Mach 2. A more general feature-based adaptation metric has been developed for use with the adaptation mechanics available in Fun3d, and is applicable to any unstructured, tetrahedral, flow solver. The basic functionality of general adaptation is explored through a case of flow over the forebody of a 70 sphere cone at Mach 6. A practical application of Mach 10 flow over an Apollo capsule, computed with the Felisa flow solver, is given to compare the adaptive mesh refinement with uniform mesh refinement. The examples of the paper demonstrate that the gradient-based adaptation capability as implemented can give an improvement in solution quality.
NASA Technical Reports Server (NTRS)
Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.
Integrated multidisciplinary CAD/CAE environment for micro-electro-mechanical systems (MEMS)
NASA Astrophysics Data System (ADS)
Przekwas, Andrzej J.
1999-03-01
Computational design of MEMS involves several strongly coupled physical disciplines, including fluid mechanics, heat transfer, stress/deformation dynamics, electronics, electro/magneto statics, calorics, biochemistry and others. CFDRC is developing a new generation multi-disciplinary CAD systems for MEMS using high-fidelity field solvers on unstructured, solution-adaptive grids for a full range of disciplines. The software system, ACE + MEMS, includes all essential CAD tools; geometry/grid generation for multi- discipline, multi-equation solvers, GUI, tightly coupled configurable 3D field solvers for FVM, FEM and BEM and a 3D visualization/animation tool. The flow/heat transfer/calorics/chemistry equations are solved with unstructured adaptive FVM solver, stress/deformation are computed with a FEM STRESS solver and a FAST BEM solver is used to solve linear heat transfer, electro/magnetostatics and elastostatics equations on adaptive polygonal surface grids. Tight multidisciplinary coupling and automatic interoperability between the tools was achieved by designing a comprehensive database structure and APIs for complete model definition. The virtual model definition is implemented in data transfer facility, a publicly available tool described in this paper. The paper presents overall description of the software architecture and MEMS design flow in ACE + MEMS. It describes current status, ongoing effort and future plans for the software. The paper also discusses new concepts of mixed-level and mixed- dimensionality capability in which 1D microfluidic networks are simulated concurrently with 3D high-fidelity models of discrete components.
A fast dynamic grid adaption scheme for meteorological flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiedler, B.H.; Trapp, R.J.
1993-10-01
The continuous dynamic grid adaption (CDGA) technique is applied to a compressible, three-dimensional model of a rising thermal. The computational cost, per grid point per time step, of using CDGA instead of a fixed, uniform Cartesian grid is about 53% of the total cost of the model with CDGA. The use of general curvilinear coordinates contributes 11.7% to this total, calculating and moving the grid 6.1%, and continually updating the transformation relations 20.7%. Costs due to calculations that involve the gridpoint velocities (as well as some substantial unexplained costs) contribute the remaining 14.5%. A simple way to limit the costmore » of calculating the grid is presented. The grid is adapted by solving an elliptic equation for gridpoint coordinates on a coarse grid and then interpolating the full finite-difference grid. In this application, the additional costs per grid point of CDGA are shown to be easily offset by the savings resulting from the reduction in the required number of grid points. In simulation of the thermal costs are reduced by a factor of 3, as compared with those of a companion model with a fixed, uniform Cartesian grid. 8 refs., 8 figs.« less
Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.
2005-01-01
A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.
NASA Technical Reports Server (NTRS)
Ashford, Gregory A.; Powell, Kenneth G.
1995-01-01
A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.
A parallel adaptive mesh refinement algorithm
NASA Technical Reports Server (NTRS)
Quirk, James J.; Hanebutte, Ulf R.
1993-01-01
Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.
NASA Technical Reports Server (NTRS)
Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.
2016-01-01
Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.
Fully implicit moving mesh adaptive algorithm
NASA Astrophysics Data System (ADS)
Chacon, Luis
2005-10-01
In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. A crucial element is the development of an effective multilevel treatment of the grid equation.ootnotetextL. Chac'on, G. Lapenta, A fully implicit, nonlinear adaptive grid strategy, J. Comput. Phys., accepted (2005) We will show that such an approach is competitive vs. uniform grids both from the accuracy (due to adaptivity) and the efficiency standpoints. Results for a variety of models 1D and 2D geometries, including nonlinear diffusion, radiation-diffusion, Burgers equation, and gas dynamics will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonowski, Christiane
The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goffin, Mark A., E-mail: mark.a.goffin@gmail.com; Buchan, Andrew G.; Dargaville, Steven
2015-01-15
A method for applying goal-based adaptive methods to the angular resolution of the neutral particle transport equation is presented. The methods are applied to an octahedral wavelet discretisation of the spherical angular domain which allows for anisotropic resolution. The angular resolution is adapted across both the spatial and energy dimensions. The spatial domain is discretised using an inner-element sub-grid scale finite element method. The goal-based adaptive methods optimise the angular discretisation to minimise the error in a specific functional of the solution. The goal-based error estimators require the solution of an adjoint system to determine the importance to the specifiedmore » functional. The error estimators and the novel methods to calculate them are described. Several examples are presented to demonstrate the effectiveness of the methods. It is shown that the methods can significantly reduce the number of unknowns and computational time required to obtain a given error. The novelty of the work is the use of goal-based adaptive methods to obtain anisotropic resolution in the angular domain for solving the transport equation. -- Highlights: •Wavelet angular discretisation used to solve transport equation. •Adaptive method developed for the wavelet discretisation. •Anisotropic angular resolution demonstrated through the adaptive method. •Adaptive method provides improvements in computational efficiency.« less
The adaptive, cut-cell Cartesian approach (warts and all)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1995-01-01
Solution-adaptive methods based on cutting bodies out of Cartesian grids are gaining popularity now that the ways of circumventing the accuracy problems associated with small cut cells have been developed. Researchers are applying Cartesian-based schemes to a broad class of problems now, and, although there is still development work to be done, it is becoming clearer which problems are best suited to the approach (and which are not). The purpose of this paper is to give a candid assessment, based on applying Cartesian schemes to a variety of problems, of the strengths and weaknesses of the approach as it is currently implemented.
Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids
Chen, Bo; Chen, Chen; Wang, Jianhui; ...
2017-07-07
The resilience and reliability of modern power systems are threatened by increasingly severe weather events and cyber-physical security events. An effective restoration methodology is desired to optimally integrate emerging smart grid technologies and pave the way for developing self-healing smart grids. In this paper, a sequential service restoration (SSR) framework is proposed to generate restoration solutions for distribution systems and microgrids in the event of large-scale power outages. The restoration solution contains a sequence of control actions that properly coordinate switches, distributed generators, and switchable loads to form multiple isolated microgrids. The SSR can be applied for three-phase unbalanced distributionmore » systems and microgrids and can adapt to various operation conditions. Mathematical models are introduced for three-phase unbalanced power flow, voltage regulators, transformers, and loads. Furthermore, the SSR problem is formulated as a mixed-integer linear programming model, and its effectiveness is evaluated via the modified IEEE 123 node test feeder.« less
Sequential Service Restoration for Unbalanced Distribution Systems and Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bo; Chen, Chen; Wang, Jianhui
The resilience and reliability of modern power systems are threatened by increasingly severe weather events and cyber-physical security events. An effective restoration methodology is desired to optimally integrate emerging smart grid technologies and pave the way for developing self-healing smart grids. In this paper, a sequential service restoration (SSR) framework is proposed to generate restoration solutions for distribution systems and microgrids in the event of large-scale power outages. The restoration solution contains a sequence of control actions that properly coordinate switches, distributed generators, and switchable loads to form multiple isolated microgrids. The SSR can be applied for three-phase unbalanced distributionmore » systems and microgrids and can adapt to various operation conditions. Mathematical models are introduced for three-phase unbalanced power flow, voltage regulators, transformers, and loads. Furthermore, the SSR problem is formulated as a mixed-integer linear programming model, and its effectiveness is evaluated via the modified IEEE 123 node test feeder.« less
Designing Adaptive Low-Dissipative High Order Schemes for Long-Time Integrations. Chapter 1
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sjoegreen, B.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
A general framework for the design of adaptive low-dissipative high order schemes is presented. It encompasses a rather complete treatment of the numerical approach based on four integrated design criteria: (1) For stability considerations, condition the governing equations before the application of the appropriate numerical scheme whenever it is possible; (2) For consistency, compatible schemes that possess stability properties, including physical and numerical boundary condition treatments, similar to those of the discrete analogue of the continuum are preferred; (3) For the minimization of numerical dissipation contamination, efficient and adaptive numerical dissipation control to further improve nonlinear stability and accuracy should be used; and (4) For practical considerations, the numerical approach should be efficient and applicable to general geometries, and an efficient and reliable dynamic grid adaptation should be used if necessary. These design criteria are, in general, very useful to a wide spectrum of flow simulations. However, the demand on the overall numerical approach for nonlinear stability and accuracy is much more stringent for long-time integration of complex multiscale viscous shock/shear/turbulence/acoustics interactions and numerical combustion. Robust classical numerical methods for less complex flow physics are not suitable or practical for such applications. The present approach is designed expressly to address such flow problems, especially unsteady flows. The minimization of employing very fine grids to overcome the production of spurious numerical solutions and/or instability due to under-resolved grids is also sought. The incremental studies to illustrate the performance of the approach are summarized. Extensive testing and full implementation of the approach is forthcoming. The results shown so far are very encouraging.
Multidisciplinary design optimization for sonic boom mitigation
NASA Astrophysics Data System (ADS)
Ozcer, Isik A.
Automated, parallelized, time-efficient surface definition and grid generation and flow simulation methods are developed for sharp and accurate sonic boom signal computation in three dimensions in the near and mid-field of an aircraft using Euler/Full-Potential unstructured/structured computational fluid dynamics. The full-potential mid-field sonic boom prediction code is an accurate and efficient solver featuring automated grid generation, grid adaptation and shock fitting, and parallel processing. This program quickly marches the solution using a single nonlinear equation for large distances that cannot be covered with Euler solvers due to large memory and long computational time requirements. The solver takes into account variations in temperature and pressure with altitude. The far-field signal prediction is handled using the classical linear Thomas Waveform Parameter Method where the switching altitude from the nonlinear to linear prediction is determined by convergence of the ground signal pressure impulse value. This altitude is determined as r/L ≈ 10 from the source for a simple lifting wing, and r/L ≈ 40 for a real complex aircraft. Unstructured grid adaptation and shock fitting methodology developed for the near-field analysis employs an Hessian based anisotropic grid adaptation based on error equidistribution. A special field scalar is formulated to be used in the computation of the Hessian based error metric which enhances significantly the adaptation scheme for shocks. The entire cross-flow of a complex aircraft is resolved with high fidelity using only 500,000 grid nodes after only about 10 solution/adaptation cycles. Shock fitting is accomplished using Roe's Flux-Difference Splitting scheme which is an approximate Riemann type solver and by proper alignment of the cell faces with respect to shock surfaces. Simple to complex real aircraft geometries are handled with no user-interference required making the simulation methods suitable tools for product design. The simulation tools are used to optimize three geometries for sonic boom mitigation. The first is a simple axisymmetric shape to be used as a generic nose component, the second is a delta wing with lift, and the third is a real aircraft with nose and wing optimization. The objectives are to minimize the pressure impulse or the peak pressure in the sonic boom signal, while keeping the drag penalty under feasible limits. The design parameters for the meridian profile of the nose shape are the lengths and the half-cone angles of the linear segments that make up the profile. The design parameters for the lifting wing are the dihedral angle, angle of attack, non-linear span-wise twist and camber distribution. The test-bed aircraft is the modified F-5E aircraft built by Northrop Grumman, designated the Shaped Sonic Boom Demonstrator. This aircraft is fitted with an optimized axisymmetric nose, and the wings are optimized to demonstrate optimization for sonic boom mitigation for a real aircraft. The final results predict 42% reduction in bow shock strength, 17% reduction in peak Deltap, 22% reduction in pressure impulse, 10% reduction in foot print size, 24% reduction in inviscid drag, and no loss in lift for the optimized aircraft. Optimization is carried out using response surface methodology, and the design matrices are determined using standard DoE techniques for quadratic response modeling.
NASA Astrophysics Data System (ADS)
Wu, Heng
2000-10-01
In this thesis, an a-posteriori error estimator is presented and employed for solving viscous incompressible flow problems. In an effort to detect local flow features, such as vortices and separation, and to resolve flow details precisely, a velocity angle error estimator e theta which is based on the spatial derivative of velocity direction fields is designed and constructed. The a-posteriori error estimator corresponds to the antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the velocity angle field. Rationality discussions reveal that the velocity angle error estimator is a curvature error estimator, and its value reflects the accuracy of streamline curves. It is also found that the velocity angle error estimator contains the nonlinear convective term of the Navier-Stokes equations, and it identifies and computes the direction difference when the convective acceleration direction and the flow velocity direction have a disparity. Through benchmarking computed variables with the analytic solution of Kovasznay flow or the finest grid of cavity flow, it is demonstrated that the velocity angle error estimator has a better performance than the strain error estimator. The benchmarking work also shows that the computed profile obtained by using etheta can achieve the best matching outcome with the true theta field, and that it is asymptotic to the true theta variation field, with a promise of fewer unknowns. Unstructured grids are adapted by employing local cell division as well as unrefinement of transition cells. Using element class and node class can efficiently construct a hierarchical data structure which provides cell and node inter-reference at each adaptive level. Employing element pointers and node pointers can dynamically maintain the connection of adjacent elements and adjacent nodes, and thus avoids time-consuming search processes. The adaptive scheme is applied to viscous incompressible flow at different Reynolds numbers. It is found that the velocity angle error estimator can detect most flow characteristics and produce dense grids in the regions where flow velocity directions have abrupt changes. In addition, the e theta estimator makes the derivative error dilutely distribute in the whole computational domain and also allows the refinement to be conducted at regions of high error. Through comparison of the velocity angle error across the interface with neighbouring cells, it is verified that the adaptive scheme in using etheta provides an optimum mesh which can clearly resolve local flow features in a precise way. The adaptive results justify the applicability of the etheta estimator and prove that this error estimator is a valuable adaptive indicator for the automatic refinement of unstructured grids.
Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement
Guzik, Stephen M.; Weisgraber, Todd H.; Colella, Phillip; ...
2013-12-10
A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examplesmore » highlighting the mesh adaptivity of this method are also provided.« less
Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special non-deteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of 'non-reflecting kernels,' nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The non-deteriorating algorithm, which is the core of the new ABCs is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals, and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimension spaces, It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the non-modified scheme. In the paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABCs' algorithm.
Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation
NASA Astrophysics Data System (ADS)
Ryaben'kii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.
2001-12-01
We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special nondeteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of “nonreflecting kernels” nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The nondeteriorating algorithm, which is the core of the new ABCs, is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimensional spaces. It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the unmodified scheme. In this paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABC algorithm.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter.
Fei, Juntao; Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
The Construction of an Ontology-Based Ubiquitous Learning Grid
ERIC Educational Resources Information Center
Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David
2009-01-01
The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Numerical solution of the full potential equation using a chimera grid approach
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1995-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave
Dyachenko, Sergey A.; A. Silantyev, Denis
2017-01-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.
Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis
2017-06-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.
A-posteriori error estimation for the finite point method with applications to compressible flow
NASA Astrophysics Data System (ADS)
Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio
2017-08-01
An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.
Adaptive fuzzy sliding control of single-phase PV grid-connected inverter
Zhu, Yunkai
2017-01-01
In this paper, an adaptive fuzzy sliding mode controller is proposed to control a two-stage single-phase photovoltaic (PV) grid-connected inverter. Two key technologies are discussed in the presented PV system. An incremental conductance method with adaptive step is adopted to track the maximum power point (MPP) by controlling the duty cycle of the controllable power switch of the boost DC-DC converter. An adaptive fuzzy sliding mode controller with an integral sliding surface is developed for the grid-connected inverter where a fuzzy system is used to approach the upper bound of the system nonlinearities. The proposed strategy has strong robustness for the sliding mode control can be designed independently and disturbances can be adaptively compensated. Simulation results of a PV grid-connected system verify the effectiveness of the proposed method, demonstrating the satisfactory robustness and performance. PMID:28797060
NASA Astrophysics Data System (ADS)
Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2008-02-01
A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.
An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Lessard, Victor R.
1990-01-01
The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.
The 3D Euler solutions using automated Cartesian grid generation
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
Viewgraphs on 3-dimensional Euler solutions using automated Cartesian grid generation are presented. Topics covered include: computational fluid dynamics (CFD) and the design cycle; Cartesian grid strategy; structured body fit; grid generation; prolate spheroid; and ONERA M6 wing.
Composite-Grid Techniques and Adaptive Mesh Refinement in Computational Fluid Dynamics
1990-01-01
years of hard work. During that period an estimated 410 gallons of strong coffee has flowed under the bridge. It has been with the support of this...thank Peter James Coffee Company for the continuous supply of Vienna Roast . I should also thank my advisor, Joel Ferziger, for getting me started on my...variation confined to some rather narrow zones in the field. These zones (boundary layers, shocks, etc.) cause problems during numerical solution of
GENIE - Generation of computational geometry-grids for internal-external flow configurations
NASA Technical Reports Server (NTRS)
Soni, B. K.
1988-01-01
Progress realized in the development of a master geometry-grid generation code GENIE is presented. The grid refinement process is enhanced by developing strategies to utilize bezier curves/surfaces and splines along with weighted transfinite interpolation technique and by formulating new forcing function for the elliptic solver based on the minimization of a non-orthogonality functional. A two step grid adaptation procedure is developed by optimally blending adaptive weightings with weighted transfinite interpolation technique. Examples of 2D-3D grids are provided to illustrate the success of these methods.
AstroGrid-D: Grid technology for astronomical science
NASA Astrophysics Data System (ADS)
Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve
2011-02-01
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
Adaptive eigenspace method for inverse scattering problems in the frequency domain
NASA Astrophysics Data System (ADS)
Grote, Marcus J.; Kray, Marie; Nahum, Uri
2017-02-01
A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.
High Order Schemes in Bats-R-US for Faster and More Accurate Predictions
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Gombosi, T. I.
2014-12-01
BATS-R-US is a widely used global magnetohydrodynamics model that originally employed second order accurate TVD schemes combined with block based Adaptive Mesh Refinement (AMR) to achieve high resolution in the regions of interest. In the last years we have implemented fifth order accurate finite difference schemes CWENO5 and MP5 for uniform Cartesian grids. Now the high order schemes have been extended to generalized coordinates, including spherical grids and also to the non-uniform AMR grids including dynamic regridding. We present numerical tests that verify the preservation of free-stream solution and high-order accuracy as well as robust oscillation-free behavior near discontinuities. We apply the new high order accurate schemes to both heliospheric and magnetospheric simulations and show that it is robust and can achieve the same accuracy as the second order scheme with much less computational resources. This is especially important for space weather prediction that requires faster than real time code execution.
Grid Convergence for Turbulent Flows(Invited)
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Rumsey, Christopher L.; Schwoppe, Axel
2015-01-01
A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.
Multi-level adaptive finite element methods. 1: Variation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1979-01-01
A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.
Three dimensional investigation of the shock train structure in a convergent-divergent nozzle
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mahmood; Roohi, Ehsan
2014-12-01
Three-dimensional computational fluid dynamics analyses have been employed to study the compressible and turbulent flow of the shock train in a convergent-divergent nozzle. The primary goal is to determine the behavior, location, and number of shocks. In this context, full multi-grid initialization, Reynolds stress turbulence model (RSM), and the grid adaption techniques in the Fluent software are utilized under the 3D investigation. The results showed that RSM solution matches with the experimental data suitably. The effects of applying heat generation sources and changing inlet flow total temperature have been investigated. Our simulations showed that changes in the heat generation rate and total temperature of the intake flow influence on the starting point of shock, shock strength, minimum pressure, as well as the maximum flow Mach number.
An adaptive grid scheme using the boundary element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munipalli, R.; Anderson, D.A.
1996-09-01
A technique to solve the Poisson grid generation equations by Green`s function related methods has been proposed, with the source terms being purely position dependent. The use of distributed singularities in the flow domain coupled with the boundary element method (BEM) formulation is presented in this paper as a natural extension of the Green`s function method. This scheme greatly simplifies the adaption process. The BEM reduces the dimensionality of the given problem by one. Internal grid-point placement can be achieved for a given boundary distribution by adding continuous and discrete source terms in the BEM formulation. A distribution of vortexmore » doublets is suggested as a means of controlling grid-point placement and grid-line orientation. Examples for sample adaption problems are presented and discussed. 15 refs., 20 figs.« less
NASA Astrophysics Data System (ADS)
Borovikov, Yu S.; Sulaymanov, A. O.; Andreev, M. V.
2015-10-01
Development, research and operation of smart grids (SG) with active-adaptive networks (AAS) are actual tasks for today. Planned integration of high-speed FACTS devices greatly complicates complex dynamic properties of power systems. As a result the operating conditions of equipment of power systems are significantly changing. Such situation creates the new actual problem of development and research of relay protection and automation (RPA) which will be able to adequately operate in the SGs and adapt to its regimes. Effectiveness of solution of the problem depends on using tools - different simulators of electric power systems. Analysis of the most famous and widely exploited simulators led to the conclusion about the impossibility of using them for solution of the mentioned problem. In Tomsk Polytechnic University developed the prototype of hybrid multiprocessor software and hardware system - Hybrid Real-Time Power System Simulator (HRTSim). Because of its unique features this simulator can be used for solution of mentioned tasks. This article introduces the concept of development and research of relay protection and automation with usage of HRTSim.
3D CSEM inversion based on goal-oriented adaptive finite element method
NASA Astrophysics Data System (ADS)
Zhang, Y.; Key, K.
2016-12-01
We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with complex geological scenarios by applying it to the inversion of synthetic marine controlled source EM data generated for a complex 3D offshore model with significant seafloor topography.
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.
1992-01-01
The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.
Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.
2014-01-01
Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.
NASA Technical Reports Server (NTRS)
Ferlemann, Paul G.; Gollan, Rowan J.
2010-01-01
Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strongmore » laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to increase the local character in phase-space of the numerical scheme, by considering multiscale reconstruction with more compact support and by replacing the semi-Lagrangian method with more local - in space - numerical scheme as compact finite difference schemes, discontinuous-Galerkin method or finite element residual schemes which are well suited for parallel domain decomposition techniques.« less
NASA Astrophysics Data System (ADS)
Furzeland, R. M.; Verwer, J. G.; Zegeling, P. A.
1990-08-01
In recent years, several sophisticated packages based on the method of lines (MOL) have been developed for the automatic numerical integration of time-dependent problems in partial differential equations (PDEs), notably for problems in one space dimension. These packages greatly benefit from the very successful developments of automatic stiff ordinary differential equation solvers. However, from the PDE point of view, they integrate only in a semiautomatic way in the sense that they automatically adjust the time step sizes, but use just a fixed space grid, chosen a priori, for the entire calculation. For solutions possessing sharp spatial transitions that move, e.g., travelling wave fronts or emerging boundary and interior layers, a grid held fixed for the entire calculation is computationally inefficient, since for a good solution this grid often must contain a very large number of nodes. In such cases methods which attempt automatically to adjust the sizes of both the space and the time steps are likely to be more successful in efficiently resolving critical regions of high spatial and temporal activity. Methods and codes that operate this way belong to the realm of adaptive or moving-grid methods. Following the MOL approach, this paper is devoted to an evaluation and comparison, mainly based on extensive numerical tests, of three moving-grid methods for 1D problems, viz., the finite-element method of Miller and co-workers, the method published by Petzold, and a method based on ideas adopted from Dorfi and Drury. Our examination of these three methods is aimed at assessing which is the most suitable from the point of view of retaining the acknowledged features of reliability, robustness, and efficiency of the conventional MOL approach. Therefore, considerable attention is paid to the temporal performance of the methods.
NASA Astrophysics Data System (ADS)
Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.
2015-10-01
An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.
On the implementation of an accurate and efficient solver for convection-diffusion equations
NASA Astrophysics Data System (ADS)
Wu, Chin-Tien
In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addition, both methods are also used as preconditioners for Krylov subspace methods. We derive some convergence results for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while considering adaptive mesh refinement as an integral part of the solution process, it is natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so that the difference between the approximate solution obtained from iterative methods and the finite element solution is bounded by an a posteriori error bound. Here, we present two stopping criteria. The first is based on a residual-type a posteriori error estimator developed by Verfurth. The second is based on an a posteriori error estimator, using local solutions, developed by Kay and Silvester. Our numerical results show the refined mesh obtained from the iterative solution which satisfies the second criteria is similar to the refined mesh obtained from the finite element solution.
A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction
NASA Technical Reports Server (NTRS)
Carter, Melissa B.; Deere, Karen A.
2008-01-01
NASA created the Supersonics Project as part of the NASA Fundamental Aeronautics Program to advance technology that will make a supersonic flight over land viable. Computational flow solvers have lacked the ability to accurately predict sonic boom from the near to far field. The focus of this investigation was to establish gridding and adaptation techniques to predict near-to-mid-field (<10 body lengths below the aircraft) boom signatures at supersonic speeds using the USM3D unstructured grid flow solver. The study began by examining sources along the body the aircraft, far field sourcing and far field boundaries. The study then examined several techniques for grid adaptation. During the course of the study, volume sourcing was introduced as a new way to source grids using the grid generation code VGRID. Two different methods of using the volume sources were examined. The first method, based on manual insertion of the numerous volume sources, made great improvements in the prediction capability of USM3D for boom signatures. The second method (SSGRID), which uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid and pressure waves, showed similar results with a more automated approach. Due to SSGRID s results and ease of use, the rest of the study focused on developing a best practice using SSGRID. The best practice created by this study for boom predictions using the CFD code USM3D involved: 1) creating a small cylindrical outer boundary either 1 or 2 body lengths in diameter (depending on how far below the aircraft the boom prediction is required), 2) using a single volume source under the aircraft, and 3) using SSGRID to stretch and shear the grid to the desired length.
Multiple-grid convergence acceleration of viscous and inviscid flow computations
NASA Technical Reports Server (NTRS)
Johnson, G. M.
1983-01-01
A multiple-grid algorithm for use in efficiently obtaining steady solution to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, were obtained. Possibilities for further performance improvement are discussed.
Computation of transonic separated wing flows using an Euler/Navier-Stokes zonal approach
NASA Technical Reports Server (NTRS)
Kaynak, Uenver; Holst, Terry L.; Cantwell, Brian J.
1986-01-01
A computer program called Transonic Navier Stokes (TNS) has been developed which solves the Euler/Navier-Stokes equations around wings using a zonal grid approach. In the present zonal scheme, the physical domain of interest is divided into several subdomains called zones and the governing equations are solved interactively. The advantages of the Zonal Grid approach are as follows: (1) the grid for any subdomain can be generated easily; (2) grids can be, in a sense, adapted to the solution; (3) different equation sets can be used in different zones; and, (4) this approach allows for a convenient data base organization scheme. Using this code, separated flows on a NACA 0012 section wing and on the NASA Ames WING C have been computed. First, the effects of turbulence and artificial dissipation models incorporated into the code are assessed by comparing the TNS results with other CFD codes and experiments. Then a series of flow cases is described where data are available. The computed results, including cases with shock-induced separation, are in good agreement with experimental data. Finally, some futuristic cases are presented to demonstrate the abilities of the code for massively separated cases which do not have experimental data.
A single-cell spiking model for the origin of grid-cell patterns
Kempter, Richard
2017-01-01
Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity. PMID:28968386
Grid convergence errors in hemodynamic solution of patient-specific cerebral aneurysms.
Hodis, Simona; Uthamaraj, Susheil; Smith, Andrea L; Dennis, Kendall D; Kallmes, David F; Dragomir-Daescu, Dan
2012-11-15
Computational fluid dynamics (CFD) has become a cutting-edge tool for investigating hemodynamic dysfunctions in the body. It has the potential to help physicians quantify in more detail the phenomena difficult to capture with in vivo imaging techniques. CFD simulations in anatomically realistic geometries pose challenges in generating accurate solutions due to the grid distortion that may occur when the grid is aligned with complex geometries. In addition, results obtained with computational methods should be trusted only after the solution has been verified on multiple high-quality grids. The objective of this study was to present a comprehensive solution verification of the intra-aneurysmal flow results obtained on different morphologies of patient-specific cerebral aneurysms. We chose five patient-specific brain aneurysm models with different dome morphologies and estimated the grid convergence errors for each model. The grid convergence errors were estimated with respect to an extrapolated solution based on the Richardson extrapolation method, which accounts for the degree of grid refinement. For four of the five models, calculated velocity, pressure, and wall shear stress values at six different spatial locations converged monotonically, with maximum uncertainty magnitudes ranging from 12% to 16% on the finest grids. Due to the geometric complexity of the fifth model, the grid convergence errors showed oscillatory behavior; therefore, each patient-specific model required its own grid convergence study to establish the accuracy of the analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Botello-Smith, Wesley M.; Luo, Ray
2016-01-01
Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966
On the Importance of the Dynamics of Discretizations
NASA Technical Reports Server (NTRS)
Sweby, Peter K.; Yee, H. C.; Rai, ManMohan (Technical Monitor)
1995-01-01
It has been realized recently that the discrete maps resulting from numerical discretizations of differential equations can possess asymptotic dynamical behavior quite different from that of the original systems. This is the case not only for systems of Ordinary Differential Equations (ODEs) but in a more complicated manner for Partial Differential Equations (PDEs) used to model complex physics. The impact of the modified dynamics may be mild and even not observed for some numerical methods. For other classes of discretizations the impact may be pronounced, but not always obvious depending on the nonlinear model equations, the time steps, the grid spacings and the initial conditions. Non-convergence or convergence to periodic solutions might be easily recognizable but convergence to incorrect but plausible solutions may not be so obvious - even for discretized parameters within the linearized stability constraint. Based on our past four years of research, we will illustrate some of the pathology of the dynamics of discretizations, its possible impact and the usage of these schemes for model nonlinear ODEs, convection-diffusion equations and grid adaptations.
Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Philip, Bobby; Chacón, Luis; Pernice, Michael
2008-10-01
An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.
NASA Astrophysics Data System (ADS)
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-02-01
A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.
Verification test of the SURF and SURFplus models in xRage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2016-05-18
As a verification test of the SURF and SURFplus models in the xRage code we use a propagating underdriven detonation wave in 1-D. This is about the only test cases for which an accurate solution can be determined based on the theoretical structure of the solution. The solution consists of a steady ZND reaction zone profile joined with a scale invariant rarefaction or Taylor wave and followed by a constant state. The end of the reaction profile and the head of the rarefaction coincide with the sonic CJ state of the detonation wave. The constant state is required to matchmore » a rigid wall boundary condition. For a test case, we use PBX 9502 with the same EOS and burn rate as previously used to test the shock detector algorithm utilized by the SURF model. The detonation wave is propagated for 10 μs (slightly under 80mm). As expected, the pointwise errors are largest in the neighborhood of discontinuities; pressure discontinuity at the lead shock front and pressure derivative discontinuities at the head and tail of the rarefaction. As a quantitative measure of the overall accuracy, the L2 norm of the difference of the numerical pressure and the exact solution is used. Results are presented for simulations using both a uniform grid and an adaptive grid that refines the reaction zone.« less
A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J
2009-11-28
In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.
Fully implicit moving mesh adaptive algorithm
NASA Astrophysics Data System (ADS)
Serazio, C.; Chacon, L.; Lapenta, G.
2006-10-01
In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. Crucial elements are the development of an effective multilevel treatment of the grid equation, and a robust, rigorous error estimator. For the latter, we explore the effectiveness of a coarse grid correction error estimator, which faithfully reproduces spatial truncation errors for conservative equations. We will show that the moving mesh approach is competitive vs. uniform grids both in accuracy (due to adaptivity) and efficiency. Results for a variety of models 1D and 2D geometries will be presented. L. Chac'on, G. Lapenta, J. Comput. Phys., 212 (2), 703 (2006) G. Lapenta, L. Chac'on, J. Comput. Phys., accepted (2006)
On computations of the integrated space shuttle flowfield using overset grids
NASA Technical Reports Server (NTRS)
Chiu, I-T.; Pletcher, R. H.; Steger, J. L.
1990-01-01
Numerical simulations using the thin-layer Navier-Stokes equations and chimera (overset) grid approach were carried out for flows around the integrated space shuttle vehicle over a range of Mach numbers. Body-conforming grids were used for all the component grids. Testcases include a three-component overset grid - the external tank (ET), the solid rocket booster (SRB) and the orbiter (ORB), and a five-component overset grid - the ET, SRB, ORB, forward and aft attach hardware, configurations. The results were compared with the wind tunnel and flight data. In addition, a Poisson solution procedure (a special case of the vorticity-velocity formulation) using primitive variables was developed to solve three-dimensional, irrotational, inviscid flows for single as well as overset grids. The solutions were validated by comparisons with other analytical or numerical solution, and/or experimental results for various geometries. The Poisson solution was also used as an initial guess for the thin-layer Navier-Stokes solution procedure to improve the efficiency of the numerical flow simulations. It was found that this approach resulted in roughly a 30 percent CPU time savings as compared with the procedure solving the thin-layer Navier-Stokes equations from a uniform free stream flowfield.
Rapid Structured Volume Grid Smoothing and Adaption Technique
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2006-01-01
A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.
Rapid Structured Volume Grid Smoothing and Adaption Technique
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2004-01-01
A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reduction in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.
An adaptive grid to improve the efficiency and accuracy of modelling underwater noise from shipping
NASA Astrophysics Data System (ADS)
Trigg, Leah; Chen, Feng; Shapiro, Georgy; Ingram, Simon; Embling, Clare
2017-04-01
Underwater noise from shipping is becoming a significant concern and has been listed as a pollutant under Descriptor 11 of the Marine Strategy Framework Directive. Underwater noise models are an essential tool to assess and predict noise levels for regulatory procedures such as environmental impact assessments and ship noise monitoring. There are generally two approaches to noise modelling. The first is based on simplified energy flux models, assuming either spherical or cylindrical propagation of sound energy. These models are very quick but they ignore important water column and seabed properties, and produce significant errors in the areas subject to temperature stratification (Shapiro et al., 2014). The second type of model (e.g. ray-tracing and parabolic equation) is based on an advanced physical representation of sound propagation. However, these acoustic propagation models are computationally expensive to execute. Shipping noise modelling requires spatial discretization in order to group noise sources together using a grid. A uniform grid size is often selected to achieve either the greatest efficiency (i.e. speed of computations) or the greatest accuracy. In contrast, this work aims to produce efficient and accurate noise level predictions by presenting an adaptive grid where cell size varies with distance from the receiver. The spatial range over which a certain cell size is suitable was determined by calculating the distance from the receiver at which propagation loss becomes uniform across a grid cell. The computational efficiency and accuracy of the resulting adaptive grid was tested by comparing it to uniform 1 km and 5 km grids. These represent an accurate and computationally efficient grid respectively. For a case study of the Celtic Sea, an application of the adaptive grid over an area of 160×160 km reduced the number of model executions required from 25600 for a 1 km grid to 5356 in December and to between 5056 and 13132 in August, which represents a 2 to 5-fold increase in efficiency. The 5 km grid reduces the number of model executions further to 1024. However, over the first 25 km the 5 km grid produces errors of up to 13.8 dB when compared to the highly accurate but inefficient 1 km grid. The newly developed adaptive grid generates much smaller errors of less than 0.5 dB while demonstrating high computational efficiency. Our results show that the adaptive grid provides the ability to retain the accuracy of noise level predictions and improve the efficiency of the modelling process. This can help safeguard sensitive marine ecosystems from noise pollution by improving the underwater noise predictions that inform management activities. References Shapiro, G., Chen, F., Thain, R., 2014. The Effect of Ocean Fronts on Acoustic Wave Propagation in a Shallow Sea, Journal of Marine System, 139: 217 - 226. http://dx.doi.org/10.1016/j.jmarsys.2014.06.007.
Noniterative three-dimensional grid generation using parabolic partial differential equations
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1985-01-01
A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.
Latency Hiding in Dynamic Partitioning and Load Balancing of Grid Computing Applications
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak
2001-01-01
The Information Power Grid (IPG) concept developed by NASA is aimed to provide a metacomputing platform for large-scale distributed computations, by hiding the intricacies of highly heterogeneous environment and yet maintaining adequate security. In this paper, we propose a latency-tolerant partitioning scheme that dynamically balances processor workloads on the.IPG, and minimizes data movement and runtime communication. By simulating an unsteady adaptive mesh application on a wide area network, we study the performance of our load balancer under the Globus environment. The number of IPG nodes, the number of processors per node, and the interconnected speeds are parameterized to derive conditions under which the IPG would be suitable for parallel distributed processing of such applications. Experimental results demonstrate that effective solution are achieved when the IPG nodes are connected by a high-speed asynchronous interconnection network.
Longest, P Worth; Vinchurkar, Samir
2007-04-01
A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes that employ tetrahedral elements can be constructed much faster but may increase levels of numerical diffusion, especially in tubular flow systems with a primary flow direction. The objective of this study is to better establish the effects of mesh generation techniques and grid convergence on velocity fields and particle deposition patterns in bifurcating respiratory models. In order to achieve this objective, four widely used mesh styles including structured hexahedral, unstructured tetrahedral, flow adaptive tetrahedral, and hybrid grids have been considered for two respiratory airway configurations. Initial particle conditions tested are based on the inlet velocity profile or the local inlet mass flow rate. Accuracy of the simulations has been assessed by comparisons to experimental in vitro data available in the literature for the steady-state velocity field in a single bifurcation model as well as the local particle deposition fraction in a double bifurcation model. Quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The hexahedral mesh was observed to have GCI values that were an order of magnitude below the unstructured tetrahedral mesh values for all resolutions considered. Moreover, the hexahedral mesh style provided GCI values of approximately 1% and reduced run times by a factor of 3. Based on comparisons to empirical data, it was shown that inlet particle seedings should be consistent with the local inlet mass flow rate. Furthermore, the mesh style was found to have an observable effect on cumulative particle depositions with the hexahedral solution most closely matching empirical results. Future studies are needed to assess other mesh generation options including various forms of the hybrid configuration and unstructured hexahedral meshes.
Mumtaz, Sidra; Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms.
Khan, Laiq; Ahmed, Saghir; Bader, Rabiah
2017-01-01
This paper focuses on the indirect adaptive tracking control of renewable energy sources in a grid-connected hybrid power system. The renewable energy systems have low efficiency and intermittent nature due to unpredictable meteorological conditions. The domestic load and the conventional charging stations behave in an uncertain manner. To operate the renewable energy sources efficiently for harvesting maximum power, instantaneous nonlinear dynamics should be captured online. A Chebyshev-wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control paradigm is proposed for variable speed wind turbine-permanent synchronous generator (VSWT-PMSG). A Hermite-wavelet incorporated NeuroFuzzy indirect adaptive MPPT control strategy for photovoltaic (PV) system to extract maximum power and indirect adaptive tracking control scheme for Solid Oxide Fuel Cell (SOFC) is developed. A comprehensive simulation test-bed for a grid-connected hybrid power system is developed in Matlab/Simulink. The robustness of the suggested indirect adaptive control paradigms are evaluated through simulation results in a grid-connected hybrid power system test-bed by comparison with conventional and intelligent control techniques. The simulation results validate the effectiveness of the proposed control paradigms. PMID:28877191
Henrique-Araújo, Ricardo; Osório, Flávia L; Gonçalves Ribeiro, Mônica; Soares Monteiro, Ivandro; Williams, Janet B W; Kalali, Amir; Alexandre Crippa, José; Oliveira, Irismar Reis De
2014-07-01
GRID-HAMD is a semi-structured interview guide developed to overcome flaws in HAM-D, and has been incorporated into an increasing number of studies. Carry out the transcultural adaptation of GRID-HAMD into the Brazilian Portuguese language, evaluate the inter-rater reliability of this instrument and the training impact upon this measure, and verify the raters' opinions of said instrument. The transcultural adaptation was conducted by appropriate methodology. The measurement of inter-rater reliability was done by way of videos that were evaluated by 85 professionals before and after training for the use of this instrument. The intraclass correlation coefficient (ICC) remained between 0.76 and 0.90 for GRID-HAMD-21 and between 0.72 and 0.91 for GRID-HAMD-17. The training did not have an impact on the ICC, except for a few groups of participants with a lower level of experience. Most of the participants showed high acceptance of GRID-HAMD, when compared to other versions of HAM-D. The scale presented adequate inter-rater reliability even before training began. Training did not have an impact on this measure, except for a few groups with less experience. GRID-HAMD received favorable opinions from most of the participants.
CFL3D, FUN3d, and NSU3D Contributions to the Fifth Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Laflin, Kelly R.; Chaffin, Mark S.; Powell, Nicholas; Levy, David W.
2013-01-01
Results presented at the Fifth Drag Prediction Workshop using CFL3D, FUN3D, and NSU3D are described. These are calculations on the workshop provided grids and drag adapted grids. The NSU3D results have been updated to reflect an improvement to skin friction calculation on skewed grids. FUN3D results generated after the workshop are included for custom participant generated grids and a grid from a previous workshop. Uniform grid refinement at the design condition shows a tight grouping in calculated drag, where the variation in the pressure component of drag is larger than the skin friction component. At this design condition, A fine-grid drag value was predicted with a smaller drag adjoint adapted grid via tetrahedral adaption to a metric and mixed-element subdivision. The buffet study produced larger variation than the design case, which is attributed to large differences in the predicted side-of-body separation extent. Various modeling and discretization approaches had a strong impact on predicted side-of-body separation. This large wing root separation bubble was not observed in wind tunnel tests indicating that more work is necessary in modeling wing root juncture flows to predict experiments.
Development of an Unstructured Mesh Code for Flows About Complete Vehicles
NASA Technical Reports Server (NTRS)
Peraire, Jaime; Gupta, K. K. (Technical Monitor)
2001-01-01
This report describes the research work undertaken at the Massachusetts Institute of Technology, under NASA Research Grant NAG4-157. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of flow simulations about complete vehicle configurations. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the code which incorporates real gas effects, has been produced. The FELISA system is also a component of the STARS aeroservoelastic system developed at NASA Dryden. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. We show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although this initial results were encouraging it became apparent that in order to develop a fully functional capability for viscous flows, several advances in solution accuracy, robustness and efficiency were required. In this grant we set out to investigate some novel methodologies that could lead to the required improvements. In particular we focused on two fronts: (1) finite element methods and (2) iterative algebraic multigrid solution techniques.
Mehl, S.; Hill, M.C.
2004-01-01
This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.
Context-dependent spatially periodic activity in the human entorhinal cortex
Nguyen, T. Peter; Török, Ágoston; Shen, Jason Y.; Briggs, Deborah E.; Modur, Pradeep N.; Buchanan, Robert J.
2017-01-01
The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency. PMID:28396399
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qinzhuo, E-mail: liaoqz@pku.edu.cn; Zhang, Dongxiao; Tchelepi, Hamdi
A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod–Patterson–Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiencymore » of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.« less
AN OPTIMAL ADAPTIVE LOCAL GRID REFINEMENT APPROACH TO MODELING CONTAMINANT TRANSPORT
A Lagrangian-Eulerian method with an optimal adaptive local grid refinement is used to model contaminant transport equations. pplication of this approach to two bench-mark problems indicates that it completely resolves difficulties of peak clipping, numerical diffusion, and spuri...
A robust adaptive load frequency control for micro-grids.
Khooban, Mohammad-Hassan; Niknam, Taher; Blaabjerg, Frede; Davari, Pooya; Dragicevic, Tomislav
2016-11-01
The goal of this study is to introduce a novel robust load frequency control (LFC) strategy for micro-grid(s) (MG(s)) in islanded mode operation. Admittedly, power generators in MG(s) cannot supply steady electric power output and sometimes cause unbalance between supply and demand. Battery energy storage system (BESS) is one of the effective solutions to these problems. Due to the high cost of the BESS, a new idea of Vehicle-to-Grid (V2G) is that a battery of Electric-Vehicle (EV) can be applied as a tantamount large-scale BESS in MG(s). As a result, a new robust control strategy for an islanded micro-grid (MG) is introduced that can consider electric vehicles׳ (EV(s)) effect. Moreover, in this paper, a new combination of the General Type II Fuzzy Logic Sets (GT2FLS) and the Modified Harmony Search Algorithm (MHSA) technique is applied for adaptive tuning of proportional-integral (PI) controller. Implementing General Type II Fuzzy Systems is computationally expensive. However, using a recently introduced α-plane representation, GT2FLS can be seen as a composition of several Interval Type II Fuzzy Logic Systems (IT2FLS) with a corresponding level of α for each. Real-data from an offshore wind farm in Sweden and solar radiation data in Aberdeen (United Kingdom) was used in order to examine the performance of the proposed novel controller. A comparison is made between the achieved results of Optimal Fuzzy-PI (OFPI) controller and those of Optimal Interval Type II Fuzzy-PI (IT2FPI) controller, which are of most recent advances in the area at hand. The Simulation results prove the successfulness and effectiveness of the proposed controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith, R. E.
1981-01-01
A grid generation technique called the two boundary technique is developed and applied for the solution of the three dimensional Navier-Stokes equations. The Navier-Stokes equations are transformed from a cartesian coordinate system to a computational coordinate system, and the grid generation technique provides the Jacobian matrix describing the transformation. The two boundary technique is based on algebraically defining two distinct boundaries of a flow domain and the distribution of the grid is achieved by applying functions to the uniform computational grid which redistribute the computational independent variables and consequently concentrate or disperse the grid points in the physical domain. The Navier-Stokes equations are solved using a MacCormack time-split technique. Grids and supersonic laminar flow solutions are obtained for a family of three dimensional corners and two spike-nosed bodies.
NASA Astrophysics Data System (ADS)
Ge, Yongbin; Cao, Fujun
2011-05-01
In this paper, a multigrid method based on the high order compact (HOC) difference scheme on nonuniform grids, which has been proposed by Kalita et al. [J.C. Kalita, A.K. Dass, D.C. Dalal, A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids, Int. J. Numer. Methods Fluids 44 (2004) 33-53], is proposed to solve the two-dimensional (2D) convection diffusion equation. The HOC scheme is not involved in any grid transformation to map the nonuniform grids to uniform grids, consequently, the multigrid method is brand-new for solving the discrete system arising from the difference equation on nonuniform grids. The corresponding multigrid projection and interpolation operators are constructed by the area ratio. Some boundary layer and local singularity problems are used to demonstrate the superiority of the present method. Numerical results show that the multigrid method with the HOC scheme on nonuniform grids almost gets as equally efficient convergence rate as on uniform grids and the computed solution on nonuniform grids retains fourth order accuracy while on uniform grids just gets very poor solution for very steep boundary layer or high local singularity problems. The present method is also applied to solve the 2D incompressible Navier-Stokes equations using the stream function-vorticity formulation and the numerical solutions of the lid-driven cavity flow problem are obtained and compared with solutions available in the literature.
Adaptive Parameter Optimization of a Grid-based Conceptual Hydrological Model
NASA Astrophysics Data System (ADS)
Samaniego, L.; Kumar, R.; Attinger, S.
2007-12-01
Any spatially explicit hydrological model at the mesoscale is a conceptual approximation of the hydrological cycle and its dominant process occurring at this scale. Manual-expert calibration of this type of models may become quite tedious---if not impossible---taking into account the enormous amount of data required by these kind of models and the intrinsic uncertainty of both the data (input-output) and the model structure. Additionally, the model should be able to reproduce well several process which are accounted by a number of predefined objectives. As a consequence, some degree of automatic calibration would be required to find "good" solutions, each one constituting a trade-off among all calibration criteria. In other words, it is very likely that a number of parameter sets fulfil the optimization criteria and thus can be considered a model solution. In this study, we dealt with two research questions: 1) How to assess the adequate level of model complexity so that model overparameterization is avoided? And, 2) How to find a good solution with a relatively low computational burden? In the present study, a grid-based conceptual hydrological model denoted as HBV-UFZ based on some of the original HBV concepts was employed. This model was driven by 12~h precipitation, temperature, and PET grids which are acquired either from satellite products or from data of meteorological stations. In the latter case, the data was interpolated with external drift Kriging. The first research question was addressed in this study with the implementation of nonlinear transfer functions that regionalize most model parameters as a function of other spatially distributed observables such as land cover (time dependent) and other time independent basin characteristics such as soil type, slope, aspect, geological formations among others. The second question was addressed with an adaptive constrained optimization algorithm based on a parallel implementation of simulated annealing (SA). The main difference with the standard SA is the parameter search routine which uses adaptive heuristic rules to improve its efficiency. These rules are based on the relative behavior of the efficiency criteria. The efficiency of the model is evaluated with the Nash-Sutcliffe efficiency coefficient (NS) and the RMSE obtained for various short and long term runoff characteristics such as daily flows; semiannual high and low flow characteristics such as total drought duration frequency of high flows; and annual specific discharge at various gauging stations. Additionally, the parameter search was constrained with the 95% confidence bands of the runoff characteristics mentioned above. The proposed method was calibrated in the Upper Neckar River basin covering an area of approximately 4000~km2 during the period from 1961 to 1993. The spatial and temporal resolutions used were a grid size of (1000 × 1000)~m and 12~h intervals respectively. The results of the study indicate significant improvement in model performance (e.g. Nash-Sutcliffe of various runoff characteristics ~ 0.8) and a significant reduction in computational burden of at least 25%.
NASA Technical Reports Server (NTRS)
White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki
2017-01-01
The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid.
A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight
2010-01-01
using a predictor - corrector strategy. Dynamic fluid grid adaptation is implemented to reduce the number of grid points and computation costs...governing the dynamics of the ow and the structure are simultaneously advanced in time by using a predictor - corrector strategy. Dynamic uid grid...colleague Patrick Rabenold, the math-guy, who provided the seminal work on adaptive mesh refine- ment for incompressible flow using the Paramesh c
In Search of Grid Converged Solutions
NASA Technical Reports Server (NTRS)
Lockard, David P.
2010-01-01
Assessing solution error continues to be a formidable task when numerically solving practical flow problems. Currently, grid refinement is the primary method used for error assessment. The minimum grid spacing requirements to achieve design order accuracy for a structured-grid scheme are determined for several simple examples using truncation error evaluations on a sequence of meshes. For certain methods and classes of problems, obtaining design order may not be sufficient to guarantee low error. Furthermore, some schemes can require much finer meshes to obtain design order than would be needed to reduce the error to acceptable levels. Results are then presented from realistic problems that further demonstrate the challenges associated with using grid refinement studies to assess solution accuracy.
QX MAN: Q and X file manipulation
NASA Technical Reports Server (NTRS)
Krein, Mark A.
1992-01-01
QX MAN is a grid and solution file manipulation program written primarily for the PARC code and the GRIDGEN family of grid generation codes. QX MAN combines many of the features frequently encountered in grid generation, grid refinement, the setting-up of initial conditions, and post processing. QX MAN allows the user to manipulate single block and multi-block grids (and their accompanying solution files) by splitting, concatenating, rotating, translating, re-scaling, and stripping or adding points. In addition, QX MAN can be used to generate an initial solution file for the PARC code. The code was written to provide several formats for input and output in order for it to be useful in a broad spectrum of applications.
Convergence of the Bouguer-Beer law for radiation extinction in particulate media
NASA Astrophysics Data System (ADS)
Frankel, A.; Iaccarino, G.; Mani, A.
2016-10-01
Radiation transport in particulate media is a common physical phenomenon in natural and industrial processes. Developing predictive models of these processes requires a detailed model of the interaction between the radiation and the particles. Resolving the interaction between the radiation and the individual particles in a very large system is impractical, whereas continuum-based representations of the particle field lend themselves to efficient numerical techniques based on the solution of the radiative transfer equation. We investigate radiation transport through discrete and continuum-based representations of a particle field. Exact solutions for radiation extinction are developed using a Monte Carlo model in different particle distributions. The particle distributions are then projected onto a concentration field with varying grid sizes, and the Bouguer-Beer law is applied by marching across the grid. We show that the continuum-based solution approaches the Monte Carlo solution under grid refinement, but quickly diverges as the grid size approaches the particle diameter. This divergence is attributed to the homogenization error of an individual particle across a whole grid cell. We remark that the concentration energy spectrum of a point-particle field does not approach zero, and thus the concentration variance must also diverge under infinite grid refinement, meaning that no grid-converged solution of the radiation transport is possible.
Yoshida, Motoharu; Jochems, Arthur; Hasselmo, Michael E
2013-01-01
Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing. Here we investigated the anatomical distribution of firing frequency adaptation, the medium spike after hyperpolarization potential (mAHP), subthreshold membrane potential oscillations, sag potential, input resistance and persistent firing, in MEC layer II principal cells using in vitro whole-cell patch clamp recordings in rats. Anatomical distributions of these properties were compared along both the dorso-ventral and medio-lateral axes, both with and without the cholinergic receptor agonist carbachol. We found that spike frequency adaptation is significantly stronger in ventral than in dorsal neurons both with and without carbachol. Spike frequency adaptation was significantly correlated with the duration of the mAHP, which also showed a gradient along the dorso-ventral axis. In carbachol, we found that about 50% of MEC layer II neurons show persistent firing which lasted more than 30 seconds. Persistent firing of MEC layer II neurons might contribute to grid cell firing by providing the excitatory drive. Dorso-ventral differences in spike frequency adaptation we report here are opposite from previous predictions by a computational model. We discuss an alternative mechanism as to how dorso-ventral differences in spike frequency adaptation could contribute to different scales of grid spacing.
Posteriori error determination and grid adaptation for AMR and ALE computational fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, G. M.
2002-01-01
We discuss grid adaptation for application to AMR and ALE codes. Two new contributions are presented. First, a new method to locate the regions where the truncation error is being created due to an insufficient accuracy: the operator recovery error origin (OREO) detector. The OREO detector is automatic, reliable, easy to implement and extremely inexpensive. Second, a new grid motion technique is presented for application to ALE codes. The method is based on the Brackbill-Saltzman approach but it is directly linked to the OREO detector and moves the grid automatically to minimize the error.
Low Boom Configuration Analysis with FUN3D Adjoint Simulation Framework
NASA Technical Reports Server (NTRS)
Park, Michael A.
2011-01-01
Off-body pressure, forces, and moments for the Gulfstream Low Boom Model are computed with a Reynolds Averaged Navier Stokes solver coupled with the Spalart-Allmaras (SA) turbulence model. This is the first application of viscous output-based adaptation to reduce estimated discretization errors in off-body pressure for a wing body configuration. The output adaptation approach is compared to an a priori grid adaptation technique designed to resolve the signature on the centerline by stretching and aligning the grid to the freestream Mach angle. The output-based approach produced good predictions of centerline and off-centerline measurements. Eddy viscosity predicted by the SA turbulence model increased significantly with grid adaptation. Computed lift as a function of drag compares well with wind tunnel measurements for positive lift, but predicted lift, drag, and pitching moment as a function of angle of attack has significant differences from the measured data. The sensitivity of longitudinal forces and moment to grid refinement is much smaller than the differences between the computed and measured data.
IFCPT S-Duct Grid-Adapted FUN3D Computations for the Third Propulsion Aerodynamics Works
NASA Technical Reports Server (NTRS)
Davis, Zach S.; Park, M. A.
2017-01-01
Contributions of the unstructured Reynolds-averaged Navier-Stokes code, FUN3D, to the 3rd AIAA Propulsion Aerodynamics Workshop are described for the diffusing IFCPT S-Duct. Using workshop-supplied grids, results for the baseline S-Duct, baseline S-Duct with Aerodynamic Interface Plane (AIP) rake hardware, and baseline S-Duct with flow control devices are compared with experimental data and results computed with output-based, off-body grid adaptation in FUN3D. Due to the absence of influential geometry components, total pressure recovery is overpredicted on the baseline S-Duct and S-Duct with flow control vanes when compared to experimental values. An estimate for the exact value of total pressure recovery is derived for these cases given an infinitely refined mesh. When results from output-based mesh adaptation are compared with those computed on workshop-supplied grids, a considerable improvement in predicting total pressure recovery is observed. By including more representative geometry, output-based mesh adaptation compares very favorably with experimental data in terms of predicting the total pressure recovery cost-function; whereas, results computed using the workshop-supplied grids are underpredicted.
Chimera grids in the simulation of three-dimensional flowfields in turbine-blade-coolant passages
NASA Technical Reports Server (NTRS)
Stephens, M. A.; Rimlinger, M. J.; Shih, T. I.-P.; Civinskas, K. C.
1993-01-01
When computing flows inside geometrically complex turbine-blade coolant passages, the structure of the grid system used can affect significantly the overall time and cost required to obtain solutions. This paper addresses this issue while evaluating and developing computational tools for the design and analysis of coolant-passages, and is divided into two parts. In the first part, the various types of structured and unstructured grids are compared in relation to their ability to provide solutions in a timely and cost-effective manner. This comparison shows that the overlapping structured grids, known as Chimera grids, can rival and in some instances exceed the cost-effectiveness of unstructured grids in terms of both the man hours needed to generate grids and the amount of computer memory and CPU time needed to obtain solutions. In the second part, a computational tool utilizing Chimera grids was used to compute the flow and heat transfer in two different turbine-blade coolant passages that contain baffles and numerous pin fins. These computations showed the versatility and flexibility offered by Chimera grids.
A comparison of turbulence models in computing multi-element airfoil flows
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Menter, Florian; Durbin, Paul A.; Mansour, Nagi N.
1994-01-01
Four different turbulence models are used to compute the flow over a three-element airfoil configuration. These models are the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, a two-equation k-omega model, and a new one-equation Durbin-Mansour model. The flow is computed using the INS2D two-dimensional incompressible Navier-Stokes solver. An overset Chimera grid approach is utilized. Grid resolution tests are presented, and manual solution-adaptation of the grid was performed. The performance of each of the models is evaluated for test cases involving different angles-of-attack, Reynolds numbers, and flap riggings. The resulting surface pressure coefficients, skin friction, velocity profiles, and lift, drag, and moment coefficients are compared with experimental data. The models produce very similar results in most cases. Excellent agreement between computational and experimental surface pressures was observed, but only moderately good agreement was seen in the velocity profile data. In general, the difference between the predictions of the different models was less than the difference between the computational and experimental data.
A Wall-Distance-Free k-ω SST Turbulence Model
NASA Astrophysics Data System (ADS)
Gleize, Vincent; Burnley, Victor
2001-11-01
In the calculation of flows around aircraft and aerodynamic bodies, the Shear-Stress Transport (SST) model by Menter has been used extensively due to its good prediction of flows with adverse pressure gradients. One main drawback of this model is the need to calculate the distance from the wall. While this is not a serious drawback for steady state calculations on non-moving grids, this calculation can become very cumbersome and expensive for unsteady simulations, especially when using unstructured grids. In this case, the wall-distance needs to be determined after each iteration. To avoid this problem, a new model is proposed which provides the benefits of the SST correction and avoids the freestream dependency of the solution, while not requiring the wall-distance. The first results for a wide range of test cases show that this model produces very good agreement with experimental data for flows with adverse pressure gradients, separation zones and shock-boundary layer interactions, closely matching the results obtained with the original SST model. This model should be very useful for unsteady calculations, such as store separation, grid adaptation, and other practical flows.
NASA Astrophysics Data System (ADS)
Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing
2017-02-01
As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.
FORESEE™ User-Centric Energy Automation
DOE Office of Scientific and Technical Information (OSTI.GOV)
FORESEE™ is a home energy management system (HEMS) that provides a user centric energy automation solution for residential building occupants. Built upon advanced control and machine learning algorithms, FORESEE intelligently manages the home appliances and distributed energy resources (DERs) such as photovoltaics and battery storage in a home. Unlike existing HEMS in the market, FORESEE provides a tailored home automation solution for individual occupants by learning and adapting to their preferences on cost, comfort, convenience and carbon. FORESEE improves not only the energy efficiency of the home but also its capability to provide grid services such as demand response. Highlymore » reliable demand response services are likely to be incentivized by utility companies, making FORESEE economically viable for most homes.« less
Integrated Platform for Automated Sustainable Demand Response in Smart Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zois, Vassilis; Frincu, Marc; Prasanna, Viktor K.
2014-10-08
Demand Response(DR) is a common practice used by utility providers to regulate energy demand. It is used at periods of high demand to minimize the peak to average consumption ratio. Several methods have been Demand Response(DR) is a common praon using information about the baseline consumption and the consumption during DR. Our goal is to provide a sustainable reduction to ensure the elimination of peaks in demand. The proposed system includes an adaptation mechanism for when the provided solution does not meet the DR requirements. We conducted a series of experiments using consumption data from a real life micro gridmore » to evaluate the efficiency as well as the robustness of our solution.« less
Self-Avoiding Walks Over Adaptive Triangular Grids
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1999-01-01
Space-filling curves is a popular approach based on a geometric embedding for linearizing computational meshes. We present a new O(n log n) combinatorial algorithm for constructing a self avoiding walk through a two dimensional mesh containing n triangles. We show that for hierarchical adaptive meshes, the algorithm can be locally adapted and easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the runtime partitioning and load balancing of adaptive unstructured grids.
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-10-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.
White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid
NASA Technical Reports Server (NTRS)
Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn
1996-01-01
A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.
CAGI: Computer Aided Grid Interface. A work in progress
NASA Technical Reports Server (NTRS)
Soni, Bharat K.; Yu, Tzu-Yi; Vaughn, David
1992-01-01
Progress realized in the development of a Computer Aided Grid Interface (CAGI) software system in integrating CAD/CAM geometric system output and/or Interactive Graphics Exchange Standard (IGES) files, geometry manipulations associated with grid generation, and robust grid generation methodologies is presented. CAGI is being developed in a modular fashion and will offer fast, efficient and economical response to geometry/grid preparation, allowing the ability to upgrade basic geometry in a step-by-step fashion interactively and under permanent visual control along with minimizing the differences between the actual hardware surface descriptions and corresponding numerical analog. The computer code GENIE is used as a basis. The Non-Uniform Rational B-Splines (NURBS) representation of sculptured surfaces is utilized for surface grid redistribution. The computer aided analysis system, PATRAN, is adapted as a CAD/CAM system. The progress realized in NURBS surface grid generation, the development of IGES transformer, and geometry adaption using PATRAN will be presented along with their applicability to grid generation associated with rocket propulsion applications.
Efficient Load Balancing and Data Remapping for Adaptive Grid Calculations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak
1997-01-01
Mesh adaption is a powerful tool for efficient unstructured- grid computations but causes load imbalance among processors on a parallel machine. We present a novel method to dynamically balance the processor workloads with a global view. This paper presents, for the first time, the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. Previous results indicated that mesh repartitioning and data remapping are potential bottlenecks for performing large-scale scientific calculations. We resolve these issues and demonstrate that our framework remains viable on a large number of processors.
Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.
2011-01-01
Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.
A transformed path integral approach for solution of the Fokker-Planck equation
NASA Astrophysics Data System (ADS)
Subramaniam, Gnana M.; Vedula, Prakash
2017-10-01
A novel path integral (PI) based method for solution of the Fokker-Planck equation is presented. The proposed method, termed the transformed path integral (TPI) method, utilizes a new formulation for the underlying short-time propagator to perform the evolution of the probability density function (PDF) in a transformed computational domain where a more accurate representation of the PDF can be ensured. The new formulation, based on a dynamic transformation of the original state space with the statistics of the PDF as parameters, preserves the non-negativity of the PDF and incorporates short-time properties of the underlying stochastic process. New update equations for the state PDF in a transformed space and the parameters of the transformation (including mean and covariance) that better accommodate nonlinearities in drift and non-Gaussian behavior in distributions are proposed (based on properties of the SDE). Owing to the choice of transformation considered, the proposed method maps a fixed grid in transformed space to a dynamically adaptive grid in the original state space. The TPI method, in contrast to conventional methods such as Monte Carlo simulations and fixed grid approaches, is able to better represent the distributions (especially the tail information) and better address challenges in processes with large diffusion, large drift and large concentration of PDF. Additionally, in the proposed TPI method, error bounds on the probability in the computational domain can be obtained using the Chebyshev's inequality. The benefits of the TPI method over conventional methods are illustrated through simulations of linear and nonlinear drift processes in one-dimensional and multidimensional state spaces. The effects of spatial and temporal grid resolutions as well as that of the diffusion coefficient on the error in the PDF are also characterized.
Nonequilibrium flows with smooth particle applied mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kum, Oyeon
1995-07-01
Smooth particle methods are relatively new methods for simulating solid and fluid flows through they have a 20-year history of solving complex hydrodynamic problems in astrophysics, such as colliding planets and stars, for which correct answers are unknown. The results presented in this thesis evaluate the adaptability or fitness of the method for typical hydrocode production problems. For finite hydrodynamic systems, boundary conditions are important. A reflective boundary condition with image particles is a good way to prevent a density anomaly at the boundary and to keep the fluxes continuous there. Boundary values of temperature and velocity can be separatelymore » controlled. The gradient algorithm, based on differentiating the smooth particle expression for (uρ) and (Tρ), does not show numerical instabilities for the stress tensor and heat flux vector quantities which require second derivatives in space when Fourier`s heat-flow law and Newton`s viscous force law are used. Smooth particle methods show an interesting parallel linking to them to molecular dynamics. For the inviscid Euler equation, with an isentropic ideal gas equation of state, the smooth particle algorithm generates trajectories isomorphic to those generated by molecular dynamics. The shear moduli were evaluated based on molecular dynamics calculations for the three weighting functions, B spline, Lucy, and Cusp functions. The accuracy and applicability of the methods were estimated by comparing a set of smooth particle Rayleigh-Benard problems, all in the laminar regime, to corresponding highly-accurate grid-based numerical solutions of continuum equations. Both transient and stationary smooth particle solutions reproduce the grid-based data with velocity errors on the order of 5%. The smooth particle method still provides robust solutions at high Rayleigh number where grid-based methods fails.« less
NASA Technical Reports Server (NTRS)
Wang, Gang
2003-01-01
A multi grid solution procedure for the numerical simulation of turbulent flows in complex geometries has been developed. A Full Multigrid-Full Approximation Scheme (FMG-FAS) is incorporated into the continuity and momentum equations, while the scalars are decoupled from the multi grid V-cycle. A standard kappa-Epsilon turbulence model with wall functions has been used to close the governing equations. The numerical solution is accomplished by solving for the Cartesian velocity components either with a traditional grid staggering arrangement or with a multiple velocity grid staggering arrangement. The two solution methodologies are evaluated for relative computational efficiency. The solution procedure with traditional staggering arrangement is subsequently applied to calculate the flow and temperature fields around a model Short Take-off and Vertical Landing (STOVL) aircraft hovering in ground proximity.
NASA Astrophysics Data System (ADS)
Abdoulaye, D.; Koalaga, Z.; Zougmore, F.
2012-02-01
This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.
NASA Technical Reports Server (NTRS)
Gullbrand, Jessica
2003-01-01
In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM consists of the scale-similarity model (SSM) by Bardina et al. (1983), which is an RSFS model, in linear combination with the DSM. In the DRM, the RSFS stresses are modeled by using an estimate of the unfiltered velocity in the unclosed term, while the USFS stresses are modeled by the DSM. The DSM and the DMM are two commonly used turbulence-closure models, while the DRM is a more recent model.
Combinatorics of transformations from standard to non-standard bases in Brauer algebras
NASA Astrophysics Data System (ADS)
Chilla, Vincenzo
2007-05-01
Transformation coefficients between standard bases for irreducible representations of the Brauer centralizer algebra \\mathfrak{B}_f(x) and split bases adapted to the \\mathfrak{B}_{f_1} (x) \\times \\mathfrak{B}_{f_2} (x) \\subset \\mathfrak{B}_f (x) subalgebra (f1 + f2 = f) are considered. After providing the suitable combinatorial background, based on the definition of the i-coupling relation on nodes of the subduction grid, we introduce a generalized version of the subduction graph which extends the one given in Chilla (2006 J. Phys. A: Math. Gen. 39 7657) for symmetric groups. Thus, we can describe the structure of the subduction system arising from the linear method and give an outline of the form of the solution space. An ordering relation on the grid is also given and then, as in the case of symmetric groups, the choices of the phases and of the free factors governing the multiplicity separations are discussed.
Lattice Boltzmann and Navier-Stokes Cartesian CFD Approaches for Airframe Noise Predictions
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Kocheemoolayil, Joseph G.; Kiris, Cetin C.
2017-01-01
Lattice Boltzmann (LB) and compressible Navier-Stokes (NS) equations based computational fluid dynamics (CFD) approaches are compared for simulating airframe noise. Both LB and NS CFD approaches are implemented within the Launch Ascent and Vehicle Aerodynamics (LAVA) framework. Both schemes utilize the same underlying Cartesian structured mesh paradigm with provision for local adaptive grid refinement and sub-cycling in time. We choose a prototypical massively separated, wake-dominated flow ideally suited for Cartesian-grid based approaches in this study - The partially-dressed, cavity-closed nose landing gear (PDCC-NLG) noise problem from AIAA's Benchmark problems for Airframe Noise Computations (BANC) series of workshops. The relative accuracy and computational efficiency of the two approaches are systematically compared. Detailed comments are made on the potential held by LB to significantly reduce time-to-solution for a desired level of accuracy within the context of modeling airframes noise from first principles.
Changing the batch system in a Tier 1 computing center: why and how
NASA Astrophysics Data System (ADS)
Chierici, Andrea; Dal Pra, Stefano
2014-06-01
At the Italian Tierl Center at CNAF we are evaluating the possibility to change the current production batch system. This activity is motivated mainly because we are looking for a more flexible licensing model as well as to avoid vendor lock-in. We performed a technology tracking exercise and among many possible solutions we chose to evaluate Grid Engine as an alternative because its adoption is increasing in the HEPiX community and because it's supported by the EMI middleware that we currently use on our computing farm. Another INFN site evaluated Slurm and we will compare our results in order to understand pros and cons of the two solutions. We will present the results of our evaluation of Grid Engine, in order to understand if it can fit the requirements of a Tier 1 center, compared to the solution we adopted long ago. We performed a survey and a critical re-evaluation of our farming infrastructure: many production softwares (accounting and monitoring on top of all) rely on our current solution and changing it required us to write new wrappers and adapt the infrastructure to the new system. We believe the results of this investigation can be very useful to other Tier-ls and Tier-2s centers in a similar situation, where the effort of switching may appear too hard to stand. We will provide guidelines in order to understand how difficult this operation can be and how long the change may take.
A hybrid structured-unstructured grid method for unsteady turbomachinery flow computations
NASA Technical Reports Server (NTRS)
Mathur, Sanjay R.; Madavan, Nateri K.; Rajagopalan, R. G.
1993-01-01
A hybrid grid technique for the solution of 2D, unsteady flows is developed. This technique is capable of handling complex, multiple component geometries in relative motion, such as those encountered in turbomachinery. The numerical approach utilizes a mixed structured-unstructured zonal grid topology along with modeling equations and solution methods that are most appropriate in the individual domains, therefore combining the advantages of both structured and unstructured grid techniques.
Numerical simulation of aerothermal loads in hypersonic engine inlets due to shock impingement
NASA Technical Reports Server (NTRS)
Ramakrishnan, R.
1992-01-01
The effect of shock impingement on an axial corner simulating the inlet of a hypersonic vehicle engine is modeled using a finite-difference procedure. A three-dimensional dynamic grid adaptation procedure is utilized to move the grids to regions with strong flow gradients. The adaptation procedure uses a grid relocation stencil that is valid at both the interior and boundary points of the finite-difference grid. A linear combination of spatial derivatives of specific flow variables, calculated with finite-element interpolation functions, are used as adaptation measures. This computational procedure is used to study laminar and turbulent Mach 6 flows in the axial corner. The description of flow physics and qualitative measures of heat transfer distributions on cowl and strut surfaces obtained from the analysis are compared with experimental observations. Conclusions are drawn regarding the capability of the numerical scheme for enhanced modeling of high-speed compressible flows.
NASA Astrophysics Data System (ADS)
Kacem, S.; Eichwald, O.; Ducasse, O.; Renon, N.; Yousfi, M.; Charrada, K.
2012-01-01
Streamers dynamics are characterized by the fast propagation of ionized shock waves at the nanosecond scale under very sharp space charge variations. The streamer dynamics modelling needs the solution of charged particle transport equations coupled to the elliptic Poisson's equation. The latter has to be solved at each time step of the streamers evolution in order to follow the propagation of the resulting space charge electric field. In the present paper, a full multi grid (FMG) and a multi grid (MG) methods have been adapted to solve Poisson's equation for streamer discharge simulations between asymmetric electrodes. The validity of the FMG method for the computation of the potential field is first shown by performing direct comparisons with analytic solution of the Laplacian potential in the case of a point-to-plane geometry. The efficiency of the method is also compared with the classical successive over relaxation method (SOR) and MUltifrontal massively parallel solver (MUMPS). MG method is then applied in the case of the simulation of positive streamer propagation and its efficiency is evaluated from comparisons to SOR and MUMPS methods in the chosen point-to-plane configuration. Very good agreements are obtained between the three methods for all electro-hydrodynamics characteristics of the streamer during its propagation in the inter-electrode gap. However in the case of MG method, the computational time to solve the Poisson's equation is at least 2 times faster in our simulation conditions.
Enhanced Elliptic Grid Generation
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
2007-01-01
An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are determined automatically as part of the solution of the defining PDEs. Depending on the shape of the boundary segments and the physical nature of the problem to be solved on the grid, the solution of the defining PDEs may provide for rates of decay to vary along and among the boundary segments and may lend itself to interpretation in terms of one or more physical quantities associated with the problem.
Fast adaptive composite grid methods on distributed parallel architectures
NASA Technical Reports Server (NTRS)
Lemke, Max; Quinlan, Daniel
1992-01-01
The fast adaptive composite (FAC) grid method is compared with the adaptive composite method (AFAC) under variety of conditions including vectorization and parallelization. Results are given for distributed memory multiprocessor architectures (SUPRENUM, Intel iPSC/2 and iPSC/860). It is shown that the good performance of AFAC and its superiority over FAC in a parallel environment is a property of the algorithm and not dependent on peculiarities of any machine.
Integrating TITAN2D Geophysical Mass Flow Model with GIS
NASA Astrophysics Data System (ADS)
Namikawa, L. M.; Renschler, C.
2005-12-01
TITAN2D simulates geophysical mass flows over natural terrain using depth-averaged granular flow models and requires spatially distributed parameter values to solve differential equations. Since a Geographical Information System (GIS) main task is integration and manipulation of data covering a geographic region, the use of a GIS for implementation of simulation of complex, physically-based models such as TITAN2D seems a natural choice. However, simulation of geophysical flows requires computationally intensive operations that need unique optimizations, such as adaptative grids and parallel processing. Thus GIS developed for general use cannot provide an effective environment for complex simulations and the solution is to develop a linkage between GIS and simulation model. The present work presents the solution used for TITAN2D where data structure of a GIS is accessed by simulation code through an Application Program Interface (API). GRASS is an open source GIS with published data formats thus GRASS data structure was selected. TITAN2D requires elevation, slope, curvature, and base material information at every cell to be computed. Results from simulation are visualized by a system developed to handle the large amount of output data and to support a realistic dynamic 3-D display of flow dynamics, which requires elevation and texture, usually from a remote sensor image. Data required by simulation is in raster format, using regular rectangular grids. GRASS format for regular grids is based on data file (binary file storing data either uncompressed or compressed by grid row), header file (text file, with information about georeferencing, data extents, and grid cell resolution), and support files (text files, with information about color table and categories names). The implemented API provides access to original data (elevation, base material, and texture from imagery) and slope and curvature derived from elevation data. From several existing methods to estimate slope and curvature from elevation, the selected one is based on estimation by a third-order finite difference method, which has shown to perform better or with minimal difference when compared to more computationally expensive methods. Derivatives are estimated using weighted sum of 8 grid neighbor values. The method was implemented and simulation results compared to derivatives estimated by a simplified version of the method (uses only 4 neighbor cells) and proven to perform better. TITAN2D uses an adaptative mesh grid, where resolution (grid cell size) is not constant, and visualization tools also uses texture with varying resolutions for efficient display. The API supports different resolutions applying bilinear interpolation when elevation, slope and curvature are required at a resolution higher (smaller cell size) than the original and using a nearest cell approach for elevations with lower resolution (larger) than the original. For material information nearest neighbor method is used since interpolation on categorical data has no meaning. Low fidelity characteristic of visualization allows use of nearest neighbor method for texture. Bilinear interpolation estimates the value at a point as the distance-weighted average of values at the closest four cell centers, and interpolation performance is just slightly inferior compared to more computationally expensive methods such as bicubic interpolation and kriging.
NASA Astrophysics Data System (ADS)
Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe
2018-02-01
A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.
Structured grid technology to enable flow simulation in an integrated system environment
NASA Astrophysics Data System (ADS)
Remotigue, Michael Gerard
An application-driven Computational Fluid Dynamics (CFD) environment needs flexible and general tools to effectively solve complex problems in a timely manner. In addition, reusable, portable, and maintainable specialized libraries will aid in rapidly developing integrated systems or procedures. The presented structured grid technology enables the flow simulation for complex geometries by addressing grid generation, grid decomposition/solver setup, solution, and interpretation. Grid generation is accomplished with the graphical, arbitrarily-connected, multi-block structured grid generation software system (GUM-B) developed and presented here. GUM-B is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a solid-modeling data structure that utilizes a structured grid generation library and a geometric library based on Non-Uniform Rational B-Splines (NURBS). A presented modification of the solid-modeling data structure provides the capability for arbitrarily-connected regions between the grid blocks. The presented grid generation library provides algorithms that are reliable and accurate. GUM-B has been utilized to generate numerous structured grids for complex geometries in hydrodynamics, propulsors, and aerodynamics. The versatility of the libraries that compose GUM-B is also displayed in a prototype to automatically regenerate a grid for a free-surface solution. Grid decomposition and solver setup is accomplished with the graphical grid manipulation and repartition software system (GUMBO) developed and presented here. GUMBO is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a structured grid-tools library. The described functions within the grid-tools library reduce the possibility of human error during decomposition and setup for the numerical solver by accounting for boundary conditions and connectivity. GUMBO is linked with a flow solver interface, to the parallel UNCLE code, to provide load balancing tools and solver setup. Weeks of boundary condition and connectivity specification and validation has been reduced to hours. The UNCLE flow solver is utilized for the solution of the flow field. To accelerate convergence toward a quick engineering answer, a full multigrid (FMG) approach coupled with UNCLE, which is a full approximation scheme (FAS), is presented. The prolongation operators used in the FMG-FAS method are compared. The procedure is demonstrated on a marine propeller in incompressible flow. Interpretation of the solution is accomplished by vortex feature detection. Regions of "Intrinsic Swirl" are located by interrogating the velocity gradient tensor for complex eigenvalues. The "Intrinsic Swirl" parameter is visualized on a solution of a marine propeller to determine if any vortical features are captured. The libraries and the structured grid technology presented herein are flexible and general enough to tackle a variety of complex applications. This technology has significantly enabled the capability of the ERC personnel to effectively calculate solutions for complex geometries.
Pilly, Praveen K.; Grossberg, Stephen
2013-01-01
Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous adaptive robots capable of spatial navigation. PMID:23577130
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Level-Set Methodology on Adaptive Octree Grids
NASA Astrophysics Data System (ADS)
Gibou, Frederic; Guittet, Arthur; Mirzadeh, Mohammad; Theillard, Maxime
2017-11-01
Numerical simulations of interfacial problems in fluids require a methodology capable of tracking surfaces that can undergo changes in topology and capable to imposing jump boundary conditions in a sharp manner. In this talk, we will discuss recent advances in the level-set framework, in particular one that is based on adaptive grids.
Advanced Methodology for Simulation of Complex Flows Using Structured Grid Systems
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Modiano, David
1995-01-01
Detailed simulations of viscous flows in complicated geometries pose a significant challenge to current capabilities of Computational Fluid Dynamics (CFD). To enable routine application of CFD to this class of problems, advanced methodologies are required that employ (a) automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. Each of these ingredients contributes to increased accuracy, efficiency (in terms of human effort and computer time), and/or reliability of CFD software. In the long run, methodologies employing structured grid systems will remain a viable choice for routine simulation of flows in complex geometries only if genuinely automatic grid generation techniques for structured grids can be developed and if adaptivity is employed more routinely. More research in both these areas is urgently needed.
Adaptive Grid Refinement for Atmospheric Boundary Layer Simulations
NASA Astrophysics Data System (ADS)
van Hooft, Antoon; van Heerwaarden, Chiel; Popinet, Stephane; van der linden, Steven; de Roode, Stephan; van de Wiel, Bas
2017-04-01
We validate and benchmark an adaptive mesh refinement (AMR) algorithm for numerical simulations of the atmospheric boundary layer (ABL). The AMR technique aims to distribute the computational resources efficiently over a domain by refining and coarsening the numerical grid locally and in time. This can be beneficial for studying cases in which length scales vary significantly in time and space. We present the results for a case describing the growth and decay of a convective boundary layer. The AMR results are benchmarked against two runs using a fixed, fine meshed grid. First, with the same numerical formulation as the AMR-code and second, with a code dedicated to ABL studies. Compared to the fixed and isotropic grid runs, the AMR algorithm can coarsen and refine the grid such that accurate results are obtained whilst using only a fraction of the grid cells. Performance wise, the AMR run was cheaper than the fixed and isotropic grid run with similar numerical formulations. However, for this specific case, the dedicated code outperformed both aforementioned runs.
NASA Technical Reports Server (NTRS)
Lyusternik, L. A.
1980-01-01
The mathematics involved in numerically solving for the plane boundary value of the Laplace equation by the grid method is developed. The approximate solution of a boundary value problem for the domain of the Laplace equation by the grid method consists of finding u at the grid corner which satisfies the equation at the internal corners (u=Du) and certain boundary value conditions at the boundary corners.
NREL Partnership Develops Off-Grid Energy Access through Quality Assurance
Framework for Mini-Grids | Integrated Energy Solutions | NREL Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed with the Global Lighting
Numerical simulation of three dimensional transonic flows
NASA Technical Reports Server (NTRS)
Sahu, Jubaraj; Steger, Joseph L.
1987-01-01
The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.
Unstructured grids on SIMD torus machines
NASA Technical Reports Server (NTRS)
Bjorstad, Petter E.; Schreiber, Robert
1994-01-01
Unstructured grids lead to unstructured communication on distributed memory parallel computers, a problem that has been considered difficult. Here, we consider adaptive, offline communication routing for a SIMD processor grid. Our approach is empirical. We use large data sets drawn from supercomputing applications instead of an analytic model of communication load. The chief contribution of this paper is an experimental demonstration of the effectiveness of certain routing heuristics. Our routing algorithm is adaptive, nonminimal, and is generally designed to exploit locality. We have a parallel implementation of the router, and we report on its performance.
First benchmark of the Unstructured Grid Adaptation Working Group
NASA Technical Reports Server (NTRS)
Ibanez, Daniel; Barral, Nicolas; Krakos, Joshua; Loseille, Adrien; Michal, Todd; Park, Mike
2017-01-01
Unstructured grid adaptation is a technology that holds the potential to improve the automation and accuracy of computational fluid dynamics and other computational disciplines. Difficulty producing the highly anisotropic elements necessary for simulation on complex curved geometries that satisfies a resolution request has limited this technology's widespread adoption. The Unstructured Grid Adaptation Working Group is an open gathering of researchers working on adapting simplicial meshes to conform to a metric field. Current members span a wide range of institutions including academia, industry, and national laboratories. The purpose of this group is to create a common basis for understanding and improving mesh adaptation. We present our first major contribution: a common set of benchmark cases, including input meshes and analytic metric specifications, that are publicly available to be used for evaluating any mesh adaptation code. We also present the results of several existing codes on these benchmark cases, to illustrate their utility in identifying key challenges common to all codes and important differences between available codes. Future directions are defined to expand this benchmark to mature the technology necessary to impact practical simulation workflows.
Mumtaz, Sidra; Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.
Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015
Anisotropic mesh adaptation for marine ice-sheet modelling
NASA Astrophysics Data System (ADS)
Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier
2017-04-01
Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh refinement. For transient solutions where the GL is moving, we have implemented an algorithm where the computation is reiterated allowing to anticipate the GL displacement and to adapt the mesh to the transient solution. We discuss the performance and robustness of this algorithm.
Multiple Scales in Fluid Dynamics and Meteorology: The DFG Priority Programme 1276 MetStröm
NASA Astrophysics Data System (ADS)
von Larcher, Th; Klein, R.
2012-04-01
Geophysical fluid motions are characterized by a very wide range of length and time scales, and by a rich collection of varying physical phenomena. The mathematical description of these motions reflects this multitude of scales and mechanisms in that it involves strong non-linearities and various scale-dependent singular limit regimes. Considerable progress has been made in recent years in the mathematical modelling and numerical simulation of such flows in detailed process studies, numerical weather forecasting, and climate research. One task of outstanding importance in this context has been and will remain for the foreseeable future the subgrid scale parameterization of the net effects of non-resolved processes that take place on spacio-temporal scales not resolvable even by the largest most recent supercomputers. Since the advent of numerical weather forecasting some 60 years ago, one simple but efficient means to achieve improved forecasting skills has been increased spacio-temporal resolution. This seems quite consistent with the concept of convergence of numerical methods in Applied Mathematics and Computational Fluid Dynamics (CFD) at a first glance. Yet, the very notion of increased resolution in atmosphere-ocean science is very different from the one used in Applied Mathematics: For the mathematician, increased resolution provides the benefit of getting closer to the ideal of a converged solution of some given partial differential equations. On the other hand, the atmosphere-ocean scientist would naturally refine the computational grid and adjust his mathematical model, such that it better represents the relevant physical processes that occur at smaller scales. This conceptual contradiction remains largely irrelevant as long as geophysical flow models operate with fixed computational grids and time steps and with subgrid scale parameterizations being optimized accordingly. The picture changes fundamentally when modern techniques from CFD involving spacio-temporal grid adaptivity get invoked in order to further improve the net efficiency in exploiting the given computational resources. In the setting of geophysical flow simulation one must then employ subgrid scale parameterizations that dynamically adapt to the changing grid sizes and time steps, implement ways to judiciously control and steer the newly available flexibility of resolution, and invent novel ways of quantifying the remaining errors. The DFG priority program MetStröm covers the expertise of Meteorology, Fluid Dynamics, and Applied Mathematics to develop model- as well as grid-adaptive numerical simulation concepts in multidisciplinary projects. The goal of this priority programme is to provide simulation models which combine scale-dependent (mathematical) descriptions of key physical processes with adaptive flow discretization schemes. Deterministic continuous approaches and discrete and/or stochastic closures and their possible interplay are taken into consideration. Research focuses on the theory and methodology of multiscale meteorological-fluid mechanics modelling. Accompanying reference experiments support model validation.
Direct numerical simulation of particulate flows with an overset grid method
NASA Astrophysics Data System (ADS)
Koblitz, A. R.; Lovett, S.; Nikiforakis, N.; Henshaw, W. D.
2017-08-01
We evaluate an efficient overset grid method for two-dimensional and three-dimensional particulate flows for small numbers of particles at finite Reynolds number. The rigid particles are discretised using moving overset grids overlaid on a Cartesian background grid. This allows for strongly-enforced boundary conditions and local grid refinement at particle surfaces, thereby accurately capturing the viscous boundary layer at modest computational cost. The incompressible Navier-Stokes equations are solved with a fractional-step scheme which is second-order-accurate in space and time, while the fluid-solid coupling is achieved with a partitioned approach including multiple sub-iterations to increase stability for light, rigid bodies. Through a series of benchmark studies we demonstrate the accuracy and efficiency of this approach compared to other boundary conformal and static grid methods in the literature. In particular, we find that fully resolving boundary layers at particle surfaces is crucial to obtain accurate solutions to many common test cases. With our approach we are able to compute accurate solutions using as little as one third the number of grid points as uniform grid computations in the literature. A detailed convergence study shows a 13-fold decrease in CPU time over a uniform grid test case whilst maintaining comparable solution accuracy.
Parallel Adaptive Mesh Refinement Library
NASA Technical Reports Server (NTRS)
Mac-Neice, Peter; Olson, Kevin
2005-01-01
Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.
2015-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.
A Solution Framework for Environmental Characterization Problems
This paper describes experiences developing a grid-enabled framework for solving environmental inverse problems. The solution approach taken here couples environmental simulation models with global search methods and requires readily available computational resources of the grid ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorda, Antonius, E-mail: dorda@tugraz.at; Schürrer, Ferdinand, E-mail: ferdinand.schuerrer@tugraz.at
2015-03-01
We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of themore » phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.« less
Dorda, Antonius; Schürrer, Ferdinand
2015-01-01
We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations. PMID:25892748
Dorda, Antonius; Schürrer, Ferdinand
2015-03-01
We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.
Post, R.F.
1960-08-01
An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.
Adaptive multigrid domain decomposition solutions for viscous interacting flows
NASA Technical Reports Server (NTRS)
Rubin, Stanley G.; Srinivasan, Kumar
1992-01-01
Several viscous incompressible flows with strong pressure interaction and/or axial flow reversal are considered with an adaptive multigrid domain decomposition procedure. Specific examples include the triple deck structure surrounding the trailing edge of a flat plate, the flow recirculation in a trough geometry, and the flow in a rearward facing step channel. For the latter case, there are multiple recirculation zones, of different character, for laminar and turbulent flow conditions. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable, non-staggered grid computation.
Self-adaptive Fault-Tolerance of HLA-Based Simulations in the Grid Environment
NASA Astrophysics Data System (ADS)
Huang, Jijie; Chai, Xudong; Zhang, Lin; Li, Bo Hu
The objects of a HLA-based simulation can access model services to update their attributes. However, the grid server may be overloaded and refuse the model service to handle objects accesses. Because these objects have been accessed this model service during last simulation loop and their medium state are stored in this server, this may terminate the simulation. A fault-tolerance mechanism must be introduced into simulations. But the traditional fault-tolerance methods cannot meet the above needs because the transmission latency between a federate and the RTI in grid environment varies from several hundred milliseconds to several seconds. By adding model service URLs to the OMT and expanding the HLA services and model services with some interfaces, this paper proposes a self-adaptive fault-tolerance mechanism of simulations according to the characteristics of federates accessing model services. Benchmark experiments indicate that the expanded HLA/RTI can make simulations self-adaptively run in the grid environment.
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; ...
2015-06-24
This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less
A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.
This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of themore » hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konor, Celal S.; Randall, David A.
We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less
Konor, Celal S.; Randall, David A.
2018-05-08
We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia–gravity modes on a midlatitude f plane.The results of our normal-modemore » analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.« less
NASA Astrophysics Data System (ADS)
Konor, Celal S.; Randall, David A.
2018-05-01
We use a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the quasi-geostrophic anelastic baroclinic and barotropic Rossby modes on a midlatitude β plane. The dispersion equations are derived for the linearized anelastic system, discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of various horizontal grid spacings and vertical wavenumbers are discussed. A companion paper, Part 1, discusses the impacts of the discretization on the inertia-gravity modes on a midlatitude f plane.The results of our normal-mode analyses for the Rossby waves overall support the conclusions of the previous studies obtained with the shallow-water equations. We identify an area of disagreement with the E-grid solution.
The Volume Grid Manipulator (VGM): A Grid Reusability Tool
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1995-01-01
A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method,' is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. The present method and the Arbitrary Lagrangian-Eulerian (ALE) method have a similarity in spirit-eliminating the cross-streamline numerical diffusion. For this purpose, we suggest a simple grid constraint condition and utilize an accurate discretization procedure. This grid constraint is only applied to the transverse cell face parallel to the local stream velocity, and hence our method for the steady state problems naturally reduces to the streamline-curvature method, without explicitly solving the steady stream-coordinate equations formulated a priori. Unlike the Lagrangian method proposed by Loh and Hui which is valid only for steady supersonic flows, the present method is general and capable of treating subsonic flows and supersonic flows as well as unsteady flows, simply by invoking in the same code an appropriate grid constraint suggested in this paper. The approach is found to be robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cololla, P.
This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.
Investigation of advancing front method for generating unstructured grid
NASA Technical Reports Server (NTRS)
Thomas, A. M.; Tiwari, S. N.
1992-01-01
The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.
Reference Solutions for Benchmark Turbulent Flows in Three Dimensions
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.
2016-01-01
A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.
Scheduling quality of precise form sets which consist of tasks of circular type in GRID systems
NASA Astrophysics Data System (ADS)
Saak, A. E.; Kureichik, V. V.; Kravchenko, Y. A.
2018-05-01
Users’ demand in computer power and rise of technology favour the arrival of Grid systems. The quality of Grid systems’ performance depends on computer and time resources scheduling. Grid systems with a centralized structure of the scheduling system and user’s task are modeled by resource quadrant and re-source rectangle accordingly. A Non-Euclidean heuristic measure, which takes into consideration both the area and the form of an occupied resource region, is used to estimate scheduling quality of heuristic algorithms. The authors use sets, which are induced by the elements of square squaring, as an example of studying the adapt-ability of a level polynomial algorithm with an excess and the one with minimal deviation.
Partners | Integrated Energy Solutions | NREL
Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed with the Africa to develop a Quality Assurance Framework for isolated mini-grids. NREL Enhances Energy Resiliency Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
Test problems for inviscid transonic flow
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1979-01-01
Solving of test problems with the TRANDES program is discussed. This method utilizes the full, inviscid, perturbation potential flow equation in a Cartesian grid system that is stretched to infinity. This equation is represented by a nonconservative system of finite difference equations that includes at supersonic points a rotated difference scheme and is solved by column relaxation. The solution usually starts from a zero perturbation potential on a very coarse grid (typically 13 by 7) followed by several grid halvings until a final solution is obtained on a fine grid (97 by 49).
Brinberg, Miriam; Fosco, Gregory M; Ram, Nilam
2017-12-01
Family systems theorists have forwarded a set of theoretical principles meant to guide family scientists and practitioners in their conceptualization of patterns of family interaction-intra-family dynamics-that, over time, give rise to family and individual dysfunction and/or adaptation. In this article, we present an analytic approach that merges state space grid methods adapted from the dynamic systems literature with sequence analysis methods adapted from molecular biology into a "grid-sequence" method for studying inter-family differences in intra-family dynamics. Using dyadic data from 86 parent-adolescent dyads who provided up to 21 daily reports about connectedness, we illustrate how grid-sequence analysis can be used to identify a typology of intrafamily dynamics and to inform theory about how specific types of intrafamily dynamics contribute to adolescent behavior problems and family members' mental health. Methodologically, grid-sequence analysis extends the toolbox of techniques for analysis of family experience sampling and daily diary data. Substantively, we identify patterns of family level microdynamics that may serve as new markers of risk/protective factors and potential points for intervention in families. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.
2009-04-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallinderis, Yannis, E-mail: kallind@otenet.gr; Vitsas, Panagiotis A.; Menounou, Penelope
2012-07-15
A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using staticmore » and dynamic flow/acoustics coupling demonstrating the importance of the latter.« less
Converter topologies and control
Rodriguez, Fernando; Qin, Hengsi; Chapman, Patrick
2018-05-01
An inverter includes a transformer that includes a first winding, a second winding, and a third winding, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adapted to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid.
Grid of Supergiant B[e] Models from HDUST Radiative Transfer
NASA Astrophysics Data System (ADS)
Domiciano de Souza, A.; Carciofi, A. C.
2012-12-01
By using the Monte Carlo radiative transfer code HDUST (developed by A. C. Carciofi and J..E. Bjorkman) we have built a grid of models for stars presenting the B[e] phenomenon and a bimodal outflowing envelope. The models are particularly adapted to the study of B[e] supergiants and FS CMa type stars. The adopted physical parameters of the calculated models make the grid well adapted to interpret high angular and high spectral observations, in particular spectro-interferometric data from ESO-VLTI instruments AMBER (near-IR at low and medium spectral resolution) and MIDI (mid-IR at low spectral resolution). The grid models include, for example, a central B star with different effective temperatures, a gas (hydrogen) and silicate dust circumstellar envelope with a bimodal mass loss presenting dust in the denser equatorial regions. The HDUST grid models were pre-calculated using the high performance parallel computing facility Mésocentre SIGAMM, located at OCA, France.
Numerical investigation of dielectric barrier discharges
NASA Astrophysics Data System (ADS)
Li, Jing
1997-12-01
A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in further understanding the ozone generation and pollution control process in a dielectric barrier discharge.
NASA Astrophysics Data System (ADS)
Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.
2017-12-01
It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required to reduce an error metric based on the Hessian of the field. This allows the local pressure drawdown to be captured without user¬ driven modification of the mesh. We demonstrate that the method has wide application in reservoir ¬scale models of geothermal fields, and regional models of groundwater resources.
Implicit finite difference methods on composite grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1987-01-01
Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.
NASA Astrophysics Data System (ADS)
Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan
2015-10-01
Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.
A multi-block adaptive solving technique based on lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao
2018-05-01
In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.
NASA Technical Reports Server (NTRS)
Desautel, Richard
1993-01-01
The objectives of this research include supporting the Aerothermodynamics Branch's research by developing graphical visualization tools for both the branch's adaptive grid code and flow field ray tracing code. The completed research for the reporting period includes development of a graphical user interface (GUI) and its implementation into the NAS Flowfield Analysis Software Tool kit (FAST), for both the adaptive grid code (SAGE) and the flow field ray tracing code (CISS).
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.
Parallel Anisotropic Tetrahedral Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.
Shortest path problem on a grid network with unordered intermediate points
NASA Astrophysics Data System (ADS)
Saw, Veekeong; Rahman, Amirah; Eng Ong, Wen
2017-10-01
We consider a shortest path problem with single cost factor on a grid network with unordered intermediate points. A two stage heuristic algorithm is proposed to find a feasible solution path within a reasonable amount of time. To evaluate the performance of the proposed algorithm, computational experiments are performed on grid maps of varying size and number of intermediate points. Preliminary results for the problem are reported. Numerical comparisons against brute forcing show that the proposed algorithm consistently yields solutions that are within 10% of the optimal solution and uses significantly less computation time.
Preconditioned MoM Solutions for Complex Planar Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasenfest, B J; Jackson, D; Champagne, N
2004-01-23
The numerical analysis of large arrays is a complex problem. There are several techniques currently under development in this area. One such technique is the FAIM (Faster Adaptive Integral Method). This method uses a modification of the standard AIM approach which takes into account the reusability properties of matrices that arise from identical array elements. If the array consists of planar conducting bodies, the array elements are meshed using standard subdomain basis functions, such as the RWG basis. These bases are then projected onto a regular grid of interpolating polynomials. This grid can then be used in a 2D ormore » 3D FFT to accelerate the matrix-vector product used in an iterative solver. The method has been proven to greatly reduce solve time by speeding the matrix-vector product computation. The FAIM approach also reduces fill time and memory requirements, since only the near element interactions need to be calculated exactly. The present work extends FAIM by modifying it to allow for layered material Green's Functions and dielectrics. In addition, a preconditioner is implemented to greatly reduce the number of iterations required for a solution. The general scheme of the FAIM method is reported in; this contribution is limited to presenting new results.« less
Performance Enhancement Strategies for Multi-Block Overset Grid CFD Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
The overset grid methodology has significantly reduced time-to-solution of highfidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement strategies on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machinc. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Details of a sophisticated graph partitioning technique for grid grouping are also provided. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
Improved Convergence and Robustness of USM3D Solutions on Mixed Element Grids (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2015-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS), has been developed and implemented. It provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier Stokes (RANS) equations and a nonlinear control of the solution update. Two variants of the new methodology are assessed on four benchmark cases, namely, a zero-pressure gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the baseline solver technology.
Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids
NASA Technical Reports Server (NTRS)
Liao, Wei; Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Chang, Chau-Lyan; Choudhari, Meelan M.
2012-01-01
Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier- Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions. Extensive code-to-code validations have been performed by comparing the extracted mean ows as well as the corresponding stability characteristics to the predictions based on structured-grid solutions. Comparisons are made on a range of problems from a simple at plate to a full aircraft configuration-a modified Gulfstream-III with a natural laminar flow glove. The future aim of the project is to extend the adjoint-based design capability in FUN3D to include natural laminar flow and laminar flow control by integrating it with boundary-layer stability analysis codes, such as LASTRAC.
Evaluation of global equal-area mass grid solutions from GRACE
NASA Astrophysics Data System (ADS)
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron
2015-04-01
The Gravity Recovery and Climate Experiment (GRACE) range-rate data was inverted into global equal-area mass grid solutions at the Center for Space Research (CSR) using Tikhonov Regularization to stabilize the ill-posed inversion problem. These solutions are intended to be used for applications in Hydrology, Oceanography, Cryosphere etc without any need for post-processing. This paper evaluates these solutions with emphasis on spatial and temporal characteristics of the signal content. These solutions will be validated against multiple models and in-situ data sets.
Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1)
NASA Astrophysics Data System (ADS)
Kouba, J.
2008-04-01
The new gridded Vienna Mapping Function (VMF1) was implemented and compared to the well-established site-dependent VMF1, directly and by using precise point positioning (PPP) with International GNSS Service (IGS) Final orbits/clocks for a 1.5-year GPS data set of 11 globally distributed IGS stations. The gridded VMF1 data can be interpolated for any location and for any time after 1994, whereas the site-dependent VMF1 data are only available at selected IGS stations and only after 2004. Both gridded and site-dependent VMF1 PPP solutions agree within 1 and 2 mm for the horizontal and vertical position components, respectively, provided that respective VMF1 hydrostatic zenith path delays (ZPD) are used for hydrostatic ZPD mapping to slant delays. The total ZPD of the gridded and site-dependent VMF1 data agree with PPP ZPD solutions with RMS of 1.5 and 1.8 cm, respectively. Such precise total ZPDs could provide useful initial a priori ZPD estimates for kinematic PPP and regional static GPS solutions. The hydrostatic ZPDs of the gridded VMF1 compare with the site-dependent VMF1 ZPDs with RMS of 0.3 cm, subject to some biases and discontinuities of up to 4 cm, which are likely due to different strategies used in the generation of the site-dependent VMF1 data. The precision of gridded hydrostatic ZPD should be sufficient for accurate a priori hydrostatic ZPD mapping in all precise GPS and very long baseline interferometry (VLBI) solutions. Conversely, precise and globally distributed geodetic solutions of total ZPDs, which need to be linked to VLBI to control biases and stability, should also provide a consistent and stable reference frame for long-term and state-of-the-art numerical weather modeling.
Advanced microgrid design and analysis for forward operating bases
NASA Astrophysics Data System (ADS)
Reasoner, Jonathan
This thesis takes a holistic approach in creating an improved electric power generation system for a forward operating base (FOB) in the future through the design of an isolated microgrid. After an extensive literature search, this thesis found a need for drastic improvement of the FOB power system. A thorough design process analyzed FOB demand, researched demand side management improvements, evaluated various generation sources and energy storage options, and performed a HOMERRTM discrete optimization to determine the best microgrid design. Further sensitivity analysis was performed to see how changing parameters would affect the outcome. Lastly, this research also looks at some of the challenges which are associated with incorporating a design which relies heavily on inverter-based generation sources, and gives possible solutions to help make a renewable energy powered microgrid a reality. While this thesis uses a FOB as the case study, the process and discussion can be adapted to aide in the design of an off-grid small-scale power grid which utilizes high-penetration levels of renewable energy.
Adaptive mesh refinement and load balancing based on multi-level block-structured Cartesian mesh
NASA Astrophysics Data System (ADS)
Misaka, Takashi; Sasaki, Daisuke; Obayashi, Shigeru
2017-11-01
We developed a framework for a distributed-memory parallel computer that enables dynamic data management for adaptive mesh refinement and load balancing. We employed simple data structure of the building cube method (BCM) where a computational domain is divided into multi-level cubic domains and each cube has the same number of grid points inside, realising a multi-level block-structured Cartesian mesh. Solution adaptive mesh refinement, which works efficiently with the help of the dynamic load balancing, was implemented by dividing cubes based on mesh refinement criteria. The framework was investigated with the Laplace equation in terms of adaptive mesh refinement, load balancing and the parallel efficiency. It was then applied to the incompressible Navier-Stokes equations to simulate a turbulent flow around a sphere. We considered wall-adaptive cube refinement where a non-dimensional wall distance y+ near the sphere is used for a criterion of mesh refinement. The result showed the load imbalance due to y+ adaptive mesh refinement was corrected by the present approach. To utilise the BCM framework more effectively, we also tested a cube-wise algorithm switching where an explicit and implicit time integration schemes are switched depending on the local Courant-Friedrichs-Lewy (CFL) condition in each cube.
Euler solutions for an unbladed jet engine configuration
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1991-01-01
A Euler solution for an axisymmetric jet engine configuration without blade effects is presented. The Euler equations are solved on a multiblock grid which covers a domain including the inlet, bypass duct, core passage, nozzle, and the far field surrounding the engine. The simulation is verified by considering five theoretical properties of the solution. The solution demonstrates both multiblock grid generation techniques and a foundation for a full jet engine throughflow calculation.
SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid
Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin
2016-01-01
The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid. PMID:27043573
SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.
Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin
2016-03-31
The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid.
Application of multiple grids topology to supersonic internal/external flow interactions
NASA Technical Reports Server (NTRS)
Kathong, M.; Tiwari, S. N.; Smith, R. E.
1988-01-01
For many aerodynamic applications, it is very difficult to construct a smooth body-fitted grid around complex configurations. An approach, called 'multiple grids' or 'zonal grids', which subdivides the entire physical domain into several subdomains, is used to overcome such difficulties. The approach is applied to obtain the solutions to the Euler equations for the supersonic internal/external flow around a fighter-aircraft configuration. Steady-state solutions are presented for Mach 2 at 0, 3.79, 7, and 10 deg angles-of-attack. The problem of conservative treatment at the zonal interfaces is also addressed.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
High-Order Accurate Solutions to the Helmholtz Equation in the Presence of Boundary Singularities
NASA Astrophysics Data System (ADS)
Britt, Darrell Steven, Jr.
Problems of time-harmonic wave propagation arise in important fields of study such as geological surveying, radar detection/evasion, and aircraft design. These often involve highfrequency waves, which demand high-order methods to mitigate the dispersion error. We propose a high-order method for computing solutions to the variable-coefficient inhomogeneous Helmholtz equation in two dimensions on domains bounded by piecewise smooth curves of arbitrary shape with a finite number of boundary singularities at known locations. We utilize compact finite difference (FD) schemes on regular structured grids to achieve highorder accuracy due to their efficiency and simplicity, as well as the capability to approximate variable-coefficient differential operators. In this work, a 4th-order compact FD scheme for the variable-coefficient Helmholtz equation on a Cartesian grid in 2D is derived and tested. The well known limitation of finite differences is that they lose accuracy when the boundary curve does not coincide with the discretization grid, which is a severe restriction on the geometry of the computational domain. Therefore, the algorithm presented in this work combines high-order FD schemes with the method of difference potentials (DP), which retains the efficiency of FD while allowing for boundary shapes that are not aligned with the grid without sacrificing the accuracy of the FD scheme. Additionally, the theory of DP allows for the universal treatment of the boundary conditions. One of the significant contributions of this work is the development of an implementation that accommodates general boundary conditions (BCs). In particular, Robin BCs with discontinuous coefficients are studied, for which we introduce a piecewise parameterization of the boundary curve. Problems with discontinuities in the boundary data itself are also studied. We observe that the design convergence rate suffers whenever the solution loses regularity due to the boundary conditions. This is because the FD scheme is only consistent for classical solutions of the PDE. For this reason, we implement the method of singularity subtraction as a means for restoring the design accuracy of the scheme in the presence of singularities at the boundary. While this method is well studied for low order methods and for problems in which singularities arise from the geometry (e.g., corners), we adapt it to our high-order scheme for curved boundaries via a conformal mapping and show that it can also be used to restore accuracy when the singularity arises from the BCs rather than the geometry. Altogether, the proposed methodology for 2D boundary value problems is computationally efficient, easily handles a wide class of boundary conditions and boundary shapes that are not aligned with the discretization grid, and requires little modification for solving new problems.
The Feasibility of Adaptive Unstructured Computations On Petaflops Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Heber, Gerd; Gao, Guang; Saini, Subhash (Technical Monitor)
1999-01-01
This viewgraph presentation covers the advantages of mesh adaptation, unstructured grids, and dynamic load balancing. It illustrates parallel adaptive communications, and explains PLUM (Parallel dynamic load balancing for adaptive unstructured meshes), and PSAW (Proper Self Avoiding Walks).
NASA Astrophysics Data System (ADS)
Khodabakhshi, M.; Jafarpour, B.
2013-12-01
Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the sampling history to improve the data mismatch objective function. We extend the application of this adaptive conditioning approach to the case where multiple training images are proposed to describe the geologic scenario in a given formation. We discuss the advantages and limitations of the proposed adaptive conditioning scheme and use numerical experiments from fluvial channel formations to demonstrate its applicability and performance compared to non-adaptive conditioning techniques.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
An Analysis of Performance Enhancement Techniques for Overset Grid Applications
NASA Technical Reports Server (NTRS)
Djomehri, J. J.; Biswas, R.; Potsdam, M.; Strawn, R. C.; Biegel, Bryan (Technical Monitor)
2002-01-01
The overset grid methodology has significantly reduced time-to-solution of high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement techniques on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machine. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
A smart grid simulation testbed using Matlab/Simulink
NASA Astrophysics Data System (ADS)
Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei
2014-06-01
The smart grid is the integration of computing and communication technologies into a power grid with a goal of enabling real time control, and a reliable, secure, and efficient energy system [1]. With the increased interest of the research community and stakeholders towards the smart grid, a number of solutions and algorithms have been developed and proposed to address issues related to smart grid operations and functions. Those technologies and solutions need to be tested and validated before implementation using software simulators. In this paper, we developed a general smart grid simulation model in the MATLAB/Simulink environment, which integrates renewable energy resources, energy storage technology, load monitoring and control capability. To demonstrate and validate the effectiveness of our simulation model, we created simulation scenarios and performed simulations using a real-world data set provided by the Pecan Street Research Institute.
Grid generation on surfaces in 3 dimensions
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.
1986-01-01
The development of a surface grid generation algorithm was initiated. The basic adaptive movement technique of mean-value-relaxation was extended from the viewpoint of a single coordinate grid over a surface described by a single scalar function to that of a surface more generally defined by vector functions and covered by a collection of smoothly connected grids. Within the multiconnected assemblage, the application of control was examined in several instances.
Influence of technological factors on characteristics of hybrid fluid-film bearings
NASA Astrophysics Data System (ADS)
Koltsov, A.; Prosekova, A.; Rodichev, A.; Savin, L.
2017-08-01
The influence of the parameters of micro- and macrounevenness on the characteristics of a hybrid bearing with slotted throttling is considered in the present paper. The quantitative assumptions of calculation of pressure distribution, load capacity, lubricant flow rate and power loss due to friction in a radial hybrid bearing with slotted throttling are taken into account, considering the shape, dimensions and roughness of the support surfaces inaccuracies. Numerical simulation of processes in the lubricating layer is based on the finite-difference solution of the Reynolds equation using an uneven orthogonal computational grid with adaptive condensation. The results of computational and physical experiments are presented.
The Academic Administrator Grid. A Guide to Developing Effective Management Teams.
ERIC Educational Resources Information Center
Blake, Robert R.; And Others
The use of the "management grid" method of organizational development in college and university administration is described in this adaptation of the 1964 book by the same authors, "The Management Grid." Five major administrative styles are identified: (1) caretaker, (2) comfortable and pleasant, (3) constituency-centered, (4) team, and (5)…
A bulk viscosity approach for shock capturing on unstructured grids
NASA Astrophysics Data System (ADS)
Shoeybi, Mohammad; Larsson, Nils Johan; Ham, Frank; Moin, Parviz
2008-11-01
The bulk viscosity approach for shock capturing (Cook and Cabot, JCP, 2005) augments the bulk part of the viscous stress tensor. The intention is to capture shock waves without dissipating turbulent structures. The present work extends and modifies this method for unstructured grids. We propose a method that properly scales the bulk viscosity with the grid spacing normal to the shock for unstructured grid for which the shock is not necessarily aligned with the grid. The magnitude of the strain rate tensor used in the original formulation is replaced with the dilatation, which appears to be more appropriate in the vortical turbulent flow regions (Mani et al., 2008). The original form of the model is found to have an impact on dilatational motions away form the shock wave, which is eliminated by a proposed localization of the bulk viscosity. Finally, to allow for grid adaptation around shock waves, an explicit/implicit time advancement scheme has been developed that adaptively identifies the stiff regions. The full method has been verified with several test cases, including 2D shock-vorticity entropy interaction, homogenous isotropic turbulence, and turbulent flow over a cylinder.
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Mccann, Karen
1992-01-01
A proven 3-D multiple-block elliptic grid generator, designed to run in 'batch mode' on a supercomputer, is improved by the creation of a modern graphical user interface (GUI) running on a workstation. The two parts are connected in real time by a network. The resultant system offers a significant speedup in the process of preparing and formatting input data and the ability to watch the grid solution converge by replotting the grid at each iteration step. The result is a reduction in user time and CPU time required to generate the grid and an enhanced understanding of the elliptic solution process. This software system, called GRAPEVINE, is described, and certain observations are made concerning the creation of such software.
Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions
NASA Technical Reports Server (NTRS)
Choo, Yung K. (Compiler)
1995-01-01
The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.
Solution of underdetermined systems of equations with gridded a priori constraints.
Stiros, Stathis C; Saltogianni, Vasso
2014-01-01
The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.
1980-01-01
Transport of Heat ..... .......... 8 3. THE SOLUTION PROCEDURE ..... .. ................. 8 3.1 The Finite-Difference Grid Network ... .......... 8 3.2...The Finite-Difference Grid Network. Figure 4: The Iterative Solution Procedure used at each Streamwise Station. Figure 5: Velocity Profiles in the...the finite-difference grid in the y-direction. I is the mixing length. L is the distance in the x-direction from the injection slot entrance to the
Inverting x,y grid coordinates to obtain latitude and longitude in the vanderGrinten projection
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1980-01-01
The latitude and longitude of a point on the Earth's surface are found from its x,y grid coordinates in the vanderGrinten projection. The latitude is a solution of a cubic equation and the longitude a solution of a quadratic equation. Also, the x,y grid coordinates of a point on the Earth's surface can be found if its latitude and longitude are known by solving two simultaneous quadratic equations.
NASA Astrophysics Data System (ADS)
Konor, Celal S.; Randall, David A.
2018-05-01
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia-gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by running linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.
Towards Smart Grid Dynamic Ratings
NASA Astrophysics Data System (ADS)
Cheema, Jamal; Clark, Adrian; Kilimnik, Justin; Pavlovski, Chris; Redman, David; Vu, Maria
2011-08-01
The energy distribution industry is giving greater attention to smart grid solutions as a means for increasing the capabilities, efficiency and reliability of the electrical power network. The smart grid makes use of intelligent monitoring and control devices throughout the distribution network to report on electrical properties such as voltage, current and power, as well as raising network alarms and events. A further aspect of the smart grid embodies the dynamic rating of electrical assets of the network. This fundamentally involves a rating of the load current capacity of electrical assets including feeders, transformers and switches. The mainstream approach to rate assets is to apply the vendor plate rating, which often under utilizes assets, or in some cases over utilizes when environmental conditions reduce the effective rated capacity, potentially reducing lifetime. Using active intelligence we have developed a rating system that rates assets in real time based upon several events. This allows for a far more efficient and reliable electrical grid that is able to extend further the life and reliability of the electrical network. In this paper we describe our architecture, the observations made during development and live deployment of the solution into operation. We also illustrate how this solution blends with the smart grid by proposing a dynamic rating system for the smart grid.
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.
2005-01-01
This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge in order to achieve the requested drag tolerance. Although further adaptation was required to meet the requested tolerance, no further cycles were computed in order to avoid large discrepancies between the surface mesh spacing and the refined field spacing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David B
2012-06-07
Development of a fractional step, a Predictor-Corrector Split (PCS), or what is often known as a projection method combining hp-adaptive system in a Finite Element Method (FEM) for combustion modeling has been achieved. This model will advance the accuracy and range of applicability of the KIVA combustion model and software used typically for internal combustion engine modeling. This abstract describes a PCS hp-adaptive FEM model for turbulent reactive flow spanning all velocity regimes and fluids that is being developed for the new KIVA combustion algorithm, particularly for internal combustion engines. The method and general solver is applicable to Newtonian andmore » non- Newtonian fluids and also for incompressible solids, porous media, solidification modeling, and fluid structure interaction problems. The fuel injection and injector modeling could easily benefit from the capability of solving the fluid structure interaction problem in an injector, helping to understand cycle to cycle variation and cavitation. This is just one example where the new algorithm differs from the old, in addition to handling Conjugate Heat Transfer (CHT), although there a numerous features that makes the new system more robust and accurate. In these ways, the PCS hp-adaptive algorithm does not compete with commercial software packages, those often used in conjunction with the currently distributed KIVA codes for engine combustion modeling. In addition, choosing a local ALE method on immersed moving parts represented by overset grid that is 2nd order spatially accurate, allows for easy grid generation from CAD to fluid grid while also provide for robustness in handling any possible moving parts configuration without any code modifications. The combined methods employed produce a minimal amount of computational effort as compared to fully resolved grids at the same accuracy. We demonstrate the solver on benchmark problems for the all flow regimes as follows: (1) 2-D backward-facing step using h-adaption, (2) 2-D driven cavity, (3) 2-D natural convection in a differentially heat cavity with h-adaptation, (4) NACA 0012 airfoil in 2-D, (5) supersonic flows over compression ramps, (6) 2-D natural convection in a differentially heat cavity with hp-adaptation, (7) 3-D natural convection in a differentially heat sphere with hp-adaptation. In addition, we show the new moving parts algorithm for working for a 2-D piston; the immersed moving parts method also for valves and pistons, vanes, etc... The movement is performed using an overset grid method and is 2nd order accurate in space, and never produces a tangle grid, that is, robust system at any resolution and any parts configuration. We also show CHT for the currently distributed KIVA-4mpi software and some fairly automatic grid generation using Sandia's Cubit unstructured grid generator. A new electronic web-based manual for KIVA-4 has been developed as well.« less
a Schema for Extraction of Indoor Pedestrian Navigation Grid Network from Floor Plans
NASA Astrophysics Data System (ADS)
Niu, Lei; Song, Yiquan
2016-06-01
The requirement of the indoor navigation related tasks such emergency evacuation calls for efficient solutions for handling data sources. Therefore, the navigation grid extraction from existing floor plans draws attentions. To this, we have to thoroughly analyse the source data, such as Autocad dxf files. Then, we could establish a sounding navigation solution, which firstly complements the basic navigation rectangle boundaries, secondly subdivides these rectangles and finally generates accessible networks with these refined rectangles. Test files are introduced to validate the whole workflow and evaluate the solution performance. In conclusion, we have achieved the preliminary step of forming up accessible network from the navigation grids.
NASA Technical Reports Server (NTRS)
Ecer, A.; Akay, H. U.
1981-01-01
The finite element method is applied for the solution of transonic potential flows through a cascade of airfoils. Convergence characteristics of the solution scheme are discussed. Accuracy of the numerical solutions is investigated for various flow regions in the transonic flow configuration. The design of an efficient finite element computational grid is discussed for improving accuracy and convergence.
Load Balancing Unstructured Adaptive Grids for CFD Problems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid
1996-01-01
Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. A dynamic load balancing method is presented that balances the workload across all processors with a global view. After each parallel tetrahedral mesh adaption, the method first determines if the new mesh is sufficiently unbalanced to warrant a repartitioning. If so, the adapted mesh is repartitioned, with new partitions assigned to processors so that the redistribution cost is minimized. The new partitions are accepted only if the remapping cost is compensated by the improved load balance. Results indicate that this strategy is effective for large-scale scientific computations on distributed-memory multiprocessors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Qin, E-mail: Qin_Sheng@baylor.edu; Sun, Hai-wei, E-mail: hsun@umac.mo
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptivemore » grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.« less
Pati, Akshaya K; Sahoo, N C
2017-07-01
This paper presents an adaptive super-twisting sliding mode control (STC) along with double-loop control for voltage tracking performance of three-phase differential boost inverter and DC-link capacitor voltage regulation in grid-connected PV system. The effectiveness of the proposed control strategies are demonstrated under realistic scenarios such as variations in solar insolation, load power demand, grid voltage, and transition from grid-connected to standalone mode etc. Additional supplementary power quality control functions such as harmonic compensation, and reactive power management are also investigated with the proposed control strategy. The results are compared with conventional proportional-integral controller, and PWM sliding mode controller. The system performance is evaluated in simulation and in real-time. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Petersson, Anders; Rodgers, Arthur
2010-05-01
The finite difference method on a uniform Cartesian grid is a highly efficient and easy to implement technique for solving the elastic wave equation in seismic applications. However, the spacing in a uniform Cartesian grid is fixed throughout the computational domain, whereas the resolution requirements in realistic seismic simulations usually are higher near the surface than at depth. This can be seen from the well-known formula h ≤ L-P which relates the grid spacing h to the wave length L, and the required number of grid points per wavelength P for obtaining an accurate solution. The compressional and shear wave lengths in the earth generally increase with depth and are often a factor of ten larger below the Moho discontinuity (at about 30 km depth), than in sedimentary basins near the surface. A uniform grid must have a grid spacing based on the small wave lengths near the surface, which results in over-resolving the solution at depth. As a result, the number of points in a uniform grid is unnecessarily large. In the wave propagation project (WPP) code, we address the over-resolution-at-depth issue by generalizing our previously developed single grid finite difference scheme to work on a composite grid consisting of a set of structured rectangular grids of different spacings, with hanging nodes on the grid refinement interfaces. The computational domain in a regional seismic simulation often extends to depth 40-50 km. Hence, using a refinement ratio of two, we need about three grid refinements from the bottom of the computational domain to the surface, to keep the local grid size in approximate parity with the local wave lengths. The challenge of the composite grid approach is to find a stable and accurate method for coupling the solution across the grid refinement interface. Of particular importance is the treatment of the solution at the hanging nodes, i.e., the fine grid points which are located in between coarse grid points. WPP implements a new, energy conserving, coupling procedure for the elastic wave equation at grid refinement interfaces. When used together with our single grid finite difference scheme, it results in a method which is provably stable, without artificial dissipation, for arbitrary heterogeneous isotropic elastic materials. The new coupling procedure is based on satisfying the summation-by-parts principle across refinement interfaces. From a practical standpoint, an important advantage of the proposed method is the absence of tunable numerical parameters, which seldom are appreciated by application experts. In WPP, the composite grid discretization is combined with a curvilinear grid approach that enables accurate modeling of free surfaces on realistic (non-planar) topography. The overall method satisfies the summation-by-parts principle and is stable under a CFL time step restriction. A feature of great practical importance is that WPP automatically generates the composite grid based on the user provided topography and the depths of the grid refinement interfaces. The WPP code has been verified extensively, for example using the method of manufactured solutions, by solving Lamb's problem, by solving various layer over half- space problems and comparing to semi-analytic (FK) results, and by simulating scenario earthquakes where results from other seismic simulation codes are available. WPP has also been validated against seismographic recordings of moderate earthquakes. WPP performs well on large parallel computers and has been run on up to 32,768 processors using about 26 Billion grid points (78 Billion DOF) and 41,000 time steps. WPP is an open source code that is available under the Gnu general public license.
NASA Astrophysics Data System (ADS)
Medl'a, Matej; Mikula, Karol; Čunderlík, Róbert; Macák, Marek
2018-01-01
The paper presents a numerical solution of the oblique derivative boundary value problem on and above the Earth's topography using the finite volume method (FVM). It introduces a novel method for constructing non-uniform hexahedron 3D grids above the Earth's surface. It is based on an evolution of a surface, which approximates the Earth's topography, by mean curvature. To obtain optimal shapes of non-uniform 3D grid, the proposed evolution is accompanied by a tangential redistribution of grid nodes. Afterwards, the Laplace equation is discretized using FVM developed for such a non-uniform grid. The oblique derivative boundary condition is treated as a stationary advection equation, and we derive a new upwind type discretization suitable for non-uniform 3D grids. The discretization of the Laplace equation together with the discretization of the oblique derivative boundary condition leads to a linear system of equations. The solution of this system gives the disturbing potential in the whole computational domain including the Earth's surface. Numerical experiments aim to show properties and demonstrate efficiency of the developed FVM approach. The first experiments study an experimental order of convergence of the method. Then, a reconstruction of the harmonic function on the Earth's topography, which is generated from the EGM2008 or EIGEN-6C4 global geopotential model, is presented. The obtained FVM solutions show that refining of the computational grid leads to more precise results. The last experiment deals with local gravity field modelling in Slovakia using terrestrial gravity data. The GNSS-levelling test shows accuracy of the obtained local quasigeoid model.
Structural analysis of an off-grid tiny house
NASA Astrophysics Data System (ADS)
Calluari, Karina Arias; Alonso-Marroquín, Fernando
2017-06-01
The off-grid technologies and tiny house movement have experimented an unprecedented growth in recent years. Putting both sides together, we are trying to achieve an economic and environmental friendly solution to the higher cost of residential properties. This solution is the construction of off-grid tiny houses. This article presents a design for a small modular off-grid house made by pine timber. A numerical analysis of the proposed tiny house was performed to ensure its structural stability. The results were compared with the suggested serviceability limit state criteria, which are contended in the Australia Guidelines Standards making this design reliable for construction.
Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces
NASA Technical Reports Server (NTRS)
Thomas, A. M.; Tiwari, S. N.
1997-01-01
A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.
Parallel Processing of Adaptive Meshes with Load Balancing
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
Many scientific applications involve grids that lack a uniform underlying structure. These applications are often also dynamic in nature in that the grid structure significantly changes between successive phases of execution. In parallel computing environments, mesh adaptation of unstructured grids through selective refinement/coarsening has proven to be an effective approach. However, achieving load balance while minimizing interprocessor communication and redistribution costs is a difficult problem. Traditional dynamic load balancers are mostly inadequate because they lack a global view of system loads across processors. In this paper, we propose a novel and general-purpose load balancer that utilizes symmetric broadcast networks (SBN) as the underlying communication topology, and compare its performance with a successful global load balancing environment, called PLUM, specifically created to handle adaptive unstructured applications. Our experimental results on an IBM SP2 demonstrate that the SBN-based load balancer achieves lower redistribution costs than that under PLUM by overlapping processing and data migration.
Squid - a simple bioinformatics grid.
Carvalho, Paulo C; Glória, Rafael V; de Miranda, Antonio B; Degrave, Wim M
2005-08-03
BLAST is a widely used genetic research tool for analysis of similarity between nucleotide and protein sequences. This paper presents a software application entitled "Squid" that makes use of grid technology. The current version, as an example, is configured for BLAST applications, but adaptation for other computing intensive repetitive tasks can be easily accomplished in the open source version. This enables the allocation of remote resources to perform distributed computing, making large BLAST queries viable without the need of high-end computers. Most distributed computing / grid solutions have complex installation procedures requiring a computer specialist, or have limitations regarding operating systems. Squid is a multi-platform, open-source program designed to "keep things simple" while offering high-end computing power for large scale applications. Squid also has an efficient fault tolerance and crash recovery system against data loss, being able to re-route jobs upon node failure and recover even if the master machine fails. Our results show that a Squid application, working with N nodes and proper network resources, can process BLAST queries almost N times faster than if working with only one computer. Squid offers high-end computing, even for the non-specialist, and is freely available at the project web site. Its open-source and binary Windows distributions contain detailed instructions and a "plug-n-play" instalation containing a pre-configured example.
Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.
2003-01-01
Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson s Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.
Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.
2003-01-01
Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson's Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.
Aeroacoustic Simulations of a Nose Landing Gear with FUN3D: A Grid Refinement Study
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Lockard, David P.
2017-01-01
A systematic grid refinement study is presented for numerical simulations of a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise (Registered Trademark) grid generation software are used for numerical simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A set of grids was generated in this manner to create a family of uniformly refined grids. The finest grid was then modified to coarsen the wall-normal spacing to create a grid suitable for the wall-function implementation in FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence modeling approach is used for these simulations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. These CFD solutions are used as input to a FfowcsWilliams-Hawkings (FW-H) noise propagation code to compute the farfield noise levels. The agreement of the computed results with the experimental data improves as the grid is refined.
Development and Evaluation of Control System for Microgrid Supplying Heat and Electricity
NASA Astrophysics Data System (ADS)
Kojima, Yasuhiro; Koshio, Masanobu; Nakamura, Shizuka
Photovoltaic (PV) and Wind Turbine (WT) generation systems are expected to offer solutions to reduce green house gases and become more widely used in the future. However, the chief technical drawback of using these kinds of weather-dependent generators is the difficulty of forecasting their output, which can have negative impacts on commercial grids if a large number of them are introduced. Thus, this problem may hinder the wider application of PV and WT generation systems. The Regional Power Grid with Renewable Energy Resources Project was launched to seek a solution to this problem. The scope of the project is to develop, operate, and evaluate a Dispersed Renewable Energy Supply System with the ability to adapt the total energy output in response to changes in weather and demand. Such a system would reduce the impact that PV and WT generation systems have on commercial grids and allow the interconnection of more Dispersed Energy Resources (DER). In other words, the main objective of this project is to demonstrate an integrated energy management system, or a type of microgrid [1], as a new way of introducing DERs. The system has been in operation since October 2005 and will continue operation until March 2008. Through the project period, the data on power quality, system efficiency, operation cost, and environmental burden will be gathered and a cost-benefit analysis of the system will be undertaken. In this paper, firstly we introduce the concept of microgrid for reducing negative impact of natural energy, and secondly illustrate the structure of electric and thermal supply control system for Microgrid, especially for the Hachinohe demonstration project. The control system consists of four stages; weekly operation planning, economic dispatching control, tie-line control and local frequency control. And finally demonstration results and evaluation results are shown.
NASA Technical Reports Server (NTRS)
Kathong, Monchai; Tiwari, Surendra N.
1988-01-01
In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.
Synchrotron Imaging Computations on the Grid without the Computing Element
NASA Astrophysics Data System (ADS)
Curri, A.; Pugliese, R.; Borghes, R.; Kourousias, G.
2011-12-01
Besides the heavy use of the Grid in the Synchrotron Radiation Facility (SRF) Elettra, additional special requirements from the beamlines had to be satisfied through a novel solution that we present in this work. In the traditional Grid Computing paradigm the computations are performed on the Worker Nodes of the grid element known as the Computing Element. A Grid middleware extension that our team has been working on, is that of the Instrument Element. In general it is used to Grid-enable instrumentation; and it can be seen as a neighbouring concept to that of the traditional Control Systems. As a further extension we demonstrate the Instrument Element as the steering mechanism for a series of computations. In our deployment it interfaces a Control System that manages a series of computational demanding Scientific Imaging tasks in an online manner. The instrument control in Elettra is done through a suitable Distributed Control System, a common approach in the SRF community. The applications that we present are for a beamline working in medical imaging. The solution resulted to a substantial improvement of a Computed Tomography workflow. The near-real-time requirements could not have been easily satisfied from our Grid's middleware (gLite) due to the various latencies often occurred during the job submission and queuing phases. Moreover the required deployment of a set of TANGO devices could not have been done in a standard gLite WN. Besides the avoidance of certain core Grid components, the Grid Security infrastructure has been utilised in the final solution.
Assessment of Hybrid RANS/LES Turbulence Models for Aeroacoustics Applications
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Lockard, David P.
2010-01-01
Predicting the noise from aircraft with exposed landing gear remains a challenging problem for the aeroacoustics community. Although computational fluid dynamics (CFD) has shown promise as a technique that could produce high-fidelity flow solutions, generating grids that can resolve the pertinent physics around complex configurations can be very challenging. Structured grids are often impractical for such configurations. Unstructured grids offer a path forward for simulating complex configurations. However, few unstructured grid codes have been thoroughly tested for unsteady flow problems in the manner needed for aeroacoustic prediction. A widely used unstructured grid code, FUN3D, is examined for resolving the near field in unsteady flow problems. Although the ultimate goal is to compute the flow around complex geometries such as the landing gear, simpler problems that include some of the relevant physics, and are easily amenable to the structured grid approaches are used for testing the unstructured grid approach. The test cases chosen for this study correspond to the experimental work on single and tandem cylinders conducted in the Basic Aerodynamic Research Tunnel (BART) and the Quiet Flow Facility (QFF) at NASA Langley Research Center. These configurations offer an excellent opportunity to assess the performance of hybrid RANS/LES turbulence models that transition from RANS in unresolved regions near solid bodies to LES in the outer flow field. Several of these models have been implemented and tested in both structured and unstructured grid codes to evaluate their dependence on the solver and mesh type. Comparison of FUN3D solutions with experimental data and numerical solutions from a structured grid flow solver are found to be encouraging.
A coupled ALE-AMR method for shock hydrodynamics
Waltz, J.; Bakosi, J.
2018-03-05
We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less
A coupled ALE-AMR method for shock hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waltz, J.; Bakosi, J.
We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less
CFD analysis of hypersonic, chemically reacting flow fields
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1993-01-01
Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, computational fluid dynamics (CFD) is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are being solved with new, robust numerical algorithms. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but solution adaptive grids, convergence acceleration, and parallel processing may make run times manageable.
Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields
NASA Technical Reports Server (NTRS)
Daines, Russell L.; Merkle, Charles L.
1994-01-01
Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.
Asynchronous discrete event schemes for PDEs
NASA Astrophysics Data System (ADS)
Stone, D.; Geiger, S.; Lord, G. J.
2017-08-01
A new class of asynchronous discrete-event simulation schemes for advection-diffusion-reaction equations is introduced, based on the principle of allowing quanta of mass to pass through faces of a (regular, structured) Cartesian finite volume grid. The timescales of these events are linked to the flux on the face. The resulting schemes are self-adaptive, and local in both time and space. Experiments are performed on realistic physical systems related to porous media flow applications, including a large 3D advection diffusion equation and advection diffusion reaction systems. The results are compared to highly accurate reference solutions where the temporal evolution is computed with exponential integrator schemes using the same finite volume discretisation. This allows a reliable estimation of the solution error. Our results indicate a first order convergence of the error as a control parameter is decreased, and we outline a framework for analysis.
Sedimentary Geothermal Feasibility Study: October 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad; Zerpa, Luis
The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Hammond, Dana P.; Nielsen, Eric J.; Pirzadeh, S. Z.; Rumsey, Christopher L.
2010-01-01
FUN3D Navier-Stokes solutions were computed for the 4th AIAA Drag Prediction Workshop grid convergence study, downwash study, and Reynolds number study on a set of node-based mixed-element grids. All of the baseline tetrahedral grids were generated with the VGRID (developmental) advancing-layer and advancing-front grid generation software package following the gridding guidelines developed for the workshop. With maximum grid sizes exceeding 100 million nodes, the grid convergence study was particularly challenging for the node-based unstructured grid generators and flow solvers. At the time of the workshop, the super-fine grid with 105 million nodes and 600 million elements was the largest grid known to have been generated using VGRID. FUN3D Version 11.0 has a completely new pre- and post-processing paradigm that has been incorporated directly into the solver and functions entirely in a parallel, distributed memory environment. This feature allowed for practical pre-processing and solution times on the largest unstructured-grid size requested for the workshop. For the constant-lift grid convergence case, the convergence of total drag is approximately second-order on the finest three grids. The variation in total drag between the finest two grids is only 2 counts. At the finest grid levels, only small variations in wing and tail pressure distributions are seen with grid refinement. Similarly, a small wing side-of-body separation also shows little variation at the finest grid levels. Overall, the FUN3D results compare well with the structured-grid code CFL3D. The FUN3D downwash study and Reynolds number study results compare well with the range of results shown in the workshop presentations.
Energy Systems Integration: Demonstrating Distribution Feeder Voltage Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-01
Overview fact sheet about the Smarter Grid Solutions Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.
Smarter Grid Solutions Works with NREL to Enhance Grid-Hosting Capacity |
autonomously manages, coordinates, and controls distributed energy resources in real time to maintain the coordination and real-time management of an entire distribution grid, subsuming the smart home and smart campus
Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo
2016-04-01
Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.
Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans; ...
2016-11-09
Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans
Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less
Unsteady-flow-field predictions for oscillating cascades
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
1991-01-01
The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory.
An Investigation into Solution Verification for CFD-DEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fullmer, William D.; Musser, Jordan
This report presents the study of the convergence behavior of the computational fluid dynamicsdiscrete element method (CFD-DEM) method, specifically National Energy Technology Laboratory’s (NETL) open source MFiX code (MFiX-DEM) with a diffusion based particle-tocontinuum filtering scheme. In particular, this study focused on determining if the numerical method had a solution in the high-resolution limit where the grid size is smaller than the particle size. To address this uncertainty, fixed particle beds of two primary configurations were studied: i) fictitious beds where the particles are seeded with a random particle generator, and ii) instantaneous snapshots from a transient simulation of anmore » experimentally relevant problem. Both problems considered a uniform inlet boundary and a pressure outflow. The CFD grid was refined from a few particle diameters down to 1/6 th of a particle diameter. The pressure drop between two vertical elevations, averaged across the bed cross-section was considered as the system response quantity of interest. A least-squares regression method was used to extrapolate the grid-dependent results to an approximate “grid-free” solution in the limit of infinite resolution. The results show that the diffusion based scheme does yield a converging solution. However, the convergence is more complicated than encountered in simpler, single-phase flow problems showing strong oscillations and, at times, oscillations superimposed on top of globally non-monotonic behavior. The challenging convergence behavior highlights the importance of using at least four grid resolutions in solution verification problems so that (over-determined) regression-based extrapolation methods may be applied to approximate the grid-free solution. The grid-free solution is very important in solution verification and VVUQ exercise in general as the difference between it and the reference solution largely determines the numerical uncertainty. By testing different randomized particle configurations of the same general problem (for the fictitious case) or different instances of freezing a transient simulation, the numerical uncertainties appeared to be on the same order of magnitude as ensemble or time averaging uncertainties. By testing different drag laws, almost all cases studied show that model form uncertainty in this one, very important closure relation was larger than the numerical uncertainty, at least with a reasonable CFD grid, roughly five particle diameters. In this study, the diffusion width (filtering length scale) was mostly set at a constant of six particle diameters. A few exploratory tests were performed to show that similar convergence behavior was observed for diffusion widths greater than approximately two particle diameters. However, this subject was not investigated in great detail because determining an appropriate filter size is really a validation question which must be determined by comparison to experimental or highly accurate numerical data. Future studies are being considered targeting solution verification of transient simulations as well as validation of the filter size with direct numerical simulation data.« less
Research in Parallel Algorithms and Software for Computational Aerosciences
DOT National Transportation Integrated Search
1996-04-01
Phase I is complete for the development of a Computational Fluid Dynamics : with automatic grid generation and adaptation for the Euler : analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian : grid code developed at Lockheed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konor, Celal S.; Randall, David A.
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
Konor, Celal S.; Randall, David A.
2018-05-08
We have used a normal-mode analysis to investigate the impacts of the horizontal and vertical discretizations on the numerical solutions of the nonhydrostatic anelastic inertia–gravity modes on a midlatitude f plane. The dispersion equations are derived from the linearized anelastic equations that are discretized on the Z, C, D, CD, (DC), A, E and B horizontal grids, and on the L and CP vertical grids. The effects of both horizontal grid spacing and vertical wavenumber are analyzed, and the role of nonhydrostatic effects is discussed. We also compare the results of the normal-mode analyses with numerical solutions obtained by runningmore » linearized numerical models based on the various horizontal grids. The sources and behaviors of the computational modes in the numerical simulations are also examined.Our normal-mode analyses with the Z, C, D, A, E and B grids generally confirm the conclusions of previous shallow-water studies for the cyclone-resolving scales (with low horizontal wavenumbers). We conclude that, aided by nonhydrostatic effects, the Z and C grids become overall more accurate for cloud-resolving resolutions (with high horizontal wavenumbers) than for the cyclone-resolving scales.A companion paper, Part 2, discusses the impacts of the discretization on the Rossby modes on a midlatitude β plane.« less
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris
2005-01-01
FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.
DRAGON Grid: A Three-Dimensional Hybrid Grid Generation Code Developed
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2000-01-01
Because grid generation can consume 70 percent of the total analysis time for a typical three-dimensional viscous flow simulation for a practical engineering device, payoffs from research and development could reduce costs and increase throughputs considerably. In this study, researchers at the NASA Glenn Research Center at Lewis Field developed a new hybrid grid approach with the advantages of flexibility, high-quality grids suitable for an accurate resolution of viscous regions, and a low memory requirement. These advantages will, in turn, reduce analysis time and increase accuracy. They result from an innovative combination of structured and unstructured grids to represent the geometry and the computation domain. The present approach makes use of the respective strengths of both the structured and unstructured grid methods, while minimizing their weaknesses. First, the Chimera grid generates high-quality, mostly orthogonal meshes around individual components. This process is flexible and can be done easily. Normally, these individual grids are required overlap each other so that the solution on one grid can communicate with another. However, when this communication is carried out via a nonconservative interpolation procedure, a spurious solution can result. Current research is aimed at entirely eliminating this undesired interpolation by directly replacing arbitrary grid overlapping with a nonstructured grid called a DRAGON grid, which uses the same set of conservation laws over the entire region, thus ensuring conservation everywhere. The DRAGON grid is shown for a typical film-cooled turbine vane with 33 holes and 3 plenum compartments. There are structured grids around each geometrical entity and unstructured grids connecting them. In fiscal year 1999, Glenn researchers developed and tested the three-dimensional DRAGON grid-generation tools. A flow solver suitable for the DRAGON grid has been developed, and a series of validation tests are underway.
Applying multi-resolution numerical methods to geodynamics
NASA Astrophysics Data System (ADS)
Davies, David Rhodri
Computational models yield inaccurate results if the underlying numerical grid fails to provide the necessary resolution to capture a simulation's important features. For the large-scale problems regularly encountered in geodynamics, inadequate grid resolution is a major concern. The majority of models involve multi-scale dynamics, being characterized by fine-scale upwelling and downwelling activity in a more passive, large-scale background flow. Such configurations, when coupled to the complex geometries involved, present a serious challenge for computational methods. Current techniques are unable to resolve localized features and, hence, such models cannot be solved efficiently. This thesis demonstrates, through a series of papers and closely-coupled appendices, how multi-resolution finite-element methods from the forefront of computational engineering can provide a means to address these issues. The problems examined achieve multi-resolution through one of two methods. In two-dimensions (2-D), automatic, unstructured mesh refinement procedures are utilized. Such methods improve the solution quality of convection dominated problems by adapting the grid automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. Thermal and thermo-chemical validation tests illustrate that the technique is robust and highly successful, improving solution accuracy whilst increasing computational efficiency. These points are reinforced when the technique is applied to geophysical simulations of mid-ocean ridge and subduction zone magmatism. To date, successful goal-orientated/error-guided grid adaptation techniques have not been utilized within the field of geodynamics. The work included herein is therefore the first geodynamical application of such methods. In view of the existing three-dimensional (3-D) spherical mantle dynamics codes, which are built upon a quasi-uniform discretization of the sphere and closely coupled structured grid solution strategies, the unstructured techniques utilized in 2-D would throw away the regular grid and, with it, the major benefits of the current solution algorithms. Alternative avenues towards multi-resolution must therefore be sought. A non-uniform structured method that produces similar advantages to unstructured grids is introduced here, in the context of the pre-existing 3-D spherical mantle dynamics code, TERRA. The method, based upon the multigrid refinement techniques employed in the field of computational engineering, is used to refine and solve on a radially non-uniform grid. It maintains the key benefits of TERRA's current configuration, whilst also overcoming many of its limitations. Highly efficient solutions to non-uniform problems are obtained. The scheme is highly resourceful in terms RAM, meaning that one can attempt calculations that would otherwise be impractical. In addition, the solution algorithm reduces the CPU-time needed to solve a given problem. Validation tests illustrate that the approach is accurate and robust. Furthermore, by being conceptually simple and straightforward to implement, the method negates the need to reformulate large sections of code. The technique is applied to highly advanced 3-D spherical mantle convection models. Due to its resourcefulness in terms of RAM, the modified code allows one to efficiently resolve thermal boundary layers at the dynamical regime of Earth's mantle. The simulations presented are therefore at superior vigor to the highest attained, to date, in 3-D spherical geometry, achieving Rayleigh numbers of order 109. Upwelling structures are examined, focussing upon the nature of deep mantle plumes. Previous studies have shown long-lived, anchored, coherent upwelling plumes to be a feature of low to moderate vigor convection. Since more vigorous convection traditionally shows greater time-dependence, the fixity of upwellings would not logically be expected for non-layered convection at higher vigors. However, such configurations have recently been observed. With hot-spots widely-regarded as the surface expression of deep mantle plumes, it is of great importance to ascertain whether or not these conclusions are valid at the dynamical regime of Earth's mantle. Results demonstrate that at these high vigors, steady plumes do arise. However, they do not dominate the planform as in lower vigor cases: they coexist with mobile and ephemeral plumes and display ranging characteristics, which are consistent with hot-spot observations on Earth. Those plumes that do remain steady alter in intensity throughout the simulation, strengthening and weakening over time. Such behavior is caused by an irregular supply of cold material to the core-mantle boundary region, suggesting that subducting slabs are partially responsible for episodic plume magmatism on Earth. With this in mind, the influence of the upper boundary condition upon the planform of mantle convection is further examined. With the modified code, the CPU-time needed to solve a given problem is reduced and, hence, several simulations can be run efficiently, allowing a relatively rapid parameter space mapping of various upper boundary conditions. Results, in accordance with the investigations on upwelling structures, demonstrate that the surface exerts a profound control upon internal dynamics, manifesting itself not only in convective structures, but also in thermal profiles, Nusselt numbers and velocity patterns. Since the majority of geodynamical simulations incorporate a surface condition that is not at all representative of Earth, this is a worrying, yet important conclusion. By failing to address the surface appropriately, geodynamical models, regardless of their sophistication, cannot be truly applicable to Earth. In summary, the techniques developed herein, in both 2- and 3-D, are extremely practical and highly efficient, yielding significant advantages for geodynamical simulations. Indeed, they allow one to solve problems that would otherwise be unfeasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, J.C.
The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.
NASA Technical Reports Server (NTRS)
Fujii, K.
1983-01-01
A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1995-01-01
Grid related issues of the Chimera overset grid method are discussed in the context of a method of solution and analysis of unsteady three-dimensional viscous flows. The state of maturity of the various pieces of support software required to use the approach is considered. Current limitations of the approach are identified.
Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications
NASA Astrophysics Data System (ADS)
Mahdian-Dehkordi, N.; Namvar, M.; Karimi, H.; Piya, P.; Karimi-Ghartemani, M.
2017-01-01
Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters' changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the proposed controller offers smoother transient responses, and lower level of current distortions. The Lyapunov approach is used to establish global asymptotic stability of the proposed control system. Linearisation technique is employed to develop guidelines for parameters tuning of the controller. Extensive time-domain digital simulations are performed and presented to verify the performance of the proposed controller when employed in a VSC to control the operation of a two-stage DG unit and also that of a single-stage solar photovoltaic system. Desirable and superior performance of the proposed controller is observed.
Adapting the iSNOBAL model for improved visualization in a GIS environment
NASA Astrophysics Data System (ADS)
Johansen, W. J.; Delparte, D.
2014-12-01
Snowmelt is a primary means of crucial water resources in much of the western United States. Researchers are developing models that estimate snowmelt to aid in water resource management. One such model is the image snowcover energy and mass balance (iSNOBAL) model. It uses input climate grids to simulate the development and melting of snowpack in mountainous regions. This study looks at applying this model to the Reynolds Creek Experimental Watershed in southwestern Idaho, utilizing novel approaches incorporating geographic information systems (GIS). To improve visualization of the iSNOBAL model, we have adapted it to run in a GIS environment. This type of environment is suited to both the input grid creation and the visualization of results. The data used for input grid creation can be stored locally or on a web-server. Kriging interpolation embedded within Python scripts are used to create air temperature, soil temperature, humidity, and precipitation grids, while built-in GIS and existing tools are used to create solar radiation and wind grids. Additional Python scripting is then used to perform model calculations. The final product is a user-friendly and accessible version of the iSNOBAL model, including the ability to easily visualize and interact with model results, all within a web- or desktop-based GIS environment. This environment allows for interactive manipulation of model parameters and visualization of the resulting input grids for the model calculations. Future work is moving towards adapting the model further for use in a 3D gaming engine for improved visualization and interaction.
The Multigrid-Mask Numerical Method for Solution of Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Ku, Hwar-Ching; Popel, Aleksander S.
1996-01-01
A multigrid-mask method for solution of incompressible Navier-Stokes equations in primitive variable form has been developed. The main objective is to apply this method in conjunction with the pseudospectral element method solving flow past multiple objects. There are two key steps involved in calculating flow past multiple objects. The first step utilizes only Cartesian grid points. This homogeneous or mask method step permits flow into the interior rectangular elements contained in objects, but with the restriction that the velocity for those Cartesian elements within and on the surface of an object should be small or zero. This step easily produces an approximate flow field on Cartesian grid points covering the entire flow field. The second or heterogeneous step corrects the approximate flow field to account for the actual shape of the objects by solving the flow field based on the local coordinates surrounding each object and adapted to it. The noise occurring in data communication between the global (low frequency) coordinates and the local (high frequency) coordinates is eliminated by the multigrid method when the Schwarz Alternating Procedure (SAP) is implemented. Two dimensional flow past circular and elliptic cylinders will be presented to demonstrate the versatility of the proposed method. An interesting phenomenon is found that when the second elliptic cylinder is placed in the wake of the first elliptic cylinder a traction force results in a negative drag coefficient.
Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sweby, Peter K.
1997-01-01
The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.
Unstructured Cartesian/prismatic grid generation for complex geometries
NASA Technical Reports Server (NTRS)
Karman, Steve L., Jr.
1995-01-01
The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.
OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems
NASA Technical Reports Server (NTRS)
Kao, David L.; Chan, William M.
2012-01-01
Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.
Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core
NASA Astrophysics Data System (ADS)
Tolstykh, Mikhail; Shashkin, Vladimir; Fadeev, Rostislav; Goyman, Gordey
2017-05-01
SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat-lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.
NASA Astrophysics Data System (ADS)
Nussbaumer, Raphaël; Gloaguen, Erwan; Mariéthoz, Grégoire; Holliger, Klaus
2016-04-01
Bayesian sequential simulation (BSS) is a powerful geostatistical technique, which notably has shown significant potential for the assimilation of datasets that are diverse with regard to the spatial resolution and their relationship. However, these types of applications of BSS require a large number of realizations to adequately explore the solution space and to assess the corresponding uncertainties. Moreover, such simulations generally need to be performed on very fine grids in order to adequately exploit the technique's potential for characterizing heterogeneous environments. Correspondingly, the computational cost of BSS algorithms in their classical form is very high, which so far has limited an effective application of this method to large models and/or vast datasets. In this context, it is also important to note that the inherent assumption regarding the independence of the considered datasets is generally regarded as being too strong in the context of sequential simulation. To alleviate these problems, we have revisited the classical implementation of BSS and incorporated two key features to increase the computational efficiency. The first feature is a combined quadrant spiral - superblock search, which targets run-time savings on large grids and adds flexibility with regard to the selection of neighboring points using equal directional sampling and treating hard data and previously simulated points separately. The second feature is a constant path of simulation, which enhances the efficiency for multiple realizations. We have also modified the aggregation operator to be more flexible with regard to the assumption of independence of the considered datasets. This is achieved through log-linear pooling, which essentially allows for attributing weights to the various data components. Finally, a multi-grid simulating path was created to enforce large-scale variance and to allow for adapting parameters, such as, for example, the log-linear weights or the type of simulation path at various scales. The newly implemented search method for kriging reduces the computational cost from an exponential dependence with regard to the grid size in the original algorithm to a linear relationship, as each neighboring search becomes independent from the grid size. For the considered examples, our results show a sevenfold reduction in run time for each additional realization when a constant simulation path is used. The traditional criticism that constant path techniques introduce a bias to the simulations was explored and our findings do indeed reveal a minor reduction in the diversity of the simulations. This bias can, however, be largely eliminated by changing the path type at different scales through the use of the multi-grid approach. Finally, we show that adapting the aggregation weight at each scale considered in our multi-grid approach allows for reproducing both the variogram and histogram, and the spatial trend of the underlying data.
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
NASA Astrophysics Data System (ADS)
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
GLAD: a system for developing and deploying large-scale bioinformatics grid.
Teo, Yong-Meng; Wang, Xianbing; Ng, Yew-Kwong
2005-03-01
Grid computing is used to solve large-scale bioinformatics problems with gigabytes database by distributing the computation across multiple platforms. Until now in developing bioinformatics grid applications, it is extremely tedious to design and implement the component algorithms and parallelization techniques for different classes of problems, and to access remotely located sequence database files of varying formats across the grid. In this study, we propose a grid programming toolkit, GLAD (Grid Life sciences Applications Developer), which facilitates the development and deployment of bioinformatics applications on a grid. GLAD has been developed using ALiCE (Adaptive scaLable Internet-based Computing Engine), a Java-based grid middleware, which exploits the task-based parallelism. Two bioinformatics benchmark applications, such as distributed sequence comparison and distributed progressive multiple sequence alignment, have been developed using GLAD.
On transferring the grid technology to the biomedical community.
Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto
2010-01-01
Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".