Sample records for solution annealed sa

  1. Simulated annealing with probabilistic analysis for solving traveling salesman problems

    NASA Astrophysics Data System (ADS)

    Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan

    2013-09-01

    Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.

  2. Effect of Solution Annealing on Susceptibility to Intercrystalline Corrosion of Stainless Steel with 20% Cr and 8% Ni

    NASA Astrophysics Data System (ADS)

    Taiwade, R. V.; Patil, A. P.; Patre, S. J.; Dayal, R. K.

    2013-06-01

    In general, as-received (AR) austenitic stainless steels (ASSs) contain complex carbide precipitates due to manufacturing operations, subsequent annealing treatment, or due to the fabrication processes such as welding. The presence of pre-existing carbides leads to cumulative sensitization and make the steel susceptible to intercrystalline corrosion (ICC)/intergranular corrosion (IGC) which causes premature failure during service. Solution annealing (SA) is one of the ways to deal with such situations. In this present investigation, the AR (hot rolled and mill annealed) chromium-nickel (Cr-Ni) ASS is compared with SA Cr-Ni ASS. The extent of ICC/IGC was evaluated qualitatively and quantitatively by various electrochemical tests including ASTM standard A-262 Practice A and Practice E, double loop electrochemical potentiokinetic reactivation and electrochemical impedance spectroscopy. The degree of sensitization for hot rolled mill annealed AR condition is found to be substantially higher (51.55%) than that of SA condition (26.9%) for thermally aged samples (at 700 °C). The chemical composition across the grain boundary was measured using electron probe micro-analyzer for both (AR and SA) conditions and confirms that the pre-sensitization effect was completely removed after SA treatment.

  3. An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming

    2017-02-01

    In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.

  4. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.

    PubMed

    Higginson, J S; Neptune, R R; Anderson, F C

    2005-09-01

    Optimization problems for biomechanical systems have become extremely complex. Simulated annealing (SA) algorithms have performed well in a variety of test problems and biomechanical applications; however, despite advances in computer speed, convergence to optimal solutions for systems of even moderate complexity has remained prohibitive. The objective of this study was to develop a portable parallel version of a SA algorithm for solving optimization problems in biomechanics. The algorithm for simulated parallel annealing within a neighborhood (SPAN) was designed to minimize interprocessor communication time and closely retain the heuristics of the serial SA algorithm. The computational speed of the SPAN algorithm scaled linearly with the number of processors on different computer platforms for a simple quadratic test problem and for a more complex forward dynamic simulation of human pedaling.

  5. Combined Simulated Annealing and Genetic Algorithm Approach to Bus Network Design

    NASA Astrophysics Data System (ADS)

    Liu, Li; Olszewski, Piotr; Goh, Pong-Chai

    A new method - combined simulated annealing (SA) and genetic algorithm (GA) approach is proposed to solve the problem of bus route design and frequency setting for a given road network with fixed bus stop locations and fixed travel demand. The method involves two steps: a set of candidate routes is generated first and then the best subset of these routes is selected by the combined SA and GA procedure. SA is the main process to search for a better solution to minimize the total system cost, comprising user and operator costs. GA is used as a sub-process to generate new solutions. Bus demand assignment on two alternative paths is performed at the solution evaluation stage. The method was implemented on four theoretical grid networks of different size and a benchmark network. Several GA operators (crossover and mutation) were utilized and tested for their effectiveness. The results show that the proposed method can efficiently converge to the optimal solution on a small network but computation time increases significantly with network size. The method can also be used for other transport operation management problems.

  6. An adaptive approach to the physical annealing strategy for simulated annealing

    NASA Astrophysics Data System (ADS)

    Hasegawa, M.

    2013-02-01

    A new and reasonable method for adaptive implementation of simulated annealing (SA) is studied on two types of random traveling salesman problems. The idea is based on the previous finding on the search characteristics of the threshold algorithms, that is, the primary role of the relaxation dynamics in their finite-time optimization process. It is shown that the effective temperature for optimization can be predicted from the system's behavior analogous to the stabilization phenomenon occurring in the heating process starting from a quenched solution. The subsequent slow cooling near the predicted point draws out the inherent optimizing ability of finite-time SA in more straightforward manner than the conventional adaptive approach.

  7. Discrete-State Simulated Annealing For Traveling-Wave Tube Slow-Wave Circuit Optimization

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Bulson, Brian A.; Kory, Carol L.; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Algorithms based on the global optimization technique of simulated annealing (SA) have proven useful in designing traveling-wave tube (TWT) slow-wave circuits for high RF power efficiency. The characteristic of SA that enables it to determine a globally optimized solution is its ability to accept non-improving moves in a controlled manner. In the initial stages of the optimization, the algorithm moves freely through configuration space, accepting most of the proposed designs. This freedom of movement allows non-intuitive designs to be explored rather than restricting the optimization to local improvement upon the initial configuration. As the optimization proceeds, the rate of acceptance of non-improving moves is gradually reduced until the algorithm converges to the optimized solution. The rate at which the freedom of movement is decreased is known as the annealing or cooling schedule of the SA algorithm. The main disadvantage of SA is that there is not a rigorous theoretical foundation for determining the parameters of the cooling schedule. The choice of these parameters is highly problem dependent and the designer needs to experiment in order to determine values that will provide a good optimization in a reasonable amount of computational time. This experimentation can absorb a large amount of time especially when the algorithm is being applied to a new type of design. In order to eliminate this disadvantage, a variation of SA known as discrete-state simulated annealing (DSSA), was recently developed. DSSA provides the theoretical foundation for a generic cooling schedule which is problem independent, Results of similar quality to SA can be obtained, but without the extra computational time required to tune the cooling parameters. Two algorithm variations based on DSSA were developed and programmed into a Microsoft Excel spreadsheet graphical user interface (GUI) to the two-dimensional nonlinear multisignal helix traveling-wave amplifier analysis program TWA3. The algorithms were used to optimize the computed RF efficiency of a TWT by determining the phase velocity profile of the slow-wave circuit. The mathematical theory and computational details of the DSSA algorithms will be presented and results will be compared to those obtained with a SA algorithm.

  8. Hybrid simulated annealing and its application to optimization of hidden Markov models for visual speech recognition.

    PubMed

    Lee, Jong-Seok; Park, Cheol Hoon

    2010-08-01

    We propose a novel stochastic optimization algorithm, hybrid simulated annealing (SA), to train hidden Markov models (HMMs) for visual speech recognition. In our algorithm, SA is combined with a local optimization operator that substitutes a better solution for the current one to improve the convergence speed and the quality of solutions. We mathematically prove that the sequence of the objective values converges in probability to the global optimum in the algorithm. The algorithm is applied to train HMMs that are used as visual speech recognizers. While the popular training method of HMMs, the expectation-maximization algorithm, achieves only local optima in the parameter space, the proposed method can perform global optimization of the parameters of HMMs and thereby obtain solutions yielding improved recognition performance. The superiority of the proposed algorithm to the conventional ones is demonstrated via isolated word recognition experiments.

  9. Solving Single Machine Total Weighted Tardiness Problem with Unequal Release Date Using Neurohybrid Particle Swarm Optimization Approach.

    PubMed

    Cakar, Tarik; Koker, Rasit

    2015-01-01

    A particle swarm optimization algorithm (PSO) has been used to solve the single machine total weighted tardiness problem (SMTWT) with unequal release date. To find the best solutions three different solution approaches have been used. To prepare subhybrid solution system, genetic algorithms (GA) and simulated annealing (SA) have been used. In the subhybrid system (GA and SA), GA obtains a solution in any stage, that solution is taken by SA and used as an initial solution. When SA finds better solution than this solution, it stops working and gives this solution to GA again. After GA finishes working the obtained solution is given to PSO. PSO searches for better solution than this solution. Later it again sends the obtained solution to GA. Three different solution systems worked together. Neurohybrid system uses PSO as the main optimizer and SA and GA have been used as local search tools. For each stage, local optimizers are used to perform exploitation to the best particle. In addition to local search tools, neurodominance rule (NDR) has been used to improve performance of last solution of hybrid-PSO system. NDR checked sequential jobs according to total weighted tardiness factor. All system is named as neurohybrid-PSO solution system.

  10. Hybrid General Pattern Search and Simulated Annealing for Industrail Production Planning Problems

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Barsoum, N.

    2010-06-01

    In this paper, the hybridization of GPS (General Pattern Search) method and SA (Simulated Annealing) incorporated in the optimization process in order to look for the global optimal solution for the fitness function and decision variables as well as minimum computational CPU time. The real strength of SA approach been tested in this case study problem of industrial production planning. This is due to the great advantage of SA for being easily escaping from trapped in local minima by accepting up-hill move through a probabilistic procedure in the final stages of optimization process. Vasant [1] in his Ph. D thesis has provided 16 different techniques of heuristic and meta-heuristic in solving industrial production problems with non-linear cubic objective functions, eight decision variables and 29 constraints. In this paper, fuzzy technological problems have been solved using hybrid techniques of general pattern search and simulated annealing. The simulated and computational results are compared to other various evolutionary techniques.

  11. Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwar, A., E-mail: akashiwar@gmail.com; Vennela, N. Phani, E-mail: phanivennela@gmail.com; Kamath, S.L., E-mail: kamath@iitb.ac.in

    2012-12-15

    In the present study, effect of solution annealing temperature (1050 Degree-Sign C and 1100 Degree-Sign C) and isothermal ageing (700 Degree-Sign C: 15 min to 6 h) on the microstructural changes in 2205 duplex stainless steel has been investigated systematically. Scanning electron microscopy and X-ray diffraction were adopted to follow the microstructural evolution, while an energy dispersive spectrometer attached to scanning electron microscope was used to obtain localised chemical information of various phases. The ferritic matrix of the two phase 2205 duplex stainless steel ({approx} 45% ferrite and {approx} 55% austenite) undergoes a series of metallurgical transformations during ageing-formation ofmore » secondary austenite ({gamma}{sub 2}) and precipitation of Cr and Mo rich intermetallic (chi-{chi} and sigma-{sigma}) phases. For solution annealing at 1050 Degree-Sign C, significant amount of carbides were observed in the ferrite grains after 1 h of ageing at 700 Degree-Sign C. {chi} Phase precipitated after the precipitation of carbides-preferentially at the ferrite-ferrite and also at the ferrite-austenite boundaries. {sigma} Phase was not observed in significant quantity even after 6 h of ageing. The sequence of precipitation in samples solution annealed at 1050 Degree-Sign C was found to be carbides {yields} {chi} {yields} {sigma}. On the contrary, for samples solution annealed at 1100 Degree-Sign C, the precipitation of {chi} phase was negligible. {chi} Phase precipitated before {sigma} phase, preferentially along the ferrite-ferrite grain boundaries and was later consumed in the {sigma} phase precipitation. The {sigma} phase precipitated via the eutectoid transformation of ferrite to yield secondary austenite {gamma}{sub 2} and {sigma} phase in the ferrite and along the ferrite-austenite grain boundaries. An increase in the volume fraction of {gamma}{sub 2} and {sigma} phase with simultaneous decrease in the ferrite was evidenced with ageing. - Highlights: Black-Right-Pointing-Pointer Effect of solution annealing temperature on microstructural evolution is studied. Black-Right-Pointing-Pointer {chi} Phase precipitated preferentially in the samples solution annealed at 1050 Degree-Sign C. Black-Right-Pointing-Pointer {sigma} Phase precipitated preferentially in the samples solution annealed at 1100 Degree-Sign C. Black-Right-Pointing-Pointer For SA at 1050 Degree-Sign C, the sequence of precipitation was carbides {yields} {chi} phase {yields} {sigma} phase. Black-Right-Pointing-Pointer For SA at 1100 Degree-Sign C, {sigma} phase precipitated via the eutectoid reaction: ferrite (F) {yields} {sigma} + {gamma}{sub 2}.« less

  12. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.

    PubMed

    Mohsen, Abdulqader M

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.

  13. Recursive Branching Simulated Annealing Algorithm

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew; Smith, J. Scott; Aronstein, David

    2012-01-01

    This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.

  14. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP

    PubMed Central

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality. PMID:27999590

  15. Brain tumor segmentation in 3D MRIs using an improved Markov random field model

    NASA Astrophysics Data System (ADS)

    Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza

    2011-10-01

    Markov Random Field (MRF) models have been recently suggested for MRI brain segmentation by a large number of researchers. By employing Markovianity, which represents the local property, MRF models are able to solve a global optimization problem locally. But they still have a heavy computation burden, especially when they use stochastic relaxation schemes such as Simulated Annealing (SA). In this paper, a new 3D-MRF model is put forward to raise the speed of the convergence. Although, search procedure of SA is fairly localized and prevents from exploring the same diversity of solutions, it suffers from several limitations. In comparison, Genetic Algorithm (GA) has a good capability of global researching but it is weak in hill climbing. Our proposed algorithm combines SA and an improved GA (IGA) to optimize the solution which speeds up the computation time. What is more, this proposed algorithm outperforms the traditional 2D-MRF in quality of the solution.

  16. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem.

    PubMed

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun; Zhong, Yi-wen

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

  17. Study of the temperature configuration of parallel tempering for the traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Hasegawa, Manabu

    The effective temperature configuration of parallel tempering (PT) in finite-time optimization is studied for the solution of the traveling salesman problem. An experimental analysis is conducted to decide the relative importance of the two characteristic temperatures, the specific-heat-peak temperature referred to in the general guidelines and the effective intermediate temperature identified in the recent study on simulated annealing (SA). The results show that the operation near the former has no notable significance contrary to the conventional belief but that the operation near the latter plays a crucial role in fulfilling the optimization function of PT. The method shares the same origin of effectiveness with the SA and SA-related algorithms.

  18. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    PubMed

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  19. Formation Design Strategy for SCOPE High-Elliptic Formation Flying Mission

    NASA Technical Reports Server (NTRS)

    Tsuda, Yuichi

    2007-01-01

    The new formation design strategy using simulated annealing (SA) optimization is presented. The SA algorithm is useful to survey a whole solution space of optimum formation, taking into account realistic constraints composed of continuous and discrete functions. It is revealed that this method is not only applicable for circular orbit, but also for high-elliptic orbit formation flying. The developed algorithm is first tested with a simple cart-wheel motion example, and then applied to the formation design for SCOPE. SCOPE is the next generation geomagnetotail observation mission planned in JAXA, utilizing a formation flying techonology in a high elliptic orbit. A distinctive and useful heuristics is found by investigating SA results, showing the effectiveness of the proposed design process.

  20. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem

    PubMed Central

    Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun

    2016-01-01

    Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650

  1. Using and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generators

    NASA Astrophysics Data System (ADS)

    Mousavi, Seyed Hosein; Nazemi, Ali; Hafezalkotob, Ashkan

    2015-03-01

    With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. Market design is challenged by multiple objectives that need to be satisfied. The solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous optimization of multiple parameters. The problem is formulated analytically using the Nash equilibrium concept for games composed of large numbers of players having discrete and large strategy spaces. The solution methodology is based on a characterization of Nash equilibrium in terms of minima of a function and relies on a metaheuristic optimization approach to find these minima. This paper presents some metaheuristic algorithms to simulate how generators bid in the spot electricity market viewpoint of their profit maximization according to the other generators' strategies, such as genetic algorithm (GA), simulated annealing (SA) and hybrid simulated annealing genetic algorithm (HSAGA) and compares their results. As both GA and SA are generic search methods, HSAGA is also a generic search method. The model based on the actual data is implemented in a peak hour of Tehran's wholesale spot market in 2012. The results of the simulations show that GA outperforms SA and HSAGA on computing time, number of function evaluation and computing stability, as well as the results of calculated Nash equilibriums by GA are less various and different from each other than the other algorithms.

  2. Maximizing the nurses' preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm

    NASA Astrophysics Data System (ADS)

    Jafari, Hamed; Salmasi, Nasser

    2015-09-01

    The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.

  3. Thermomechanical treatment for improved neutron irradiation resistance of austenitic alloy (Fe-21Cr-32Ni)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Tan; J. T. Busby; H. J. M. Chichester

    2013-06-01

    An optimized thermomechanical treatment (TMT) applied to austenitic alloy 800H (Fe-21Cr-32Ni) had shown significant improvements in corrosion resistance and basic mechanical properties. This study examined its effect on radiation resistance by irradiating both the solution-annealed (SA) and TMT samples at 500 degrees C for 3 dpa. Microstructural characterization using transmission electron microscopy revealed that the radiation-induced Frank loops, voids, and y'-Ni3(Ti,Al) precipitates had similar sizes between the SA and TMT samples. The amounts of radiation-induced defects and more significantly y' precipitates, however, were reduced in the TMT samples. These reductions would approximately reduce by 40.9% the radiation hardening compared tomore » the SA samples. This study indicates that optimized-TMT is an economical approach for effective overall property improvements.« less

  4. A robust hybrid fuzzy-simulated annealing-intelligent water drops approach for tuning a distribution static compensator nonlinear controller in a distribution system

    NASA Astrophysics Data System (ADS)

    Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza

    2016-06-01

    This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.

  5. a Comparison of Simulated Annealing, Genetic Algorithm and Particle Swarm Optimization in Optimal First-Order Design of Indoor Tls Networks

    NASA Astrophysics Data System (ADS)

    Jia, F.; Lichti, D.

    2017-09-01

    The optimal network design problem has been well addressed in geodesy and photogrammetry but has not received the same attention for terrestrial laser scanner (TLS) networks. The goal of this research is to develop a complete design system that can automatically provide an optimal plan for high-accuracy, large-volume scanning networks. The aim in this paper is to use three heuristic optimization methods, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO), to solve the first-order design (FOD) problem for a small-volume indoor network and make a comparison of their performances. The room is simplified as discretized wall segments and possible viewpoints. Each possible viewpoint is evaluated with a score table representing the wall segments visible from each viewpoint based on scanning geometry constraints. The goal is to find a minimum number of viewpoints that can obtain complete coverage of all wall segments with a minimal sum of incidence angles. The different methods have been implemented and compared in terms of the quality of the solutions, runtime and repeatability. The experiment environment was simulated from a room located on University of Calgary campus where multiple scans are required due to occlusions from interior walls. The results obtained in this research show that PSO and GA provide similar solutions while SA doesn't guarantee an optimal solution within limited iterations. Overall, GA is considered as the best choice for this problem based on its capability of providing an optimal solution and fewer parameters to tune.

  6. A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.

    PubMed

    Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel

    2015-03-01

    Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.

  7. Finding a Hadamard matrix by simulated annealing of spin vectors

    NASA Astrophysics Data System (ADS)

    Bayu Suksmono, Andriyan

    2017-05-01

    Reformulation of a combinatorial problem into optimization of a statistical-mechanics system enables finding a better solution using heuristics derived from a physical process, such as by the simulated annealing (SA). In this paper, we present a Hadamard matrix (H-matrix) searching method based on the SA on an Ising model. By equivalence, an H-matrix can be converted into a seminormalized Hadamard (SH) matrix, whose first column is unit vector and the rest ones are vectors with equal number of -1 and +1 called SH-vectors. We define SH spin vectors as representation of the SH vectors, which play a similar role as the spins on Ising model. The topology of the lattice is generalized into a graph, whose edges represent orthogonality relationship among the SH spin vectors. Starting from a randomly generated quasi H-matrix Q, which is a matrix similar to the SH-matrix without imposing orthogonality, we perform the SA. The transitions of Q are conducted by random exchange of {+, -} spin-pair within the SH-spin vectors that follow the Metropolis update rule. Upon transition toward zeroth energy, the Q-matrix is evolved following a Markov chain toward an orthogonal matrix, at which the H-matrix is said to be found. We demonstrate the capability of the proposed method to find some low-order H-matrices, including the ones that cannot trivially be constructed by the Sylvester method.

  8. Stress-anneal-induced magnetic anisotropy in highly textured Fe-Ga and Fe-Al magnetostrictive strips for bending-mode vibrational energy harvesters

    NASA Astrophysics Data System (ADS)

    Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.

    2016-05-01

    Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting performance by a factor of ˜2.5 in the best sample. As with the Fe-Ga strip, improvement in performance was quite varied along the strip length.

  9. Hybrid Stochastic Search Technique based Suboptimal AGC Regulator Design for Power System using Constrained Feedback Control Strategy

    NASA Astrophysics Data System (ADS)

    Ibraheem, Omveer, Hasan, N.

    2010-10-01

    A new hybrid stochastic search technique is proposed to design of suboptimal AGC regulator for a two area interconnected non reheat thermal power system incorporating DC link in parallel with AC tie-line. In this technique, we are proposing the hybrid form of Genetic Algorithm (GA) and simulated annealing (SA) based regulator. GASA has been successfully applied to constrained feedback control problems where other PI based techniques have often failed. The main idea in this scheme is to seek a feasible PI based suboptimal solution at each sampling time. The feasible solution decreases the cost function rather than minimizing the cost function.

  10. Martensitic/ferritic steels as container materials for liquid mercury target of ESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Y.

    1996-06-01

    In the previous report, the suitability of steels as the ESS liquid mercury target container material was discussed on the basis of the existing database on conventional austenitic and martensitic/ferritic steels, especially on their representatives, solution annealed 316 stainless steel (SA 316) and Sandvik HT-9 martensitic steel (HT-9). Compared to solution annealed austenitic stainless steels, martensitic/ferritic steels have superior properties in terms of strength, thermal conductivity, thermal expansion, mercury corrosion resistance, void swelling and irradiation creep resistance. The main limitation for conventional martensitic/ferritic steels (CMFS) is embrittlement after low temperature ({le}380{degrees}C) irradiation. The ductile-brittle transition temperature (DBTT) can increase asmore » much as 250 to 300{degrees}C and the upper-shelf energy (USE), at the same time, reduce more than 50%. This makes the application temperature range of CMFS is likely between 300{degrees}C to 500{degrees}C. For the present target design concept, the temperature at the container will be likely controlled in a temperature range between 180{degrees}C to 330{degrees}C. Hence, CMFS seem to be difficult to apply. However, solution annealed austenitic stainless steels are also difficult to apply as the maximum stress level at the container will be higher than the design stress. The solution to the problem is very likely to use advanced low-activation martensitic/ferritic steels (LAMS) developed by the fusion materials community though the present database on the materials is still very limited.« less

  11. Simulated Annealing-based Optimal Proportional-Integral-Derivative (PID) Controller Design: A Case Study on Nonlinear Quadcopter Dynamics

    NASA Astrophysics Data System (ADS)

    Nemirsky, Kristofer Kevin

    In this thesis, the history and evolution of rotor aircraft with simulated annealing-based PID application were reviewed and quadcopter dynamics are presented. The dynamics of a quadcopter were then modeled, analyzed, and linearized. A cascaded loop architecture with PID controllers was used to stabilize the plant dynamics, which was improved upon through the application of simulated annealing (SA). A Simulink model was developed to test the controllers and verify the functionality of the proposed control system design. In addition, the data that the Simulink model provided were compared with flight data to present the validity of derived dynamics as a proper mathematical model representing the true dynamics of the quadcopter system. Then, the SA-based global optimization procedure was applied to obtain optimized PID parameters. It was observed that the tuned gains through the SA algorithm produced a better performing PID controller than the original manually tuned one. Next, we investigated the uncertain dynamics of the quadcopter setup. After adding uncertainty to the gyroscopic effects associated with pitch-and-roll rate dynamics, the controllers were shown to be robust against the added uncertainty. A discussion follows to summarize SA-based algorithm PID controller design and performance outcomes. Lastly, future work on SA application on multi-input-multi-output (MIMO) systems is briefly discussed.

  12. Simulated annealing with restart strategy for the blood pickup routing problem

    NASA Astrophysics Data System (ADS)

    Yu, V. F.; Iswari, T.; Normasari, N. M. E.; Asih, A. M. S.; Ting, H.

    2018-04-01

    This study develops a simulated annealing heuristic with restart strategy (SA_RS) for solving the blood pickup routing problem (BPRP). BPRP minimizes the total length of the routes for blood bag collection between a blood bank and a set of donation sites, each associated with a time window constraint that must be observed. The proposed SA_RS is implemented in C++ and tested on benchmark instances of the vehicle routing problem with time windows to verify its performance. The algorithm is then tested on some newly generated BPRP instances and the results are compared with those obtained by CPLEX. Experimental results show that the proposed SA_RS heuristic effectively solves BPRP.

  13. Application of Simulated Annealing and Related Algorithms to TWTA Design

    NASA Technical Reports Server (NTRS)

    Radke, Eric M.

    2004-01-01

    Simulated Annealing (SA) is a stochastic optimization algorithm used to search for global minima in complex design surfaces where exhaustive searches are not computationally feasible. The algorithm is derived by simulating the annealing process, whereby a solid is heated to a liquid state and then cooled slowly to reach thermodynamic equilibrium at each temperature. The idea is that atoms in the solid continually bond and re-bond at various quantum energy levels, and with sufficient cooling time they will rearrange at the minimum energy state to form a perfect crystal. The distribution of energy levels is given by the Boltzmann distribution: as temperature drops, the probability of the presence of high-energy bonds decreases. In searching for an optimal design, local minima and discontinuities are often present in a design surface. SA presents a distinct advantage over other optimization algorithms in its ability to escape from these local minima. Just as high-energy atomic configurations are visited in the actual annealing process in order to eventually reach the minimum energy state, in SA highly non-optimal configurations are visited in order to find otherwise inaccessible global minima. The SA algorithm produces a Markov chain of points in the design space at each temperature, with a monotonically decreasing temperature. A random point is started upon, and the objective function is evaluated at that point. A stochastic perturbation is then made to the parameters of the point to arrive at a proposed new point in the design space, at which the objection function is evaluated as well. If the change in objective function values (Delta)E is negative, the proposed new point is accepted. If (Delta)E is positive, the proposed new point is accepted according to the Metropolis criterion: rho((Delta)f) = exp((-Delta)E/T), where T is the temperature for the current Markov chain. The process then repeats for the remainder of the Markov chain, after which the temperature is decremented and the process repeats. Eventually (and hopefully), a near-globally optimal solution is attained as T approaches zero. Several exciting variants of SA have recently emerged, including Discrete-State Simulated Annealing (DSSA) and Simulated Tempering (ST). The DSSA algorithm takes the thermodynamic analogy one step further by categorizing objective function evaluations into discrete states. In doing so, many of the case-specific problems associated with fine-tuning the SA algorithm can be avoided; for example, theoretical approximations for the initial and final temperature can be derived independently of the case. In this manner, DSSA provides a scheme that is more robust with respect to widely differing design surfaces. ST differs from SA in that the temperature T becomes an additional random variable in the optimization. The system is also kept in equilibrium as the temperature changes, as opposed to the system being driven out of equilibrium as temperature changes in SA. ST is designed to overcome obstacles in design surfaces where numerous local minima are separated by high barriers. These algorithms are incorporated into the optimal design of the traveling-wave tube amplifier (TWTA). The area under scrutiny is the collector, in which it would be ideal to use negative potential to decelerate the spent electron beam to zero kinetic energy just as it reaches the collector surface. In reality this is not plausible due to a number of physical limitations, including repulsion and differing levels of kinetic energy among individual electrons. Instead, the collector is designed with multiple stages depressed below ground potential. The design of this multiple-stage collector is the optimization problem of interest. One remaining problem in SA and DSSA is the difficulty in determining when equilibrium has been reached so that the current Markov chain can be terminated. It has been suggested in recent literature that simulating the thermodynamic properties opecific heat, entropy, and internal energy from the Boltzmann distribution can provide good indicators of having reached equilibrium at a certain temperature. These properties are tested for their efficacy and implemented in SA and DSSA code with respect to TWTA collector optimization.

  14. Differential evolution-simulated annealing for multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.

    2017-10-01

    Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.

  15. Platform Design for Fleet-Level Efficiency: Application for Air Mobility Command (AMC)

    DTIC Science & Technology

    2013-04-01

    and networking that has been the hallmark of previous symposia. By purposely limiting attendance to 350 people, we encourage just that. This forum...F X Cap x C   (capacity) (7)       , , ,TO X X X XS Pallet AR W S T W D (aircraft take-off distance) (8) 6 36 XPallet (9...the solution space. Heuristic algorithms such as Simulated Annealing (SA), Genetic Algorithms ( GA ), and so forth, may be needed to solve the small

  16. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 1: Preliminary results for 12 alloys at 1000 F (538 C)

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Short-term tensile evaluations at room temperature and 538 C and low-cycle fatigue evaluations at 538 C are presented for the following materials: Zirconium copper-annealed, Zirconium copper-1/4 hard, Zirconium copper-1/2 hard, Tellurium copper-1/2 hard, Chromium copper-SA and aged, OFHC copper-hard, OFHC copper-1/4 hard, OFHC copper-annealed, Silver-as drawn, Zr-Cr-Mg copper-SA, CW and aged, Electroformed copper-30-35 ksi, and Co-Be-Zr- copper-SA, aged. A total of 50 tensile tests and 76 low-cycle fatigue tests were performed using a strain rate of 0.2 percent per second.

  17. Verification and rectification of the physical analogy of simulated annealing for the solution of the traveling salesman problem.

    PubMed

    Hasegawa, M

    2011-03-01

    The aim of the present study is to elucidate how simulated annealing (SA) works in its finite-time implementation by starting from the verification of its conventional optimization scenario based on equilibrium statistical mechanics. Two and one supplementary experiments, the design of which is inspired by concepts and methods developed for studies on liquid and glass, are performed on two types of random traveling salesman problems. In the first experiment, a newly parameterized temperature schedule is introduced to simulate a quasistatic process along the scenario and a parametric study is conducted to investigate the optimization characteristics of this adaptive cooling. In the second experiment, the search trajectory of the Metropolis algorithm (constant-temperature SA) is analyzed in the landscape paradigm in the hope of drawing a precise physical analogy by comparison with the corresponding dynamics of glass-forming molecular systems. These two experiments indicate that the effectiveness of finite-time SA comes not from equilibrium sampling at low temperature but from downward interbasin dynamics occurring before equilibrium. These dynamics work most effectively at an intermediate temperature varying with the total search time and thus this effective temperature is identified using the Deborah number. To test directly the role of these relaxation dynamics in the process of cooling, a supplementary experiment is performed using another parameterized temperature schedule with a piecewise variable cooling rate and the effect of this biased cooling is examined systematically. The results show that the optimization performance is not only dependent on but also sensitive to cooling in the vicinity of the above effec-tive temperature and that this feature is interpreted as a consequence of the presence or absence of the workable interbasin dynamics. It is confirmed for the present instances that the effectiveness of finite-time SA derives from the glassy relaxation dynamics occurring in the "landscape-influenced" temperature regime and that its naive optimization scenario should be rectified by considering the analogy with vitrification phenomena. A comprehensive guideline for the design of finite-time SA and SA-related algorithms is discussed on the basis of this rectified analogy.

  18. [The utility boiler low NOx combustion optimization based on ANN and simulated annealing algorithm].

    PubMed

    Zhou, Hao; Qian, Xinping; Zheng, Ligang; Weng, Anxin; Cen, Kefa

    2003-11-01

    With the developing restrict environmental protection demand, more attention was paid on the low NOx combustion optimizing technology for its cheap and easy property. In this work, field experiments on the NOx emissions characteristics of a 600 MW coal-fired boiler were carried out, on the base of the artificial neural network (ANN) modeling, the simulated annealing (SA) algorithm was employed to optimize the boiler combustion to achieve a low NOx emissions concentration, and the combustion scheme was obtained. Two sets of SA parameters were adopted to find a better SA scheme, the result show that the parameters of T0 = 50 K, alpha = 0.6 can lead to a better optimizing process. This work can give the foundation of the boiler low NOx combustion on-line control technology.

  19. Routing design and fleet allocation optimization of freeway service patrol: Improved results using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xiuqiao; Wang, Jian

    2018-07-01

    Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.

  20. Capacity improvement using simulation optimization approaches: A case study in the thermotechnology industry

    NASA Astrophysics Data System (ADS)

    Yelkenci Köse, Simge; Demir, Leyla; Tunalı, Semra; Türsel Eliiyi, Deniz

    2015-02-01

    In manufacturing systems, optimal buffer allocation has a considerable impact on capacity improvement. This study presents a simulation optimization procedure to solve the buffer allocation problem in a heat exchanger production plant so as to improve the capacity of the system. For optimization, three metaheuristic-based search algorithms, i.e. a binary-genetic algorithm (B-GA), a binary-simulated annealing algorithm (B-SA) and a binary-tabu search algorithm (B-TS), are proposed. These algorithms are integrated with the simulation model of the production line. The simulation model, which captures the stochastic and dynamic nature of the production line, is used as an evaluation function for the proposed metaheuristics. The experimental study with benchmark problem instances from the literature and the real-life problem show that the proposed B-TS algorithm outperforms B-GA and B-SA in terms of solution quality.

  1. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlO{sub x}/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akushichi, T., E-mail: taiju.aku7@isl.titech.ac.jp; Shuto, Y.; Sugahara, S., E-mail: sugahara@isl.titech.ac.jp

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO{sub x}/n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO{sub x} barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accuratelymore » fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels.« less

  2. An Optimization System with Parallel Processing for Reducing Common-Mode Current on Electronic Control Unit

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuji; Uno, Takanori; Asai, Hideki

    In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.

  3. A performance evaluation of ACO and SA TSP in a supply chain network

    NASA Astrophysics Data System (ADS)

    Rao, T. Srinivas

    2017-07-01

    Supply Chain management and E commerce business solutions are one of the prominent areas of active research. In our paper we have modelled a supply chain model which aggregates all the manufacturers requirement and the products are supplied to all the manufacturer through a common vehicle routing algorithm. An appropriate tsp has been constructed for all the manufacturers which determines the shortest route thru which the aggregated material can be supplied in the shortest possible time. In this paper we have solved the shortest route through constructing a Simulated annealing algorithm and Ant colony algorithm and their performance is evaluated.

  4. The application of mean field theory to image motion estimation.

    PubMed

    Zhang, J; Hanauer, G G

    1995-01-01

    Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.

  5. Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field.

    PubMed

    Freeman, E; Harper, J; Goel, N; Gilbert, I; Unguris, J; Schiff, S J; Tadigadapa, S

    2017-01-01

    A comprehensive investigation of magnetostriction optimization in Metglas 2605SA1 ribbons is performed to enhance magnetoelectric performance. We explore a range of annealing conditions to relieve remnant stress and align the magnetic domains in the Metglas, while minimizing unwanted crystallization. The magnetostriction coefficient, magnetoelectric coefficient, and magnetic domain alignment are correlated to optimize magnetoelectric performance. We report on direct magnetostriction observed by in-plane Doppler vibrometer and domain imagining using scanning electron microscopy with polarization analysis for a range of annealing conditions. We find that annealing in an oxygen-free environment at 400 °C for 30 min yields an optimal magnetoelectric coefficient, magnetostriction and magnetostriction coefficient. The optimized ribbons had a magnetostriction of 50.6 ± 0.2 μ m m -1 and magnetoelectric coefficient of 79.3 ± 1.5 μ m m -1 mT -1 . The optimized Metglas 2605SA1 ribbons and PZT-5A (d 31 mode) sensor achieves a magnetic noise floor of approximately 600 pT Hz -1/2 at 100 Hz and a magnetoelectric coefficient of 6.1 ± 0.03 MV m -1 T -1 .

  6. Improving the magnetoelectric performance of Metglas/PZT laminates by annealing in a magnetic field

    NASA Astrophysics Data System (ADS)

    Freeman, E.; Harper, J.; Goel, N.; Gilbert, I.; Unguris, J.; Schiff, S. J.; Tadigadapa, S.

    2017-08-01

    A comprehensive investigation of magnetostriction optimization in Metglas 2605SA1 ribbons is performed to enhance magnetoelectric performance. We explore a range of annealing conditions to relieve remnant stress and align the magnetic domains in the Metglas, while minimizing unwanted crystallization. The magnetostriction coefficient, magnetoelectric coefficient, and magnetic domain alignment are correlated to optimize magnetoelectric performance. We report on direct magnetostriction observed by in-plane Doppler vibrometer and domain imagining using scanning electron microscopy with polarization analysis for a range of annealing conditions. We find that annealing in an oxygen-free environment at 400 {}\\circ {{C}} for 30 min yields an optimal magnetoelectric coefficient, magnetostriction and magnetostriction coefficient. The optimized ribbons had a magnetostriction of 50.6 ± 0.2 μ {{m}} {{{m}}}-1 and magnetoelectric coefficient of 79.3 ± 1.5 µm m-1 mT-1. The optimized Metglas 2605SA1 ribbons and PZT-5A (d31 mode) sensor achieves a magnetic noise floor of approximately 600 pT {{{H}}{{z}}}-1/2 at 100 Hz and a magnetoelectric coefficient of 6.1 ± 0.03 MV m-1 T-1.

  7. Hybrid algorithms for fuzzy reverse supply chain network design.

    PubMed

    Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.

  8. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

    PubMed Central

    Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

    2014-01-01

    In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

  9. Hydrogeophysical Assessment of Aquifer Uncertainty Using Simulated Annealing driven MRF-Based Stochastic Joint Inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.

    2017-12-01

    Geophysical quantification of hydrogeological parameters typically involve limited noisy measurements coupled with inadequate understanding of the target phenomenon. Hence, a deterministic solution is unrealistic in light of the largely uncertain inputs. Stochastic imaging (SI), in contrast, provides multiple equiprobable realizations that enable probabilistic assessment of aquifer properties in a realistic manner. Generation of geologically realistic prior models is central to SI frameworks. Higher-order statistics for representing prior geological features in SI are, however, usually borrowed from training images (TIs), which may produce undesirable outcomes if the TIs are unpresentatitve of the target structures. The Markov random field (MRF)-based SI strategy provides a data-driven alternative to TI-based SI algorithms. In the MRF-based method, the simulation of spatial features is guided by Gibbs energy (GE) minimization. Local configurations with smaller GEs have higher likelihood of occurrence and vice versa. The parameters of the Gibbs distribution for computing the GE are estimated from the hydrogeophysical data, thereby enabling the generation of site-specific structures in the absence of reliable TIs. In Metropolis-like SI methods, the variance of the transition probability controls the jump-size. The procedure is a standard Markov chain Monte Carlo (McMC) method when a constant variance is assumed, and becomes simulated annealing (SA) when the variance (cooling temperature) is allowed to decrease gradually with time. We observe that in certain problems, the large variance typically employed at the beginning to hasten burn-in may be unideal for sampling at the equilibrium state. The powerfulness of SA stems from its flexibility to adaptively scale the variance at different stages of the sampling. Degeneration of results were reported in a previous implementation of the MRF-based SI strategy based on a constant variance. Here, we present an updated version of the algorithm based on SA that appears to resolve the degeneration problem with seemingly improved results. We illustrate the performance of the SA version with a joint inversion of time-lapse concentration and electrical resistivity measurements in a hypothetical trinary hydrofacies aquifer characterization problem.

  10. SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazareth, D; Spaans, J

    Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objectivemore » function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitez, Juan A.; Sanchez, Morella; Ruette, Fernando

    Application of simulated annealing (SA) and simplified GSA (SGSA) techniques for parameter optimization of parametric quantum chemistry method (CATIVIC) was performed. A set of organic molecules were selected for test these techniques. Comparison of the algorithms was carried out for error function minimization with respect to experimental values. Results show that SGSA is more efficient than SA with respect to computer time. Accuracy is similar in both methods; however, there are important differences in the final set of parameters.

  12. One Dimensional Cold Rolling Effects on Stress Corrosion Crack Growth in Alloy 690 Tubing and Plate Materials

    NASA Astrophysics Data System (ADS)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Bruemmer, Stephen M.

    Stress corrosion crack-growth experiments have been performed on cold-rolled alloy 690 materials in simulated PWR primary water at 360°C. Extruded alloy 690 CRDM tubing in two conditions, thermally treated (TT) and solution annealed (SA), was cold rolled (CR) in one direction to several reductions reaching a maximum of 31% and tested in the S-L orientation. High stress corrosion cracking (SCC) propagation rates ( 8x10-8 mm/s) were observed for the 31%CR alloy 690TT material, while the 31%CR alloy 690SA exhibited 10X lower rates. The difference in intergranular SCC susceptibility appears to be related to grain boundary carbide distribution before cold rolling. SCC growth rates were found to depend on test temperature and hydrogen concentration. Tests were also performed on two alloy 690 plate heats, one CR to a reduction of 26% and the other to 20%. SCC growth rates at 360°C were similar to that measured for the 31%CR alloy 690TT CRDM tubing. Comparisons will be made to other results on CR alloy 690 materials.

  13. Comparative evaluation of two dose optimization methods for image-guided, highly-conformal, tandem and ovoids cervix brachytherapy planning

    NASA Astrophysics Data System (ADS)

    Ren, Jiyun; Menon, Geetha; Sloboda, Ron

    2013-04-01

    Although the Manchester system is still extensively used to prescribe dose in brachytherapy (BT) for locally advanced cervix cancer, many radiation oncology centers are transitioning to 3D image-guided BT, owing to the excellent anatomy definition offered by modern imaging modalities. As automatic dose optimization is highly desirable for 3D image-based BT, this study comparatively evaluates the performance of two optimization methods used in BT treatment planning—Nelder-Mead simplex (NMS) and simulated annealing (SA)—for a cervix BT computer simulation model incorporating a Manchester-style applicator. Eight model cases were constructed based on anatomical structure data (for high risk-clinical target volume (HR-CTV), bladder, rectum and sigmoid) obtained from measurements on fused MR-CT images for BT patients. D90 and V100 for HR-CTV, D2cc for organs at risk (OARs), dose to point A, conformation index and the sum of dwell times within the tandem and ovoids were calculated for optimized treatment plans designed to treat the HR-CTV in a highly conformal manner. Compared to the NMS algorithm, SA was found to be superior as it could perform optimization starting from a range of initial dwell times, while the performance of NMS was strongly dependent on their initial choice. SA-optimized plans also exhibited lower D2cc to OARs, especially the bladder and sigmoid, and reduced tandem dwell times. For cases with smaller HR-CTV having good separation from adjoining OARs, multiple SA-optimized solutions were found which differed markedly from each other and were associated with different choices for initial dwell times. Finally and importantly, the SA method yielded plans with lower dwell time variability compared with the NMS method.

  14. Traveling salesman problem with a center.

    PubMed

    Lipowski, Adam; Lipowska, Dorota

    2005-06-01

    We study a traveling salesman problem where the path is optimized with a cost function that includes its length L as well as a certain measure C of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behavior of L and C, in efficiency of SA, and in the shape of minimal paths.

  15. Effect of stabilization annealing on SCC susceptibility of β-annealed Ti-6Al-4V alloy in 0.6 M NaCl solution

    NASA Astrophysics Data System (ADS)

    Jeong, Daeho; Park, Jiho; Ahn, Soojin; Sung, Hyokyung; Kwon, Yongnam; Kim, Sangshik

    2018-01-01

    The effect of stabilization annealing on the stress corrosion cracking (SCC) susceptibility of β-annealed Ti-6Al-4V (Ti64) alloy was examined in an aqueous 0.6 M NaCl solution under various applied potentials of +0.1, -0.05 and -0.1 V vs Ecorr, respectively, at a strain rate of 10 -6 s -1. The stabilization annealing substantially improved the resistance to SCC of β-annealed Ti64 alloy in 0.6 M NaCl solution under cathodic applied potentials, while the effect was marginal under an anodic applied potential. It was also noted that the areal fraction between ductile and brittle fracture of β-annealed Ti64 specimens, which were slow strain rate tested in 0.6 M NaCl solution, varied with stabilization annealing and applied potentials. The effect of stabilization annealing on the SCC behavior of β-annealed Ti64 alloy in SCC-causing environment was discussed based on the micrographic and fractographic observation.

  16. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    PubMed

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  17. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment

    PubMed Central

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127

  18. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water

    PubMed Central

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-01-01

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures   to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911

  19. Extended Information Ratio for Portfolio Optimization Using Simulated Annealing with Constrained Neighborhood

    NASA Astrophysics Data System (ADS)

    Orito, Yukiko; Yamamoto, Hisashi; Tsujimura, Yasuhiro; Kambayashi, Yasushi

    The portfolio optimizations are to determine the proportion-weighted combination in the portfolio in order to achieve investment targets. This optimization is one of the multi-dimensional combinatorial optimizations and it is difficult for the portfolio constructed in the past period to keep its performance in the future period. In order to keep the good performances of portfolios, we propose the extended information ratio as an objective function, using the information ratio, beta, prime beta, or correlation coefficient in this paper. We apply the simulated annealing (SA) to optimize the portfolio employing the proposed ratio. For the SA, we make the neighbor by the operation that changes the structure of the weights in the portfolio. In the numerical experiments, we show that our portfolios keep the good performances when the market trend of the future period becomes different from that of the past period.

  20. An Introduction to Structural Reliability Theory

    DTIC Science & Technology

    1989-01-01

    Test Samples psi COV Distribution Remarks Yield stress 66 (XX 0.09 assumed lognormal mill test I containment vesel SA537 GrB Yield stress 󈧗 6W8...straightened shape Tension :32 57.909 0.089 cold straightened shape Tension 9 84.039 0.1124 annealed , alloy steel Tension 9 124,9 0.1796 . quenched...alloys, annealed and quenched, and drawn samples Tension 22 29.50 X 103 0.0072 .. structural steel Compression 22 29.49 X 103 0.0146 ... structural

  1. Control of morphology and function of low band gap polymer–bis-fullerene mixed heterojunctions in organic photovoltaics with selective solvent vapor annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin

    2014-05-07

    We reported how by replacing PCBM with a bis-adduct fullerene (i.e. ICBA) we significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. But, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. Our results showmore » that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Furthermore, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.« less

  2. A hybrid CS-SA intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demands

    NASA Astrophysics Data System (ADS)

    Moslemipour, Ghorbanali

    2018-07-01

    This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algorithm is proposed by combining the simulated annealing and clonal selection algorithms. The proposed model and the hybrid algorithm are verified and validated using design of experiment and benchmark methods. The results show that the hybrid algorithm has an outstanding performance from both solution quality and computational time points of view. Besides, the proposed model can be used in both of the stochastic and deterministic situations.

  3. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi

    We fabricated solution-processed indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 10{sup 8} and a field-effect mobility of 0.3 cm{sup 2} V{sup −1} s{supmore » −1}. These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs.« less

  4. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  5. Multiscale approach to contour fitting for MR images

    NASA Astrophysics Data System (ADS)

    Rueckert, Daniel; Burger, Peter

    1996-04-01

    We present a new multiscale contour fitting process which combines information about the image and the contour of the object at different levels of scale. The algorithm is based on energy minimizing deformable models but avoids some of the problems associated with these models. The segmentation algorithm starts by constructing a linear scale-space of an image through convolution of the original image with a Gaussian kernel at different levels of scale, where the scale corresponds to the standard deviation of the Gaussian kernel. At high levels of scale large scale features of the objects are preserved while small scale features, like object details as well as noise, are suppressed. In order to maximize the accuracy of the segmentation, the contour of the object of interest is then tracked in scale-space from coarse to fine scales. We propose a hybrid multi-temperature simulated annealing optimization to minimize the energy of the deformable model. At high levels of scale the SA optimization is started at high temperatures, enabling the SA optimization to find a global optimal solution. At lower levels of scale the SA optimization is started at lower temperatures (at the lowest level the temperature is close to 0). This enforces a more deterministic behavior of the SA optimization at lower scales and leads to an increasingly local optimization as high energy barriers cannot be crossed. The performance and robustness of the algorithm have been tested on spin-echo MR images of the cardiovascular system. The task was to segment the ascending and descending aorta in 15 datasets of different individuals in order to measure regional aortic compliance. The results show that the algorithm is able to provide more accurate segmentation results than the classic contour fitting process and is at the same time very robust to noise and initialization.

  6. Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm.

    PubMed

    Yang, Yu; Fritzsching, Keith J; Hong, Mei

    2013-11-01

    A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra ("good connections"), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra ("bad connections"), and minimizing the number of assigned peaks that have no matching peaks in the other spectra ("edges"). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a larger number of residues. On the other hand, when there are multiple equally good assignments that are significantly different from each other, the modified NSGA-II is less efficient than MC/SA in finding all the solutions. This problem is solved by a combined NSGA-II/MC algorithm, which appears to have the advantages of both NSGA-II and MC/SA. This combination algorithm is robust for the three most difficult chemical shift datasets examined here and is expected to give the highest-quality de novo assignment of challenging protein NMR spectra.

  7. Evaluating the SCC resistance of underwater welds in sodium tetrathionate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.A.; Angeliu, T.M.

    1997-12-01

    The susceptibility of welds to stress corrosion cracking (SCC) is enhanced by the surface residual tensile stresses generated by the typical welding process. However, underwater plasma transferred arc (PTA) welding has been shown to produce compressive surface residual stresses, an encouraging result if repairs of cracked boiling water reactor (BWR) components are to be made without further endangering them to SCC. This program was designed to verify that underwater PTA welds are resistant to SCC and to determine if underwater PTA welding could mitigate SCC in potentially susceptible welds. This was achieved by exposing various welds on solution annealed (SA)more » and SA + thermally sensitized 304 stainless steel at 25 C in a solution of 1.5 gm/liter of sodium sulfide added to 0.05M sodium tetrathionate, titrated to a pH of 1.25 with H{sub 2}SO{sub 4}. The autogeneous welds were produced using gas tungsten arc (GTA) and plasma transferred arc (PTA) welding under atmospheric conditions, and PTA welding underwater. After 1 hour of sodium tetrathionate exposure, GTA and air PTA welds exhibited SCC while the underwater PTA weld heat affected zones were more resistant. Underwater PTA welds bisecting a GTA weld eliminated the cracking in the GTA weld heat affected zone under certain conditions. The lack of IG cracking in the region influenced by the underwater PTA weld is consistent with the measurement of compressive surface residual stresses inherent to the underwater welding process.« less

  8. Quantum versus simulated annealing in wireless interference network optimization.

    PubMed

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-05-16

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking-more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.

  9. Quantum versus simulated annealing in wireless interference network optimization

    PubMed Central

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-01-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056

  10. Quantum versus simulated annealing in wireless interference network optimization

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-05-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.

  11. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.

  12. Effect of microstructure on transformation-induced plasticity of silicon-containing low-alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, Yoshiyuki; Morioka, Kojiro

    1997-04-01

    Fe-0.6C-1.5Si-0.8Mn steel was studied to determine the effect of the microstructure on transformation-induced plasticity (TRIP) of silicon-containing low-alloy steel. A remarkable increase in elongation through TRIP can develop in the steel subjected to the following heat treatments: (1) austemper combined with subcritical annealing (SA Aus-T): subcritical annealing at 993K followed by austempering at 673K and then light tempering (after austenitization at 1173K); (2) austemper coupled with interrupted quenching (IQ Aus-T): interrupted quenching at 533K followed by austempering at 673K and light tempering (after austenization at 1,173K). The SA Aus-T treatment produced the triple structures of carbide-free upper bainite, retained austenitemore » ({gamma}R), and free ferrite. As a result of the IQ Aus-T treatment, the triple structures of carbide-free upper bainite, {gamma}R, and tempered martensite appeared. The results are described and microstructural factors in TRIP are discussed.« less

  13. Rapid curing of solution-processed zinc oxide films by pulse-light annealing for thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Park, Jaehoon; Hwang, Jaeeun; Kim, Hong Doo; Ryu, Jin Hwa; Lee, Kang Bok; Baek, Kyu Ha; Do, Lee-Mi; Choi, Jong Sun

    2015-01-01

    In this study, a pulse-light annealing method is proposed for the rapid fabrication of solution-processed zinc oxide (ZnO) thinfilm transistors (TFTs). Transistors that were fabricated by the pulse-light annealing method, with the annealing being carried out at 90℃ for 15 s, exhibited a mobility of 0.05 cm2/Vs and an on/off current ratio of 106. Such electrical properties are quite close to those of devices that are thermally annealed at 165℃ for 40 min. X-ray photoelectron spectroscopy analysis of ZnO films showed that the activation energy required to form a Zn-O bond is entirely supplied within 15 s of pulse-light exposure. We conclude that the pulse-light annealing method is viable for rapidly curing solution-processable oxide semiconductors for TFT applications.

  14. General form of a cooperative gradual maximal covering location problem

    NASA Astrophysics Data System (ADS)

    Bagherinejad, Jafar; Bashiri, Mahdi; Nikzad, Hamideh

    2018-07-01

    Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location-allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering location problem, which is called a general CGMCLP. By setting the model parameters, the proposed general model can easily be transformed into other existing models, facilitating general comparisons. The proposed models are developed without allocation for physical signals and with allocation for non-physical signals in discrete location space. Comparison of the previously introduced gradual maximal covering location problem (GMCLP) and cooperative maximal covering location problem (CMCLP) models with our proposed CGMCLP model in similar data sets shows that the proposed model can cover more demands and acts more efficiently. Sensitivity analyses are performed to show the effect of related parameters and the model's validity. Simulated annealing (SA) and a tabu search (TS) are proposed as solution algorithms for the developed models for large-sized instances. The results show that the proposed algorithms are efficient solution approaches, considering solution quality and running time.

  15. Hydrological Modelling and Sensitivity Analysis Using Topmodel and Simulated Annealing Techniques.application To The Haute-mentue Catchment(switzerland).

    NASA Astrophysics Data System (ADS)

    Balin Talamba, D.; Higy, C.; Joerin, C.; Musy, A.

    The paper presents an application concerning the hydrological modelling for the Haute-Mentue catchment, located in western Switzerland. A simplified version of Topmodel, developed in a Labview programming environment, was applied in the aim of modelling the hydrological processes on this catchment. Previous researches car- ried out in this region outlined the importance of the environmental tracers in studying the hydrological behaviour and an important knowledge has been accumulated dur- ing this period concerning the mechanisms responsible for runoff generation. In con- formity with the theoretical constraints, Topmodel was applied for an Haute-Mentue sub-catchment where tracing experiments showed constantly low contributions of the soil water during the flood events. The model was applied for two humid periods in 1998. First, the model calibration was done in order to provide the best estimations for the total runoff. Instead, the simulated components (groundwater and rapid flow) showed far deviations from the reality indicated by the tracing experiments. Thus, a new calibration was performed including additional information given by the environ- mental tracing. The calibration of the model was done by using simulated annealing (SA) techniques, which are easy to implement and statistically allow for converging to a global minimum. The only problem is that the method is time and computer consum- ing. To improve this, a version of SA was used which is known as very fast-simulated annealing (VFSA). The principles are the same as for the SA technique. The random search is guided by certain probability distribution and the acceptance criterion is the same as for SA but the VFSA allows for better taking into account the ranges of vari- ation of each parameter. Practice with Topmodel showed that the energy function has different sensitivities along different dimensions of the parameter space. The VFSA algorithm allows differentiated search in relation with the sensitivity of the param- eters. The environmental tracing was used in the aim of constraining the parameter space in order to better simulate the hydrological behaviour of the catchment. VFSA outlined issues for characterising the significance of Topmodel input parameters as well as their uncertainty for the hydrological modelling.

  16. Siting and sizing of distributed generators based on improved simulated annealing particle swarm optimization.

    PubMed

    Su, Hongsheng

    2017-12-18

    Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.

  17. Colored Traveling Salesman Problem.

    PubMed

    Li, Jun; Zhou, MengChu; Sun, Qirui; Dai, Xianzhong; Yu, Xiaolong

    2015-11-01

    The multiple traveling salesman problem (MTSP) is an important combinatorial optimization problem. It has been widely and successfully applied to the practical cases in which multiple traveling individuals (salesmen) share the common workspace (city set). However, it cannot represent some application problems where multiple traveling individuals not only have their own exclusive tasks but also share a group of tasks with each other. This work proposes a new MTSP called colored traveling salesman problem (CTSP) for handling such cases. Two types of city groups are defined, i.e., each group of exclusive cities of a single color for a salesman to visit and a group of shared cities of multiple colors allowing all salesmen to visit. Evidences show that CTSP is NP-hard and a multidepot MTSP and multiple single traveling salesman problems are its special cases. We present a genetic algorithm (GA) with dual-chromosome coding for CTSP and analyze the corresponding solution space. Then, GA is improved by incorporating greedy, hill-climbing (HC), and simulated annealing (SA) operations to achieve better performance. By experiments, the limitation of the exact solution method is revealed and the performance of the presented GAs is compared. The results suggest that SAGA can achieve the best quality of solutions and HCGA should be the choice making good tradeoff between the solution quality and computing time.

  18. Three-Dimensional Solution of the Free Vibration Problem for Metal-Ceramic Shells Using the Method of Sampling Surfaces

    NASA Astrophysics Data System (ADS)

    Kulikov, G. M.; Plotnikova, S. V.

    2017-03-01

    The possibility of using the method of sampling surfaces (SaS) for solving the free vibration problem of threedimensional elasticity for metal-ceramic shells is studied. According to this method, in the shell body, an arbitrary number of SaS parallel to its middle surface are selected in order to take displacements of these surfaces as unknowns. The SaS pass through the nodes of a Chebyshev polynomial, which improves the convergence of the SaS method significantly. As a result, the SaS method can be used to obtain analytical solutions of the vibration problem for metal-ceramic plates and cylindrical shells that asymptotically approach the exact solutions of elasticity as the number of SaS tends to infinity.

  19. The effect of heat treatment on microfissuring in alloy 718

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Dobbs, J. R.; Mayo, D. E.

    1986-01-01

    Changes in the microfissuring susceptibility of alloy 718 due to solution annealing and age hardening are studied. The effects of Ni3Nb (delta) precipitation during solution annealing and gamma-prime + gamma-double-prime precipitation during age hardening on microfissuring are investigated. It is observed that solution annealing reduces microfissuring and age hardening increases it, and the two precipitates do not affect microfissuring susceptibility. Potential causes for the detected intergranular segregation of the alloy are discussed.

  20. A Genetic Algorithm for the Generation of Packetization Masks for Robust Image Communication

    PubMed Central

    Zapata-Quiñones, Katherine; Duran-Faundez, Cristian; Gutiérrez, Gilberto; Lecuire, Vincent; Arredondo-Flores, Christopher; Jara-Lipán, Hugo

    2017-01-01

    Image interleaving has proven to be an effective solution to provide the robustness of image communication systems when resource limitations make reliable protocols unsuitable (e.g., in wireless camera sensor networks); however, the search for optimal interleaving patterns is scarcely tackled in the literature. In 2008, Rombaut et al. presented an interesting approach introducing a packetization mask generator based in Simulated Annealing (SA), including a cost function, which allows assessing the suitability of a packetization pattern, avoiding extensive simulations. In this work, we present a complementary study about the non-trivial problem of generating optimal packetization patterns. We propose a genetic algorithm, as an alternative to the cited work, adopting the mentioned cost function, then comparing it to the SA approach and a torus automorphism interleaver. In addition, we engage the validation of the cost function and provide results attempting to conclude about its implication in the quality of reconstructed images. Several scenarios based on visual sensor networks applications were tested in a computer application. Results in terms of the selected cost function and image quality metric PSNR show that our algorithm presents similar results to the other approaches. Finally, we discuss the obtained results and comment about open research challenges. PMID:28452934

  1. Efficiency of quantum vs. classical annealing in nonconvex learning problems

    PubMed Central

    Zecchina, Riccardo

    2018-01-01

    Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764

  2. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    PubMed

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. On the modeling of breath-by-breath oxygen uptake kinetics at the onset of high-intensity exercises: simulated annealing vs. GRG2 method.

    PubMed

    Bernard, Olivier; Alata, Olivier; Francaux, Marc

    2006-03-01

    Modeling in the time domain, the non-steady-state O2 uptake on-kinetics of high-intensity exercises with empirical models is commonly performed with gradient-descent-based methods. However, these procedures may impair the confidence of the parameter estimation when the modeling functions are not continuously differentiable and when the estimation corresponds to an ill-posed problem. To cope with these problems, an implementation of simulated annealing (SA) methods was compared with the GRG2 algorithm (a gradient-descent method known for its robustness). Forty simulated Vo2 on-responses were generated to mimic the real time course for transitions from light- to high-intensity exercises, with a signal-to-noise ratio equal to 20 dB. They were modeled twice with a discontinuous double-exponential function using both estimation methods. GRG2 significantly biased two estimated kinetic parameters of the first exponential (the time delay td1 and the time constant tau1) and impaired the precision (i.e., standard deviation) of the baseline A0, td1, and tau1 compared with SA. SA significantly improved the precision of the three parameters of the second exponential (the asymptotic increment A2, the time delay td2, and the time constant tau2). Nevertheless, td2 was significantly biased by both procedures, and the large confidence intervals of the whole second component parameters limit their interpretation. To compare both algorithms on experimental data, 26 subjects each performed two transitions from 80 W to 80% maximal O2 uptake on a cycle ergometer and O2 uptake was measured breath by breath. More than 88% of the kinetic parameter estimations done with the SA algorithm produced the lowest residual sum of squares between the experimental data points and the model. Repeatability coefficients were better with GRG2 for A1 although better with SA for A2 and tau2. Our results demonstrate that the implementation of SA improves significantly the estimation of most of these kinetic parameters, but a large inaccuracy remains in estimating the parameter values of the second exponential.

  4. Simulated annealing two-point ray tracing

    NASA Astrophysics Data System (ADS)

    Velis, Danilo R.; Ulrych, Tadeusz J.

    We present a new method for solving the two-point seismic ray tracing problem based on Fermat's principle. The algorithm overcomes some well known difficulties that arise in standard ray shooting and bending methods. Problems related to: (1) the selection of new take-off angles, and (2) local minima in multipathing cases, are overcome by using an efficient simulated annealing (SA) algorithm. At each iteration, the ray is propagated from the source by solving a standard initial value problem. The last portion of the raypath is then forced to pass through the receiver. Using SA, the total traveltime is then globally minimized by obtaining the initial conditions that produce the absolute minimum path. The procedure is suitable for tracing rays through 2D complex structures, although it can be extended to deal with 3D velocity media. Not only direct waves, but also reflected and head-waves can be incorporated in the scheme. One important advantage is its simplicity, in as much as any available or user-preferred initial value solver system can be used. A number of clarifying examples of multipathing in 2D media are examined.

  5. Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method

    NASA Astrophysics Data System (ADS)

    Vasant, Pandian

    2011-06-01

    Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.

  6. Stochastic Methods for Aircraft Design

    NASA Technical Reports Server (NTRS)

    Pelz, Richard B.; Ogot, Madara

    1998-01-01

    The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.

  7. Performance of quantum annealing on random Ising problems implemented using the D-Wave Two

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Job, Joshua; Rønnow, Troels F.; Troyer, Matthias; Lidar, Daniel A.; USC Collaboration; ETH Collaboration

    2014-03-01

    Detecting a possible speedup of quantum annealing compared to classical algorithms is a pressing task in experimental adiabatic quantum computing. In this talk, we discuss the performance of the D-Wave Two quantum annealing device on Ising spin glass problems. The expected time to solution for the device to solve random instances with up to 503 spins and with specified coupling ranges is evaluated while carefully addressing the issue of statistical errors. We perform a systematic comparison of the expected time to solution between the D-Wave Two and classical stochastic solvers, specifically simulated annealing, and simulated quantum annealing based on quantum Monte Carlo, and discuss the question of speedup.

  8. Effect of post-irradiation annealing on the irradiated microstructure of neutron-irradiated 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Jiao, Z.; Hesterberg, J.; Was, G. S.

    2018-03-01

    Post-irradiation annealing was performed on a 304L SS that was irradiated to 5.9 dpa in the Barsebäck 1 BWR reactor. Evolution of dislocation loops, radiation-induced solute clusters and radiation-induced segregation at the grain boundary was investigated following thermal annealing at 500 °C and 550 °C up to 20 h. Dislocation loops, Ni-Si and Al-Cu clusters, and enrichment of Ni, Si and depletion of Cr at the grain boundary were observed in the as-irradiated condition. Dislocation loop size did not change significantly after annealing at 550 °C for 5 h but the loop number density decreased considerably and loops mostly disappeared after annealing at 550 °C for 20 h. The average size of Ni-Si and Al-Cu clusters increased while the number density decreased with annealing. The increase in cluster size was due to diffusion of solutes rather than cluster coarsening. Significant volume fractions of Ni-Si and Al-Cu clusters still remained after annealing at 550 °C for 20 h. Substantial recovery of Cr and Ni at the grain boundary was observed after annealing at 550 °C for 5 h but neither Cr nor Ni was fully recovered after 20 h. Annihilation of dislocation loops, driven by the thermal vacancy concentration gradient caused by the strain field and stacking fault associated with the loops appeared to be faster than annihilation of solute clusters and recovery of Ni and Si at the grain boundary, both of which are driven by the solute concentration gradients.

  9. Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs

    PubMed Central

    Burns, Samantha; MacLeod, Jennifer; Trang Do, Thu; Sonar, Prashant; Yambem, Soniya D.

    2017-01-01

    Thermal annealing of the emissive layer of an organic light emitting diode (OLED) is a common practice for solution processable emissive layers and reported annealing temperatures varies across a wide range of temperatures. We have investigated the influence of thermal annealing of the emissive layer at different temperatures on the performance of OLEDs. Solution processed polymer Super Yellow emissive layers were annealed at different temperatures and their performances were compared against OLEDs with a non-annealed emissive layer. We found a significant difference in the efficiency of OLEDs with different annealing temperatures. The external quantum efficiency (EQE) reached a maximum of 4.09% with the emissive layer annealed at 50 °C. The EQE dropped by ~35% (to 2.72%) for OLEDs with the emissive layers annealed at 200 °C. The observed performances of OLEDs were found to be closely related to thermal properties of polymer Super Yellow. The results reported here provide an important guideline for processing emissive layers and are significant for OLED and other organic electronics research communities. PMID:28106082

  10. Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property.

    PubMed

    Li, Jiwei; Ma, Jianwei; Chen, Shaojuan; Huang, Yudong; He, Jinmei

    2018-08-01

    The large-scale applications of lysozyme in the pharmaceutical industry and food industry require more efficient and cost-effective techniques for its separation/purification. In the present study, graphene oxide (GO) was encapsulated into environmentally benign sodium alginate (SA) to prepare a Ca 2+ crosslinked alginate/graphene oxide composite gel beads (Ca-SA/GO) which were then used to adsorb lysozyme from aqueous solutions. Compared with pure Ca 2+ crosslinked alginate gel beads (Ca-SA), the as-prepared Ca-SA/GO has a lower swelling degree, an improved gel stability in salt solutions, and a higher mechanical performance. This can be explained by the uniform distribution of GO sheets in the Ca-SA matrix and the existence of hydrogen bonding and high interfacial adhesion between GO filler and SA matrix demonstrated by SEM, FTIR, XRD, and TGA. Batch adsorption experiments found that the lysozyme adsorption capacity of Ca-SA/GO can reach 278.28 mg g -1 and it can be regenerated and reused at least 4 times. Moreover, in column adsorption, the Ca-SA/GO showed excellent dynamic adsorption property. With good stability, adsorption capacity, and regeneration ability, the Ca-SA/GO could be a promising adsorbent for lysozyme from aqueous solutions. Copyright © 2018. Published by Elsevier B.V.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Guangyao; Luo, Honglin; School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072

    Graphene oxide (GO) and hydroxyapatite (HAp) are frequently used as reinforcements in polymers to improve mechanical and biological properties. In this work, novel porous hybrid nanocomposites consisting of GO, HAp, and sodium alginate (SA) have been prepared by facile solution mixing and freeze drying in an attempt to obtain a scaffold with desirable mechanical and biological properties. The as-prepared porous GO/HAp/SA hybrid nanocomposites were characterized by SEM, XRD, FTIR, TGA, and mechanical testing. In addition, preliminary cell behavior was assessed by CCK8 assay. It is found that the GO/HAp/SA nanocomposites show improved compressive strength and modulus over neat SA andmore » HAp/SA nanocomposites. CCK8 results reveal that the GO/HAp/SA nanocomposites show enhanced cell proliferation over neat SA and GO/SA nanocomposite. It has been demonstrated that GO/HAp20/SA holds promise in bone tissue engineering. - Graphical abstract: Display Omitted - Highlights: • Graphene oxide (GO), hydroxyapatite (HAp), and alginate (SA) nanocomposites were fabricated. • The novel porous composites were prepared by solution mixture and freeze drying. • The GO/HAp/SA had porous structure with porosity > 85% and pore size > 150 μm. • The GO/HAp/SA exhibited improved mechanical properties over HAp/SA counterparts. • The GO/HAp/SA showed enhanced cell proliferation over GO/SA counterparts.« less

  12. Experiences with serial and parallel algorithms for channel routing using simulated annealing

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1988-01-01

    Two algorithms for channel routing using simulated annealing are presented. Simulated annealing is an optimization methodology which allows the solution process to back up out of local minima that may be encountered by inappropriate selections. By properly controlling the annealing process, it is very likely that the optimal solution to an NP-complete problem such as channel routing may be found. The algorithm presented proposes very relaxed restrictions on the types of allowable transformations, including overlapping nets. By freeing that restriction and controlling overlap situations with an appropriate cost function, the algorithm becomes very flexible and can be applied to many extensions of channel routing. The selection of the transformation utilizes a number of heuristics, still retaining the pseudorandom nature of simulated annealing. The algorithm was implemented as a serial program for a workstation, and a parallel program designed for a hypercube computer. The details of the serial implementation are presented, including many of the heuristics used and some of the resulting solutions.

  13. Effect of rapid thermal annealing temperature on the dispersion of Si nanocrystals in SiO2 matrix

    NASA Astrophysics Data System (ADS)

    Saxena, Nupur; Kumar, Pragati; Gupta, Vinay

    2015-05-01

    Effect of rapid thermal annealing temperature on the dispersion of silicon nanocrystals (Si-NC's) embedded in SiO2 matrix grown by atom beam sputtering (ABS) method is reported. The dispersion of Si NCs in SiO2 is an important issue to fabricate high efficiency devices based on Si-NC's. The transmission electron microscopy studies reveal that the precipitation of excess silicon is almost uniform and the particles grow in almost uniform size upto 850 °C. The size distribution of the particles broadens and becomes bimodal as the temperature is increased to 950 °C. This suggests that by controlling the annealing temperature, the dispersion of Si-NC's can be controlled. The results are supported by selected area diffraction (SAED) studies and micro photoluminescence (PL) spectroscopy. The discussion of effect of particle size distribution on PL spectrum is presented based on tight binding approximation (TBA) method using Gaussian and log-normal distribution of particles. The study suggests that the dispersion and consequently emission energy varies as a function of particle size distribution and that can be controlled by annealing parameters.

  14. Study of Sigma Phase in Duplex SAF 2507

    NASA Astrophysics Data System (ADS)

    Fellicia, D. M.; Sutarsis; Kurniawan, B. A.; Wulanari, D.; Purniawan, A.; Wibisono, A. T.

    2017-05-01

    Super duplex stainless steel is one of the stainless steel which has a combination between high strength properties and excellent corrosion resistance. However, the resistance can decrease by precipitation of sigma phase which is formed at high temperature, for example after welding processes. A series of experiments has been performed to study the effect of solution annealing to existence of sigma phase on super duplex SAF 2507. Variations of solution-annealing temperatures were 1000 °C, 1065 °C and 1125 °C with holding time of 15 and 30 minutes for each temperature. Effect of solution annealing process was characterized by using XRD, SEM, and Optical Microscopy. The result showed precipitation of sigma phase completely dissolved at 1065 °C and 1125 °C because it reformed to austenite. After it was heated at 1065 °C, chromium carbide appeared in ferrite site and grain boundary. The amount of chromium carbide increased with the increasing of solution annealing temperature.

  15. Impact of Annealing Prior to Solution Treatment on Aging Precipitates and Intergranular Corrosion Behavior of Al-Cu-Li Alloy 2050

    NASA Astrophysics Data System (ADS)

    Ye, Zhi-hao; Cai, Wen-xin; Li, Jin-feng; Chen, Xiang-rong; Zhang, Rui-feng; Birbilis, Nick; Chen, Yong-lai; Zhang, Xu-hu; Ma, Peng-cheng; Zheng, Zi-qiao

    2018-06-01

    The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ' (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.

  16. Impact of Annealing Prior to Solution Treatment on Aging Precipitates and Intergranular Corrosion Behavior of Al-Cu-Li Alloy 2050

    NASA Astrophysics Data System (ADS)

    Ye, Zhi-hao; Cai, Wen-xin; Li, Jin-feng; Chen, Xiang-rong; Zhang, Rui-feng; Birbilis, Nick; Chen, Yong-lai; Zhang, Xu-hu; Ma, Peng-cheng; Zheng, Zi-qiao

    2018-04-01

    The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ' (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.

  17. Optimization of Sample Points for Monitoring Arable Land Quality by Simulated Annealing while Considering Spatial Variations

    PubMed Central

    Wang, Junxiao; Wang, Xiaorui; Zhou, Shenglu; Wu, Shaohua; Zhu, Yan; Lu, Chunfeng

    2016-01-01

    With China’s rapid economic development, the reduction in arable land has emerged as one of the most prominent problems in the nation. The long-term dynamic monitoring of arable land quality is important for protecting arable land resources. An efficient practice is to select optimal sample points while obtaining accurate predictions. To this end, the selection of effective points from a dense set of soil sample points is an urgent problem. In this study, data were collected from Donghai County, Jiangsu Province, China. The number and layout of soil sample points are optimized by considering the spatial variations in soil properties and by using an improved simulated annealing (SA) algorithm. The conclusions are as follows: (1) Optimization results in the retention of more sample points in the moderate- and high-variation partitions of the study area; (2) The number of optimal sample points obtained with the improved SA algorithm is markedly reduced, while the accuracy of the predicted soil properties is improved by approximately 5% compared with the raw data; (3) With regard to the monitoring of arable land quality, a dense distribution of sample points is needed to monitor the granularity. PMID:27706051

  18. Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) for Conformational Space Search of Peptide and Miniprotein

    PubMed Central

    Hao, Ge-Fei; Xu, Wei-Fang; Yang, Sheng-Gang; Yang, Guang-Fu

    2015-01-01

    Protein and peptide structure predictions are of paramount importance for understanding their functions, as well as the interactions with other molecules. However, the use of molecular simulation techniques to directly predict the peptide structure from the primary amino acid sequence is always hindered by the rough topology of the conformational space and the limited simulation time scale. We developed here a new strategy, named Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) to identify the native states of a peptide and miniprotein. A cluster of near native structures could be obtained by using the MSA-MD method, which turned out to be significantly more efficient in reaching the native structure compared to continuous MD and conventional SA-MD simulation. PMID:26492886

  19. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity.

    PubMed

    Jiang, Xiancai; Xiang, Nanping; Zhang, Hongxiang; Sun, Yujun; Lin, Zhen; Hou, Linxi

    2018-04-15

    Development of bio-based hydrogels with good mechanical properties and high electrical conductivity is of great importance for their excellent biocompatibility and biodegradability. Novel electrically conducive and tough poly(vinyl alcohol)/sodium alginate (PVA/SA) composite hydrogel was obtained by a simple method in this paper. PVA and SA were firstly dissolved in distilled water to form the composite solution and the pure PVA/SA hydrogel was obtained through the freezing/thawing process. The pure PVA/SA hydrogels were subsequently immersed into the saturated NaCl aqueous solution to increase the gel strength and conductivity. The effect of the immersing time on the thermal and mechanical properties of PVA/SA hydrogel was studied. The swelling properties and the antiseptic properties of the obtained PVA/SA hydrogel were also studied. This paper provided a novel way for the preparation of tough hydrogel electrolyte. Copyright © 2018. Published by Elsevier Ltd.

  20. Investigation into the Coating and Desensitization Effect on HNIW of Paraffin Wax/Stearic Acid Composite System

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xu; Chen, Shu-Sen; Jin, Shao-Hua; Shu, Qing-Hai; Jiang, Zhen-Ming; Shang, Feng-Qin; Li, Jin-Xin

    2016-01-01

    2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW) was bonded by fluorine rubber and then desensitized by paraffin wax (PW), stearic acid (SA), and a PW/SA composite system using an aqueous suspension method. The coating and desensitization effects of the composite systems on HNIW and the influence of the addition of SA on the mechanical properties of the coated HNIW samples were studied. In addition, the PW/SA composite solution was simulated using a molecular dynamics method, and the relationship between the desensitization effect on HNIW and the properties of the composite solution was investigated. The results showed that the PW/SA composite system, of which the desensitization effect on HNIW was between those of the two desensitizers, could effectively coat HNIW and that the composite solution had the most stable and well-distributed state when using benzene as solvent with the mass ratio of PW/SA equal to 7/3 or 3/7, thus resulting in the best desensitization effect on HNIW. Moreover, the addition of stearic acid was successful in enhancing the mechanical properties of the coated HNIW samples.

  1. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    NASA Astrophysics Data System (ADS)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  2. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels.

    PubMed

    Huang, Biao; Liu, Mingxian; Long, Zheru; Shen, Yan; Zhou, Changren

    2017-01-01

    Sodium alginate (SA)/halloysite nanotubes (HNTs) composite hydrogels were successfully prepared by solution blending and cross-linking with calcium ions. HNTs can improve the physical properties and cytocompatibility of composite hydrogels. The static and shear viscosity of SA/HNTs solution increase by the addition of HNTs. FTIR suggests the presence of hydrogen bond interactions between HNTs and SA. The crystal structure of HNTs is retained in the composites as showed by the X-ray diffraction result. A porous structure with pore size of 100-250μm is found in the hydrogels, which can provide a space for cell growth and migration. The compressive mechanical properties of composite hydrogels significantly increase compared to the pure SA hydrogel. The SA/HNTs composite hydrogels with 80% HNTs loading exhibit the compressive stress at 80% strain of 2.99MPa, while the stress at 80% strain of pure SA hydrogel is only 0.8MPa. The dynamic storage modulus of composite hydrogels also markedly increases with HNTs concentration. The differential scanning calorimetry endothermic peak area and swelling ratios in NaCl solution of the composite hydrogels decrease by the addition of HNTs. Preosteoblast (MC3T3-E1) culture results reveal that the SA/HNTs composites especially at relatively low HNTs loading show a significant increase in cells adhesion and proliferation compared to the pure SA hydrogel. All the results demonstrate that the SA/HNTs composite hydrogels show a promising application in bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications

    PubMed Central

    Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-01-01

    The electronic structure of low temperature, solution-processed indium–zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm2 V−1 s−1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels. PMID:26190964

  4. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications.

    PubMed

    Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-03-25

    The electronic structure of low temperature, solution-processed indium-zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm 2 V -1 s -1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels.

  5. Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers

    NASA Astrophysics Data System (ADS)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N.; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2016-01-01

    We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ~13 cm2 V-1 s-1 and small threshold voltage which varied from ~0-3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs.

  6. A Heuristic Placement Selection of Live Virtual Machine Migration for Energy-Saving in Cloud Computing Environment

    PubMed Central

    Zhao, Jia; Hu, Liang; Ding, Yan; Xu, Gaochao; Hu, Ming

    2014-01-01

    The field of live VM (virtual machine) migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization) idea with the SA (simulated annealing) idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable. PMID:25251339

  7. A heuristic placement selection of live virtual machine migration for energy-saving in cloud computing environment.

    PubMed

    Zhao, Jia; Hu, Liang; Ding, Yan; Xu, Gaochao; Hu, Ming

    2014-01-01

    The field of live VM (virtual machine) migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization) idea with the SA (simulated annealing) idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable.

  8. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.

  9. Effect of the annealing temperature and ion-beam bombardment on the properties of solution-derived HfYGaO films as liquid crystal alignment layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hong-Gyu; Lee, Yun-Gun; Jang, Sang Bok

    2015-11-15

    Hafnium yttrium gallium oxide (HfYGaO) films were applied to liquid crystal displays (LCDs) as liquid crystal (LC) alignment layers, replacing conventional polyimide (PI) layers. The HfYGaO alignment layers were prepared by fabricating solution-processed HfYGaO films, annealing them, and treating them with ion-beam (IB) irradiation. The authors studied the effects of annealing temperature and IB irradiation of the solution-derived HfYGaO films on the orientation of LC molecules. The LC molecules on the solution-derived HfYGaO films were homogeneously and uniformly aligned by IB irradiation, irrespective of the annealing temperature. Atomic force microscopy analyses revealed that the surface reformation of the HfYGaO filmsmore » induced by IB irradiation strengthened the van der Waals force between the LC molecules and the HfYGaO films, leading to uniform LC alignment. Enhanced electro-optical characteristics were observed in the twisted-nematic (TN) LCDs based on IB-irradiated HfYGaO films compared with those of TN-LCDs based on PI layers, demonstrating the high application potential of the proposed solution-derived HfYGaO films as LC alignment layers.« less

  10. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    NASA Astrophysics Data System (ADS)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  11. Reduction of hysteresis in solution-processed InGaZnO thin-film transistors through uni-directional pre-annealing

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rae; Kwon, Jin-Hyuk; Vincent, Premkumar; Kim, Do-Kyung; Jeong, Hyeon-Seok; Hahn, Joonku; Bae, Jin-Hyuk; Park, Jaehoon

    2018-01-01

    The hysteresis of the solution-processed oxide thin-film transistors (TFTs) is fatal issue to interrupt stable operation. So, we came up with uni-directional pre-annealing to solve the problem. There are inevitable defects when solution-processed oxide TFTs are fabricated, due to the porosities by the solvent volatilization. Also oxygen vacancies needed for carrier generation in metal oxide semiconductor can be trap states inducing charge carrier trapping. Uni-directional pre-annealing improved the hysteresis, preventing randomly solvent evaporation and decreased the defects of the film. We can result in advanced stability of the solution-processed oxide TFTs, at the same time showing that the field effect mobility was enhanced from 3.35 cm2/Vs to 4.78 cm2/Vs simultaneously, and exhibiting better subthreshold swing from 0.89 V/dec to 0.23 V/dec.

  12. Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms.

    PubMed

    Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza

    2012-05-01

    Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Reprint of: Effects of solution degassing on solubility, crystal growth and dissolution-Case study: Salicylic acid in methanol

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Ulrich, J.

    2017-07-01

    The influence of dissolved gases on the crystallization parameter solubility, MZW, growth and dissolution rates was investigated experimentally using degassed and non-degassed (air-saturated) solutions. The results of this study show that degassing has no effect on the solubility curve of the used model substance salicylic acid (SA) in methanol (MeOH). This reveals in the assumption that a thermodynamic effect of dissolved gases can be excluded. Growth rates were measured by means of a desupersaturation method and the results indicate that the growth rates of SA are not affected by degassing. The results of the dissolution rate measurements reveal a distinct decrease in dissolution rates for non-degassed solutions compared to degassed solutions, especially, at low temperature (10 °C). To explain this phenomenon the gas solubility, represented by oxygen, in MeOH in dependence on the SA concentration was estimated by means of Hansen Solubility Parameters (HSP) [1]. It was found that the oxygen solubility decreases with increasing SA content which explains the inhibition of crystal dissolution in non-degassed solution compared to degassed solution. Moreover, this kind of 'drowing-out' mechanism would not appear in growth rate measurements, where indeed no effect of degassing could be observed.

  14. Effects of solution degassing on solubility, crystal growth and dissolution-Case study: Salicylic acid in methanol

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Ulrich, J.

    2017-02-01

    The influence of dissolved gases on the crystallization parameter solubility, MZW, growth and dissolution rates was investigated experimentally using degassed and non-degassed (air-saturated) solutions. The results of this study show that degassing has no effect on the solubility curve of the used model substance salicylic acid (SA) in methanol (MeOH). This reveals in the assumption that a thermodynamic effect of dissolved gases can be excluded. Growth rates were measured by means of a desupersaturation method and the results indicate that the growth rates of SA are not affected by degassing. The results of the dissolution rate measurements reveal a distinct decrease in dissolution rates for non-degassed solutions compared to degassed solutions, especially, at low temperature (10 °C). To explain this phenomenon the gas solubility, represented by oxygen, in MeOH in dependence on the SA concentration was estimated by means of Hansen Solubility Parameters (HSP) [1]. It was found that the oxygen solubility decreases with increasing SA content which explains the inhibition of crystal dissolution in non-degassed solution compared to degassed solution. Moreover, this kind of 'drowing-out' mechanism would not appear in growth rate measurements, where indeed no effect of degassing could be observed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaramurthi, Prakash; Patapoff, Thomas W.; Suryanarayanan, Raj

    To study the crystallization of trehalose in frozen solutions and to understand the phase transitions during the entire freeze-drying cycle. Aqueous trehalose solution was cooled to -40 C in a custom-designed sample holder. The frozen solution was warmed to -18 C and annealed, and then dried in the sample chamber of the diffractometer. XRD patterns were continuously collected during cooling, annealing and drying. After cooling, hexagonal ice was the only crystalline phase observed. However, upon annealing, crystallization of trehalose dihydrate was evident. Seeding the frozen solution accelerated the solute crystallization. Thus, phase separation of the lyoprotectant was observed in frozenmore » solutions. During drying, dehydration of trehalose dihydrate yielded a substantially amorphous anhydrous trehalose. Crystallization of trehalose, as trehalose dihydrate, was observed in frozen solutions. The dehydration of the crystalline trehalose dihydrate to substantially amorphous anhydrate occurred during drying. Therefore, analyzing the final lyophile will not reveal crystallization of the lyoprotectant during freeze-drying. The lyoprotectant crystallization can only become evident by continuous monitoring of the system during the entire freeze-drying cycle. In light of the phase separation of trehalose in frozen solutions, its ability to serve as a lyoprotectant warrants further investigation.« less

  16. Heat treatment versus properties studies associated with the Inconel 718 PBF acoustic filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolik, G.R.; Reuter, W.G.

    PBF acoustic filter Unit No. 1 cracked when heat treatment was attempted. The effects of prior thermal cycling, solution anneal temperature, and cooling rate from solution anneals were investigated. The investigations concerned influences of the above variables upon both 1400$sup 0$F stress rupture solution- annealed properties and room temperature age-hardened properties. 1400$sup 0$F stress rupture properties were of interest to assist the prevention of cracking during heat treatments. Room temperature age-hardened properties were needed to ensure that design requirement would be provided. Prior thermal cycling was investigated to determine if extra thermal cycles would be detrimental to the repaired filter.more » Slow furnace cools were considered as a means of reducing thermal stresses. Effects of solution annealing at 2000 and 1900$sup 0$F were also determined. Test results showed that slow cooling rates would not only reduce thermal stresses but also improve 1400$sup 0$F ductility. A modified aging treatment was established which provided the required 145 ksi room temperature yield strength for the slowly cooled material. Prior cooling did not degrade final age-hardened room temperature tensile or impact properties. (auth)« less

  17. Shape optimization of road tunnel cross-section by simulated annealing

    NASA Astrophysics Data System (ADS)

    Sobótka, Maciej; Pachnicz, Michał

    2016-06-01

    The paper concerns shape optimization of a tunnel excavation cross-section. The study incorporates optimization procedure of the simulated annealing (SA). The form of a cost function derives from the energetic optimality condition, formulated in the authors' previous papers. The utilized algorithm takes advantage of the optimization procedure already published by the authors. Unlike other approaches presented in literature, the one introduced in this paper takes into consideration a practical requirement of preserving fixed clearance gauge. Itasca Flac software is utilized in numerical examples. The optimal excavation shapes are determined for five different in situ stress ratios. This factor significantly affects the optimal topology of excavation. The resulting shapes are elongated in the direction of a principal stress greater value. Moreover, the obtained optimal shapes have smooth contours circumscribing the gauge.

  18. Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits.

    PubMed

    da Rocha Neto, Argus Cezar; Luiz, Caroline; Maraschin, Marcelo; Di Piero, Robson Marcelo

    2016-03-16

    Apples are among the most commonly consumed fruits worldwide. Blue mold (Penicillium expansum) is one of the major diseases in apples postharvest, leading to wide use of fungicides and the search for alternative products to control the pathogen. In this context, this study aimed to evaluate the potential of salicylic acid (SA) as an alternative product to control blue mold and to preserve the physicochemical characteristics of apple fruit postharvest. The antimicrobial effect of SA was determined both in vitro and in situ, by directly exposing conidia to solutions of different concentrations SA or by inoculating the fruit with P. expansum and treating them curatively, eradicatively, or preventively with a 2.5mM SA solution. The physiological effects of SA on fruit were determined by quantifying the weight loss, total soluble solids content, and titratable acidity. In addition, the accumulation of SA in the fruit was determined by HPLC. SA (2.5mM) inhibited 100% of fungal germination in vitro and also controlled blue mold in situ when applied eradicatively. In addition, HPLC analysis demonstrated that SA did not persist in apple fruit. SA also maintained the physicochemical characteristics of fruit of different quality categories. Thus, SA may be an alternative to the commercial fungicides currently used against P. expansum. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Transdermal penetration of vasoconstrictors--present understanding and assessment of the human epidermal flux and retention of free bases and ion-pairs.

    PubMed

    Cross, Sheree E; Thompson, Melanie J; Roberts, Michael S

    2003-02-01

    As reductions in dermal clearance increase the residence time of solutes in the skin and underlying tissues we compared the topical penetration of potentially useful vasoconstrictors (VCs) through human epidermis as both free bases and ion-pairs with salicylic acid (SA). We determined the in vitro epidermal flux of ephedrine, naphazoline, oxymetazoline, phenylephrine, and xylometazoline applied as saturated solutions in propylene glycol:water (1:1) and of ephedrine, naphazoline and tetrahydrozoline as 10% solutions of 1:1 molar ratio ion-pairs with SA in liquid paraffin. As free bases, ephedrine had the highest maximal flux, Jmax = 77.4 +/- 11.7 microg/cm2/h, being 4-fold higher than tetrahydrozoline and xylometazoline, 6-fold higher than phenylephrine, 10-fold higher than naphazoline and 100-fold higher than oxymetazoline. Stepwise regression of solute physicochemical properties identified melting point as the most significant predictor of flux. As ion-pairs with SA, ephedrine and naphazoline had similar fluxes (11.5 +/- 2.3 and 12.0 +/- 1.6 microg/cm2/h respectively), whereas tetrahydrozoline was approximately 3-fold slower. Corresponding fluxes of SA from the ion-pairs were 18.6 +/- 0.6, 7.8+/- 0.8 and 1.1 +/- 0.1 respectively. Transdermal transport of VC's is discussed. Epidermal retention of VCs and SA did not correspond to their molar ratio on application and confirmed that following partitioning into the stratum corneum, ion-pairs separate and further penetration is governed by individual solute characteristics.

  20. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    PubMed Central

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  1. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.

    2018-01-01

    The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ◦ C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ◦ C and then at different temperatures (100 ◦ C–600 ◦ C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, themore » ZnO nanorod arrays showed a broad yellow–orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ◦ C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ◦ C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ◦ C for 90 min exhibited the highest scintillation response.« less

  2. Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles

    NASA Astrophysics Data System (ADS)

    Mokhtari, Samaneh; Rahimpour, Ahmad; Shamsabadi, Ahmad Arabi; Habibzadeh, Setareh; Soroush, Masoud

    2017-01-01

    To improve the hydrophilicity and antifouling properties of polysulfone (PS) ultrafiltration membranes, we studied the use of salicylate-alumoxane (SA) nanoparticles as a novel hydrophilic additive. The effects of SA nanoparticles on the membrane characteristics and performance were investigated in terms of membrane structure, permeation flux, solute rejection, hydrophilicity, and antifouling ability. The new mixed-matrix membranes (MMMs) possess asymmetric structures. They have smaller finger-like pores and smoother surfaces than the neat PS membranes. The embedment of SA nanoparticles in the polymer matrix and the improvement of surface hydrophilicity were investigated. Ultrafiltration experiments indicated that the pure-water flux of the new MMMs initially increases with SA nanoparticles loading followed by a decrease at high loadings. Higher BSA solution flux was achieved for the MMMs compared to the neat PS membranes. Membranes with 1 wt.% SA nanoparticles exhibit the highest flux recovery ratio of 87% and the lowest irreversible fouling of 13%.

  3. Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature.

    PubMed

    Hang, Da-Ren; Islam, Sk Emdadul; Sharma, Krishna Hari; Kuo, Shiao-Wei; Zhang, Cheng-Zu; Wang, Jun-Jie

    2014-01-01

    Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications.

  4. Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature

    PubMed Central

    2014-01-01

    Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications. PMID:25520589

  5. Can Structural Optimization Explain Slow Dynamics of Rocks?

    NASA Astrophysics Data System (ADS)

    Kim, H.; Vistisen, O.; Tencate, J. A.

    2009-12-01

    Slow dynamics is a recovery process that describes the return to an equilibrium state after some external energy input is applied and then removed. Experimental studies on many rocks have shown that a modest acoustic energy input results in slow dynamics. The recovery process of the stiffness has consistently been found to be linear to log(time) for a wide range of geomaterials and the time constants appear to be unique to the material [TenCate JA, Shankland TJ (1996), Geophys Res Lett 23, 3019-3022]. Measurements of this nonequilibrium effect in rocks (e.g. sandstones and limestones) have been linked directly to the cement holding the individual grains together [Darling TW, TenCate JA, Brown DW, Clausen B, Vogel SC (2004), Geophys Res Lett 31, L16604], also suggesting a potential link to porosity and permeability. Noting that slow dynamics consistently returns the overall stiffness of rocks to its maximum (original) state, it is hypothesized that the original state represents the global minimum strain energy state. Consequently the slow dynamics process represents the global minimization or optimization process. Structural optimization, which has been developed for engineering design, minimises the total strain energy by rearranging the material distribution [Kim H, Querin OM, Steven GP, Xie YM (2002), Struct Multidiscip Optim 24, 441-448]. The optimization process effectively rearranges the way the material is cemented. One of the established global optimization methods is simulated annealing (SA). Derived from cooling of metal to a thermal equilibrium, SA finds an optimum solution by iteratively moving the system towards the minimum energy state with a probability of 'uphill' moves. It has been established that the global optimum can be guaranteed by applying a log(time) linear cooling schedule [Hajek B (1988, Math Ops Res, 15, 311-329]. This work presents the original study of applying SA to the maximum stiffness optimization problem. Preliminary results indicate that the maximum stiffness solutions are achieved when using log(time) linear cooling schedule. The optimization history reveals that the overall stiffness of the structure is increased linearly to log(time). The results closely resemble the slow dynamics stiffness recovery of geomaterials and support the hypothesis that the slow dynamics is an optimization process for strain energy. [Work supported by the Department of Energy through the LANL/LDRD Program].

  6. Photochromic properties of the N-Salicylideneaniline in Polyvinyl Butyral matrix: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Shahab, Siyamak; Filippovich, Liudmila; Aharodnikova, M.; Almodarresiyeh, Hora A.; Hajikolaee, Fatemeh Haji; Kumar, Rakesh; Mashayekhi, Mahsa

    2017-04-01

    In the present work, isomerization, photophysical properties, thermal conductivity (λ) and spectral study of the N-Salicylideneaniline: 2-[(E)-(phenylimino)methyl]phenol (SA) under the action of UV radiation in the Polyvinyl Butyral (PVB) matrix were studied using the Indicator method and Density Functional Theory (DFT). The electronic absorption spectra of SA and its isomers (SA1 and SA2) in dimethylformamide (DMF) solutions were also calculated. The nature of absorption bands of SA, SA1 and SA2 in the visible and near ultraviolet spectral regions was interpreted. The excitation energies, electronic transitions and oscillator strengths for SA, SA1 and SA2 have also been calculated. Thermal Conductivity of PVB-films containing SA before and after UV radiation was also measured. A Photochromic PVB - film on the basis of SA for application in optical devices and display technologies was made.

  7. Measuring the Degree of Sensitization (DOS) Using an Electrochemical Technique

    NASA Astrophysics Data System (ADS)

    Abuzriba, Mokhtar B.; Musa, Salem M.

    Sensitization can be simply defined as the susceptibility of an alloy, specifically austenitic stainless steel, to corrosion at grain boundaries. A detailed study on types 304 stainless steel has been carried out to correlate the degree of sensitization measured by electrochemical potentiokinetic reactivation test (EPR) with the susceptibility to intergranular corrosion. In this study four different heat treatments were given to alloys, i.e., solution annealed (SA) at 1020 °C for 1 h, then quenched in water; also then heat-treated in air at 620 °C for 15, 30, and 60 min. The electrolyte for the EPR tests was 1.0 N H2SO4 solution containing 0.01 M KSCN. Potentiodynamic curves from passive to active regions in deaerated solution at room temperature were obtained at a scan rate of 1.67 mV/s (6 V/h), after the passivation at 200 mV versus (SCE) for 2 min then the polarization was conducted. The criterion used to distinguish between sensitized and non-sensitized specimens is the activation charge Pa, the peak current density, Ph, in the active state, and Flade potential Ef at which the active curve breaks upward. The results indicated that the longer the sensitization time the higher the activation charge (Pa), and the higher the peak current density in the active state (Ph). The results indicated that, the EPR is more sensitive than the chemical method for measuring the degree of sensitization.

  8. Solvent-assisted stir bar sorptive extraction by using swollen polydimethylsiloxane for enhanced recovery of polar solutes in aqueous samples: Application to aroma compounds in beer and pesticides in wine.

    PubMed

    Ochiai, Nobuo; Sasamoto, Kikuo; David, Frank; Sandra, Pat

    2016-07-15

    A novel solvent-assisted stir bar sorptive extraction (SA-SBSE) technique was developed for enhanced recovery of polar solutes in aqueous samples. A conventional PDMS stir bar was swollen in several solvents with log Kow ranging from 1.0 to 3.5 while stirring for 30min prior to extraction. After extraction, thermal desorption - gas chromatography - (tandem) mass spectrometry (TD-GC-(MS/)MS) or liquid desorption - large volume injection (LD-LVI)-GC-MS were performed. An initial study involved investigation of potential solvents for SA-SBSE by weighing of the residual solvent in the swollen PDMS stir bar before and after extraction. Compared to conventional SBSE, SA-SBSE using diethyl ether, methyl isobutyl ketone, dichloromethane, diisopropyl ether and toluene provided higher recoveries from water samples for test solutes with log Kow<2.5. For SA-SBSE using dichloromethane, recoveries were improved by factors of 1.4-4.1, while maintaining or even improving the recoveries for test solutes with log Kow>2.5. The performance of the SA-SBSE method using dichloromethane, diisopropyl ether, and cyclohexane is illustrated with analyses of aroma compounds in beer and of pesticides in wine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Efficacy of disinfecting solutions in removing biofilms from polyvinyl chloride tracheostomy tubes.

    PubMed

    Silva, Rodrigo C; Carver, Ryan A; Ojano-Dirain, Carolyn P; Antonelli, Patrick J

    2013-01-01

    Bacterial biofilms are prevalent in pediatric tracheostomy tubes (TTs) and are not completely cleared by standard cleaning with gauze and household detergents. We aimed to examine the effectiveness of different disinfecting solutions to remove Staphylococcus aureus (SA) and Pseudomonas aerginosa (PA) biofilms from TTs. Prospective, controlled, in vitro microbiologic study. Uniform coupons obtained from polyvinyl chloride (PVC) pediatric TTs were briefly exposed to human plasma. The samples were incubated in growth media with either PA or SA for 7 days, and total bacterial growth was monitored by media turbidity. Five sets of 18 coupons each were exposed for 5 minutes to one of five different solutions: 2% aqueous chlorhexidine gluconate solution, 0.3% aqueous sodium hypochlorite, Polident denture cleanser, 3% hydrogen peroxide, or preservative-free phosphate-buffered saline (PBS) as a negative control. Biofilm presence was measured with bacterial counts, and surface integrity was assessed with scanning electron microscopy (SEM). All treatments significantly reduced mean SA counts (P = <.001). Sodium hypochlorite and chlorhexidine were more effective than peroxide and Polident. Chlorhexidine, sodium hypochlorite, and peroxide reduced PA counts (P = .001, .001, and .002, respectively), but Polident tabs had no significant effect. SEM revealed preserved TT surface integrity after exposure to all solutions. Disinfection with sodium hypochlorite or chlorhexidine solutions significantly reduces SA and PA biofilms on PVC TTs. Standard home care of reusable pediatric TTs may be improved by use of these readily available solutions. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  10. Assessing the growth and recovery of Salmonella Enteritidis SE86 after sodium dichloroisocyanurate exposure

    PubMed Central

    Ferreira, Fernanda Stoduto; Horvath, Mariana Bandeira; Tondo, Eduardo Cesar

    2013-01-01

    The objective of the present study was to assess the growth and the recovery of Salmonella (S.) Enteritidis SE86 in different diluents, culture media and using different plating methods after the exposure to 200 mg/kg sodium dichloroisocyanurate (NaDCC). Before and after NaDCC exposure, SE86 was cultured at 30 °C and 7 °C in the following diluents: Peptone water (P), Saline solution (SaS), Peptone water+Saline solution (P+SaS), Peptone water+Tween 80+Lecithin+Sodium thiosulfate (P+N) and Saline solution+Tween 80+Lecithin+Sodium thiosulfate (SaS+N). The SaS diluent was chosen because it was able to maintain cells viable without growth and was further used for plating SE86 on non selective medium (Tryptic Soy Agar-TSA) and on selective media (Mannitol Lysine Crystal Violet Brilliant Green Agar-MLCB; Brilliant Green Agar-BGA; Salmonella Shigella Agar-SS and Xylose Lysine Dextrose–XLD). The Thin Agar Layer method (TAL) i.e., selective media overlayed with non selective TSA was also evaluated. Results indicated that SE86 not exposed to NaDCC was able to grow in P, P+N, SaS+N and P+SaS, but not in SaS, that was able to maintain cells viable. SE86 exposed to NaDCC demonstrated similar counts after dilution in SaS and the plating on non selective TSA, selective media MLCB, BGA, SS and XLD and on TAL media. SE86, S. Typhimurium and S. Bredeney, exposed or not exposed to NaDCC, showed no significant differences in counts on TSA, XLD and XLD overlayed with TSA, suggesting that all those media may be used to quantify NaDCC-exposed Salmonella by plating method. PMID:24516446

  11. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing.

    PubMed

    Lim, Chul; Oh, Ji Young; Koo, Jae Bon; Park, Chan Woo; Jung, Soon-Won; Na, Bock Soon; Chu, Hye Yong

    2014-11-01

    Flexible oxide thin-film transistors (Oxide-TFTs) have emerged as next generation transistors because of their applicability in electronic device. In particular, the major driving force behind solution-processed zinc oxide film research is its prospective use in printing for electronics. A low-temperature process to improve the performance of solution-processed n-channel ZnO thin-film transistors (TFTs) fabricated via spin-coating and inkjet-printing is introduced here. ZnO nanoparticles were synthesized using a facile sonochemical method that was slightly modified based on a previously reported method. The influence of the annealing atmosphere on both nanoparticle-based TFT devices fabricated via spin-coating and those created via inkjet printing was investigated. For the inkjet-printed TFTs, the characteristics were improved significantly at an annealing temperature of 150 degrees C. The field effect mobility, V(th), and the on/off current ratios were 3.03 cm2/Vs, -3.3 V, and 10(4), respectively. These results indicate that annealing at 150 degrees C 1 h is sufficient to obtain a mobility (μ(sat)) as high as 3.03 cm2/Vs. Also, the active layer of the solution-based ZnO nanoparticles allowed the production of high-performance TFTs for low-cost, large-area electronics and flexible devices.

  12. The structure of reconstructed chalcopyrite surfaces

    NASA Astrophysics Data System (ADS)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2018-03-01

    Chalcopyrite (CuFeS2) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53-0.95 J/m2.

  13. An efficient and scalable deformable model for virtual reality-based medical applications.

    PubMed

    Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann

    2004-09-01

    Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobbitt, Jonathan M.; Mendivelso-Pérez, Deyny; Smith, Emily A.

    A scanning angle (SA) Raman spectroscopy method was developed to simultaneously measure the chemical composition and thickness of waveguide mixed polymer films with varying fractional compositions. In order to test the method, six films of polystyrene-block-poly(methyl methacrylate), some mixed with poly(methyl methacrylate) homopolymer (PS-b-PMMA:PMMA), and two films of poly(2-vinylnapthalene)-block-poly(methyl methacrylate) (P2VN-b-PMMA) were prepared. The film thickness ranged from 495 to 971 nm. The chemical composition and thickness of PS-b-PMMA:PMMA films was varied by the addition of the PMMA homopolymer and annealing the films in toluene. SA Raman peak amplitude ratios (1001 cm -1 for PS, 812 cm -1 for PMMA,more » and 1388 cm -1 for P2VN) were used to calculate the refractive index of the polymer film, an input parameter in calculations of the sum square electric field (SSEF). The film thickness was determined by SSEF models of the experimental Raman amplitudes versus the incident angle of light. The average film thickness determined by the developed SA Raman spectroscopy method was within 5% of the value determined by optical profilometry. In conclusion, SA Raman spectroscopy will be useful for in situ label-free analyses of mixed polymer waveguide films.« less

  15. Minimizing the Discrepancy between Simulated and Historical Failures in Turbine Engines: A Simulation-Based Optimization Method (Postprint)

    DTIC Science & Technology

    2015-01-01

    Procedure. The simulated annealing (SA) algorithm is a well-known local search metaheuristic used to address discrete, continuous, and multiobjective...design of experiments (DOE) to tune the parameters of the optimiza- tion algorithm . Section 5 shows the results of the case study. Finally, concluding... metaheuristic . The proposed method is broken down into two phases. Phase I consists of a Monte Carlo simulation to obtain the simulated percentage of failure

  16. Detecting Statistically Significant Communities of Triangle Motifs in Undirected Networks

    DTIC Science & Technology

    2015-03-16

    moderately-sized networks. As a consequence, throughout this effort, a simulated annealing (SA) algorithm will be employed to effectively search the...then increment k by 1 and repeat the search to find z∗3. Once can continue to increment k until W < zδ, at which point the algorithm will stop and...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources

  17. Simulated Annealing Based Hybrid Forecast for Improving Daily Municipal Solid Waste Generation Prediction

    PubMed Central

    Song, Jingwei; He, Jiaying; Zhu, Menghua; Tan, Debao; Zhang, Yu; Ye, Song; Shen, Dingtao; Zou, Pengfei

    2014-01-01

    A simulated annealing (SA) based variable weighted forecast model is proposed to combine and weigh local chaotic model, artificial neural network (ANN), and partial least square support vector machine (PLS-SVM) to build a more accurate forecast model. The hybrid model was built and multistep ahead prediction ability was tested based on daily MSW generation data from Seattle, Washington, the United States. The hybrid forecast model was proved to produce more accurate and reliable results and to degrade less in longer predictions than three individual models. The average one-week step ahead prediction has been raised from 11.21% (chaotic model), 12.93% (ANN), and 12.94% (PLS-SVM) to 9.38%. Five-week average has been raised from 13.02% (chaotic model), 15.69% (ANN), and 15.92% (PLS-SVM) to 11.27%. PMID:25301508

  18. 2-D Ultrasound Sparse Arrays Multidepth Radiation Optimization Using Simulated Annealing and Spiral-Array Inspired Energy Functions.

    PubMed

    Roux, Emmanuel; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Robini, Marc C; Liebgott, Herve

    2016-12-01

    Full matrix arrays are excellent tools for 3-D ultrasound imaging, but the required number of active elements is too high to be individually controlled by an equal number of scanner channels. The number of active elements is significantly reduced by the sparse array techniques, but the position of the remaining elements must be carefully optimized. This issue is faced here by introducing novel energy functions in the simulated annealing (SA) algorithm. At each iteration step of the optimization process, one element is freely translated and the associated radiated pattern is simulated. To control the pressure field behavior at multiple depths, three energy functions inspired by the pressure field radiated by a Blackman-tapered spiral array are introduced. Such energy functions aim at limiting the main lobe width while lowering the side lobe and grating lobe levels at multiple depths. Numerical optimization results illustrate the influence of the number of iterations, pressure measurement points, and depths, as well as the influence of the energy function definition on the optimized layout. It is also shown that performance close to or even better than the one provided by a spiral array, here assumed as reference, may be obtained. The finite-time convergence properties of SA allow the duration of the optimization process to be set in advance.

  19. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers.

    PubMed

    Zhang, Rui; Guo, Jing; Liu, Yuanfa; Chen, Shuang; Zhang, Sen; Yu, Yue

    2018-06-01

    Sodium alginate (SA) and antarctic krill protein (AKP) were blended to fabricate the SA/AKP composite fibers by the conventional wet spinning method using 5% CaCl 2 as coagulation solution. The sodium salt was added to the SA/AKP solution to adjust the ionization degree and intermolecular interaction of composite system. The main purpose of this study is to investigate the influences of sodium salt types (NaCl, CH 3 COONa, Na 2 SO 4 ) on the intermolecular interaction of SA/AKP composite fibers. The intermolecular interaction, morphology, crystallinity, thermal stability and mechanical properties of SA/AKP composite fibers were analyzed by fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), x-ray diffraction (XRD), thermogravimetric analysis (TGA). The results show that the types of sodium salt have obvious influences on the content of both β-sheet, intermolecular hydrogen bond, breaking strength and surface morphology in SA/AKP composite fibers, but have a negligible effect on the crystallinity and thermal stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Modern Optimization Methods in Minimum Weight Design of Elastic Annular Rotating Disk with Variable Thickness

    NASA Astrophysics Data System (ADS)

    Jafari, S.; Hojjati, M. H.

    2011-12-01

    Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk thickness profile for minimum weight design using the simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. In using semi-analytical the radial domain of the disk is divided into some virtual sub-domains as rings where the weight of each rings must be minimized. Inequality constrain equation used in optimization is to make sure that maximum von Mises stress is always less than yielding strength of the material of the disk and rotating disk does not fail. The results show that the minimum weight obtained for all two methods is almost identical. The PSO method gives a profile with slightly less weight (6.9% less than SA) while the implementation of both PSO and SA methods are easy and provide more flexibility compared with classical methods.

  1. Performance of Quantum Annealers on Hard Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Pokharel, Bibek; Venturelli, Davide; Rieffel, Eleanor

    Quantum annealers have been employed to attack a variety of optimization problems. We compared the performance of the current D-Wave 2X quantum annealer to that of the previous generation D-Wave Two quantum annealer on scheduling-type planning problems. Further, we compared the effect of different anneal times, embeddings of the logical problem, and different settings of the ferromagnetic coupling JF across the logical vertex-model on the performance of the D-Wave 2X quantum annealer. Our results show that at the best settings, the scaling of expected anneal time to solution for D-WAVE 2X is better than that of the DWave Two, but still inferior to that of state of the art classical solvers on these problems. We discuss the implication of our results for the design and programming of future quantum annealers. Supported by NASA Ames Research Center.

  2. Binary Synergy Strengthening and Toughening of Bio-Inspired Nacre-like Graphene Oxide/Sodium Alginate Composite Paper.

    PubMed

    Chen, Ke; Shi, Bin; Yue, Yonghai; Qi, Juanjuan; Guo, Lin

    2015-08-25

    A crucial requirement for most engineering materials is the excellent balance of strength and toughness. By mimicking the hybrid hierarchical structure in nacre, a kind of nacre-like paper based on binary hybrid graphene oxide (GO)/sodium alginate (SA) building blocks has been successfully fabricated. Systematic evaluation for the mechanical property in different (dry/wet) environment/after thermal annealing shows a perfect combination of high strength and toughness. Both of the parameters are nearly many-times higher than those of similar materials because of the synergistic strengthening/toughening enhancement from the binary GO/SA hybrids. The successful fabrication route offers an excellent approach to design advanced strong integrated nacre-like composite materials, which can be applied in tissue engineering, protection, aerospace, and permeable membranes for separation and delivery.

  3. Influence of annealing on the photodeposition of silver on periodically poled lithium niobate

    DOE PAGES

    Carville, N. Craig; Neumayer, Sabine M.; Manzo, Michele; ...

    2016-02-03

    Here, the preferential deposition of metal nanoparticles onto periodically poled lithium niobate surfaces, whereby photogenerated electrons accumulate in accordance with local electric fields and reduce metal ions from solution, is known to depend on the intensity and wavelength of the illumination and the concentration of the solution used. Here, it is shown that for identical deposition conditions (wavelength, intensity, concentration), post-poling annealing for 10 h at 200 °C modifies the surface reactivity through the reorientation of internal defect fields. Whereas silver nanoparticles deposit preferentially on the +z domains on unannealed crystals, the deposition occurs preferentially along 180 degrees domain wallsmore » for annealed crystals. In neither case is the deposition selective; limited deposition occurs also on the unannealed -z domain surface and on both annealed domain surfaces. The observed behavior is attributed to a relaxation of the poling-induced defect frustration mediated by Li + ion mobility during annealing, which affects the accumulation of electrons, thereby changing the surface reactivity. The evolution of the defect field with temperature is corroborated using Raman spectroscopy.« less

  4. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-05-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  5. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-07-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  6. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Riyanto, Agus; Abraha, Kamsul

    2016-04-19

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending onmore » annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.« less

  7. Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process.

    PubMed

    Costa, Solange Alves da Silva; Paula, Olívia Ferreira Pereira de; Silva, Célia Regina Gonçalves E; Leão, Mariella Vieira Pereira; Santos, Silvana Soléo Ferreira dos

    2015-01-01

    The instruments and materials used in health establishments are frequently exposed to microorganism contamination, and chemical products are used before sterilization to reduce occupational infection. We evaluated the antimicrobial effectiveness, physical stability, and corrosiveness of two commercial formulations of peracetic acid on experimentally contaminated specimens. Stainless steel specimens were contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, blood, and saliva and then immersed in a ready peracetic acid solution: 2% Sekusept Aktiv (SA) or 0.25% Proxitane Alpha (PA), for different times. Then, washes of these instruments were plated in culture medium and colony-forming units counted. This procedure was repeated six times per day over 24 non-consecutive days. The corrosion capacity was assessed with the mass loss test, and the concentration of peracetic acid and pH of the solutions were measured with indicator tapes. Both SA and PA significantly eliminated microorganisms; however, the SA solution was stable for only 4 days, whereas PA remained stable throughout the experiment. The concentration of peracetic acid in the SA solutions decreased over time until the chemical was undetectable, although the pH remained at 5. The PA solution had a concentration of 500-400 mg/L and a pH of 2-3. Neither formulation induced corrosion and both reduced the number of microorganisms (p = 0.0001). However, the differences observed in the performance of each product highlight the necessity of establishing a protocol for optimizing the use of each one.

  8. Polydiacetylene liposomes with phenylboronic acid tags: a fluorescence turn-on sensor for sialic acid detection and cell-surface glycan imaging.

    PubMed

    Wang, Dong-En; Yan, Jiahang; Jiang, Jingjing; Liu, Xiang; Tian, Chang; Xu, Juan; Yuan, Mao-Sen; Han, Xiang; Wang, Jinyi

    2018-03-01

    Sialic acid (SA) located at the terminal end of glycans on cell membranes has been shown to play an important yet distinctive role in various biological and pathological processes. Effective methods for the facile, sensitive and in situ analysis of SA on living cell surfaces are of great significance in terms of clinical diagnostics and therapeutics. Here, a new polydiacetylene (PDA) liposome-based sensor system bearing phenylboronic acid (PBA) and 1,8-naphthalimide derived fluorophore moieties was developed as a fluorescence turn-on sensor for the detection of free SA in aqueous solution and the in situ imaging of SA-terminated glycans on living cell surfaces. In the sensor system, three diacetylene monomers, PCDA-pBA, PCDA-Nap and PCDA-EA, were designed and synthesized to construct the composite PDA liposome sensor. The monomer PCDA-pBA modified with PBA molecules was employed as a receptor for SA recognition, while the monomer PCDA-Nap containing a 1,8-naphthalimide derivative fluorophore was used for fluorescence signaling. When the composite PDA liposomes were formed, the energy transfer between the fluorophore and the conjugated backbone could directly quench the fluorescence of the fluorophore. In the presence of additional SA or SA abundant cells, the strong binding of SA with PBA moieties disturbed the pendent side chain conformation, resulting in the fluorescence restoration of the fluorophore. The proposed methods realized the fluorescence turn-on detection of free SA in aqueous solution and the in situ imaging of SA on living MCF-7 cell surfaces. This work provides a new potential tool for simple and selective analysis of SA on living cell membranes.

  9. Calorimetric determination of inhibition of ice crystal growth by antifreeze protein in hydroxyethyl starch solutions.

    PubMed Central

    Hansen, T N; Carpenter, J F

    1993-01-01

    Differential scanning calorimetry and cryomicroscopy were used to investigate the effects of type I antifreeze protein (AFP) from winter flounder on 58% solutions of hydroxyethyl starch. The glass, devitrification, and melt transitions noted during rewarming were unaffected by 100 micrograms/ml AFP. Isothermal annealing experiments were undertaken to detect the effects of AFP-induced inhibition of ice crystal growth using calorimetry. A premelt endothermic peak was detected during warming after the annealing procedure. Increasing the duration or the temperature of the annealing for the temperature range from -28 and -18 degrees C resulted in a gradual increase in the enthalpy of the premelt endotherm. This transition was unaffected by 100 micrograms/ml AFP. Annealing between -18 and -10 degrees C resulted in a gradual decrease in the premelt peak enthalpy. This process was inhibited by 100 micrograms/ml AFP. Cryomicroscopic examination of the samples revealed that AFP inhibited ice recrystallization during isothermal annealing at -10 degrees C. Annealing at lower temperatures resulted in minimal ice recrystallization and no visible effect of AFP. Thus, the 100 micrograms/ml AFP to have a detectable influence on thermal events in the calorimeter, conditions must be used that result in significant ice growth without AFP and visible inhibition of this process by AFP. Images FIGURE 8 PMID:7690257

  10. Increasing Weldability of Service-Aged Reformer Tubes by Partial Solution Annealing

    NASA Astrophysics Data System (ADS)

    Mostafaei, M.; Shamanian, M.; Purmohamad, H.; Amini, M.

    2016-04-01

    A dissimilar joint of 25Cr-35Ni/30Cr-48Ni (HP/HV) heat-resistant steels was evaluated. The investigations indicated that the as-cast HP alloy contained M7C3, M23C6, and NbC carbides and HV alloy with 5 wt.% tungsten, contained M23C6 and M6C carbides embedded in an austenitic matrix. After 8 years of ex-service aging at 1050 °C, the ductility of HP/HV reformer tubes was decreased dramatically, and thus, the repair welding of the aged HP/HV dissimilar joint was at a risk. In order to repair the aged reformer tubes and increase weldability properties, a new partial solution annealing treatment was designed. Mechanical testing results showed that partial solution annealing at 1200 °C for 6 h increased the elongation and toughness of the aged HP and HV alloys drastically. Also, a mechanism for constitutional liquation cracking in the heat-affected zones (HAZ) of the HP/HV dissimilar joint was proposed. In the HAZ of the aged HP/HV welded joint, the cracks around the locally melted carbides were initiated and propagated during carbides solidification at the cooling cycle of welding associated with the decrease in the ductility of the aged HP and HV alloys. In addition, Varestraint weldability test showed that the susceptibility to hot cracking was decreased with partial solution annealing.

  11. Preference for sucralose predicts behavioral responses to sweet and bittersweet tastants.

    PubMed

    Loney, Gregory C; Torregrossa, Ann-Marie; Carballo, Chris; Eckel, Lisa A

    2012-06-01

    Rats can be classified as either sucralose avoiders (SA) or sucralose preferrers (SP) based on their behavioral responses in 2-bottle preference, 1-bottle intake, and brief-access licking tests. The present study demonstrates that this robust phenotypic variation in the preference for sucralose predicts acceptance of saccharin, an artificial sweetener with a purported concentration-dependent "bitter" side taste and a 0.25 M sucrose solution adulterated with increasing concentrations of quinine hydrochloride (QHCl). Specifically, SA displayed decreased preference for and intakes of saccharin (≥41.5 mM) and sucrose-QHCl (>0.5 mM QHCl) solutions, relative to SP. In a second experiment involving brief-access (30-s) tests, SP and SA did not differ in their unconditioned licking responses across a range of sodium chloride or QHCl solutions (0.03-1 mM). However, the acceptability threshold for sucrose was lower in SA, relative to SP (0.06 and 0.13 M, respectively). Our findings suggest that phenotypic differences in sucralose preference are indicative of a more general difference in the hedonic processing of stimuli containing "bittersweet" or "sweet" taste qualities.

  12. Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: the impact of annealing hold time and temperature on the primary drying rate.

    PubMed

    Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina

    2014-06-01

    The study aims to investigate the impact of annealing hold time and temperature on the primary drying rate/duration of a 10% (w/v) solution of maltodextrin with an emphasis on how the mechanisms of annealing might be understood from the in-vial measurements of the ice crystal growth and the glass transition. The electrical impedance of the solution within a modified glass vial was recorded between 10 and 10(6) Hz during freeze-drying cycles with varying annealing hold times (1-5 h) and temperatures. Primary drying times decreased by 7%, 27% and 34% (1.1, 4.3 and 5.5 h) with the inclusion of an annealing step at temperatures of -15°C, -10°C and -5°C, respectively. The glass transition was recorded at approximately -16°C during the re-heating and re-cooling steps, which is close to the glass transition (Tg ') reported for 10% (w/v) maltodextrin and therefore indicates that a maximum freeze concentration (∼86%, w/w, from the Gordon-Taylor equation) was achieved during first freezing, with no further ice being formed on annealing. This observation, coupled to the decrease in electrical resistance that was observed during the annealing hold time, suggests that the reduction in the drying time was because of improved connectivity of ice crystals because of Ostwald ripening rather than devitrification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Facile Routes To Improve Performance of Solution-Processed Amorphous Metal Oxide Thin Film Transistors by Water Vapor Annealing.

    PubMed

    Park, Won-Tae; Son, Inyoung; Park, Hyun-Woo; Chung, Kwun-Bum; Xu, Yong; Lee, Taegweon; Noh, Yong-Young

    2015-06-24

    Here, we report on a simple and high-rate oxidization method for producing solution-based compound mixtures of indium zinc oxide (IZO) and indium gallium zinc oxide (IGZO) metal-oxide semiconductors (MOS) for thin-film transistor (TFT) applications. One of the issues for solution-based MOS fabrication is how to sufficiently oxidize the precursor in order to achieve high performance. As the oxidation rate of solution processing is lower than vacuum-based deposition such as sputtering, devices using solution-processed MOS exhibit relatively poorer performance. Therefore, we propose a method to prepare the metal-oxide precursor upon exposure to saturated water vapor in a closed volume for increasing the oxidization efficiency without requiring additional oxidizing agent. We found that the hydroxide rate of the MOS film exposed to water vapor is lower than when unexposed (≤18%). Hence, we successfully fabricated oxide TFTs with high electron mobility (27.9 cm(2)/V·s) and established a rapid process (annealing at 400 °C for 5 min) that is much shorter than the conventional as-deposited long-duration annealing (at 400 °C for 1 h) whose corresponding mobility is even lower (19.2 cm(2)/V·s).

  14. Self-adaptive multi-objective harmony search for optimal design of water distribution networks

    NASA Astrophysics Data System (ADS)

    Choi, Young Hwan; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon

    2017-11-01

    In multi-objective optimization computing, it is important to assign suitable parameters to each optimization problem to obtain better solutions. In this study, a self-adaptive multi-objective harmony search (SaMOHS) algorithm is developed to apply the parameter-setting-free technique, which is an example of a self-adaptive methodology. The SaMOHS algorithm attempts to remove some of the inconvenience from parameter setting and selects the most adaptive parameters during the iterative solution search process. To verify the proposed algorithm, an optimal least cost water distribution network design problem is applied to three different target networks. The results are compared with other well-known algorithms such as multi-objective harmony search and the non-dominated sorting genetic algorithm-II. The efficiency of the proposed algorithm is quantified by suitable performance indices. The results indicate that SaMOHS can be efficiently applied to the search for Pareto-optimal solutions in a multi-objective solution space.

  15. Ferromagnetic cobalt nanocrystals achieved by soft annealing approach—From individual behavior to mesoscopic organized properties

    NASA Astrophysics Data System (ADS)

    Petit, C.; Wang, Z. L.; Pileni, M. P.

    2007-05-01

    By gentle annealing, 7 nm cobalt nanoparticles synthesized by soft chemistry, are transformed to hard magnetic hexagonal close packed (HCP) cobalt nanocrystals without changing the size, size distribution and passivating layer. This method permits to recover the nanocrystals isolated in solution after the annealing process and then to study the magnetic properties of the HCP cobalt nanocrystals at isolated status or in a self-organized film. Monolayer self-assembly of the HCP cobalt nanocrystals is obtained, and due to the dipolar interaction, ferromagnetic behavior close to room temperature has been observed. The magnetic properties differ significantly due to the influence of the substrate on the annealing process. This different approach of the annealing process of nanocrystals is compared to the classical approach of annealing in which the nanocrystals are first deposited on a substrate and then annealed.

  16. Synthesis and characterization of amorphous yttrium oxide layers by metal organic chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Martynova, I.; Tsymbarenko, D.; Kamenev, A.; Kuzmina, N.; Kaul, A.

    2014-02-01

    The Solution Deposition Planarization method was successfully used for smoothing Ni-alloy tapes with initial surface roughness of 26.7 nm (on 40×40 μm2 area) and 12.6 nm (on 5×5 μm2 area). New precursor solutions were prepared from yttrium acetate and diethylenetriamine or ethylenediamine in MeOH and i-PrOH-alcohols with different viscosities. Using those solutions yttria films with the residual roughness Sa=0.4 nm (on 5×5 μm2 area) and Sa=7.6 nm (on 40×40 μm2 area) were deposited on the Ni-alloy tapes.

  17. Seafloor Topography Estimation from Gravity Gradient Using Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Yang, J.; Jekeli, C.; Liu, L.

    2017-12-01

    Inferring seafloor topography from gravimetry is an indirect yet proven and efficient means to map the ocean floor. Standard techniques rely on an approximate, linear relationship (Parker's formula) between topography and gravity. It has been reported that in the very rugged areas the discrepancies between prediction and ship soundings are very large, partly because the linear term of Parker's infinite series is dominant only in areas where the local topography is small compared with the regional topography. The validity of the linear approximation is therefore in need of analysis. In this study the nonlinear effects caused by terrain are quantified by both numerical tests and an algorithmic approach called coherency. It is shown that the nonlinear effects are more significant at higher frequencies, which suggests that estimation algorithms with nonlinear approximation in the modeled relationship between gravity gradient and topography should be developed in preparation for future high-resolution gravity gradient missions. The simulated annealing (SA) method is such an optimization technique that can process nonlinear inverse problems, and is used to estimate the seafloor topography parameters in a forward model by minimizing the difference between the observed and forward-computed vertical gravity gradients. Careful treatments like choosing suitable truncation distance, padding the vicinity of the study area with a known topography model, and using the relative cost function, are considered to improve the estimation accuracy. This study uses the gravity gradient, which is more sensitive to topography at short wavelengths than gravity anomaly. The gravity gradient data are derived from satellite altimetry, but the SA has no restrictions on data distribution, as required in Parker's infinite series model, thus enabling the use of airborne gravity gradient data, whose survey trajectories are irregular. The SA method is tested in an area of Guyots (E 156°-158° in longitude, N 20°-22° in latitude). Comparison between the estimation and ship sounding shows that half of the discrepancy is within 110 m, which improves the result from standard techniques by 32%.

  18. Processing Method for Creating Ultra-Thin Lead Zirconate Titanate (PZT) Films Via Chemical Solution Deposition

    DTIC Science & Technology

    2008-12-01

    n-propoxide and titanium isopropoxide , were measured with a graduated auto pipet and combined with 45 mL of 2-MOE in a 125 mL flask. The solution...nitrogen (N2). This anneal procedure was used to remove trapped hydrogen from the thin film. Following the anneal, a bi-layer of titanium (Ti) and...dioxide Ti titanium 10 NO. OF COPIES ORGANIZATION 1 ADMNSTR ELEC DEFNS TECHL INFO CTR ATTN DTIC OCP 8725 JOHN J KINGMAN RD STE

  19. Achieving composition-controlled Cu2ZnSnS4 films by sulfur-free annealing process

    NASA Astrophysics Data System (ADS)

    Jiang, Hailong; Wei, Xiaoqing; Huang, Yongliang; Wang, Xian; Han, Anjun; Liu, Xiaohui; Liu, Zhengxin; Meng, Fanying

    2017-06-01

    Cu2ZnSnS4 (CZTS) films were firstly prepared by the nonvacuum spin-coating method, and then annealed at 550 °C in N2 atmosphere. A graphite box was used to inhibit the volatilization of gaseous SnS and S2 to suppress the CZTS decomposition and generation of MoS2 during annealing. The sulfur supplementation carried out in a conventional annealing process was not applied in this work. It was found that Sn loss was overcome and the compositions of postannealed films were close to that of precursor solution. Thus, by this method, the compositions of CZTS films can be controlled by adjusting the elemental ratios of the precursor solution. Besides, the increase in inert atmosphere pressure could further minimize the Sn loss and improve the crystallinity of CZTS films. Furthermore, the resistive MoS2 layer between the CZTS film and the Mo layer was suppressed because sulfur was not used and CZTS decomposition was suppressed.

  20. Adsorption of Rare Earths(Ⅲ) Using an Efficient Sodium Alginate Hydrogel Cross-Linked with Poly-γ-Glutamate

    PubMed Central

    Xu, Shuxia; Wang, Zhiwei; Gao, Yuqian; Zhang, Shimin; Wu, Kun

    2015-01-01

    With the exploitation of rare earth ore, more and more REEs came into groundwater. This was a waste of resources and could be harmful to the organisms. This study aimed to find an efficient adsorption material to mitigate the above issue. Through doping sodium alginate (SA) with poly-γ-glutamate (PGA), an immobilized gel particle material was produced. The composite exhibited excellent capacity for adsorbing rare earth elements (REEs). The amount of La3+ adsorbed on the SA-PGA gel particles reached approximately 163.93 mg/g compared to the 81.97 mg/g adsorbed on SA alone. The factors that potentially affected the adsorption efficiency of the SA-PGA composite, including the initial concentration of REEs, the adsorbent dosage, and the pH of the solution, were investigated. 15 types of REEs in single and mixed aqueous solutions were used to explore the selective adsorption of REEs on gel particles. Scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy analyses of the SA and SA-PGA gel beads suggested that the carboxyl groups in the composite might play a key role in the adsorption process and the morphology of SA-PGA changed from the compact structure of SA to a porous structure after doping PGA. The kinetics and thermodynamics of the adsorption of REEs were well fit with the pseudo-second-order equation and the Langmuir adsorption isotherm model, respectively. It appears that SA-PGA is useful for recycling REEs from wastewater. PMID:25996388

  1. Salicylic Acid Alleviates the Cadmium Toxicity in Barley Seedlings1

    PubMed Central

    Metwally, Ashraf; Finkemeier, Iris; Georgi, Manfred; Dietz, Karl-Josef

    2003-01-01

    Salicylic acid (SA) plays a key role in plant disease resistance and hypersensitive cell death but is also implicated in hardening responses to abiotic stressors. Cadmium (Cd) exposure increased the free SA contents of barley (Hordeum vulgare) roots by a factor of about 2. Cultivation of dry barley caryopses presoaked in SA-containing solution for only 6 h or single transient addition of SA at a 0.5 mm concentration to the hydroponics solution partially protected the seedlings from Cd toxicity during the following growth period. Both SA treatments had little effect on growth in the absence of Cd, but increased root and shoot length and fresh and dry weight and inhibited lipid peroxidation in roots, as indicated by malondialdehyde contents, in the presence of Cd. To test whether this protection was due to up-regulation of antioxidant enzymes, activities and transcript levels of the H2O2-metabolizing enzymes such as catalase and ascorbate peroxidase were measured in control and SA-treated seedlings in the presence or absence of 25 μm Cd. Cd stress increased the activity of these enzymes by variable extent. SA treatments strongly or completely suppressed the Cd-induced up-regulation of the antioxidant enzyme activities. Slices from leaves treated with SA for 24 h also showed an increased level of tolerance toward high Cd concentrations as indicated by chlorophyll a fluorescence parameters. The results support the conclusion that SA alleviates Cd toxicity not at the level of antioxidant defense but by affecting other mechanisms of Cd detoxification. PMID:12746532

  2. Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber

    PubMed Central

    Zhang, M.; Hu, Guohua; Hu, Guoqing; Howe, R. C. T.; Chen, L.; Zheng, Z.; Hasan, T.

    2015-01-01

    We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm2 saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications. PMID:26657601

  3. Ultrasound-activated piezoelectric P(VDF-TrFE)/boron nitride nanotube composite films promote differentiation of human SaOS-2 osteoblast-like cells.

    PubMed

    Genchi, Giada Graziana; Sinibaldi, Edoardo; Ceseracciu, Luca; Labardi, Massimiliano; Marino, Attilio; Marras, Sergio; De Simoni, Giorgio; Mattoli, Virgilio; Ciofani, Gianni

    2017-05-26

    Piezoelectric films of poly(vinylidenedifluoride-trifluoroethylene) (P(VDF-TrFE)) and of P(VDF-TrFE)/boron nitride nanotubes (BNNTs) were prepared by cast-annealing and used for SaOS-2 osteoblast-like cell culture. Films were characterized in terms of surface and bulk features, and composite films demonstrated enhanced piezoresponse compared to plain polymeric films (d 31 increased by ~80%). Osteogenic differentiation was evaluated in terms of calcium deposition, collagen I secretion, and transcriptional levels of marker genes (Alpl, Col1a1, Ibsp, and Sparc) in cells either exposed or not to ultrasounds (US); finally, a numerical model suggested that the induced voltage (~20-60 mV) is suitable for cell stimulation. Although preliminary, our results are extremely promising and encourage the use of piezoelectric P(VDF-TrFE)/BNNT films in bone tissue regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A novel hybrid meta-heuristic technique applied to the well-known benchmark optimization problems

    NASA Astrophysics Data System (ADS)

    Abtahi, Amir-Reza; Bijari, Afsane

    2017-03-01

    In this paper, a hybrid meta-heuristic algorithm, based on imperialistic competition algorithm (ICA), harmony search (HS), and simulated annealing (SA) is presented. The body of the proposed hybrid algorithm is based on ICA. The proposed hybrid algorithm inherits the advantages of the process of harmony creation in HS algorithm to improve the exploitation phase of the ICA algorithm. In addition, the proposed hybrid algorithm uses SA to make a balance between exploration and exploitation phases. The proposed hybrid algorithm is compared with several meta-heuristic methods, including genetic algorithm (GA), HS, and ICA on several well-known benchmark instances. The comprehensive experiments and statistical analysis on standard benchmark functions certify the superiority of the proposed method over the other algorithms. The efficacy of the proposed hybrid algorithm is promising and can be used in several real-life engineering and management problems.

  5. Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Jirapong, Peeraool; Ongsakul, Weerakorn

    2008-10-01

    This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.

  6. Genetic Adaptive Control for PZT Actuators

    NASA Technical Reports Server (NTRS)

    Kim, Jeongwook; Stover, Shelley K.; Madisetti, Vijay K.

    1995-01-01

    A piezoelectric transducer (PZT) is capable of providing linear motion if controlled correctly and could provide a replacement for traditional heavy and large servo systems using motors. This paper focuses on a genetic model reference adaptive control technique (GMRAC) for a PZT which is moving a mirror where the goal is to keep the mirror velocity constant. Genetic Algorithms (GAs) are an integral part of the GMRAC technique acting as the search engine for an optimal PID controller. Two methods are suggested to control the actuator in this research. The first one is to change the PID parameters and the other is to add an additional reference input in the system. The simulation results of these two methods are compared. Simulated Annealing (SA) is also used to solve the problem. Simulation results of GAs and SA are compared after simulation. GAs show the best result according to the simulation results. The entire model is designed using the Mathworks' Simulink tool.

  7. Computational investigation of the conformational profile of the four stereomers of Ac-L-Pro-c3Phe-NHMe (c3Phe= 2,3-methanophenylalanine).

    PubMed

    Rodriguez, Alejandro; Canto, Josep; Corcho, Francesc J; Perez, Juan J

    2009-01-01

    The present report regards a computational study aimed at assessing the conformational profile of the four stereoisomers of the peptide Ace-Pro-c3Phe-NMe, previously reported to exhibit beta-turn structures in dichloromethane with different type I/type II beta-turn profiles. Molecular systems were represented at the molecular mechanics level using the parm96 parameterization of the AMBER force field. Calculations were carried out in dichloromethane using an implicit solvent approach. Characterization of the conformational features of the peptide analogs was carried out using simulated annealing (SA), molecular dynamics (MD) and replica exchange molecular dynamics (REMD). Present results show that MD calculations do not provide a reasonable sampling after 300 ns. In contrast, both SA and REMD provide similar results and agree well with experimental observations. Copyright 2009 Wiley Periodicals, Inc.

  8. Large-area Co-silicide nanodot arrays produced by colloidal nanosphere lithography and thermal annealing.

    PubMed

    Cheng, S L; Wong, S L; Lu, S W; Chen, H

    2008-09-01

    We report here the successful fabrication of large-area size-tunable periodic arrays of cobalt and Co-silicide nanodots on silicon substrates by employing the colloidal nanosphere lithography (NSL) technique and heat treatments. The growth of low-resistivity epitaxial CoSi(2) was found to be more favorable for the samples with smaller Co nanodot sizes. The sizes of the epitaxial CoSi(2) nanodots can be tuned from 50 to 100 nm by varying the diameter of the colloidal spheres and annealing temperatures. The epitaxial CoSi(2) nanodots were found to grow with an epitaxial orientation with respect to the (001)Si substrates: [001]CoSi(2)//[001]Si and (200)CoSi(2)//(400)Si. From the results of planview HRTEM, XTEM, and SAED analysis, the epitaxial CoSi(2) nanodots were identified to be inverse pyramids in shape, and the average sizes of the faceted silicide nanodots were measured to decrease with annealing temperature. The observed results present the exciting prospect that with appropriate controls, the colloidal NSL technique promises to facilitate the growth of a variety of well-ordered silicide nanodots with selected shape, size, and periodicity.

  9. Composition of incubation solution impacts in vitro protein uptake to silicone hydrogel contact lenses

    PubMed Central

    Heynen, Miriam; Luensmann, Doerte; Jones, Lyndon

    2012-01-01

    Purpose To determine the impact of incubation solution composition on protein deposition to silicone hydrogel (SH) contact lenses using a simplistic and a complex model of the tear film. Methods Three SH materials – senofilcon A (SA), lotrafilcon B (LB), and balafilcon A (BA) – were incubated in two different solutions; Solution A was a simplistic augmented buffered saline solution containing a single protein, whereas Solution B was a complex artificial tear solution (ATS), containing the augmented buffered saline solution in addition to proteins, lipids, and mucins (pH=7.4). The proteins of interest (lysozyme, lactoferrin, albumin) were radiolabeled with Iodine-125 (2% protein of interest) and the accumulation of the conjugated protein to the lens materials was determined after 1, 7, 14, and 28 days of incubation. Protein deposition was measured using a gamma counter and the raw data were translated into absolute amounts (µg/lens) via extrapolation from standards. Results After 28 days, lysozyme uptake was significantly lower on BA lenses when incubated in Solution A (33.7 μg) compared to Solution B (56.2 μg), p<0.001. SA lenses deposited similar amounts of lysozyme when incubated in either Solution A (2.6 μg) or Solution B (4.1 μg), p>0.05. LB lenses also deposited similar amounts of lysozyme for both solutions (Solution A: 5.0 μg, Solution B: 4.7 μg, p>0.05). After 28 days, BA lenses accumulated approximately twice the amount of lactoferrin than the other lens materials, with 30.3 μg depositing when exposed to Solution A and 22.0 μg with Solution B. The difference between the two solutions was statistically significant (p<0.001). LB materials deposited significantly greater amounts of lactoferrin when incubated in Solution A (16.6 μg) compared to Solution B (10.3 μg), p<0.001. Similar amounts of lactoferrin were accumulated onto SA lenses regardless of incubation solution composition (Solution A: 8.2 μg, Solution B: 11.2 μg, p>0.05). After 28 days, albumin deposition onto BA lenses was significantly greater when lenses were incubated in Solution B (1.7 μg) compared to Solution A (0.9 μg), p<0.001. Similar amounts of albumin were deposited on SA lenses when incubated in either solution (0.6 μg versus 0.7 μg, p>0.05). LB lenses incubated in Solution A deposited more albumin compared to Solution B (0.9 μg versus 0.6 μg), p=0.003. Discussion Protein deposition onto SH materials varied when contact lenses were incubated in either a complex ATS compared to a single protein solution. More lysozyme accumulated onto BA lenses incubated in a complex analog of the human tear film, whereas lactoferrin deposited onto SA lenses independent of incubation solution composition. To better mimic the ex vivo environment, future studies should use more appropriate analogs of the tear film. PMID:22355245

  10. Scanning angle Raman spectroscopy: A nondestructive method for simultaneously determining mixed polymer fractional composition and film thickness

    DOE PAGES

    Bobbitt, Jonathan M.; Mendivelso-Pérez, Deyny; Smith, Emily A.

    2016-11-03

    A scanning angle (SA) Raman spectroscopy method was developed to simultaneously measure the chemical composition and thickness of waveguide mixed polymer films with varying fractional compositions. In order to test the method, six films of polystyrene-block-poly(methyl methacrylate), some mixed with poly(methyl methacrylate) homopolymer (PS-b-PMMA:PMMA), and two films of poly(2-vinylnapthalene)-block-poly(methyl methacrylate) (P2VN-b-PMMA) were prepared. The film thickness ranged from 495 to 971 nm. The chemical composition and thickness of PS-b-PMMA:PMMA films was varied by the addition of the PMMA homopolymer and annealing the films in toluene. SA Raman peak amplitude ratios (1001 cm -1 for PS, 812 cm -1 for PMMA,more » and 1388 cm -1 for P2VN) were used to calculate the refractive index of the polymer film, an input parameter in calculations of the sum square electric field (SSEF). The film thickness was determined by SSEF models of the experimental Raman amplitudes versus the incident angle of light. The average film thickness determined by the developed SA Raman spectroscopy method was within 5% of the value determined by optical profilometry. In conclusion, SA Raman spectroscopy will be useful for in situ label-free analyses of mixed polymer waveguide films.« less

  11. a New Multimodal Multi-Criteria Route Planning Model by Integrating a Fuzzy-Ahp Weighting Method and a Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Ghaderi, F.; Pahlavani, P.

    2015-12-01

    A multimodal multi-criteria route planning (MMRP) system provides an optimal multimodal route from an origin point to a destination point considering two or more criteria in a way this route can be a combination of public and private transportation modes. In this paper, the simulate annealing (SA) and the fuzzy analytical hierarchy process (fuzzy AHP) were combined in order to find this route. In this regard, firstly, the effective criteria that are significant for users in their trip were determined. Then the weight of each criterion was calculated using the fuzzy AHP weighting method. The most important characteristic of this weighting method is the use of fuzzy numbers that aids the users to consider their uncertainty in pairwise comparison of criteria. After determining the criteria weights, the proposed SA algorithm were used for determining an optimal route from an origin to a destination. One of the most important problems in a meta-heuristic algorithm is trapping in local minima. In this study, five transportation modes, including subway, bus rapid transit (BRT), taxi, walking, and bus were considered for moving between nodes. Also, the fare, the time, the user's bother, and the length of the path were considered as effective criteria for solving the problem. The proposed model was implemented in an area in centre of Tehran in a GUI MATLAB programming language. The results showed a high efficiency and speed of the proposed algorithm that support our analyses.

  12. Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing

    NASA Astrophysics Data System (ADS)

    Choi, Young-Hwan; Ryu, Han-Youl

    2018-04-01

    We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.

  13. Using contrasting cases to improve self-assessment in physics learning

    NASA Astrophysics Data System (ADS)

    Jax, Jared Michael

    Accurate self-assessment (SA) is widely regarded as a valuable tool for conducting scientific work, although there is growing concern that students present difficulties in accurately assessing their own learning. For students, the challenge of accurately self-assessing their work prevents them from effectively critiquing their own knowledge and skills, and making corrections when necessary to improve their performance. An overwhelming majority of researchers have acknowledged the importance of developing and practicing the necessary reflective skills SA in science, yet it is rarely a focus of daily instruction leading to students typically overestimate their abilities. In an effort to provide a pragmatic approach to overcoming these deficiencies, this study will demonstrate the effect of using positive and negative examples of solutions (contrasting cases) on performance and accuracy of SA when compared to student who are only shown positive examples of solutions. The work described here sought, first, to establish the areas of flawed SA that introductory high school physics students experience when studying circuitry, and, second, to examine how giving students Content Knowledge in addition to Positive and Negative Examples focused on helping them self-assess might help overcome these deficiencies. In doing so, this work highlights the positive impact that these types of support have in significantly increasing student performance, SA accuracy, and the ability to evaluate solutions in physics education.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sungho, E-mail: shochoi@krict.re.kr; Park, Byung-Yoon; Jung, Ha-Kyun

    Highlights: {yields} Systematic study of the fluorides doped solution-processed ZnO thin films via the luminescence and electrical behaviors. {yields} Defect-related visible emission bands are affected by annealing ambient and fluoride addition. {yields} Adding lithium fluoride followed by annealing in oxygen ambient leads to a controlled defect density with proper TFT performance. -- Abstract: To develop an efficient channel layer for thin film transistors (TFTs), understanding the defect-related luminescence and electrical property is crucial for solution-processed ZnO thin films. Film growth with the fluorides addition, especially using LiF, followed by the oxygen ambient post-annealing leads to decreased defect-related emission as wellmore » as enhanced switching property. The saturation mobility and current on/off ratio are 0.31 cm{sup 2} V{sup -1} s{sup -1} and 1.04 x 10{sup 3}. Consequently, we can visualize an optimized process condition and characterization method for solution-processed TFT based on the fluorine-doped ZnO film channel layer by considering the overall emission behavior.« less

  15. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    NASA Astrophysics Data System (ADS)

    Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique

    2017-07-01

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253-3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.

  16. Definition and use of Solution-focused Sustainability Assessment: A novel approach to generate, explore and decide on sustainable solutions for wicked problems.

    PubMed

    Zijp, Michiel C; Posthuma, Leo; Wintersen, Arjen; Devilee, Jeroen; Swartjes, Frank A

    2016-05-01

    This paper introduces Solution-focused Sustainability Assessment (SfSA), provides practical guidance formatted as a versatile process framework, and illustrates its utility for solving a wicked environmental management problem. Society faces complex and increasingly wicked environmental problems for which sustainable solutions are sought. Wicked problems are multi-faceted, and deriving of a management solution requires an approach that is participative, iterative, innovative, and transparent in its definition of sustainability and translation to sustainability metrics. We suggest to add the use of a solution-focused approach. The SfSA framework is collated from elements from risk assessment, risk governance, adaptive management and sustainability assessment frameworks, expanded with the 'solution-focused' paradigm as recently proposed in the context of risk assessment. The main innovation of this approach is the broad exploration of solutions upfront in assessment projects. The case study concerns the sustainable management of slightly contaminated sediments continuously formed in ditches in rural, agricultural areas. This problem is wicked, as disposal of contaminated sediment on adjacent land is potentially hazardous to humans, ecosystems and agricultural products. Non-removal would however reduce drainage capacity followed by increased risks of flooding, while contaminated sediment removal followed by offsite treatment implies high budget costs and soil subsidence. Application of the steps in the SfSA-framework served in solving this problem. Important elements were early exploration of a wide 'solution-space', stakeholder involvement from the onset of the assessment, clear agreements on the risk and sustainability metrics of the problem and on the interpretation and decision procedures, and adaptive management. Application of the key elements of the SfSA approach eventually resulted in adoption of a novel sediment management policy. The stakeholder participation and the intensive communication throughout the project resulted in broad support for both the scientific approaches and results, as well as for policy implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Modified artificial fish school algorithm for free space optical communication with sensor-less adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun

    2017-11-01

    The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.

  18. Preference for Sucralose Predicts Behavioral Responses to Sweet and Bittersweet Tastants

    PubMed Central

    Loney, Gregory C.; Torregrossa, Ann-Marie; Carballo, Chris

    2012-01-01

    Rats can be classified as either sucralose avoiders (SA) or sucralose preferrers (SP) based on their behavioral responses in 2-bottle preference, 1-bottle intake, and brief-access licking tests. The present study demonstrates that this robust phenotypic variation in the preference for sucralose predicts acceptance of saccharin, an artificial sweetener with a purported concentration-dependent “bitter” side taste and a 0.25 M sucrose solution adulterated with increasing concentrations of quinine hydrochloride (QHCl). Specifically, SA displayed decreased preference for and intakes of saccharin (≥41.5 mM) and sucrose–QHCl (>0.5 mM QHCl) solutions, relative to SP. In a second experiment involving brief-access (30-s) tests, SP and SA did not differ in their unconditioned licking responses across a range of sodium chloride or QHCl solutions (0.03–1 mM). However, the acceptability threshold for sucrose was lower in SA, relative to SP (0.06 and 0.13 M, respectively). Our findings suggest that phenotypic differences in sucralose preference are indicative of a more general difference in the hedonic processing of stimuli containing “bittersweet” or “sweet” taste qualities. PMID:22281530

  19. Synergistic effects of sodium 
ascorbate and acetone to restore compromised bond strength 
after enamel bleaching.

    PubMed

    Boruziniat, Alireza; Manafi, Safa; Cehreli, Zafer C

    To evaluate the effect of a new experimental solution containing sodium ascorbate (SA) and acetone on reversing compromised bonding to enamel immediately after bleaching. The buccal surface of intact, extracted human premolars (n = 60) was bleached. The teeth were then randomly assigned to 6  groups according to the type of pretreatment applied prior to adhesive procedures: 10% SA in acetone-water solution applied for 1 and 5 min (groups 1 and 2, respectively); aqueous solution of 10% SA applied for 10 min (group 3); 100% acetone applied for 10 min (group 4); no pretreatment (negative control; group 5). An additional group (positive control; group 6) comprised unbleached teeth (n = 12). Two composite microcylinders were bonded on each specimen for evaluation of microshear bond strength (MBS) and failure modes. Data were analyzed using the one-way ANOVA and Tukey's post-hoc and chi-square tests at P = 0.05. Groups 1 and 2 yielded similar MBS values to groups 4 and 6 (positive control). The mean MBS of groups 3 and 5 (negative control) were similar, and significantly lower than that of the positive control group. The application of 10% SA in an acetone-water solution prior to bonding procedures can restore compromised enamel bond strength to its unbleached state within a clinically acceptable time of 1 min.

  20. A self-organizing neural network for the traveling salesman problem that is competitive with simulated annealing.

    PubMed

    Budinich, M

    1996-02-15

    Unsupervised learning applied to an unstructured neural network can give approximate solutions to the traveling salesman problem. For 50 cities in the plane this algorithm performs like the elastic net of Durbin and Willshaw (1987) and it improves when increasing the number of cities to get better than simulated annealing for problems with more than 500 cities. In all the tests this algorithm requires a fraction of the time taken by simulated annealing.

  1. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    PubMed

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  2. Synthesis and characterization of nickel oxide particulate annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Sharma, Khem Raj; Thakur, Shilpa; Negi, N. S.

    2018-04-01

    Nickel oxide has been synthesized by solution combustion technique. The nickel oxide ceramic was annealed at 600°C and 1000°C for 2 hours. Structural, electrical, dielectric and magnetic properties were analyzed which are strongly dependent upon the synthesis method. Structural properties were examined by X-ray diffractometer (XRD), which confirmed the purity and cubic phase of nickel oxide. XRD data reveals the increase in crystallite size and decrease in full width half maximum (FWHM) as the annealing temperature increases. Electrical conductivity is found to increase from 10-6 to 10-5 (Ω-1cm-1) after annealing. Dielectric constant is observed to increase from 26 to 175 when the annealing temperature is increased from 600°C to 1000°C. Low value of coercive field is found which shows weak ferromagnetic behavior of NiO. It is observed that all the properties of NiO particulate improve with increasing annealing temperature.

  3. An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities.

    PubMed

    Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin

    2016-06-30

    Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads' length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO₂ emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario.

  4. An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities

    PubMed Central

    Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin

    2016-01-01

    Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads’ length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO2 emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario. PMID:27376289

  5. Sparse approximation problem: how rapid simulated annealing succeeds and fails

    NASA Astrophysics Data System (ADS)

    Obuchi, Tomoyuki; Kabashima, Yoshiyuki

    2016-03-01

    Information processing techniques based on sparseness have been actively studied in several disciplines. Among them, a mathematical framework to approximately express a given dataset by a combination of a small number of basis vectors of an overcomplete basis is termed the sparse approximation. In this paper, we apply simulated annealing, a metaheuristic algorithm for general optimization problems, to sparse approximation in the situation where the given data have a planted sparse representation and noise is present. The result in the noiseless case shows that our simulated annealing works well in a reasonable parameter region: the planted solution is found fairly rapidly. This is true even in the case where a common relaxation of the sparse approximation problem, the G-relaxation, is ineffective. On the other hand, when the dimensionality of the data is close to the number of non-zero components, another metastable state emerges, and our algorithm fails to find the planted solution. This phenomenon is associated with a first-order phase transition. In the case of very strong noise, it is no longer meaningful to search for the planted solution. In this situation, our algorithm determines a solution with close-to-minimum distortion fairly quickly.

  6. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum

    NASA Astrophysics Data System (ADS)

    Wu, Liping; Lin, Xiaoyan; Zhou, Xingbao; Luo, Xuegang

    2016-10-01

    A novel dual functional microsphere adsorbent of alginate/carboxymethyl cellulose sodium composite loaded with calcium and aluminum (SA/CMC-Ca-Al) is prepared by an injection device to remove fluoride and uranium, respectively, from fluoro-uranium mixed aqueous solution. Batch experiments are performed at different conditions: pH, temperature, initial concentration and contact time. The results show that the maximum adsorption amount for fluoride is 35.98 mg/g at pH 2.0, 298.15 K concentration 100 mg/L, while that for uranium is 101.76 mg/g at pH 4.0, 298.15 K concentration 100 mg/L. Both of the adsorption process could be well described by Langmuir model. The adsorption kinetic data is fitted well with pseudo-first-order model for uranium and pseudo-second-order model for fluoride. Thermodynamic parameters are also evaluated, indicating that the adsorption of uranium on SA/CMC-Ca-Al is a spontaneous and exothermic process, while the removal of fluoride is non-spontaneous and endothermic process. The mechanism of modification and adsorption process on SA/CMC-Ca-Al is characterized by FT-IR, SEM, EDX and XPS. The results show that Ca (II) and Al (III) are loaded on SA/CMC through ion-exchange of sodium of SA/CMC. The coordination reaction and ion-exchange happen during the adsorption process between SA/CMC-Ca-Al and uranium, fluoride. Results suggest that the SA/CMC-Ca-Al adsorbent has a great potential in removing uranium and fluoride from aqueous solution.

  7. Microstructural evolution of Alloy 690 during sensitization at 700 deg. C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Rodriguez, J.G.; Casales, M.; Espinoza Medina, M.A.

    2003-12-15

    A structural characterization of sensitized Alloy 690 has been carried out. Alloy 690 was solution annealed (SA; 1100 deg. C for 30 min, water quenched, WQ) and sensitized at 700 deg. C for 5, 12, 24, 36, 48 and 72 h, followed by water quenched. Techniques employed included scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction and corrosion weight-loss tests. It was found that the cubic Cr{sub 0.19}Fe{sub 0.7}Ni{sub 0.11} phase was the main component in all the conditions. In addition, a grain refinement was observed when the aging time was increased; but after 48 h of aging,more » a discrete, semicontinuous network of Cr{sub 23}C{sub 6} precipitates was detected by X-ray diffraction, in addition to the NiCrO{sub 4}, Ni{sub 9}S{sub 8} and (Fe,Ni){sub 9}S{sub 8} phases found by TEM at the grain boundaries, making this alloy more susceptible to intergranular attack (IGA). After 72 h of aging, chromium continues diffusing, 'back-filling' the prior depletion profile, recovering the IGA resistance.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, P.C.; Gronenborn, A.M.; Beress, L.

    The three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata has been determined on the basis of 489 interproton and 24 hydrogen-bonding distance restraints supplemented by 23 {phi} backbone and 21 {sub {chi}1} side-chain torsion angle restraints derived from nuclear magnetic resonance (NMR) measurements. A total of 42 structures is calculated by a hybrid metric matrix distance geometry-dynamical simulated annealing approach. Both the backbone and side-chain atom positions are well defined. The average atomic rms difference between the 42 individual SA structures and the mean structure obtained by averaging their coordinates is 0.67more » {plus minus} 0.12 {angstrom} for the backbone atoms and 0.90 {plus minus} 0.17 {angstrom} for all atoms. The core of the protein is formed by a triple-stranded antiparallel {beta}-sheet composed of residues 14-16 (strand 1), 30-34 (strand 2), and 37-41 (strand 3) with an additional mini-antiparallel {beta}-sheet at the N-terminus (residues 6-9). The first and second strands of the triple-stranded antiparallel {beta}-sheet are connected by a long exposed loop. A number of side-chain interactions are discussed in light of the structure.« less

  9. Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Zhang, Guogang; Dong, Jinlong; Liu, Wanying; Geng, Yingsan

    2014-07-01

    In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadayyon, Ghazal; Mazinani, Mohammad; Guo, Yina

    Martensitic evolution in Ti-rich NiTi alloy, Ti50.5Ni49.5, has been investigated as a function of annealing, solution treatment and a combination thereof and a detailed electron microscopic investigation carried out. Self-accommodated martensite plates resulted in all heat treated samples. Martensitic < 011 > type II twins, which are common in NiTi shape memory alloys, was found in both as-received and heat-treated samples. Solution treated samples, additionally, showed {11-1} type I twinning was also found in samples that have been annealed after solution-treatment. Another common feature of the microstructure in both as-received and heat treated samples is the formation of Ti{sub 2}Nimore » precipitates. The size, number and dispersions of these precipitates can be controlled by resorting to a suitable heat treatment e.g. solution treatment.« less

  11. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  12. Influence of processing in mercury and selenium vapor on the electrical properties of Cd /SUB x/ Hg /SUB 1-x/ Se, Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavaleshko, N.P.; Khomyak, V.V.; Makogonenko, V.N.

    1985-12-01

    In order to determine the predominant intrinsic point defects in Cd /SUB x/ Hg /SUB 1-x/ Se and Zn /SUB x/ Hg /SUB 1-x/ Se solid solutions, the authors study the influence of annealing in mercury and selenium vapor on the carrier concentration and mobility. When the specimens are annealed in selenium vapor the electron concentration at first increases and then becomes constant. A theoretical analysis of the results obtained indicate that selenium vacancies are the predominant point defects in the solutions, and that the process of defect formation itself is quasiepitaxial.

  13. Structure and microhardness of Al-Si-Cu-Ni alloy after severe plastic deformation and high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Shvets, Karina; Khalikova, Gulnara; Korznikova, Elena; Trifonov, Vadim

    2015-10-01

    The effect of severe plastic deformation by high-pressure torsion (HPT) and subsequent annealing on the microstructure and microhardness of squeeze casting Al-22%Si-3%Cu-1.7%Ni alloy was investigated. HPT was performed at room temperature with 5 rotations under the pressure of 4 GPa. Annealing temperature range varied from 300 to 500°C for 5 min. HPT resulted in refinement and partial dissolution of the primary silicon and intermetallic particles in aluminum matrix and structure fragmentation that caused the microhardness increase. Subsequent annealing lead to the decomposition of the supersaturated solid solution that took place simultaneously with recovery and recrystallization of the fragmented structure. Increase of annealing temperature resulted in decrease of microhardness values.

  14. Nanocellulose-alginate hydrogel for cell encapsulation.

    PubMed

    Park, Minsung; Lee, Dajung; Hyun, Jinho

    2015-02-13

    TEMPO-oxidized bacterial cellulose (TOBC)-sodium alginate (SA) composites were prepared to improve the properties of hydrogel for cell encapsulation. TOBC fibers were obtained using a TEMPO/NaBr/NaClO system at pH 10 and room temperature. The fibrillated TOBCs mixed with SA were cross-linked in the presence of Ca(2+) solution to form hydrogel composites. The compression strength and chemical stability of the TOBC/SA composites were increased compared with the SA hydrogel, which indicated that TOBC performed an important function in enhancing the structural, mechanical and chemical stability of the composites. Cells were successfully encapsulated in the TOBC/SA composites, and the viability of cells was investigated. TOBC/SA composites can be a potential candidate for cell encapsulation engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects

    NASA Astrophysics Data System (ADS)

    Yu, Xiang; Zhang, Youmin

    2015-04-01

    Unmanned Aircraft Systems (UASs) are becoming ever more promising over the last decade. The Sense and Avoid (S&A) system plays a profoundly important role in integrating UASs into the National Airspace System (NAS) with reliable and safe operations. After analyzing the manner of S&A system, this paper systematically presents an overview on the recent progress in S&A technologies in the sequence of fundamental functions/components of S&A in sensing techniques, decision making, path planning, and path following. The approaches to these four aspects are outlined and summarized, based on which the existing challenges and potential solutions are highlighted for facilitating the development of S&A systems.

  16. Effect of aging heat time and annealing temperature on the properties of nanocrystalline tin dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kadhim, Imad H.; Abu Hassan, H.

    2017-04-01

    Nanocrystalline tin dioxide (SnO2) thin films have been successfully prepared by sol-gel spin-coating technique on p-type Si (100) substrates. A stable solution was prepared by mixing tin(II) chloride dihydrate, pure ethanol, and glycerin. Temperature affects the properties of SnO2 thin films, particularly the crystallite size where the crystallization of SnO2 with tetragonal rutile structure is achieved when thin films that prepared under different aging heat times are annealed at 400∘C. By increasing aging heat time in the presence of annealing temperatures the FESEM images indicated that the thickness of the fabricated film was directly proportional to solution viscosity, increasing from approximately 380 nm to 744 nm, as well as the crystallization of the thin films improved and reduced defects.

  17. Effect of annealing temperature on structural, morphological and electrical properties of nanoparticles TiO{sub 2} thin films by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muaz, A. K. M.; Hashim, U., E-mail: uda@unimap.edu.my; Arshad, M. K. Md.

    2016-07-06

    In this paper, the sol-gel method is used to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films at different annealing temperature. The prepared sol was deposited on the p-SiO{sub 2} substrates by spin coating technique under room temperature. The nanoparticles TiO{sub 2} solution was synthesized using Ti{OCH(CH_3)_2}{sub 4} as a precursor with an methanol solution at a molar ratio 1:10. The prepared TiO{sub 2} sols will further validate through structural, morphological and electrical properties. From the X-ray diffraction (XRD) analysis, as-deposited films was found to be amorphous in nature and tend to transform into tetragonal anatase and rutile phase asmore » the films annealed at 573 and 773 K, respectively. The diversification of the surface roughness was characterized by atomic force microscopy (AFM) indicated the roughness and thickness very dependent on the annealing temperature. The two-point probe electrical resistance and conductance of nanoparticles TiO{sub 2} thin films were determined by the DC current-voltage (IV) analysis. From the I-V measurement, the electrical conductance increased as the films annealed at higher temperature.« less

  18. Maximum-Entropy Inference with a Programmable Annealer

    PubMed Central

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-01-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311

  19. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.)

    PubMed Central

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R.

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them. PMID:25400645

  20. Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.

    Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.

  1. Simulated annealing algorithm for solving chambering student-case assignment problem

    NASA Astrophysics Data System (ADS)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  2. Room temperature magnetization in Co-doped anatase phase of TiO2

    NASA Astrophysics Data System (ADS)

    Karimipour, Masoud; Mageto, Maxwel Joel; Etefagh, Reyhaneh; Azhir, Elahe; Mwamburi, Mghendi; Topalian, Zareh

    2013-01-01

    CoxTi1-xO2 films were deposited by spray pyrolysis technique on Si(1 0 0) substrates at 475 °C. A hydro-alcoholic solution containing titanium (iv) isopropoxide and Co(NO3)2 with various Co doping levels from x = 0-0.015 in solution was used as spray solution. Grazing incident angle of X-ray diffraction illustrates that the CoxTi1-xO2 films are single phase and polycrystal with mixed orientations. Study of surface morphology of the films by atomic force microscope reveals that the annealing atmosphere does not significantly affect the grain size and the microstructure of the films. This study provides further insight into the importance of annealing atmosphere on magnetization of the films. Room temperature magneto-optical Kerr measurement was employed in polar mode. A hysteresis loop and a paramagnetic behavior have been recorded for samples annealed in H2 ambient gas and air, respectively. Chemical composition analysis by X-ray photo-electron spectroscopy showed that Co atoms are bounded to oxygen and no metallic clusters are present. Moreover, it indicates the formation of high spin Co2+ for the sample x = 0.008 annealed in H2 ambient gas. The origin of magnetization can be attributed to the contribution of oxygen vacancies in the spin polarization of the structure.

  3. Microstructural evolution and magnetic properties of ultrafine solute-atom particles formed in a Cu75-Ni20-Fe5 alloy on isothermal annealing

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Seop; Takeda, Mahoto; Bae, Dong-Sik

    2016-12-01

    Microstructural features strongly affect magnetism in nano-granular magnetic materials. In the present work we have investigated the relationship between the magnetic properties and the self-organized microstructure formed in a Cu75-Ni20-Fe5 alloy comprising ferromagnetic elements and copper atoms. High resolution transmission electron microscopy (HRTEM) observations showed that on isothermal annealing at 873 K, nano-scale solute (Fe,Ni)-rich clusters initially formed with a random distribution in the Cu-rich matrix. Superconducting quantum interference device (SQUID) measurements revealed that these ultrafine solute clusters exhibited super-spinglass and superparamagnetic states. On further isothermal annealing the precipitates evolved to cubic or rectangular ferromagnetic particles and aligned along the <100> directions of the copper-rich matrix. Electron energy-band calculations based on the first-principle Korringa-Kohn-Rostocker (KKR) method were also implemented to investigate both the electronic structure and the magnetic properties of the alloy. Inputting compositions obtained experimentally by scanning transmission electron microscopy-electron dispersive X-ray spectroscopy (STEM-EDS) analysis, the KKR calculation confirmed that ferromagnetic precipitates (of moment 1.07μB per atom) formed after annealing for 2 × 104 min. Magneto-thermogravimetric (MTG) analysis determined with high sensitivity the Curie temperatures and magnetic susceptibility above room temperature of samples containing nano-scale ferromagnetic particles.

  4. Attachment of 3-(Aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature.

    PubMed

    Pasternack, Robert M; Rivillon Amy, Sandrine; Chabal, Yves J

    2008-11-18

    Parameters important to the self-assembly of 3-(aminopropyl)triethoxysilane (APTES) on chemically grown silicon oxide (SiO 2) to form an aminopropyl silane (APS) film have been investigated using in situ infrared (IR) absorption spectroscopy. Preannealing to approximately 70 degrees C produces significant improvements in the quality of the film: the APS film is denser, and the Si-O-Si bonds between the molecules and the SiO 2 surface are more structured and ordered with only a limited number of remaining unreacted ethoxy groups. In contrast, post-annealing the functionalized SiO 2 samples after room temperature reaction with APTES (i.e., ex situ annealing) does not lead to any spectral change, suggesting that post-annealing has no strong effect on the horizontal polymerization as suggested earlier. Both IR and ellipsometry data show that the higher the solution temperature, the denser and thinner the APS layer is for a given immersion time. Finally, the APS layer obtained by preannealing the solution at 70 degrees C exhibits a better stability in deionized water than the APS layer prepared at room temperature.

  5. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.

    PubMed

    Zhao, J T; Zhang, J Y; Hou, Z Q; Wu, K; Feng, X B; Liu, G; Sun, J

    2018-05-11

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu-W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C-600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu-W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu-W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu-W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu-W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu-W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  6. Improvement of photovoltaic performance of the inverted planar perovskite solar cells by using CH3NH3PbI3-xBrx films with solvent annealing

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Zhang, Weijia; Ma, Denghao; Jiang, Zhaoyi; Fan, Zhiqiang; Ma, Qiang; Xi, Yilian

    2018-01-01

    In this paper, the CH3NH3PbI3-xBrx films with various Br-doping contents were successfully prepared by solution processed deposition and followed by annealing process. This method simultaneously modified the morphology and composition of the CH3NH3PbI3 film. The effects of annealing treatment of CH3NH3PbI3-xBrx films under N2 and DMSO conditions on the microstructure of films and photoelectric properties of the solar cells were systematically investigated. The relationship of the component ratio of RBr/I= CH3NH3PbI3-xBrx/CH3NH3PbI3 in the resulting perovskite versus CH3NH3Br concentration also was explored. The results revealed that the CH3NH3PbI3-xBrx films annealed under DMSO exhibited increased grain sizes, enhanced crystallinity, enlarged bandgap and reduced defect density compared with that of the N2 annealing. It also was found that the RBr/I linearly increased in the resulting perovskite with the increased of CH3NH3Br concentration in the methylammonium halide mixture solutions. Furthermore, the photovoltaic performances of devices fabricated using DMSO precursor solvent were worse than that of DMF under N2 annealing atmosphere. When CH3NH3Br concentration was 7.5 mg ml-1, the planar perovskite solar cell based on CH3NH3PbI3-xBrx annealed under DMSO showed the best efficiency of 13.7%.

  7. Effects on external quantum efficiency of electrochemically constructed n-ZnO/p-Cu2O photovoltaic device by annealing

    NASA Astrophysics Data System (ADS)

    Khoo, Pei Loon; Kikkawa, Yuuki; Shinagawa, Tsutomu; Izaki, Masanobu

    2017-07-01

    Cuprous oxide (Cu2O), a terrestrial abundant, low cost, nontoxic, intrinsically p-type oxide semiconductor with bandgap energy of about 2eV, has recently received increasing attention as a light absorbing layer in solar cells. However, the performances of electrochemically constructed Cu2O solar devices are poor compared to the theoretical power conversion efficiency. This research was conducted focusing on the EQE performance, which is closely related to the short circuit current of a solar device. ZnO/Cu2O-PV-devices were constructed electrochemically with 3-electrode cell on Ga:ZnO/SLG substrates; ZnO layers were deposited from an aqueous solution of 8 mmolL-1 zinc nitrate hexahydrate at 63°C, 0.01 Coulomb cm-2, and -0.8V, while Cu2O layers were deposited from aqueous solution containing 0.4 molL-1 copper (II) acetate monohydrate (pH12.5), at 40°C, 1.5 Coulomb cm-2, and -0.4V. Devices were then annealed under different temperatures of 150°C, 200°C, 250°C, and 300°C for 60 minutes with a Rapid Thermal Anneal furnace (RTA). The EQE of the devices were measured with a spectral sensitivity device and compared to the non-annealed device. Further studies were made such as morphology observation of the films by FE-SEM and measurements of X-ray diffraction patterns. Annealed samples showed improved maximum EQE at 150-200°C of annealing, indicating that EQE above 90% can be achieved, proving the validity of EQE improvement via low temperature annealing method for thin film Cu2O photovoltaic devices.

  8. Controlling CH3NH3PbI(3-x)Cl(x) Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells.

    PubMed

    Liu, Dong; Wu, Lili; Li, Chunxiu; Ren, Shengqiang; Zhang, Jingquan; Li, Wei; Feng, Lianghuan

    2015-08-05

    The methylammonium lead halide perovskite solar cells have become very attractive because they can be prepared with low-cost solution-processable technology and their power conversion efficiency have been increasing from 3.9% to 20% in recent years. However, the high performance of perovskite photovoltaic devices are dependent on the complicated process to prepare compact perovskite films with large grain size. Herein, a new method is developed to achieve excellent CH3NH3PbI3-xClx film with fine morphology and crystallization based on one step deposition and two-step annealing process. This method include the spin coating deposition of the perovskite films with the precursor solution of PbI2, PbCl2, and CH3NH3I at the molar ratio 1:1:4 in dimethylformamide (DMF) and the post two-step annealing (TSA). The first annealing is achieved by solvent-induced process in DMF to promote migration and interdiffusion of the solvent-assisted precursor ions and molecules and realize large size grain growth. The second annealing is conducted by thermal-induced process to further improve morphology and crystallization of films. The compact perovskite films are successfully prepared with grain size up to 1.1 μm according to SEM observation. The PL decay lifetime, and the optic energy gap for the film with two-step annealing are 460 ns and 1.575 eV, respectively, while they are 307 and 327 ns and 1.577 and 1.582 eV for the films annealed in one-step thermal and one-step solvent process. On the basis of the TSA process, the photovoltaic devices exhibit the best efficiency of 14% under AM 1.5G irradiation (100 mW·cm(-2)).

  9. The W alloying effect on thermal stability and hardening of nanostructured Cu–W alloyed thin films

    NASA Astrophysics Data System (ADS)

    Zhao, J. T.; Zhang, J. Y.; Hou, Z. Q.; Wu, K.; Feng, X. B.; Liu, G.; Sun, J.

    2018-05-01

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu–W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C–600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu–W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu–W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu–W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu–W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu–W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  10. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comparative study of selenite adsorption on carbon based adsorbents and activated alumina.

    PubMed

    Jegadeesan, G; Mondal, K; Lalvani, S B

    2003-08-01

    The sorption characteristics of carbon-based adsorbents such as activated carbon and chitin for the removal of selenite, Se (IV), an anionic, hazardous contaminant, are compared with those of alpha and gamma alumina. Batch experiments were conducted to determine the influence of pH, concentration of adsorbate, adsorbent loading and temperature on the sorption characteristics of the adsorbents. Generally, low pH of the solution resulted in favorable selenium removal. With the exception of activated carbon, uptakes decreased with increase in temperature. In comparison, chitin was found to be far less effective for the removal of Se (IV) from aqueous solutions. The data also showed that gamma alumina provided higher selenium removal percentages (99%) compared to alpha alumina (94%), activated carbon (87%) and chitin (49%). The selenite removal was found to decrease with increasing initial Se (IV) concentration in the solution. Adsorption capacities of the adsorbents are reported in terms of their Langmuir adsorption isotherms. The adsorption capacity (on unit mass basis) of the adsorbents for selenite is in the order: chitin (specific area (sa) = 9.58 m2 g(-1)) < activated carbon (sa = 96.37 m2 g(-1)) < alpha alumina (sa = 6 m2 g(-1)) < gamma alumina (sa = 150 m2 g(-1)).

  12. Prediction of Flood Warning in Taiwan Using Nonlinear SVM with Simulated Annealing Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, C.

    2013-12-01

    The issue of the floods is important in Taiwan. It is because the narrow and high topography of the island make lots of rivers steep in Taiwan. The tropical depression likes typhoon always causes rivers to flood. Prediction of river flow under the extreme rainfall circumstances is important for government to announce the warning of flood. Every time typhoon passed through Taiwan, there were always floods along some rivers. The warning is classified to three levels according to the warning water levels in Taiwan. The propose of this study is to predict the level of floods warning from the information of precipitation, rainfall duration and slope of riverbed. To classify the level of floods warning by the above-mentioned information and modeling the problems, a machine learning model, nonlinear Support vector machine (SVM), is formulated to classify the level of floods warning. In addition, simulated annealing (SA), a probabilistic heuristic algorithm, is used to determine the optimal parameter of the SVM model. A case study of flooding-trend rivers of different gradients in Taiwan is conducted. The contribution of this SVM model with simulated annealing is capable of making efficient announcement for flood warning and keeping the danger of flood from residents along the rivers.

  13. Microstructure and magnetic behavior of Cu-Co-Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.

    2017-03-01

    Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  14. Adaptive multiple super fast simulated annealing for stochastic microstructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Seun; Lin, Guang; Sun, Xin

    2013-01-01

    Fast image reconstruction from statistical information is critical in image fusion from multimodality chemical imaging instrumentation to create high resolution image with large domain. Stochastic methods have been used widely in image reconstruction from two point correlation function. The main challenge is to increase the efficiency of reconstruction. A novel simulated annealing method is proposed for fast solution of image reconstruction. Combining the advantage of very fast cooling schedules, dynamic adaption and parallelization, the new simulation annealing algorithm increases the efficiencies by several orders of magnitude, making the large domain image fusion feasible.

  15. Recognition of partially occluded threat objects using the annealed Hopefield network

    NASA Technical Reports Server (NTRS)

    Kim, Jung H.; Yoon, Sung H.; Park, Eui H.; Ntuen, Celestine A.

    1992-01-01

    Recognition of partially occluded objects has been an important issue to airport security because occlusion causes significant problems in identifying and locating objects during baggage inspection. The neural network approach is suitable for the problems in the sense that the inherent parallelism of neural networks pursues many hypotheses in parallel resulting in high computation rates. Moreover, they provide a greater degree of robustness or fault tolerance than conventional computers. The annealed Hopfield network which is derived from the mean field annealing (MFA) has been developed to find global solutions of a nonlinear system. In the study, it has been proven that the system temperature of MFA is equivalent to the gain of the sigmoid function of a Hopfield network. In our early work, we developed the hybrid Hopfield network (HHN) for fast and reliable matching. However, HHN doesn't guarantee global solutions and yields false matching under heavily occluded conditions because HHN is dependent on initial states by its nature. In this paper, we present the annealed Hopfield network (AHN) for occluded object matching problems. In AHN, the mean field theory is applied to the hybird Hopfield network in order to improve computational complexity of the annealed Hopfield network and provide reliable matching under heavily occluded conditions. AHN is slower than HHN. However, AHN provides near global solutions without initial restrictions and provides less false matching than HHN. In conclusion, a new algorithm based upon a neural network approach was developed to demonstrate the feasibility of the automated inspection of threat objects from x-ray images. The robustness of the algorithm is proved by identifying occluded target objects with large tolerance of their features.

  16. Rapid 3D Printing of Multifunctional Calcium Alginate Gel Pipes using Coaxial Jet Extruder

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Damle, Viraj

    2014-11-01

    Calcium alginate (CA) forms when solution containing sodium alginate (SA) comes in contact with a CaCl2 solution. The resulting gel is biocompatible as well as edible and is used in production of bio-scaffolds, artificial plant seeds, and edible substances. In the latter application, referred to in the culinary world as ``spherification,'' flavored liquids are mixed with the SA and dripped into CaCl2 solution to form gel encapsulated flavored ``marbles.'' Previously, crude 3D printing of CA structures has been achieved by stacking of such flavored liquid filled marbles. In turn, solid CA rods have been fabricated by properly mixing flow of the two solutions using a microfluidic device. Here we show that by using two circular cross-section coaxial nozzles to produce coaxial jets of the SA and CaCl2 solutions, liquid filled CA micro-to-mili scale gel pipes can be produced at speeds around ~ 150 mm/s. Such extrusion rate is compatible with most commercially available 3D printers, facilitating adoption of the CA pipe coaxial jet extruder. Here, the impact of inner and outer liquid properties and flow speeds on the gel pipe extrusion process is discussed. KR acknowledges startup funding from ASU.

  17. Acid Solutions for Etching Corrosion-Resistant Metals

    NASA Technical Reports Server (NTRS)

    Simmons, J. R.

    1982-01-01

    New study characterized solutions for etching austenitic stainless steels, nickel-base alloys, and titanium alloys (annealed). Solutions recommended for use remove at least 0.4 mil of metal from surface in less than an hour. Solutions do not cause intergranular attack on metals for which they are effective, when used under specified conditions.

  18. Solution-Based Synthesis of Crystalline Silicon from Liquid Silane through Laser and Chemical Annealing

    DOE PAGES

    Iyer, Ganjigunte R. S.; Hobbie, Erik K.; Guruvenket, Srinivasan; ...

    2012-05-23

    We report a solution process for the synthesis of crystalline silicon from the liquid silane precursor cyclohexasilane (Si 6H 12). Polysilane films were crystallized through thermal and laser annealing, with plasma hydrogenation at atmospheric pressure generating further structural changes in the films. The evolution from amorphous to microcrystalline is characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and impedance spectroscopy. A four-decade enhancement in the electrical conductivity is attributed to a disorder-order transition in a bonded Si network. Lastly, our results demonstrate a potentially attractive approach that employs a solution process coupled with ambient post-processing tomore » produce crystalline silicon thin films.« less

  19. Robust quantum optimizer with full connectivity.

    PubMed

    Nigg, Simon E; Lörch, Niels; Tiwari, Rakesh P

    2017-04-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation.

  20. Ionizing radiation induced degradation of salicylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Mendoza, Edith

    2018-06-01

    The radiation-induced degradation of salicylic acid (SA-) in aqueous solutions (1.0 and 0.1 mmol dm-3) saturated with N2O or air or without oxygen were studied. Irradiation was carried out using a cobalt-60 source. With a 1 mmol dm-3 solution saturated with N2O a seemingly total degradation occurred at about 18 kGy, although small quantities of 2,3-dihydroxybenzoic acid, catechol and 2,5-dihydroxybenzoic acid were present at that dose at concentrations of 67, 22 and 6 μmol dm-3 respectively. Under air and when free oxygen, the three radiolytic products were present at 18.54 kGy while SA- was destroyed only to 90% and 62%, respectively. In the case of 0.1 mmol dm-3 SA- solutions, the acid was degraded at 3.5 kGy if the solution contained N2O, at 5.8 kGy in air and at 7 kGy without oxygen. The concentration of the radiolytic products increased with increasing dose and after a maximum they decreased. The oxidation was followed by measuring the chemical oxygen demand; the slopes were 0.48 and 0.11, 0.21 and 0.07, 0.15 and 0.03 mmol dm-3 kGy-1 for 1.0 and 0.10 mmol dm-3 solutions saturated with N2O or air or without oxygen, respectively.

  1. 78 FR 49769 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Telemanagement Forum

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... the Attorney General and the Federal Trade Commission disclosing changes in its membership. The...; Innova Bilisim Cozumleri, Maslak, TURKEY; Intelli Solutions S.A., Athens, GREECE; International IT House..., GERMANY; Synopsis S.A., Lima, PERU; Trendium, Boulder, CO; University of Witwatersrand, School of...

  2. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.

    PubMed

    Huang, Heh-Chang; Hsieh, Tsung-Eong

    2010-07-23

    ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).

  3. Using Optimisation Techniques to Granulise Rough Set Partitions

    NASA Astrophysics Data System (ADS)

    Crossingham, Bodie; Marwala, Tshilidzi

    2007-11-01

    This paper presents an approach to optimise rough set partition sizes using various optimisation techniques. Three optimisation techniques are implemented to perform the granularisation process, namely, genetic algorithm (GA), hill climbing (HC) and simulated annealing (SA). These optimisation methods maximise the classification accuracy of the rough sets. The proposed rough set partition method is tested on a set of demographic properties of individuals obtained from the South African antenatal survey. The three techniques are compared in terms of their computational time, accuracy and number of rules produced when applied to the Human Immunodeficiency Virus (HIV) data set. The optimised methods results are compared to a well known non-optimised discretisation method, equal-width-bin partitioning (EWB). The accuracies achieved after optimising the partitions using GA, HC and SA are 66.89%, 65.84% and 65.48% respectively, compared to the accuracy of EWB of 59.86%. In addition to rough sets providing the plausabilities of the estimated HIV status, they also provide the linguistic rules describing how the demographic parameters drive the risk of HIV.

  4. Applications of Monte Carlo method to nonlinear regression of rheological data

    NASA Astrophysics Data System (ADS)

    Kim, Sangmo; Lee, Junghaeng; Kim, Sihyun; Cho, Kwang Soo

    2018-02-01

    In rheological study, it is often to determine the parameters of rheological models from experimental data. Since both rheological data and values of the parameters vary in logarithmic scale and the number of the parameters is quite large, conventional method of nonlinear regression such as Levenberg-Marquardt (LM) method is usually ineffective. The gradient-based method such as LM is apt to be caught in local minima which give unphysical values of the parameters whenever the initial guess of the parameters is far from the global optimum. Although this problem could be solved by simulated annealing (SA), the Monte Carlo (MC) method needs adjustable parameter which could be determined in ad hoc manner. We suggest a simplified version of SA, a kind of MC methods which results in effective values of the parameters of most complicated rheological models such as the Carreau-Yasuda model of steady shear viscosity, discrete relaxation spectrum and zero-shear viscosity as a function of concentration and molecular weight.

  5. 3D-Web-GIS RFID location sensing system for construction objects.

    PubMed

    Ko, Chien-Ho

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.

  6. 3D-Web-GIS RFID Location Sensing System for Construction Objects

    PubMed Central

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency. PMID:23864821

  7. An improved grey wolf optimizer algorithm for the inversion of geoelectrical data

    NASA Astrophysics Data System (ADS)

    Li, Si-Yu; Wang, Shu-Ming; Wang, Peng-Fei; Su, Xiao-Lu; Zhang, Xin-Song; Dong, Zhi-Hui

    2018-05-01

    The grey wolf optimizer (GWO) is a novel bionics algorithm inspired by the social rank and prey-seeking behaviors of grey wolves. The GWO algorithm is easy to implement because of its basic concept, simple formula, and small number of parameters. This paper develops a GWO algorithm with a nonlinear convergence factor and an adaptive location updating strategy and applies this improved grey wolf optimizer (improved grey wolf optimizer, IGWO) algorithm to geophysical inversion problems using magnetotelluric (MT), DC resistivity and induced polarization (IP) methods. Numerical tests in MATLAB 2010b for the forward modeling data and the observed data show that the IGWO algorithm can find the global minimum and rarely sinks to the local minima. For further study, inverted results using the IGWO are contrasted with particle swarm optimization (PSO) and the simulated annealing (SA) algorithm. The outcomes of the comparison reveal that the IGWO and PSO similarly perform better in counterpoising exploration and exploitation with a given number of iterations than the SA.

  8. Processing-optimised imaging of analog geological models by electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Ortiz Alemán, C.; Espíndola-Carmona, A.; Hernández-Gómez, J. J.; Orozco Del Castillo, MG

    2017-06-01

    In this work, the electrical capacitance tomography (ECT) technique is applied in monitoring internal deformation of geological analog models, which are used to study structural deformation mechanisms, in particular for simulating migration and emplacement of allochtonous salt bodies. A rectangular ECT sensor was used for internal visualization of analog geologic deformation. The monitoring of analog models consists in the reconstruction of permittivity images from the capacitance measurements obtained by introducing the model inside the ECT sensor. A simulated annealing (SA) algorithm is used as a reconstruction method, and is optimized by taking full advantage of some special features in a linearized version of this inverse approach. As a second part of this work our SA image reconstruction algorithm is applied to synthetic models, where its performance is evaluated in comparison to other commonly used algorithms such as linear back-projection and iterative Landweber methods. Finally, the SA method is applied to visualise two simple geological analog models. Encouraging results were obtained in terms of the quality of the reconstructed images, as interfaces corresponding to main geological units in the analog model were clearly distinguishable in them. We found reliable results quite useful for real time non-invasive monitoring of internal deformation of analog geological models.

  9. Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique

    NASA Astrophysics Data System (ADS)

    Raship, N. A.; Sahdan, M. Z.; Adriyanto, F.; Nurfazliana, M. F.; Bakri, A. S.

    2017-01-01

    Copper oxide films were grown on silicon substrates by sol-gel dip coating method. In order to study the effects of annealing temperature on the properties of copper oxide films, the temperature was varied from 200 °C to 450 °C. In the process of dip coating, the substrate is withdrawn from the precursor solution with uniform velocity to obtain a uniform coating before undergoing an annealing process to make the copper oxide film polycrystalline. The physical properties of the copper oxide films were measured by an X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), an atomic force microscopy (AFM) and a four point probe instrument. From the XRD results, we found that pure cuprite (Cu2O) phase can be obtained by annealing the films annealed at 200 °C. Films annealed at 300 °C had a combination phase which consists of tenorite (CuO) and cuprite (Cu2O) phase while pure tenorite (CuO) phase can be obtained at 450 °C annealing temperature. The surface microstructure showed that the grains size is increased whereas the surface roughness is increased and then decreases by increasing in annealing temperature. The films showed that the resistivity decreased with increasing annealing temperature. Consequently, it was observed that annealing temperature has strong effects on the structural, morphological and electrical properties of copper oxide films.

  10. Comparative study of buffered 50% glycolic acid (pH 3.0) + 0.5% salicylic acid solution vs Jessner's solution in patients with acne vulgaris.

    PubMed

    In Jae, Jeong; Dong Ju, Hyun; Dong Hyun, Kim; Yoon, Moon Soo; Lee, Hee Jung

    2017-11-21

    Superficial chemical peels are frequently used in acne vulgaris treatment. Although glycolic acid (GA) has been widely used in clinical practice, its pH ranges from 0.08-2.75 and thus should be neutralized after application to avoid burns. To evaluate treatment efficacy and safety of chemical peeling using buffered 50% GA (pH 3.0) + 0.5% salicylic acid (SA) solution that does not need to be neutralized in the treatment of acne vulgaris compared to the conventional peeling using Jessner's solution. We performed a prospective, randomized, evaluator-blind, split-face clinical trial. Twenty patients were randomized by assigning one side of each patient's face to receive a 50% GA (pH 3.0) + 0.5% SA peel (GA side) and the other side to receive the Jessner's solution (Jessner's solution side). All patients underwent 2 sessions of treatment spaced 2 weeks apart. Lesion count, acne severity, subjective efficacy assessment, and side effects were evaluated. The total lesion count was significantly reduced for the GA and Jessner's solution sides (P < .001). However, there was no significant difference in the total lesion count, acne severity, or subjective efficacy assessment between the 2 sides (P > .05). The GA side had fewer side effects than the Jessner's solution side. The results of this study suggest that chemical peeling using the 50% GA (pH 3.0) + 0.5% SA solution can be as effective and convenient as the conventional peeling using Jessner's solution in the treatment of acne vulgaris and may show fewer adverse events than the conventional peeling. © 2017 Wiley Periodicals, Inc.

  11. Effect of Annealing on the Density of Defects in Epitaxial CdTe (211)/GaAs

    NASA Astrophysics Data System (ADS)

    Bakali, Emine; Selamet, Yusuf; Tarhan, Enver

    2018-05-01

    CdTe thin films were grown on GaAs (211) wafers by molecular beam epitaxy as the buffer layer for HgCdTe infrared detector applications. We studied the effect of annealing on the density of dislocation of these CdTe thin films under varying annealing parameters such as annealing temperature, annealing duration, and number of cycles. Annealings were carried out using a homemade annealing reactor possessing a special heater element made of a Si wafer for rapid heating. The density of dislocations, which were made observable with a scanning electron microscope after etching with an Everson solution, were calculated by counting the number of dislocations per unit surface area, hence the term etch pit density (EPD). We were able to decrease EPD values by one order of magnitude after annealing. For example, the best EPD value after a 20-min annealing at 400°C was ˜ 2 × 107 cm-2 for a 1.63-μm CdTe thin film which was about 9.5 × 107 cm-2 before annealing. We also employed Raman scattering measurements to see the changes in the structural quality of the samples. From the Raman measurements, we were able to see improvements in the quality of our samples from the annealing by studying the ratio of 2LO/LO phonon mode Raman intensities. We also observed a clear decrease in the intensity of Te precipitations-related modes, indicating a decrease in the size and number of these precipitations.

  12. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    PubMed

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing.

    PubMed

    Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju

    2004-10-01

    Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.

  14. Morphology dependent amplified spontaneous emission in π-conjugated polymer

    NASA Astrophysics Data System (ADS)

    Wang, Yuchen; Yang, Xiao; Wang, Ruizhi; Li, Li; Li, Heng

    2015-08-01

    The amplified spontaneous emission (ASE) spectra of a π-conjugated polymer Poly [2-methoxy-5-(2‧-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) are studied in as-cast film, annealed film, 1 mg/ml solution and 2.5 mg/ml solution, respectively, using a 10 ns pulsed laser as an excitation source. We found that for annealed film (420 K), the ASE is hardly achieved compared to the as-cast film, which is consistent with the formation of the aggregation; whereas the film's temperature had much less effect on its ASE threshold. In solution, the ASE spectra show both 0-0 peak and 0-1 peak in 1 mg/ml solution, but only 0-1 peak in 2.5 mg/ml one. When the temperature of solution increases slightly from 300 K to 330 K, the ASE threshold increases dramatically in 1 mg/ml solution but slightly in 2.5 mg/ml one. Our results show the important role the morphology played in the ASE spectra in both film and solution. Therefore, controlling the interchain interaction in PCPs may be the key factor for performance of the organic lasers.

  15. Structural and Mössbauer characterization of the ball milled Fe x(Cr 2O 3) 1- x system

    NASA Astrophysics Data System (ADS)

    Biondo, Valdecir; de Medeiros, Suzana Nóbrega; Paesano, Andrea, Jr.; Ghivelder, Luis; Hallouche, Bachir; da Cunha, João Batista Marimon

    2009-08-01

    The Fe x(Cr 2O 3) 1- x system, with 0.10 ≤ X ≤ 0.80, was mechanically processed for 24 h in a high-energy ball-mill. In order to examine the possible formation of iron-chromium oxides and alloys, the milled samples were, later, thermally annealed in inert (argon) and reducing (hydrogen) atmospheres. The as-milled and annealed products were characterized by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy and magnetization. The as-milled samples showed the formation of an Fe 1+ YCr 2- YO 4- δ nanostructured and disordered spinel phase, the α 1-Fe(Cr) and α 2-Cr(Fe) solid solutions and the presence of non-exhausted precursors. For the samples annealed in inert atmosphere, the chromite (FeCr 2O 4) formation and the recrystallization of the precursors were verified. The hydrogen treated samples revealed the reduction of the spinel phase, with the phase separation of the chromia phase and retention of the Fe-Cr solid solutions. All the samples, either as-milled or annealed, presented the magnetization versus applied field curves typical for superparamagnetic systems.

  16. Ti{sub 2}AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabioch, Thierry, E-mail: Thierry.cabioch@univ-poitiers.fr; Alkazaz, Malaz; Beaufort, Marie-France

    2016-08-15

    Highlights: • Epitaxial thin films of the MAX phase Ti{sub 2}AlN are obtained by thermal annealing. • A new metastable (Ti,Al,N) solid solution with the structure of α-T is evidenced. • The formation of the MAX phase occurs at low temperature (600 °C). - Abstract: Single-phase Ti{sub 2}AlN thin films were obtained by annealing in vacuum of (Ti + Al)/AlN multilayers deposited at room temperature by magnetron sputtering onto single-crystalline (0001) 4H-SiC and (0001) Al{sub 2}O{sub 3} substrates. In-situ X-ray diffraction experiments combined with ex-situ cross-sectional transmission electron microscopy observations reveal that interdiffusion processes occur in the multilayer at amore » temperature of ∼400 °C leading to the formation of a (Ti, Al, N) solid solution, having the hexagonal structure of α-Ti, whereas the formation of Ti{sub 2}AlN occurs at 550–600 °C. Highly oriented (0002) Ti{sub 2}AlN thin films can be obtained after an annealing at 750 °C.« less

  17. Effects of different annealing atmospheres on the properties of cadmium sulfide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yücel, E., E-mail: dr.ersinyucel@gmail.com; Kahraman, S.; Güder, H.S.

    2015-08-15

    Graphical abstract: The effects of different annealing atmospheres (air and sulfur) on the structural, morphological and optical properties of CdS thin films were studied at three different pH values. - Highlights: • Compactness and smoothness of the films were enhanced after sulfur annealing. • Micro-strain values of some films were improved after sulfur annealing. • Dislocation density values of some films were improved after sulfur annealing. • Band gap values of the films were improved after sulfur annealing. - Abstract: Cadmium sulfide (CdS) thin films were prepared on glass substrates by using chemical bath deposition (CBD) technique. The effects ofmore » different annealing atmospheres (air and sulfur) on the structural, morphological and optical properties of CdS thin films were studied at three different pH values. Compactness and smoothness of the films (especially for pH 10.5 and 11) enhanced after sulfur annealing. pH value of the precursor solution remarkably affected the roughness, uniformity and particle sizes of the films. Based on the analysis of X-ray diffraction (XRD) patterns of the films, micro-strain and dislocation density values of the sulfur-annealed films (pH 10.5 and 11) were found to be lower than those of air-annealed films. Air-annealed films (pH 10.5, 11 and 11.5) exhibited higher transmittance than sulfur-annealed films in the wavelength region of 550–800 nm. Optical band gap values of the films were found between 2.31 eV and 2.36 eV.« less

  18. Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem

    PubMed Central

    Akutsah, Francis; Olusanya, Micheal O.; Adewumi, Aderemi O.

    2018-01-01

    The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems. PMID:29554662

  19. Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.

    PubMed

    Ezugwu, Absalom E; Akutsah, Francis; Olusanya, Micheal O; Adewumi, Aderemi O

    2018-01-01

    The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems.

  20. Epitaxial Stabilization of a-PbO2 Structure in MnF2 Layers on Si and GaP

    DTIC Science & Technology

    2001-06-01

    Before the epitaxy, the substrates were dipped in a HF solution and fixed on Si platelets with InGa eutectic . The crystalline quality of the substrates...15 keV. We used a recrystallization annealing (RA) in the 550-700’C range to improve the MnF2 film quality of some epitaxial structures grown at... recrystallization annealing. The inset in Fig. 1(a) shows the RHEED pattern of a 30 nm MnF2 film grown at 100°C and annealed at 550’C. Well-pronounced

  1. CdTe1-x S x (x  ⩽  0.05) thin films synthesized by aqueous solution deposition and annealing

    NASA Astrophysics Data System (ADS)

    Pruzan, Dennis S.; Hahn, Carina E.; Misra, Sudhajit; Scarpulla, Michael A.

    2017-11-01

    While CdS thin films are commonly deposited from aqueous solutions, CdTe thin films are extremely difficult to deposit directly from aqueous solution. In this work, we report on polycrystalline CdTe1-x S x thin films synthesized via deposition from aqueous precursor solutions followed by annealing treatments and on their physical properties. The deposition method uses spin-coating of alternating Cd2+ and Te2- aqueous solutions and rinse steps to allow formation of the films but to shear off excess reactants and poorly-bonded solids. Films are then annealed in the presence of CdCl2 as is commonly done for CdTe photovoltaic absorber layers deposited by any means. Scanning electron microscopy (SEM) reveals low void fractions and grain sizes up to 4 µm and x-ray diffraction (XRD) shows that the films are primarily cubic CdTe1-x S x (x  ⩽  0.05) with random crystallographic orientation. Optical transmission yields bandgap absorption consistent with a CdTe1-x S x dilute alloy and low-temperature photoluminescence (PL) consists of an emission band centered at 1.35 eV consistent with donor-acceptor pair (DAP) transitions in CdTe1-x S x . Together, the crystalline quality and PL yield from films produced by this method represent an important step towards electroless, ligand-free solution processed CdTe and related alloy thin films suitable for optoelectronic device applications such as thin film heterojunction or nanodipole-based photovoltaics.

  2. Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets.

    PubMed

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; Hu, Xi; Chen, An-wei; Wang, Ya-qin; Guo, Yi-Mming; Li, Ting-ting; Zhou, Lu; Liu, Shao-heng; Zeng, Xiao-xia

    2014-07-15

    Cd(II) has posed severe health risks worldwide. To remove this contaminant from aqueous solution, the sulfanilic acid-grafted magnetic graphene oxide sheets (MGOs/SA) were prepared and characterized. The mutual effects of Cd(II) and aniline adsorption on MGOs/SA were studied. The effects of operating parameters such as pH, ionic strength, contact time and temperature on the Cd(II) enrichment, as well as the adsorption kinetics and isotherm were also investigated. The results demonstrated that MGOs/SA could effectively remove Cd(II) and aniline from the aqueous solution and the two adsorption processes were strongly dependent on solution pH. The Cd(II) adsorption was reduced by the presence of aniline at pH<5.4 but was improved at pH>5.4. The presence of Cd(II) diminished the adsorption capacity for aniline at pH<7.8 but enhanced the aniline adsorption at pH>7.8. The decontamination of Cd(II) by MGOs/SA was influenced by ionic strength. Besides, the adsorption process could be well described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that the intraparticle diffusion was not the only rate-limiting step for the adsorption process. Moreover, the experimental data of isotherm followed the Freundlich isotherm model. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A comparison of a 5% potassium hydroxide solution with a 5-fluorouracil and salicylic acid combination in the treatment of patients with anogenital warts: a randomized, open-label clinical trial.

    PubMed

    Işik, Selda; Koca, Rafet; Sarici, Gülben; Altinyazar, Hilmi Cevdet

    2014-09-01

    Anogenital warts are caused by human papillomavirus (HPV), over 30 types of which are infectious for the anogenital tract. Without treatment, warts may regress spontaneously, remain unchanged, or increase in number and size. This study compared the efficacy of a topical 5% potassium hydroxide (KOH) solution with that of a topical 0.5% 5-fluorouracil (5-FU) and 10% salicylic acid (SA) combination in the treatment of anogenital warts. Sixty patients were randomly assigned to receive topical KOH or 5-FU + SA. Both groups demonstrated a significant decrease in numbers of lesions (P < 0.05), but this difference was not significant at week 12 (P > 0.05). The mean number of lesions decreased from baseline to week 12 from 17.03 ± 12.64 to 3.73 ± 7.30 and from 16.13 ± 12.97 to 3.10 ± 4.90 in the KOH and 5-FU + SA groups, respectively (P < 0.001). Excellent clearance was achieved by 70.0 and 76.7% of patients in the KOH and 5-FU + SA groups, respectively. Marked improvement was seen in 13.3 and 20.0% of patients in the KOH and 5-FU + SA groups, respectively. At week 16, relapse was observed in two patients in the KOH group and three in the 5-FU + SA group (P > 0.05). No serious adverse events were reported. Neither treatment was more efficacious. Safety and ease of application are important goals in treatments for anogenital warts. A 5% KOH solution is a promising alternative treatment because it is effective and inexpensive and causes minimal side effects. © 2014 The International Society of Dermatology.

  4. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing.

    PubMed

    Yang, Qian; Li, Jian; Xu, Heng; Long, Shijun; Li, Xuefeng

    2017-04-01

    A rapid prototyping technology, formed by three-dimensional (3-D) printing and then crosslinked by spraying Ca 2+ solution, is developed to fabricate a sodium alginate (SA) hydrogel scaffold. The porosity, swelling ratio, and compression modulus of the scaffold are investigated. A friction mechanism is developed by studying the reproducible friction behavior. Our results show that the scaffold can have 3-D structure with a porosity of 52%. The degree of swelling of the SA hydrogel scaffold is 8.5, which is nearly the same as bulk SA hydrogel. SA hydrogel exhibits better compressive resilience than bulk hydrogel despite its lower compressive modulus compared to bulk hydrogel. The SA hydrogel scaffold exhibits a higher frictional force at low sliding velocity (10 -6 to 10 -3  m/s) compared to bulk SA hydrogel, and they are equal at high sliding velocity (10 -2 to 1 m/s). For a small pressure (0.3 kPa), the SA hydrogel scaffold shows good friction reproducibility. In contrast, bulk SA hydrogel shows poor reproducibility with respect to friction behavior. The differences in friction behaviors between the SA hydrogel scaffold and bulk SA hydrogel are related to the structure of the scaffold, which can keep a stable hydrated lubrication layer.

  5. Enhanced performance of solution-processed organic thin-film transistors with a low-temperature-annealed alumina interlayer between the polyimide gate insulator and the semiconductor.

    PubMed

    Yoon, Jun-Young; Jeong, Sunho; Lee, Sun Sook; Kim, Yun Ho; Ka, Jae-Won; Yi, Mi Hye; Jang, Kwang-Suk

    2013-06-12

    We studied a low-temperature-annealed sol-gel-derived alumina interlayer between the organic semiconductor and the organic gate insulator for high-performance organic thin-film transistors. The alumina interlayer was deposited on the polyimide gate insulator by a simple spin-coating and 200 °C-annealing process. The leakage current density decreased by the interlayer deposition: at 1 MV/cm, the leakage current densities of the polyimide and the alumina/polyimide gate insulators were 7.64 × 10(-7) and 3.01 × 10(-9) A/cm(2), respectively. For the first time, enhancement of the organic thin-film transistor performance by introduction of an inorganic interlayer between the organic semiconductor and the organic gate insulator was demonstrated: by introducing the interlayer, the field-effect mobility of the solution-processed organic thin-film transistor increased from 0.35 ± 0.15 to 1.35 ± 0.28 cm(2)/V·s. Our results suggest that inorganic interlayer deposition could be a simple and efficient surface treatment of organic gate insulators for enhancing the performance of solution-processed organic thin-film transistors.

  6. Aqueous Solution-Phase Selenized CuIn(S,Se)2 Thin Film Solar Cells Annealed under Inert Atmosphere.

    PubMed

    Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Woo, Kyoohee; Moon, Jooho

    2015-10-14

    A nonvacuum solution-based approach can potentially be used to realize low cost, roll-to-roll fabrication of chalcopyrite CuIn(S,Se)2 (CISSe) thin film solar cells. However, most solution-based fabrication methods involve highly toxic solvents and inevitably require sulfurization and/or postselenization with hazardous H2S/H2Se gases. Herein, we introduce novel aqueous-based Cu-In-S and Se inks that contain an amine additive for producing a high-quality absorber layer. CISSe films were fabricated by simple deposition of Cu-In-S ink and Se ink followed by annealing under an inert atmosphere. Compositional and phase analyses confirmed that our simple aqueous ink-based method facilitated in-site selenization of the CIS layer. In addition, we investigated the molecular structures of our aqueous inks to determine how crystalline chalcopyrite absorber layers developed without sulfurization and/or postselenization. CISSe thin film solar cells annealed at 550 °C exhibited an efficiency of 4.55% under AM 1.5 illumination. The low-cost, nonvacuum method to deposit chalcopyrite absorber layers described here allows for safe and simple processing of thin film solar cells.

  7. HF treatment effect for carbon deposition on silicon (111) by DC sputtering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Darma, Y., E-mail: aji.ravazes70@gmail.com

    Surface modifications of Si (111) substrate by HF solution for thin film carbon deposition have been systematically studied. Thin film carbon on Si (111) has been deposited using DC Unbalanced Magnetron Sputtering with carbon pellet doped by 5% Fe as the target. EDAX characterization confirmed that the carbon fraction on Si substrate much higher by dipping a clean Si substrate by HF solution before sputtering process in comparison with carbon fraction on Si substrate just after conventional RCA. Moreover, SEM and AFM images show the uniform thin film carbon on Si with HF treatment, in contrast to the Si withoutmore » HF solution treatment. These experimental results suggest that HF treatment of Si surface provide Si-H bonds on top Si surface that useful to enhance the carbon deposition during sputtering process. Furthermore, we investigate the thermal stability of thin film carbon on Si by thermal annealing process up to 900 °C. Atomic arrangements during annealing process were characterized by Raman spectroscopy. Raman spectra indicate that thin film carbon on Si is remaining unchanged until 600 °C and carbon atoms start to diffuse toward Si substrate after annealing at 900 °C.« less

  8. Electrochemical Behavior Assessment of Micro- and Nano-Grained Commercial Pure Titanium in H2SO4 Solutions

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Ansari, Ali Reza; Mazaheri, Yousef; Karimi, Mohsen

    2017-02-01

    In this study, the electrochemical behavior of commercial pure titanium with both coarse-grained (annealed sample with the average grain size of about 45 µm) and nano-grained microstructure was compared by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis. Nano-grained Ti, which typically has a grain size of about 90 nm, is successfully made by six-cycle accumulative roll-bonding process at room temperature. Potentiodynamic polarization plots and impedance measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure Ti in H2SO4 solutions. Mott-Schottky analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and grain refinement did not change the semiconductor type of passive films. Also, Mott-Schottky analysis showed that the donor densities decreased as the grain size of the samples reduced. Finally, all electrochemical tests showed that the electrochemical behavior of the nano-grained sample was improved compared to that of annealed pure Ti, mainly due to the formation of thicker and less defective oxide film.

  9. Liquid Hydrogenation of Maleic Anhydride with Pd/C Catalyst at Low Pressure and Temperature in Batch Reactor.

    PubMed

    Kim, Ji Sun; Baek, Jae Ho; Ryu, Young Bok; Hong, Seong-Soo; Lee, Man Sig

    2015-01-01

    Succinic acid (SA) produced from hydrogenation of maleic anhydride (MAN) is used widely in manufacturing of pharmaceuticals, agrochemicals, surfactants and detergent, green solvent and biodegradable plastic. In this study, we performed that liquid hydrogenation of MAN to SA with 5 wt% Pd supported on activated carbon (Pd/C) at low pressure and temperature. The synthesis of SA was performed in aqueous solution while varying temperature, pressure, catalytic amount and agitation speed. We confirmed that the composition of the products consisting of SA, maleic acid (MA), fumaric acid (FA) and malic acid (MLA) depends on the process. The catalytic characteristics were analyzed by TGA, TEM.

  10. Determination of the Lowest-Energy States for the Model Distribution of Trained Restricted Boltzmann Machines Using a 1000 Qubit D-Wave 2X Quantum Computer.

    PubMed

    Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A

    2017-07-01

    The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.

  11. Burst annealing of high temperature GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  12. Proper Accounting for Surface Area to Solution Volume Ratios in Exaggerated Extractions.

    PubMed

    Jenke, Dennis R; Rabinow, Barrett E

    2017-01-01

    When drug products contact plastic manufacturing components, packaging systems, and/or delivery devices, leachables from the plastics can accumulate in the drug product, potentially affecting its key quality attributes. Given practical issues associated with screening drug products for leachables, potential leachables are frequently surfaced as extractables revealed in extraction studies. To facilitate extractables discovery and identification and to shorten extraction times, extraction studies can be exaggerated and/or accelerated. One means of exaggerating an extraction is to increase the test article's extracted surface area to extraction solution volume ratio (SA/V), as it is generally accepted that an extractable's concentration in an extract is proportional to SA/V in a 1 to 1 manner. However, as the relationship between an extractable's concentration and SA/V depends on the extractable's plastic/solvent partition coefficient (k p/l ), the effect of SA/V on the extractable's concentrations can be either under- or over-estimated if a 1 to 1 proportion is used. This article presents the theoretical relationship between SA/V, concentration, and k p/l ; illustrates theory with a case study; and suggests proper exaggeration strategies. LAY ABSTRACT: When drug products are manufactured, stored, or delivered in systems that contain plastics, substances can be leached from the plastics and remain in the drug product, where they might affect the product's key quality attributes. To discover and identify these leached substances, the plastics are extracted under laboratory conditions and the extracts are appropriately tested. To facilitate this process, extracts may be generated under laboratory conditions that exaggerate or accelerate the drug product's clinical conditions of manufacturing or use. The proper use of the ratio of the extracted item's surface area to the volume of the extracting solution as an exaggeration parameter is discussed in this paper. © PDA, Inc. 2017.

  13. Realtime mitigation of GPS SA errors using Loran-C

    NASA Technical Reports Server (NTRS)

    Braasch, Soo Y.

    1994-01-01

    The hybrid use of Loran-C with the Global Positioning System (GPS) was shown capable of providing a sole-means of enroute air radionavigation. By allowing pilots to fly direct to their destinations, use of this system is resulting in significant time savings and therefore fuel savings as well. However, a major error source limiting the accuracy of GPS is the intentional degradation of the GPS signal known as Selective Availability (SA). SA-induced position errors are highly correlated and far exceed all other error sources (horizontal position error: 100 meters, 95 percent). Realtime mitigation of SA errors from the position solution is highly desirable. How that can be achieved is discussed. The stability of Loran-C signals is exploited to reduce SA errors. The theory behind this technique is discussed and results using bench and flight data are given.

  14. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Seth, E-mail: seth.olsen@uq.edu.au

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant tomore » any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence-bond (CASVB) analysis of the charge/bond resonance electronic structure of a monomethine cyanine: Michler’s hydrol blue. The diabatic CASVB representation is shown to vary weakly for “temperatures” corresponding to visible photon energies. Canonical-ensemble SA-CASSCF enables the resolution of energies and couplings for all covalent and ionic CASVB structures contributing to the SA-CASSCF ensemble. The CASVB solution describes resonance of charge- and bond-localized electronic structures interacting via bridge resonance superexchange. The resonance couplings can be separated into channels associated with either covalent charge delocalization or chemical bonding interactions, with the latter significantly stronger than the former.« less

  15. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: charge-bond resonance in monomethine cyanines.

    PubMed

    Olsen, Seth

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed ("microcanonical") SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with "more diabatic than adiabatic" states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse "temperature," unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space valence-bond (CASVB) analysis of the charge/bond resonance electronic structure of a monomethine cyanine: Michler's hydrol blue. The diabatic CASVB representation is shown to vary weakly for "temperatures" corresponding to visible photon energies. Canonical-ensemble SA-CASSCF enables the resolution of energies and couplings for all covalent and ionic CASVB structures contributing to the SA-CASSCF ensemble. The CASVB solution describes resonance of charge- and bond-localized electronic structures interacting via bridge resonance superexchange. The resonance couplings can be separated into channels associated with either covalent charge delocalization or chemical bonding interactions, with the latter significantly stronger than the former.

  16. Simulated Stochastic Approximation Annealing for Global Optimization with a Square-Root Cooling Schedule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-06-13

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less

  17. Post-deposition annealing temperature dependence TiO{sub 2}-based EGFET pH sensor sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkefle, M. A., E-mail: alhadizulkefle@gmail.com; Rahman, R. A., E-mail: rohanieza.abdrahman@gmail.com; Yusoff, K. A., E-mail: khairul.aimi.yusof@gmail.com

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO{sub 2} sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO{sub 2} deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO{sub 2} thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFETmore » as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.« less

  18. Effect of Annealing Temperature on Bi3.25La0.75Ti3O12 Powders for Humidity Sensing Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; He, Jinping; Yuan, Mengjiao; Jiang, Bin; Li, Peiwen; Tong, Yexing; Zheng, Xuejun

    2017-01-01

    Bi3.25La0.75Ti3O12 (BLT) powders have been synthesized via the metal-organic decomposition method with annealing of the BLT precursor solution at 350°C, 450°C, 550°C, 650°C or 750°C. The crystalline structure and morphology of the BLT powders were characterized by x-ray diffraction analysis, field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, and specific surface and pore size analyses. The humidity sensing properties of the BLT powders annealed at the five temperatures were investigated to determine the effect of annealing temperature. The annealing temperature strongly influenced the grain size, pore size distribution, and specific surface area of the BLT powders, being largely correlated to their humidity sensing properties. The specific surface area of the BLT powder annealed at 550°C was 68.2 m2/g, much larger than for the other annealing temperatures, and the majority of the pores in the BLT powder annealed at 550°C were mesoporous, significantly increasing the adsorption efficiency of water vapor onto the surface of the material. The impedance of the BLT powder annealed at 550°C varied by more than five orders of magnitude over the whole humidity range at working frequency of 100 Hz, being approximately five times greater than for BLT powders annealed at other temperatures. The response time was about 8 s, with maximum hysteresis of around 3% relative humidity. The BLT powder annealed at 550°C exhibited the best humidity sensing properties compared with the other annealing temperatures. We expect that these results will offer useful guidelines for preparation of humidity sensing materials.

  19. Optimizing pulsed Nd:YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Torabi, Amir; Kolahan, Farhad

    2018-07-01

    Pulsed laser welding is a powerful technique especially suitable for joining thin sheet metals. In this study, based on experimental data, pulsed laser welding of thin AISI316L austenitic stainless steel sheet has been modeled and optimized. The experimental data required for modeling are gathered as per Central Composite Design matrix in Response Surface Methodology (RSM) with full replication of 31 runs. Ultimate Tensile Strength (UTS) is considered as the main quality measure in laser welding. Furthermore, the important process parameters including peak power, pulse duration, pulse frequency and welding speed are selected as input process parameters. The relation between input parameters and the output response is established via full quadratic response surface regression with confidence level of 95%. The adequacy of the regression model was verified using Analysis of Variance technique results. The main effects of each factor and the interactions effects with other factors were analyzed graphically in contour and surface plot. Next, to maximum joint UTS, the best combinations of parameters levels were specified using RSM. Moreover, the mathematical model is implanted into a Simulated Annealing (SA) optimization algorithm to determine the optimal values of process parameters. The results obtained by both SA and RSM optimization techniques are in good agreement. The optimal parameters settings for peak power of 1800 W, pulse duration of 4.5 ms, frequency of 4.2 Hz and welding speed of 0.5 mm/s would result in a welded joint with 96% of the base metal UTS. Computational results clearly demonstrate that the proposed modeling and optimization procedures perform quite well for pulsed laser welding process.

  20. Microseismic response characteristics modeling and locating of underground water supply pipe leak

    NASA Astrophysics Data System (ADS)

    Wang, J.; Liu, J.

    2015-12-01

    In traditional methods of pipeline leak location, geophones must be located on the pipe wall. If the exact location of the pipeline is unknown, the leaks cannot be identified accurately. To solve this problem, taking into account the characteristics of the pipeline leak, we propose a continuous random seismic source model and construct geological models to investigate the proposed method for locating underground pipeline leaks. Based on two dimensional (2D) viscoacoustic equations and the staggered grid finite-difference (FD) algorithm, the microseismic wave field generated by a leaking pipe is modeled. Cross-correlation analysis and the simulated annealing (SA) algorithm were utilized to obtain the time difference and the leak location. We also analyze and discuss the effect of the number of recorded traces, the survey layout, and the offset and interval of the traces on the accuracy of the estimated location. The preliminary results of the simulation and data field experiment indicate that (1) a continuous random source can realistically represent the leak microseismic wave field in a simulation using 2D visco-acoustic equations and a staggered grid FD algorithm. (2) The cross-correlation method is effective for calculating the time difference of the direct wave relative to the reference trace. However, outside the refraction blind zone, the accuracy of the time difference is reduced by the effects of the refracted wave. (3) The acquisition method of time difference based on the microseismic theory and SA algorithm has a great potential for locating leaks from underground pipelines from an array located on the ground surface. Keywords: Viscoacoustic finite-difference simulation; continuous random source; simulated annealing algorithm; pipeline leak location

  1. Optical network unit placement in Fiber-Wireless (FiWi) access network by Moth-Flame optimization algorithm

    NASA Astrophysics Data System (ADS)

    Singh, Puja; Prakash, Shashi

    2017-07-01

    Hybrid wireless-optical broadband access network (WOBAN) or Fiber-Wireless (FiWi) is the integration of wireless access network and optical network. This hybrid multi-domain network adopts the advantages of wireless and optical domains and serves the demand of technology savvy users. FiWi exhibits the properties of cost effectiveness, robustness, flexibility, high capacity, reliability and is self organized. Optical Network Unit (ONU) placement problem in FiWi contributes in simplifying the network design and enhances the performance in terms of cost efficiency and increased throughput. Several individual-based algorithms, such as Simulated Annealing (SA), Tabu Search, etc. have been suggested for ONU placement, but these algorithms suffer from premature convergence (trapping in a local optima). The present research work undertakes the deployment of FiWi and proposes a novel nature-inspired heuristic paradigm called Moth-Flame optimization (MFO) algorithm for multiple optical network units' placement. MFO is a population based algorithm. Population-based algorithms are better in handling local optima avoidance. The simulation results are compared with the existing Greedy and Simulated Annealing algorithms to optimize the position of ONUs. To the best of our knowledge, MFO algorithm has been used for the first time in this domain, moreover it has been able to provide very promising and competitive results. The performance of MFO algorithm has been analyzed by varying the 'b' parameter. MFO algorithm results in faster convergence than the existing strategies of Greedy and SA and returns a lower value of overall cost function. The results exhibit the dependence of the objective function on the distribution of wireless users also.

  2. A location selection policy of live virtual machine migration for power saving and load balancing.

    PubMed

    Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  3. A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    PubMed Central

    Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24348165

  4. Influence of high-pressure torsion on formation/destruction of nano-sized spinodal structures

    NASA Astrophysics Data System (ADS)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji

    2018-04-01

    The microstructures and hardness of Al - 30 mol.% Zn are investigated after processing by high-pressure torsion (HPT) for different numbers of revolutions, N = 1, 3, 10 or 25, as well as after post-HPT annealing at different temperatures, T = 373 K, 473 K, 573 K and 673 K. It was found that a work softening occurs by decreasing the grain size to the submicrometer level and increasing the fraction of high-angle boundaries. As a result of HPT processing, a complete decomposition of supersaturated solid solution of Zn in Al occurs and the spinodal structure is destroyed. This suggests that softening of the Al-Zn alloys after HPT is due to the decomposition of the supersaturated solid solution and destruction of spinodal decomposition. After post-HPT annealing, ultrafine-grained Al-Zn alloys show an unusual mechanical properties and its hardness increased to 187 HV. Microstructural analysis showed that the high hardness after post-HPT annealing is due to the formation of spinodal structures.

  5. Vehicle routing problem with time windows using natural inspired algorithms

    NASA Astrophysics Data System (ADS)

    Pratiwi, A. B.; Pratama, A.; Sa’diyah, I.; Suprajitno, H.

    2018-03-01

    Process of distribution of goods needs a strategy to make the total cost spent for operational activities minimized. But there are several constrains have to be satisfied which are the capacity of the vehicles and the service time of the customers. This Vehicle Routing Problem with Time Windows (VRPTW) gives complex constrains problem. This paper proposes natural inspired algorithms for dealing with constrains of VRPTW which involves Bat Algorithm and Cat Swarm Optimization. Bat Algorithm is being hybrid with Simulated Annealing, the worst solution of Bat Algorithm is replaced by the solution from Simulated Annealing. Algorithm which is based on behavior of cats, Cat Swarm Optimization, is improved using Crow Search Algorithm to make simplier and faster convergence. From the computational result, these algorithms give good performances in finding the minimized total distance. Higher number of population causes better computational performance. The improved Cat Swarm Optimization with Crow Search gives better performance than the hybridization of Bat Algorithm and Simulated Annealing in dealing with big data.

  6. Robust quantum optimizer with full connectivity

    PubMed Central

    Nigg, Simon E.; Lörch, Niels; Tiwari, Rakesh P.

    2017-01-01

    Quantum phenomena have the potential to speed up the solution of hard optimization problems. For example, quantum annealing, based on the quantum tunneling effect, has recently been shown to scale exponentially better with system size than classical simulated annealing. However, current realizations of quantum annealers with superconducting qubits face two major challenges. First, the connectivity between the qubits is limited, excluding many optimization problems from a direct implementation. Second, decoherence degrades the success probability of the optimization. We address both of these shortcomings and propose an architecture in which the qubits are robustly encoded in continuous variable degrees of freedom. By leveraging the phenomenon of flux quantization, all-to-all connectivity with sufficient tunability to implement many relevant optimization problems is obtained without overhead. Furthermore, we demonstrate the robustness of this architecture by simulating the optimal solution of a small instance of the nondeterministic polynomial-time hard (NP-hard) and fully connected number partitioning problem in the presence of dissipation. PMID:28435880

  7. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  8. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2‐keto‐4‐methylthiobutyric acid production

    PubMed Central

    Xie, Yakun; Rolli, Eleonora; Guerard, Florence; Colcombet, Jean; Benhamed, Moussa; Depaepe, Thomas

    2018-01-01

    Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance. PMID:29554117

  9. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    PubMed

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  10. On the Resource Efficiency of Virtual Concatenation in SDH/SONET Mesh Transport Networks Bearing Protected Scheduled Connections

    NASA Astrophysics Data System (ADS)

    Kuri, Josu�; Gagnaire, Maurice; Puech, Nicolas

    2005-10-01

    Virtual concatenation (VCAT) is a Synchronous Digital Hierarchy (SDH)/Synchronous Optical Network (SONET) network functionality recently standardized by the International Telecommunication Union Telecommunication Standardization Sector (ITU-T). VCAT provides the flexibility required to efficiently allocate network resources to Ethernet, Fiber Channel (FC), Enterprise System Connection (ESCON), and other important data traffic signals. In this article, we assess the resources' gain provided by VCAT with respect to contiguous concatenation (CCAT) in SDH/SONET mesh transport networks bearing protected scheduled connection demands (SCDs). As explained later, an SCD is a connection demand for which the set-up and tear-down dates are known in advance. We define mathematical models to quantify the add/drop and transmission resources required to instantiate a set of protected SCDs in VCAT-and CCAT-capable networks. Quantification of transmission resources requires a routing and slot assignment (RSA) problem to be solved. We formulate the RSA problem in VCAT-and CCAT-capable networks as two different combinatorial optimization problems: RSA in VCAT-capable networks (RSAv) and RSA in CCAT-capable networks (RSAc), respectively. Protection of the SCDs is considered in the formulations using a shared backup path protection (SBPP) technique. We propose a simulated annealing (SA)-based meta-heuristic algorithm to compute approximate solutions to these problems (i.e., solutions whose cost approximates the cost of the optimal ones). The gain in transmission resources and the cost structure of add/drop resources making VCAT-capable networks more economical are analyzed for different traffic scenarios.

  11. Characteristics of zinc oxide nanorod array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Hong, Min-Hsuan; Li, Bo-Wei

    2016-07-01

    The characteristics of a ZnO nanorod array/TiO2 film heterojunction were investigated. A TiO2 film was prepared on glass by aqueous solution deposition with precursors of ammonium hexafluorotitanate and boric acid at 40 °C. Then, a ZnO seed layer was prepared on a TiO2 film/glass substrate by RF sputtering. A vertically oriented ZnO nanorod array was grown on a ZnO seed layer/TiO2 film/glass substrate by aqueous solution deposition with precursors of zinc nitrate and hexamethylenetetramine (HMT) at 70 °C. After thermal annealing in N2O ambient at 300 °C, this heterojunction used as an oxygen gas sensor shows much better rise time, decay time, and on/off current ratio than as-grown and annealed ZnO nanorods.

  12. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  13. Instantons in Quantum Annealing: Thermally Assisted Tunneling Vs Quantum Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Boixo, Sergio; Isakov, Sergei V.; Neven, Hartmut; Mazzola, Guglielmo; Troyer, Matthias

    2015-01-01

    Recent numerical result (arXiv:1512.02206) from Google suggested that the D-Wave quantum annealer may have an asymptotic speed-up than simulated annealing, however, the asymptotic advantage disappears when it is compared to quantum Monte Carlo (a classical algorithm despite its name). We show analytically that the asymptotic scaling of quantum tunneling is exactly the same as the escape rate in quantum Monte Carlo for a class of problems. Thus, the Google result might be explained in our framework. We also found that the transition state in quantum Monte Carlo corresponds to the instanton solution in quantum tunneling problems, which is observed in numerical simulations.

  14. Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro

    DTIC Science & Technology

    2011-09-01

    parameters of temperature and time may be selected to simulate effects on microstructure during annealing , solution treating, quenching, and tempering...nucleation may be taken into account by use of a wetting angle function. Activation energy may be taken into account for rapidly quenched alloys...the stable forms of precipitates that result from solutionizing, annealing or intermediate heat treatment, and phase formation during nonequilibrium

  15. Improve earthquake hypocenter using adaptive simulated annealing inversion in regional tectonic, volcano tectonic, and geothermal observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ry, Rexha Verdhora, E-mail: rexha.vry@gmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    Observation of earthquakes is routinely used widely in tectonic activity observation, and also in local scale such as volcano tectonic and geothermal activity observation. It is necessary for determining the location of precise hypocenter which the process involves finding a hypocenter location that has minimum error between the observed and the calculated travel times. When solving this nonlinear inverse problem, simulated annealing inversion method can be applied to such global optimization problems, which the convergence of its solution is independent of the initial model. In this study, we developed own program codeby applying adaptive simulated annealing inversion in Matlab environment.more » We applied this method to determine earthquake hypocenter using several data cases which are regional tectonic, volcano tectonic, and geothermal field. The travel times were calculated using ray tracing shooting method. We then compared its results with the results using Geiger’s method to analyze its reliability. Our results show hypocenter location has smaller RMS error compared to the Geiger’s result that can be statistically associated with better solution. The hypocenter of earthquakes also well correlated with geological structure in the study area. Werecommend using adaptive simulated annealing inversion to relocate hypocenter location in purpose to get precise and accurate earthquake location.« less

  16. Low-temperature growth of aligned ZnO nanorods: effect of annealing gases on the structural and optical properties.

    PubMed

    Umar, Ahmad; Hahn, Yoon-Bong; Al-Hajry, A; Abaker, M

    2014-06-01

    Aligned ZnO nanorods were grown on ZnO/Si substrate via simple aqueous solution process at low-temperature of - 65 degrees C by using zinc nitrate and hexamethylenetetramine (HMTA). The detailed morphological and structural properties measured by FESEM, XRD, EDS and TEM confirmed that the as-grown nanorods are vertically aligned, well-crystalline possessing wurtzite hexagonal phase and grown along the [0001] direction. The room-temperature photoluminescence spectrum of the grown nanorods exhibited a strong and broad green emission and small ultraviolet emission. The as-prepared ZnO nanorods were post-annealed in nitrogen (N2) and oxygen (O2) environments and further characterized in terms of their morphological, structural and optical properties. After annealing the nanorods exhibit well-crystallinity and wurtzite hexagonal phase. Moreover, by annealing the PL spectra show the enhancement in the UV emission and suppression in the green emission. The presented results demonstrate that simply by post-annealing process, the optical properties of ZnO nanostructures can be controlled.

  17. Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps

    PubMed Central

    Sharma, Abeera; Bhattarai, Jay K.; Alla, Allan J.; Demchenko, Alexei V.; Stine, Keith J.

    2015-01-01

    An electrochemical method for annealing the pore sizes of nanoporous gold is reported. The pore sizes of nanoporous gold can be increased by electrochemical cycling with the upper potential limit being just at the onset of gold oxide formation. This study has been performed in electrolyte solutions including potassium chloride, sodium nitrate and sodium perchlorate. Scanning electron microscopy images have been used for ligament and pore size analysis. We examine the modifications of nanoporous gold due to annealing using electrochemical impedance spectroscopy, and cyclic voltammetry and offer a comparison of the surface coverage using the gold oxide stripping method as well as the method in which electrochemically accessible surface area is determined by using a diffusing redox probe. The effect of additives adsorbed on the nanoporous gold surface when subjected to annealing in different electrolytes as well as the subsequent structural changes in nanoporous gold are also reported. The effect of the annealing process on the application of nanoporous gold as a substrate for glucose electro-oxidation is briefly examined. PMID:25649027

  18. Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron.

    PubMed

    Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa

    2015-02-14

    The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.

  19. Distributed genetic algorithms for the floorplan design problem

    NASA Technical Reports Server (NTRS)

    Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.

    1991-01-01

    Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.

  20. Large Scale Laser Crystallization of Solution-based Alumina-doped Zinc Oxide (AZO) Nanoinks for Highly Transparent Conductive Electrode

    PubMed Central

    Nian, Qiong; Callahan, Michael; Saei, Mojib; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J.

    2015-01-01

    A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films. PMID:26515670

  1. A cross-disciplinary introduction to quantum annealing-based algorithms

    NASA Astrophysics Data System (ADS)

    Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco

    2018-04-01

    A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.

  2. Investigation of Annealing Temperature on Copper Oxide Thin Films Using Sol-Gel Spin Coating Technique

    NASA Astrophysics Data System (ADS)

    Hashim, H.; Samat, S. F. A.; Shariffudin, S. S.; Saad, P. S. M.

    2018-03-01

    Copper (II) Oxide or cupric oxide (CuO) is one of the well-known materials studied for thin films applications. This paper was studied on the effect of annealing temperature to CuO thin films using sol-gel method and spin coating technique. The solution was prepared by sol-gel method and the thin films were synthesized at various temperatures from 500°C to 700°C that deposited onto the quartz substrates. After the annealing process, the thin films were uniform and brownish black in colour. The measurements were performed by atomic force microscopy (AFM), surface profiler (SP), two-point probe and Ultraviolet-visible (UV-Vis-NIR) spectrometer. From the optical measurement, the band gap was estimated to be 1.44eV for sample annealed at 550°C.

  3. Solving Set Cover with Pairs Problem using Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Cao, Yudong; Jiang, Shuxian; Perouli, Debbie; Kais, Sabre

    2016-09-01

    Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with.

  4. Minimizing irreversible losses in quantum systems by local counterdiabatic driving

    PubMed Central

    Sels, Dries; Polkovnikov, Anatoli

    2017-01-01

    Counterdiabatic driving protocols have been proposed [Demirplak M, Rice SA (2003) J Chem Phys A 107:9937–9945; Berry M (2009) J Phys A Math Theor 42:365303] as a means to make fast changes in the Hamiltonian without exciting transitions. Such driving in principle allows one to realize arbitrarily fast annealing protocols or implement fast dissipationless driving, circumventing standard adiabatic limitations requiring infinitesimally slow rates. These ideas were tested and used both experimentally and theoretically in small systems, but in larger chaotic systems, it is known that exact counterdiabatic protocols do not exist. In this work, we develop a simple variational approach allowing one to find the best possible counterdiabatic protocols given physical constraints, like locality. These protocols are easy to derive and implement both experimentally and numerically. We show that, using these approximate protocols, one can drastically suppress heating and increase fidelity of quantum annealing protocols in complex many-particle systems. In the fast limit, these protocols provide an effective dual description of adiabatic dynamics, where the coupling constant plays the role of time and the counterdiabatic term plays the role of the Hamiltonian. PMID:28461472

  5. A graph-based watershed merging using fuzzy C-means and simulated annealing for image segmentation

    NASA Astrophysics Data System (ADS)

    Vadiveloo, Mogana; Abdullah, Rosni; Rajeswari, Mandava

    2015-12-01

    In this paper, we have addressed the issue of over-segmented regions produced in watershed by merging the regions using global feature. The global feature information is obtained from clustering the image in its feature space using Fuzzy C-Means (FCM) clustering. The over-segmented regions produced by performing watershed on the gradient of the image are then mapped to this global information in the feature space. Further to this, the global feature information is optimized using Simulated Annealing (SA). The optimal global feature information is used to derive the similarity criterion to merge the over-segmented watershed regions which are represented by the region adjacency graph (RAG). The proposed method has been tested on digital brain phantom simulated dataset to segment white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) soft tissues regions. The experiments showed that the proposed method performs statistically better, with average of 95.242% regions are merged, than the immersion watershed and average accuracy improvement of 8.850% in comparison with RAG-based immersion watershed merging using global and local features.

  6. A positional misalignment correction method for Fourier ptychographic microscopy based on simulated annealing

    NASA Astrophysics Data System (ADS)

    Sun, Jiasong; Zhang, Yuzhen; Chen, Qian; Zuo, Chao

    2017-02-01

    Fourier ptychographic microscopy (FPM) is a newly developed super-resolution technique, which employs angularly varying illuminations and a phase retrieval algorithm to surpass the diffraction limit of a low numerical aperture (NA) objective lens. In current FPM imaging platforms, accurate knowledge of LED matrix's position is critical to achieve good recovery quality. Furthermore, considering such a wide field-of-view (FOV) in FPM, different regions in the FOV have different sensitivity of LED positional misalignment. In this work, we introduce an iterative method to correct position errors based on the simulated annealing (SA) algorithm. To improve the efficiency of this correcting process, large number of iterations for several images with low illumination NAs are firstly implemented to estimate the initial values of the global positional misalignment model through non-linear regression. Simulation and experimental results are presented to evaluate the performance of the proposed method and it is demonstrated that this method can both improve the quality of the recovered object image and relax the LED elements' position accuracy requirement while aligning the FPM imaging platforms.

  7. A study on the radiation damage and recovery of neutron irradiated vessel steel using magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Park, Duck-Gun; Jeong, Hee-Tae; Hong, Jun-Hwa

    1999-04-01

    The radiation damage and thermal recovery characteristic of neutron irradiated SA508-3 reactor pressure vessel steel specimens have been investigated. Two recovery stages were identified from the results of hardness measurements during isochronal annealing and the mechanism responsible for the two stages was explained by using the results of Barkhausen noise measurement on the basis of the interaction between radiation induced defects and the magnetic domain wall. The coercivity was not changed by neutron irradiation, whereas the maximum magnetic induction increased. Barkhausen noise parameters associated with the domain wall motion were decreased by neutron irradiation and recovered with subsequent heat treatments.

  8. Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing

    NASA Astrophysics Data System (ADS)

    Park, Seonuk; Jeong, Yong Jin; Baek, Yonghwa; Kim, Lae Ho; Jang, Jin Hyuk; Kim, Yebyeol; An, Tae Kyu; Nam, Sooji; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2017-08-01

    Here, we report the fabrication of low-temperature sol-gel-derived aluminum oxide (AlOx) films via ultraviolet (UV) annealing and the investigation of their water vapor blocking properties by measuring the water vapor transmission rates (WVTRs). The UV annealing process induced the formation of a dense metal-oxygen-metal bond (Al-O-Al structure) at low temperatures (<200 °C) that are compatible with commercial plastic substrates. The density of the UV-annealed AlOx thin film at 180 °C was comparable to that of AlOx thin films that have been thermally annealed at 350 °C. Furthermore, the UV-annealed AlOx thin films exhibited a high optical transparency in the visible region (>99%) and good electrical insulating properties (∼10-7 A/cm2 at 2 MV/cm). Finally, we confirmed that a dense AlOx thin film was successfully deposited onto the plastic substrate via UV annealing at low temperatures, leading to a substantial reduction in the WVTRs. The Ca corrosion test was used to measure the WVTRs of AlOx thin films deposited onto polyethylene naphthalate or polyimide substrates, determined to be 0.0095 g m-2 day-1 (25 °C, 50% relative humidity) and 0.26 g m-2 day-1, respectively.

  9. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.

    PubMed

    Cobbs, Gary

    2012-08-16

    Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of initial target concentration. Model 1 was found to be slightly more robust than model 2 giving better estimates of initial target concentration when estimation of parameters was done for qPCR curves with very different initial target concentration. Both models may be used to estimate the initial absolute concentration of target sequence when a standard curve is not available. It is argued that the kinetic approach to modeling and interpreting quantitative PCR data has the potential to give more precise estimates of the true initial target concentrations than other methods currently used for analysis of qPCR data. The two models presented here give a unified model of the qPCR process in that they explain the shape of the qPCR curve for a wide variety of initial target concentrations.

  10. Lanthanum aluminum oxide thin-film dielectrics from aqueous solution.

    PubMed

    Plassmeyer, Paul N; Archila, Kevin; Wager, John F; Page, Catherine J

    2015-01-28

    Amorphous LaAlO3 dielectric thin films were fabricated via solution processing from inorganic nitrate precursors. Precursor solutions contained soluble oligomeric metal-hydroxyl and/or -oxo species as evidenced by dynamic light scattering (DLS) and Raman spectroscopy. Thin-film formation was characterized as a function of annealing temperature using Fourier transform infrared (FTIR), X-ray diffraction (XRD), X-ray reflectivity (XRR), scanning electron microscopy (SEM), and an array of electrical measurements. Annealing temperatures ≥500 °C result in thin films with low leakage-current densities (∼1 × 10(-8) A·cm(-2)) and dielectric constants ranging from 11.0 to 11.5. When incorporated as the gate dielectric layer in a-IGZO thin-film transistors (TFTs), LaAlO3 thin films annealed at 600 °C in air yielded TFTs with relatively low average mobilities (∼4.5 cm(2)·V(-1)·s(-1)) and high turn-on voltages (∼26 V). Interestingly, reannealing the LaAlO3 in 5%H2/95%N2 at 300 °C before deposition of a-IGZO channel layers resulted in TFTs with increased average mobilities (11.1 cm(2)·V(-1)·s(-1)) and lower turn-on voltages (∼6 V).

  11. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    NASA Astrophysics Data System (ADS)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  12. Improvement of multi-level resistive switching characteristics in solution-processed AlO x -based non-volatile resistive memory using microwave irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Tae; Cho, Won-Ju

    2018-01-01

    We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.

  13. Solution-Processed Gallium–Tin-Based Oxide Semiconductors for Thin-Film Transistors

    PubMed Central

    Zhang, Xue; Lee, Hyeonju; Kim, Jungwon; Kim, Eui-Jik; Park, Jaehoon

    2017-01-01

    We investigated the effects of gallium (Ga) and tin (Sn) compositions on the structural and chemical properties of Ga–Sn-mixed (Ga:Sn) oxide films and the electrical properties of Ga:Sn oxide thin-film transistors (TFTs). The thermogravimetric analysis results indicate that solution-processed oxide films can be produced via thermal annealing at 500 °C. The oxygen deficiency ratio in the Ga:Sn oxide film increased from 0.18 (Ga oxide) and 0.30 (Sn oxide) to 0.36, while the X-ray diffraction peaks corresponding to Sn oxide significantly reduced. The Ga:Sn oxide film exhibited smaller grains compared to the nanocrystalline Sn oxide film, while the Ga oxide film exhibited an amorphous morphology. We found that the electrical properties of TFTs significantly improve by mixing Ga and Sn. Here, the optimum weight ratio of the constituents in the mixture of Ga and Sn precursor sols was determined to be 1.0:0.9 (Ga precursor sol:Sn precursor sol) for application in the solution-processed Ga:Sn oxide TFTs. In addition, when the Ga(1.0):Sn(0.9) oxide film was thermally annealed at 900 °C, the field-effect mobility of the TFT was notably enhanced from 0.02 to 1.03 cm2/Vs. Therefore, the mixing concentration ratio and annealing temperature are crucial for the chemical and morphological properties of solution-processed Ga:Sn oxide films and for the TFT performance. PMID:29283408

  14. Real-time testing of titanium sheet and extrusion coupon specimens subjected to Mach 2.7 supersonic cruise aircraft wing stresses and temperatures

    NASA Technical Reports Server (NTRS)

    Lunde, T.

    1977-01-01

    The accuracy of three accelerated flight-by-flight test methods for material selection, and fatigue substantiation of supersonic cruise aircraft structure was studied. The real time stresses and temperatures applied to the specimens were representative of the service conditions in the lower surface of a Mach 2.7 supersonic cruise aircraft wing root structure. Each real time flight lasted about 65 minutes, including about one hour at (500 F) in the cruise condition. Center notched coupon specimens from six titanium materials were tested: mill-annealed, duplex-annealed, and triplex-annealed Ti-8Al-1Mo-1V sheets; mill-annealed Ti-8Al-1Mo-1V extrusion; mill-annealed Ti-6Al-4V sheet; and solution-treated and aged Ti-6Al-4V extrusion. For duplex-annealed Ti-8Al-1Mo-1V sheet, specimens with single spotweld were also tested. The test results were studied in conjunction with other related data from the literature for: material selection, structural fabrication, fatigue resistance of supersonic cruise aircraft structure, and fatigue test acceleration procedures for supersonic cruise aircraft.

  15. Semiclassical approach to finite-temperature quantum annealing with trapped ions

    NASA Astrophysics Data System (ADS)

    Raventós, David; Graß, Tobias; Juliá-Díaz, Bruno; Lewenstein, Maciej

    2018-05-01

    Recently it has been demonstrated that an ensemble of trapped ions may serve as a quantum annealer for the number-partitioning problem [Nat. Commun. 7, 11524 (2016), 10.1038/ncomms11524]. This hard computational problem may be addressed by employing a tunable spin-glass architecture. Following the proposal of the trapped-ion annealer, we study here its robustness against thermal effects; that is, we investigate the role played by thermal phonons. For the efficient description of the system, we use a semiclassical approach, and benchmark it against the exact quantum evolution. The aim is to understand better and characterize how the quantum device approaches a solution of an otherwise difficult to solve NP-hard problem.

  16. Influence of annealing time on pH sensitivity of ZnO sensing membrane for EGFET sensor

    NASA Astrophysics Data System (ADS)

    Zulkefle, M. A.; Rahman, R. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-05-01

    Solid-state materials have becomes essential in recent technological advancements. This study also utilized solid-state material but in form of thin films to sense hydrogen ions in solutions. Fabrication of ZnO thin film was done using sol-gel spin coating technique. In an attempt to increase the pH sensitivity of the produced film, prolonging of annealing time was done. It was found that the increase in annealing time from 15 minutes to 30 minutes had managed to improve the sensitivity by 4.35%. The optimum pH sensitivity and linearity obtained in this study is 50.40 mV/pH and 0.9911 respectively.

  17. Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    NASA Technical Reports Server (NTRS)

    Mandra, Salvatore

    2017-01-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  18. Characterization of alloy 718 subjected to different thermomechanical treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Chinthaka; Song, Miao; Leonard, Keith

    2017-03-11

    Chemical phase and microstructural investigations of alloy 718 solution-annealed and age-hardened were performed in this study. We focused on the effects of solution annealing temperature, aging temperature and holding time, and the amount of intermediate cold work on the alloy. We also studied the formation of secondary phases such as γ’-phase, γ”-phase, and δ-phase, grain sizes, and any deformations of the microstructure with respect to the processed conditions. Statistics such as size and number densities of these precipitates with respect to the processing conditions were evaluated and a discussion on optimum conditions in obtaining finer and higher density of γ’-more » and γ”-phase precipitates is also presented.« less

  19. Thermally Stable Solution Processed Vanadium Oxide as a Hole Extraction Layer in Organic Solar Cells

    PubMed Central

    Alsulami, Abdullah; Griffin, Jonathan; Alqurashi, Rania; Yi, Hunan; Iraqi, Ahmed; Lidzey, David; Buckley, Alastair

    2016-01-01

    Low-temperature solution-processable vanadium oxide (V2Ox) thin films have been employed as hole extraction layers (HELs) in polymer bulk heterojunction solar cells. V2Ox films were fabricated in air by spin-coating vanadium(V) oxytriisopropoxide (s-V2Ox) at room temperature without the need for further thermal annealing. The deposited vanadium(V) oxytriisopropoxide film undergoes hydrolysis in air, converting to V2Ox with optical and electronic properties comparable to vacuum-deposited V2O5. When s-V2Ox thin films were annealed in air at temperatures of 100 °C and 200 °C, OPV devices showed similar results with good thermal stability and better light transparency. Annealing at 300 °C and 400 °C resulted in a power conversion efficiency (PCE) of 5% with a decrement approximately 15% lower than that of unannealed films; this is due to the relative decrease in the shunt resistance (Rsh) and an increase in the series resistance (Rs) related to changes in the oxidation state of vanadium. PMID:28773356

  20. Microstructure-tunable highly conductive graphene-metal composites achieved by inkjet printing and low temperature annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Song, Man; Wen, Chenyu; Majee, Subimal; Yang, Dong; Wu, Biao; Zhang, Shi-Li; Zhang, Zhi-Bin

    2018-03-01

    We present a method for fabricating highly conductive graphene-silver composite films with a tunable microstructure achieved by means of an inkjet printing process and low temperature annealing. This is implemented by starting from an aqueous ink formulation using a reactive silver solution mixed with graphene nanoplatelets (GNPs), followed by inkjet printing deposition and annealing at 100 °C for silver formation. Due to the hydrophilic surfaces and the aid of a polymer stabilizer in an aqueous solution, the GNPs are uniformly covered with a silver layer. Simply by adjusting the content of GNPs in the inks, highly conductive GNP/Ag composites (>106 S m-1), with their microstructure changed from a large-area porous network to a compact film, is formed. In addition, the printed composite films show superior quality on a variety of unconventional substrates compared to its counterpart without GNPs. The availability of composite films paves the way to the metallization in different printed devices, e.g. interconnects in printed circuits and electrodes in energy storage devices.

  1. Solution-processed BiI 3 thin films for photovoltaic applications: Improved carrier collection via solvent annealing

    DOE PAGES

    Hamdeh, Umar H.; Nelson, Rainie D.; Ryan, Bradley J.; ...

    2016-08-26

    Here, we report all-inorganic solar cells based on solution-processed BiI 3. Two-electron donor solvents such as tetrahydrofuran and dimethylformamide were found to form adducts with BiI 3, which make them highly soluble in these solvents. BiI 3 thin films were deposited by spin-coating. Solvent annealing BiI 3 thin films at relatively low temperatures (≤100 °C) resulted in increased grain size and crystallographic reorientation of grains within the films. The BiI3 films were stable against oxidation for several months and could withstand several hours of annealing in air at temperatures below 150 °C without degradation. Surface oxidation was found to improvemore » photovoltaic device performance due to the formation of a BiOI layer at the BiI 3 surface which facilitated hole extraction. Nonoptimized BiI 3 solar cells achieved the highest power conversion efficiencies of 1.0%, demonstrating the potential of BiI 3 as a nontoxic, air-stable metal-halide absorber material for photovoltaic applications.« less

  2. Effect of Temperature and Dynamic Loading on the Mechanical Properties of Copper-Alloyed High-Strength Interstitial-Free Steel

    NASA Astrophysics Data System (ADS)

    Rana, R.; Singh, S. B.; Bleck, W.; Mohanty, O. N.

    2009-04-01

    Crash resistance and formability relevant mechanical properties of a copper-alloyed interstitial-free (IF) steel processed under various conditions of batch annealing (BA), continuous annealing (CA), and postcontinuous annealing aging have been studied in a wide range of strain rate (3.33 × 10-4 to 200 s-1) and temperature (-100 °C to +20 °C). These properties have been compared with similarly processed traditional mild and high-strength IF steels. Assessment of various parameters such as strength, elongation, strain rate sensitivity of stress, strain-hardening capacity, temperature sensitivity of stress, activation volume, and specific energy absorption of all these steels implies that copper-alloyed IF steel is soft and formable in CA condition. It can be made stronger and more crash resistant than the conventional mild- or high-strength IF steels when aged to peak strength after CA. Room-temperature strain rate sensitivity of stress of the investigated steels exhibits a two-stage behavior. Copper in solution in ferrite causes solid solution softening at low temperatures (≤20 °C) and at high strain rates (200 s-1).

  3. Evaluation of salicylic acid fatty ester prodrugs for UV protection.

    PubMed

    Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

    2011-07-01

    The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation.

  4. Annealing Induced Re-crystallization in CH3NH3PbI3−xClx for High Performance Perovskite Solar Cells

    PubMed Central

    Yang, Yingguo; Feng, Shanglei; Li, Meng; Xu, Weidong; Yin, Guangzhi; Wang, Zhaokui; Sun, Baoquan; Gao, Xingyu

    2017-01-01

    Using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as hole conductor, a series of inverted planar CH3NH3PbI3−xClx perovskite solar cells (PSCs) were fabricated based on perovskite annealed by an improved time-temperature dependent (TTD) procedure in a flowing nitrogen atmosphere for different time. Only after an optimum annealing time, an optimized power conversion efficiency of 14.36% could be achieved. To understand their performance dependence on annealing time, an in situ real-time synchrotron-based grazing incidence X-ray diffraction (GIXRD) was used to monitor a step-by-step gradual structure transformation from distinct mainly organic-inorganic hybrid materials into highly ordered CH3NH3PbI3 crystal during annealing. However, a re-crystallization process of perovskite crystal was observed for the first time during such an annealing procedure, which helps to enhance the perovskite crystallization and preferential orientations. The present GIXRD findings could well explain the drops of the open circuit voltage (Voc) and the fill factor (FF) during the ramping of temperature as well as the optimized power conversion efficiency achieved after an optimum annealing time. Thus, the present study not only illustrates clearly the decisive roles of post-annealing in the formation of solution-processed perovskite to better understand its formation mechanism, but also demonstrates the crucial dependences of device performance on the perovskite microstructure in PSCs. PMID:28429762

  5. Solution-processed copper-nickel nanowire anodes for organic solar cells

    NASA Astrophysics Data System (ADS)

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  6. On the passive and semiconducting behavior of severely deformed pure titanium in Ringer's physiological solution at 37°C: A trial of the point defect model.

    PubMed

    Ansari, Ghazaleh; Fattah-Alhosseini, Arash

    2017-06-01

    The effects of sever plastic deformation through multi-pass accumulative roll bonding on the passive and semiconducting behavior of pure titanium is evaluated in Ringer's physiological solution at 37°C in the present paper. Produced results by polarization plots and electrochemical impedance spectroscopy measurements revealed a significant advance in the passive response of the nano-grained sample compared to that of the annealed pure titanium. Also, Mott-Schottky test results of the nano-grained pure titanium represented a lower donor density and reduced flat-band potential in the formed passive film in comparison with the annealed sample. Moreover, based on the Mott-Schottky analysis in conjunction with the point defect model, it was suggested that with increase in formation potential, the calculated donor density of both annealed and nano-grained samples decreases exponentially and the thickness of the passive film linearly increases. These observations were consistent with the point defect model predictions, considering that the point defects within the passive film are metal interstitials, oxygen vacancies, or both. From the viewpoint of passive and semiconducting behavior, nano-grained pure titanium appeared to be more suitable for implant applications in simulate human body environment compared to annealed pure titanium. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. var. capitata)

    PubMed Central

    Smoleń, Sylwester; Kowalska, Iwona; Czernicka, Małgorzata; Halka, Mariya; Kęska, Kinga; Sady, Włodzimierz

    2016-01-01

    Iodine (I) and selenium (Se) are included in the group of beneficial elements. They both play important roles in humans and other animals, particularly in the regulation of thyroid functioning. A substantial percentage of people around the world suffer from health disorders related to the deficiency of these elements in the diet. Salicylic acid (SA) is a compound similar to phytohormones and is known to improve the efficiency of I biofortification of plants. The influence of SA on Se enrichment of plants has not, however, been recognized together with its effect on simultaneous application of I and Se to plants. Two-year studies (2014–2015) were conducted in a greenhouse with hydroponic cultivation of lettuce in an NFT (nutrient film technique) system. They included the application of I (as KIO3), Se (as Na2SeO3) and SA into the nutrient solution. KIO3 was used at a dose of 5 mg I⋅dm-3 (i.e., 39.4 μM I), while Na2SeO3 was 0.5 mg Se⋅dm-3 (i.e., 6.3 μM Se). SA was introduced at three doses: 0.1, 1.0, and 10.0 mg⋅dm-3 nutrient solutions, equivalent to 0.724, 7.24, and 72.4 μM SA, respectively. The tested combinations were as follows: (1) control, (2) I + Se, (3) I + Se + 0.1 mg SA⋅dm-3, (4) I + Se + 1.0 mg SA⋅dm-3 and (5) I + Se + 10.0 mg SA⋅dm-3. The applied treatments had no significant impact on lettuce biomass (leaves and roots). Depending on the dose, a diverse influence of SA was noted with respect to the efficiency of I and Se biofortification; chemical composition of leaves; and mineral nutrition of lettuce plants, including the content of macro- and microelements and selenocysteine methyltransferase (SMT) gene expression. SA application at all tested doses comparably increased the level of selenomethionine (SeMet) and decreased the content of SA in leaves. PMID:27803709

  8. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents.

    PubMed

    Li, Xin-Gui; Feng, Hao; Huang, Mei-Rong

    2009-01-01

    The highest Hg-ion adsorbance so far, namely up to 2063 mg g(-1), has been achieved by poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Sorption of Hg ions occurs mainly by redox and chelation mechanisms (see scheme), but also by ion exchange and physisorption.Poly(aniline (AN)-co-5-sulfo-2-anisidine (SA)) nanoparticles were synthesized by chemical oxidative copolymerization of AN and SA monomers, and their extremely strong adsorption of mercury ions in aqueous solution was demonstrated. The reactivity ratios of AN and SA comonomers were found to be 2.05 and 0.02, respectively. While AN monomer tends to homopolymerize, SA monomer tends to copolymerize with AN monomer because of the great steric hindrance and electron-attracting effect of the sulfo groups, despite the effect of conjugation of the methoxyl group with the benzene ring. The effects of initial mercury(II) concentration, sorption time, sorption temperature, ultrasonic treatment, and sorbent dosage on mercury-ion sorption onto AN/SA (50/50) copolymer nanoparticles with a number-average diameter of around 120 nm were significantly optimized. The results show that the maximum Hg-ion sorption capacity on the particulate nanosorbents can even reach 2063 mg of Hg per gram of sorbent, which would be the highest Hg-ion adsorbance so far. The sorption data fit to the Langmuir isotherm, and the process obeys pseudo-second-order kinetics. The IR and UV/Vis spectral data of the Hg-loaded copolymer particles suggest that some mercury(II) was directly reduced by the copolymer to mercury(I) and even mercury(0). A mechanism of sorption between the particles and Hg ions in aqueous solution is proposed, and a physical/ion exchange/chelation/redox sorption ratio of around 2/3/45/50 was found. Copolymer nanoparticles may be one of the most powerful and cost-effective sorbents of mercury ions, with a wide range of potential applications for the efficient removal and even recovery of the mercury ions from aqueous solution.

  9. Observational study on the palatability and tolerability of oral prednisolone and oral dexamethasone in children in Saudi Arabia and the UK.

    PubMed

    Aljebab, Fahad; Alanazi, Mofadhi; Choonara, Imti; Conroy, Sharon

    2018-01-01

    Short-course oral corticosteroids are routinely used to treat acute asthma and croup. We evaluated their tolerability and palatability in Saudi Arabian (SA) and UK children. Prospective observational/interview study (3 months in each country). Palatability was evaluated using a 5-point facial Hedonicscale and tolerability by direct questioning of patient/parents. In SA, of 122 patients (2-10 years) recruited, 52 received prednisolone base tablets, 37 prednisolone sodium phosphate syrup and 33 received dexamethasone elixir. In the UK, of 133 patients (2-16 years), 38 received prednisolone base tablets (mainly crushed and dispersed), 42 prednisolone sodium phosphate soluble tablets and 53 received dexamethasone sodium phosphate oral solution.In both countries, dexamethasone had the highest palatability scores (SA mean: 1.97; UK mean: 3) and prednisolone base tablets had the lowest (SA mean: 1.12; UK mean: 1.39). Palatability scores improved for all formulations of prednisolone with each subsequent daily dose.In SA, prednisolone base tablets were associated with more nausea (24vs7 patients) and vomiting (5vs0 patients) than sodium phosphate syrup (p=0.008 and p=0.073, respectively). In the UK, vomiting occurred more frequently with prednisolone base (8 patients) than sodium phosphate soluble tablets (2 patients) (p=0.041).In both centres, dexamethasone was associated with less side effects. Vomiting (1vs0 patients), nausea (7vs3 patients) and abdominal pain (10vs8 patients) occurred more with dexamethasone sodium phosphate solution than dexamethasone elixir. Dexamethasone sodium phosphate solution was the most palatable preparation. Prednisolone base tablets were rated least palatable and were least well tolerated. Palatability scores improved with each dose taken. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Quantum Optimization of Fully Connected Spin Glasses

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim

    2015-07-01

    Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.

  11. Assembly of DNA Architectures in a Non-Aqueous Solution

    DTIC Science & Technology

    2012-08-31

    environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability...transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical...techniques were first validated using a more widely studied DNA system, genomic salmon sperm DNA (saDNA) [19]. The saDNA samples were reacted with two

  12. Local configurations and atomic intermixing in as-quenched and annealed Fe1-xCrx and Fe1-xMox ribbons

    NASA Astrophysics Data System (ADS)

    Stanciu, A. E.; Greculeasa, S. G.; Bartha, C.; Schinteie, G.; Palade, P.; Kuncser, A.; Leca, A.; Filoti, G.; Birsan, A.; Crisan, O.; Kuncser, V.

    2018-04-01

    Local atomic configuration, phase composition and atomic intermixing in Fe-rich Fe1-xCrx and Fe1-xMox ribbons (x = 0.05, 0.10, 0.15), of potential interest for high-temperature applications and nuclear devices, are investigated in this study in relation to specific processing and annealing routes. The Fe-based thin ribbons have been prepared by induction melting, followed by melt spinning and further annealed in He at temperatures up to 1250 °C. The complex structural, compositional and atomic configuration characterisation has been performed by means of X-ray diffraction (XRD), transmission Mössbauer spectroscopy and differential scanning calorimetry (TG-DSC). The XRD analysis indicates the formation of the desired solid solutions with body-centred cubic (bcc) structure in the as-quenched state. The Mössbauer spectroscopy results have been analysed in terms of the two-shell model. The distribution of Cr/Mo atoms in the first two coordination spheres is not homogeneous, especially after annealing, as supported by the short-range order parameters. In addition, high-temperature annealing treatments give rise to oxidation of Fe (to haematite, maghemite and magnetite) at the surface of the ribbons. Fe1-xCrx alloys are structurally more stable than the Mo counterpart under annealing at 700 °C. Annealing at 1250 °C in He enhances drastically the Cr clustering around Fe nuclei.

  13. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fouriermore » Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.« less

  14. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors.

    PubMed

    Li, Yingzhi; Zhao, Xin; Xu, Qian; Zhang, Qinghua; Chen, Dajun

    2011-05-17

    A porous and mat-like polyaniline/sodium alginate (PANI/SA) composite with excellent electrochemical properties was polymerized in an aqueous solution with sodium sulfate as a template. Ultraviolet-visible spectra, X-ray diffraction pattern, and Fourier transform infrared spectra were employed to characterize the PANI/SA composite, indicating that the PANI/SA composite was successfully prepared. The PANI/SA nanofibers with uniform diameters from 50 to 100 nm can be observed on scanning electron microscopy. Cyclic voltammetry and galvanostatic charge/discharge tests were carried out to investigate the electrochemical properties. The PANI/SA nanostructure electrode exhibits an excellent specific capacitance as high as 2093 F g(-1), long cycle life, and fast reflect of oxidation/reduction on high current changes. The remarkable electrochemical characteristic is attributed to the nanostructured electrode materials, which generates a high electrode/electrolyte contact area and short path lengths for electronic transport and electrolyte ion. The approach is simple and can be easily extended to fabricate nanostructural composites for supercapacitor electrode materials.

  15. Influence of carboxymethyl cellulose and sodium alginate on sweetness intensity of Aspartame.

    PubMed

    Han, Xue; Xu, Shu-Zhen; Dong, Wen-Rui; Wu, Zhai; Wang, Ren-Hai; Chen, Zhong-Xiu

    2014-12-01

    Sensory evaluation of Aspartame in the presence of sodium carboxymethyl cellulose (CMC-L) and sodium alginate (SA) revealed that only CMC-L showed a suppression effect, while SA did not. By using an artificial taste receptor model, we found that the presence of SA or CMC-L resulted in a decrease in association constants. Further investigation of CMC-L solution revealed that the decrease in water mobility and diffusion also contribute to the suppression effect. In the case of SA, the decreased viscosity and comparatively higher amount of free water facilitated the diffusion of sweetener, which might compensate for the decreased binding constant between Aspartame and receptor. This may suppress the impact of SA on sweetness intensity. The results suggest that exploring the binding affinity of taste molecules with the receptor, along with water mobility and diffusion in hydrocolloidal structures, provide sufficient information for understanding the mechanism behind the effect of macromolecular hydrocolloids on taste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Preparation and characterization of novel super-artificial hair fiber based on biomass materials.

    PubMed

    Yang, Lijun; Guo, Jing; Zhang, Sen; Gong, Yumei

    2017-06-01

    A novel super-artificial hair fiber basing on sodium alginate (SA) and Antarctic Krill protein (AKP) was prepared by wet spinning successfully. Such SA/AKP fiber did not only have similar crystalline structure with human hair, but also had super flame resistance and mechanical performance. It should be noted that the whole preparation process was green without any incorporation of non-toxic solution. Moreover, comparing with human hair, the SA/AKP fiber had a lot of unique groove upon the fiber surface, which contributed a lot to excellent hygroscopicity. Meanwhile, the dyeing performance could be improved notably due to incorporation of protein into the matrix. Herein, the SA/AKP fiber with superior mechanical and functional performance had practical value for application in the field of synthetic wig. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. E-selectin-targeted Sialic Acid-PEG-dexamethasone Micelles for Enhanced Anti-Inflammatory Efficacy for Acute Kidney Injury.

    PubMed

    Hu, Jing-Bo; Kang, Xu-Qi; Liang, Jing; Wang, Xiao-Juan; Xu, Xiao-Ling; Yang, Ping; Ying, Xiao-Ying; Jiang, Sai-Ping; Du, Yong-Zhong

    2017-01-01

    The effective treatment for acute kidney injury (AKI) is currently limited, and care is primarily supportive. Sialic acid (SA) is main component of Sialyl Lewis x antigen on the mammalian cell surface, which participates in E-selectin binding. Therefore, dexamethasone(DXM)-loaded E-selectin-targeting sialic acid-polyethylene glycol-dexamethasone (SA-PEG-DXM/DXM) conjugate micelles are designed for ameliorating AKI. The conjugates are synthesized via the esterification reaction between PEG and SA or DXM, and can spontaneously form micelles in an aqueous solution with a 65.6 µg/mL critical micelle concentration. Free DXM is incorporated into the micelles with 6.28 ± 0.21% drug loading content. In vitro DXM release from SA-PEG-DXM/DXM micelles can be prolonged to 48h. Much more SA-PEG-DXM micelles can be internalized by lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) in comparison to PEG-DXM micelles due to specific interaction between SA and E-selectin expressed on HUVECs, and consequently more SA-PEG-DXM micelles are accumulated in the kidney of AKI murine model. Furthermore, SA in SA-PEG-DXM conjugates can significantly ameliorate LPS-induced production of pro-inflammatory cytokines via suppressing LPS-activated Beclin-1/Atg5-Atg12-mediated autophagy to attenuate toxicity. Compared with free DXM and PEG-DXM/DXM micelles, SA-PEG-DXM/DXM micelles show better therapeutical effects, as reflected by the improved renal function, histopathological changes, pro-inflammatory cytokines, oxidative stress and expression of apoptotic related proteins.

  18. Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-Cyanovirin-N.

    PubMed

    Vorontsov, Ivan I; Miyashita, Osamu

    2011-04-30

    Complexes of two Cyanovirin-N (CVN) mutants, m4-CVN and P51G-m4-CVN, with deoxy di-mannose analogs were employed as models to generate conformational ensembles using explicit water Molecular Dynamics (MD) simulations in solution and in crystal environment. The results were utilized for evaluation of binding free energies with the molecular mechanics Poisson-Boltzmann (or Generalized Born) surface area, MM/PB(GB)SA, methods. The calculations provided the ranking of deoxy di-mannose ligands affinity in agreement with available qualitative experimental evidences. This confirms the importance of the hydrogen-bond network between di-mannose 3'- and 4'-hydroxyl groups and the protein binding site B(M) as a basis of the CVN activity as an effective HIV fusion inhibitor. Comparison of binding free energies averaged over snapshots from the solution and crystal simulations showed high promises in the use of the crystal matrix for acceleration of the conformational ensemble generation, the most time consuming step in MM/PB(GB)SA approach. Correlation between energy values based on solution versus crystal ensembles is 0.95 for both MM/PBSA and MM/GBSA methods. Copyright © 2010 Wiley Periodicals, Inc.

  19. Optimally Stopped Optimization

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Lidar, Daniel A.

    2016-11-01

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark simulated annealing on a class of maximum-2-satisfiability (MAX2SAT) problems. We also compare the performance of a D-Wave 2X quantum annealer to the Hamze-Freitas-Selby (HFS) solver, a specialized classical heuristic algorithm designed for low-tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N =1098 variables, the D-Wave device is 2 orders of magnitude faster than the HFS solver, and, modulo known caveats related to suboptimal annealing times, exhibits identical scaling with problem size.

  20. Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells

    PubMed Central

    Wang, Ke; Zhang, Tao; Liu, Lina; Wang, Xiaolei; Wu, Ping; Chen, Zhigang; Ni, Chao; Zhang, Junshu; Hu, Fuqiang; Huang, Jian

    2012-01-01

    Background and methods: Curcumin has extraordinary anticancer properties but has limited use due to its insolubility in water and instability, which leads to low systemic bioavailability. We have developed a novel nanoparticulate formulation of curcumin encapsulated in stearic acid-g-chitosan oligosaccharide (CSO-SA) polymeric micelles to overcome these hurdles. Results: The synthesized CSO-SA copolymer was able to self-assemble to form nanoscale micelles in aqueous medium. The mean diameter of the curcumin-loaded CSO-SA micelles was 114.7 nm and their mean surface potential was 18.5 mV. Curcumin-loaded CSO-SA micelles showed excellent internalization ability that increased curcumin accumulation in cancer cells. Curcumin-loaded CSO-SA micelles also had potent antiproliferative effects on primary colorectal cancer cells in vitro, resulting in about 6-fold greater inhibition compared with cells treated with a solution containing an equivalent concentration of free curcumin. Intravenous administration of curcumin-loaded CSO-SA micelles marginally suppressed tumor growth but did not increase cytotoxicity to mice, as confirmed by no change in body weight. Most importantly, curcumin-loaded CSO-SA micelles were effective for inhibiting subpopulations of CD44+/CD24+ cells (putative colorectal cancer stem cell markers) both in vitro and in vivo. Conclusion: The present study identifies an effective and safe means of using curcumin-loaded CSO-SA micelles for cancer therapy. PMID:22927762

  1. Rhelogical and antibacterial performance of sodium alginate/zinc oxide composite coating for cellulosic paper.

    PubMed

    Wu, Wei; Liu, Tao; He, Haibing; Wu, Xihu; Cao, Xianwu; Jin, Jia; Sun, Qijun; Roy, Vellaisamy A L; Li, Robert K Y

    2018-07-01

    Coating of antibacterial layer on the surface of cellulosic paper has numerous potential applications. In the present work, sodium alginate (SA) served as a binder to disperse Zn 2+ and the prepared zinc oxide (ZnO) particles were used as antibacterial agents. The rheology test revealed that there were cross-linking between Zn 2+ and SA molecular chains in the aqueous solution, resulting in the viscosity of ZnO/SA composite coating increased in the low shear rate region and decreased in the high shear rate region as compared with pure SA. SEM and EDS mapping images showed that the ZnO particles were prepared successfully at 120 °C and dispersed homogeneously on the surface of cellulose fibers and the pores of cellulosic papers. The thermal stabilities of the coated papers decreased as compared to the original blank cellulosic paper, which was ascribed to the low thermal stability of SA and the catalytic effect of ZnO on SA. The tensile stress and Young's modulus of ZnO/SA composite coated paper increased up 39.5% and 30.7%, respectively, as compared with those of blank cellulosic paper. The antibacterial activity tests indicated that the ZnO/SA composite coating endowed the cellulosic paper with effectively growth inhibition of both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureu. Copyright © 2018. Published by Elsevier B.V.

  2. Randomly iterated search and statistical competency as powerful inversion tools for deformation source modeling: Application to volcano interferometric synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.; Walter, T. R.

    2009-10-01

    Modern geodetic techniques provide valuable and near real-time observations of volcanic activity. Characterizing the source of deformation based on these observations has become of major importance in related monitoring efforts. We investigate two random search approaches, simulated annealing (SA) and genetic algorithm (GA), and utilize them in an iterated manner. The iterated approach helps to prevent GA in general and SA in particular from getting trapped in local minima, and it also increases redundancy for exploring the search space. We apply a statistical competency test for estimating the confidence interval of the inversion source parameters, considering their internal interaction through the model, the effect of the model deficiency, and the observational error. Here, we present and test this new randomly iterated search and statistical competency (RISC) optimization method together with GA and SA for the modeling of data associated with volcanic deformations. Following synthetic and sensitivity tests, we apply the improved inversion techniques to two episodes of activity in the Campi Flegrei volcanic region in Italy, observed by the interferometric synthetic aperture radar technique. Inversion of these data allows derivation of deformation source parameters and their associated quality so that we can compare the two inversion methods. The RISC approach was found to be an efficient method in terms of computation time and search results and may be applied to other optimization problems in volcanic and tectonic environments.

  3. Suppressing the cellular breakdown in silicon supersaturated with titanium

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Prucnal, S.; Hübner, R.; Yuan, Ye; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2016-06-01

    Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.

  4. Highly reflective Ag-Cu alloy-based ohmic contact on p-type GaN using Ru overlayer.

    PubMed

    Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam

    2008-12-15

    We report on a metallization scheme of high reflectance, low resistance, and smooth surface morphology ohmic contact on p-type GaN. Ag-Cu alloy/Ru contact showed low contact resistivity as low as 6.2 x 10(-6) Ohms cm(2) and high reflectance of 91% at 460 nm after annealing at 400 degrees C in air ambient. The oxidation annealing promoted the out-diffusion of Ga atoms to dissolve in an Ag-Cu layer with the formation of an Ag-Ga solid solution, lowering the contact resistivity. The Ru overlayer acts as a diffusion barrier for excessive oxygen incorporation during oxidation annealing, resulting in high reflectance, good thermal stability, and smooth surface quality of the contact.

  5. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  6. Minimizing distortion and internal forces in truss structures by simulated annealing

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Padula, Sharon L.

    1990-01-01

    Inaccuracies in the length of members and the diameters of joints of large space structures may produce unacceptable levels of surface distortion and internal forces. Here, two discrete optimization problems are formulated, one to minimize surface distortion (DSQRMS) and the other to minimize internal forces (FSQRMS). Both of these problems are based on the influence matrices generated by a small-deformation linear analysis. Good solutions are obtained for DSQRMS and FSQRMS through the use of a simulated annealing heuristic.

  7. Annealing effects on electrical behavior of gold nanoparticle film: Conversion of ohmic to non-ohmic conductivity

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Zeinab; Mansour, Nastaran

    2017-02-01

    This paper reports on the electrical behavior of self-assembled gold nanoparticle films before and after high-temperature annealing in ambient environment. These films are made by depositing gold nanoparticles from a colloidal solution on glass substrates using centrifuge deposition technique. The current-voltage (I-V) characteristics of these films exhibits ohmic and non-ohmic properties for un-annealed and annealed films respectively. As the annealing time duration increases, the onset of non-ohmic behavior occurs at higher voltages. To understand the underlying mechanisms for the observed electrical conduction behavior in these films and how electrical conduction is effected by film morphology and structural properties before and after annealing, systematic comparative studies based on scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray photoelectron spectroscopy (XPS) have been performed. The morphology of the films shows that the assembled gold nanoparticles are distributed on the substrate in a random way before annealing. After 2 h annealing gold nanoparticles exhibit a higher filling fraction when examined by SEM, which means that they coalesce, upon annealing, with respect to un-annealed films. The UV-vis absorption spectra of the films show that there is a red-shift and broadening in the absorption band for the annealed films. The observed phenomenon is related to the plasmon near-field coupling effect and suggests that the nanoparticle ensembles interspacing has decreased. The structural and crystallinity of the films exhibit amorphous structure before annealing and pure crystalline phases with a preferential growth direction along the (111) plane after annealing. The XPS analysis further suggests the existence of the stable thin oxide layer in the phase of Au2O3 in the annealed films. The I-V characteristics have been described by Simmons' model for tunnel transport through metal-insulator-metal (MIM) junctions. The Fowler-Nordheim (F-N) plots show the transition of the in-plane charge transport mechanism from direct tunneling to field emission in annealed films. Our results suggest that, the formation of a thin layer of Au2O3 , the proximity of the nanoparticles as well as their higher filling fraction are important parameters related with the tunneling process enhancement. The observed non-ohmic conductivity property can make these self-assembled gold nanoparticle films very useful structures in different applications such as sensing, resistors and other nanoelectronic applications.

  8. Experimental quantum annealing: case study involving the graph isomorphism problem.

    PubMed

    Zick, Kenneth M; Shehab, Omar; French, Matthew

    2015-06-08

    Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.

  9. Experimental quantum annealing: case study involving the graph isomorphism problem

    PubMed Central

    Zick, Kenneth M.; Shehab, Omar; French, Matthew

    2015-01-01

    Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N2 to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers. PMID:26053973

  10. Microstructure and Texture Evolution in a Yttrium-Containing ZM31 Alloy: Effect of Pre- and Post-deformation Annealing

    NASA Astrophysics Data System (ADS)

    Tahreen, N.; Zhang, D. F.; Pan, F. S.; Jiang, X. Q.; Li, D. Y.; Chen, D. L.

    2016-12-01

    Microstructure and texture evolution of as-extruded ZM31 magnesium alloys with different amounts of yttrium (Y) during pre- and post-deformation annealing were examined with special attention given to the effect of Y on recrystallization. It was observed that the extruded ZM31 alloys exhibited a basal texture with the basal planes parallel to the extrusion direction (ED). The compression of the extruded alloys in the ED to a strain amount of 10 pct resulted in c-axes of hcp unit cells rotating toward the anti-compression direction due to the occurrence of extension twinning. Annealing of the extruded alloys altered the microstructure and texture, and the subsequent compression after annealing showed a relatively weak texture and a lower degree of twinning. A reverse procedure of pre-compression and subsequent annealing was found to further weaken the texture with a more scattered distribution of orientations and to lead to the vanishing of the original basal texture. With increasing Y content, both the extent of extension twinning during compression and the fraction of recrystallization during annealing decreased due to the role of Y present in the substitutional solid solution and in the second-phase particles, leading to a significant increase in the compressive yield strength.

  11. Implications of Thermal Annealing on the Benzene Vapor Sensing Behavior of PEVA-Graphene Nanocomposite Threads.

    PubMed

    Patel, Sanjay V; Cemalovic, Sabina; Tolley, William K; Hobson, Stephen T; Anderson, Ryan; Fruhberger, Bernd

    2018-03-23

    The effect of thermal treatments, on the benzene vapor sensitivity of polyethylene (co-)vinylacetate (PEVA)/graphene nanocomposite threads, used as chemiresistive sensors, was investigated using DC resistance measurements, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). These flexible threads are being developed as low-cost, easy-to-measure chemical sensors that can be incorporated into smart clothing or disposable sensing patches. Chemiresistive threads were solution-cast or extruded from PEVA and <10% graphene nanoplatelets (by mass) in toluene. Threads were annealed at various temperatures and showed up to 2 orders of magnitude decrease in resistance with successive anneals. Threads heated to ≥80 °C showed improved limits of detection, resulting from improved signal-noise, when exposed to benzene vapor in dry air. In addition, annealing increased the speed of response and recovery upon exposure to and removal of benzene vapor. DSC results showed that the presence of graphene raises the freezing point, and may allow greater crystallinity, in the nanocomposite after annealing. SEM images confirm increased surface roughness/area, which may account for the increase response speed after annealing. Benzene vapor detection at 5 ppm is demonstrated with limits of detection estimated to be as low as 1.5 ppm, reflecting an order of magnitude improvement over unannealed threads.

  12. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  13. Jessner's solution vs. 30% salicylic acid peels: a comparative study of the efficacy and safety in mild-to-moderate acne vulgaris.

    PubMed

    Dayal, Surabhi; Amrani, Ashish; Sahu, Priyadarshini; Jain, Vijay Kumar

    2017-03-01

    Chemical peeling is a well-identified therapeutic modality for acne vulgaris (AV). Jessner's solution (JS) is a known peeling agent for acne since more than 100 years. Salicylic acid (SA) peel is a well-established peeling agent for acne. There is paucity of literature comparing the current peeling agents of choice, that is, SA with the older peeling agents, that is, JS for acne. To compare the efficacy and safety of 30% SA vs. JS peels in treatment of mild-to-moderate facial acne in Indian patients. A total of 40 patients with mild-to-moderate AV were enrolled for 12 weeks and were randomly divided into two groups: group 1, 30% SA peels and group 2, JS peels were performed 2 weeks apart with total of six peels in 12-week duration. Clinical improvement was assessed objectively using Michaelsson acne scores (MAS) and clinical photographs. Side effects were observed at each visit. At the end of therapy, improvement in MAS and percentage decrease in MAS were significantly higher in group 1 as compared to group 2. Likewise, decrease in mean comedone counts in group 1 was significantly higher as compared to group 2. However, there was no statistically significant difference in the decrease in mean papule and pustule counts between the two groups. Both the groups tolerated the peels well. Thus, 30% SA peels were more effective than JS peels in treatment of noninflammatory lesions, that is, comedones and in overall improvement of mild-to-moderate facial acne vulgaris. © 2016 Wiley Periodicals, Inc.

  14. Optimal mapping of irregular finite element domains to parallel processors

    NASA Technical Reports Server (NTRS)

    Flower, J.; Otto, S.; Salama, M.

    1987-01-01

    Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.

  15. Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets

    NASA Astrophysics Data System (ADS)

    Mao, Dong; She, Xiaoyang; Du, Bobo; Yang, Dexing; Zhang, Wending; Song, Kun; Cui, Xiaoqi; Jiang, Biqiang; Peng, Tao; Zhao, Jianlin

    2016-03-01

    Few-layer transition-metal dichalcogenide WSe2/MoSe2 nanosheets are fabricated by a liquid exfoliation technique using sodium deoxycholate bile salt as surfactant, and their nonlinear optical properties are investigated based on a balanced twin-detector measurement scheme. It is demonstrated that both types of nanosheets exhibit nonlinear saturable absorption properties at the wavelength of 1.55 μm. By depositing the nanosheets on side polished fiber (SPF) or mixing the nanosheets with polyvinyl alcohol (PVA) solution, SPF-WSe2 saturable absorber (SA), SPF-MoSe2 SA, PVA-WSe2 SA, and PVA-MoSe2 SA are successfully fabricated and further tested in erbium-doped fiber lasers. The SPF-based SA is capable of operating at the high pump regime without damage, and a train of 3252.65 MHz harmonically mode-locked pulses are obtained based on the SPF-WSe2 SA. Soliton mode locking operations are also achieved in the fiber laser separately with other three types of SAs, confirming that the WSe2 and MoSe2 nanosheets could act as cost-effective high-power SAs for ultrafast optics.

  16. Sodium alginate: A promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium.

    PubMed

    Obot, I B; Onyeachu, Ikenna B; Kumar, A Madhan

    2017-12-15

    Sodium alginate (SA), a polysaccharide biopolymer, has been studied as an effective inhibitor against the corrosion of API X60 steel in neutral 3.5% NaCl using gravimetric and electrochemical techniques (OCP, EIS and EFM). The inhibition efficiency of the SA increased with concentration but was lower at higher temperature (70°C). Electrochemical measurements showed that the SA shifted the steel corrosion potential to more positive value and reduced the kinetics of corrosion by forming an adsorbed layer which mitigated the steel surface wetting, based on contact angle measurement. SEM-EDAX was used to confirm the inhibition of SA on API X60 steel surfaces. The SA adsorbs on the steel surface through a physisorption mechanism using its carboxylate oxygen according to UV-vis and ATR-IR measurements, respectively. This phenomena result in decreased localized pitting corrosion of the API X60 steel in 3.5% NaCl solution. Theoretical results using quantum chemical calculations and Monte Carlo simulations provide further atomic level insights into the interaction of SA with steel surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Astronomical calibration and global correlation of the Santonian (Cretaceous) based on the marine carbon isotope record

    NASA Astrophysics Data System (ADS)

    Thibault, N.; Jarvis, I.; Voigt, S.; Gale, A. S.; Attree, K.; Jenkyns, H. C.

    2016-06-01

    High-resolution records of bulk carbonate carbon isotopes have been generated for the Upper Coniacian to Lower Campanian interval of the sections at Seaford Head (southern England) and Bottaccione (central Italy). An unambiguous stratigraphic correlation is presented for the base and top of the Santonian between the Boreal and Tethyan realms. Orbital forcing of carbon and oxygen isotopes at Seaford Head points to the Boreal Santonian spanning five 405 kyr cycles (Sa1 to Sa5). Correlation of the Seaford Head time scale to that of the Niobrara Formation (Western Interior Basin) permits anchoring these records to the La2011 astronomical solution at the Santonian-Campanian (Sa/Ca) boundary, which has been recently dated to 84.19 ± 0.38 Ma. Among the five tuning options examined, option 2 places the Sa/Ca at the 84.2 Ma 405 kyr insolation minimum and appears as the most likely. This solution indicates that minima of the 405 kyr filtered output of the resistivity in the Niobrara Formation correlate to 405 kyr insolation minima in the astronomical solution and to maxima in the filtered δ13C of Seaford Head. We suggest that variance in δ13C is driven by climate forcing of the proportions of CaCO3 versus organic carbon burial on land and in oceanic basins. The astronomical calibration generates a 200 kyr mismatch of the Coniacian-Santonian boundary age between the Boreal Realm in Europe and the Western Interior, due either to diachronism of the lowest occurrence of the inoceramid Cladoceramus undulatoplicatus between the two regions or to remaining uncertainties of radiometric dating and cyclostratigraphic records.

  18. Novel Swelling-Resistant Sodium Alginate Membrane Branching Modified by Glycogen for Highly Aqueous Ethanol Solution Pervaporation.

    PubMed

    Ji, Chen-Hao; Xue, Shuang-Mei; Xu, Zhen-Liang

    2016-10-12

    A novel carbohydrate chain cross-linking method of sodium alginate (SA) is proposed in which glycogen with the branched-chain structure is utilized to cross-link with SA matrix by the bridging of glutaraldehyde (GA). The active layer of SA composite ceramic membrane modified by glycogen and GA for pervaporation (PV) demonstrates great advantages. The branched structure increases the chain density of the active layer, which compresses the free volume between the carbohydrate chains of SA. Large amounts of hydroxyl groups are consumed during the reaction with GA, which reduces the hydrogen bond formation between water molecules and the polysaccharide matrix. The two factors benefit the active layer with great improvement in swelling resistance, promoting the potential of the active layer for the dehydration of an ethanol-water solution containing high water content. Meanwhile, the modified active layer is loaded on the rigid α-Al 2 O 3 ceramic membrane by dip-coating method with the enhancement of anti-deformation and controllable thickness of the active layer. Characterization techniques such as SEM, AFM, XRD, FTIR, XPS, and water contact angle are utilized to observe the composite structure and surface morphology of the composite membrane, to probe the free volume variation, and to determine the chemical composition and hydrophilicity difference of the active layer caused by the different glycogen additive amounts. The membrane containing 3% glycogen in the selective layer demonstrates the flux at 1250 g m -2 h -1 coupled with the separation factor of 187 in the 25 wt % water content feed solution at the operating temperature of 75 °C, reflecting superior pervaporation processing capacity compared with the general organic PV membranes in the same condition.

  19. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  20. Anisotropic growth and formation mechanism investigation of 1D ZnO nanorods in spin-coating sol-gel process.

    PubMed

    Song, Yijian; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-01-01

    ZnO nanorods are fabricated on glass substrate by spin-coating sol-gel process using non-basic aged solution and annealing. Sample solutions reserved in room temperature for different time (one day, one month, two months and four months) are prepared for the experiment. The morphology study indicates that the aging time has direct influence on the final products. This is verified by the Transmission Electron Microscopy and Photon Correlation Spectroscopy study. Small crystalline nanoparticles would gradually nucleate and aggregate in the sol during the aging process. They act as nucleation site for the secondary crystal growth into nanorods during anneal. Both the size of crystalline particles in the sol and the size of nanorods will grow bigger as the aging time increases. The products' structure and optical property are further studied by X-ray diffraction spectroscopy, Photoluminescence and Raman spectroscopy. This work also helps to further clarify the formation mechanism of ZnO nanorods by solution-based method.

  1. Tensile characteristics of metal nanoparticle films on flexible polymer substrates for printed electronics applications.

    PubMed

    Kim, Sanghyeok; Won, Sejeong; Sim, Gi-Dong; Park, Inkyu; Lee, Soon-Bok

    2013-03-01

    Metal nanoparticle solutions are widely used for the fabrication of printed electronic devices. The mechanical properties of the solution-processed metal nanoparticle thin films are very important for the robust and reliable operation of printed electronic devices. In this paper, we report the tensile characteristics of silver nanoparticle (Ag NP) thin films on flexible polymer substrates by observing the microstructures and measuring the electrical resistance under tensile strain. The effects of the annealing temperatures and periods of Ag NP thin films on their failure strains are explained with a microstructural investigation. The maximum failure strain for Ag NP thin film was 6.6% after initial sintering at 150 °C for 30 min. Thermal annealing at higher temperatures for longer periods resulted in a reduction of the maximum failure strain, presumably due to higher porosity and larger pore size. We also found that solution-processed Ag NP thin films have lower failure strains than those of electron beam evaporated Ag thin films due to their highly porous film morphologies.

  2. An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and Probabilistic Multisearch.

    PubMed

    Yurtkuran, Alkın; Emel, Erdal

    2016-01-01

    The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.

  3. Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy.

    PubMed

    Michalcová, Alena; Marek, Ivo; Knaislová, Anna; Sofer, Zdeněk; Vojtěch, Dalibor

    2018-01-27

    Self-healing alloys are promising materials that can decrease the consequences of accidents. To detect crack formation in a material is simple task that can be performed by e.g., sonic or ultrasound detection, but it is not always possible to immediately replace the damaged parts. In this situation, it is very advantageous to have the chance to heal the crack during operation, which can be done e.g., by annealing. In this paper, self-healing behavior was proven by TEM (Transmission electron microscope) observation of crack healing after annealing. The crack was observed in the rapidly solidified Al-30Ag alloy with non-equilibrium phase composition formed by a minor amount of Ag₂Al and a supersaturated solid solution of Ag in an fcc-Al matrix (fcc = face centered cubic). After annealing at 450 °C, equilibrium phase composition was obtained by forming a higher amount of Ag₂Al. This phase transformation did not allow the crack to be healed. Subsequent annealing at 550 °C caused recrystallization to a supersaturated solid solution of Ag in fcc-Al, followed by a return to the mixture of fcc-Al and Ag₂Al by cooling, and this process was accompanied by the closing of the crack. This observation proved the self-healing possibilities of the Ag₂Al phase. Practical application of this self-healing behavior could be achieved through the dispersion of fine Ag₂Al particles in a structural material, which will enrich the material with self-healing properties.

  4. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-03-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  5. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Su, Wen; Fu, Yingyi; Hu, Jingbo

    2016-12-01

    In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments' characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm-2 mM-1 with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  6. Effect of temper rolling on the bake-hardening behavior of low carbon steel

    NASA Astrophysics Data System (ADS)

    Kuang, Chun-fu; Zhang, Shen-gen; Li, Jun; Wang, Jian; Li, Pei

    2015-01-01

    In a typical process, low carbon steel was annealed at two different temperatures (660°C and 750°C), and then was temper rolled to improve the mechanical properties. Pre-straining and baking treatments were subsequently carried out to measure the bake-hardening (BH) values. The influences of annealing temperature and temper rolling on the BH behavior of the steel were investigated. The results indicated that the microstructure evolution during temper rolling was related to carbon atoms and dislocations. After an apparent increase, the BH value of the steel significantly decreased when the temper rolling reduction was increased from 0% to 5%. This was attributed to the increase in solute carbon concentration and dislocation density. The maximum BH values of the steel annealed at 660°C and 750°C were 80 MPa and 89 MPa at the reductions of 3% and 4%, respectively. Moreover, increasing the annealing temperature from 660 to 750°C resulted in an obvious increase in the BH value due to carbide dissolution.

  7. In-situ grown nanoporous Zn-Cu catalysts on brass foils for enhanced electrochemical reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hu, Hanjun; Tang, Yang; Hu, Qing; Wan, Pingyu; Dai, Liming; Yang, Xiao Jin

    2018-07-01

    In-situ grown nanoporous Zn-Cu catalysts were prepared by simply annealing a commercial brass foil at 500 °C in air, followed by electrochemical reduction. During the annealing process, Zn preferentially melted and migrated out of the framework of the alloy to form a thin layer of ZnO on its surface. Subsequent electroreduction created nanoporous Zn-enriched surface. The Zn concentration increased from 36% to 50% by 10 min, to 81% by 3 h, and to 87% by 12 h annealing treatment while the average pore size decreased from 290 nm to 120 nm as the annealing time increased from 1 h to 12 h. Faradaic efficiency of CO2 reduction to CO and HCOOH was enhanced by nearly 4 and 6 times, respectively, as compared to untreated brass foils. The nanoporous Zn-Cu catalyst presented a stable ratio of CO/H2 and a steady working current density in a continuous electrolysis of 18 h in 0.5 M KHCO3 solution.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tingguang; Xia, Shuang, E-mail: xs@shu.edu.cn; Li, Hui

    Grain boundary engineering was carried out on an aging-treated nickel based Alloy 690, which has precipitated carbides at grain boundaries. Electron backscatter diffraction technique was used to investigate the grain boundary networks. Results show that, compared with the solution-annealed samples, the aging-treated samples with pre-existing carbides at grain boundaries need longer duration or higher temperature during annealing after low-strain tensile deformation for forming high proportion of low-Σ coincidence site lattice grain boundaries (more than 75%). The reason is that the primary recrystallization is inhibited or retarded owing to that the pre-existing carbides are barriers to grain boundaries migration. - Highlights:more » • Study of GBE as function of pre-existing GB carbides, tensile strain and annealing • Recrystallization of GBE is inhibited or retarded by the pre-existing carbides. • Retained carbides after annealing show the original GB positions. • More than 80% of special GBs were formed after the modification of GBE processing. • Multiple twinning during recrystallization is the key process of GBE.« less

  9. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-06-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  10. Measurements of atmospheric nitrous acid and nitric acid

    NASA Astrophysics Data System (ADS)

    Huang, Gu; Zhou, Xianliang; Deng, Guohong; Qiao, Huancheng; Civerolo, Kevin

    A highly sensitive technique for the measurement of atmospheric HONO and HNO 3 is reported. The technique is based on aqueous scrubbing using two coil samplers, followed by conversion of HNO 3 to nitrite, derivatization of nitrite to a highly light-absorbing azo dye with sulfanilamide (SA) and N-(1-naphthyl) ethylenediamine (NED), and high performance liquid chromatography (HPLC) analysis. HNO 3 concentration was obtained by the difference of the two channels. Two scrubbing solutions were used for sampling the two species: a 1-mM phosphate buffer solution (pH 7) for the measurement of HONO and a 180 mM NH 4Cl/NH 3 buffer solution (pH 8.5) for the measurement of HONO+HNO 3. The scrubbing solution flow rate was 0.24 ml min -1 and the gas sampling flow rate was 2 l min -1. HNO 3 in the NH 4Cl/NH 3 buffer solution was quantitatively reduced to nitrite along an on-line 0.8-cm Cd reductor column. Nitrite in both channels was derivatized with 2 mM SA and 0.2 mM NED in 25 mM HCl. Quantitative derivatization was achieved within 5 min at 55°C. The azo dye derivative was then separated from the SA/NED reagent by reversed-phase HPLC and detected with a UV-vis detector at 540 nm. With an on-line SEP-PAK C-18 cartridge for the reagent purification, the method detection limit is estimated to be better than 1 pptv for HONO and about 20 pptv for HNO 3. The sample integration time was about 2 min and the sampling frequency is every 10 min. Data collected in downtown Albany and Whiteface Mountain, NY, are shown as examples of applications of this technique in both urban and remote clean environments.

  11. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)' in pharmaceutical lyophilization.

    PubMed

    Searles, J A; Carpenter, J F; Randolph, T W

    2001-07-01

    In a companion paper we show that the freezing of samples in vials by shelf-ramp freezing results in significant primary drying rate heterogeneity because of a dependence of the ice crystal size on the nucleation temperature during freezing.1 The purpose of this study was to test the hypothesis that post-freezing annealing, in which the product is held at a predetermined temperature for a specified duration, can reduce freezing-induced heterogeneity in sublimation rates. In addition, we test the impact of annealing on primary drying rates. Finally, we use the kinetics of relaxations during annealing to provide a simple measurement of T(g)', the glass transition temperature of the maximally freeze-concentrated amorphous phase, under conditions and time scales most appropriate for industrial lyophilization cycles. Aqueous solutions of hydroxyethyl starch (HES), sucrose, and HES:sucrose were either frozen by placement on a shelf while the temperature was reduced ("shelf-ramp frozen") or by immersion into liquid nitrogen. Samples were then annealed for various durations over a range of temperatures and partially lyophilized to determine the primary drying rate. The morphology of fully dried liquid nitrogen-frozen samples was examined using scanning electron microscopy. Annealing reduced primary drying rate heterogeneity for shelf-ramp frozen samples, and resulted in up to 3.5-fold increases in the primary drying rate. These effects were due to increased ice crystal sizes, simplified amorphous structures, and larger and more numerous holes on the cake surface of annealed samples. Annealed HES samples dissolved slightly faster than their unannealed counterparts. Annealing below T(g)' did not result in increased drying rates. We present a simple new annealing-lyophilization method of T(g)' determination that exploits this phenomenon. It can be carried out with a balance and a freeze-dryer, and has the additional advantage that a large number of candidate formulations can be evaluated simultaneously.

  12. Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed Crystallites

    PubMed Central

    Khan, Fasihullah; Ajmal, Hafiz Muhammad Salman; Huda, Noor Ul; Kim, Ji Hyun; Kim, Sam-Dong

    2018-01-01

    In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm2) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors. PMID:29373523

  13. Fabrication of Cu2SnS3 thin films by ethanol-ammonium solution process by doctor-blade technique

    NASA Astrophysics Data System (ADS)

    Wang, Yaguang; Li, Jianmin; Xue, Cong; Zhang, Yan; Jiang, Guoshun; Liu, Weifeng; Zhu, Changfei

    2017-11-01

    In the present study, a low-cost and simple method is applied to fabricate Cu2SnS3 (CTS) thin films. Namely CTS thin films are prepared by a doctor-blade method with a slurry dissolving the Cu2O and SnS powders obtained from CBD reaction solution into ethanol-ammonium solvents. Series of characterization methods including XRD, Raman spectra, SEM and UV-Vis analyses are introduced to investigate the phase structure, morphology and optical properties of CTS thin films. As a result, monoclinic CTS films have been obtained with the disappearance of binary phases CuS and SnS2 while increasing the annealing temperature and time, high quality monoclinic CTS thin films consisting of compact and large grains have been successfully prepared by this ethanol-ammonium method. Moreover, the secondary phase Cu2Sn3S7 is also observed during the annealing process. In addition, the post-annealed CTS film with a band-gap about 0.89 eV shows excellent absorbance between 400 and 1200 nm, which is proper for the bottom layer in multi-junction thin film solar cells.[Figure not available: see fulltext.

  14. The new technological solution for the JT-60SA quench protection circuits

    NASA Astrophysics Data System (ADS)

    Gaio, E.; Maistrello, A.; Novello, L.; Matsukawa, M.; Perna, M.; Ferro, A.; Yamauchi, K.; Piovan, R.

    2018-07-01

    An advanced technology has been developed and employed for the main circuit breakers (CB) of the quench protection circuits (QPC) of the superconducting coils of JT-60SA: it consists in a Hybrid mechanical-static CB (HCB) composed of a mechanical Bypass switch (BPS) for conducting the continuous current, in parallel to a static circuit breaker (SCB) based on integrated gate commutated thyristor (IGCT) for current interruption. It was the result of a R&D program carried out since 2006 to identify innovative solutions for the interruption of high dc current, able to improve the maintainability and availability of the CB. The HCB developed for the JT-60SA QPC is the first realization of a dc circuit breaker based on this design approach for interrupting current of some tens of kA with reapplied voltage of some kV. It also represents the first application of hybrid technology with IGCT for protection of superconducting magnets in fusion experiments. The paper aims at giving a comprehensive overview of the main R&D activities devoted to the development of this new technological approach; then, the key aspects of the design, manufacturing and testing of the QPCs for JT-60SA, successfully completed in Naka Site in summer 2015 are presented. Finally, the significance of this research is discussed and the possible future developments, in particular in view of DEMO fusion reactor, are outlined.

  15. Gelation of Na-alginate aqueous solution: A study of sodium ion dynamics via NMR relaxometry.

    PubMed

    Zhao, Congxian; Zhang, Chao; Kang, Hongliang; Xia, Yanzhi; Sui, Kunyan; Liu, Ruigang

    2017-08-01

    Sodium alginate (SA) hydrogels have a wide range of applications including tissue engineering, drug delivery and formulations for preventing gastric reflux. The dynamics of sodium ions during the gelation process of SA solution is critical for clarification of the gelation procedure. In this work, nuclear magnetic resonance (NMR) relaxometry and pulsed-field-gradient (PFG) NMR diffusometry were used to investigate the dynamics of the sodium ions during the gelation of SA alginate. We find that sodium ions are in two different states with the addition of divalent calcium ions, corresponding to Ca 2+ crosslinked and un-crosslinked regions in the hydrogels. The sodium ions within the un-crosslinked regions are those released from the alginate chains without Ca 2+ crosslinking. The relative content of sodium ions within the Ca 2+ crosslinked regions decreased with the increase in the content of calcium ions in the system. The relaxation time T 2 of sodium ions within the Ca 2+ crosslinked and un-crosslinked regions shift to shorter and longer relaxation time with the increase in concentration of calcium ion, which indicates the closer package of SA chains and the larger space for the diffusion of free sodium ions. This work clarifies the dynamics of 23 Na + in a calcium alginate gel at the equilibrium state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Surface-induced polymerization of actin.

    PubMed Central

    Renault, A; Lenne, P F; Zakri, C; Aradian, A; Vénien-Bryan, C; Amblard, F

    1999-01-01

    Living cells contain a very large amount of membrane surface area, which potentially influences the direction, the kinetics, and the localization of biochemical reactions. This paper quantitatively evaluates the possibility that a lipid monolayer can adsorb actin from a nonpolymerizing solution, induce its polymerization, and form a 2D network of individual actin filaments, in conditions that forbid bulk polymerization. G- and F-actin solutions were studied beneath saturated Langmuir monolayers containing phosphatidylcholine (PC, neutral) and stearylamine (SA, a positively charged surfactant) at PC:SA = 3:1 molar ratio. Ellipsometry, tensiometry, shear elastic measurements, electron microscopy, and dark-field light microscopy were used to characterize the adsorption kinetics and the interfacial polymerization of actin. In all cases studied, actin follows a monoexponential reaction-limited adsorption with similar time constants (approximately 10(3) s). At a longer time scale the shear elasticity of the monomeric actin adsorbate increases only in the presence of lipids, to a 2D shear elastic modulus of mu approximately 30 mN/m, indicating the formation of a structure coupled to the monolayer. Electron microscopy shows the formation of a 2D network of actin filaments at the PC:SA surface, and several arguments strongly suggest that this network is indeed causing the observed elasticity. Adsorption of F-actin to PC:SA leads more quickly to a slightly more rigid interface with a modulus of mu approximately 50 mN/m. PMID:10049338

  17. Dynamics of open quantum systems by interpolation of von Neumann and classical master equations, and its application to quantum annealing

    NASA Astrophysics Data System (ADS)

    Kadowaki, Tadashi

    2018-02-01

    We propose a method to interpolate dynamics of von Neumann and classical master equations with an arbitrary mixing parameter to investigate the thermal effects in quantum dynamics. The two dynamics are mixed by intervening to continuously modify their solutions, thus coupling them indirectly instead of directly introducing a coupling term. This maintains the quantum system in a pure state even after the introduction of thermal effects and obtains not only a density matrix but also a state vector representation. Further, we demonstrate that the dynamics of a two-level system can be rewritten as a set of standard differential equations, resulting in quantum dynamics that includes thermal relaxation. These equations are equivalent to the optical Bloch equations at the weak coupling and asymptotic limits, implying that the dynamics cause thermal effects naturally. Numerical simulations of ferromagnetic and frustrated systems support this idea. Finally, we use this method to study thermal effects in quantum annealing, revealing nontrivial performance improvements for a spin glass model over a certain range of annealing time. This result may enable us to optimize the annealing time of real annealing machines.

  18. The structure, bond strength and apatite-inducing ability of micro-arc oxidized tantalum and their response to annealing

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Wang, Feng; Han, Yong

    2016-01-01

    In this study, the tantalum oxide coatings were formed on pure tantalum (Ta) by micro-arc oxidation (MAO) in electrolytic solutions of calcium acetate and β-glycerophosphate disodium, and the effect of the applied voltage on the microstructure and bond strength of the MAO coatings was systematically investigated. The effect of annealing treatment on the microstructure, bond strength and apatite-inducing ability of the MAO coatings formed at 350 and 450 V was also studied. The study revealed that during the preparation of tantalum oxide coatings on Ta substrate by MAO, the applied voltage considerably affected the phase components, morphologies and bond strength of the coatings, but had little effect on surface chemical species. After annealing treatment, newly formed CaTa4O11 phase mainly contributed to the much more stronger apatite-inducing ability of the annealed tantalum oxide coatings than those that were not annealed. The better apatite-inducing ability of the MAO coatings formed at 450 V compared to those formed at 350 V was attributed to the less amorphous phase and more crystalline phase as well as more Ca and P contained in the MAO coatings with increasing the applied voltage.

  19. Streamflow Prediction based on Chaos Theory

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, X.; Babovic, V. M.

    2015-12-01

    Chaos theory is a popular method in hydrologic time series prediction. Local model (LM) based on this theory utilizes time-delay embedding to reconstruct the phase-space diagram. For this method, its efficacy is dependent on the embedding parameters, i.e. embedding dimension, time lag, and nearest neighbor number. The optimal estimation of these parameters is thus critical to the application of Local model. However, these embedding parameters are conventionally estimated using Average Mutual Information (AMI) and False Nearest Neighbors (FNN) separately. This may leads to local optimization and thus has limitation to its prediction accuracy. Considering about these limitation, this paper applies a local model combined with simulated annealing (SA) to find the global optimization of embedding parameters. It is also compared with another global optimization approach of Genetic Algorithm (GA). These proposed hybrid methods are applied in daily and monthly streamflow time series for examination. The results show that global optimization can contribute to the local model to provide more accurate prediction results compared with local optimization. The LM combined with SA shows more advantages in terms of its computational efficiency. The proposed scheme here can also be applied to other fields such as prediction of hydro-climatic time series, error correction, etc.

  20. Luminescence characteristics of nanoporous anodic alumina annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Ilin, D. O.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-09-01

    Anodic aluminum oxide (AAO) membranes with 100 µm thickness were synthesized in oxalic acid solution under constant current density. Grown samples were annealed in 500-1250 °C range for 5 h in air. Average pore diameter was evaluated using quantitative analysis of SEM images and appeared to be within 78-86 nm diapason. It was found there was a broad emission band in the 350-620 nm region of photoluminescence (PL) spectra in amorphous membranes which is attributed to F-type oxygen deficient centers or oxalic ions. It was shown that intensive red emission caused by Cr3+ (696 nm) and Mn4+ (680 nm) impurities dominates in PL of AAO samples with crystalline α- and δ-phases after annealing at 1100-1250 °C temperatures.

  1. Interfacial engineering of solution-processed Ni nanochain-SiO x (x< 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin

    Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO x system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO x cermet absorbers via interfacial engineering.« less

  2. Interfacial engineering of solution-processed Ni nanochain-SiO x (x< 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    DOE PAGES

    Yu, Xiaobai; Wang, Xiaoxin; Zhang, Qinglin; ...

    2016-04-01

    Here, cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO x cermet system compared to conventional Ni-Al 2O 3 system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in thismore » paper, we demonstrate that pre-operation annealing of Ni nanochain-SiO x cermets at 900 °C in N 2 forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO x interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N 2 (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO x interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO x saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO x system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO x cermet absorbers via interfacial engineering.« less

  3. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  4. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  5. Solution-processing of chalcogenide materials for device applications

    NASA Astrophysics Data System (ADS)

    Zha, Yunlai

    Chalcogenide glasses are well-known for their desirable optical properties, which have enabled many infrared applications in the fields of photonics, medicine, environmental sensing and security. Conventional deposition methods such as thermal evaporation, chemical vapor deposition, sputtering or pulse laser deposition are efficient for fabricating structures on flat surfaces. However, they have limitations in deposition on curved surfaces, deposition of thick layers and component integration. In these cases, solution-based methods, which involve the dissolution of chalcogenide glasses and processing as a liquid, become a better choice for their flexibility. After proper treatment, the associated structures can have similar optical, chemical and physical properties to the bulk. This thesis presents an in-depth study of solution-processing chalcogenide glasses, starting from the "solution state" to the "film state" and the "structure state". Firstly, chalcogenide dissolution is studied to reveal the mechanisms at molecular level and build a foundation for material processing. Dissolution processes for various chalcogenide solvent pairs are reviewed and compared. Secondly, thermal processing, in the context of high temperature annealing, is explained along with the chemical and physical properties of the annealed films. Another focus is on nanopore formation in propylamine-processed arsenic sulfide films. Pore density changes with respect to annealing temperatures and durations are characterized. Base on a proposed vacancy coalescence theory, we have identified new dissolution strategies and achieved the breakthrough of pore-free film deposition. Thirdly, several solution methods developed along with the associated photonic structures are demonstrated. The first example is "spin-coating and lamination", which produces thick (over 10 mum) chalcogenide structures. Both homogeneous thick chalcogenide structures and heterogeneous layers of different chalcogenide glasses or metals can be fabricated. Second, "micro-molding in capillaries" (MIMIC) and "micro-transfer molding" (muTM) methods are introduced for fabricating waveguides on flat and curved surfaces. The flexibility of the solution process allows waveguides to be patterned, for the first time, on a curved surface. Third, "micro channel filling" is demonstrated to produce the lowest loss among solution-processed chalcogenide waveguides. These results contribute to the advancement of chalcogenide processing technologies and help move closer towards the ultimate goal of fabricating reliable IR sensors.

  6. Salicylic Acid, an Ambimobile Molecule Exhibiting a High Ability to Accumulate in the Phloem1

    PubMed Central

    Rocher, Françoise; Chollet, Jean-François; Jousse, Cyril; Bonnemain, Jean-Louis

    2006-01-01

    The ability of exogenous salicylic acid (SA) to accumulate in castor bean (Ricinus communis) phloem was evaluated by HPLC and liquid scintillation spectrometry analyses of phloem sap collected from the severed apical part of seedlings. Time-course experiments indicated that SA was transported to the root system via the phloem and redistributed upward in small amounts via the xylem. This helps to explain the peculiarities of SA distribution within the plant in response to biotic stress and exogenous SA application. Phloem loading of SA at 1, 10, or 100 μm was dependent on the pH of the cotyledon incubating solution, and accumulation in the phloem sap was the highest (about 10-fold) at the most acidic pH values tested (pH 4.6 and 5.0). As in animal cells, SA uptake still occurred at pH values close to neutrality (i.e. when SA is only in its dissociated form according to the calculations made by ACD LogD suite software). The analog 3,5-dichlorosalicylic acid, which is predicted to be nonmobile according to the models of Bromilow and Kleier, also moved in the sieve tubes. These discrepancies and other data may give rise to the hypothesis of a possible involvement of a pH-dependent carrier system translocating aromatic monocarboxylic acids in addition to the ion-trap mechanism. PMID:16778012

  7. Effect of SiO2, PVA and glycerol concentrations on chemical and mechanical properties of alginate-based films.

    PubMed

    Yang, Manli; Shi, Jinsheng; Xia, Yanzhi

    2018-02-01

    Sodium alginate (SA)/polyvinyl alcohol (PVA)/SiO 2 nanocomposite films were prepared by in situ polymerization through solution casting and solvent evaporation. The effect of different SA/PVA ratios, SiO 2 , and glycerol content on the mechanical properties, water content, water solubility, and water vapor permeability were studied. The nanocomposite films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal stability (thermogravimetric analysis/differential thermogravimetry) analyses. The nanocomposites showed the highest values of mechanical properties, such as SA/PVA ratio, SiO 2 , and glycerol content was 7:3, 6wt.%, and 0.25g/g SA, respectively. The tensile strength and elongation at break (E%) of the nanocomposites increased by 525.7% and 90.7%, respectively, compared with those of the pure alginate film. The Fourier transform infrared spectra showed a new SiOC band formed in the SA/PVA/SiO 2 nanocomposite film. The scanning electron microscopy image revealed good adhesion between SiO 2 and SA/PVA matrix. After the incorporation of PVA and SiO 2 , the water resistance of the SA/PVA/SiO 2 nanocomposite film was markedly improved. Transparency decreased with increasing PVA content but was enhanced by adding SiO 2 . Copyright © 2017. Published by Elsevier B.V.

  8. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.

    PubMed

    Fu, Jie; Kim, Hee Young; Miyazaki, Shuichi

    2017-01-01

    In this study a new superelastic Ti-18Zr-4.5Nb-3Sn-2Mo alloy was prepared by adding 2at% of Mo as a substitute for Nb to the Ti-18Zr-11Nb-3Sn alloy, and heat treatment at different temperatures was conducted. The temperature dependence of superelasticity and annealing texture was investigated. Texture showed a dependence of annealing temperature: the specimen annealed at 923K for 0.3ks exhibited {113} β <47¯1> β type texture which was similar to the deformation texture, while specimens annealed at 973, 1073K, and 1173K showed {001} β <110> β type recrystallization texture which was preferable for recovery strain. The largest recovery strain of 6.2%, which is the same level as that of the Ti-18Zr-11Nb-3Sn alloy, was obtained in the specimen annealed at 1173K for 0.3ks due to the well-developed {001} β <110> β type recrystallization texture. The Ti-18Zr-3Nb-3Sn-2Mo alloy presented a higher tensile strength compared with the Ti-18Zr-11Nb-3Sn alloy when heat treated at 1173K for 0.3ks, which was due to the solid solution strengthening effect of Mo. Annealing at 923K for 0.3ks was effective in obtaining a good combination of a high strength as 865MPa and a large recovery strain as 5.6%. The high recovery strain was due to the high stress at which the maximum recovery stain was obtained which was attributed to the small grain size formed at low annealing temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Analytical Applications of Monte Carlo Techniques.

    ERIC Educational Resources Information Center

    Guell, Oscar A.; Holcombe, James A.

    1990-01-01

    Described are analytical applications of the theory of random processes, in particular solutions obtained by using statistical procedures known as Monte Carlo techniques. Supercomputer simulations, sampling, integration, ensemble, annealing, and explicit simulation are discussed. (CW)

  10. 77 FR 27837 - Pilot Program on NAFTA Trucking Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Federal de Conductor and English language proficiency. L. If No, Which Element Failed: If FMCSA cannot... collection facility 1 Higienicos y 710491 MX-327700 N/A Pass 1 1 US RMC Testing Desechables del Solutions. Bajio SA de CV. 2 Servicios 1052546 MX-440938 N/A Pass 1 1 US RMC Testing Refrigerados Solutions...

  11. Stamping an AA5754 Train Window Panel with High Dent Resistance Using Locally Annealed Blanks

    NASA Astrophysics Data System (ADS)

    Piccininni, A.; Guglielmi, P.; Lo Franco, A.; Palumbo, G.

    2017-09-01

    The warm stamping of an AA5754-H32 window panel for railway vehicles applications has been proposed in the present work. The adoption of increased working temperatures can be surely considered the most effective solution for this alloy to overcome the limited material formability at room temperature [Palumbo et al. “Warm Forming of an AA5754 Component for Railway Vehicle Applications”, Procedia Engineering, Vol. 183, 2017, Pages 351-356] but, in order to improve the overall dent resistance of the component, the initial wrought conditions have been chosen in the present work. The manufacturing of the window panel was thus subdivided into a preliminary local heat treatment (assumed to be performed by laser) to anneal the material and a subsequent warm stamping step using heated tools. The best combination of temperature and holding time able to produce the annealing of the investigated alloy was determined using the physical simulator Gleeble 3180. On the contrary, the warm forming step was designed by means of thermo-mechanical simulations: in order to model the AA5754-H32 blank with annealed regions, an extensive experimental campaign (tensile and formability tests) was conducted using specimens in the annealed (H111) and in the wrought (H32) conditions. Through the numerical approach it was thus possible define: (i) the extent of the annealed regions; (ii) the punch speed to get a sound component.

  12. Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells

    PubMed Central

    Ren, Zhiwei; Ng, Annie; Shen, Qian; Gokkaya, Huseyin Cem; Wang, Jingchuan; Yang, Lijun; Yiu, Wai-Kin; Bai, Gongxun; Djurišić, Aleksandra B.; Leung, Wallace Woon-fong; Hao, Jianhua; Chan, Wai Kin; Surya, Charles

    2014-01-01

    We report investigations on the influences of post-deposition treatments on the performance of solution-processed methylammonium lead triiodide (CH3NH3PbI3)-based planar solar cells. The prepared films were stored in pure N2 at room temperature or annealed in pure O2 at room temperature, 45°C, 65°C and 85°C for 12 hours prior to the deposition of the metal electrodes. It is found that annealing in O2 leads to substantial increase in the power conversion efficiencies (PCEs) of the devices. Furthermore, strong dependence on the annealing temperature for the PCEs of the devices suggests that a thermally activated process may underlie the observed phenomenon. It is believed that the annealing process may facilitate the diffusion of O2 into the spiro-MeOTAD for inducing p-doping of the hole transport material. Furthermore, the process can result in lowering the localized state density at the grain boundaries as well as the bulk of perovskite. Utilizing thermal assisted O2 annealing, high efficiency devices with good reproducibility were attained. A PCE of 15.4% with an open circuit voltage (VOC) 1.04 V, short circuit current density (JSC) 23 mA/cm2, and fill factor 0.64 had been achieved for our champion device. PMID:25341527

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leppäniemi, J., E-mail: jaakko.leppaniemi@vtt.fi; Ojanperä, K.; Kololuoma, T.

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In{sub 2}O{sub 3}) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100 °C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250 °C with FUV for 5 min yield enhancement-mode TFTs with saturation mobility of ∼1 cm{sup 2}/(V·s). Amorphous In{sub 2}O{sub 3} films annealed for 15 min with FUV atmore » temperatures of 180 °C and 200 °C yield TFTs with low-hysteresis and saturation mobility of 3.2 cm{sup 2}/(V·s) and 7.5 cm{sup 2}/(V·s), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160 nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.« less

  14. Strong Keratin-like Nanofibers Made of Globular Protein

    NASA Astrophysics Data System (ADS)

    Dror, Yael; Makarov, Vadim; Admon, Arie; Zussman, Eyal

    2008-03-01

    Protein fibers as elementary structural and functional elements in nature inspire the engineering of protein-based products for versatile bio-medical applications. We have recently used the electrospinning process to fabricate strong sub-micron fibers made solely of serum albumin (SA). This raises the challenges of turning a globular non-viscous protein solution into a polymer--like spinnable solution and producing keratin-like fibers enriched in inter S-S bridges. A stable spinning process was achieved by using SA solution in a rich trifluoroethanol-water mixture with β-mercaptoethanol. The breakage of the intra disulfide bridges, as identified by mass spectrometry, together with the denaturing alcohol, enabled a pronounced expansion of the protein. This in turn, affects the rheological properties of the solution. X-ray diffraction pattern of the fibers revealed equatorial orientation, indicating the alignment of structures along the fiber axis. The mechanical properties reached remarkable average values (Young's modulus of 1.6GPa, and max stress of 36MPa) as compared to other fibrous protein nanofibers. These significant results are attributed to both the alignment and inter disulfide bonds (cross linking) that were formed by spontaneous post-spinning oxidation.

  15. Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper

    NASA Astrophysics Data System (ADS)

    Imantalab, O.; Fattah-alhosseini, A.; Keshavarz, M. K.; Mazaheri, Y.

    2016-02-01

    In this work, electrochemical behavior of annealed (micro-) and nano-grained pure copper (fabricated by accumulative roll bonding process) in phosphate buffer solutions of various pH values ranging from 10.69 to 12.59 has been studied. Before any electrochemical measurements, evaluation of microstructure was obtained by optical microscope and transmission electron microscopy. To investigate the electrochemical behavior of the samples, the potentiodynamic polarization, Mott-Schottky analysis, and electrochemical impedance spectroscopy (EIS) were carried out. Potentiodynamic polarization plots and EIS measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure copper. Also, Mott-Schottky analysis indicated that the passive films behaved as p-type semiconductors and grain refinement did not change the semiconductor type of passive films.

  16. A simulated annealing approach for redesigning a warehouse network problem

    NASA Astrophysics Data System (ADS)

    Khairuddin, Rozieana; Marlizawati Zainuddin, Zaitul; Jiun, Gan Jia

    2017-09-01

    Now a day, several companies consider downsizing their distribution networks in ways that involve consolidation or phase-out of some of their current warehousing facilities due to the increasing competition, mounting cost pressure and taking advantage on the economies of scale. Consequently, the changes on economic situation after a certain period of time require an adjustment on the network model in order to get the optimal cost under the current economic conditions. This paper aimed to develop a mixed-integer linear programming model for a two-echelon warehouse network redesign problem with capacitated plant and uncapacitated warehouses. The main contribution of this study is considering capacity constraint for existing warehouses. A Simulated Annealing algorithm is proposed to tackle with the proposed model. The numerical solution showed the model and method of solution proposed was practical.

  17. Effect of outdoor exposure at ambient and elevated temperatures on fatigue life of Ti-6Al-4V titanium alloy sheet in the annealed and the solution treated and aged condition

    NASA Technical Reports Server (NTRS)

    Phillips, E. P.

    1974-01-01

    Specimens of Ti-6Al-4V titanium alloy sheet in the annealed and the solution-treated and aged heat-treatment condition were exposed outdoors at ambient and 560 K (550 F) temperatures to determine the effect of outdoor exposure on fatigue life. Effects of exposure were determined by comparing fatigue lives of exposed specimens to those of unexpected specimens. Two procedures for fatigue testing the exposed specimens were evaluated: (1) fatigue tests conducted outdoors by applying 1200 load cycles per week until failure occurred and (2) conventional fatigue tests (continuous cycling until failure occurred) conducted indoors after outdoor exposure under static load. The exposure period ranged from 9 to 28 months for the outdoor fatigue-test group and was 24 months for the static-load group. All fatigue tests were constant-amplitude bending of specimens containing a drilled hole (stress concentration factor of 1.6). The results of the tests indicate that the fatigue lives of solution-treated and aged specimens were significantly reduced by the outdoor exposure at 560 K but not by the exposure at ambient temperature. Fatigue lives of the annealed specimens were essentially unaffected by the outdoor exposure at either temperature. The two test procedures - outdoor fatigue test and indoor fatigue test after outdoor exposure - led to the same conclusions about exposure effects.

  18. Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg-Air Battery Based on AZ61 Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Jingling; Wang, Guangxin; Li, Yaqiong; Li, Wuhui; Ren, Fengzhang

    2018-04-01

    The application of Mg-air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg-air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg-1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and "cracked mud" layer. AZ61 alloy can be used as the anode for Mg-air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.

  19. Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg-Air Battery Based on AZ61 Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Jingling; Wang, Guangxin; Li, Yaqiong; Li, Wuhui; Ren, Fengzhang

    2018-05-01

    The application of Mg-air batteries is limited due to passivation and self-corrosion of anode alloys in electrolyte. In effort of solving this problem, the present work studied the influence of sodium silicate (SS)/sodium alginate (SA) on electrochemical behaviors of AZ61 alloy in NaCl solution by circle potentiodynamic polarization and galvanostatic discharge. The corrosion morphology and discharge product were examined by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Results have shown that sodium silicate/sodium alginate inhibitors have an apparent effect on the self-corrosion of AZ61 alloy without affecting its discharge performance. The discharge capacity and the anodic utilization for Mg-air battery in a 0.6 M NaCl + 0.01 M SS +0.04 M SA solution are measured to be 1397 mAhg-1 and 48.2%, respectively. Electrochemical impedance spectroscopy (EIS) and SEM investigation have confirmed that the sodium silicate/sodium alginate inhibitor can obviously decrease the self-corrosion of AZ61 alloy. SEM and XRD diffraction examinations suggest that the inhibiting mechanism is due to the formation of a compact and "cracked mud" layer. AZ61 alloy can be used as the anode for Mg-air battery in a solution of 0.6 M NaCl + 0.01 M SS +0.04 M SA.

  20. Transport of sulfacetamide and levofloxacin in granular porous media under various conditions: Experimental observations and model simulations.

    PubMed

    Dong, Shunan; Gao, Bin; Sun, Yuanyuan; Shi, Xiaoqing; Xu, Hongxia; Wu, Jianfeng; Wu, Jichun

    2016-12-15

    Understanding the fate and transport of antibiotics in porous media can help reduce their contamination risks to soil and groundwater systems. In this work, batch and column experiments were conducted to determine the interactions between two representative antibiotics, sulfacetamide (SA) and levofloxacin (LEV), and sand porous media under various solution pH, humic acid (HA) concentration, grain size, and moisture content conditions. Batch sorption experimental results indicated that the sand had relatively strong bonding affinity to LEV, but little sorption of SA under different pH, HA concentration, grain size conditions. Results from the packed sand column experiments showed that SA had extremely high mobility in the porous media for all combinations of pH, HA concentration, grain size, and moisture content. The mass recovery of SA was higher than 98.5% in all the columns with the exception of the one packed with fine sand (97.2%). The retention of LEV in the columns was much higher and the recovery rates ranged from 0% to 71.1%. Decreases in solution pH, HA concentration, grain size, or moisture content reduced the mobility of LEV in the columns under the tested conditions. These results indicated that type of antibiotics and environmental conditions also played an important role in controlling their fate and transport in porous media. Mathematical models were applied to simulate and interpret experimental data, and model simulations described the interactions between the two antibiotics and sand porous media very well. Findings from this study elucidated the key factors and processes controlling the fate of SA and LEV in porous media, which can inform the prediction and assessment of the environmental risks of antibiotics. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite.

    PubMed

    Holopainen, Jani; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-12-01

    Calcium carbonate (CaCO3) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO3 layer by spin or dip coating Ca(NO3)2/PVP precursor solution on the CaCO3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping.

    PubMed

    Hu, Yuh-Chung; Hsu, Wei-Li; Wang, Yi-Ta; Ho, Cheng-Tao; Chang, Pei-Zen

    2014-04-16

    The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  3. Graphene Oxide-A Tool for the Preparation of Chemically Crosslinking Free Alginate-Chitosan-Collagen Scaffolds for Bone Tissue Engineering.

    PubMed

    Kolanthai, Elayaraja; Sindu, Pugazhendhi Abinaya; Khajuria, Deepak Kumar; Veerla, Sarath Chandra; Kuppuswamy, Dhandapani; Catalani, Luiz Henrique; Mahapatra, D Roy

    2018-04-18

    Developing a biodegradable scaffold remains a major challenge in bone tissue engineering. This study was aimed at developing novel alginate-chitosan-collagen (SA-CS-Col)-based composite scaffolds consisting of graphene oxide (GO) to enrich porous structures, elicited by the freeze-drying technique. To characterize porosity, water absorption, and compressive modulus, GO scaffolds (SA-CS-Col-GO) were prepared with and without Ca 2+ -mediated crosslinking (chemical crosslinking) and analyzed using Raman, Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy techniques. The incorporation of GO into the SA-CS-Col matrix increased both crosslinking density as indicated by the reduction of crystalline peaks in the XRD patterns and polyelectrolyte ion complex as confirmed by FTIR. GO scaffolds showed increased mechanical properties which were further increased for chemically crosslinked scaffolds. All scaffolds exhibited interconnected pores of 10-250 μm range. By increasing the crosslinking density with Ca 2+ , a decrease in the porosity/swelling ratio was observed. Moreover, the SA-CS-Col-GO scaffold with or without chemical crosslinking was more stable as compared to SA-CS or SA-CS-Col scaffolds when placed in aqueous solution. To perform in vitro biochemical studies, mouse osteoblast cells were grown on various scaffolds and evaluated for cell proliferation by using MTT assay and mineralization and differentiation by alizarin red S staining. These measurements showed a significant increase for cells attached to the SA-CS-Col-GO scaffold compared to SA-CS or SA-CS-Col composites. However, chemical crosslinking of SA-CS-Col-GO showed no effect on the osteogenic ability of osteoblasts. These studies indicate the potential use of GO to prepare free SA-CS-Col scaffolds with preserved porous structure with elongated Col fibrils and that these composites, which are biocompatible and stable in a biological medium, could be used for application in engineering bone tissues.

  4. A facile thermal decomposition route to synthesise CoFe2O4 nanostructures

    NASA Astrophysics Data System (ADS)

    Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.

    2014-01-01

    The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.

  5. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my

    2015-07-22

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify themore » formation of nanoparticles by revealing the presence of required elements.« less

  6. Triblock copolyampholytes from 5-(N,N-dimethyl amino)isoprene styrene, and methacrylic acid: Synthesis and solution properties

    NASA Astrophysics Data System (ADS)

    Bieringer, R.; Abetz, V.; Müller, A. H. E.

    ABC triblock copolymers of the type poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(tert-butyl methacrylate) (AiST) were synthesized and hydrolyzed to yield poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(methacrylic acid) (AiSA) triblock copolyampholytes. Due to a complex solubility behavior the solution properties of these materials had to be investigated in THF/water solvent mixtures. Potentiometric titrations of AiSA triblock copolyampholytes showed two inflection points with the A block being deprotonated prior to the Ai hydrochloride block thus forming a polyzwitterion at the isoelectric point (iep). The aggregation behavior was studied by dynamic light scattering (DLS) and freeze-fracture/transmission electron microscopy (TEM). Large vesicular structures with almost pH-independent radii were observed.

  7. Estimation of the ARNO model baseflow parameters using daily streamflow data

    NASA Astrophysics Data System (ADS)

    Abdulla, F. A.; Lettenmaier, D. P.; Liang, Xu

    1999-09-01

    An approach is described for estimation of baseflow parameters of the ARNO model, using historical baseflow recession sequences extracted from daily streamflow records. This approach allows four of the model parameters to be estimated without rainfall data, and effectively facilitates partitioning of the parameter estimation procedure so that parsimonious search procedures can be used to estimate the remaining storm response parameters separately. Three methods of optimization are evaluated for estimation of four baseflow parameters. These methods are the downhill Simplex (S), Simulated Annealing combined with the Simplex method (SA) and Shuffled Complex Evolution (SCE). These estimation procedures are explored in conjunction with four objective functions: (1) ordinary least squares; (2) ordinary least squares with Box-Cox transformation; (3) ordinary least squares on prewhitened residuals; (4) ordinary least squares applied to prewhitened with Box-Cox transformation of residuals. The effects of changing the seed random generator for both SA and SCE methods are also explored, as are the effects of the bounds of the parameters. Although all schemes converge to the same values of the objective function, SCE method was found to be less sensitive to these issues than both the SA and the Simplex schemes. Parameter uncertainty and interactions are investigated through estimation of the variance-covariance matrix and confidence intervals. As expected the parameters were found to be correlated and the covariance matrix was found to be not diagonal. Furthermore, the linearized confidence interval theory failed for about one-fourth of the catchments while the maximum likelihood theory did not fail for any of the catchments.

  8. Quantum annealing correction with minor embedding

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  9. Psychometric Properties of the Persian Version of the Social Anxiety - Acceptance and Action Questionnaire.

    PubMed

    Soltani, Esmail; Bahrainian, Seyed Abdolmajid; Masjedi Arani, Abbas; Farhoudian, Ali; Gachkar, Latif

    2016-06-01

    Social anxiety disorder is often related to specific impairment or distress in different areas of life, including occupational, social and family settings. The purpose of the present study was to examine the psychometric properties of the persian version of the social anxiety-acceptance and action questionnaire (SA-AAQ) in university students. In this descriptive cross-sectional study, 324 students from Shahid Beheshti University of Medical Sciences participated via the cluster sampling method during year 2015. Factor analysis by the principle component analysis method, internal consistency analysis, and convergent and divergent validity were conducted to examine the validity of the SA-AAQ. To calculate the reliability of the SA-AAQ, Cronbach's alpha and test-retest reliability were used. The results from factor analysis by principle component analysis method yielded three factors that were named acceptance, action and non-judging of experience. The three-factor solution explained 51.82% of the variance. Evidence for the internal consistency of SA-AAQ was obtained via calculating correlations between SA-AAQ and its subscales. Support for convergent and discriminant validity of the SA-AAQ via its correlations with the acceptance and action questionnaire - II, social interaction anxiety scale, cognitive fusion questionnaire, believability of anxious feelings and thoughts questionnaire, valued living questionnaire and WHOQOL- BREF was obtained. The reliability of the SA-AAQ via calculating Cronbach's alpha and test-retest coefficients yielded values of 0.84 and 0.84, respectively. The Iranian version of the SA-AAQ has acceptable levels of psychometric properties in university students. The SA-AAQ is a valid and reliable measure to be utilized in research investigations and therapeutic interventions.

  10. Psychometric Properties of the Persian Version of the Social Anxiety - Acceptance and Action Questionnaire

    PubMed Central

    Soltani, Esmail; Bahrainian, Seyed Abdolmajid; Masjedi Arani, Abbas; Farhoudian, Ali; Gachkar, Latif

    2016-01-01

    Background Social anxiety disorder is often related to specific impairment or distress in different areas of life, including occupational, social and family settings. Objective The purpose of the present study was to examine the psychometric properties of the persian version of the social anxiety-acceptance and action questionnaire (SA-AAQ) in university students. Materials and Methods In this descriptive cross-sectional study, 324 students from Shahid Beheshti University of Medical Sciences participated via the cluster sampling method during year 2015. Factor analysis by the principle component analysis method, internal consistency analysis, and convergent and divergent validity were conducted to examine the validity of the SA-AAQ. To calculate the reliability of the SA-AAQ, Cronbach’s alpha and test-retest reliability were used. Results The results from factor analysis by principle component analysis method yielded three factors that were named acceptance, action and non-judging of experience. The three-factor solution explained 51.82% of the variance. Evidence for the internal consistency of SA-AAQ was obtained via calculating correlations between SA-AAQ and its subscales. Support for convergent and discriminant validity of the SA-AAQ via its correlations with the acceptance and action questionnaire - II, social interaction anxiety scale, cognitive fusion questionnaire, believability of anxious feelings and thoughts questionnaire, valued living questionnaire and WHOQOL- BREF was obtained. The reliability of the SA-AAQ via calculating Cronbach’s alpha and test-retest coefficients yielded values of 0.84 and 0.84, respectively. Conclusions The Iranian version of the SA-AAQ has acceptable levels of psychometric properties in university students. The SA-AAQ is a valid and reliable measure to be utilized in research investigations and therapeutic interventions. PMID:27803719

  11. 40 CFR 471.34 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 156 69.2 (q) Annealing and solution heat treatment contact cooling water—Subpart C—PSES. There shall be no allowance for the discharge of wastewater pollutants. (r) Wet air pollution control scrubber...

  12. A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization

    NASA Astrophysics Data System (ADS)

    Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi

    2016-11-01

    The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms.

  13. A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization

    PubMed Central

    Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi

    2016-01-01

    The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms. PMID:27848987

  14. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-09

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Influence of Step Annealing Temperature on the Microstructure and Pitting Corrosion Resistance of SDSS UNS S32760 Welds

    NASA Astrophysics Data System (ADS)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2011-12-01

    In the present work, the influence of step annealing heat treatment on the microstructure and pitting corrosion resistance of super duplex stainless steel UNS S32760 welds have been investigated. The pitting corrosion resistance in chloride solution was evaluated by potentiostatic measurements. The results showed that step annealing treatments in the temperature ranging from 550 to 1000 °C resulted in a precipitation of sigma phase and Cr2N along the ferrite/austenite and ferrite/ferrite boundaries. At this temperature range, the metastable pits mainly nucleated around the precipitates formed in the grain boundary and ferrite phase. Above 1050 °C, the microstructure contains only austenite and ferrite phases. At this condition, the critical pitting temperature of samples successfully arrived to the highest value obtained in this study.

  16. Simulated annealing in orbital flight planning

    NASA Technical Reports Server (NTRS)

    Soller, Jeffrey

    1990-01-01

    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is unique because the space station will define the first true multivehicle environment in space. The optimization yields surfaces which are potentially complex, with multiple local minima. Because of the likelihood of these local minima, descent techniques are unable to offer robust solutions. Other deterministic optimization techniques were explored without success. The simulated annealing optimization is capable of identifying a minimum-fuel, two-burn trajectory subject to four constraints. Furthermore, the computational efforts involved in the optimization are such that missions could be planned on board the space station. Potential applications could include the on-site planning of rendezvous with a target craft of the emergency rescue of an astronaut. Future research will include multiwaypoint maneuvers, using a knowledge base to guide the optimization.

  17. Determination and correction of persistent biases in quantum annealers

    PubMed Central

    Perdomo-Ortiz, Alejandro; O’Gorman, Bryan; Fluegemann, Joseph; Biswas, Rupak; Smelyanskiy, Vadim N.

    2016-01-01

    Calibration of quantum computers is essential to the effective utilisation of their quantum resources. Specifically, the performance of quantum annealers is likely to be significantly impaired by noise in their programmable parameters, effectively misspecification of the computational problem to be solved, often resulting in spurious suboptimal solutions. We developed a strategy to determine and correct persistent, systematic biases between the actual values of the programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames Research Center in Moffett Field, California, and another at D-Wave Systems in Burnaby, Canada. We show that the recalibration procedure not only reduces the magnitudes of the biases in the programmable parameters but also enhances the performance of the device on a set of random benchmark instances. PMID:26783120

  18. Electrochemically induced annealing of stainless-steel surfaces.

    PubMed

    Burstein, G T; Hutchings, I M; Sasaki, K

    2000-10-19

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  19. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

    PubMed Central

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-01-01

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers. PMID:28230088

  20. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

    NASA Astrophysics Data System (ADS)

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-02-01

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.

  1. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique.

    PubMed

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-02-23

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.

  2. Electron microscopy of AlN-SiC interfaces and solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, J.; Tanaka, S.; Davis, R.F.

    In a 2H AlN-SiC solid solution grown by MBE on {alpha}(6H)-SiC (3{degrees} from [0001]), the epilayer contained a high density of basal faults related to {approximately}5 nm steps on the growth surface: no compositional inhomogeneity was detected by PEELS. In diffusion couples of polycrystalline, sintered AlN on SiC annealed at 1600 and 1700{degrees}C. 8H sialon [nominally (AlN){sub 2}Al{sub 2}O{sub 3}] formed at the interface of SiC and recrystallized epitactic AlN grains, and Si{sub 3}N{sub 4}-rich {beta}{prime} sialon particles formed in the SiC. No interdiffusion was detected by PEELS in diffusion couples of MBE-grown AlN on SiC annealed at 1700 andmore » 1850{degrees}C. Irregular epilayer thickness explains companion Auger depth profile results.« less

  3. Quantum vertex model for reversible classical computing.

    PubMed

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  4. Quantum vertex model for reversible classical computing

    NASA Astrophysics Data System (ADS)

    Chamon, C.; Mucciolo, E. R.; Ruckenstein, A. E.; Yang, Z.-C.

    2017-05-01

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without `learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  5. Microhardness and In Vitro Corrosion of Heat-Treated Mg–Y–Ag Biodegradable Alloy

    PubMed Central

    Vlček, Marián; Lukáč, František; Kudrnová, Hana; Smola, Bohumil; Stulíková, Ivana; Luczak, Monika; Szakács, Gábor; Hort, Norbert; Willumeit-Römer, Regine

    2017-01-01

    Magnesium alloys are promising candidates for biodegradable medical implants which reduce the necessity of second surgery to remove the implants. Yttrium in solid solution is an attractive alloying element because it improves mechanical properties and exhibits suitable corrosion properties. Silver was shown to have an antibacterial effect and can also enhance the mechanical properties of magnesium alloys. Measurements of microhardness and electrical resistivity were used to study the response of Mg–4Y and Mg–4Y–1Ag alloys to isochronal or isothermal heat treatments. Hardening response and electrical resistivity annealing curves in these alloys were compared in order to investigate the effect of silver addition. Procedures for solid solution annealing and artificial aging of the Mg–4Y–1Ag alloy were developed. The corrosion rate of the as-cast and heat-treated Mg–4Y–1Ag alloy was measured by the mass loss method. It was found out that solid solution heat treatment, as well artificial aging to peak hardness, lead to substantial improvement in the corrosion properties of the Mg–4Y–1Ag alloy. PMID:28772414

  6. Stochastic and Deterministic Crystal Structure Solution Methods in GSAS-II: Monte Carlo/Simulated Annealing Versus Charge Flipping

    DOE PAGES

    Von Dreele, Robert

    2017-08-29

    One of the goals in developing GSAS-II was to expand from the capabilities of the original General Structure Analysis System (GSAS) which largely encompassed just structure refinement and post refinement analysis. GSAS-II has been written almost entirely in Python loaded with graphics, GUI and mathematical packages (matplotlib, pyOpenGL, wxpython, numpy and scipy). Thus, GSAS-II has a fully developed modern GUI as well as extensive graphical display of data and results. However, the structure and operation of Python has required new approaches to many of the algorithms used in crystal structure analysis. The extensions beyond GSAS include image calibration/integration as wellmore » as peak fitting and unit cell indexing for powder data which are precursors for structure solution. Structure solution within GSAS-II begins with either Pawley or LeBail extracted structure factors from powder data or those measured in a single crystal experiment. Both charge flipping and Monte Carlo-Simulated Annealing techniques are available; the former can be applied to (3+1) incommensurate structures as well as conventional 3D structures.« less

  7. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature.

    PubMed

    Seo, Jin-Suk; Jeon, Jun-Hyuck; Hwang, Young Hwan; Park, Hyungjin; Ryu, Minki; Park, Sang-Hee Ko; Bae, Byeong-Soo

    2013-01-01

    Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm(2)/V·s and stable characteristics under the various gate bias and temperature stresses.

  8. Solution-Processed Flexible Fluorine-doped Indium Zinc Oxide Thin-Film Transistors Fabricated on Plastic Film at Low Temperature

    PubMed Central

    Seo, Jin-Suk; Jeon, Jun-Hyuck; Hwang, Young Hwan; Park, Hyungjin; Ryu, Minki; Park, Sang-Hee Ko; Bae, Byeong-Soo

    2013-01-01

    Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm2/V·s and stable characteristics under the various gate bias and temperature stresses. PMID:23803977

  9. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells.

    PubMed

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C; Rouleau, Christopher M; Duscher, Gerd; Geohegan, David B; Xiao, Kai

    2015-12-01

    A two-step solution processing approach has been established to grow void-free perovskite films for low-cost high-performance planar heterojunction photovoltaic devices. A high-temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer-by-layer spin-coating method was used to grow "bilayer" CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well-oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6%, which is comparable to values reported for thermally annealed perovskite films. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Composition, morphology and surface recombination rate of HCl-isopropanol treated and vacuum annealed InAs(1 1 1)A surfaces

    NASA Astrophysics Data System (ADS)

    Kesler, V. G.; Seleznev, V. A.; Kovchavtsev, A. P.; Guzev, A. A.

    2010-05-01

    X-ray photoelectron spectroscopy and atomic force microscopy were used to examine the chemical composition and surface morphology of InAs(1 1 1)A surface chemically etched in isopropanol-hydrochloric acid solution (HCl-iPA) and subsequently annealed in vacuum in the temperature range 200-500 °C. Etching for 2-30 min resulted in the formation of "pits" and "hillocks" on the sample surface, respectively 1-2 nm deep and high, with lateral dimensions 50-100 nm. The observed local formations, whose density was up to 3 × 10 8 cm -2, entirely vanished from the surface after the samples were vacuum-annealed at temperatures above 300 °C. Using a direct method, electron beam microanalysis, we have determined that the defects of the hillock type includes oxygen and excessive As, while the "pits" proved to be identical in their chemical composition to InAs. Vacuum anneals were found to cause a decrease in As surface concentration relative to In on InAs surface, with a concomitant rise of surface recombination rate.

  11. Comparative Stress Corrosion Cracking and General Corrosion Resistance of Annealed and Hardened 440 C Stainless Steel - New Techniques in Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Mendreck, M. J.; Hurless, B. E.; Torres, P. D.; Danford, M. D.

    1998-01-01

    The corrosion and stress corrosion cracking (SCC) characteristics of annealed and hardened 440C stainless steel were evaluated in high humidity and 3.5-percent NaCl solution. Corrosion testing consisted of an evaluation of flat plates, with and without grease, in high humidity, as well as electrochemical testing in 3.5-percent NaCl. Stress corrosion testing consisted of conventional, constant strain, smooth bar testing in high humidity in addition to two relatively new techniques under evaluation at MSFC. These techniques involve either incremental or constant rate increases in the load applied to a precracked SE(B) specimen, monitoring the crack-opening-displacement response for indications of crack growth. The electrochemical corrosion testing demonstrated an order of magnitude greater general corrosion rate in the annealed 440C. All techniques for stress corrosion testing showed substantially better SCC resistance in the annealed material. The efficacy of the new techniques for stress corrosion testing was demonstrated both by the savings in time and the ability to better quantify SCC data.

  12. Effects of precursor concentration and annealing temperature on CH3NH3PbI3 film crystallization and photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Zhen; Lai, Xue-Sen; Luo, Yi; Zhao, Er-Fei; Meng, Fan-Li; Zhang, Xiang-Feng; Tao, Xia

    2017-08-01

    The ability to prepare homogeneous and highly crystalline planar perovskite films via the precise manipulation of a one-step solution-based crystallization process is still a key issue that hinders improvements to the ultimate photoelectric conversion efficiency (PCE) of devices. In this study, we prepared a series of planar CH3NH3PbI3 films using a chlorobenzene-assisted fast perovskite crystallization process with various precursor concentrations ranging from 30 to 50 wt% and subsequent annealing at 50-90 °C in order to investigate the effects of the precursor concentration and annealing temperature on crystallization and the photovoltaic performance. By precisely controlling the precursor concentration and annealing temperature, we obtained a homogeneous and highly crystalline planar perovskite film with high coverage under the optimized conditions (ca. 40 wt% and 70 °C), which led to sufficient light absorption and inhibited charge recombination, thereby yielding an enhanced PCE of 16.21%. Furthermore, the unsealed cell still retained a PCE of 10.98% after ambient air exposure for a period of 408 h.

  13. Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition

    NASA Astrophysics Data System (ADS)

    Moriya, Katsuhiko; Watabe, Jyunichi; Tanaka, Kunihiko; Uchiki, Hisao

    2006-09-01

    Cu2ZnSnS4 (CZTS) thin films were prepared by post-annealing films of metal sulfides of Cu2S, ZnS and SnS2 precursors deposited on soda-lime glass substrates by photo-chemical deposition (PCD) from aqueous solution containing CuSO4, ZnSO4, SnSO4 and Na2S2O3. In this study, sulfurization was employed to prepare high quality CZTS thin films. Deposited films of metal sulfides were annealed in a furnace in an atmosphere of N2 or N2+H2S(5%) at the temperature of 300°, 400° or 500 °C. The sulfured films showed X-ray diffraction peaks from (112), (220), and (312) planes of CZTS and the peaks became sharp by an increase in the sulfurization temperature. CZTS thin film annealed in atmosphere of N2 was S-poor. After annealing atmosphere was changed from N2 into N2+H2S(5%), the decrease of a composi- tional ratio of sulfur could be suppressed.

  14. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.

    PubMed

    Bae, Seo-Yoon; Jeon, In-Yup; Yang, Jieun; Park, Noejung; Shin, Hyeon Suk; Park, Sungjin; Ruoff, Rodney S; Dai, Liming; Baek, Jong-Beom

    2011-06-28

    We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions in dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 kΩ/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.

  15. Results of Copper-Silver Rail Materials Tests

    DTIC Science & Technology

    2006-05-01

    dislocation-dense grain structure. An annealing, recrystallization , and re-straining model is proposed to predict the bandwidth within which the...darker phase is the copper-rich solid solution, while the lighter regions are the eutectic structure consisting of both copper-rich and silver-rich solid...solutions. The eutectic phase ribbons consist of finer copper and silver filaments [1], [5]. The two phases are inhomogeneously deformed during the

  16. Exploration of DGVM Parameter Solution Space Using Simulated Annealing: Implications for Forecast Uncertainties

    NASA Astrophysics Data System (ADS)

    Wells, J. R.; Kim, J. B.

    2011-12-01

    Parameters in dynamic global vegetation models (DGVMs) are thought to be weakly constrained and can be a significant source of errors and uncertainties. DGVMs use between 5 and 26 plant functional types (PFTs) to represent the average plant life form in each simulated plot, and each PFT typically has a dozen or more parameters that define the way it uses resource and responds to the simulated growing environment. Sensitivity analysis explores how varying parameters affects the output, but does not do a full exploration of the parameter solution space. The solution space for DGVM parameter values are thought to be complex and non-linear; and multiple sets of acceptable parameters may exist. In published studies, PFT parameters are estimated from published literature, and often a parameter value is estimated from a single published value. Further, the parameters are "tuned" using somewhat arbitrary, "trial-and-error" methods. BIOMAP is a new DGVM created by fusing MAPSS biogeography model with Biome-BGC. It represents the vegetation of North America using 26 PFTs. We are using simulated annealing, a global search method, to systematically and objectively explore the solution space for the BIOMAP PFTs and system parameters important for plant water use. We defined the boundaries of the solution space by obtaining maximum and minimum values from published literature, and where those were not available, using +/-20% of current values. We used stratified random sampling to select a set of grid cells representing the vegetation of the conterminous USA. Simulated annealing algorithm is applied to the parameters for spin-up and a transient run during the historical period 1961-1990. A set of parameter values is considered acceptable if the associated simulation run produces a modern potential vegetation distribution map that is as accurate as one produced by trial-and-error calibration. We expect to confirm that the solution space is non-linear and complex, and that multiple acceptable parameter sets exist. Further we expect to demonstrate that the multiple parameter sets produce significantly divergent future forecasts in NEP, C storage, and ET and runoff; and thereby identify a highly important source of DGVM uncertainty

  17. Rapid Thermal Annealing for Solution Synthesis of Transparent Conducting Aluminum Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ullah, Sana; De Matteis, Fabio; Davoli, Ivan

    2017-11-01

    Transparent conducting oxide films with optimized dopant molar ratio have been prepared with limited pre- and postdeposition annealing duration of 10 min. Multiple aluminum zinc oxide (AZO) layers were spin-coated on ordinary glass substrates. The predeposition consolidation temperature and dopant molar ratio were optimized for electrical conductivity and optical transparency. Next, a group of films were deposited on Corning glass substrates from precursor solutions with the optimized dopant ratio, followed by postdeposition rapid thermal annealing (RTA) at different temperatures and in controlled environments. The lowest resistivity of 10.1 × 10-3 Ω cm was obtained for films receiving RTA at 600°C for 10 min each in vacuum then in N2-5%H2 environment, while resistivity of 20.3 × 10-3 Ω cm was obtained for films subjected to RTA directly in N2-5%H2. Optical measurements revealed average total transmittance of about 85% in the visible region. A direct allowed transition bandgap was determined based on the absorption edge with a value slightly above 3.0 eV, within the typical range for semiconductors. RTA resulted in desorption of oxygen with enhanced carrier concentration and crystallinity, which increased the carrier mobility with decreased bulk resistivity while maintaining the required optical transparency.

  18. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effects of concentration and annealing on the performance of regioregular poly(3-hexylthiophene) field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Yan; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Yuan, Guang-Cai; Xu, Xu-Rong

    2009-08-01

    This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs). The RR-P3HT FETs with RR-P3HT as an active layer with different concentrations of RR-P3HT solution from 0.5 wt% to 2 wt% are prepared. The results indicate that the performance of RR-P3HT FETs improves drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. It finds that the field-effect mobility of RR-P3HT FET with 2 wt% can reach 5.78 × 10-3 cm2/Vs which is higher by a factor of 13 than that with 0.5 wt%. Further, an appropriate thermal annealing is adopted to improve the performance of RR-P3HT FETs. The field-effect mobility of RR-P3HT FETs increases drastically to 0.09 cm2/Vs by thermal annealing at 150 °C, and the value of on/off current ratio can reach 104.

  19. Effect of annealing temperature on VO2(M)/ITO film nanomaterials for thermochromic smart windows application and study its contact angle

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Rabia, Mohamed; Ezzat, Sara; Mansour, Naglaa; Saeed, Ebtisam; Sayyah, Said M.

    2018-01-01

    Metastable phase VO2(B) film coated ITO glass was prepared using cyclic potentiometric device utilizing VOSO4 and H2SO4 solution. The optimum conditions for the deposition of the nanostructured VO2(B) film were determined using cathodic peak current density (Ipc) values. Ipc values increase with increasing both VOSO4 and H2SO4 concentrations and then decrease with further increasing the concentrations. Also, monoclinic phase VO2(M)/ITO film was prepared from VO2(B)/ITO film under the effect of annealing temperatures from 550°C to 750°C. Different analyses have been carried out to confirm the chemical, morphological, and crystal structure of the nanostructured VO2(M)/ITO film. From the XRD analysis, the crystallinity increases with the increasing of annealing temperature from 550°C to 750°C. The optical transmittance spectrum was ˜97% for the film annealed at 650°C. Also, the critical thermochromic temperature (Tc) of the optimized film was ˜47.5°C that measured using cooling and heating modes. Finally, the wettability of the VO2(M)/ITO film at different annealing temperature (550°C to 750°C) was studied, in which the contact angle increases from 81 deg to 92 deg with increasing annealing temperatures from 550°C to 750°C, respectively.

  20. Development of Annealing-Free, Solution-Processable Inverted Organic Solar Cells with N-Doped Graphene Electrodes using Zinc Oxide Nanoparticles.

    PubMed

    Jung, Seungon; Lee, Junghyun; Seo, Jihyung; Kim, Ungsoo; Choi, Yunseong; Park, Hyesung

    2018-02-14

    An annealing-free process is considered as a technological advancement for the development of flexible (or wearable) organic electronic devices, which can prevent the distortion of substrates and damage to the active components of the device and simplify the overall fabrication process to increase the industrial applications. Owing to its outstanding electrical, optical, and mechanical properties, graphene is seen as a promising material that could act as a transparent conductive electrode for flexible optoelectronic devices. Owing to their high transparency and electron mobility, zinc oxide nanoparticles (ZnO-NP) are attractive and promising for their application as charge transporting materials for low-temperature processes in organic solar cells (OSCs), particularly because most charge transporting materials require annealing treatments at elevated temperatures. In this study, graphene/annealing-free ZnO-NP hybrid materials were developed for inverted OSC by successfully integrating ZnO-NP on the hydrophobic surface of graphene, thus aiming to enhance the applicability of graphene as a transparent electrode in flexible OSC systems. Chemical, optical, electrical, and morphological analyses of ZnO-NPs showed that the annealing-free process generates similar results to those provided by the conventional annealing process. The approach was effectively applied to graphene-based inverted OSCs with notable power conversion efficiencies of 8.16% and 7.41% on the solid and flexible substrates, respectively, which promises the great feasibility of graphene for emerging optoelectronic device applications.

  1. Enhancing quantum annealing performance for the molecular similarity problem

    NASA Astrophysics Data System (ADS)

    Hernandez, Maritza; Aramon, Maliheh

    2017-05-01

    Quantum annealing is a promising technique which leverages quantum mechanics to solve hard optimization problems. Considerable progress has been made in the development of a physical quantum annealer, motivating the study of methods to enhance the efficiency of such a solver. In this work, we present a quantum annealing approach to measure similarity among molecular structures. Implementing real-world problems on a quantum annealer is challenging due to hardware limitations such as sparse connectivity, intrinsic control error, and limited precision. In order to overcome the limited connectivity, a problem must be reformulated using minor-embedding techniques. Using a real data set, we investigate the performance of a quantum annealer in solving the molecular similarity problem. We provide experimental evidence that common practices for embedding can be replaced by new alternatives which mitigate some of the hardware limitations and enhance its performance. Common practices for embedding include minimizing either the number of qubits or the chain length and determining the strength of ferromagnetic couplers empirically. We show that current criteria for selecting an embedding do not improve the hardware's performance for the molecular similarity problem. Furthermore, we use a theoretical approach to determine the strength of ferromagnetic couplers. Such an approach removes the computational burden of the current empirical approaches and also results in hardware solutions that can benefit from simple local classical improvement. Although our results are limited to the problems considered here, they can be generalized to guide future benchmarking studies.

  2. High-conductance low-voltage organic thin film transistor with locally rearranged poly(3-hexylthiophene) domain by current annealing on plastic substrate

    NASA Astrophysics Data System (ADS)

    Pei, Zingway; Tsai, Hsing-Wang; Lai, Hsin-Cheng

    2016-02-01

    The organic material based thin film transistors (TFTs) are attractive for flexible optoelectronics applications due to the ability of lager area fabrication by solution and low temperature process on plastic substrate. Recently, the research of organic TFT focus on low operation voltage and high output current to achieve a low power organic logic circuit for optoelectronic device,such as e-paper or OLED displayer. To obtain low voltage and high output current, high gate capacitance and high channel mobility are key factors. The well-arranged polymer chain by a high temperature postannealing, leading enhancement conductivity of polymer film was a general method. However, the thermal annealing applying heat for all device on the substrate and may not applicable to plastic substrate. Therefore, in this work, the low operation voltage and high output current of polymer TFTs was demonstrated by locally electrical bias annealing. The poly(styrene-comethyl methacrylate) (PS-r-PMMA) with ultra-thin thickness is used as gate dielectric that the thickness is controlled by thermal treatment after spin coated on organic electrode. In electrical bias-annealing process, the PS-r- PMMA is acted a heating layer. After electrical bias-annealing, the polymer TFTs obtain high channel mobility at low voltage that lead high output current by a locally annealing of P3HT film. In the future, the locally electrical biasannealing method could be applied on plastic substrate for flexible optoelectronic application.

  3. Social Autopsy of maternal, neonatal deaths and stillbirths in rural Bangladesh: qualitative exploration of its effect and community acceptance.

    PubMed

    Biswas, Animesh; Rahman, Fazlur; Eriksson, Charli; Halim, Abdul; Dalal, Koustuv

    2016-08-23

    Social Autopsy (SA) is an innovative strategy where a trained facilitator leads community groups through a structured, standardised analysis of the physical, environmental, cultural and social factors contributing to a serious, non-fatal health event or death. The discussion stimulated by the formal process of SA determines the causes and suggests preventative measures that are appropriate and achievable in the community. Here we explored individual experiences of SA, including acceptance and participant learning, and its effect on rural communities in Bangladesh. The present study had explored the experiences gained while undertaking SA of maternal and neonatal deaths and stillbirths in rural Bangladesh. Qualitative assessment of documents, observations, focus group discussions, group discussions and in-depth interviews by content and thematic analyses. Each community's maternal and neonatal death was a unique, sad story. SA undertaken by government field-level health workers were well accepted by rural communities. SA had the capability to explore the social reasons behind the medical cause of the death without apportioning blame to any individual or group. SA was a useful instrument to raise awareness and encourage community responses to errors within the society that contributed to the death. People participating in SA showed commitment to future preventative measures and devised their own solutions for the future prevention of maternal and neonatal deaths. SA highlights societal errors and promotes discussion around maternal or newborn death. SA is an effective means to deliver important preventative messages and to sensitise the community to death issues. Importantly, the community itself is enabled to devise future strategies to avert future maternal and neonatal deaths in Bangladesh. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Hexadimethrine-montmorillonite nanocomposite: Characterization and application as a pesticide adsorbent

    NASA Astrophysics Data System (ADS)

    Gámiz, B.; Hermosín, M. C.; Cornejo, J.; Celis, R.

    2015-03-01

    The goal of this work was to prepare and characterize a novel functional material by the modification of SAz-1 montmorillonite with the cationic polymer hexadimethrine (SA-HEXAD), and to explore the potential use of this nanocomposite as a pesticide adsorbent. Comparative preparation and characterization with the well-known hexadecyltrimethylammonium-modified SAz-1 montmorillonite (SA-HDTMA) was also assessed. The characterization was performed by elemental analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), physisorption of N2, scanning electron microscopy (SEM) and Z potential measurements. The characterization and adsorption experiments showed that the extent of pesticide adsorption was markedly subjected to the structure and features of the surface of each organo-clay and also to the nature of the considered pesticide. SA-HEXAD displayed a high affinity for anionic pesticides which, presumably, were adsorbed by electrostatic attraction on positively-charged ammonium groups of the polymer not directly interacting with the clay. In contrast, SA-HDTMA displayed great adsorption of both uncharged and anionic pesticides with predominance of hydrophobic interactions. This work provided information about the surface properties of a new organic-inorganic nanohybrid material, SA-HEXAD, and its potential as an adsorbent for the removal of anionic organic pollutants from aqueous solutions.

  5. Isothermal assembly of DNA origami structures using denaturing agents.

    PubMed

    Jungmann, Ralf; Liedl, Tim; Sobey, Thomas L; Shih, William; Simmel, Friedrich C

    2008-08-06

    DNA origami is one of the most promising recent developments in DNA self-assembly. It allows for the construction of arbitrary nanoscale patterns and objects by folding a long viral scaffold strand using a large number of short "staple" strands. Assembly is usually accomplished by thermal annealing of the DNA molecules in buffer solution. We here demonstrate that both 2D and 3D origami structures can be assembled isothermally by annealing the DNA strands in denaturing buffer, followed by a controlled reduction of denaturant concentration. This opens up origami assembly for the integration of temperature-sensitive components.

  6. Directed Self-Assembly of Triblock Copolymer on Chemical Patterns for Sub-10-nm Nanofabrication via Solvent Annealing.

    PubMed

    Xiong, Shisheng; Wan, Lei; Ishida, Yoshihito; Chapuis, Yves-Andre; Craig, Gordon S W; Ruiz, Ricardo; Nealey, Paul F

    2016-08-23

    Directed self-assembly (DSA) of block copolymers (BCPs) is a leading strategy to pattern at sublithographic resolution in the technology roadmap for semiconductors and is the only known solution to fabricate nanoimprint templates for the production of bit pattern media. While great progress has been made to implement block copolymer lithography with features in the range of 10-20 nm, patterning solutions below 10 nm are still not mature. Many BCP systems self-assemble at this length scale, but challenges remain in simultaneously tuning the interfacial energy atop the film to control the orientation of BCP domains, designing materials, templates, and processes for ultra-high-density DSA, and establishing a robust pattern transfer strategy. Among the various solutions to achieve domains that are perpendicular to the substrate, solvent annealing is advantageous because it is a versatile method that can be applied to a diversity of materials. Here we report a DSA process based on chemical contrast templates and solvent annealing to fabricate 8 nm features on a 16 nm pitch. To make this possible, a number of innovations were brought in concert with a common platform: (1) assembling the BCP in the phase-separated, solvated state, (2) identifying a larger process window for solvated triblock vs diblock BCPs as a function of solvent volume fraction, (3) employing templates for sub-10-nm BCP systems accessible by lithography, and (4) integrating a robust pattern transfer strategy by vapor infiltration of organometallic precursors for selective metal oxide synthesis to prepare an inorganic hard mask.

  7. Multi objective genetic algorithm to optimize the local heat treatment of a hardenable aluminum alloy

    NASA Astrophysics Data System (ADS)

    Piccininni, A.; Palumbo, G.; Franco, A. Lo; Sorgente, D.; Tricarico, L.; Russello, G.

    2018-05-01

    The continuous research for lightweight components for transport applications to reduce the harmful emissions drives the attention to the light alloys as in the case of Aluminium (Al) alloys, capable to combine low density with high values of the strength-to-weight ratio. Such advantages are partially counterbalanced by the poor formability at room temperature. A viable solution is to adopt a localized heat treatment by laser of the blank before the forming process to obtain a tailored distribution of material properties so that the blank can be formed at room temperature by means of conventional press machines. Such an approach has been extensively investigated for age hardenable alloys, but in the present work the attention is focused on the 5000 series; in particular, the optimization of the deep drawing process of the alloy AA5754 H32 is proposed through a numerical/experimental approach. A preliminary investigation was necessary to correctly tune the laser parameters (focus length, spot dimension) to effectively obtain the annealed state. Optimal process parameters were then obtained coupling a 2D FE model with an optimization platform managed by a multi-objective genetic algorithm. The optimal solution (i.e. able to maximize the LDR) in terms of blankholder force and extent of the annealed region was thus evaluated and validated through experimental trials. A good matching between experimental and numerical results was found. The optimal solution allowed to obtain an LDR of the locally heat treated blank larger than the one of the material either in the wrought condition (H32) either in the annealed condition (H111).

  8. Crystal Structure of the Ectoine Hydroxylase, a Snapshot of the Active Site*

    PubMed Central

    Höppner, Astrid; Widderich, Nils; Lenders, Michael; Bremer, Erhard; Smits, Sander H. J.

    2014-01-01

    Ectoine and its derivative 5-hydroxyectoine are compatible solutes that are widely synthesized by bacteria to cope physiologically with osmotic stress. They also serve as chemical chaperones and maintain the functionality of macromolecules. 5-Hydroxyectoine is produced from ectoine through a stereo-specific hydroxylation, an enzymatic reaction catalyzed by the ectoine hydroxylase (EctD). The EctD protein is a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenase superfamily and is evolutionarily well conserved. We studied the ectoine hydroxylase from the cold-adapted marine ultra-microbacterium Sphingopyxis alaskensis (Sa) and found that the purified SaEctD protein is a homodimer in solution. We determined the SaEctD crystal structure in its apo-form, complexed with the iron catalyst, and in a form that contained iron, the co-substrate 2-oxoglutarate, and the reaction product of EctD, 5-hydroxyectoine. The iron and 2-oxoglutarate ligands are bound within the EctD active site in a fashion similar to that found in other members of the dioxygenase superfamily. 5-Hydroxyectoine, however, is coordinated by EctD in manner different from that found in high affinity solute receptor proteins operating in conjunction with microbial import systems for ectoines. Our crystallographic analysis provides a detailed view into the active site of the ectoine hydroxylase and exposes an intricate network of interactions between the enzyme and its ligands that collectively ensure the hydroxylation of the ectoine substrate in a position- and stereo-specific manner. PMID:25172507

  9. Differential effect of buffering agents on the crystallization of gemcitabine hydrochloride in frozen solutions.

    PubMed

    Patel, Mehulkumar; Munjal, Bhushan; Bansal, Arvind K

    2014-08-25

    The purpose of this study was to evaluate the differential effect of buffering agents on the crystallization of gemcitabine hydrochloride (GHCl) in frozen solutions. Four buffering agents, viz. citric acid (CA), malic acid (MA), succinic acid (SA) and tartaric acid (TA) were selected and their effect on GHCl crystallization was monitored using standard DSC and low temperature XRD. Onset of GHCl crystallization during heating run in DSC was measured to compare the differential effect of buffering agents. Glass transition temperature (Tg'), unfrozen water content in the freeze concentrate and crystallization propensity of the buffering agents was also determined for mechanistic understanding of the underlying effects. CA and MA inhibited while SA facilitated crystallization of GHCl even at 25 mM concentration. Increasing the concentration enhanced their effect. However, TA inhibited GHCl crystallization at concentrations <100mM and facilitated it at concentrations ≥100 mM. Lyophilization of GHCl with either SA or TA yielded elegant cakes, while CA and MA caused collapse. Tg' failed to explain the inhibitory effects of CA, MA and TA as all buffering agents lowered the Tg' of the system. Differential effect of buffering agents on GHCl crystallization could be explained by consideration of two opposing factors: (i) their own crystallization tendency and (ii) unfrozen water content in the freeze concentrate. In conclusion, it was established that API crystallization in frozen solution is affected by the type and concentration of the buffering agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Interfacial engineering of solution-processed Ni nanochain-SiO{sub x} (x < 2) cermets towards thermodynamically stable, anti-oxidation solar selective absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu

    Cermet solar thermal selective absorber coatings are an important component of high-efficiency concentrated solar power (CSP) receivers. The oxidation of the metal nanoparticles in cermet solar absorbers is a great challenge for vacuum-free operation. Recently, we have demonstrated that oxidation is kinetically retarded in solution processed, high-optical-performance Ni nanochain-SiO{sub x} cermet system compared to conventional Ni-Al{sub 2}O{sub 3} system when annealed in air at 450–600 °C for several hours. However, for long-term, high-temperature applications in CSP systems, thermodynamically stable antioxidation behavior is highly desirable, which requires new mechanisms beyond kinetically reducing the oxidation rate. Towards this goal, in this paper, wemore » demonstrate that pre-operation annealing of Ni nanochain-SiO{sub x} cermets at 900 °C in N{sub 2} forms the thermodynamically stable orthorhombic phase of NiSi at the Ni/SiO{sub x} interfaces, leading to self-terminated oxidation at 550 °C in air due to this interfacial engineering. In contrast, pre-operation annealing at a lower temperature of 750 °C in N{sub 2} (as conducted in our previous work) cannot achieve interfacial NiSi formation directly, and further annealing in air at 450–600 °C for >4 h only leads to the formation of the less stable (metastable) hexagonal phase of NiSi. Therefore, the high-temperature pre-operation annealing is critical to form the desirable orthorhombic phase of NiSi at Ni/SiO{sub x} interfaces towards thermodynamically stable antioxidation behavior. Remarkably, with this improved interfacial engineering, the oxidation of 80-nm-diameter Ni nanochain-SiO{sub x} saturates after annealing at 550 °C in air for 12 h. Additional annealing at 550 °C in air for as long as 20 h (i.e., 32 h air annealing at >550 °C in total) has almost no further impact on the structural or optical properties of the coatings, the latter being very sensitive to any interfacial changes due to the localized surface plasmon resonances of the metal nanostructures. This phenomenon holds true for Ni nanoparticle diameter down to 40 nm in Ni-SiO{sub x} system, where the optical response remains stable for 53 h at 550 °C in air. The oxidation vs. time curve also shows saturation behavior deviating from the kinetic Deal-Grove oxidation model. These results strongly suggest a promising approach to thermodynamically stable, anti-oxidation Ni/SiO{sub x} cermet absorbers via interfacial engineering.« less

  11. Effect of laser processing on physical properties of (Ba0.85Ca0.15Ti0.9Zr0.1O3) lead-free thick films fabricated by the electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Ramana, E. Venkata; Ferreira, N. M.; Mahajan, A.; Ferro, Marta C.; Figueiras, F.; Graça, M. P. F.; Valente, M. A.

    2018-02-01

    In this work, we have fabricated lead-free piezoelectric Ba0.85Ca0.15Ti0.9Zr0.1O3 thick films by the electrophoretic deposition (EPD) followed by a continuous-wave CO2 laser annealing and demonstrated the effect of laser energy on the quality of the final product. Thick films annealed under optimized conditions, 50 W/15 min, show a controlled microstructure/density compared to those derived from higher laser power/annealing time/conventional sintering. The increase in laser power above this limit affects the grain growth kinetics and results in the compositional heterogeneities. From the results of Raman spectra, it was found that the film annealed under optimized conditions has a high degree of crystallinity and tetragonality, while the increase in laser fluence results in the growth of A1g mode. The controlled composition and microstructure, thus has resulted in the improved ferroelectricity with a remanent polarization 12 μC/cm2, on par with the bulk or larger than the films grown by the chemical solution deposition techniques. From the piezoresponse studies, we found that the film annealed at 75 W/5 min has weak ferroelectric nature with no switchable ferroelectric domains compared to those under optimized conditions. Subtle differences in phase transition temperatures and drop in ferroelectric polarization, for films annealed conventionally or at higher laser fluence, are related to porosity or site defects as well as compositional heterogeneities. Our study demonstrates that the combination of EPD and laser annealing is an effective way to achieve high quality piezoelectric thick films with a controlled composition, useful for energy harvesting applications.

  12. Generation of dark solitons in erbium-doped fiber lasers based Sb(2)Te(3) saturable absorbers.

    PubMed

    Liu, Wenjun; Pang, Lihui; Han, Hainian; Tian, Wenlong; Chen, Hao; Lei, Ming; Yan, Peiguang; Wei, Zhiyi

    2015-10-05

    Dark solitons, which have better stability in the presence of noise, have potential applications in optical communication and ultrafast optics. In this paper, the dark soliton formation in erbium-doped fiber lasers based Sb(2)Te(3) saturable absorber (SA) is first experimentally demonstrated. The Sb(2)Te(3) SA is fabricated by using the pulsed laser deposition method. The generated dark solitons are centered at the wavelength of 1530 nm and repetition rate of 94 MHz. Analytic solutions for dark solitons are also obtained theoretically.

  13. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems

    PubMed Central

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data. PMID:28806754

  14. Short-term prediction of solar energy in Saudi Arabia using automated-design fuzzy logic systems.

    PubMed

    Almaraashi, Majid

    2017-01-01

    Solar energy is considered as one of the main sources for renewable energy in the near future. However, solar energy and other renewable energy sources have a drawback related to the difficulty in predicting their availability in the near future. This problem affects optimal exploitation of solar energy, especially in connection with other resources. Therefore, reliable solar energy prediction models are essential to solar energy management and economics. This paper presents work aimed at designing reliable models to predict the global horizontal irradiance (GHI) for the next day in 8 stations in Saudi Arabia. The designed models are based on computational intelligence methods of automated-design fuzzy logic systems. The fuzzy logic systems are designed and optimized with two models using fuzzy c-means clustering (FCM) and simulated annealing (SA) algorithms. The first model uses FCM based on the subtractive clustering algorithm to automatically design the predictor fuzzy rules from data. The second model is using FCM followed by simulated annealing algorithm to enhance the prediction accuracy of the fuzzy logic system. The objective of the predictor is to accurately predict next-day global horizontal irradiance (GHI) using previous-day meteorological and solar radiation observations. The proposed models use observations of 10 variables of measured meteorological and solar radiation data to build the model. The experimentation and results of the prediction are detailed where the root mean square error of the prediction was approximately 88% for the second model tuned by simulated annealing compared to 79.75% accuracy using the first model. This results demonstrate a good modeling accuracy of the second model despite that the training and testing of the proposed models were carried out using spatially and temporally independent data.

  15. Soliton solutions, stability analysis and conservation laws for the brusselator reaction diffusion model with time- and constant-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Yusuf, Abdullahi; Isa Aliyu, Aliyu; Hashemi, M. S.

    2018-05-01

    This paper studies the brusselator reaction diffusion model (BRDM) with time- and constant-dependent coefficients. The soliton solutions for BRDM with time-dependent coefficients are obtained via first integral (FIM), ansatz, and sine-Gordon expansion (SGEM) methods. Moreover, it is well known that stability analysis (SA), symmetry analysis and conservation laws (CLs) give several information for modelling a system of differential equations (SDE). This is because they can be used for investigating the internal properties, existence, uniqueness and integrability of different SDE. For this reason, we investigate the SA via linear stability technique, symmetry analysis and CLs for BRDM with constant-dependent coefficients in order to extract more physics and information on the governing equation. The constraint conditions for the existence of the solutions are also examined. The new solutions obtained in this paper can be useful for describing the concentrations of diffusion problems of the BRDM. It is shown that the examined dependent coefficients are some of the factors that are affecting the diffusion rate. So, the present paper provides much motivational information in comparison to the existing results in the literature.

  16. Diffusion of hyperpolarized 129Xe in the lung: a simplified model of 129Xe septal uptake and experimental results

    NASA Astrophysics Data System (ADS)

    Patz, Samuel; Muradyan, Iga; Hrovat, Mirko I.; Dabaghyan, Mikayel; Washko, George R.; Hatabu, Hiroto; Butler, James P.

    2011-01-01

    We used hyperpolarized 129Xe NMR to measure pulmonary alveolar surface area per unit gas volume SA/Vgas, alveolar septal thickness h and capillary transit time τ, three critical determinants of the lung's primary role as a gas exchange organ. An analytical solution for a simplified diffusion model is described, together with a modification of the xenon transfer contrast imaging technique utilizing 90° radio-frequency pulses applied to the dissolved phase, rather than traditional 180° pulses. With this approach, three-dimensional (3D) maps of SA/Vgas were obtained. We measured global SA/Vgas, h and τ in four normal subjects, two subjects with mild interstitial lung disease (ILD) and two subjects with mild chronic obstructive pulmonary disease (COPD). In normals, SA/Vgas decreased with increasing lung volume from ~320 to 80 cm-1 both h~13 μm and τ~1.5 s were relatively constant. For the two ILD subjects, h was, respectively, 36 and 97% larger than normal, quantifying an increased gas/blood tissue barrier; SA/Vgas and τ were normal. The two COPD subjects had SA/Vgas values ~25% that of normals, quantifying septal surface loss in emphysema; h and τ were normal. These are the first noninvasive, non-radiation-based, quantitative measurements of h and τ in patients with pulmonary disease.

  17. Quaternary complexes composed of plasmid DNA/protamine/fish sperm DNA/stearic acid grafted chitosan oligosaccharide micelles for gene delivery.

    PubMed

    Du, Yong-Zhong; Lu, Ping; Yuan, Hong; Zhou, Jian-Ping; Hu, Fu-Qiang

    2011-01-01

    Quaternary complexes with condensed core of plasmid DNA, protamine, fish sperm DNA and shell of stearic acid grafted chitosan oligosaccharide (CSO-SA), were prepared. The CSO-SA could self-assemble to form nano-sized micelles in aqueous solution and demonstrated excellent internalization ability of tumor cells. Dynamic light scattering (DLS) measurement and transmission electrostatic microscope (TEM) images showed that quaternary complexes had spherical shape with about 25 nm number average diameter, and the size of quaternary complexes was smaller than that of CSO-SA micelles and CSO-SA micelles/plasmid DNA binary complexes. The transfection efficiencies of quaternary complexes on HEK293 and MCF-7 cells increased with incubation time, and were significantly higher than that of CSO-SA micelles/plasmid DNA binary complexes. The optimal transfection efficiency of quaternary complexes on HEK293 and MCF-7 cells measured by flow cytometer after 96 h was 23.82% and 41.43%, respectively. Whereas, the transfection efficiency of Lipofectamine™ 2000 on HEK293 and MCF-7 cells after 96 h was 32.45% and 33.23%, respectively. The data of luciferease activity measurement showed that the optimal ratio of plasmid DNA:fish sperm DNA:protamine:CSO-SA was 1:1:5:5. The results indicated that the present quaternary complexes were potential non-viral gene delivery system. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors with Laser Spike Annealing

    NASA Astrophysics Data System (ADS)

    Huang, Hang; Hu, Hailong; Zhu, Jingguang; Guo, Tailiang

    2017-07-01

    Inkjet-printed In-Ga-Zn oxide (IGZO) thin-film transistors (TFTs) have been fabricated at low temperature using laser spike annealing (LSA) treatment. Coffee-ring effects during the printing process were eliminated to form uniform IGZO films by simply increasing the concentration of solute in the ink. The impact of LSA on the TFT performance was studied. The field-effect mobility, threshold voltage, and on/off current ratio were greatly influenced by the LSA treatment. With laser scanning at 1 mm/s for 40 times, the 30-nm-thick IGZO TFT baked at 200°C showed mobility of 1.5 cm2/V s, threshold voltage of -8.5 V, and on/off current ratio >106. Our findings demonstrate the feasibility of rapid LSA treatment of low-temperature inkjet-printed oxide semiconductor transistors, being comparable to those obtained by conventional high-temperature annealing.

  19. Enhancement of green electroluminescence from nanocrystalline silicon by wet and dry processes.

    PubMed

    Sato, Keisuke; Hirakuri, Kenji

    2006-01-01

    Correlation between defects and luminescence property from electroluminescent (EL) device composed of nanocrystalline silicon (nc-Si) prepared by wet and dry processes such as hydrofluoric (HF) acid solution treatment and annealing have investigated using electron spin resonance and EL measurements. The EL device using HF-treated nc-Si emitted strong red light, because of existence of only P'ce-centers (radiative recombination centers) on the surface vicinity. On the other hand, the EL device using annealed nc-Si above 400 degrees C exhibited green luminescence by the reduction of particle size due to surface oxidation. When the annealing temperature was risen from 400 degrees C up to 600 degrees C, the green luminescence strengthened with increasing the P'ce-centers. These results indicate that the formation of many radiative recombination centers onto the nc-Si surface vicinity lead to the enhancement of green luminescence from the nc-Si based EL device.

  20. Redox-active charge carriers of conducting polymers as a tuner of conductivity and its potential window

    PubMed Central

    Park, Han-Saem; Ko, Seo-Jin; Park, Jeong-Seok; Kim, Jin Young; Song, Hyun-Kon

    2013-01-01

    Electric conductivity of conducting polymers has been steadily enhanced towards a level worthy of being called its alias, “synthetic metal”. PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate)), as a representative conducting polymer, recently reached around 3,000 S cm−1, the value to open the possibility to replace transparent conductive oxides. The leading strategy to drive the conductivity increase is solvent annealing in which aqueous solution of PEDOT:PSS is treated with an assistant solvent such as DMSO (dimethyl sulfoxide). In addition to the conductivity enhancement, we found that the potential range in which PEDOT:PSS is conductive is tuned wider into a negative potential direction by the DMSO-annealing. Also, the increase in a redox-active fraction of charge carriers is proposed to be responsible for the enhancement of conductivity in the solvent annealing process. PMID:23949091

  1. Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing

    PubMed Central

    Yang, Ya-Chu; Yeh, Jien-Wei; Tsau, Chun-Huei

    2017-01-01

    This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TixFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model. After annealing was performed at 1000 °C for 30 min, the films presented a layered structure comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and layered structures. The underlying mechanism is mainly related to the competition among possible oxides in terms of free energy production at 1000 °C. PMID:28953244

  2. Targeted cancer therapy based on single-wall carbon nanohorns with doxorubicin in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Ma, Xiaona; Shu, Chang; Guo, Jing; Pang, Lili; Su, Lin; Fu, Degang; Zhong, Wenying

    2014-07-01

    A new targeted drug delivery system (DDS) based on oxidized single-wall carbon nanohorns (oxSWCNHs) was developed. Sodium alginate (SA) was used to modify oxSWCNHs to improve its dispersibility and biocompatibility, the first time such a modification to oxSWCNHs was reported. The humanized anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibody was bound to the SA as targeting group to selectively kill the tumor cells. Doxorubicin hydrochloride (DOX) was conjugated to oxSWCNHs in basic pH solution by π-π stacking, and its release was triggered by the lower pH as the micro-environment of the tumor. Quantitative analyses showed that the DOX@oxSWCNHs/SA complexes contained 1 g DOX per gram of oxSWCNHs. Cell experiment showed that the DOX@oxSWCNHs/SA-mAb effectively targeted the human breast adenocarcinoma (MCF-7) cells and rarely adhered to the human embryonic kidney 293 (HEK293) cells. And the anticancer effects of the complexes were higher than those of the free DOX. Pharmaceutical efficiency in vivo showed that the relative tumor volumes (RTV) of normal saline (NS) group, oxSWCNH/SA-mAb (2.5 mg/kg) group, DOX (2.5 mg/kg) group, and DOX@oxSWCNHs/SA-mAb (2.5 mg/kg) group were approximately 61, 56, 14, and 7.2, respectively. In addition, higher drug dose (5 mg/kg) of DOX@oxSWCNHs/SA-mAb resulted in a better antitumor activity. Histopathological studies in mice confirmed that the DOX@oxSWCNHs/SA-mAb complexes did not demonstrate any detectable hepatotoxicity, cardiotoxicity, and nephrotoxicity.

  3. Feasibility of e-paper made with cellulose

    NASA Astrophysics Data System (ADS)

    Yoo, K. H.; Han, K. J.; Chen, Yi; Kang, K. S.; Kim, Jaehwan

    2008-03-01

    Cellulose is a beneficial material that has low cost, light weight, high compatibility, and biodegradability. Recently electro-active paper (EAPap) composed with cellulose was discovered as a smart material for application to variety industrial fields such as smart wall-paper, actuator, and magic carpet. It also exhibited actuator property through ion migration and piezoelectric effect. Since cellulose acetate (CA) film has optically transparent property, we focused on optical field application, such as electronic paper, prismsheet, and polarized film. Since CA can be easily dissolved in variety of organic solvent, various weight % (from 1 to 25 wt. %) of CA solution in acetone was prepared. Polydimethylsilane (PDMS) master pattern was fabricated on the silicone wafer. CA solution was poured to the master mold and dried using spin-coating or tape casting method. Various shape and height patterns, such as circle, honeycomb, and rectangular patterns were fabricated using 12 wt. % CA solution. The resulting pattern showed uniform size in the large area without defect. These patterns can be utilized as a substrate and cell pattern for the electronic paper. To investigate saponification (SA) effect to convert CA to regenerated cellulose, CA film was immersed into the sodium methoxide solution in methanol for various times. The fabricated CA films were stretched and immersed into the sodium methoxide solution in methanol to desubstitute the acetate group. These regenerated cellulose films have larger mechanical strength than CA films. Although the UV-visible transmittance was decreased as increasing SA time, the transmittance of the further SA process and stretched film backed up near untreated CA film. Although the cross-sectional image of the saponified and unstretched CA film did not have specific directional structure, the cross-sectional FESEM image of the saponified and stretched CA film had one directional fiber structure. The fiber was aligned to the stretched direction. Most of the compositions were one directional ordered nanofibers having diameter of approximately 30nm.

  4. Air-stable, solution-processed oxide p-n heterojunction ultraviolet photodetector.

    PubMed

    Kim, Do Young; Ryu, Jiho; Manders, Jesse; Lee, Jaewoong; So, Franky

    2014-02-12

    Air-stable solution processed all-inorganic p-n heterojunction ultraviolet photodetector is fabricated with a high gain (EQE, 25 300%). Solution-processed NiO and ZnO films are used as p-type and n-type ultraviolet sensitizing materials, respectively. The high gain in the detector is due to the interfacial trap-induced charge injection that occurs at the ITO/NiO interface by photogenerated holes trapped in the NiO film. The gain of the detector is controlled by the post-annealing temperature of the solution-processed NiO films, which are studied by X-ray photoelectron spectroscopy (XPS).

  5. Synthesis of BiFeO3 thin films by chemical solution deposition - Structural and magnetic studies

    NASA Astrophysics Data System (ADS)

    Angappane, S.; Kambhala, Nagaiah

    2012-06-01

    BiFeO3 thin films were deposited on Si (100) substrates by chemical solution deposition. A precursor solution of bismuth acetate and iron acetylacetonate dissolved in distilled water and acetic acid was spin coated on to silicon substrates at ambient conditions, followed by drying and annealing at 650 °C. The films were characterized by XRD and FESEM to study structural properties and morphology. The magnetic properties studied by SQUID magnetometer shows the ferromagnetic nature of the chemical solution deposited BiFeO3 films which are crucial for low cost device applications.

  6. Structure optimisation by thermal cycling for the hydrophobic-polar lattice model of protein folding

    NASA Astrophysics Data System (ADS)

    Günther, Florian; Möbius, Arnulf; Schreiber, Michael

    2017-03-01

    The function of a protein depends strongly on its spatial structure. Therefore the transition from an unfolded stage to the functional fold is one of the most important problems in computational molecular biology. Since the corresponding free energy landscapes exhibit huge numbers of local minima, the search for the lowest-energy configurations is very demanding. Because of that, efficient heuristic algorithms are of high value. In the present work, we investigate whether and how the thermal cycling (TC) approach can be applied to the hydrophobic-polar (HP) lattice model of protein folding. Evaluating the efficiency of TC for a set of two- and three-dimensional examples, we compare the performance of this strategy with that of multi-start local search (MSLS) procedures and that of simulated annealing (SA). For this aim, we incorporated several simple but rather efficient modifications into the standard procedures: in particular, a strong improvement was achieved by also allowing energy conserving state modifications. Furthermore, the consideration of ensembles instead of single samples was found to greatly improve the efficiency of TC. In the framework of different benchmarks, for all considered HP sequences, we found TC to be far superior to SA, and to be faster than Wang-Landau sampling.

  7. Methods for producing thin film charge selective transport layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  8. Influence of processing conditions on the optical properties of chemically deposited zinc sulphide (ZnS) thin film

    NASA Astrophysics Data System (ADS)

    Igweoko, A. E.; Augustine, C.; Idenyi, N. E.; Okorie, B. A.; Anyaegbunam, F. N. C.

    2018-03-01

    In this paper, we present the influence of post deposition annealing and varying concentration on the optical properties of ZnS thin films fabricated by chemical bath deposition (CBD) at 65 °C from chemical baths comprising NH3/SC(NH2)2/ZnSO4 solutions at pH of about 10. The film samples were annealed at temperatures ranging from 373 K–473 K and the concentration of the film samples vary from 0.1 M–0.7 M. Post deposition annealing and concentration played an important role on the optical parameters investigated which includes absorbance, transmittance, reflectance, absorption coefficient, band gap, refractive index and extinction coefficient. The optical parameters were found to vary with post deposition annealing in one direction and concentration of Zn2+ in the reverse direction. For instance, post deposition annealing increases the band gap from 3.65 eV for as-deposited to 3.70 eV, 3.75 eV and 3.85 eV for annealed at 373 K, 423 K and 473 K respectively whereas concentration of Zn2+ decreases the band gap from 3.95 eV at 0.1 M to 3.90 eV, 3.85 eV and 3.80 eV at 0.3 M, 0.5 M and 0.7 M respectively. The fundamental absorption edge of ZnS thin films shifted toward the highest photon energies (blue shift) after annealing and shifted toward the lowest photon energies (red shift) with increasing Zn ions concentration. A linear relation between band gap energy and Urbach energy was found. After annealing, the Urbach energy increases form 3.10 eV to 3.50 eV and decreases from 3.40 eV to 3.10 eV at varying Zn2+ concentration. The property of wide band gap makes ZnS suitable for buffer layer of film solar cells, permitting more light especially the short wavelength light into absorber layer.

  9. An investigation of long and short range ion motions within the cluster morphology of electrolyte-containing perfluoro-sulfonate ionomer membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, S.

    1992-01-01

    An equivalent circuit model was postulated for PFSI (perfluoro-sulfanate-ionomer) polymers. It successfully models three different dielectric relaxation mechanisms taking place within long and short sidechain PFSI's in an alternating electric field. The three dielectric processes are long-range ion inter-cluster hopping in the low frequency region, short-range intra-cluster polarization occurred in frequencies at about 10[sup 3] to 10[sup 6] Hz, and Debye-like orientation of water molecules taking place at very high frequencies. When membranes are annealed in the proximity of the glass transition temperature of ionic clusters, the packing of sulfonate groups becomes more efficient. This is by the fact thatmore » the symmetrical parameter of the distribution of relaxation time of the Cole-Cole equation increases with annealing time. The cluster activities of the long and short sidechain polymers act differently in different electrolyte solutions. The sidechains of the long sidechain polymer act like a spring, it contracts while the material was equilibrated in low concentration solutions and it expands as equilibrated in concentrated solutions. The cluster dimension of the long sidechain material does not vary too much. The cluster dimension of short sidechain polymers can vary significantly on different electrolyte solutions.« less

  10. Modification of Lime Mortars with Synthesized Aluminosilicates

    NASA Astrophysics Data System (ADS)

    Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota

    2017-10-01

    The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime mortar was developed based on SA. SA in lime composites turned out to be effective as structure-forming additive, both plastic and compressive strength increased after addition of SA.

  11. Synthesis and characterization of P-doped amorphous and nanocrystalline Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jialing; Ganguly, Shreyashi; Sen, Sabyasachi

    Intentional impurity doping lies at the heart of the silicon technology. The dopants provide electrons or holes as necessary carriers of the electron current and can significantly modify the electric, optical and magnetic properties of the semiconductors. P-doped amorphous Si (a-Si) was prepared by a solid state and solution metathesis reaction of a P-doped Zintl phase precursor, NaSi 0.99P 0.01, with an excess of NH 4X (X = Br, I). After the salt byproduct was removed from the solid state reaction, the a-Si material was annealed at 600 °C under vacuum for 2 h, resulting in P-doped nanocrystalline Si (nc-Si)more » material embedded in a-Si matrix. The product from the solution reaction also shows a combination of nc-Si embedded in a-Si; however, it was fully converted to nc-Si after annealing under argon at 650 °C for 30 min. Powder X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) show the amorphous nature of the P-doped Si material before the annealing and the nanocrystallinity after the annealing. Fourier Transform Infrared (FTIR) spectroscopy shows that the P-doped Si material surface is partially capped by H and O or with solvent. Finally, electron microprobe wavelength dispersive spectroscopy (WDS) as well as energy dispersive spectroscopy (EDS) confirm the presence of P in the Si material. 29Si and 31P solid state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy data provide the evidence of P doping into the Si structure with the P concentration of approximately 0.07 at.%.« less

  12. Preparation of anatase TiO2 thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Noh, Hongche; Oh, Seong-Geun; Im, Seung Soon

    2015-04-01

    To prepare the anatase TiO2 thin films on ITO glass, amorphous TiO2 colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO2 colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO2 film (for device A). For other TiO2 films, amorphous TiO2 colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO2 colloidal solution. This anatase TiO2 colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO2 colloidal solution was about 1.0 nm and that of anatase TiO2 colloidal solution was 10 nm. The thickness of TiO2 films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO2 films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO2 films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO2 films as a buffer layer at low temperature on plastic substrate by roll-to roll process.

  13. Adaptive Parameter Optimization of a Grid-based Conceptual Hydrological Model

    NASA Astrophysics Data System (ADS)

    Samaniego, L.; Kumar, R.; Attinger, S.

    2007-12-01

    Any spatially explicit hydrological model at the mesoscale is a conceptual approximation of the hydrological cycle and its dominant process occurring at this scale. Manual-expert calibration of this type of models may become quite tedious---if not impossible---taking into account the enormous amount of data required by these kind of models and the intrinsic uncertainty of both the data (input-output) and the model structure. Additionally, the model should be able to reproduce well several process which are accounted by a number of predefined objectives. As a consequence, some degree of automatic calibration would be required to find "good" solutions, each one constituting a trade-off among all calibration criteria. In other words, it is very likely that a number of parameter sets fulfil the optimization criteria and thus can be considered a model solution. In this study, we dealt with two research questions: 1) How to assess the adequate level of model complexity so that model overparameterization is avoided? And, 2) How to find a good solution with a relatively low computational burden? In the present study, a grid-based conceptual hydrological model denoted as HBV-UFZ based on some of the original HBV concepts was employed. This model was driven by 12~h precipitation, temperature, and PET grids which are acquired either from satellite products or from data of meteorological stations. In the latter case, the data was interpolated with external drift Kriging. The first research question was addressed in this study with the implementation of nonlinear transfer functions that regionalize most model parameters as a function of other spatially distributed observables such as land cover (time dependent) and other time independent basin characteristics such as soil type, slope, aspect, geological formations among others. The second question was addressed with an adaptive constrained optimization algorithm based on a parallel implementation of simulated annealing (SA). The main difference with the standard SA is the parameter search routine which uses adaptive heuristic rules to improve its efficiency. These rules are based on the relative behavior of the efficiency criteria. The efficiency of the model is evaluated with the Nash-Sutcliffe efficiency coefficient (NS) and the RMSE obtained for various short and long term runoff characteristics such as daily flows; semiannual high and low flow characteristics such as total drought duration frequency of high flows; and annual specific discharge at various gauging stations. Additionally, the parameter search was constrained with the 95% confidence bands of the runoff characteristics mentioned above. The proposed method was calibrated in the Upper Neckar River basin covering an area of approximately 4000~km2 during the period from 1961 to 1993. The spatial and temporal resolutions used were a grid size of (1000 × 1000)~m and 12~h intervals respectively. The results of the study indicate significant improvement in model performance (e.g. Nash-Sutcliffe of various runoff characteristics ~ 0.8) and a significant reduction in computational burden of at least 25%.

  14. An effective PSO-based memetic algorithm for flow shop scheduling.

    PubMed

    Liu, Bo; Wang, Ling; Jin, Yi-Hui

    2007-02-01

    This paper proposes an effective particle swarm optimization (PSO)-based memetic algorithm (MA) for the permutation flow shop scheduling problem (PFSSP) with the objective to minimize the maximum completion time, which is a typical non-deterministic polynomial-time (NP) hard combinatorial optimization problem. In the proposed PSO-based MA (PSOMA), both PSO-based searching operators and some special local searching operators are designed to balance the exploration and exploitation abilities. In particular, the PSOMA applies the evolutionary searching mechanism of PSO, which is characterized by individual improvement, population cooperation, and competition to effectively perform exploration. On the other hand, the PSOMA utilizes several adaptive local searches to perform exploitation. First, to make PSO suitable for solving PFSSP, a ranked-order value rule based on random key representation is presented to convert the continuous position values of particles to job permutations. Second, to generate an initial swarm with certain quality and diversity, the famous Nawaz-Enscore-Ham (NEH) heuristic is incorporated into the initialization of population. Third, to balance the exploration and exploitation abilities, after the standard PSO-based searching operation, a new local search technique named NEH_1 insertion is probabilistically applied to some good particles selected by using a roulette wheel mechanism with a specified probability. Fourth, to enrich the searching behaviors and to avoid premature convergence, a simulated annealing (SA)-based local search with multiple different neighborhoods is designed and incorporated into the PSOMA. Meanwhile, an effective adaptive meta-Lamarckian learning strategy is employed to decide which neighborhood to be used in SA-based local search. Finally, to further enhance the exploitation ability, a pairwise-based local search is applied after the SA-based search. Simulation results based on benchmarks demonstrate the effectiveness of the PSOMA. Additionally, the effects of some parameters on optimization performances are also discussed.

  15. Depth distribution of sulfonamide antibiotics in pore water of an undisturbed loamy grassland soil.

    PubMed

    Burkhardt, Michael; Stamm, Christian

    2007-01-01

    Despite the concern raised by the detections of veterinary antibiotics like sulfonamides (SA) in the environment, their fate in soils is still not sufficiently understood. In a previous article, we demonstrated that manure may substantially influence losses of SA via runoff from soils. Here, we report on the effect of manure on SA availability in soil pore water. Three sulfonamides (sulfadimidine, sulfadiazine, sulfathiazole) and two tracers (bromide and Brilliant Blue) were either applied in manure or as aqueous solution on grassland plots. After 1 and 3 d contact time, the plots were irrigated with deionized water. One day after irrigation, soil cores were taken and profiles of pore water concentrations were determined. The median SA concentrations of the top layer on manured plots varied between 40 and 60 microg L(-1) and between 10 and 30 microg L(-1) on the controls. For the conservative tracer Br the mass recovery was about 60 to 75% and much lower for the SA (2 to 14%). Apparent distribution coefficients K(d,app) of the SA in the topsoil ranged between 3 and 15 L kg(-1) on the manured plots and between 30 to 35 kg L(-1) on the controls. Below the top layer, the concentration distribution showed a pattern typical for preferential flow. Locally, SA concentrations down to 30- to 50-cm depth were as high as in the top 5 cm with little effect of the two application matrices. In the topmost layer, the data indicate that 10 to 25% of sulfadimidine were transformed to its acetyl-metabolite.

  16. Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization

    NASA Astrophysics Data System (ADS)

    Iakovlev, S.; Solterbeck, C.-H.; Kuhnke, M.; Es-Souni, M.

    2005-05-01

    Polycrystalline BiFeO3 thin films were fabricated on (111)Pt/Ti/SiO2/Si substrates via Bi-acetate- and Fe-acetylacetonate-based chemical solution deposition and spin-coating techniques. The processing parameters were optimized in order to obtain films with high resistivity. The optical properties (refractive indices and extinction coefficients) were measured by means of ellipsometry (HeNe laser, λ=632.8Å). Microstructure characterization was made by means of atomic force microscopy, grazing incidence x-ray diffractometry (XRD), and texture analysis. Additionally, powders prepared from a stoichiometric precursor were investigated by means of thermogravimetric and differential thermal analyses and XRD. It is demonstrated that the formation of perovskite-type BiFeO3 is accompanied by the appearance of bismuth oxide at low temperatures which then transforms into Bi36Fe2O57. For the films it was found that annealing in oxygen leads to higher indices of refraction, lower roughness, and smaller grain size. Complete crystallization of the films was achieved at a substantially lower temperature compared to that of the powders. A (100) (pseudocubic) out-of-plane preferred orientation was revealed for specimens annealed in air and oxygen. It is supposed that the crystal lattice of the thin film is close to cubic possibly due to stress development at the substrate/film interface. The electrical properties of the films were measured at room temperature by impedance analysis. The piezoelectric properties were determined using a laser vibrometer. Room temperature resistances measured at 1 kHz for metal-film-metal configurations for the specimens annealed in air and O2 were 14 Ω and 1.35 kΩ, respectively. This is explained in terms of the high sensitivity of the oxidation state (+2 or +3) of iron ions to oxygen stoichiometry in the specimens. Further electrical characterization of the specimen annealed in O2 revealed very low frequency dispersion of the dielectric constant. A dielectric loss of 1% or less was detected in a wide range of frequency. The films annealed in oxygen showed piezoelectric activity with a value of the piezoelectric coefficient d33 of 12 pm/V. A relatively weak ferroelectricity (remnant polarization 2Pr of approximately 1μC/cm2) was detected for the specimens annealed in oxygen.

  17. Low temperature fabrication of metal oxide thin film transistors formed by a heated aqueous precursor solution

    NASA Astrophysics Data System (ADS)

    Lee, Keun Ho; Han, Sun Woong; Park, Jee Ho; Yoo, Young Bum; Jong Lee, Se; Baik, Hong Koo; Song, Kie Moon

    2016-01-01

    We introduce an easy process for the fabrication of solution-processed indium oxide (InO) thin film transistors (TFTs) by heating a precursor solution. InO TFTs fabricated from solutions of an InO precursor heated at 90 °C had the highest mobility of 4.61 cm2 V-1 s-1 after being annealed at 200 °C. When the InO precursor solution is heated, HNO3 may be thermally evaporated in the InO precursor solution. Nitrogen atoms can disrupt hydrolysis and condensation reactions. An InO thin film deposited from a solution of the heated InO precursor is advantageous for hydrolysis and condensation reactions due to the absence of nitrogen atoms.

  18. Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition.

    PubMed

    Wang, Tzu-Yu; Ou, Sin-Liang; Shen, Kun-Ching; Wuu, Dong-Sing

    2013-03-25

    InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications.

  19. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method.

    PubMed

    Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-03

    In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe₂ absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe₂ precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe₂ absorber layers. After spraying on Mo/glass substrates, the CuInSe₂ thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N₂ as atmosphere. When the CuInSe₂ thin films were annealed, without extra Se or H₂Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe₂ absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe₂ absorber layers could be controlled as the volume of used dispersed CuInSe₂-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe₂ absorber layers obtained by the Spray Coating Method.

  20. Grain engineering by ultrasonic substrate vibration post-treatment of wet perovskite films for annealing-free, high performance, and stable perovskite solar cells.

    PubMed

    Xiong, Hao; Zabihi, Fatemeh; Wang, Hongzhi; Zhang, Qinghong; Eslamian, Morteza

    2018-05-10

    Perovskite solar cells (PSCs) have gained great interest, owing to a fast increase in their power conversion efficiency (PCE), within a few years. However, their wide application and scale-up are hampered due to multiple obstacles, such as chemical instability, which leads to a short lifetime, and their complicated reaction and crystallization, which requires thermal annealing. Here, we address these issues using the ultrasonic substrate vibration post treatment (SVPT) applied on the as-spun perovskite wet films, so as to achieve a uniform, microscale and stable mixed-halide and mixed-cation perovskite layer, (FAPbI3)0.85(MAPbBr3)0.15, without the need for a conventional thermal annealing step. This is achieved by the creation of fluid micromixing and in situ annealing within the solution, caused by the ultrasonic excitation of the wet film. The optoelectronic properties of the perovskite films subjected to the SVPT, including photoemission, carrier lifetime and band gap, are remarkably improved compared to the conventionally annealed films. When incorporated into a planar PSC, a maximum PCE of 18.55% was achieved, compared to 15.17% for the control device, with high reproducibility and no hysteresis, and the device retained 80% of its initial PCE, over a period of 20 days of storage under ambient conditions.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M.; Afaah, A. N.

    In this work, solution-immersion method was used to grow ZnO rods on PMMA-coated substrate. For this purpose, 0.15 M of zinc nitrate hexahydrate (Zn(NO{sub 3}){sub 2}.6H{sub 2}O) and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}) were used to growth of ZnO films at different annealing temperatures (room temperature, 80, 100, 120 and 140 °C). The morphology of the films was investigated by Scanning Electron Microscope (SEM) and optical properties were studied by Ultraviolet (UV-Vis) Spectroscopy. SEM analysis showed ubiquitous growth of ZnO rods that became better aligned and more closely-packed as the annealing temperature increased. As the annealing temperature exceeds 100 °C,more » the rods tend to merge to adjacent particles and the UV absorption decreased for the sample at higher temperatures (120 °C and 140 °C). Good absorption and better orientation of ZnO was obtained for the sample annealed at 100 °C due to the film possess better distribution and these improved orientation of particles caused the light to be effectively scattered on the sample. Both surface morphology and UV was significantly affected by the change in annealing temperatures thus thermal effect played a dominant role in shaping and improving the orientation of ZnO rods on PMMA-coated and its UV absorption.« less

  2. Gas expanded polymer process to anneal nanoparticle dispersion in thin films

    DOE PAGES

    Ambuken, Preejith V.; Stretz, Holly A.; Dadmun, Mark; ...

    2015-04-21

    A spin-coating solution comprising poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles used to create organic photovoltaic (OPV) active layers have been shown to adopt a non-uniform concentration profile across the thin film dimension. This inhomogeneous distribution can reduce the efficiency of the device. For our new process, gas expanded polymer (GXP) annealing, is applied to P3HT/PCBM thin film blends, enabling the distribution of the PCBM nanoparticles to be manipulated by varying the GXP processing conditions. Films of 50 nm thickness (nominally) created by spin casting a blend of P3HT mixed with PCBM were annealed by oscillatory GXP andmore » GXP at constant pressure using high pressure CO 2. An increase in P3HT crystallinity (detected by X-ray diffraction and UV-vis spectroscopy) along with a more uniform distribution of PCBM nanoparticles in the thickness dimension, as interpreted from neutron reflectivity measurements, were observed after oscillatory GXP annealing. In addition, static water contact angles suggest that the film/air interface is enriched in PCBM relative to the as-cast film. Finally, these results demonstrate that GXP annealing, which is commercially scalable, can be successfully used to create a uniform distribution of PCBM nanoparticles across the thickness dimension in a P3HT thin film.« less

  3. Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods

    NASA Astrophysics Data System (ADS)

    Karimi, Hamed; Rosenberg, Gili; Katzgraber, Helmut G.

    2017-10-01

    We present and apply a general-purpose, multistart algorithm for improving the performance of low-energy samplers used for solving optimization problems. The algorithm iteratively fixes the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are smaller and less connected, and samplers tend to give better low-energy samples for these problems. The algorithm is trivially parallelizable since each start in the multistart algorithm is independent, and could be applied to any heuristic solver that can be run multiple times to give a sample. We present results for several classes of hard problems solved using simulated annealing, path-integral quantum Monte Carlo, parallel tempering with isoenergetic cluster moves, and a quantum annealer, and show that the success metrics and the scaling are improved substantially. When combined with this algorithm, the quantum annealer's scaling was substantially improved for native Chimera graph problems. In addition, with this algorithm the scaling of the time to solution of the quantum annealer is comparable to the Hamze-de Freitas-Selby algorithm on the weak-strong cluster problems introduced by Boixo et al. Parallel tempering with isoenergetic cluster moves was able to consistently solve three-dimensional spin glass problems with 8000 variables when combined with our method, whereas without our method it could not solve any.

  4. Synthesis and characterization of γ-Fe2O3 NPs on silicon substrate for power device application

    NASA Astrophysics Data System (ADS)

    Hussein Nurul Athirah, Abu; Bee Chin, Ang; Yew Hoong, Wong; Boon Hoong, Ong; Aainaa Aqilah, Baharuddin

    2018-06-01

    Maghemite nanoparticles (γ-Fe2O3 NPs) were synthesized using Massart procedure. The formation reaction were optimized by varying the concentration of ferric nitrate solution (Fe(NO3)3) (0.1, 0.3, 0.5, 0.7 and 1.0 M). All samples were characterized by means of x-ray Diffractometer (XRD), Raman Spectroscopy, Transmission Electron Microscope (TEM) and Alternating Gradient Magnetometer (AGM). The smallest size of the NPs were chosen to be deposited on Silicon (100) substrate by spin coating technique. Annealing process of the samples were performed in Argon ambient at different temperatures (600, 700, 800 and 900°) for 20 min. Metal-oxide-semiconductor capacitors were then fabricated by depositing Aluminium as the gate electrode. The effect of the annealing process on the structural and electrical properties of γ-Fe2O3 NPs thin film were investigated. The structural properties of the deposited thin film were evaluated by XRD analysis, Atomic Force Microscopy (AFM) and Raman Analysis. On the other hand, the electrical properties was conducted by current-voltage analysis. It was revealed that the difference in the annealing temperature affect the grain size, surface roughness, distribution of the nanoparticles as well as the electrical performance of the samples where low annealing temperature (600 °C) gives low leakage current while high annealing temperature (900 °C) gives high electrical breakdown.

  5. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats

    PubMed Central

    Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.

    2010-01-01

    Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468

  6. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions

    NASA Astrophysics Data System (ADS)

    Cattin, L.; Reguig, B. A.; Khelil, A.; Morsli, M.; Benchouk, K.; Bernède, J. C.

    2008-07-01

    NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl 2·6H 2O), nickel nitrate hexahydrate (Ni(NO 3) 2·6H 2O), nickel hydroxide hexahydrate (Ni(OH) 2·6H 2O), nickel sulfate tetrahydrate (NiSO 4·4H 2O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 °C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl 2 and Ni(NO 3) 2 precursors. These films have been post-annealed at 425 °C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10 -2 Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.

  7. Microstructure characterization and phase transformation kinetic study of ball-milled m-ZrO 2-30 mol% a-TiO 2 mixture by Rietveld method

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Dutta, H.

    2005-05-01

    High-energy ball milling of monoclinic ZrO 2-30 mol% anatase TiO 2 mixture at different durations results in the formation of m-ZrO 2-a-TiO 2 solid solution from which the nucleation of nanocrystalline cubic (c) ZrO 2 polymorphic phase sets in. Post-annealing of 12 h ball-milled sample at different elevated temperatures for 1 h results in almost complete formation of c-ZrO 2 phase. Microstructure of the unmilled, all the ball milled and annealed samples has been characterized by Rietveld's X-ray powder structure refinement method. Particle size, rms lattice strain, change in lattice parameters and phase content of individual phases have been estimated from Rietveld analysis, and are utilized to interpret the results. In course of milling, (1 1 1) of cubic lattice became parallel to ( 1bar 1 1) plane of monoclinic lattice due to the orientation effect and cubic phase may have been formed on the (0 0 1) of the m-ZrO 2-a-TiO 2 solid solution lattice. A comparative study of microstructure and phase transformation kinetics of ZrO 2-10, 20 and 30 mol% a-TiO 2 ball-milled and post-annealed samples reveals that rate of phase transformation m→c-ZrO 2 increases with increasing a-TiO 2 concentration and ∼30 mol% of nanocrystalline c-ZrO 2 phase can be obtained within 4 h of milling time in the presence of 30 mol% of a-TiO 2. The post-annealing treatment at 773, 873 and 973 K for 1 h duration each reveals that rate of c-ZrO 2 formation with increasing temperature is retarded with increasing a-TiO 2 concentration but the amount of c-ZrO 2 becomes almost equal (∼95 mol%) at 973 K. It suggests that almost fully stabilized nanocrystalline c-ZrO 2 can be formed by adding a tetravalent solute to m-ZrO 2.

  8. 40 CFR 471.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... powder atomized Chromium 0.970 0.393 Nickel 1.44 .970 Fluoride 156 69.2 (q) Annealing and solution heat... pollutants. (r) Wet air pollution control scrubber blowdown. Subpart C—BAT Pollutant or pollutant property...

  9. Mechanical properties of Rene-41 affected by rate of cooling after solution annealing

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1970-01-01

    Investigation of Rene-41 cooling rate from 1975 to 1400 degrees F reveals that slow cooling improves high-temperature ductility and provides more uniform properties throughout a manifold. Ambient elongation and impact resistance are not significantly changed.

  10. Improved welding of Rene-41

    NASA Technical Reports Server (NTRS)

    Nunez, S.

    1970-01-01

    Gas-tungsten arc welding with a filler of Rene-41 produces strong welded joints. When Rene-41 is used, resistance to strain-age cracking is greatly increased by post-weld solution annealing in an inert atmosphere. Mechanical properties of Rene-41 and Hastelloy-W are compared.

  11. First-order design of geodetic networks using the simulated annealing method

    NASA Astrophysics Data System (ADS)

    Berné, J. L.; Baselga, S.

    2004-09-01

    The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.

  12. Improved photoluminescence efficiency in UV nanopillar light emitting diode structures by recovery of dry etching damage.

    PubMed

    Jeon, Dae-Woo; Jang, Lee-Woon; Jeon, Ju-Won; Park, Jae-Woo; Song, Young Ho; Jeon, Seong-Ran; Ju, Jin-Woo; Baek, Jong Hyeob; Lee, In-Hwan

    2013-05-01

    In this study, we have fabricated 375-nm-wavelength InGaN/AlInGaN nanopillar light emitting diodes (LED) structures on c-plane sapphire. A uniform and highly vertical nanopillar structure was fabricated using self-organized Ni/SiO2 nano-size mask by dry etching method. To minimize the dry etching damage, the samples were subjected to high temperature annealing with subsequent chemical passivation in KOH solution. Prior to annealing and passivation the UV nanopillar LEDs showed the photoluminescence (PL) efficiency about 2.5 times higher than conventional UV LED structures which is attributed to better light extraction efficiency and possibly some improvement of internal quantum efficiency due to partially relieved strain. Annealing alone further increased the PL efficiency by about 4.5 times compared to the conventional UV LEDs, while KOH passivation led to the overall PL efficiency improvement by more than 7 times. Combined results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) suggest that annealing decreases the number of lattice defects and relieves the strain in the surface region of the nanopillars whereas KOH treatment removes the surface oxide from nanopillar surface.

  13. Optical and electrical responses of magnetron-sputtered amorphous Nb-doped TiO2 thin films annealed at low temperature

    NASA Astrophysics Data System (ADS)

    Quynh, Luu Manh; Tien, Nguyen Thi; Thanh, Pham Van; Hieu, Nguyen Minh; Doanh, Sai Cong; Thuat, Nguyen Tran; Tuyen, Nguyen Viet; Luong, Nguyen Hoang; Hoang, Ngoc Lam Huong

    2018-03-01

    Nb-doped TiO2 (TNO) thin films were prepared by annealing at 300 °C for 30 min after a magnetron-sputter process. A laser-irradiated post-annealing Raman scattering analysis indirectly showed the possible formation of small size anatase TNO clusters within the thin film matrix Although the TNO thin films were not crystallized, oxygen vacancies were created by adding H2 into the sputter gas during the deposition process. This improved the conductivity and carrier concentration of the thin films. As the ratio of H2 in sputter gas is f(H2) = [H2/Ar+H2] = 10%, the carrier concentration of the amorphous TNO thin film reached 1022 (cm-3) with the resistivity being about 10-2 (Ω.cm). Even though a new methodology to decrease the fabrication temperature is not presented; this study demonstrates an efficient approach to shorten the annealing process, which ends prior to the crystallization of the thin films. Besides, in situ H2 addition into the sputter atmosphere is proven to be a good solution to enhance the electrical conductivity of semiconductor thin films like TNOs, despite the fact that they are not well crystallized.

  14. Finding Maximum Cliques on the D-Wave Quantum Annealer

    DOE PAGES

    Chapuis, Guillaume; Djidjev, Hristo; Hahn, Georg; ...

    2018-05-03

    This work assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, andmore » compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.« less

  15. Finding Maximum Cliques on the D-Wave Quantum Annealer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapuis, Guillaume; Djidjev, Hristo; Hahn, Georg

    This work assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, andmore » compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.« less

  16. Microstructural defect evolution in neutron - Irradiated 12Cr18Ni9Ti stainless steel during subsequent isochronous annealing

    NASA Astrophysics Data System (ADS)

    Tsay, K. V.; Maksimkin, O. P.; Turubarova, L. G.; Rofman, O. V.; Garner, F. A.

    2013-08-01

    Transmission electron microscopy and microhardness measurements were used to examine changes in microstructure and associated strengthening induced in austenitic stainless steel 12Cr18Ni9Ti irradiated to ˜0.001 and ˜5 dpa in the WWR-K reactor before and after being subjected to post-irradiation isochronal annealing. The relatively low values of irradiation temperature and dpa rate (˜80 °C and ˜1.2 × 10-8 dpa/s) experienced by this steel allowed characterization of defect microstructures over a wide range of defect ensembles, all at constant composition, produced first by irradiation and then by annealing at temperatures between 450 and 1050 °C. It was shown that the dispersed barrier hardening model with commonly accepted physical properties successfully predicted the observed hardening. It was also observed that when TiC precipitates form at higher annealing temperatures, the alloy does not change in hardness, reflecting a balance between precipitate-hardening and matrix-softening due to removal of solute-strengthening elements titanium and carbon. Such matrix-softening is not often considered in other studies, especially where the contribution of precipitates to hardening is a second-order effect.

  17. Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Biswas, P. P.; Thirmal, Ch.; Pal, S.; Murugavel, P.

    2018-01-01

    Ferroelectric bismuth ferrite is an attractive candidate for switchable devices. The effect of dipole pinning due to the oxygen vacancy layer on the switching behavior of the BiFeO3 thin film fabricated by the chemical solution deposition method was studied after annealing under air, O2, and N2 environment. The air annealed film showed well defined and dense grains leading to a lower leakage current and superior electrical properties compared to the other two films. The photovoltage and transient photocurrent measured under positive and negative poling elucidated the switching nature of the films. Though the air and O2 annealed films showed a switchable photovoltaic response, the response was severely affected by oxygen vacancies in the N2 annealed film. In addition, the open circuit voltage was found to be mostly dependent on the polarization of BiFeO3 rather than the Schottky barriers at the interface. This work provides an important insight into the effect of dipole pinning caused by oxygen vacancies on the switchable photovoltaic effect of BiFeO3 thin films along with the importance of stoichiometric, defect free, and phase pure samples to facilitate meaningful practical applications.

  18. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA.

  19. Spectral Analysis of Dynamic PET Studies: A Review of 20 Years of Method Developments and Applications.

    PubMed

    Veronese, Mattia; Rizzo, Gaia; Bertoldo, Alessandra; Turkheimer, Federico E

    2016-01-01

    In Positron Emission Tomography (PET), spectral analysis (SA) allows the quantification of dynamic data by relating the radioactivity measured by the scanner in time to the underlying physiological processes of the system under investigation. Among the different approaches for the quantification of PET data, SA is based on the linear solution of the Laplace transform inversion whereas the measured arterial and tissue time-activity curves of a radiotracer are used to calculate the input response function of the tissue. In the recent years SA has been used with a large number of PET tracers in brain and nonbrain applications, demonstrating that it is a very flexible and robust method for PET data analysis. Differently from the most common PET quantification approaches that adopt standard nonlinear estimation of compartmental models or some linear simplifications, SA can be applied without defining any specific model configuration and has demonstrated very good sensitivity to the underlying kinetics. This characteristic makes it useful as an investigative tool especially for the analysis of novel PET tracers. The purpose of this work is to offer an overview of SA, to discuss advantages and limitations of the methodology, and to inform about its applications in the PET field.

  20. Enzymes extracted from apple peels have activity in reducing higher alcohols in Chinese liquors.

    PubMed

    Han, Qi'an; Shi, Junling; Zhu, Jing; Lv, Hongliang; Du, Shuangkui

    2014-10-01

    As the unavoidable byproducts of alcoholic fermentation, higher alcohols are unhealthy compounds widespread in alcoholic drinks. To investigate the activity of apple crude enzymes toward higher alcohols in liquors, five kinds of apple peels, namely, Fuji, Gala, Golden Delicious, Red Star, and Jonagold, were chosen to prepare enzymes, and three kinds of Chinese liquors, namely, Xifeng (containing 45% ethanol), Taibai (containing 50% ethanol), and Erguotou (containing 56% ethanol), were tested. Enzymes were prepared in the forms of liquid solution, powder, and immobilized enzymes using sodium alginate (SA) and chitosan. The treatment was carried out at 37 °C for 1 h. The relative amounts of different alcohols (including ethanol, 1-propanol, isobutanol, 1-butanol, isoamylol, and 1-hexanol) were measured using gas chromatography (GC). Conditions for preparing SA-immobilized Fuji enzymes (SA-IEP) were optimized, and the obtained SA-IEP (containing 0.3 g of enzyme) was continuously used to treat Xifeng liquor eight times, 20 mL per time. Significant degradation rates (DRs) of higher alcohols were observed at different degrees, and it also showed enzyme specificity according to the apple varieties and enzyme preparations. After five repeated treatments, the DRs of the optimized Fuji SA-IEP remained 70% for 1-hexanol and >15% for other higher alcohols.

  1. Changes in Photosynthetic Pigments, Total Phenolic Content, and Antioxidant Activity of Salvia coccinea Buc'hoz Ex Etl. Induced by Exogenous Salicylic Acid and Soil Salinity.

    PubMed

    Grzeszczuk, Monika; Salachna, Piotr; Meller, Edward

    2018-05-29

    Salvia coccinea (Lamiaceae) is a promising source of potential antioxidants, and its extracts can be used in pharmaceutical industry, as well as in food products and cosmetics. Salicylic acid (SA) affects many physiological and metabolic processes in vascular plants under salinity stress. The aim of this study was to investigate the response of S. coccinea to either SA, or sodium chloride (NaCl), or a combination of both. The plants were sprayed with a solution of 0.5 or 1.0 mM SA and watered with 0, 100, 200, or 300 mM NaCl. Exogenous application of SA increased the number of branches, fresh herbal weight, and total chlorophyll content vs control plants. Salinity-exposed plants showed reduced growth, content of photosynthetic pigments total polyphenols, and antioxidant activity. However, foliar application of SA relieved the adverse effects of 100 mM NaCl, as demonstrated by increased number of branches, greater fresh herbal weight, higher content of total chlorophyll, total carotenoids, and total polyphenols, as well as antioxidant potential, detected using ferric-reducing ability of plasma (FRAP) and 2.2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), compared with untreated plants.

  2. Sulfur doping of GaAs with (NH4)2Sx solution

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Lam

    1999-01-01

    A novel technique for sulfur doping to GaAs was demonstrated. The surface of GaAs was treated with (NH4)2Sx solution, subsequent to annealing using either furnace or rapid thermal processing. Sulfur atoms adsorbed at the surface of GaAs during the (NH4)2Sx treatment diffuse into GaAs during the annealing. The diffusion profiles of sulfur in both types of annealing treatments show a concave shape from the GaAs surface. Diffusion constants of sulfur determined using the Boltzmann-Matano technique increase with the decrease of sulfur concentration via the depth from the surface of GaAs. This suggests that immobile sulfur donor SAs+ forms at the near surface interacts with a Ga divacancy, and results in the production of mobile As interstitials, IAs. The IAs moves fast toward the inside of GaAs and kickout the SAs+ donor, producing a fast diffusing species of interstitial S atoms. The diffusion coefficients of sulfur determined are 2.5×10-14 cm2/s at 840 °C and 5×10-12 cm2/s at 900 °C. The sulfur doping technique is applied to the fabrication of metal-semiconductor field-effect transistors (MESFETs). The MESFETs with 1.0 μm gate length exhibit transconductance of 190 mS/mm, demonstrating the applicability of this technique to the formation of active channel layer of MESFETs.

  3. High dielectric constant PrY(x)O(y) sensing films electrolyte-insulator-semiconductor pH-sensor for the detection of urea.

    PubMed

    Wu, Min-Hsien; Lee, Cheng-Da; Pan, Tung-Ming

    2009-09-28

    In this paper, we describe the structural and sensing properties of high-k PrY(x)O(y) sensing films deposited on Si substrates through reactive co-sputtering. Secondary ion mass spectrometry and atomic force microscopy were employed to analyze the compositional and morphological features of these films after annealing at various temperatures. The electrolyte-insulator-semiconductor (EIS) device incorporating a PrY(x)O(y) sensing membrane that had been annealed at 800 degrees C exhibited good sensing characteristics, including a high sensitivity (59.07 mV pH(-1) in solutions from pH 2 to 12), a low hysteresis voltage (2.4 mV in the pH loop 7-->4-->7-->10-->7), and a small drift rate (0.62 mV h(-1) in the buffer solution at pH 7). The PrY(x)O(y) EIS device also showed a high selective response towards H(+). This improvement can be attributed to the small number of crystal defects and the large surface roughness. In addition, the enzymatic EIS-based urea biosensor incorporating a high-k PrY(x)O(y) sensing film annealed at 800 degrees C allowed the potentiometric analysis of urea, at concentrations ranging from 1 to 16 mM, with a sensitivity of 9.59 mV mM(-1).

  4. Influence of dipping cycles on physical, optical, and electrical properties of Cu 2 NiSnS 4 : Direct solution dip coating for photovoltaic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokurala, Krishnaiah; Mallick, Sudhanshu; Bhargava, Parag

    Direct solution coating technique has emerged as a promising economically viable process for earth abundant chalcogenide absorber materials for photovoltaic applications. Here, direct ethanol based dip coating of earth abundant Cu2NiSnS4 (CNTS) films on soda lime glass (SLG), molybdenum coated glass (Mo), and fluorine doped tin oxide coated glass (FTO) substrates is investigated. The structural and morphological properties of pre-annealed and sulfurized CNTS films coated on SLG, FTO, and Mo substrates are reported. The influence of dipping cycles on composition and optoelectronic properties of pre-annealed and sulfurized CNTS films deposited on SLG substrate is presented. Energy dispersive spectroscopy (EDS) andmore » X-ray fluorescence (XRF) analysis reveal how changes in thickness and elemental composition affect morphology and optoelectronic properties. The obtained absorption coefficient, optical bandgap, resistivity and mobility of pre - annealed and sulfurized films are found to be 104 cm-1, 1.5 eV, 0.48 Ocm, 3.4 cm2/Vs and 104 cm-1, 1.29 eV, 0.14 Ocm, 11.0 cm2/Vs, respectively. These properties are well suited for photovoltaic applications and lead to the conclusion that the direct ethanol based dip coating can be an alternative economically viable process for the fabrication of earth abundant CNTS absorber layers for thin film solar cells.« less

  5. Low-Temperature UV-Assisted Fabrication of Metal Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Zhu, Shuanglin

    Solution processed metal oxide semiconductors have attracted intensive attention in the last several decades and have emerged as a promising candidate for the application of thin film transistor (TFT) due to their nature of transparency, flexibility, high mobility, simple processing technique and potential low manufacturing cost. However, metal oxide thin film fabricated by solution process usually requires a high temperature (over 300 °C), which is above the glass transition temperature of some conventional polymer substrates. In order to fabricate the flexible electronic device on polymer substrates, it is necessary to find a facile approach to lower the fabrication temperature and minimize defects in metal oxide thin film. In this thesis, the electrical properties dependency on temperature is discussed and an UV-assisted annealing method incorporating Deep ultraviolet (DUV)-decomposable additives is demonstrated, which can effectively improve electrical properties solution processed metal oxide semiconductors processed at temperature as low as 220 °C. By studying a widely used indium oxide (In2O3) TFT as a model system, it is worth noted that compared with the sample without UV treatment, the linear mobility and saturation mobility of UV-annealing sample are improved by 56% and 40% respectively. Meanwhile, the subthreshold swing is decreased by 32%, indicating UV-treated device could turn on and off more efficiently. In addition to pure In2O3 film, the similar phenomena have also been observed in indium oxide based Indium-Gallium-Zinc Oxide (IGZO) system. These finding presented in this thesis suggest that the UV assisted annealing process open a new route to fabricate high performance metal oxide semiconductors under low temperatures.

  6. Reinforcement of the Cube texture during recrystallization of a 1050 aluminum alloy partially recrystallized and 10% cold-rolled

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Wei; Helbert, Anne-Laure, E-mail: anne-laure.helbert@u-psud.fr; Baudin, Thierry

    In high purity Aluminum, very strong {l_brace}100{r_brace}<001> recrystallization texture is developed after 98% cold rolling and annealing at 500 Degree-Sign C. On the contrary, in Aluminum alloys of commercial purity, the Cube component hardly exceeds 30% after complete recrystallization. Parameters controlling Cube orientation development are mainly the solute dragging due to impurities in solid solution and the stored deformation energy. In the present study, besides the 85% cold rolling, two extra annealings and a slight cold rolling are introduced in the processing route to increase the Cube volume fraction. The Cube development was analyzed by X-ray diffraction and Electron BackScatteredmore » Diffraction (EBSD). The nucleation and growth mechanisms responsible for the large Cube growth were investigated using FEG/EBSD in-situ heating experiments. Continuous recrystallization was observed in Cube oriented grains and competed with SIBM (Strain Induced Boundary Migration) mechanism. This latter was favored by the stored energy gap introduced during the additional cold-rolling between the Cube grains and their neighbors. Finally, a Cube volume fraction of 65% was reached after final recrystallization. - Highlights: Black-Right-Pointing-Pointer EBSD in-situ heating experiments of aluminum alloy of commercial purity. Black-Right-Pointing-Pointer A 10% cold-rolling after a partial recrystallization improved Cube nucleation and growth. Black-Right-Pointing-Pointer Annealing before cold-rolling limited the solute drag effect and permitted a large Cube growth. Black-Right-Pointing-Pointer Cube development is enhanced by continuous recrystallization of Cube sub-grains. Black-Right-Pointing-Pointer The preferential Cube growth occurs by SIBM of small Cube grains.« less

  7. Interference of nitrite and nitrogen dioxide on mercury and selenium determination by chemical vapor generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nunes, Dayana Lopes; dos Santos, Eliane Pereira; Barin, Juliano Smanioto; Mortari, Sergio Roberto; Dressler, Valderi Luiz; de Moraes Flores, Érico Marlon

    2005-06-01

    In this study, a systematic investigation was performed concerning the interference of nitrogen oxides on the determination of selenium and mercury by hydride generation atomic absorption spectrometry (HG AAS) and cold vapor atomic absorption spectrometry (CV AAS). The effect of nitrate, nitrite and NO 2 dissolved in the condensed phase was evaluated. No effect of NO 3- on Se and Hg determination was observed up to 100 mg of sodium nitrate added to the reaction vessel. The Se signal was reduced by about 80% upon the addition of 6.8 mg NO 2-. For Hg, no interference of nitrite was observed up to 20 mg of NO 2-. A complete suppression of the Se signal was observed when gaseous NO 2 was introduced into analytical solutions. For Hg, a signal decrease between 8 and 13% occurred. For Se, bubbling argon or heating the solution was not able to recover the original absorbance values, whereas Hg signals were recovered with these procedures. When gaseous NO 2 was passed directly into the atomizer, Se signals decreased similarly to when NO 2 was bubbled in analytical solutions. The addition of urea, hydroxylamine hydrochloride and sulfamic acid (SA) was investigated to reduce the NO 2 effect in sample digests containing residual NO 2, but only SA was effective in reducing the interference. Based on the results, it is possible to propose the use of SA to prevent interferences in Se and Hg determinations by HG AAS and CV AAS, respectively.

  8. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    NASA Astrophysics Data System (ADS)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  9. Environmentally Friendly Replacement of Mature 200 MW Coal-Fired Power Blocks with 2 Boilers Working on One 500 MW Class Steam Turbine Generator (2on1 Unit Concept)

    NASA Astrophysics Data System (ADS)

    Grzeszczak, Jan; Grela, Łukasz; Achter, Thomas

    2017-12-01

    The paper covers problems of the owners of a fleet of long-operated conventional power plants that are going to be decommissioned soon in result of failing to achieve new admissible emissions levels or exceeding pressure elements design lifetime. Energoprojekt-Katowice SA, Siemens AG and Rafako SA presents their joint concept of the solution which is a 2on1 concept - replacing two unit by two ultra-supercritical boilers feeding one turbine. Polish market has been taken as an example.

  10. Stable optical soliton in the ring-cavity fiber system with carbon nanotube as saturable absorber

    NASA Astrophysics Data System (ADS)

    Li, Bang-Qing; Ma, Yu-Lan; Yang, Tie-Mei

    2018-01-01

    Main attention focuses on the theoretical study of the ring-cavity fiber laser system with carbon nanotubes (CNT) as saturable absorber (SA). The system is modelled as a non-standard Schrödinger equation with the coefficients blended real and imaginary numbers. New stable exact soliton solution is constructed by the bilinear transformation method for the system. The influences of the key parameters related to CNTs and SA on the optical pulse soliton are discussed in simulation. The soliton amplitude and phase can be tuned by choosing suitable parameters.

  11. An implementation of differential evolution algorithm for inversion of geoelectrical data

    NASA Astrophysics Data System (ADS)

    Balkaya, Çağlayan

    2013-11-01

    Differential evolution (DE), a population-based evolutionary algorithm (EA) has been implemented to invert self-potential (SP) and vertical electrical sounding (VES) data sets. The algorithm uses three operators including mutation, crossover and selection similar to genetic algorithm (GA). Mutation is the most important operator for the success of DE. Three commonly used mutation strategies including DE/best/1 (strategy 1), DE/rand/1 (strategy 2) and DE/rand-to-best/1 (strategy 3) were applied together with a binomial type crossover. Evolution cycle of DE was realized without boundary constraints. For the test studies performed with SP data, in addition to both noise-free and noisy synthetic data sets two field data sets observed over the sulfide ore body in the Malachite mine (Colorado) and over the ore bodies in the Neem-Ka Thana cooper belt (India) were considered. VES test studies were carried out using synthetically produced resistivity data representing a three-layered earth model and a field data set example from Gökçeada (Turkey), which displays a seawater infiltration problem. Mutation strategies mentioned above were also extensively tested on both synthetic and field data sets in consideration. Of these, strategy 1 was found to be the most effective strategy for the parameter estimation by providing less computational cost together with a good accuracy. The solutions obtained by DE for the synthetic cases of SP were quite consistent with particle swarm optimization (PSO) which is a more widely used population-based optimization algorithm than DE in geophysics. Estimated parameters of SP and VES data were also compared with those obtained from Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing (SA) without cooling to clarify uncertainties in the solutions. Comparison to the M-H algorithm shows that DE performs a fast approximate posterior sampling for the case of low-dimensional inverse geophysical problems.

  12. Prediction of the glass transition in aqueous solutions of simple amides by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kreck, Cara A.; Mandumpal, Jestin B.; Mancera, Ricardo L.

    2011-01-01

    Some simple amides in aqueous solution are used in the cryopreservation of biological tissues as they are believed to promote the vitrification of water, inhibiting its crystallisation and the ensuing damage from ice formation. Molecular dynamics annealing simulations reveal a broadening in the glass transition of aqueous acetamide and N-methylacetamide solutions, suggesting a thermodynamic stabilisation of the glassy state, which may be responsible for their increased tendency of vitrification and their cryoprotective ability. By contrast, aqueous formamide solutions do not exhibit broadening of the glass transition; instead, it is shifted to lower temperatures, which explains their lack of vitrification properties.

  13. Sulvanite (Cu 3VS 4) nanocrystals for printable thin film photovoltaics

    DOE PAGES

    Chen, Ching -Chin; Stone, Kevin H.; Lai, Cheng -Yu; ...

    2017-09-21

    Copper Vanadium Sulfide (Cu 3VS 4), also known as sulvanite, has recently emerged as a suitable absorber material for thin film photovoltaics. The synthesis of Cu 3VS 4 nanocrystals via a rapid solvothermal route is reported for the first time. The phase purity of the Cu 3VS 4 nanocrystals has been confirmed by X-ray powder diffraction (XRD) and Raman spectroscopy, while the nanoparticle size, of about 10 nm, was evaluated by transmission electron microscopy (TEM). Successful ligand exchange with sulfide, an inorganic ligand, demonstrated that the nanoparticles are amenable to surface modifications, key element in solution processing. Further annealing ofmore » as-synthesized nanocrystals under a sulfur/argon atmosphere at 600 °C, rendered highly crystalline Cu 3VS 4 powders exhibiting an impurity that could be potentially mitigated by annealing temperature optimization. Furthermore, Cu 3VS 4, formed solely from Earth-abundant elements, could provide an inexpensive, reliable approach to fabricating solution processed thin film photovoltaic absorbers.« less

  14. Alternative Zoning Scenarios for Regional Sustainable Land Use Controls in China: A Knowledge-Based Multiobjective Optimisation Model

    PubMed Central

    Xia, Yin; Liu, Dianfeng; Liu, Yaolin; He, Jianhua; Hong, Xiaofeng

    2014-01-01

    Alternative land use zoning scenarios provide guidance for sustainable land use controls. This study focused on an ecologically vulnerable catchment on the Loess Plateau in China, proposed a novel land use zoning model, and generated alternative zoning solutions to satisfy the various requirements of land use stakeholders and managers. This model combined multiple zoning objectives, i.e., maximum zoning suitability, maximum planning compatibility and maximum spatial compactness, with land use constraints by using goal programming technique, and employed a modified simulated annealing algorithm to search for the optimal zoning solutions. The land use zoning knowledge was incorporated into the initialisation operator and neighbourhood selection strategy of the simulated annealing algorithm to improve its efficiency. The case study indicates that the model is both effective and robust. Five optimal zoning scenarios of the study area were helpful for satisfying the requirements of land use controls in loess hilly regions, e.g., land use intensification, agricultural protection and environmental conservation. PMID:25170679

  15. The fabrication of graphene/polydopamine/nickel foam composite material with excellent electrochemical performance as supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Lu, Shixiang; Xu, Wenguo; He, Ge; Cheng, Yuanyuan; Yu, Tianlong; Zhang, Yan

    2018-02-01

    A three dimensional composite electrode consisted of reduced graphene oxide (rGO), polydopamine (PDA) and nickel foam (NF) (rGO/PDA/NF) was fabricated by immersing NF into PDA aqueous solution and then graphene oxide (GO) suspension solution respectively, and followed by annealing treatment. During the procedure, GO was coated on NF with assistance of cohesive effect of the PDA middle film, and the reduction of GO and nitrogen doping occurred simultaneously while annealing. Through XRD analyzing, the composites GO/PDA and rGO/PDA treated in experiment are amorphous. The resulted rGO/PDA/NF composite electrode was directly applied as a supercapacitor electrode and showed excellent electrochemical performance, with a high specific capacitance of 566.9 F g-1 at 1 A g-1, the maximum energy density of 172.7 W h kg-1 and a power density of 27.2 kW kg-1 in 1 mol L-1 Na2SO4 electrolyte.

  16. Microstructure and mechanical properties of bulk yttria-partially-stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Maier, R. D.; Mitchell, T. E.

    1981-01-01

    A commercially available bulk 4.5 mole percent yttria-Y2O3)-partially-stabilized zirconia (PSZ) was studied by light microscopy, X-ray analysis, microhardness measurement, and fracture toughness testing. The growth of the precipitates and the phase transformations were studied as a function of aging in air at 1500 C. Aging cuves were constructed for both the as-received and the solution-annealed-and-quenched materials; the curves showed hardness peaks at 1397 and 1517 kg/sq mm, respectively. A total of twelve different types of tetragonal precipitates were found. The rectangular plate-shaped tetragonal precipitates were found to have a (110) habit plane. Grinding of the Y2O3 PSZ into powder did not cause a significant amount of metastable tetragonal precipitates to transform into the monoclinic phase, thus indicating that transformation toughening is not a significant mechanism for the material. The fracture toughness of the aged and of the unaged solution-annealed-and-quenched PSZ was found to be between 2 and 3 MN/cu m/2.

  17. Sulvanite (Cu 3VS 4) nanocrystals for printable thin film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ching -Chin; Stone, Kevin H.; Lai, Cheng -Yu

    Copper Vanadium Sulfide (Cu 3VS 4), also known as sulvanite, has recently emerged as a suitable absorber material for thin film photovoltaics. The synthesis of Cu 3VS 4 nanocrystals via a rapid solvothermal route is reported for the first time. The phase purity of the Cu 3VS 4 nanocrystals has been confirmed by X-ray powder diffraction (XRD) and Raman spectroscopy, while the nanoparticle size, of about 10 nm, was evaluated by transmission electron microscopy (TEM). Successful ligand exchange with sulfide, an inorganic ligand, demonstrated that the nanoparticles are amenable to surface modifications, key element in solution processing. Further annealing ofmore » as-synthesized nanocrystals under a sulfur/argon atmosphere at 600 °C, rendered highly crystalline Cu 3VS 4 powders exhibiting an impurity that could be potentially mitigated by annealing temperature optimization. Furthermore, Cu 3VS 4, formed solely from Earth-abundant elements, could provide an inexpensive, reliable approach to fabricating solution processed thin film photovoltaic absorbers.« less

  18. Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers

    NASA Astrophysics Data System (ADS)

    Khadka, Dhan Bahadur

    This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different pH values. Variations in fiber morphology, elemental composition and stability have been studied by microscopy and energy-dispersive X-ray spectroscopy (EDX), following the treatment of samples at different pH values in the 2-12 range. Fiber stability has been interpreted with reference to the pH dependence of the UV absorbance and fluorescence of PLEY chains in solution. The data show that fiber stability is crucially dependent on the extent of side chain ionization, even after crosslinking. Self-organization kinetics of electrospun PLO and PLEY fibers during solvent annealing has been studied. After being crosslinked in situ , fibers were annealed in water at 22 °C. Analysis by Fourier transform infrared spectroscopy (FTIR) has revealed that annealing involved fiber restructuring with an overall time constant of 29 min for PLO and 63 min for PLEY, and that changes in the distribution of polymer conformations occurred during the first 13 min of annealing. There was a substantial decrease in the amount of Na+ bound to PLEY fibers during annealing. Kinetic modeling has indicated that two parallel pathways better account for the annealing trajectory than a single pathway with multiple transition states. Taken together, the results will advance the rational design of polypeptides for peptide-based materials, especially materials prepared by electrospinning. It is believed that this research will increase basic knowledge of polymer electrospinning and advance the development of electrospun materials, especially in medicine and biotechnology. The study has yielded two advances on previous work in the area: avoidance of an animal source of peptides and avoidance of inorganic solvent. The present results thus advance the growing field of peptide-based materials. Non-woven electrospun fiber mats made of polypeptides are increasingly considered attractive for basic research and technology development in biotechnology, medicine and other areas. (Abstract shortened by UMI.)

  19. Rome Laboratory Journal, 1992

    DTIC Science & Technology

    1992-01-01

    89 Suryadevara V. Babu, Raghunath Padiyath, Moses David. and Lois Walsh THREE-DIMENSIONAL MULTIREGION Sa SOLUTIONS OF THE...is built by simple sm -RC time constant analysis of thle buts, then thle discrete im- inispection of the bus and then itiverted to produice the driving

  20. Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide Nanoparticles

    DTIC Science & Technology

    2012-12-01

    for the carbon source since the GO is actually in solution and not merely suspended as the MWCNTs above were. Next, 2 mg of GO and 3.3 mg of MnAc...Results 2 2.1 GO /Manganese Acetate Solution Preparation .................................................................2 2.2 G/MnOx NP Synthesis...Figure 2. SEM image of ball milled MnAc (3 mole %) with multi-wall carbon nanotubes ( MWCNTs ) annealed at 370 °C. The resulting material is rather

Top