Sample records for solution intercalation method

  1. Controlled release formulation of an anti-depression drug based on a L-phenylalanate-zinc layered hydroxide intercalation compound

    NASA Astrophysics Data System (ADS)

    Hashim, Norhayati; Sharif, Sharifah Norain Mohd; Isa, Illyas Md; Hamid, Shahidah Abdul; Hussein, Mohd Zobir; Bakar, Suriani Abu; Mamat, Mazidah

    2017-06-01

    The intercalation of L-phenylalanate (LP) into the interlayer gallery of zinc layered hydroxide (ZLH) has been successfully executed using a simple direct reaction method. The synthesised intercalation compound, zinc layered hydroxide-L-phenylalanate (ZLH-LP), was characterised using PXRD, FTIR, CHNS, ICP-OES, TGA/DTG, FESEM and TEM. The PXRD patterns of the intercalation compound demonstrate an intense and symmetrical peak, indicating a well-ordered crystalline layered structure. The appearance of an intercalation peak at a low angle of 2θ with a basal spacing of 16.3 Å, signifies the successful intercalation of the L-phenylalanate anion into the interlayer gallery of the host. The intercalation is also validated by FTIR spectroscopy and CHNS elemental analysis. Thermogravimetric analysis confirms that the ZLH-LP intercalation compound has higher thermal stability than the pristine L-phenylalanine. The observed percentage of L-phenylalanate accumulated release varies in each release media, with 84.5%, 79.8%, 63.8% and 61.8% release in phosphate buffer saline (PBS) solution at pH 4.8, deionised water, PBS solution at pH 7.4 and NaCl solution, respectively. The release behaviour of LP from its intercalation compounds in deionised water and PBS solution at pH 4.8 follows pseudo second order, whereas in NaCl solution and PBS solution at pH 7.4, it follows the parabolic diffusion model. This study shows that the synthesised ZLH-LP intercalation compound can be used for the formation of a new generation of materials for targeted drug release with controlled release properties.

  2. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    PubMed Central

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  3. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  4. Isolation of high quality graphene from Ru by solution phase intercalation

    NASA Astrophysics Data System (ADS)

    Koren, E.; Sutter, E.; Bliznakov, S.; Ivars-Barcelo, F.; Sutter, P.

    2013-09-01

    We introduce a method for isolating graphene grown on epitaxial Ru(0001)/α-Al2O3. The strong graphene/Ru(0001) coupling is weakened by electrochemically driven intercalation of hydrogen underpotentially deposited in aqueous KOH solution, which allows the penetration of water molecules at the graphene/Ru(0001) interface. Following these electrochemically driven processes, the graphene can be isolated by electrochemical hydrogen evolution and transferred to arbitrary supports. Raman and transport measurements demonstrate the high quality of the transferred graphene. Our results show that intercalation, typically carried out in vacuum, can be extended to solution environments for graphene processing under ambient conditions.

  5. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and amore » diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.« less

  6. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    Blanco, Mario (Inventor); West, William C. (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  7. Simulation assisted characterization of kaolinite-methanol intercalation complexes synthesized using cost-efficient homogenization method

    NASA Astrophysics Data System (ADS)

    Makó, Éva; Kovács, András; Ható, Zoltán; Kristóf, Tamás

    2015-12-01

    Recent experimental and simulation findings with kaolinite-methanol intercalation complexes raised the question of the existence of more stable structures in wet and dry state, which has not been fully cleared up yet. Experimental and molecular simulation analyses were used to investigate different types of kaolinite-methanol complexes, revealing their real structures. Cost-efficient homogenization methods were applied to synthesize the kaolinite-dimethyl sulfoxide and kaolinite-urea pre-intercalation complexes of the kaolinite-methanol ones. The tested homogenization method required an order of magnitude lower amount of reagents than the generally applied solution method. The influence of the type of pre-intercalated molecules and of the wetting or drying (at room temperature and at 150 °C) procedure on the intercalation was characterized experimentally by X-ray diffraction and thermal analysis. Consistent with the suggestion from the present simulations, 1.12-nm and 0.83-nm stable kaolinite-methanol complexes were identified. For these complexes, our molecular simulations predict either single-layered structures of mobile methanol/water molecules or non-intercalated structures of methoxy-functionalized kaolinite. We found that the methoxy-modified kaolinite can easily be intercalated by liquid methanol.

  8. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z.; Kukovecz, Á.; Kónya, Z.; Carlson, S.; Sipos, P.; Pálinkó, I.

    2016-01-01

    A mechanochemical method (grinding the components without added water - dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution - wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic-inorganic nanocomposites: LDHs intercalated with amino acid anions.

  9. Acceptor-type hydroxide graphite intercalation compounds electrochemically formed in high ionic strength solutions.

    PubMed

    Miyazaki, Kohei; Iizuka, Asuka; Mikata, Koji; Fukutsuka, Tomokazu; Abe, Takeshi

    2017-09-05

    The intercalation of hydroxide ions (OH - ) into graphite formed graphite intercalation compounds (GICs) in high ionic strength solutions. GICs of solvated OH - anions with two water molecules (OH - ·2H 2 O) in alkaline aqueous solutions and GICs of only OH - anions in a molten NaOH-KOH salt solution were electrochemically synthesized.

  10. Intercalation and controlled release of 2,4-dichlorophenoxyacetic acid using rhombohedral [LiAl2(OH)6]Cl·xH2O

    NASA Astrophysics Data System (ADS)

    Ragavan, Anusha; Khan, Aamir I.; O'Hare, Dermot

    2006-05-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) has been fully intercalated into the rhombohedral polymorph of [LiAl2(OH)6]Cl·xH2O ([rhom-Li Al] LDH) by an ion exchange method. The controlled release of 2,4-D from the interlamellar spaces of [rhom-Li Al] LDH has been studied in a phosphate buffer, natural rainwater and deionised water. In buffer solution and rainwater, the intercalated herbicide is exchanged for anions in solution. In contrast, in deionised water the herbicide is released as part of the Li+/herbicide ion pair, leading to the formation of Al(OH)3 and the solvated ions.

  11. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferencz, Zs.; Szabados, M.; Varga, G.

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure wasmore » also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.« less

  12. Compositions comprising free-standing two-dimensional nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barsoum, Michel W.; Gogotsi, Yury; Abdelmalak, Michael Naguib

    2017-12-05

    The present invention is directed to methods of transferring urea from an aqueous solution comprising urea to a MXene composition, the method comprising contacting the aqueous solution comprising urea with the MXene composition for a time sufficient to form an intercalated MXene composition comprising urea.

  13. Preparation of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonate anion-intercalated layered double hydroxide and its photostabilizing effect on polypropylene

    NASA Astrophysics Data System (ADS)

    Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue

    2006-10-01

    An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.

  14. Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films.

    PubMed

    Müller, Péter; Kapin, Éva; Fekete, Erika

    2014-11-26

    TPS/Na-montmorillonite nanocomposite films were prepared by solution and melt blending. Clay content changed between 0 and 25 wt% based on the amount of dry starch. Structure, tensile properties, and water content of wet conditioned films were determined as a function of clay content. Intercalated structure and VH-type crystallinity of starch were found for all the nanocomposites independently of clay and plasticizer content or preparation method, but at larger than 10 wt% clay content nanocomposites prepared by melt intercalation contained aggregated particles as well. In spite of the incomplete exfoliation clay reinforces TPS considerably. Preparation method has a strong influence on mechanical properties of wet conditioned films. Mechanical properties of the conditioned samples prepared by solution homogenization are much better than those of nanocomposites prepared by melt blending. Water, which was either adsorbed or bonded in the composites in conditioning or solution mixing process, respectively, has different effect on mechanical properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluation and optimization of the conditions for an improved ferulic acid intercalation into a synthetic lamellar anionic clay.

    PubMed

    Schoubben, Aurélie; Blasi, Paolo; Giovagnoli, Stefano; Nocchetti, Morena; Ricci, Maurizio; Perioli, Luana; Rossi, Carlo

    2006-03-01

    The aim of the study is to optimize the intercalation conditions of ferulic acid (FERH), an antioxidant compound, into Mg-Al-hydrotalcite for a safe skin photoprotection. The intercalation products were prepared incubating hydrotalcite (HTlc) in aqueous solutions of FERH sodium salt at different temperatures over 4 and 8 days. Quantitative determination of intercalated FERH was performed by thermogravimetric analysis and morphology by scanning electron microscopy (SEM). FERH stability study was carried out at different pHs and temperatures. FERH was analyzed by reversed phase-high-performance liquid chromatography. Response surface methods (RSMs) were used to assess optimal intercalation conditions and FERH stability. In all intercalation products, FERH content was found to be about 48% w/w except when the intercalation process was carried out at 52 degrees C for 8 days and at 60 degrees C for both 4 and 8 days, which resulted to be 40.39, 39.99, and 34.99%, respectively. The RSM designs showed that intercalation improvement can be achieved by working at pH 6, at temperatures below 40 degrees C, and over 4 days of incubation. The optimal conditions for a proper FERH intercalation were assessed. The development of a new optimized protocol may improve HTlc-FER complex performances and safety by augmenting dosage and reducing the presence of harmful reactive species in the final formulation.

  16. Solution structure and thermodynamics of 2',5' RNA intercalation.

    PubMed

    Horowitz, Eric D; Lilavivat, Seth; Holladay, Benjamin W; Germann, Markus W; Hud, Nicholas V

    2009-04-29

    As a means to explore the influence of the nucleic acid backbone on the intercalative binding of ligands to DNA and RNA, we have determined the solution structure of a proflavine-bound 2',5'-linked octamer duplex with the sequence GCCGCGGC. This structure represents the first NMR structure of an intercalated RNA duplex, of either backbone structural isomer. By comparison with X-ray crystal structures, we have identified similarities and differences between intercalated 3',5' and 2',5'-linked RNA duplexes. First, the two forms of RNA have different sugar pucker geometries at the intercalated nucleotide steps, yet have the same interphosphate distances. Second, as in intercalated 3',5' RNA, the phosphate backbone angle zeta at the 2',5' RNA intercalation site prefers to be in the trans conformation, whereas unintercalated 2',5' and 3',5' RNA prefer the -gauche conformation. These observations provide new insights regarding the transitions required for intercalation of a phosphodiester-ribose backbone and suggest a possible contribution of the backbone to the origin of the nearest-neighbor exclusion principle. Thermodynamic studies presented for intercalation of both structural RNA isomers also reveal a surprising sensitivity of intercalator binding enthalpy and entropy to the details of RNA backbone structure.

  17. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOEpatents

    Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  18. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia Xin; Department of Chemistry, Hexi University, Zhangye 734000; Li Yanfeng

    2008-03-04

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement.

  19. Synthesis and characterization of Mg-Al-layered double hydroxides intercalated with cubane-1,4-dicarboxylate anions.

    PubMed

    Rezvani, Zolfaghar; Arjomandi Rad, Farzad; Khodam, Fatemeh

    2015-01-21

    In the present work, Mg2Al-layered double hydroxide (LDH) intercalated with cubane-1,4-dicarboxylate anions was prepared from the reaction of solutions of Mg(ii) and Al(iii) nitrate salts with an alkaline solution of cubane-1,4-dicarboxylic acid by using the coprecipitation method. The successful preparation of a nanohybrid of cubane-1,4-dicarboxylate(cubane-dc) anions with LDH was confirmed by powder X-ray diffraction, FTIR spectroscopy and thermal gravimetric analysis (TGA). The increase in the basal spacing of LDHs from 8.67 Å to 13.40 Å shows that cubane-dc anions were successfully incorporated into the interlayer space. Thermogravimetric analyses confirm that the thermal stability of the intercalated cubane-dc anions is greater than that of the pure form before intercalation because of host-guest interactions involving hydrogen bonds. The interlayer structure, hydrogen bonding, and subsequent distension of LDH compounds containing cubane-dc anions were shown by molecular simulation. The RDF (radial distribution function), mean square displacement (MSD), and self-diffusion coefficient were calculated using the trajectory files on the basis of molecular dynamics (MD) simulations, and the results indicated that the cubane-dc anions were more stable when intercalated into the LDH layers. A good agreement was obtained between calculated and measured X-ray diffraction patterns and between experimental and calculated basal spacings.

  20. Preparation and properties of single-walled nanotubes filled with inorganic compounds

    NASA Astrophysics Data System (ADS)

    Eliseev, Andrei A.; Kharlamova, M. V.; Chernysheva, M. V.; Lukashin, Alexey V.; Tretyakov, Yuri D.; Kumskov, A. S.; Kiselev, N. A.

    2009-09-01

    The state-of-the-art methods for filling single-walled carbon nanotubes (SWNTs) are analyzed systematically. In situ and ex situ approaches for filling SWNTs are addressed. They are based on both intercalation of inorganic substances from the gas phase, solution or melts inside SWNTs and the formation of nanocrystals inside the channels as a result of chemical reactions. A comparative evaluation of these methods is performed, and major requirements for successful formation of '1D-crystal@SWNT' nanocomposites are formulated. The functional properties of the intercalated single-walled nanotubes and their possible applications in modern nanotechnologies are discussed.

  1. Structure, molecular simulation, and release of aspirin from intercalated Zn-Al-layered double hydroxides.

    PubMed

    Meng, Zilin; Li, Xiaowei; Lv, Fengzhu; Zhang, Qian; Chu, Paul K; Zhang, Yihe

    2015-11-01

    Aspirin or acetylsalicylic acid (AA), a non-steroidal anti-inflammatory drug, is intercalated into Zn-Al-layered double hydroxides (ZnAl-LDHs) by co-precipitation and reconstruction methods. The composition, structure, and morphology of the intercalated products as well as their release behavior are determined experimentally and theoretically by Material Studio 5.5. Experimental results disclose the strong interaction between the LDHs sheets and AA in the intercalated ZnAl-LDHs produced by co-precipitation and slow release of AA from the intercalated ZnAl-LDHs in both phosphate buffered saline (PBS) and borate buffered saline (BBS) solutions. The percentage of AA released from the ZnAl-LDHs prepared by both methods in PBS (96.87% and 98.12%) are much more than those in BBS (68.59% and 81.22%) implying that both H4BO4(-) and H2PO4(-) can exchange with AA in the ZnAl-LDHs. After AA is released to PBS, ZnAl-LDHs break into small pieces. The experimental results are explained theoretically based on the calculation of the bonding energy between the anions and LDHs sheets as well as the AlO bond length change in the LDHs sheets. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthesis of PDLLA/PLLA-bentonite nanocomposite through sonication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitompul, Johnner, E-mail: sitompul@che.itb.ac.id; Setyawan, Daru, E-mail: daru.setyawan@gmail.com; Kim, Daniel Young Joon, E-mail: daniel.kim12321@gmail.com

    2016-04-19

    This paper concerns the synthesis of poly(D,L-lactic acid)/poly(L-lactic acid) bentonite nanocomposites. Poly (D,L-lactic acid) (PDLLA) was synthesized using lactic acid through the ZnO-catalyzed direct polycondensation method at vacuum pressure and poly(L-lactic acid) (PLLA) was synthesized with L-lactide by ring-opening polymerization method. The PDLLA/PLLA-bentonite nanocomposite films were synthesized using the solvent casting method. The nanoclay, bentonite, was prepared using the solution-intercalation method by dissolving the nanoparticles into chloroform before sonication. In this study, PDLLA/PLLA-bentonite nanocomposite films were produced using variable amounts of nanoclay and sonication times during the mixing of PDLLA/PLLA and bentonite. The properties of the PDLLA/PLLA nanocomposites were thenmore » characterized using the X-ray Diffraction (XRD), Universal Testing Machine (UTM), Water Vapor Permeability (WVP) tests, and the enzymatic biodegradability test. The XRD test was used to measure the intercalation of nanoclay layers in the PDLLA/PLLA matrix and the PDLLA/PLLA-bentonite intercalated nanocomposite films. It was found through these various tests that adding bentonite to the PDLLA/PLLA increases tensile strength to 56.76 MP. Furthermore, the biodegradability increases as well as the barrier properties of the polymers The different sonication time used during the mixing of the polymer solution with bentonite also affected the properties of the PDLLA/PLLA-bentonite nanocomposite films.« less

  3. Synthesis, characterization, and controlled release antibacterial behavior of antibiotic intercalated Mg–Al layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Zhang, Dun, E-mail: zhangdun@qdio.ac.cn

    Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction andmore » Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.« less

  4. In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells

    NASA Astrophysics Data System (ADS)

    Pradeesh, K.; Baumberg, J. J.; Prakash, G. Vijaya

    2009-07-01

    Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of (C6H9C2H4NH3)2PbI4 are formed from a simple intercalation strategy to yield well-ordered uniform films over centimeter-size scales. These films compare favorably with traditional solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature exciton-related absorption and photoluminescence, which shift with fabrication protocol. We demonstrate the potential of this method for electronic and photonic device applications.

  5. Preparation and Characterization of Polyhydroxybutyrate/Polycaprolactone Nanocomposites

    PubMed Central

    Liau, Cha Ping; Bin Ahmad, Mansor; Shameli, Kamyar; Yunus, Wan Md Zin Wan

    2014-01-01

    Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks. PMID:24600329

  6. Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites

    DOEpatents

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH

    2011-02-22

    Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  7. Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites

    DOEpatents

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH

    2012-02-14

    Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  8. Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites

    DOEpatents

    Zhamu, Aruna [Centerville, OH; Shi, Jinjun [Columbus, OH; Guo, Jiusheng [Centerville, OH; Jang, Bor Z [Centerville, OH

    2012-03-13

    A method of exfoliating a layered material to produce separated nano-scaled platelets having a thickness smaller than 100 nm. The method comprises: (a) providing a graphite intercalation compound comprising a layered graphite containing expandable species residing in an interlayer space of the layered graphite; (b) exposing the graphite intercalation compound to an exfoliation temperature lower than 650.degree. C. for a duration of time sufficient to at least partially exfoliate the layered graphite without incurring a significant level of oxidation; and (c) subjecting the at least partially exfoliated graphite to a mechanical shearing treatment to produce separated platelets. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.

  9. Layered zinc hydroxide nanocones: synthesis, facile morphological and structural modification, and properties

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Liang, Jianbo; Wang, Chengxiang; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2014-10-01

    Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties.Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties. Electronic supplementary information (ESI) available: Typical SEM images, TGA curves and XRD patterns of as-prepared samples. See DOI: 10.1039/c4nr04166f

  10. Comparative analysis of topoisomerase IB inhibition and DNA intercalation by flavonoids and similar compounds: structural determinates of activity

    PubMed Central

    2004-01-01

    Flavonoids and other polyphenolic compounds have been shown to inhibit human topoisomerase IB (topo I) through both inhibition of relaxation activity and through stabilization of the cleavable complex (poisoning). Some flavonoids have also been shown to intercalate DNA, and an association of topoisomerase inhibition with intercalation has been noted. We surveyed 34 polyphenolic compounds, primarily flavonoid glycones and aglycones, for their ability to inhibit topo I and to intercalate DNA using an in vitro gel electrophoresis method. We show that the most potent topo I poisons are the flavones and flavonols, and that these generally, but not always, are found to be DNA intercalators. There was no clear correlation, however, of topo-I-poisoning activity with the degree of DNA unwinding. Surprisingly, both DNA intercalation and topo I poisoning were shown to occur with some flavone glycones, including the C-glycosylflavone orientin. Inhibition of relaxation activity by flavonoids was found to be difficult to quantify and was most likely to be due to non-specific inhibition through flavonoid aggregation. As part of a structure–activity analysis, we also investigated the acid–base chemistry of flavonoids and determined that many flavonoids show acid–base activity with a pKa in the physiological pH region. For this reason, subtle pH changes can have significant effects on solution activity of flavonoids and their concomitant biological activity. In addition, these effects may be complicated by pH-dependent aggregation and oxidative degradation. Finally, we develop a simple model for the intercalation of flavonoids into DNA and discuss possible consequences of intercalation and topoisomerase inhibition on a number of cellular processes. PMID:15312049

  11. Synthesis, characterization and biological evaluation of novel α, β unsaturated amides.

    PubMed

    Esmailzadeh, K; Housaindokht, M R; Moradi, A; Esmaeili, A A; Sharifi, Z

    2016-05-15

    Three derivatives of α,β unsaturated amides have been successfully synthesized via Ugi-four component (U-4CR) reaction. The interactions of the amides with calf thymus deoxyribonucleic acid (ct-DNA) have been investigated in the Tris-HCl buffer (pH=7.4) using viscometric, spectroscopic, thermal denaturation studies, and also molecular docking. By UV-Vis absorption spectroscopy studies, adding CT-DNA to the compound solution caused the hypochromism indicates that there are interactions between the compounds and DNA base pairs. In competitive fluorescence with methylene blue as an intercalator probe, adding compounds to DNA-MB solution caused an increase in emission spectra of the complex. This could be because of compound replacing, with similar binding mode of MB, between the DNA base pairs due to release of bonded MB molecules from DNA-MB complex. Thermal denaturation studies and viscometric experiments also indicated that all three investigated compounds bind to CT-DNA by non-classical intercalation mode. Additionally, molecular docking technique predicted partial intercalation binding mode for the compounds. Also, the highest binding energy was obtained for compound 5a. These results are in agreement with results obtained by empirical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Comparison of fluoride intercalation/de-intercalation processes on graphite electrodes in aqueous and aqueous methanolic HF media

    NASA Astrophysics Data System (ADS)

    Noel, M.; Santhanam, R.; Francisca Flora, M.

    The solvent can play a major role in the intercalation/de-intercalation process and the stability of graphite substrates towards this process. This fact is established in the present work that involves fluoride intercalation/de-intercatlation on graphite electrodes in aqueous and aqueous methanolic HF solutions where the HF concentration is varied between 1.0 and 18.0 M. In addition to cyclic voltammetry and potentiostatic polarization, open-circuit potential decay measurements, scanning electron microscopy and X-ray diffraction measurements have been employed. In general, addition of methanol and increasing concentration of HF raise the overall intercalation/de-intercalation efficiency. Methanol is adsorbed preferentially on the graphite lattice and, hence, suppresses both oxygen evolution and the formation of passive graphite oxides. In 15.0 M HF, the optimum methanol concentration is 5 vol.%. This suggests that, in addition to the adsorption effect, there is some weakening of the structured water molecules that facilitates the solvated fluoride ions for efficient intercalation.

  13. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound.

    PubMed

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.

  14. Electronic and Structural Studies of Intercalated Graphite and Buckminsterfullerene.

    NASA Astrophysics Data System (ADS)

    Kelty, Stephen Paul

    Under the direction of Prof. C. M. Lieber, the surface electronic and structural properties of binary MC_{rm x} and ternary rm MM^' C_{x } donor graphite intercalation compounds (GICs) were investigated using scanning tunneling microscopy (STM) and other surface sensitive techniques. The STM images revealed previously unobserved superstructures in the local density of states contours. These new superstructures include a commensurate 4.9 A periodicity (MC_8, where M = Li, K, Rb, Cs, KHg, rm K_2Hg_2 and rm K_2Tl _3). This superstructure has been interpreted as a modulation of the surface density of states due to the underlying commensurate intercalate lattice. Other GICs exhibit longer wavelength incommensurate superstructures, including: 19 A rm (KH_{0.8}C _8), 12 A rm (KH_{0.8 }C_4), 8.9 A rm (KHgC _4) and 7.5 A rm (KTl_ {1.5}C_8) periodicities. The direct -space wavelength of these incommensurate superstructures was found to scale inversely with the amount of charge transferred from the intercalate to the graphite layers. Such a correlation is consistent with the wavelength dependence on Fermi surface expansion of a charge density wave (CDW) state. STM investigations of adsorbed films of colloidal BiI_3, prepared by a solution-phase method, revealed the presence of mono-disperse 10-50 A single-layer particles with atomic resolution. This investigation demonstrated both the validity of the preparative method for the BiI_3 particles and the capability of the STM to atomically resolve small semiconducting particles. The structural and superconducting properties of alkali metal intercalated Buckminsterfullerene (C _{60}) were also investigated. A new preparatory method was developed using heavy metal alloys instead of pure alkali metal. Using these alloys, it was discovered that high superconducting fraction intercalation compounds could be prepared under milder conditions than by using the pure alkali metal. In addition, intercalation of Hg, Tl and Bi alloys of Cs was found to form a superconducting phase which has never been prepared by direct intercalation of Cs metal. Finally, other investigators have empirically derived a linear dependence of T_{ rm c} on lattice constant for intercalated C_{60}. This dependence has been used to model the electron pairing mechanism for the superconducting state. Investigations presented herein indicate that for lattice constants greater than 14.5 A, no further increases in T_{rm c} are observed. This finding places constraints on the above mentioned electron pairing models.

  15. Organo/Zn-Al LDH Nanocomposites for Cationic Dye Removal from Aqueous Media

    NASA Astrophysics Data System (ADS)

    Starukh, G.; Rozovik, O.; Oranska, O.

    2016-04-01

    Cationic dye sorption by Zn-Al-layered double hydroxides (LDHs) modified with anionic surfactants was examined using methylene blue (MB) dye as a compound model in aqueous solutions. The modification of Zn-Al LDHs was performed by reconstruction method using dodecyl sulfate anion (DS) solutions. DS contained Zn-Al LDHs were characterized by XRD, FTIR, thermogravimetric, and SEM analysis. The reconstructed organo/Zn-Al LDHs comprise the crystalline phases (DS-intercalated LDHs, hydrotalcite), and the amorphous phase. The intercalation of DS ions into the interlayer galleries and DS adsorption on the surface of the LDHs occurred causing the MB adsorption on the external and its sorption in the internal surfaces of modified LDHs. The presence of DS greatly increased the affinity of organo/Zn-Al LDHs for MB due to hydrophobic interactions between the surfactants and the dye molecules. The optical properties of sorbed MB were studied.

  16. A new solution chemical method to make low dimensional thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Ding, Zhongfen

    2001-11-01

    Bismuth telluride and its alloys are currently the best thermoelectric materials known at room temperature and are therefore used for portable solid-state refrigeration. If the thermal electric figure of merit ZT could be improved by a factor of about 3, quiet and rugged solid-state devices could eventually replace conventional compressor based cooling systems. In order to test a theory that improved one-dimensional or two-dimensional materials could enhance ZT due to lower thermal conductivity, we are developing solution processing methods to make low dimensional materials. Bismuth telluride and its p-type and n-type alloys have layered structures consisting of 5 atom thick Te-Bi-Te-Bi-Te sheets, each sheet about 10 A thick. Lithium ions are intercalated into the layered materials using liquid ammonia. The lithium-intercalated materials are then exfoliated in water to form colloidal suspensions with narrow particle size distributions and are stable for more than 24 hours. The layers are then deposited on substrates, which after annealing at low temperatures, form highly c-axis oriented thin films. The exfoliated layers can potentially be restacked with other ions or layered materials in between the sheets to form novel structures. The restacked layers when treated with nitric acid and sonication form high yield nanorod structured materials. This new intercalation and exfoliation followed by sonication method could potentially be used for many other layered materials to make nanorod structured materials. The low dimensional materials are characterized by powder X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP) and dynamic light scattering.

  17. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    PubMed

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  18. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    PubMed

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries.

    PubMed

    Sada, Krishnakanth; Senthilkumar, Baskar; Barpanda, Prabeer

    2017-07-27

    Reversible electrochemical potassium-ion intercalation in P2-type Na x CoO 2 was examined for the first time. Hexagonal Na 0.84 CoO 2 platelets prepared by a solution combustion synthesis technique were found to work as an efficient host for K + intercalation. They deliver a high reversible capacity of 82 mA h g -1 , good rate capability and excellent cycling performance up to 50 cycles.

  20. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound

    PubMed Central

    2013-01-01

    Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Conclusions Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems. PMID:23849189

  1. Synthesis of ktenasite, a double hydroxide of zinc and copper, and its intercalation reaction

    NASA Astrophysics Data System (ADS)

    Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Ooi, Kenta; Kobayashi, Shoichi; Ohnishi, Masayuki; Doi, Akira

    2004-04-01

    Ktenasite was synthesized by the simple method of mixing ZnO powder with CuSO 4 solution at room temperature. The X-ray diffraction pattern of synthesized ktenasite was very similar to that of mineral ktenasite. The lattice parameters were determined as a=0.559, b=0.616, c=2.374 nm and β=95.63°, which agreed comparatively well with those for mineral ktenasite. The synthesized ktenasite consisted of thin rectangular particles ranging in size from 2 to 4 μm in length. TEM observation suggested the formation of a super lattice structure in the a-axis direction and significant crystal growth in the b-axis direction. The intercalation reaction of sodium dodecyl sulfate (NaDS) with ktenasite showed that the intercalation took place accompanied by the expansion of basal spacing from 1.17 to 2.70 nm. The reaction progressed by the SO 42-/DS - anion exchange mechanism with the dissolution of interlayer [Zn(H 2O) 6]SO 4 salt.

  2. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery

    PubMed Central

    Gu, Yan

    2018-01-01

    Background To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. Purpose The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. Materials and methods CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). Results CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. Conclusions The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site. PMID:29491707

  3. Technological hurdles to the application of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1988-01-01

    Before intercalated graphite fibers can be developed as an effective power material, there are several technological hurdles which must be overcome. These include the environmental stability, homogeneity and bulk properties, connection procedures, and costs. Strides were made within the last several years in stability and homogeneity of intercalated graphite fibers. Bulk properties and connection procedures are areas of active research now. Costs are still prohibitive for all but the most demanding applications. None of these problems, however, appear to be unsolvable, and their solution may result in wide spread GOC application. The development of a relatively simple technology application, such as EMI shielding, would stimulate the solution of scale-up problems. Once this technology is developed, then more demanding applications, such as power bus bars, may be possible.

  4. Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide.

    PubMed

    Cao, Jianyun; He, Pei; Mohammed, Mahdi A; Zhao, Xin; Young, Robert J; Derby, Brian; Kinloch, Ian A; Dryfe, Robert A W

    2017-12-06

    Conventional chemical oxidation routes for the production of graphene oxide (GO), such as the Hummers' method, suffer from environmental and safety issues due to their use of hazardous and explosive chemicals. These issues are addressed by electrochemical oxidation methods, but such approaches typically have a low yield due to inhomogeneous oxidation. Herein we report a two-step electrochemical intercalation and oxidation approach to produce GO on the large laboratory scale (tens of grams) comprising (1) forming a stage 1 graphite intercalation compound (GIC) in concentrated sulfuric acid and (2) oxidizing and exfoliating the stage 1 GIC in an aqueous solution of 0.1 M ammonium sulfate. This two-step approach leads to GO with a high yield (>70 wt %), good quality (>90%, monolayer), and reasonable oxygen content (17.7 at. %). Moreover, the as-produced GO can be subsequently deeply reduced (3.2 at. % oxygen; C/O ratio 30.2) to yield highly conductive (54 600 S m -1 ) reduced GO. Electrochemical capacitors based on the reduced GO showed an ultrahigh rate capability of up to 10 V s -1 due to this high conductivity.

  5. Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Yanfeng; Pan, Xiaobing; Jia, Xin; Wang, Xiaolong

    2007-02-01

    Novel nano-composites of poly (acrylic acid)-kaolinite were prepared, and intercalation and in situ polymerization were used in this process. The nano-composites were obtained by in situ polymerization of acrylic acid (AA) and sodium acrylate (AANa) intercalated into organo-kaolinite, which was obtained by refining and chemically modifying with solution intercalation step in order to increase the basal plane distance of the original clay. The modification was completed by using dimethyl-sulfoxide (DMSO)/methanol and potassium acetate (KAc)/water systems step by step. The materials were characterized with the help of XRD, FT-IR and TEM; the results confirmed that poly(acrylic acid) (PAA) and poly(sodium acrylate) (PAANa) were intercalated into the interlamellar spaces of kaolinite, the resulting copolymer composites (CC0 : copolymer crude kaolinite composite, CC1 : copolymer DMSO kaolinite composite, CC2 : copolymer KAc kaolinite composite) of CC2 exhibited a lamellar nano-composite with a mixed nano-morphology, and partial exfoliation of the intercalating clay platelets should be the main morphology. Finally, the effect of neutralization degree on the intercalation behavior was also investigated.

  6. Interaction of indole-papaverine with DNA in solutions of various ionic strength

    NASA Astrophysics Data System (ADS)

    Travkina, V. I.; Moroshkina, E. B.; Osinnikova, D. N.

    2017-11-01

    Interaction of synthetic alkaloid of isoquinoline series, which is an analogue of the biologically active compound papaverine, was studied by spectral, microcalorimetric, optical and hydrodynamic methods at different ionic strengths of medium. It was found that the investigated compound may interact with DNA in various ways depending on the ratio of ligand - DNA concentrations and ionic strength of solution (μ). When μ = 0.001, indole-papaverine intercalates into the double helix of DNA. The increase of μ resulted in a decrease of the affinity of the compound to DNA and a change its binding method.

  7. Development of an Automated DNA Detection System Using an Electrochemical DNA Chip Technology

    NASA Astrophysics Data System (ADS)

    Hongo, Sadato; Okada, Jun; Hashimoto, Koji; Tsuji, Koichi; Nikaido, Masaru; Gemma, Nobuhiro

    A new compact automated DNA detection system Genelyzer™ has been developed. After injecting a sample solution into a cassette with a built-in electrochemical DNA chip, processes from hybridization reaction to detection and analysis are all operated fully automatically. In order to detect a sample DNA, electrical currents from electrodes due to an oxidization reaction of electrochemically active intercalator molecules bound to hybridized DNAs are detected. The intercalator is supplied as a reagent solution by a fluid supply unit of the system. The feasibility test proved that the simultaneous typing of six single nucleotide polymorphisms (SNPs) associated with a rheumatoid arthritis (RA) was carried out within two hours and that all the results were consistent with those by conventional typing methods. It is expected that this system opens a new way to a DNA testing such as a test for infectious diseases, a personalized medicine, a food inspection, a forensic application and any other applications.

  8. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang

    2012-12-15

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less

  9. MgAl- Layered Double Hydroxide Nanoparticles for controlled release of Salicylate.

    PubMed

    Mondal, Soumini; Dasgupta, Sudip; Maji, Kanchan

    2016-11-01

    Layered double hydroxides (LDHs), have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, and additives for polymers. Recently, their successful synthesis on the nanometer scale opened up a whole new field for their application in nanomedicine. Here we report the efficacy of Mg1-xAlx (NO3)x (OH)2 LDH nanoparticles as a carrier and for controlled release of one of the non-steroidal anti-inflammatory drugs (NSAID), sodium salicylate. Mg1-xAlx (NO3)x (OH)2.nH2O nanoparticles were synthesized using co-precipitation method from an aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O. Salicylate was intercalated in the interlayer space of Mg-Al LDH after suspending nanoparticles in 0.0025(M) HNO3 and 0.75 (M) NaNO3 solution and using anion exchange method under N2 atmosphere. The shift in the basal planes like (003) and (006) to lower 2θ value in the XRD plot of intercalated sample confirmed the increase in basal spacing in LDH because of intercalation of salicylate into the interlayer space of LDH. FTIR spectroscopy of SA-LDH nano hybrid revealed a red shift in the frequency band of carboxylate group in salicylate indicating an electrostatic interaction between cationic LDH sheet and anionic drug. Differential thermal analysis of LDH-SA nanohybrid indicated higher thermal stability of salicylate in the intercalated form into LDH as compared to its free state. DLS studies showed a particle size distribution between 30-60 nm for pristine LDH whereas salicylate intercalated LDH exhibited a particle size distribution between 40-80nm which is ideal for its efficacy as a superior carrier for drugs and biomolecules. The cumulative release kinetic of salicylate from MgAl-LDH-SA hybrids in phosphate buffer saline (PBS) at pH7.4 showed a sustained release of salicylate up to 72h that closely resembled first order release kinetics through a combination of drug diffusion and dissolution of LDH under physiological conditions. Also the cytotoxicity tests performed revealed the less toxic nature of the nanohybrid as compared to the bare SA drug. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Superstructure ZrV2O7 nanofibres: thermal expansion, electronic and lithium storage properties.

    PubMed

    Li, Qidong; Zhao, Yanming; Kuang, Quan; Fan, Qinghua; Dong, Youzhong; Liu, Xudong

    2016-11-30

    ZrV 2 O 7 has attracted much attention as a negative thermal expansion (NTE) material due to its isotropic negative structure. However, rarely has investigation of the lithium storage behaviors been carried out except our first report on it. Meanwhile, the electrochemical behaviors and energy storage characteristics have not been studied in depth and will be explored in this article. Herein, we report on the synthesis, characterization and lithium intercalation mechanism of superstructure ZrV 2 O 7 nanofibres that were prepared through a facile solution-based method with a subsequent annealing process. The thermal in situ XRD technique combined with the Rietveld refinement method is adopted to analyze the change in the temperature-dependent crystal structure. Benefiting from the nanostructured morphology and relatively high electronic conductivity, it presents acceptable cyclic stability and rate capability. According to the operando evolution of the XRD patterns obtained from electrochemical in situ measurements, the Li intercalation mechanism of the solid solution process with a subsequent conversion reaction can be concluded. Finally, the amorphous state of the electrodes after the initial fully discharged state can effectively enhance the electrochemical performances.

  11. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  12. Graphite fiber intercalation: Dynamics of the bromine intercalation process

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Zinolabedini, R.

    1985-01-01

    The resistance of pitch-based graphite fibers was monitored, in situ, during a series of bromine intercalation experiments. The threshold pressure for the bromine intercalation of pitch-based fibers was estimated to be 102 torr. When the bromine atmosphere was removed from the reaction chamber, the resistivity of the intercalated graphite fibers increased consistently. This increase was attributed to loss of bromine from the perimeter of the fiber. The loss was confirmed by mapping the bromine concentration across the diameter of single intercalated fibers with either energy dispersive spectroscopy or scanning Auger microscopy. A statistical study comparing fibers intercalated in bromine vapor with fibers intercalated in bromine liquid showed that similar products were obtained with both methods of intercalation.

  13. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, Ceren; Unal, Ugur; Koc University, Chemistry Department, Rumelifeneri yolu, Sariyer 34450, Istanbul

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures.more » The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.« less

  14. Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn-Al layered double hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Zhang, Dun, E-mail: zhangdun@qdio.ac.cn

    2011-11-15

    Graphical abstract: The benzoate anion released from Zn-Al LDHs provides a more effective long-term protection against corrosion of Q235 carbon steel in 3.5% NaCl solution. Highlights: {yields} A benzoate anion corrosion inhibitor intercalated Zn-Al layered double hydroxides (LDHs) has been assembled by coprecipitation method. {yields} The kinetic simulation indicates that the ion-exchange one is responsible for the release process and the diffusion through particle is the rate limiting step. {yields} A significant reduction of the corrosion rate is observed when the LDH nanohybrid is present in the corrosive media. -- Abstract: Corrosion inhibitor-inorganic clay composite including benzoate anion intercalated Zn-Almore » layered double hydroxides (LDHs) are assembled by coprecipitation. Powder X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum analyses indicate that the benzoate anion is successfully intercalated into the LDH interlayer and the benzene planes are vertically bilayer-positioned as a quasi-guest ion-pair form in the gallery space. Kinetic simulation for the release data, XRD and FT-IR analyses of samples recovered from the release medium indicate that ion-exchange is responsible for the release process and diffusion through the particle is also indicated to be the rate-limiting step. The anticorrosion capabilities of LDHs loaded with corrosion inhibitor toward Q235 carbon steel are analyzed by polarization curve and electrochemical impedance spectroscopy methods. Significant reduction of corrosion rate is observed when the LDH nanohybrid is present in the corrosive medium. This hybrid material may potentially be applied as a nanocontainer in self-healing coatings.« less

  15. Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCl Solution.

    PubMed

    Qiu, Shihui; Li, Wei; Zheng, Wenru; Zhao, Haichao; Wang, Liping

    2017-10-04

    Dispersion of graphene in water and its incorporation into waterborne resin have been rarely researched and hardly achieved owing to its hydrophobicity. Furthermore, it has largely been reported that graphene with impermeability contributed to the improved anticorrosion property. Here, we show that highly concentrated graphene aqueous solution up to 5 mg/mL can be obtained by synthesizing hydrophilic polypyrrole (PPy) nanocolloids as intercalators and ultrasonic vibration. On the basis of π-π interaction between PPy and graphene, stacked graphene sheets are exfoliated to the thickness of three to five layers without increasing defects. The corrosion performance of coatings without and with PPy and graphene is obtained by potential and impedance measurements, Tafel curves, and fitted pore resistance by immersing in a 3.5 wt % NaCl solution. It turns out that composite coating with 0.5 wt % graphene additive exhibits superior anticorrosive ability. The mechanism of intercalated graphene-based coating is interpreted as the synergistic protection of impermeable graphene sheets and self-healing PPy and proved by the identification of corrosion products and the scanning vibrating electrode technique.

  16. Intercalation of biomolecules into NiAl-NO 3 layered double hydroxide films synthesized in situ on anodic alumina/aluminium support

    NASA Astrophysics Data System (ADS)

    Zhao, Hua-Zhang; Chang, Ying-Yue; Yang, Jing; Yang, Qin-Zheng

    2013-03-01

    Layered double hydroxide (LDH) films were synthesized in situ on anodic alumina/aluminium (AAO/Al). Glucose oxidase (GOD) and L-ascorbic acid (vitamin C, VC) were intercalated respectively into the in-situ grown LDH films by anion-exchange in aqueous solutions. Dodecylsulfate (SDS) was used to expand the lamellar structure before GOD intercalation into the LDH film. The resulting products were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA). The results showed that VC and GOD were successfully intercalated into the in-situ synthesized LDH film. These biomolecules loaded LDH films could have potential applications in electrode modification, safe storage and effective delivery of bioactive compounds.

  17. Localized concentration reversal of lithium during intercalation into nanoparticles

    PubMed Central

    Zhang, Wei; Yu, Hui-Chia; Wu, Lijun; Liu, Hao; Abdellahi, Aziz; Qiu, Bao; Bai, Jianming; Orvananos, Bernardo; Strobridge, Fiona C.; Zhou, Xufeng; Liu, Zhaoping; Ceder, Gerbrand; Zhu, Yimei; Thornton, Katsuyo; Grey, Clare P.; Wang, Feng

    2018-01-01

    Nanoparticulate electrodes, such as LixFePO4, have unique advantages over their microparticulate counterparts for the applications in Li-ion batteries because of the shortened diffusion path and access to nonequilibrium routes for fast Li incorporation, thus radically boosting power density of the electrodes. However, how Li intercalation occurs locally in a single nanoparticle of such materials remains unresolved because real-time observation at such a fine scale is still lacking. We report visualization of local Li intercalation via solid-solution transformation in individual LixFePO4 nanoparticles, enabled by probing sub-angstrom changes in the lattice spacing in situ. The real-time observation reveals inhomogeneous intercalation, accompanied with an unexpected reversal of Li concentration at the nanometer scale. The origin of the reversal phenomenon is elucidated through phase-field simulations, and it is attributed to the presence of structurally different regions that have distinct chemical potential functions. The findings from this study provide a new perspective on the local intercalation dynamics in battery electrodes. PMID:29340302

  18. Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide.

    PubMed

    Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P

    2003-03-24

    The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).

  19. Mechanistic aspects of thioflavin-T self-aggregation and DNA binding: evidence for dimer attack on DNA grooves.

    PubMed

    Biancardi, A; Biver, T; Burgalassi, A; Mattonai, M; Secco, F; Venturini, M

    2014-10-07

    Thioflavin-T (TFT) is a fluorescent marker widely employed in biomedical research but the mechanism of its binding to polynucleotides has been poorly understood. This paper presents a study of the mechanisms of TFT self-aggregation and binding to DNA. Relaxation kinetics of TFT solutions show that the cyanine undergoes dimerization followed by dimer isomerisation. The interaction of TFT with DNA has been investigated using static methods, such as spectrophotometric and spectrofluorometric titrations under different conditions (salt content, temperature), fluorescence quenching, viscometric experiments and the T-jump relaxation method. The combined use of these techniques enabled us to show that the TFT monomer undergoes intercalation between the DNA base pairs and external binding according to a branched mechanism. Moreover, it has also been observed that, under dye excess conditions, the TFT dimer binds to the DNA grooves. The molecular structures of intercalated TFT and the groove-bound TFT dimer are obtained by performing QM/MM MD simulations.

  20. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery.

    PubMed

    Xu, Tingting; Xu, Xiaoyue; Gu, Yan; Fang, Lei; Cao, Feng

    2018-01-01

    To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site.

  1. New treatment method for boron in aqueous solutions using Mg-Al layered double hydroxide: Kinetics and equilibrium studies.

    PubMed

    Kameda, Tomohito; Oba, Jumpei; Yoshioka, Toshiaki

    2015-08-15

    Mg-Al layered double hydroxides (LDHs) intercalated with NO3(-) (NO3 · Mg - Al LDHs) and with Cl(-) (Cl · Mg - Al LDHs) were found to take up boron from aqueous solutions. Boron was removed by anion exchange of B(OH)4(-) in solution with NO3(-) and Cl(-) intercalated in the interlayer of the LDH. Using three times the stoichiometric quantity of NO3 · Mg-Al LDH, the residual concentration of B decreased from 100 to 1.9 mg L(-1) in 120 min. Using five times the stoichiometric quantity of Cl · Mg - Al LDH, the residual concentration of B decreased from 100 to 5.6 mg L(-1) in 120 min. It must be emphasized that, in both cases, the residual concentration of B was less than the effluent standards in Japan (10 mg L(-1)). The rate-determining step of B removal by the NO3 · Mg - Al and Cl · Mg - Al LDHs was found to be chemical adsorption involving anion exchange of B(OH)4(-) with intercalated NO3(-) and Cl(-). The removal of B was well described by a pseudo second-order kinetic equation. The adsorption of B by NO3 · Mg - Al LDH and Cl · Mg - Al LDH followed a Langmuir-type adsorption. The values of the maximum adsorption and the equilibrium adsorption constant were 3.6 mmol g(-1) and 1.7, respectively, for NO3 · Mg - Al LDH, and 3.8 mmol g(-1) and 0.7, respectively, for Cl · Mg-Al LDH. The B(OH)4(-) in B(OH)4 · Mg - Al LDH produced by removal of B was found to undergo anion exchange with NO3(-) and Cl(-) in solution. The NO3 · Mg - Al and Cl · Mg - Al LDHs obtained after this regeneration treatment were able to remove B from aqueous solutions, indicating the possibility of recycling NO3 · Mg - Al and Cl · Mg - Al LDHs for B removal. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    NASA Astrophysics Data System (ADS)

    Li, Yong-Jun; Sun, Qing-Qing; Chen, Lin; Zhou, Peng; Wang, Peng-Fei; Ding, Shi-Jin; Zhang, David Wei

    2012-03-01

    We proposed intercalation of hexagonal boron nitride (hBN) in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  3. Localized concentration reversal of lithium during intercalation into nanoparticles

    DOE PAGES

    Zhang, Wei; Yu, Hui -Chia; Wu, Lijun; ...

    2018-01-12

    Nanoparticulate electrodes, such as Li xFePO 4, have unique advantages over their microparticulate counterparts for the applications in Li-ion batteries because of the shortened diffusion path and access to nonequilibrium routes for fast Li incorporation, thus radically boosting power density of the electrodes. However, how Li intercalation occurs locally in a single nanoparticle of such materials remains unresolved because real-time observation at such a fine scale is still lacking. We report visualization of local Li intercalation via solid-solution transformation in individual Li xFePO 4 nanoparticles, enabled by probing sub-angstrom changes in the lattice spacing in situ. The real-time observation revealsmore » inhomogeneous intercalation, accompanied with an unexpected reversal of Li concentration at the nanometer scale. The origin of the reversal phenomenon is elucidated through phase-field simulations, and it is attributed to the presence of structurally different regions that have distinct chemical potential functions. Furthermore, the findings from this study provide a new perspective on the local intercalation dynamics in battery electrodes.« less

  4. Charging YOYO-1 on Capillary Wall for Online DNA Intercalation and Integrating This Approach with Multiplex PCR and Bare Narrow Capillary–Hydrodynamic Chromatography for Online DNA Analysis

    PubMed Central

    2016-01-01

    Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111

  5. Evaluation of Carbon Anodes for Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, C-K.; Surampudi, S.; Attia, A.; Halpert, G.

    1993-01-01

    Both liquid phase intercalation technique and electrochemical intercalation technique were examined for the Li-carbon material preparation. The electrochemical techniques include a intermittent discharge method and a two step method. These two electrochemical techniques can ensure to achieve the maximum reversible Li capacity for common commercially available carbon materials. The carbon materials evaluated by the intercalacation method includes: pitch coke, petroleum cole, PAN fiber and graphite materials. Their reversible Li capacity were determined and compared. In this paper, we also demonstrate the importance of EPDM binder composition in the carbon electrode. Our results indicated that it can impact the Li intercalation and de-intercalation capacity in carbon materials. Finally, two possibilities that may help explain the capacity degradation during practical cell cycling were proposed.

  6. Preparation of an anionic azo pigment-pillared layered double hydroxide and the thermo- and photostability of the resulting intercalated material

    NASA Astrophysics Data System (ADS)

    Guo, Shengchang; Li, Dianqing; Zhang, Weifeng; Pu, Min; Evans, David G.; Duan, Xue

    2004-12-01

    A large anionic pigment has been intercalated into a layered double hydroxide (LDH) host by ion-exchange of an Mg/Al LDH-nitrate precursor with a solution of C.I. Pigment Red 48:2 (the calcium salt of 4-((5-chloro-4-methyl-2-sulfophenyl)azo)-3-hydroxy-2-naphthalene-carboxylic acid), in ethane-1,2-diol. After intercalation of the pigment, the interlayer distance in the LDH increases from 0.86 to 1.72 nm. Infrared spectra and TG-DTA curves reveal the presence of a complex system of supramolecular host-guest interactions. The UV-visible diffuse reflectance spectra of C.I. Pigment Red 48:2 show marked changes after heating at 200 °C and above, whereas there are no significant changes in the spectra of the intercalated pigment after heating at temperatures up to 300 °C, showing that the thermostability is markedly enhanced by intercalation in the LDH host. The pigment-intercalated LDHs exhibits much higher photostability to UV light than the pristine pigment, in the case of both the pure solids and their composites with polypropylene, as shown by measurement of CIE 1976 L*a*b* color difference ( ΔE) values.

  7. An easy and effective method for the intercalation of hydrophobic natural dye into organo-montmorillonite for improved photostability

    NASA Astrophysics Data System (ADS)

    Taguchi, Taiga; Kohno, Yoshiumi; Shibata, Masashi; Tomita, Yasumasa; Fukuhara, Choji; Maeda, Yasuhisa

    2018-05-01

    β-carotene (BC) is one of the naturally occurring dyes belonging to the carotenoids group. Although it is more environmentally friendly and better suited for humans compared with synthetic dyes, it destabilizes with light and heat, easily losing its color under irradiation. Extended application of BC are therefore limited. The aim of this study is to improve the stability of BC by intercalation into the montmorillonite layers modified with a cationic surfactant, by a simple mixing and minimal solvent use. The physical mixing of small quantities of concentrated BC/hexane solutions with organo-modified montmorillonite successfully resulted in the composite material. The length and the number of alkyl chains of the surfactant used for the organic modification influenced the stability enhancement of the incorporated dye. The improved stability of the dye molecules incorporated in the interlayer space was found to be due to restricted contact with atmospheric oxygen.

  8. Synthesis of kaolinite-filled EPDM rubber composites by solution intercalation: structural characterization and studies on mechanical properties

    NASA Astrophysics Data System (ADS)

    Ginil Mon, S.; Jaya Vinse Ruban, Y.; Vetha Roy, D.

    2011-09-01

    In the large field of nanotechnology, polymer matrix-based nanocomposites have become a prominent area of current research and development. Exfoliated clay-based nanocomposites have dominated the polymer world with excellent characteristics. EPDM rubber composites have been synthesized by solution-intercalation using the easily available kaolinite as filler. The composite structure has been elucidated by X-ray diffraction (XRD), Fourier transform IR, and scanning electron microscope studies. The molecular level dispersion of clay layers has been verified by the disappearance of basal XRD peak of kaolinite in the EPDM/kaolinite composites. The mechanical properties showed significant improvement of EPDM/kaolinite composites with respect to neat EPDM.

  9. From nicotinate-containing layered double hydroxides (LDHs) to NAD coenzyme-LDH nanocomposites - Syntheses and structural characterization by various spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Muráth, Szabolcs; Dudás, Csilla; Kukovecz, Ákos; Kónya, Zoltán; Sipos, Pál; Pálinkó, István

    2017-07-01

    The syntheses of nicotinate anion- and NAD coenzyme-layered double hydroxide (LDH) composites were performed with the aim of having the organic component among the layers. In-house prepared CaAl-LDHs were the host materials. Intercalation was attempted by direct ion exchange or by the dehydration-rehydration method applying aqueous solvent mixtures (containing ethanol, propanol, acetone, N,N-dimethylformamide). For structural characterization, beside X-ray diffractometry, X-ray photoelectron and IR spectroscopies, transmission and scanning electron microscopies as well as energy-dispersive X-ray analysis were used. Molecular modelling served for the visualization of the arrangements of the intercalated ions among the layers of the LDH samples. Although not all the intercalation methods and solvent mixtures led to intercalated composite materials, successful ones could be identified. The combination of spectroscopic methods helped in proposing sensible spatial arrangements for the intercalated anions. The NAD-CaAl-LDH composite proved to be an active catalyst in the oxidation of hydroquinone to 1,4-bezoquinoe in the presence of H2O2.

  10. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  11. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  12. Polysulfide intercalated layered double hydroxides for metal capture applications

    DOEpatents

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  13. Layered gadolinium hydroxides for simultaneous drug delivery and imaging.

    PubMed

    Xu, Yadong; Goyanes, Alvaro; Wang, Yuwei; Weston, Andrew J; So, Po-Wah; Geraldes, Carlos F G C; Fogg, Andrew M; Basit, Abdul W; Williams, Gareth R

    2018-02-27

    The potential of the layered gadolinium hydroxide (LGdH) [Gd 2 (OH) 5 ]Cl·yH 2 O (LGdH-Cl) for simultaneous drug delivery and magnetic resonance imaging was explored in this work. Three non-steroidal anti-inflammatory drugs (diclofenac [dic], ibuprofen [ibu], and naproxen [nap]) were intercalated into LGdH-Cl for the first time, using three different routes (ion exchange intercalation, coprecipitation, and exfoliation-self-assembly). X-ray diffraction, elemental microanalysis and IR spectroscopy confirmed successful incorporation of the drug into the interlayer spaces of the LGdH in all cases. From a comparison of the guest anion sizes and interlayer spacings, the active ingredients are believed to adopt intertwined bilayer configurations between the LGdH layers. The materials prepared by coprecipitation in general have noticeably higher drug loadings than those produced by ion exchange or self-assembly, as a result of the incorporation of some neutral drug into the composites. The LGdH-drug intercalates are stable at neutral pH, but rapidly degrade in acidic conditions to free Gd 3+ into solution. While LGdH-nap releases its drug loading into solution very rapidly (within ca. 1.5 h) at pH 7.4, LGdH-dic shows sustained release over 4 h, and LGdH-ibu extends this to 24 h. The latter composites therefore can be incorporated into enteric-coated tablets to provide sustained release in the small intestine. The drug intercalates are highly biocompatible and retain the proton relaxivity properties of the parent LGdH-Cl, with the materials most promising for use as negative contrast agents in MRI. Overall, the LGdH-drug intercalation compounds appear to have great potential for use in theranostic applications.

  14. Correlation of intercalation potential with d-electron configurations for cathode compounds of lithium-ion batteries.

    PubMed

    Chen, Zhenlian; Zhang, Caixia; Zhang, Zhiyong; Li, Jun

    2014-07-14

    The d-electron localization is widely recognized as important to transport properties of transition metal compounds, but its role in the energy conversion of intercalation reactions of cathode compounds is still not fully explored. In this work, the correlation of intercalation potential with electron affinity, a key energy term controlling electron intercalation, then with d-electron configuration, is investigated. Firstly, we find that the change of the intercalation potential with respect to the transition metal cations within the same structure class is correlated in an approximately mirror relationship with the electron affinity, based on first-principles calculations on three typical categories of cathode compounds including layered oxides and polyoxyanions Then, by using a new model Hamiltonian based on the crystal-field theory, we reveal that the evolution is governed by the combination of the crystal-field splitting and the on-site d-d exchange interactions. Further, we show that the charge order in solid-solution composites and the compatibility of multi-electron redox steps could be inferred from the energy terms with the d-electron configuration alternations. These findings may be applied to rationally designing new chemistry for the lithium-ion batteries and other metal-ion batteries.

  15. Development of New Elastomers and Elastic Nanocomposites from Plant Oils

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Wool, Richard

    2006-03-01

    Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.

  16. Understanding self-photorechargeability of WO(3) for H(2) generation without light illumination.

    PubMed

    Ng, Charlene; Iwase, Akihide; Ng, Yun Hau; Amal, Rose

    2013-02-01

    This work presents insight into the self-photorechargeability of WO(3), whereby the intercalation of positive alkali cations is accompanied by the simultaneous storage of photo-excited electrons. The cyclic voltammetry studies verify the photo-assisted intercalation and de-intercalation of Na(+) and K(+) from the flower structured WO(3). A storage capacity of up to 0.722 C cm(-2) can be achieved in a saturated (0.68 M) K(2)SO(4) electrolyte solution. However, the best photo recharge-discharge stability of the electrode are observed at a lower (0.1 M) cation concentration. At high electrolyte concentrations, the intercalated cations are firmly trapped, as indicated by the structural modifications observed in Raman analysis, resulting in much less photocharging and discharging abilities in subsequent cycles. The study also shows that the stored electrons can be successfully used to generate H(2) with 100 % faradaic efficiency in the absence of light. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode.

    PubMed

    Gunjakar, Jayavant L; Inamdar, Akbar I; Hou, Bo; Cha, SeungNam; Pawar, S M; Abu Talha, A A; Chavan, Harish S; Kim, Jongmin; Cho, Sangeun; Lee, Seongwoo; Jo, Yongcheol; Kim, Hyungsang; Im, Hyunsik

    2018-05-17

    A mesoporous nanoplate network of two-dimensional (2D) layered nickel hydroxide Ni(OH)2 intercalated with polyoxovanadate anions (Ni(OH)2-POV) was built using a chemical solution deposition method. This approach will provide high flexibility for controlling the chemical composition and the pore structure of the resulting Ni(OH)2-POV nanohybrids. The layer-by-layer ordered growth of the Ni(OH)2-POV is demonstrated by powder X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The random growth of the intercalated Ni(OH)2-POV nanohybrids leads to the formation of an interconnected network morphology with a highly porous stacking structure whose porosity is controlled by changing the ratio of Ni(OH)2 and POV. The lateral size and thickness of the Ni(OH)2-POV nanoplates are ∼400 nm and from ∼5 nm to 7 nm, respectively. The obtained thin films are highly active electrochemical capacitor electrodes with a maximum specific capacity of 1440 F g-1 at a current density of 1 A g-1, and they withstand up to 2000 cycles with a capacity retention of 85%. The superior electrochemical performance of the Ni(OH)2-POV nanohybrids is attributed to the expanded mesoporous surface area and the intercalation of the POV anions. The experimental findings highlight the outstanding electrochemical functionality of the 2D Ni(OH)2-POV nanoplate network that will provide a facile route for the synthesis of low-dimensional hybrid nanomaterials for a highly active supercapacitor electrode.

  18. Control of crystallite and particle size in the synthesis of layered double hydroxides: Macromolecular insights and a complementary modeling tool.

    PubMed

    Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S

    2016-04-15

    Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Metal intercalation-induced selective adatom mass transport on graphene

    DOE PAGES

    Liu, Xiaojie; Wang, Cai -Zhuang; Hupalo, Myron; ...

    2016-03-29

    Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. As a result, this alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective massmore » transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.« less

  20. Superconductivity in FeTe0.8S0.2 induced by battery-like reaction

    NASA Astrophysics Data System (ADS)

    Yamashita, Aichi; Demura, Satoshi; Tanaka, Masashi; Deguchi, Keita; Yamaki, Takuma; Hara, Hiroshi; Suzuki, Kouji; Zhang, Yunchao; Denholme, Saleem James; Okazaki, Hiroyuki; Fujioka, Masaya; Yamaguchi, Takahide; Takeya, Hiroyuki; Takano, Yoshihiko

    2014-12-01

    Superconductivity is successfully induced by utilizing a battery-like reaction found in a typical Li-ion battery. Excess Fe in FeTe0.8S0.2 is electrochemically de-intercalated by applying a voltage in a citric acid solution. The superconducting properties improve with an increase in the applied voltage up to 1.5 V. This result suggests that an electrochemical reaction can be used as a novel method to develop new superconducting materials.

  1. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhu, Yingjie; Chen, Nuofu; Liu, Xinling; Sun, Zhengliang; Huang, Zhenghong; Kang, Feiyu; Gao, Qiuming; Jiang, Jun; Chen, Lidong

    2011-12-01

    A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

  2. An experimental study on the preparation of tochilinite-originated intercalation compounds comprised of Fe 1-xS host layers and various kinds of guest layers

    NASA Astrophysics Data System (ADS)

    Peng, Yiya; Xi, Guangcheng; Zhong, Chang; Wang, Linping; Lu, Jun; Sun, Ximeng; Zhu, Lu; Han, Qikun; Chen, Lin; Shi, Lei; Sun, Mei; Li, Qianrong; Yu, Min; Yin, Mingwen

    2009-08-01

    Tochilinite represents a mineral group of ordered mixed-layer structures containing alternating Fe 1-xS layers with mackinawite-like structure and metal hydroxide layers with Mg(OH) 2-like structure. In this article, we report the preparation of a series of tochilinite-originated (or Fe 1-xS-based) intercalation compounds (ICs). According to their preparation procedures, these ICs can be divided into four kinds. The first kind of IC was sodium tochilinite (Na-tochilinite), which was prepared by the hydrothermal reaction of metallic Fe particles with concentrated Na 2S·9H 2O aqueous solutions. The hydroxide layer of the Na-tochilinite was a mixed hydroxide of Na + ions along with a certain amount of Fe 2+ ions. When the hydroxide layer of the Na-tochilinite completely dissolved in aqueous solutions, a Fe-deficient mackinawite-like phase Fe 1-xS was obtained, which was probably an electron-deficient p-type conductor. The second kind of ICs was prepared by 'low-temperature direct intercalation in aqueous solutions, using Na-tochilinite as a parental precursor. When the Na-tochilinite was ultrasonicated in aqueous solutions containing Lewis basic complexing agents (like NH 3, N 2H 4, 2,2'-bipyridine (bipy), and 1,10-phenanthroline (phen)), the Na + ions of the Na-tochilinite were removed and the Lewis basic complexing agents entered the hydroxide layer of the Na-tochilinite and became coordinated with the Fe 2+ ions, and the second kind of ICs was thus produced. The second kind of ICs includes NH 3 IC, N 2H 4 IC, N 2H 4-NH 3 IC, [Fe(bipy) 3] 2+-containing IC and [Fe(phen) 3] 2+-containing IC. The third kind of ICs, which includes NH 3 IC, N 2H 4-NH 3 IC and N 2H 4-LiOH (NaOH) IC, was prepared by the hydrothermal reaction of metallic Fe particles with (NH 4) 2S aqueous solution, S (elemental) + N 2H 4·H 2O aqueous solution, and S + N 2H 4·H 2O + LiOH (NaOH) aqueous solution, respectively. The third kind of ICs has a close relationship with the second kind of ICs both in composition and structure. The fourth kind of ICs was prepared by the oxidation and reduction of some of the N 2H 4-containing ICs mentioned above, which include N 2H 2 (diazene or diimide) IC, N 2 (dinitrogen) IC and NH 3 IC. The N 2H 2 IC was prepared by mild air oxidation of the N 2H 4-LiOH IC. The N 2 IC was prepared by strong air oxidation of the N 2H 4-LiOH IC, however, we have not been able to separate the pure phase N 2 IC. Hydrothermal reduction of the N 2H 4 IC made by the direct intercalation method in strong reducing environment by H 2S + Fe (metal) led to the production of the NH 3 IC of the fourth kind of ICs. The NH 3 ICs prepared by the three methods had similar compositions and structures. As almost all the ICs reported in this paper were extremely sensitive both to air and to the electron beam, they were mainly characterized by XRD. The properties and interrelationships (or mutual transformations) of the Fe 1-xS-based ICs revealed novel chemistry occurring in the sub-nanoscopic space between the micrometer- to nanometer-sized electron-deficient Fe 1-xS layers. An important finding of this novel chemistry was that the Fe 1-xS-based ICs tended to oxidize or reduce the intercalated species when the redox state of their environments varied. The results of our experiments potentially have many cosmochemical implications. The most important implication is that our experimental results, along with previous studies, strongly suggested that some of the ammonium salts, ammonia and carbonates existing in the matrix of the CM carbonaceous chondrites may have been formed by abiotic reactions employing molecular nitrogen as the nitrogen source and carbon monoxide as the carbon source and iron sulfide and/or iron hydroxide as catalysts.

  3. Electrochemical Control of Copper Intercalation into Nanoscale Bi 2Se 3

    DOE PAGES

    Zhang, Jinsong; Sun, Jie; Li, Yanbin; ...

    2017-02-20

    Intercalation of exotic atoms or molecules into the layered materials remains an extensively investigated subject in current physics and chemistry. However, traditionally melt-growth and chemical interaction strategies are either limited by insufficiency of intercalant concentrations or destitute of accurate controllability. Here, we have developed a general electrochemical intercalation method to efficaciously regulate the concentration of zerovalent copper atoms into layered Bi 2Se 3, followed by comprehensive experimental characterization and analyses. Up to 57% copper atoms (Cu 6.7Bi 2Se 3) can be intercalated with no disruption to the host lattice. Meanwhile the unconventional resistance dip accompanied by a hysteresis loop belowmore » 40 K, as well as the emergence of new Raman peak in Cu xBi 2Se 3, is a distinct manifestation of the interplay between intercalated Cu atoms with Bi 2Se 3 host. Furthermore, our work demonstrates a new methodology to study fundamentally new and unexpected physical behaviors in intercalated metastable materials.« less

  4. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    PubMed

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO 2 by sol-gel method to prepare Ins/ZrP@TiO 2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO 2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO 2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO 2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO 2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO 2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO 2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO 2 -coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  5. Preparation of hippurate-zinc layered hydroxide nanohybrid and its synergistic effect with tamoxifen on HepG2 cell lines

    PubMed Central

    Ali, Samer Hasan Hussein Al; Al-Qubaisi, Mothanna; Hussein, Mohd Zobir; Zainal, Zulkarnain; Hakim, Muhammad Nazrul

    2011-01-01

    Background A new simple preparation method for a hippurate-intercalated zinc-layered hydroxide (ZLH) nanohybrid has been established, which does not need an anion-exchange procedure to intercalate the hippurate anion into ZLH interlayers. Methods The hippuric acid nanohybrid (HAN) was prepared by direct reaction of an aqueous suspension of zinc oxide with a solution of hippuric acid via a one-step method. Results The basal spacing of the nanohybrid was 21.3 Å, indicating that the hippurate anion was successfully intercalated into the interlayer space of ZLH, and arranged in a monolayer fashion with the carboxylate group pointing toward the ZLH inorganic interlayers. A Fourier transform infrared study confirmed the formation of the nanohybrid, while thermogravimetry and differential thermogravimetry analyses showed that the thermal stability of the nanohybrid was markedly enhanced. The loading of hippurate in the nanohybrid was estimated to be about 38.7% (w/w), and the release of hippurate from the nanohybrid was of a controlled manner, and therefore the resulting material was suitable for use as a controlled-release formulation. HAN has synergistic properties with tamoxifen toward a HepG2 cell line, with an IC50 value of 0.35 compared with hippurate. In the antiproliferative assay, the ratio of viable cells account for cells treated by the combination tamoxifen with HAN to untreated cells was sharply reduced from 66% to 13% after 24 and 72 hours, respectively. Conclusion The release of hippuric acid anions from HAN occurred in a controlled manner, and the resulting material is suitable for a controlled-release formulation. PMID:22163163

  6. Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method.

    PubMed

    Amini, Majed; Ramazani S A, Ahmad; Faghihi, Morteza; Fattahpour, Seyyedfaridoddin

    2017-11-01

    Molybdenum disulfide (MoS 2 ), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS 2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS 2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS 2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form SO bonds mainly because of expected enhanced in-situ catalytic operations. The intercalated MoS 2 is further characterized using analyses such as Fourier Transform Infrared Spectroscopy (FTIR), Raman, Contact Angle, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Microanalysis (EDAX), Transmission electron microscopy (TEM), and BET. Copyright © 2017. Published by Elsevier B.V.

  7. A method to remove intercalates from bromine and iodine intercalated carbon fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1993-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers which were intercalated with 18 percent bromine by weight, 1 hr of fluorine exposure results in a large weight increase, but causes only a small decrease in thermal stability. More than l hr of fluorine exposure time results in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena do not occur if the fluorine exposure is at 250 C. These observations suggest the mechanism that at room temperature, fluorine is absorbed quickly by the intercalated fibers and intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. Under an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for two weeks, the brominated fibers lost about 45 percent of their bromine, and their resistivity increased from 64 omega-cm to a range of 95 to 170 micro omega-cm. This is still much lower than the 300 micro omega-cm value for pristine P-100. For practical purposes, in order to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature, or to any intercalate at a temperature where, upon direct contact to graphite, an intercalation compound can easily be formed.

  8. Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation

    NASA Astrophysics Data System (ADS)

    Qiao, Wen; Yan, Shiming; Song, Xueyin; Zhang, Xing; He, Xueming; Zhong, Wei; Du, Youwei

    2015-12-01

    An effective multi-exfoliation method based on lithium (Li) intercalation has been demonstrated for preparing monolayer molybdenum disulfide (MoS2) quantum dots (QDs). The cutting mechanism of MoS2 QDs may involve the complete breakup around the defects and edges during the reaction of LixMoS2 with water and its following ultrasonication process. The multiply exfoliation make the MoS2 fragile and easier to break up. After the third exfoliation, a large number of monolayer MoS2 QDs is formed. The as-prepared MoS2 QDs show photoluminescence (PL) inactive due to the existence of 1T phase. After heating treatment, the PL intensity excited at 300 nm is enhanced by five times. The MoS2 QDs solution has an excitation-dependent luminescence emission which shifts to longer wavelengths when the excitation wavelength changes from 280 nm to 370 nm. The optical properties are explored based on the quantum confinement and edge effect.

  9. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang

    2011-01-01

    Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized alumina membrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.

  10. Building one-dimensional oxidenanostructure arrays on conductive metal substrates for lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang

    2011-01-01

    Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized aluminamembrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.

  11. The synthesis of Li(Cosbnd Mnsbnd Ni)O2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions

    NASA Astrophysics Data System (ADS)

    Senćanski, Jelena; Bajuk-Bogdanović, Danica; Majstorović, Divna; Tchernychova, Elena; Papan, Jelena; Vujković, Milica

    2017-02-01

    Several spent Li-ion batteries were manually dismantled and their components were uncurled and separated. The chemical composition of each battery's component was determined by atomic absorption spectroscopy. Among several ways to separate cathode material from the collector, the alkali dissolution treatment was selected as the most effective one. After both complete separation and acid leaching steps, the co-precipitation method, followed by a thermal treatment (700 °C or 850 °C), was used to resynthesize cathode material LiCo0.415Mn0.435Ni0.15O2. Its structure and morphology were characterized by XRD, Raman spectroscopy and SEM-EDS methods. The electrochemical behavior of recycled cathode materials was examined by cyclic voltammetry and chronopotentiometry in both LiNO3 and NaNO3 aqueous solutions. High sodium storage capacity, amounting to 93 mAh g-1, was measured galvanostatically at a relatively high current of ∼100 mA g-1. Initial lithium intercalation capacity of ∼64 mAh g-1, was determined potentiodynamically at very high scan rate of 20 mV s-1 (∼40 C). Somewhat lower initial capacity of ∼30 mAh g-1, but much lower capacity fade on cycling, was found for sodium intercalation at the same scan rate. The differences in the Li and Na charge storage capability were explained in terms of ion rearrangement during charging/discharging processes.

  12. Manipulation of Dirac cones in intercalated epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.

    Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less

  13. Manipulation of Dirac cones in intercalated epitaxial graphene

    DOE PAGES

    Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.; ...

    2017-07-12

    Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less

  14. Electrochemical Doping of Halide Perovskites with Ion Intercalation.

    PubMed

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang; Wang, Mingchao; Zeng, Xiaoqiao; Besara, Tiglet; Lu, Jun; Xin, Yan; Shan, Xin; Pan, Bicai; Wang, Changchun; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng; Yu, Zhibin

    2017-01-24

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450-850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  15. Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application

    PubMed Central

    2013-01-01

    Background Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor. Results The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO. Conclusions (Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect. PMID:23383738

  16. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Halpert, Gerald (Inventor); Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  17. Optical determination of the electronic coupling and intercalation geometry of thiazole orange homodimer in DNA

    NASA Astrophysics Data System (ADS)

    Cunningham, Paul D.; Bricker, William P.; Díaz, Sebastián A.; Medintz, Igor L.; Bathe, Mark; Melinger, Joseph S.

    2017-08-01

    Sequence-selective bis-intercalating dyes exhibit large increases in fluorescence in the presence of specific DNA sequences. This property makes this class of fluorophore of particular importance to biosensing and super-resolution imaging. Here we report ultrafast transient anisotropy measurements of resonance energy transfer (RET) between thiazole orange (TO) molecules in a complex formed between the homodimer TOTO and double-stranded (ds) DNA. Biexponential homo-RET dynamics suggest two subpopulations within the ensemble: 80% intercalated and 20% non-intercalated. Based on the application of the transition density cube method to describe the electronic coupling and Monte Carlo simulations of the TOTO/dsDNA geometry, the dihedral angle between intercalated TO molecules is estimated to be 81° ± 5°, corresponding to a coupling strength of 45 ± 22 cm-1. Dye intercalation with this geometry is found to occur independently of the underlying DNA sequence, despite the known preference of TOTO for the nucleobase sequence CTAG. The non-intercalated subpopulation is inferred to have a mean inter-dye separation distance of 19 Å, corresponding to coupling strengths between 0 and 25 cm-1. This information is important to enable the rational design of energy transfer systems that utilize TOTO as a relay dye. The approach used here is generally applicable to determining the electronic coupling strength and intercalation configuration of other dimeric bis-intercalators.

  18. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    PubMed Central

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-01-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T′-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications. PMID:28230105

  19. Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator

    PubMed Central

    Pierre, Valérie C.; Kaiser, Jens T.; Barton, Jacqueline K.

    2007-01-01

    We report the 1.1-Å resolution crystal structure of a bulky rhodium complex bound to two different DNA sites, mismatched and matched in the oligonucleotide 5′-(dCGGAAATTCCCG)2-3′. At the AC mismatch site, the structure reveals ligand insertion from the minor groove with ejection of both mismatched bases and elucidates how destabilized mispairs in DNA may be recognized. This unique binding mode contrasts with major groove intercalation, observed at a matched site, where doubling of the base pair rise accommodates stacking of the intercalator. Mass spectral analysis reveals different photocleavage products associated with the two binding modes in the crystal, with only products characteristic of mismatch binding in solution. This structure, illustrating two clearly distinct binding modes for a molecule with DNA, provides a rationale for the interrogation and detection of mismatches. PMID:17194756

  20. Manipulation of Dirac cones in metal-intercalated epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Zhuang; Kim, Minsung; Tringides, Michael; Ho, Kai-Ming

    Graphene is one of the most attractive materials from both fundamental and practical points of view due to its characteristic Dirac cones. The electronic property of graphene can be modified through the interaction with substrate or another graphene layer as illustrated in few-layer epitaxial graphene. Recently, metal intercalation became an effective method to manipulate the electronic structure of graphene by modifying the coupling between the constituent layers. In this work, we show that the Dirac cones of epitaxial graphene can be manipulated by intercalating rare-earth metals. We demonstrate that rare-earth metal intercalated epitaxial graphene has tunable band structures and the energy levels of Dirac cones as well as the linear or quadratic band dispersion can be controlled depending on the location of the intercalation layer and density. Our results could be important for applications and characterizations of the intercalated epitaxial graphene. Supported by the U.S. DOE-BES under Contract No. DE-AC02-07CH11358.

  1. Resistivity of Carbon-Carbon Composites Halved

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2004-01-01

    Carbon-carbon composites have become the material of choice for applications requiring strength and stiffness at very high temperatures (above 2000 C). These composites comprise carbon or graphite fibers embedded in a carbonized or graphitized matrix. In some applications, such as shielding sensitive electronics in very high temperature environments, the performance of these materials would be improved by lowering their electrical resistivity. One method to lower the resistivity of the composites is to lower the resistivity of the graphite fibers, and a proven method to accomplish that is intercalation. Intercalation is the insertion of guest atoms or molecules into a host lattice. In this study the host fibers were highly graphitic pitch-based graphite fibers, or vapor-grown carbon fibers (VGCF), and the intercalate was bromine. Intercalation compounds of graphite are generally thought of as being only metastable, but it has been shown that the residual bromine graphite fiber intercalation compound is remarkably stable, resisting decomposition even at temperatures at least as high as 1000 C. The focus of this work was to fabricate composite preforms, determine whether the fibers they were made from were still intercalated with bromine after processing, and determine the effect on composite resistivity. It was not expected that the resistivity would be lowered as dramatically as with graphite polymer composites because the matrix itself would be much more conductive, but it was hoped that the gains would be substantial enough to warrant its use in high-performance applications. In a collaborative effort supporting a Space Act Agreement between the NASA Glenn Research Center and Applied Sciences, Inc. (Cedarville, OH), laminar preforms were fabricated with pristine and bromine-intercalated pitch-based fibers (P100 and P100-Br) and VGCF (Pyro I and Pyro I-Br). The green preforms were carbonized at 1000 C and then heat treated to 3000 C. To determine whether the fibers in the samples were still intercalated after composite fabrication, they were subjected to X-ray diffraction. The composites containing intercalated graphite fibers showed much higher background scatter than that of pristine fibers, indicating the presence of bromine in the samples. More importantly, faint features indicative of intercalation were visible in the diffraction pattern, showing that the fibers were still intercalated.

  2. Tunable thermal expansion in framework materials through redox intercalation

    PubMed Central

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-01-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion. PMID:28181576

  3. Tunable thermal expansion in framework materials through redox intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-02-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.

  4. Synthesis of (Hexaconazole-Zinc/Aluminum-Layered Double Hydroxide Nanocomposite) Fungicide Nanodelivery System for Controlling Ganoderma Disease in Oil Palm.

    PubMed

    Mustafa, Isshadiba F; Hussein, Mohd Zobir; Saifullah, Bullo; Idris, Abu Seman; Hilmi, Nur Hailini Z; Fakurazi, Sharida

    2018-01-31

    A fungicide, hexaconazole was successfully intercalated into the intergalleries of zinc/aluminum-layered double hydroxide (ZALDH) using the ion-exchange method. Due to the intercalation of hexaconazole, the basal spacing of the ZALDH was increased from 8.7 Å in ZALDH to 29.4 Å in hexaconazole-intercalated ZALDH (HZALDH). The intercalation of hexaconazole into the interlayer of the nanocomposite was confirmed using the Fourier-transform infrared (FTIR) study. This supramolecular chemistry intercalation process enhanced the thermal stability of the hexaconazole moiety. The fungicide loading was estimated to be 51.8%. The nanodelivery system also shows better inhibition toward the Ganoderma boninense growth than the counterpart, free hexaconazole. The results from this work have a great potential to be further explored for combating basal stem rot (BSR) disease in oil palm plantation.

  5. Anionic surfactant enhanced phosphate desorption from Mg/Al-layered double hydroxides by micelle formation.

    PubMed

    Shimamura, Akihiro; Jones, Mark I; Metson, James B

    2013-12-01

    Desorption of interlayer hydrogen phosphate (HPO4) from hydrogen phosphate intercalated Mg/Al-layered double hydroxide (LDH-HPO4) by anion exchange with surfactant anions has been investigated under controlled conditions. Three types of surfactant, Dodecylbenzenesulphonate (DBS), Dodecylsulphate (DS) and 1-Octanesulphonate (OS), anions were used for intercalation experiments over a range of concentrations, and for all solutions, it was shown that the desorption of hydrogen phosphate is enhanced at concentrations close to the critical micelle concentration (CMC). Intercalation of the surfactant anions into LDH-HPO4 was confirmed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning electron microscopy (SEM). More than 90% removal of the hydrogen phosphate was achieved at CMC. Repeat adsorption tests to investigate recyclability showed that desorption with 0.005 M DBS improved subsequent phosphate re-adsorption, allowing around 90% of the original adsorption over three cycles. This is much higher than when desorption was conducted using either Na2CO3 or NaCl-NaOH solutions, even at much higher concentrations. This study suggests potential economic and environmental advantages in using these surfactants in improving the cycling performance of LDH materials as absorbents for clean-up of water systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Decreasing the electronic confinement in layered perovskites through intercalation.

    PubMed

    Smith, Matthew D; Pedesseau, Laurent; Kepenekian, Mikaël; Smith, Ian C; Katan, Claudine; Even, Jacky; Karunadasa, Hemamala I

    2017-03-01

    We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layers substantially alter the optical and electronic properties of the inorganic layers. By calculating the spatially resolved dielectric profiles of the organic and inorganic layers within the hybrid structure, we show that the intercalants afford organic layers that are more polarizable than the inorganic layers. This strategy reduces the confinement of excitons generated in the inorganic layers and affords the lowest exciton binding energy for an n = 1 perovskite of which we are aware. We also demonstrate a method for computationally evaluating the exciton's binding energy by solving the Bethe-Salpeter equation for the exciton, which includes an ab initio determination of the material's dielectric profile across organic and inorganic layers. This new semi-empirical method goes beyond the imprecise phenomenological approximation of abrupt dielectric-constant changes at the organic-inorganic interfaces. This work shows that incorporation of polarizable molecules in the organic layers, through intercalation or covalent attachment, is a viable strategy for tuning 2D perovskites towards mimicking the reduced electronic confinement and isotropic light absorption of 3D perovskites while maintaining the greater synthetic tunability of the layered architecture.

  7. Optical and Thermal Behaviors of Polyamide-Layered Silicate Nanocomposites Based on 4,4'-Azodibenzoic Acid by Solution Intercalation Technique

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Shabanian, Meisam

    2011-04-01

    Two new samples of polyamide-montmorillonite reinforced nanocomposites based on 4,4'-azodibenzoic acid were prepared by a convenient solution intercalation technique. Polyamide (PA) 4 as a source of polymer matrix was synthesized by the direct polycondensation reaction of 4,4'-azodibenzoic acid 2 with 4,4'-diamino diphenyl sulfone 3 in the presence of triphenyl phosphate (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PA-nanocomposite films 4a and 4b with 10 and 20% silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposite films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.

  8. Reduction of biselenites into polyselenides in interlayer space of layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Kim, Myeong Shin; Lee, Yongju; Park, Yong-Min; Cha, Ji-Hyun; Jung, Duk-Young

    2018-06-01

    A selenous acid (H2SeO3) precursor was intercalated as biselenite (HSeO3-) ions into the interlayer gallery of carbonated magnesium aluminum layered double hydroxide (MgAl-LDH) in aqueous solution. Reduction reaction of selenous ions by aqueous hydrazine solution produced polyselenide intercalated LDHs which were consecutively exchanged with iodide through redox reaction under iodine vapor. The polyselenide containing LDHs adsorbed iodine vapor spontaneously and triiodide was incorporated in the interlayer space followed by formation of selenium polycrystalline phase. Two dimensional framework of MgAl-LDH is strong enough to resist against the reducing power of hydrazine as well as oxidation condition of iodine. The SEM data demonstrated that the shapes of LDH polycrystalline have little changed after the above redox reactions. The polyselenide and iodide LDH products were analyzed by XRD, Infrared and Raman spectra which strongly suggested the horizontal arrangement of polyselenide and triiodide in gallery space of LDHs.

  9. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    PubMed

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Supramolecular polymer formation by cyclic dinucleotides and intercalators affects dinucleotide enzymatic processing

    PubMed Central

    Nakayama, Shizuka; Zhou, Jie; Zheng, Yue; Szmacinski, Henryk; Sintim, Herman O

    2016-01-01

    Background: Cyclic dinucleotides form supramolecular aggregates with intercalators, and this property could be utilized in nanotechnology and medicine. Methods & results: Atomic force microscopy and electrophoretic mobility shift assays were used to show that cyclic diguanylic acid (c-di-GMP) forms G-wires in the presence of intercalators. The average fluorescence lifetime of thiazole orange, when bound to c-di-GMP was greater than when bound to DNA G-quadruplexes or dsDNA. The stability of c-di-GMP supramolecular polymers is dependent on both the nature of the cation present and the intercalator. C-di-GMP or cyclic diadenylic acid/intercalator complexes are more resistant to cleavage by YybT, a phosphodiesterase, than the uncomplexed nucleotides. Conclusion: Cleavage of bacterial cyclic dinucleotides could be slowed down via complexation with small molecules and that this could be utilized for diverse applications in nanotechnology and medicine. PMID:28031943

  11. Utilization of cross-linked chitosan/bentonite composite in the removal of methyl orange from aqueous solution.

    PubMed

    Huang, Ruihua; Liu, Qian; Zhang, Lujie; Yang, Bingchao

    2015-01-01

    A kind of biocomposite was prepared by the intercalation of chitosan in bentonite and the cross-linking reaction of chitosan with glutaraldehyde, which was referred to as cross-linked chitosan/bentonite (CCS/BT) composite. Adsorptive removal of methyl orange (MO) from aqueous solutions was investigated by batch method. The adsorption of MO onto CCS/BT composite was affected by the ratio of chitosan to BT and contact time. pH value had only a minor impact on MO adsorption in a wide pH range. Adsorption kinetics was mainly controlled by the pseudo-second-order kinetic model. The adsorption of MO onto CCS/BT composite followed the Langmuir isotherm model, and the maximum adsorption capacity of CCS/BT composite calculated by the Langmuir model was 224.8 mg/g. Experimental results indicated that this adsorbent had a potential for the removal of MO from aqueous solutions.

  12. Physical nature of ethidium and proflavine interactions with nucleic acid bases in the intercalation plane.

    PubMed

    Langner, Karol M; Kedzierski, Pawel; Sokalski, W Andrzej; Leszczynski, Jerzy

    2006-05-18

    On the basis of the crystallographic structures of three nucleic acid intercalation complexes involving ethidium and proflavine, we have analyzed the interaction energies between intercalator chromophores and their four nearest bases, using a hybrid variation-perturbation method at the second-order Møller-Plesset theory level (MP2) with a 6-31G(d,p) basis set. A total MP2 interaction energy minimum precisely reproduces the crystallographic position of the ethidium chromophore in the intercalation plane between UA/AU bases. The electrostatic component constitutes the same fraction of the total energy for all three studied structures. The multipole electrostatic interaction energy, calculated from cumulative atomic multipole moments (CAMMs), was found to converge only after including components above the fifth order. CAMM interaction surfaces, calculated on grids in the intercalation planes of these structures, reasonably reproduce the alignment of intercalators in crystal structures; they exhibit additional minima in the direction of the DNA grooves, however, which also need to be examined at higher theory levels if no crystallographic data are given.

  13. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X.

    PubMed

    Wang, Xuefeng; Shen, Xi; Gao, Yurui; Wang, Zhaoxiang; Yu, Richeng; Chen, Liquan

    2015-02-25

    MXenes represent a large family of functionalized two-dimensional (2D) transition-metal carbides and carbonitrides. However, most of the understanding on their unique structures and applications stops at the theoretical suggestion and lack of experimental support. Herein, the surface structure and intercalation chemistry of Ti3C2X are clarified at the atomic scale by aberration-corrected scanning transmission electron microscope (STEM) and density functional theory (DFT) calculations. The STEM studies show that the functional groups (e.g., OH(-), F(-), O(-)) and the intercalated sodium (Na) ions prefer to stay on the top sites of the centro-Ti atoms and the C atoms of the Ti3C2 monolayer, respectively. Double Na-atomic layers are found within the Ti3C2X interlayer upon extensive Na intercalation via two-phase transition and solid-solution reactions. In addition, aluminum (Al)-ion intercalation leads to horizontal sliding of the Ti3C2X monolayer. On the basis of these observations, the previous monolayer surface model of Ti3C2X is modified. DFT calculations using the new modeling help to understand more about their physical and chemical properties. These findings enrich the understanding of the MXenes and shed light on future material design and applications. Moreover, the Ti3C2X exhibits prominent rate performance and long-term cycling stability as an anode material for Na-ion batteries.

  14. First-principles investigation of aluminum intercalation and diffusion in TiO2 materials: Anatase versus rutile

    NASA Astrophysics Data System (ADS)

    Tang, Weiqiang; Xuan, Jin; Wang, Huizhi; Zhao, Shuangliang; Liu, Honglai

    2018-04-01

    Aluminum-ion batteries, emerging as a promising post-lithium battery solution, have been a subject of increasing research interest. Yet, most existing aluminum-ion research has focused on electrode materials development and synthesis. There has been a lack of fundamental understanding of the electrode processes and thus theoretical guidelines for electrode materials selection and design. In this study, by using density functional theory, we for the first time report a first-principles investigation on the thermodynamic and kinetic properties of aluminum intercalation into two common TiO2 polymorphs, i.e., anatase and rutile. After examining the aluminum intercalation sites, intercalation voltages, storage capacities and aluminum diffusion paths in both cases, we demonstrate that the stable aluminum intercalation site locates at the center of the O6 octahedral for TiO2 rutile and off center for TiO2 anatase. The maximum achievable Al/Ti ratios for rutile and anatase are 0.34375 and 0.36111, respectively. Although rutile is found to have an aluminum storage capacity slightly higher than anatase, the theoretical specific energy of rutile can reach 20.90 Wh kg-1, nearly twice as high as anatase (9.84 Wh kg-1). Moreover, the diffusion coefficient of aluminum ions in rutile is 10-9 cm2 s-1, significantly higher than that in anatase (10-20 cm2 s-1). In this regard, TiO2 rutile appears to be a better candidate than anatase as an electrode material for aluminum-ion batteries.

  15. The graphene oxide membrane immersing in the aqueous solution studied by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjing; Chen, Zhe; Yao, Lei; Wang, Xiao; Fu, Ping; Lin, Zhidong

    2018-04-01

    The interlayer spacing of graphene oxide (GO) is a key property for GO membrane. To probe the variation of interlayer spacing of the GO membrane immersing in KCl aqueous solution, electrochemical impedance spectroscopy (EIS), x-ray diffraction (XRD) and computational calculation was utilized in this study. The XRD patterns show that soaking in KCl aqueous solution leads to an increase of interlayer spacing of GO membrane. And the EIS results indicate that during the immersing process, the charge transfer resistance of GO membrane decreases first and then increases. Computational calculation confirms that intercalated water molecules can result in an increase of interlayer spacing of GO membrane, while the permeation of K+ ions would lead to a decrease of interlayer spacing. All the results are in agreement with each other. It suggests that during the immersing process, the interlayer spacing of GO enlarges first and then decreases. EIS can be a promisingly online method for examining the interlayer spacing of GO in the aqueous solution.

  16. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOEpatents

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  17. Tunable thermal expansion in framework materials through redox intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun; Gao, Qilong; Sanson, Andrea

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less

  18. Tunable thermal expansion in framework materials through redox intercalation

    DOE PAGES

    Chen, Jun; Gao, Qilong; Sanson, Andrea; ...

    2017-02-09

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less

  19. Structural and thermal properties of inorganic-organic montmorillonite: Implications for their potential environmental applications.

    PubMed

    Rathnayake, Suramya I; Xi, Yunfei; Frost, Ray L; Ayoko, Godwin A

    2015-12-01

    Inorganic-organic clays (IOCs), clays intercalated with both organic cations such as cationic surfactants and inorganic cations such as metal hydroxy polycations have the properties of both organic and pillared clays, and thereby the ability to remove both inorganic and organic contaminants from water simultaneously. In this study, IOCs were synthesised using three different methods with different surfactant concentrations. Octadecyltrimethylammonium bromide (ODTMA) and hydroxy aluminium ([Al13O4(OH)24(H2O)12](7+) or Al13) are used as the organic and inorganic modifiers (intercalation agents). According to the results, the interlayer distance, the surfactant loading amount and the Al/Si ratio of IOCs strictly depend on the intercalation method and the intercalation agent ratio. Interlayers of IOCs synthesised by intercalating ODTMA before Al13 and IOCs synthesised by simultaneous intercalation of ODTMA and Al13 were increased with increasing the ODTMA concentration used in the synthesis procedure and comparatively high loading amounts could be observed in them. In contrast, Al/Si decreased with increasing ODTMA concentration in these two types of IOCs. The results suggest that Al-pillars can be fixed within the interlayers by calcination and any increment in the amount of ODTMA used in the synthesis procedure did not affect the interlayer distance of the IOCs. Overall the study provides valuable insights into the structure and properties of the IOCs and their potential environmental applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling

    NASA Astrophysics Data System (ADS)

    Holešová, Sylva; Valášková, Marta; Hlaváč, Dominik; Madejová, Jana; Samlíková, Magda; Tokarský, Jonáš; Pazdziora, Erich

    2014-06-01

    Clay minerals are commonly used materials in pharmaceutical production both as inorganic carriers or active agents. The purpose of this study is the preparation and characterization of clay/antibacterial drug hybrids which can be further included in drug delivery systems for treatment oral infections. Novel nanocomposites with antibacterial properties were successfully prepared by ion exchange reaction from two types of kaolinite/urea intercalates and chlorhexidine diacetate. Intercalation compounds of kaolinite were prepared by reaction with solid urea in the absence of solvents (dry method) as well as with urea aqueous solution (wet method). The antibacterial activity of two prepared samples against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was evaluated by finding the minimum inhibitory concentration (MIC). Antibacterial studies of both samples showed the lowest MIC values (0.01%, w/v) after 1 day against E. faecalis, E. coli and S. aureus. A slightly worse antibacterial activity was observed against P. aeruginosa (MIC 0.12%, w/v) after 1 day. Since samples showed very good antibacterial activity, especially after 1 day of action, this means that these samples can be used as long-acting antibacterial materials. Prepared samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental data are supported by results of molecular modelling.

  1. NMR solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: Intercalation from the minor groove with ruptured Watson-Crick base pairing

    PubMed Central

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H.; Cai, Yuqin; Rodriguez, Fabian A.; Sayer, Jane M.; Jerina, Donald M.; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2012-01-01

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the non-planar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely-studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14-position with the exocyclic amino group of guanine. Here, we present the first NMR solution structure of a DB[a,l]P-derived adduct, the 14R (+)-trans-anti-DB[a,l]P–N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3’-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3’-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE - DNA adduct conformation differs from: (1) the classical intercalation motif where Watson-Crick base-pairing is intact at the lesion site, and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix . The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed. PMID:23121427

  2. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing.

    PubMed

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H; Cai, Yuqin; Rodriguez, Fabian A; Sayer, Jane M; Jerina, Donald M; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2012-12-04

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.

  3. Electrochemical and Spectroscopic Analysis of Mg2+ Intercalation into Thin Film Electrodes of Layered Oxides: V2O5 and MoO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershinsky, G; Yoo, HD; Gofer, Y

    Electrochemical, surface, and structural studies related to rechargeable Mg batteries were carried out with monolithic thin-film cathodes comprising layered V2O5 and MoO3. The reversible intercalation reactions of these electrodes with Mg ion in nonaqueous Mg salt solutions were explored using a variety of analytical tools. These included slow-scan rate cyclic voltammetry (SSCV), chrono-potentiometry (galvanostatic cycling), Raman and photoelectron spectroscopies, high-resolution microscopy, and XRD. The V2O5 electrodes exhibited reversible Mg-ion intercalation at capacities around 150-180 mAh g(-1) with 100% efficiency. A capacity of 220 mAh g(-1) at >95% efficiency was obtained with MoO3 electrodes. By applying the electrochemical driving force sufficientlymore » slowly it was possible to measure the electrodes at equilibrium conditions and verify by spectroscopy, microscopy, and diffractometry that these electrodes undergo fully reversible structural changes upon Mg-ion insertion/deinsertion cycling.« less

  4. Functional interface of polymer modified graphite anode

    NASA Astrophysics Data System (ADS)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  5. New multifunctional materials obtained by the intercalation of anionic dyes into layered zinc hydroxide nitrate followed by dispersion into poly(vinyl alcohol) (PVA).

    PubMed

    Marangoni, Rafael; Ramos, Luiz Pereira; Wypych, Fernando

    2009-02-15

    Different anionic blue and orange dyes have been immobilized on a zinc hydroxide nitrate (Zn(5)(OH)(8)(NO(3))(2)nH(2)O--Zn-OH-NO(3)) by anion exchange with interlayer and/or outer surface nitrate ions of the layered matrix. Orange G (OG) was totally intercalated, orange II (OII) was partially intercalated, while Niagara blue 3B (NB) and Evans blue (EV) were only adsorbed at the outer surface. Several composite films of poly(vinyl alcohol)--PVA were prepared by casting through the dispersion of the hybrid material (Zn-OH-OG) into a PVA aqueous solution and evaporation of water in a vacuum oven. The obtained composite films were transparent, colored, and capable of absorbing UV radiation. Improved mechanical properties were also obtained in relation to the nonfilled PVA films. These results demonstrate the onset of a new range of potential applications for layered hydroxide salts in the preparation of polymer composite multifunctional materials.

  6. Processing of monolayer materials via interfacial reactions

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2014-05-20

    A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

  7. Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method

    PubMed Central

    Hu, Zhimi; Xiao, Xu; Jin, Huanyu; Li, Tianqi; Chen, Ming; Liang, Zhun; Guo, Zhengfeng; Li, Jia; Wan, Jun; Huang, Liang; Zhang, Yanrong; Feng, Guang; Zhou, Jun

    2017-01-01

    Because of their exotic electronic properties and abundant active sites, two-dimensional (2D) materials have potential in various fields. Pursuing a general synthesis methodology of 2D materials and advancing it from the laboratory to industry is of great importance. This type of method should be low cost, rapid and highly efficient. Here, we report the high-yield synthesis of 2D metal oxides and hydroxides via a molten salts method. We obtained a high-yield of 2D ion-intercalated metal oxides and hydroxides, such as cation-intercalated manganese oxides (Na0.55Mn2O4·1.5H2O and K0.27MnO2·0.54H2O), cation-intercalated tungsten oxides (Li2WO4 and Na2W4O13), and anion-intercalated metal hydroxides (Zn5(OH)8(NO3)2·2H2O and Cu2(OH)3NO3), with a large lateral size and nanometre thickness in a short time. Using 2D Na2W4O13 as an electrode, a high performance electrochemical supercapacitor is achieved. We anticipate that our method will enable new path to the high-yield synthesis of 2D materials for applications in energy-related fields and beyond. PMID:28555669

  8. Intercalation of amino acids and oligopeptides into Zn Al layered double hydroxide by coprecipitation reaction

    NASA Astrophysics Data System (ADS)

    Aisawa, Sumio; Sasaki, Shuji; Takahashi, Satoshi; Hirahara, Hidetoshi; Nakayama, Hirokazu; Narita, Eiichi

    2006-05-01

    The coprecipitation of amino acids and oligopeptides with the Zn Al LDH was investigated using phenylalanine (Phe), phenylalanyl-phenylalanine (Phe-Phe), glycyl-phenylalanine (Gly Phe), glycine (Gly), glycyl-glycine (Gly Gly), glycyl-glycyl-glycine (Gly Gly Gly) and N-(N-γ-glutamyl-cysteinyl)-glycine (GSH) as guest species. The coprecipitation behavior of amino acids and oligopeptides was found to be influenced by the solution pH and the kind of their side chain groups, and reached the maximum at pH 8 or 9. The basal spacing, d003, of the Phe, Phe-Phe and GSH/LDH was 1.81, 2.41 and 1.64 nm, supporting that guests were arranged vertical to the LDH basal layer. Acceding to the basal spacing of the Gly, Gly Gly and Gly Gly Gly/LDH (d003=0.84 0.88 nm), these guests were oriented horizontal to the LDH basal layer with the co-intercalated NO3-. Moreover, the amount of Phe-Phe, Gly Gly and Gly Gly Gly intercalated was almost the same as that of Phe and Gly despite increasing the number peptide bond and the molecular size. GSH was intercalated into the LDH interlayer space as GSH oxidized form with bridged LDH layers by their carboxylate groups.

  9. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    PubMed

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  10. Alkali metal intercalated fullerene-like MS(2) (M = W, Mo) nanoparticles and their properties.

    PubMed

    Zak, Alla; Feldman, Yishay; Lyakhovitskaya, Vera; Leitus, Gregory; Popovitz-Biro, Ronit; Wachtel, Ellen; Cohen, Hagai; Reich, Shimon; Tenne, Reshef

    2002-05-01

    Layered metal disulfides-MS(2) (M = Mo, W) in the form of fullerene-like nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The alkali metal concentration in the host lattice was found to depend on the kind of sample and the experimental conditions. Furthermore, an inhomogeneity of the intercalated samples was observed. The product consisted of both nonintercalated and intercalated phases. X-ray diffraction analysis and transmission electron microscopy of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 A) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. Deintercalation of the hydrated alkali atoms and restacking of the MS(2) layers was observed in all the samples after prolonged exposure to the atmosphere. Electric field induced deintercalation of the alkali metal atoms from the host lattice was also observed by means of the XPS technique. Magnetic moment measurements for all the samples indicate a diamagnetic to paramagnetic transition after intercalation. Measurements of the transport properties reveal a semiconductor to metal transition for the heavily K intercalated 2H-MoS(2). Other samples show several orders of magnitude decrease in resistivity and two- to five-fold decrease in activation energies upon intercalation. These modifications are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Recovery of the pristine compound properties (diamagnetism and semiconductivity) was observed as a result of deintercalation.

  11. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier

    PubMed Central

    Tian, Shuangyan; Li, Juan; Tao, Qi; Zhao, Yawen; Lv, Zhufen; Yang, Fan; Duan, Haoyun; Chen, Yanzhong; Zhou, Qingjun; Hou, Dongzhi

    2018-01-01

    Background Glaucoma is a serious eye disease that can lead to loss of vision. Unfortunately, effective treatments are limited by poor bioavailability of antiglaucoma medicine due to short residence time on the preocular surface. Materials and methods To solve this, we successfully prepared novel controlled-release ion-exchange microparticles to deliver betaxolol hydrochloride (BH). Montmorillonite/BH complex (Mt-BH) was prepared by acidification-intercalation, and this complex was encapsulated in microspheres (Mt-BH encapsulated microspheres [BMEMs]) by oil-in-oil emulsion–solvent evaporation method. The BH loaded into ion-exchange Mt was 47.45%±0.54%. After the encapsulation of Mt-BH into Eudragit microspheres, the encapsulation efficiency of BH into Eudragit microspheres was 94.35%±1.01% and BH loaded into Eudragit microspheres was 14.31%±0.47%. Results Both Fourier transform infrared spectra and X-ray diffraction patterns indicated that BH was successfully intercalated into acid-Mt to form Mt-BH and then Mt-BH was encapsulated into Eudragit microspheres to obtain BMEMs. Interestingly, in vitro release duration of the prepared BMEMs was extended to 12 hours, which is longer than both of the BH solution (2.5 hours) and the conventional BH microspheres (5 hours). Moreover, BMEM exhibited lower toxicity than that of BH solution as shown by the results of cytotoxicity tests, chorioallantoic membrane-trypan blue staining, and Draize rabbit eye test. In addition, both in vivo and in vitro preocular retention capacity study of BMEMs showed a prolonged retention time. The pharmacodynamics showed that BMEMs could extend the drug duration of action. Conclusion The developed BMEMs have the potential to be further applied as ocular drug delivery systems for the treatment of glaucoma. PMID:29391798

  12. An intercalated BSc degree is associated with higher marks in subsequent medical school examinations

    PubMed Central

    Cleland, Jennifer A; Milne, Andrew; Sinclair, Hazel; Lee, Amanda J

    2009-01-01

    Background To compare medical students on a modern MBChB programme who did an optional intercalated degree with their peers who did not intercalate; in particular, to monitor performance in subsequent undergraduate degree exams. Methods This was a retrospective, observational study of anonymised databases of medical student assessment outcomes. Data were accessed for graduates, University of Aberdeen Medical School, Scotland, UK, from the years 2003 to 2007 (n = 861). The main outcome measure was marks for summative degree assessments taken after intercalating. Results Of 861 medical students, 154 (17.9%) students did an intercalated degree. After adjustment for cohort, maturity, gender and baseline (3rd year) performance in matching exam type, having done an IC degree was significantly associated with attaining high (18–20) common assessment scale (CAS) marks in three of the six degree assessments occurring after the IC students rejoined the course: the 4th year written exam (p < 0.001), 4th year OSCE (p = 0.001) and the 5th year Elective project (p = 0.010). Conclusion Intercalating was associated with improved performance in Years 4 and 5 of the MBChB. This improved performance will further contribute to higher academic ranking for Foundation Year posts. Long-term follow-up is required to identify if doing an optional intercalated degree as part of a modern medical degree is associated with following a career in academic medicine. PMID:19454007

  13. Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions.

    PubMed

    Mitzi, David B; Medeiros, David R; Malenfant, Patrick R L

    2002-04-22

    Crystals of several new hybrid tin(II) iodide-based perovskites, involving 2,3,4,5,6- pentafluorophenethylammonium or phenethylammonium cation bilayers and intercalated aryl or perfluoroaryl molecules, were grown by slow evaporation of a methanol solution containing the hybrid perovskite and the intercalating species. The (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) structure was solved at -75 degrees C in a monoclinic C2/c subcell [a = 41.089(12) A, b = 6.134(2) A, c = 12.245(3) A, beta = 94.021(5) degrees, Z = 4] and consists of sheets of corner-sharing distorted SnI(6) octahedra separated by bilayers of pentafluorophenethylammonium cations. The intercalated benzene molecules form a single well-ordered layer interposed between adjacent fluoroaryl cation layers. The corresponding hybrid with an unfluorinated organic cation and fluorinated intercalating molecule, (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)), is isostructural [a = 40.685(4) A, b = 6.0804(6) A, c = 12.163(1) A, beta = 93.136(2) degrees, Z = 4]. For each intercalated system, close C...C contacts (3.44-3.50 A) between the aromatic cation and the intercalated molecule are indicative of a significant face-to-face interaction, similar to that found in the complex C(6)H(6).C(6)F(6). Crystal growth runs with the organic cation and prospective intercalating molecule either both fluorinated or both unfluorinated did not yield stable intercalated compounds, demonstrating the significance of fluoroaryl-aryl interactions in the current intercalated structures. Thermal analysis of (C(6)F(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)H(6)) and (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)) crystals yields, in addition to the characteristic transitions of the parent perovskite, endothermic transitions [12.6(5) and 32.1(8) kJ/mol, respectively] with an onset at 145 degrees C and a weight loss corresponding to the complete loss of the intercalated molecule. The relatively high deintercalation temperature (well above the boiling point of benzene and hexafluorobenzene) demonstrates the usefulness of the hybrid perovskites in providing a stable framework for the examination of the fluoroaryl-aryl interaction, as well as the potential importance of this interaction in tailoring new hybrid perovskites. UV-vis absorption measurements on (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4).(C(6)F(6)) thin films indicate a small reversible wavelength shift to higher energy for the tin(II) iodide framework exciton peak (with respect to that of the parent perovskite spectrum), from 608(2) nm [2.04 eV] to 595(2) nm [2.08 eV], and a corresponding shift in the band edge position. This spectral shift can most reasonably be attributed to subtle structural changes induced in the tin(II) iodide sheets by the intercalated hexafluorobenzene molecules.

  14. Electrochemical method of producing nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  15. A new battery-charging method suggested by molecular dynamics simulations.

    PubMed

    Abou Hamad, Ibrahim; Novotny, M A; Wipf, D O; Rikvold, P A

    2010-03-20

    Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li(+) ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li(+) ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.

  16. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  17. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negativemore » electrode active material is described.« less

  18. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  19. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  20. Indirect measurement of N-14 quadrupolar coupling for NH3 intercalated in potassium graphite

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.

    1987-01-01

    A method for indirect measurement of the nuclear quadrupolar coupling was developed and applied to NH3 molecules in the graphite intercalation compound K(NH3)4.3C24, which has a layered structure with alternating carbon and intercalant layers. Three triplets were observed in the H-1 NMR spectra of the compound. The value of the N-14 quadrupolar coupling constant of NH3 (3.7 MHz), determined indirectly from the H-1 NMR spectra, was intermediate between the gas value of 4.1 MHz and the solid-state value of 3.2 MHz. The method was also used to deduce the (H-1)-(H-1) and (N-14)-(H-1) dipolar interactions, the H-1 chemical shifts, and the molecular orientations and motions of NH3.

  1. Spatially controlled doping of two-dimensional SnS 2 through intercalation for electronics

    DOE PAGES

    Gong, Yongji; Yuan, Hongtao; Wu, Chun-Lan; ...

    2018-02-26

    Doped semiconductors are the most important building elements for modern electronic devices. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturallymore » grown n-type S-vacancy SnS 2, Cu intercalated bilayer SnS 2 obtained by this technique displays a hole field-effect mobility of ~40 cm 2 V -1 s -1, and the obtained Co-SnS 2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene. Combining this intercalation technique with lithography, an atomically seamless p–n–metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.« less

  2. Possible Mg intercalation mechanism at the Mo6 S8 cathode surface proposed by first-principles methods

    NASA Astrophysics Data System (ADS)

    Wan, Liwen; Prendergast, David

    2015-03-01

    In recent years, great attention has been paid to the development of divalent Mg-ion batteries, which can potentially double the energy density and volumetric capacity compared to monovalent Li-ion batteries. The prototype Mg-ion battery, comprising Mg(anode)/Mg(AlCl2BuEt)2.THF(electrolyte)/Mo6S8(cathode), was established in 2000 by Aurbach et al. Despite the remarkable success of this prototype system, we still lack a clear understanding of the fundamental Mg intercalation/deposition mechanism at the electrolyte/electrode interfaces that perhaps results in the observed sluggish Mg transport process. Our previous work has shown that Mg-ions are strongly coordinated in the bulk electrolyte by a combination of counterion, Cl-, and organic aprotic solvent, THF. In this work, we use first-principles methods to study Mg intercalation behavior at the Mo6S8 cathode surface with the presence of solvent molecules. It is found that the image charge, formed on this metallic cathode surface, can effectively weaken the solvent-surface interactions and facilitate Mg intercalation. A detailed Mg intercalation mechanism is proposed and the unique role of Mo6S8 as the cathode material is emphasized. This work is supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  3. Spatially controlled doping of two-dimensional SnS 2 through intercalation for electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yongji; Yuan, Hongtao; Wu, Chun-Lan

    Doped semiconductors are the most important building elements for modern electronic devices. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturallymore » grown n-type S-vacancy SnS 2, Cu intercalated bilayer SnS 2 obtained by this technique displays a hole field-effect mobility of ~40 cm 2 V -1 s -1, and the obtained Co-SnS 2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene. Combining this intercalation technique with lithography, an atomically seamless p–n–metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.« less

  4. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics

    NASA Astrophysics Data System (ADS)

    Gong, Yongji; Yuan, Hongtao; Wu, Chun-Lan; Tang, Peizhe; Yang, Shi-Ze; Yang, Ankun; Li, Guodong; Liu, Bofei; van de Groep, Jorik; Brongersma, Mark L.; Chisholm, Matthew F.; Zhang, Shou-Cheng; Zhou, Wu; Cui, Yi

    2018-04-01

    Doped semiconductors are the most important building elements for modern electronic devices1. In silicon-based integrated circuits, facile and controllable fabrication and integration of these materials can be realized without introducing a high-resistance interface2,3. Besides, the emergence of two-dimensional (2D) materials enables the realization of atomically thin integrated circuits4-9. However, the 2D nature of these materials precludes the use of traditional ion implantation techniques for carrier doping and further hinders device development10. Here, we demonstrate a solvent-based intercalation method to achieve p-type, n-type and degenerately doped semiconductors in the same parent material at the atomically thin limit. In contrast to naturally grown n-type S-vacancy SnS2, Cu intercalated bilayer SnS2 obtained by this technique displays a hole field-effect mobility of 40 cm2 V-1 s-1, and the obtained Co-SnS2 exhibits a metal-like behaviour with sheet resistance comparable to that of few-layer graphene5. Combining this intercalation technique with lithography, an atomically seamless p-n-metal junction could be further realized with precise size and spatial control, which makes in-plane heterostructures practically applicable for integrated devices and other 2D materials. Therefore, the presented intercalation method can open a new avenue connecting the previously disparate worlds of integrated circuits and atomically thin materials.

  5. Effect of in-situ bonding system and surface modification of montmorillonite on the properties of butyl rubber/MMT composites

    NASA Astrophysics Data System (ADS)

    Halim, S. F.; Lawandy, S. N.; Nour, M. A.

    2012-07-01

    Isobutylene-isoprene rubber (IIR)/nanoclay composites were prepared by solution intercalation method. Cloisite Na+ nanoclays and organo-modified montmorillonite (OMT) Cloisite 10 A,.15 A and 20 A were used in this study. The effect of In-situ bonding system HRH (hexametylene tetramine: resorcinol: hydrated silica) on the dispersion of used nanoclays in the rubber matrix were examined by X-ray diffraction and atomic force microscopy (AFM). Characterization of the prepared composites was performed by studying the rheometeric and mechanical properties. The burning out behavior of the nanocomposites with and without the bonding system was also measured.

  6. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Kong, Rongmei; Xu, Mingming

    2015-02-01

    The interaction between apigenin and calf thymus deoxyribonucleic acid (ctDNA) in a pH 7.4 Tris-HCl buffer solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. It was found that apigenin molecules could intercalate into the base pairs of DNA, forming a apigenin-DNA complex with a binding constant of K310K = 6.4 × 104 L mol-1. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) and Gibbs free energy (ΔG) were calculated to be 7.36 × 104 J mol-1, 329 J K-1 mol-1 and -2.84 × 104 J mol-1 at 310 K, respectively. Hydrophobic interaction was the predominant intermolecular force in stabilizing the apigenin-DNA complex. Thermal denaturation study suggested that the stabilization of the ctDNA helix was increased when the apigenin binding to ctDNA as indicated by the increase in thermal denaturation temperature of ctDNA at around 5.0 °C in the presence of apigenin. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between apigenin and ctDNA.

  7. Stochasticity and stereotypy in the Ciona notochord.

    PubMed

    Carlson, Maia; Reeves, Wendy; Veeman, Michael

    2015-01-15

    Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Stochasticity and Stereotypy in the Ciona Notochord

    PubMed Central

    Carlson, Maia; Reeves, Wendy; Veeman, Michael

    2015-01-01

    Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. PMID:25459659

  9. Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect.

    PubMed

    Liu, Yu; Dinh, Jim; Tade, Moses O; Shao, Zongping

    2016-09-14

    Oxygen ions can be exploited as a charge carrier to effectively realize a new type of anion-intercalation supercapacitor. In this study, to get some useful guidelines for future materials development, we comparatively studied SrCoO3-δ (SC), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), and Co3O4 as electrodes in supercapacitors with aqueous alkaline electrolyte. The effect of interaction between the electrode materials with the alkaline solution was focused on the structure and specific surface area of the electrode material, and ultimately the electrochemical performance was emphasized. Both BSCF and SC were found to experience cation leaching in alkaline solution, resulting in an increase in the specific surface area of the material, but overleaching caused the damage of perovskite structure of BSCF. Barium leaching was more serious than strontium, and the cation leaching was component dependent. Although high initial capacitance was achieved for BSCF, it was not a good candidate as intercalation-type electrode for supercapacitor because of poor cycling stability from serious Ba(2+) and Sr(2+) leaching. Instead, SC was a favorable electrode candidate for practical use in supercapacitors due to its high capacity and proper cation leaching capacity, which brought beneficial effect on cycling stability. It is suggested that cation leaching effect should be seriously considered in the development of new perovskite materials as electrodes for supercapacitors.

  10. Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution.

    PubMed

    Yu, Shujun; Wang, Xiangxue; Chen, Zhongshan; Wang, Jian; Wang, Suhua; Hayat, Tasawar; Wang, Xiangke

    2017-01-05

    Aniline is toxic and hard to be degraded, and thereby causes the environmental pollution seriously. Herein, a practical and green hydrothermal method was applied to fabricate terephthalic acid and pyromellitic acid intercalated layered double hydroxides (LDH) (named as TAL and PAL) for aniline efficient removal. The sorption of aniline on LDH-based materials were investigated at different experimental conditions, and the results indicated that aniline sorption on LDH, TAL and PAL were strongly dependent on pH and independent of ionic strength. The maximum sorption capacities of aniline on TAL and PAL at pH 5.0 and 293K were 90.4 and 130.0mg/g, respectively, which were significantly higher than that of aniline on LDH (52.6mg/g). Based on the BET, FTIR and XPS analysis, the higher sorption capacities of TAL and PAL were mainly due to high surface area and basal spacing as well as the abundant functional groups (e.g. -COO - ). The interactions of aniline with TAL and PAL were mainly dominated by hydrogen bonds and electrostatic interactions. Such a facile synthesis method, efficient removal performance and superior reusability indicated that the aromatic acid modified LDH materials had potential application for efficient treatment of organic pollutants in environmental pollution cleanup. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Production of ultra-thin nano-scaled graphene platelets from meso-carbon micro-beads

    DOEpatents

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z

    2014-11-11

    A method of producing nano-scaled graphene platelets (NGPs) having an average thickness no greater than 50 nm, typically less than 2 nm, and, in many cases, no greater than 1 nm. The method comprises (a) intercalating a supply of meso-carbon microbeads (MCMBs) to produce intercalated MCMBs; and (b) exfoliating the intercalated MCMBs at a temperature and a pressure for a sufficient period of time to produce the desired NGPs. Optionally, the exfoliated product may be subjected to a mechanical shearing treatment, such as air milling, air jet milling, ball milling, pressurized fluid milling, rotating-blade grinding, or ultrasonicating. The NGPs are excellent reinforcement fillers for a range of matrix materials to produce nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  12. Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems

    DOE PAGES

    Martinez, Ulises; Dumont, Joseph H.; Holby, Edward F.; ...

    2016-03-18

    Graphitic materials are very essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction. We demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization, substantially affecting the oxygen reduction reaction (ORR) activity and stability of nitrogen-doped graphitic systems. Amid contrasting reports describing the ORR activity of GN-based catalysts in alkaline electrolytes, we demonstratemore » superior activity in an acidic electrolyte with an onset potential of ~0.9 V, a half-wave potential (E ½) of 0.71 V, and a selectivity for four-electron reduction of >95%. Finally and further, durability testing showed E ½ retention >95% in N 2- and O 2-saturated solutions after 2000 cycles, demonstrating the highest ORR activity and stability reported to date for GN-based electrocatalysts in acidic media.« less

  13. Synthesis and characterization of [4-(2,4-dichlorophenoxybutyrate)-zinc layered hydroxide] nanohybrid

    NASA Astrophysics Data System (ADS)

    Hussein, Mohd Zobir; Hashim, Norhayati; Yahaya, Asmah Hj.; Zainal, Zulkarnain

    2010-05-01

    A new layered organic-inorganic nanohybrid material in which an agrochemical, 4-(2,4-dichlorophenoxy)butyrate (DPBA) is intercalated into inorganic interlayers of zinc layered hydroxide (ZLH) was synthesized by direct reaction of aqueous DPBA solution with zinc oxide. The resulting nanohybrid is composed of the organic moieties, DPBA sandwiched between ZLH inorganic interlayers. The nanohybrid afforded well ordered crystalline layered structure, a basal spacing of 29.6 Å, 23.5% carbon (w/w) and 47.9% (w/w) loading of DPBA. FTIR study shows that the absorption bands of the resulting nanohybrid composed the FTIR characteristics of both the DPBA and ZLH which further confirmed the intercalation episode. The intercalated organic moiety in the form of nanohybrid is thermally more stable than its sodium salt. Scanning electron micrograph shows the ZnO precursor has very fine granular structure and transformed into a flake-like when the nanohybrid is formed. This work shows that the nanohybrid of DPBA-ZLH can be synthesized using simple, direct reaction of ZnO and DPBA under aqueous environment for the formation of a new generation of agrochemical.

  14. Synthesis and characterization of intercalated few-layer graphenes

    NASA Astrophysics Data System (ADS)

    Sato, Shogo; Ichikawa, Hiroaki; Iwata, Nobuyuki; Yamamoto, Hiroshi

    2014-02-01

    Toward achieving room-temperature superconductivity, FeCl3-intercalated few-layer graphenes (FeCl3-FLGs) and Ca-intercalated few-layer graphenes (Ca-FLGs) were synthesized. FeCl3-FLGs were synthesized by the two-zone method and Ca-FLGs were synthesized using Ca-Li alloy. The Raman spectra of the FeCl3-FLGs showed a lower-intensity peak at 1607 cm-1 than that of the corresponding bare G. The peak at 1607 cm-1 suggested that the sample was stage 4-5 FeCl3-FLGs. The room-temperature electrical resistivity of FeCl3-FLGs was 2.65 × 10-5 Ω·m, which linearly decreased with decreasing temperature with a marked change occurring at approximately 200 K. From a XRD pattern of Ca-FLGs, we concluded that Ca is intercalated in FLGs. The room-temperature resistivity of Ca-FLGs was 3.45 × 10-5 Ω·m, which increased with decreasing temperature.

  15. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    DOEpatents

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  16. The combined medical/PhD degree: a global survey of physician-scientist training programmes.

    PubMed

    Alamri, Yassar

    2016-06-01

    Typically lasting 7-9 years, medical-scientist training programmes (MSTPs) allow students a unique opportunity to simultaneously intercalate medical (MBBS, MBChB or MD) and research (PhD) degrees. The nature of both degrees means that the combined programme is arduous, and selection is often restricted to a few highly motivated students. Despite the many successes of MSTPs, enthusiasm about MSTPs and the number of intercalating students, at least in some countries, appear to be diminishing. In this review, I shed light on MSTPs around the world, highlight the plethora of successes such programmes have had and provide insights on the setbacks experienced and solutions offered, with the aim of reigniting interest in these programmes. © 2016 Royal College of Physicians.

  17. Purification and preparation of graphite oxide from natural graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphitemore » is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.« less

  18. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films

    PubMed Central

    Wu, Junsheng; Peng, Dongdong; He, Yuntao; Du, Xiaoqiong; Zhang, Zhan; Zhang, Bowei; Li, Xiaogang; Huang, Yizhong

    2017-01-01

    A layered double hydroxide (LDH) film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V) film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM). The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS), scanning electrochemical microscopy (SECM), and a salt-spray test (SST).The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film. PMID:28772785

  19. Nanogold-functionalized DNAzyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay.

    PubMed

    Zhou, Jun; Lai, Wenqiang; Zhuang, Junyang; Tang, Juan; Tang, Dianping

    2013-04-10

    A novel and in situ amplified immunoassay strategy with quadruple signal amplification was designed for highly efficient electrochemical detection of low-abundance proteins (carcinoembryonic antigen, CEA, as a model) by using nanogold-functionalized DNAzyme concatamers with redox-active intercalators. To construct such an in situ amplification system, streptavidin-labeled gold nanoparticles (AuNP-SA) were initially used for the labelling of initiator strands (S0) and detection antibody (mAb2) with a large ratio (mAb2-AuNP-S0), and then two auxiliary DNA strands S1 and S2 were designed for in situ propagation of DNAzyme concatamers with the hemin/G-quadruplex format. The quadruple signal amplification was implemented by using the avidin-biotin chemistry, nanogold labels, DNA concatamers, and DNAzymes. In the presence of target CEA, the sandwiched immunocomplex was formed between the immobilized primary antibodies on the electrode and the conjugated detection antibodies on the mAb2-AuNP-S0. The carried S0 initiator strands could progress a chain reaction of hybridization events between alternating S1/S2 DNA strands to form a nicked double-helix. Upon addition of hemin, the hemin-binding aptamers could be bound to form the hemin/G-quadruplex-based DNAzymes. The formed double-helix DNA polymers could cause the intercalation of numerous electroactive methylene blue molecules. During the electrochemical measurement, the formed DNAzymes could catalyze the reduction of H2O2 in the solution to amplify the electrochemical signal of the intercalated methylene blue. Under optimal conditions, the electrochemical immunoassay exhibited a wide dynamic range of 1.0 fg mL(-1) to 20 ng mL(-1) toward CEA standards with a low detection limit of 0.5 fg mL(-1). Intra-assay and inter-assay coefficients of variation (CV) were less than 8.5% and 11.5%, respectively. No significant differences at the 0.05 significance level were encountered in the analysis of 14 clinical serum specimens between the developed immunoassay and commercialized electrochemiluminescent (ECL) method for detection of CEA.

  20. Physical and Chemical Interactions between Mg:Al Layered Double Hydroxide and Hexacyanoferrate

    NASA Astrophysics Data System (ADS)

    Boclair, Joseph W.; Braterman, Paul S.; Brister, Brian D.; Wang, Zhiming; Yarberry, Faith

    2001-11-01

    The physical and chemical interactions of ferrocyanide (potassium and ammonium salts) and ferricyanide (potassium salt) with Mg:Al layered double hydroxides (LDH) (having Mg:Al ratios of 2 and 3) are investigated using powder XRD and FTIR spectroscopy. Physically, the potassium ferricyanide is shown to intercalate with a small local field deformation similar to that seen for hexacyanocobaltate (III) in similar materials. Chemically, the reduction of ferricyanide to ferrocyanide upon intercalation is confirmed. Physical interactions of ferrocyanide with 3:1 LDH are shown spectroscopically to include the possible generation of anions in differing environments. Chemically, ferrocyanide is shown to generate cubic ferrocyanides (of the type M2MgFe(CN)6, where M=K+ or NH+4) under conditions where free Mg2+ is likely present in solution, namely, solutions with a pH lower than ∼7.5. It is shown that the reported 2112-cm-1 band found in some chemically altered LDH ferrocyanide is indeed due to interlayer ferricyanide, but that the 2080 cm-1 band is due to the cubic material.

  1. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  2. Method for producing thin graphite flakes with large aspect ratios

    DOEpatents

    Bunnell, L. Roy

    1993-01-01

    A method for making graphite flakes of high aspect ratio by the steps of providing a strong concentrated acid and heating the graphite in the presence of the acid for a time and at a temperature effective to intercalate the acid in the graphite; heating the intercalated graphite at a rate and to a temperature effective to exfoliate the graphite in discrete layers; subjecting the graphite layers to ultrasonic energy, mechanical shear forces, or freezing in an amount effective to separate the layes into discrete flakes.

  3. Evaluation of quantification methods for real-time PCR minor groove binding hybridization probe assays.

    PubMed

    Durtschi, Jacob D; Stevenson, Jeffery; Hymas, Weston; Voelkerding, Karl V

    2007-02-01

    Real-time PCR data analysis for quantification has been the subject of many studies aimed at the identification of new and improved quantification methods. Several analysis methods have been proposed as superior alternatives to the common variations of the threshold crossing method. Notably, sigmoidal and exponential curve fit methods have been proposed. However, these studies have primarily analyzed real-time PCR with intercalating dyes such as SYBR Green. Clinical real-time PCR assays, in contrast, often employ fluorescent probes whose real-time amplification fluorescence curves differ from those of intercalating dyes. In the current study, we compared four analysis methods related to recent literature: two versions of the threshold crossing method, a second derivative maximum method, and a sigmoidal curve fit method. These methods were applied to a clinically relevant real-time human herpes virus type 6 (HHV6) PCR assay that used a minor groove binding (MGB) Eclipse hybridization probe as well as an Epstein-Barr virus (EBV) PCR assay that used an MGB Pleiades hybridization probe. We found that the crossing threshold method yielded more precise results when analyzing the HHV6 assay, which was characterized by lower signal/noise and less developed amplification curve plateaus. In contrast, the EBV assay, characterized by greater signal/noise and amplification curves with plateau regions similar to those observed with intercalating dyes, gave results with statistically similar precision by all four analysis methods.

  4. Chemical reactive features of novel amino acids intercalated layered double hydroxides in As(III) and As(V) adsorption.

    PubMed

    Shen, Liang; Jiang, Xiuli; Chen, Zheng; Fu, Dun; Li, Qingbiao; Ouyang, Tong; Wang, Yuanpeng

    2017-06-01

    Layered double hydroxides (LDHs) intercalated with amino acids such as methionine (Met) were synthesized as new adsorbents to remediate arsenic-polluted water. This Zn 2 Al-Met-LDHs, identified with the formula of Zn 0.7 Al 0.3 (OH) 2 (Met) 0.3 ·0.32H 2 O, has good thermal stability. Adsorption experiments with Zn 2 Al-Met-LDHs showed that the residual arsenic in solution could be reduced below the regulation limit, and this adsorption process fitted Langmuir isotherm and the pseudo-second-order kinetics well. A remarkably high removal efficiency and the maximum adsorption capacity for As(III) were achieved, 96.7% and 94.1 mg/g, respectively, at 298 K. The desorption efficiency of As(III) from the arsenic-saturated Zn 2 Al-Met-LDHs (<8.7%), far less than that of As(V), promises a specific and reliable uptake of As(III) in sorts of solutions. More importantly, a complete and in-depth spectra analysis through FTIR, XPS and NMR was conducted to explain the excellent performance of Zn 2 Al-Met-LDHs in arsenic removal. Herein, two special chemical reactions were proposed as the dominant mechanisms, i.e., hydrogen bonding between the carboxyl group of the host Met and the hydroxyl group of As(III) or As(V), and the formation of a chelate ring between the guest As(III) and the S, N bidentate ligands of the intercalated Met in the LDHs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism.

    PubMed

    Xu, Zhenye; Liu, Yu; Zhou, Wei; Tade, Moses O; Shao, Zongping

    2018-03-21

    Perovskite oxides are highly promising electrodes for oxygen-ion-intercalation-type supercapacitors owing to their high oxygen vacancy concentration, oxygen diffusion rate, and tap density. Based on the anion intercalation mechanism, the capacitance is contributed by surface redox reactions and oxygen ion intercalation in the bulk materials. A high concentration of oxygen vacancies is needed because it is the main charge carrier. In this study, we propose a B-site cation-ordered Ba 2 Bi 0.1 Sc 0.2 Co 1.7 O 6-δ as an electrode material with an extremely high oxygen vacancy concentration and oxygen diffusion rate. A maximum capacitance of 1050 F g -1 was achieved, and a high capacitance of 780 F g -1 was maintained even after 3000 charge-discharge cycles at a current density of 1 A g -1 with an aqueous alkaline solution (6 M KOH) electrolyte, indicating an excellent cycling stability. In addition, the specific volumetric capacitance of Ba 2 Bi 0.1 Sc 0.2 Co 1.7 O 6-δ reaches up to 2549.4 F cm -3 based on the dense construction and high tap density (3.2 g cm -3 ). In addition, an asymmetric supercapacitor was constructed using activated carbon as a negative electrode, and it displayed the highest specific energy density of 70 Wh kg -1 at the power density of 787 W kg -1 in this study.

  6. First-principles estimates of free energy barriers for Mg desolvation and intercalation at electrolyte/electrode interfaces

    NASA Astrophysics Data System (ADS)

    Wan, Liwen; Prendergast, David

    2014-03-01

    There is a growing interest in developing multivalent ion batteries that could, in principle, double or triple the energy density compared to the monovalent Li-ion batteries. However, the strong electrostatic interaction caused by the extra charge also makes it very challenging to find appropriate intercalation compounds that allow for relatively fast and reversible ion transport. An established working multivalent battery is comprised of Mg(AlCl2BuEt)2 salts in THF solution as the electrolyte, and Mg metal and Mo6S8 Chevrel phase as the anode and cathode, respectively. Currently, we lack a clear understanding of the mechanism for Mg desolvation and intercalation at the interface between the electrolyte and Chevrel phase surfaces, which is critical in designing new advanced battery systems with improved ion diffusion rate. Here, we present a theoretical investigation of the dynamics and kinetics of the Mg desolvation/intercalation process. The surface properties of Mo6S8 are studied for the first time using density functional theory (DFT) and its interaction with the electrolyte is simulated via an ab initio molecular dynamics (AIMD) approach. The free energy barrier for Mg diffusing through the interface is then calculated by performing a set of biased AIMD simulations. This work is supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  7. Ion-Transport Design for High-Performance Na+-Based Electrochromics.

    PubMed

    Li, Ran; Li, Kerui; Wang, Gang; Li, Lei; Zhang, Qiangqiang; Yan, Jinhui; Chen, Yao; Zhang, Qinghong; Hou, Chengyi; Li, Yaogang; Wang, Hongzhi

    2018-04-24

    Sodium ion (Na + )-based electrochemical systems have been extensively investigated in batteries and supercapacitors and also can be quality candidates for electrochromic (EC) devices. However, poor diffusion kinetics and severe EC performance degradation occur during the intercalation/deintercalation processes because the ionic radii of Na + are larger than those of conventional intercalation ions. Here, through intentional design of ion-transport channels in metal-organic frameworks (MOFs), Na + serves as an efficient intercalation ion for incorporation into a nanostructured electrode with a high diffusion coefficient of approximately 10 -8 cm 2 s -1 . As a result, the well-designed MOF-based EC device demonstrates desirable Na + EC performance, including fast switching speed, multicolor switching, and high stability. A smart "quick response code" display is fabricated using a mask-free laser writing method for application in the "Internet of Things". In addition, the concept of ion transport pathway design can be widely adopted for fabricating high-performance ion intercalation materials and devices for consumer electronics.

  8. Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper.

    PubMed

    Veeman, Michael T; Smith, William C

    2013-01-15

    Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2

    NASA Astrophysics Data System (ADS)

    Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki

    2017-12-01

    Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.

  10. Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper

    PubMed Central

    Veeman, Michael T.; Smith, William C.

    2012-01-01

    Here we use in toto imaging together with computational segmentation and analysis methods to quantify the shape of every cell at multiple stages in the development of a simple organ: the notochord of the ascidian Ciona savignyi. We find that cell shape in the intercalated notochord depends strongly on anterior-posterior (AP) position, with cells in the middle of the notochord consistently wider than cells at the anterior or posterior. This morphological feature of having a tapered notochord is present in many chordates. We find that ascidian notochord taper involves three main mechanisms: Planar Cell Polarity (PCP) pathway-independent sibling cell volume asymmetries that precede notochord cell intercalation; the developmental timing of intercalation, which proceeds from the anterior and posterior towards the middle; and the differential rates of notochord cell narrowing after intercalation. A quantitative model shows how the morphology of an entire developing organ can be controlled by this small set of cellular mechanisms. PMID:23165294

  11. X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

    NASA Astrophysics Data System (ADS)

    Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit

    2017-09-01

    Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.

  12. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    PubMed

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  13. Direct Investigation of Mg Intercalation into the Orthorhombic V 2O 5 Cathode Using Atomic-Resolution Transmission Electron Microscopy [Direct Investigation of Mg intercalation into orthorhombic V 2O 5 cathode using Atomic Resolution Electron Microscopy Methods

    DOE PAGES

    Mukherjee, Arijita; Sa, Niya; Phillips, Patrick J.; ...

    2017-02-13

    Batteries based on Mg metal anode can promise much higher specific volumetric capacity and energy density compared to Li-ion systems and are, at the same time, safer and more cost-effective. While previous experimental reports have claimed reversible Mg intercalation into beyond Chevrel phase cathodes, they provide limited evidence of true Mg intercalation other than electrochemical data. Transmission electron microscopy techniques provide unique capabilities to directly image Mg intercalation and quantify the redox reaction within the cathode material. Here, we present a systematic study of Mg insertion into orthorhombic V 2O 5, combining aberration-corrected scanning transmission electron microscopy (STEM) imaging, electronmore » energy-loss spectroscopy (EELS), and energy-dispersive X-ray spectroscopy (EDX) analysis. We compare the results from an electrochemically cycled V 2O 5 cathode in a prospective full cell with Mg metal anode with a chemically synthesized MgV 2O 5 sample. Results suggest that the electrochemically cycled orthorhombic V 2O 5 cathode shows a local formation of the theoretically predicted ϵ-Mg0.5V2O5 phase; however, the intercalation levels of Mg are lower than predicted. Lastly, this phase is different from the chemically synthesized sample, which is found to represent the δ-MgV 2O 5 phase.« less

  14. Intercalation of IR absorber into layered double hydroxides: Preparation, thermal stability and selective IR absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Haifeng; Tang, Pinggui; Feng, Yongjun, E-mail: yjfeng@mail.buct.edu.cn

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PMIDA anions were intercalated into Mg{sub 2}Al-NO{sub 3} LDH by anion-exchange method. Black-Right-Pointing-Pointer The prepared material has highly selective IR absorption property in 9-11 {mu}m. Black-Right-Pointing-Pointer The obtained material has practical applications as heat-retaining additive. -- Abstract: N-phosphonomethyl aminodiacetic acid (PMIDA) was intercalated into the interlayer spacing of layered double hydroxides (LDH) by an anion-exchange method. The intercalated LDHs were characterized by various techniques such as powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and simultaneous thermogravimetric and mass spectrometry (TG-MS) in details. The results show the formation of Mg{sub 2}Al-PMIDA LDH based on the expansion of d-spacingmore » from 0.89 nm to 1.22 nm and the disappearance of the characteristic IR absorption band at 1384 cm{sup -1} for NO{sub 3}{sup -} anions. The incorporation of Mg{sub 2}Al-PMIDA LDH into the low density polyethylene (LDPE) as an additive enhances the selectivity of IR absorption in the main wavelength region 9-11 {mu}m for radiant heat loss at night. Mg{sub 2}Al-PMIDA LDH as a heat-retaining additive has practical application in agricultural plastic films.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Camila F.N.; Lazarin, Angélica M., E-mail: amlazarin2@uem.br; Sernaglia, Rosana L.

    Graphical abstract: Scanning electron microscopy photographs of calcium phosphate (a) and intercalated with p-aminobenzoic acid (b). Highlights: ► Calcium phosphate was intercalated with p-aminobenzoic acid. ► Guest molecule contains nitrogen and oxygen atoms from amine and carboxylic groups. ► These basic centers are potentially useful for cation coordination in ethanol solution. ► Crystal morphology of compounds is lamellar, it agrees with expected structural characteristics. -- Abstract: Crystalline lamellar calcium phosphate retained 4-aminobenzoic acid inside its cavity without leaching. The intense infrared bands in the 1033 and 1010 cm{sup −1} interval confirmed the presence of the phosphonate groups attached to themore » inorganic layer, with sharp and intense peaks in X-ray diffraction patterns, which gave basal distances of 712 and 1578 pm for the original and the intercalated compounds, respectively. Solid-state {sup 31}P nuclear magnetic resonance spectra presented only one peak for the phosphate groups attached to the main inorganic polymeric structure near −2.4 ppm. The adsorption isotherms from ethanol gave the maximum adsorption capacities of 6.44 and 3.34 mmol g{sup −1} for nickel and cobalt, respectively, which stability constant and distribution coefficient followed Co > Ni.« less

  16. An intercalation-locked parallel-stranded DNA tetraplex

    DOE PAGES

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    2015-01-27

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  17. NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panicucci, R.; Heal, R.; Laderoute, K.

    The 2-nitroimidazole linked phenanthridine, NLP-1 (5-(3-(2-nitro-1-imidazoyl)-propyl)-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 ismore » reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells.« less

  18. Pulsed laser deposition of functionalized Mg-Al layered double hydroxide thin films

    NASA Astrophysics Data System (ADS)

    Vlad, A.; Birjega, R.; Tirca, I.; Matei, A.; Mardare, C. C.; Hassel, A. W.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.

    2018-02-01

    In this paper, magnesium-aluminium layered double hydroxide (LDH) has been functionalized with sodium dodecyl sulfate (DS) and deposited as thin film by pulsed laser deposition (PLD). Mg, Al-LDH powders were prepared by co-precipitation and used as reference material. Intercalation of DS as an anionic surfactant into the LDHs host layers has been prepared in two ways: co-precipitation (P) and reconstruction (R). DS intercalation occurred in LDH powder via both preparation methods. The films deposited via PLD, in particular at 532 and 1064 nm, preserve the organic intercalated layered structure of the targets prepared from these powders. The results reveal the ability of proposed deposition technique to produce functional composite organo-modified LDHs thin films.

  19. Effect of heterocyclic based organoclays on the properties of polyimide-clay nanocomposites.

    PubMed

    Krishnan, P Santhana Gopala; Joshi, Mangala; Bhargava, Prachur; Valiyaveettil, Suresh; He, Chaobin

    2005-07-01

    Polyimide-clay nanocomposites were prepared from their precursor, namely, polyamic acid, by the solution-casting method. Organomodified montmorillonite (MMT) clay was prepared by treating Na+MMT (Kunipia F) with three different intercalating agents, namely, piperazine dihydrochloride, 1,3-bis(4-piperidinylpropane) dihydrochloride and 4,4'-bipiperidine dihydrochloride at 80 degrees C. Polyamic acid solutions containing various weight percentages of organomodified MMT were prepared by reacting 4,4'-(1,1'-biphenyl-4,4'-diyldioxy)dianiline with bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride in N-methyl-2-pyrrolidinone containing dispersed particles of organomodified MMT at 20 degrees C. Nanocomposite films were prepared from these solutions by solution casting and heated subsequently at a programmed heating rate. These films were transparent and brown in color. The extent of layer separation in nanocomposite films depends upon the chemical structure of the organoclay. These films were characterized by inherent viscosity, FT-IR, DSC, TMA, WAXD, TEM, UV, and TGA. The tensile behavior and surface energy studies were also investigated. The nanocomposite films had superior tensile properties, thermal behavior, and solvent resistance. Among the three organoclays, piperazine dihydrochloride was the best modifier.

  20. Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Deng, Lin; Shi, Zhou; Wang, Li; Zhou, Shiqing

    2017-05-01

    A novel magnetic NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite (NiFe2O4/ZnAl-EDTA LDH) was prepared through modified coprecipitation method and employed for adsorptive removal of Cr(VI) from aqueous solution. The adsorbents were characterized using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). Factors affecting the Cr(VI) adsorption, such as initial solution pH, adsorbent dosage, contact time, initial Cr(VI) concentration, temperature and coexisting ions, were studied systematically. Experiments results show that the magnetic NiFe2O4/ZnAl-EDTA LDH exhibits high adsorption efficiency within a wide pH range of 3.0-7.0 (R>80% at Cr(VI) concentration 50 mg L-1, contact time 360 min, and adsorbent dosage 2 g/L) and quick separation property. The adsorption process is fitted well with the Langmuir isotherm and pseudo-second-order kinetic model. The maximum theoretical adsorption capacity is found to be 77.22 mg g-1 at pH 6.0 and 318 K. The positive ΔH value (2.907 kJ mol-1) and negative ΔG value (-4.722 kJ mol-1) at 298-318 K reveals that the adsorption process is feasible, spontaneous and endothermic. Coexisting anions (PO43-, SO42-, CO32-, HCO3-, Cl-, and NO3-) have no significant effect on Cr(VI) removal. The mechanism study indicates that the adsorption of Cr(VI) onto NiFe2O4/ZnAl-EDTA LDH mainly involves electrostatic attraction and ion exchange interaction. It is interesting to note that a proportion of Cr(VI) adsorbed on the adsorbent surface are reduced to Cr(III) during the adsorption process. Results from this study demonstrate the potential utility of the magnetic NiFe2O4/ZnAl-EDTA LDH that could be developed into a viable technology for efficient removal of Cr(VI) from aqueous solution.

  1. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  2. Dynamics of graphite fiber intercalation: In situ resistivity measurements with a four point probe

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.

    1984-01-01

    The dynamics of ferric chloride intercalation of single graphite fibers were studied, in situ, using a four point dc bridge. Measurements before, during and after the intercalation showed that the intercalation occurred within minutes at 200 C. Changes in fiber resistivity after exposure to air suggested hydration of the graphite intercalation compound. Deintercalation of the ferric chloride was initiated at temperatures in excess of 400 C. cycling the intercalant into and out of the graphite fiber gave no improvements in fiber resistivity. The activation energy of the ferric chloride intercalation reaction was found to be 17 + or - 4 kcal/mol 1 consistent with the concept of a preliminary nucleation step in the intercalation reaction.

  3. Two-Dimensional MoS2 Confined Co(OH)2 Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes.

    PubMed

    Luo, Yuting; Li, Xu; Cai, Xingke; Zou, Xiaolong; Kang, Feiyu; Cheng, Hui-Ming; Liu, Bilu

    2018-05-22

    The development of abundant and cheap electrocatalysts for the hydrogen evolution reaction (HER) has attracted increasing attention over recent years. However, to achieve low-cost HER electrocatalysis, especially in alkaline media, is still a big challenge due to the sluggish water dissociation kinetics as well as the poor long-term stability of catalysts. In this paper we report the design and synthesis of a two-dimensional (2D) MoS 2 confined Co(OH) 2 nanoparticle electrocatalyst, which accelerates water dissociation and exhibits good durability in alkaline solutions, leading to significant improvement in HER performance. A two-step method was used to synthesize the electrocatalyst, starting with the lithium intercalation of exfoliated MoS 2 nanosheets followed by Co 2+ exchange in alkaline media to form MoS 2 intercalated with Co(OH) 2 nanoparticles (denoted Co-Ex-MoS 2 ), which was fully characterized by spectroscopic studies. Electrochemical tests indicated that the electrocatalyst exhibits superior HER activity and excellent stability, with an onset overpotential and Tafel slope as low as 15 mV and 53 mV dec -1 , respectively, which are among the best values reported so far for the Pt-free HER in alkaline media. Furthermore, density functional theory calculations show that the cojoint roles of Co(OH) 2 nanoparticles and MoS 2 nanosheets result in the excellent activity of the Co-Ex-MoS 2 electrocatalyst, and the good stability is attributed to the confinement of the Co(OH) 2 nanoparticles. This work provides an imporant strategy for designing HER electrocatalysts in alkaline solutions, and can, in principle, be expanded to other materials besides the Co(OH) 2 and MoS 2 used here.

  4. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier.

    PubMed

    Tian, Shuangyan; Li, Juan; Tao, Qi; Zhao, Yawen; Lv, Zhufen; Yang, Fan; Duan, Haoyun; Chen, Yanzhong; Zhou, Qingjun; Hou, Dongzhi

    2018-01-01

    Glaucoma is a serious eye disease that can lead to loss of vision. Unfortunately, effective treatments are limited by poor bioavailability of antiglaucoma medicine due to short residence time on the preocular surface. To solve this, we successfully prepared novel controlled-release ion-exchange microparticles to deliver betaxolol hydrochloride (BH). Montmorillonite/BH complex (Mt-BH) was prepared by acidification-intercalation, and this complex was encapsulated in microspheres (Mt-BH encapsulated microspheres [BMEMs]) by oil-in-oil emulsion-solvent evaporation method. The BH loaded into ion-exchange Mt was 47.45%±0.54%. After the encapsulation of Mt-BH into Eudragit microspheres, the encapsulation efficiency of BH into Eudragit microspheres was 94.35%±1.01% and BH loaded into Eudragit microspheres was 14.31%±0.47%. Both Fourier transform infrared spectra and X-ray diffraction patterns indicated that BH was successfully intercalated into acid-Mt to form Mt-BH and then Mt-BH was encapsulated into Eudragit microspheres to obtain BMEMs. Interestingly, in vitro release duration of the prepared BMEMs was extended to 12 hours, which is longer than both of the BH solution (2.5 hours) and the conventional BH microspheres (5 hours). Moreover, BMEM exhibited lower toxicity than that of BH solution as shown by the results of cytotoxicity tests, chorioallantoic membrane-trypan blue staining, and Draize rabbit eye test. In addition, both in vivo and in vitro preocular retention capacity study of BMEMs showed a prolonged retention time. The pharmacodynamics showed that BMEMs could extend the drug duration of action. The developed BMEMs have the potential to be further applied as ocular drug delivery systems for the treatment of glaucoma.

  5. Behavior of LiFe1-yMnyPO4/C cathode materials upon electrochemical lithium intercalation/deintercalation

    NASA Astrophysics Data System (ADS)

    Novikova, Svetlana; Yaroslavtsev, Sergey; Rusakov, Vyacheslav; Chekannikov, Andrey; Kulova, Tatiana; Skundin, Alexander; Yaroslavtsev, Andrey

    2015-12-01

    LiFe1-yMnyPO4/C (y = 0-0.3) nanocomposites are prepared by the sol-gel method, and their properties are characterized with the use of the XRD analysis, SEM, impedance spectroscopy, charge/discharge tests, and Mössbauer spectroscopy. The samples with a low manganese content, LiFe1-yMnyPO4 (y = 0.1, 0.2) are characterized by an increased conductivity. In LiFe1-yMnyPO4 (x = 0.1-0.3), electrochemical lithium deintercalation/intercalation proceeds in two stages which due to the subsequent oxidation/reduction of iron and manganese ions. The LiFe1-yMnyPO4/С (y = 0.1, 0.2) samples show enhanced charge/discharge capacity, especially, at high current density (for LiFe0.9Mn0.1PO4/C, the discharge capacity is equal to 142 and 55 mAh g-1 at a current density of 20 and 1600 mA g-1, respectively). Mn2+ ↔ Mn3+ transition in LiFe1-yMnyPO4 proceeds via the solid solutions formation under gradual changes in the potential. For LiFe0.7Mn0.3PO4, oxidation and reduction of iron ions follow the same scenario. According to the Mössbauer spectroscopy data, manganese is orderly distributed in LixFeIII1-yMnyPO4: iron contains not more than one manganese cation in its nearest neighborhood. Moreover, combination of the Mössbauer spectroscopy and X-ray analysis data indicates that, in the interval where solid solutions exist in LixFe0.7Mn0.3PO4, the regions with an inhomogeneous distribution of divalent and trivalent manganese ions are formed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Qinglong; Chen, Mingming; Li, Junqiang

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40%more » reduction of transmittance in the 450–850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.« less

  7. Development of propidium iodide as a fluorescence probe for the on-line screening of non-specific DNA-intercalators in Fufang Banbianlian Injection.

    PubMed

    Niu, Yanyan; Li, Sensen; Lin, Zongtao; Liu, Meixian; Wang, Daidong; Wang, Hong; Chen, Shizhong

    2016-09-09

    Fufang Banbianlian Injection (FBI) has been widely used as an anti-inflammatory and anti-tumor prescription. To understand the relationships between its bioactive ingredients and pharmacological efficacies, our previous study has been successfully identified some DNA-binding compounds in FBI using an established on-line screening system, in which 4',6-diamidino-2-phenylindole (DAPI) was developed as a probe. However, DAPI can be only used to screen ATT-specific DNA minor groove binders, leaving the potential active intercalators unknown in FBI. As a continuation of our studies on FBI, here we present a sensitive analytical method for rapid identification and evaluation of DNA-intercalators using propidium iodide (PI) as a fluorescent probe. We have firstly established the technique of high-performance liquid chromatography-diode-array detector-multistage mass spectrometry-deoxyribonucleic acid-propidium iodide-fluorescence detector (HPLC-DAD-MS(n)-DNA-PI-FLD) system. As a result, 38 of 58 previously identified compounds in FBI were DNA-intercalation active. Interestingly, all previously reported DNA-binders also showed intercalative activities, suggesting they are dual-mode DNA-binders. Quantitative study showed that flavonoid glycosides and chlorogenic acids were the main active compounds in FBI, and displayed similar DNA-binding ability using either DAPI or PI. In addition, 13 active compounds were used to establish the structure-activity relationships. In this study, PI was developed into an on-line method for identifying DNA-intercalators for the first time, and thus it will be a useful high-throughput screening technique for other related samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    PubMed

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Insights into the Li Intercalation and SEI Formation on LiSi Nanoclusters

    DOE PAGES

    Hankins, Kie; Soto, Fernando A.; Balbuena, Perla B.

    2017-01-01

    We report a first-principles atomic level assessment of the lithiation and reactivity of pre-lithiated Si clusters. Density functional theory formation energy calculations reveal that the pre-lithiated Li 16Si 16 cluster exposed to two different Li fluxes can store Li between the concentrations of Li 2.5Si and Li 3.5Si. This increase in storage capacity is attributed to the start of an amorphization process in the cluster, and more importantly these results show that the intercalation reaction can be controlled by the flux of the Li-ions. However, in a real battery, the lithiation of the anode occurs simultaneously to the electrode-electrolyte reactions.more » Here we simulate the solid-electrolyte interphase (SEI) formation and simultaneous lithiation of a Li 16Si 16 cluster in contact with two different electrolyte solutions: one with pure ethylene carbonate (EC), and another with a 1 M solution of LiPF 6 in EC. Our ab initio molecular dynamics simulations show that the solvent and salt are decomposed leading to the initial stages of the SEI layer formation and large part of the added Li becomes part of the SEI. Interestingly, the pure EC solution results in lower storage capacity and higher reactivity, whereas the presence of the salt causes the opposite effect: higher lithiation and reduced reactivity.« less

  10. Antifouling composites with self-adaptive controlled release based on an active compound intercalated into layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Yang, Miaosen; Gu, Lianghua; Yang, Bin; Wang, Li; Sun, Zhiyong; Zheng, Jiyong; Zhang, Jinwei; Hou, Jian; Lin, Cunguo

    2017-12-01

    This paper reports a novel method to prepare the antifouling composites with properties of self-adaptive controlled release (defined as control the release rate autonomously and adaptively according to the change of environmental conditions) by intercalation of sodium paeonolsilate (PAS) into MgAl and ZnAl layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1 and 3:1, respectively. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The controlled release behavior triggered by temperature for the PAS-LDH composites has been investigated, and the results show that the release rate of all PAS-LDH composites increases as the increase of temperature. However, the MgAl-PAS-LDH composites (Mg2Al-PAS-LDH and Mg3Al-PAS-LDH) exhibit the increased release rate of 0.21 ppm/°C from 15 to 30 °C in 3.5% NaCl solution, more than three times of the ZnAl-PAS-LDH composites (0.06 ppm/°C), owing to the confined microenvironment influenced by metal types in LDH layers. In addition, a possible diffusion-controlled process with surface diffusion, bulk diffusion and heterogeneous flat surface diffusion has been revealed via fitting four kinetic equations. Moreover, to verify the practical application of the PAS-LDH composites, a model coating denoted as Mg2Al-PAS-LDH coating was fabricated. The release result displays that the release rate increases or decreases as temperature altered at 15 and 25 °C alternately, indicating its self-adaptive controlled release behavior with temperature. Moreover, the superior resistance to the settlement of Ulva spores at 15 and 25 °C was observed for the Mg2Al-PAS-LDH coating, as a result of the controllable release of antifoulant. Therefore, this work provides a facile and effective method for the fabrication of antifouling composites with self-adaptive controlled release behavior in response to temperature, which can be used to prolong the lifetime of antifouling coatings.

  11. Targeting human c-Myc promoter duplex DNA with actinomycin D by use of multi-way analysis of quantum-dot-mediated fluorescence resonance energy transfer.

    PubMed

    Gholami, Somayeh; Kompany-Zareh, Mohsen

    2013-07-01

    Actinomycin D (Act D), an oncogenic c-Myc promoter binder, interferes with the action of RNA polymerase. There is great demand for high-throughput technology able to monitor the activity of DNA-binding drugs. To this end, binding of 7-aminoactinomycin D (7AAD) to the duplex c-Myc promoter was investigated by use of 2D-photoluminescence emission (2D-PLE), and the resulting data were subjected to analysis by use of convenient and powerful multi-way approaches. Fluorescence measurements were performed by use of the quantum dot (QD)-conjugated c-Myc promoter. Intercalation of 7AAD within duplex base pairs resulted in efficient energy transfer from drug to QD via fluorescence resonance energy transfer (FRET). Multi-way analysis of the three-way data array obtained from titration experiments was performed by use of restricted Tucker3 and hard trilinear decomposition (HTD). These techniques enable analysis of high-dimensional and complex data from nanobiological systems which include several spectrally overlapped structures. It was almost impossible to obtain robust and meaningful information about the FRET process for such high overlap data by use of classical analysis. The soft approach had the important advantage over univariate classical methods of enabling us to investigate the source of variance in the fluorescence signal of the DNA-drug complex. It was established that hard trilinear decomposition analysis of FRET-measured data overcomes the problem of rank deficiency, enabling calculation of concentration profiles and pure spectra for all species, including non-fluorophores. The hard modeling approach was also used for determination of equilibrium constants for the hybridization and intercalation equilibria, using nonlinear fit data analysis. The intercalation constant 3.6 × 10(6) mol(-1) L and hybridization stability 1.0 × 10(8) mol(-1) L obtained were in good agreement with values reported in the literature. The analytical concentration of the QD-labeled DNA was determined by use of nonlinear fitting, without using external standard calibration samples. This study was a successful application of multi-way chemometric methods to investigation of nano-biotechnological systems where several overlapped species coexist in solution.

  12. The intercalation chemistry of layered iron chalcogenide superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the rolemore » of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.« less

  13. Flattening and manipulation of the electronic structure of h-BN/Rh(111) nanomesh upon Sn intercalation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Yuya; Bernard, Carlo; Okuyama, Yuma; Ideta, Shin-ichiro; Tanaka, Kiyohisa; Greber, Thomas; Hirahara, Toru

    2018-06-01

    We have deposited Sn on corrugated hexagonal boron nitride (h-BN) nanomeshs formed on Rh(111) and found that Sn atoms are intercalated between h-BN and Rh, flattening the h-BN. Our reflection high-energy electron diffraction (RHEED) analysis showed that the average in-plane lattice constant of h-BN increases due to the loss of the corrugation. Furthermore, electronic structure measurements based on angle-resolved photoemission spectroscopy (ARPES) showed that the h-BN π band width increases significantly while the σ band width does not change as much. These behaviors were partly different from previous reports on the intercalation of h-BN/Rh system. Our results offer a novel, simple method to control the electronic structure of h-BN.

  14. Synthesis and electrical characterization of magnetic bilayer graphene intercalate.

    PubMed

    Kim, Namdong; Kim, Kwang S; Jung, Naeyoung; Brus, Louis; Kim, Philip

    2011-02-09

    We report synthesis and transport properties of the minimal graphite intercalation compound, a ferric chloride (FeCl(3))(n) island monolayer inside bilayer graphene. Chemical doping by the intercalant is simultaneously probed by micro-Raman spectroscopy and Hall measurements. Quantum oscillations of conductivity originate from microscopic domains of intercalated and unintercalated regions. A slight upturn in resistance related to magnetic transition is observed. Two-dimensional intercalation in bilayer graphene opens new possibilities to engineer two-dimensional properties of intercalates.

  15. CsI Pre-Intercalation in the Inorganic Framework for Efficient and Stable FA1-x Csx PbI3 (Cl) Perovskite Solar Cells.

    PubMed

    Zhou, Ning; Shen, Yiheng; Zhang, Yu; Xu, Ziqi; Zheng, Guanhaojie; Li, Liang; Chen, Qi; Zhou, Huanping

    2017-06-01

    Engineering the chemical composition of organic and inorganic hybrid perovskite materials is one of the most feasible methods to boost the efficiency of perovskite solar cells with improved device stability. Among the diverse hybrid perovskite family of ABX 3 , formamidinium (FA)-based mixed perovskite (e.g., FA 1- x Cs x PbI 3 ) possesses optimum bandgaps, superior optoelectronic property, as well as thermal- and photostability, which is proven to be the most promising candidate for advanced solar cell. Here, FA 0.9 Cs 0.1 PbI 3 (Cl) is implemented as the light-harvesting layer in planar devices, whereas a low temperature, two-step solution deposition method is employed for the first time in this materials system. This paper comprehensively exploits the role of Cs + in the FA 0.9 Cs 0.1 PbI 3 (Cl) perovskite that affects the precursor chemistry, film nucleation and grain growth, and defect property via pre-intercalation of CsI in the inorganic framework. In addition, the resultant FA 0.9 Cs 0.1 PbI 3 (Cl) films are demonstrated to exhibit an improved optoelectronic property with an elevated device power conversion efficiency (PCE) of 18.6%, as well as a stable phase with substantial enhancement in humidity and thermal stability, as compared to that of FAPbI 3 (Cl). The present method is able to be further extended to a more complicated (FA,MA,Cs)PbX 3 material system by delivering a PCE of 19.8%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    NASA Astrophysics Data System (ADS)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  17. Orthogonal test design for optimization of synthesis of MTX/LDHs hybrids by ion-exchange method

    NASA Astrophysics Data System (ADS)

    Liu, Su-Qing; Dai, Chao-Fan; Wang, Lin; Li, Shu-Ping; Li, Xiao-Dong

    2015-04-01

    Based on orthogonal test design, the factors influencing the synthesis of methotrexate intercalated magnesium-aluminum layered double hydroxides (MTX/LDHs for short) by ion-exchange method, such as weight ratio of pristine LDHs to MTX (R for short), exchange temperature, time and pH value were investigated. Of the four controllable independent variables, R had the strongest effect on the crystallinity and the drug-loading capacity and the optimum synthesis conditions considered from the crystallinity and the drug-loading capacity both pointed to the same values, i.e., R=2:1, pH=9.5, temperature of 80 °C and exchange time of 3 day. The XRD diffractions indicated that high MTX content was in favor of the formation of intercalated hybrids, while low content lead to the failure of it. TEM photos indicated that the intercalated hybrids all exhibited aggregated hexagonal plates. In order to improve the morphology, two different states of pristine LDHs, i.e., powder and colloid, were chosen to prepare MTX/LDHs hybrids and the results indicated that colloid state of pristine was advantageous to obtain regular particles. The study also revealed that the properties of hybrids obtained at optimum conditions by ion-exchange were superior to that obtained from standard methods, such as co-precipitation method.

  18. Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases

    DOE PAGES

    Sharma, Geetu; Naguib, Michael; Feng, Dawei; ...

    2016-11-19

    MXenes are layered two dimensional materials with exciting properties useful to a wide range of energy applications. They are derived from ceramics (MAX phases) by leaching and their properties reflect their resulting complex compositions which include intercalating cations and anions and water. Their thermodynamic stability is likely linked to these functional groups but has not yet been addressed by quantitative experimental measurements. We report enthalpies of formation from the elements at 25 °C measured using high temperature oxide melt solution calorimetry for a layered Ti-Al-C MAX phase, and the corresponding Ti-C based MXene. The thermodynamic stability of the Ti 3Cmore » 2T x MXene (Tx stands for anionic surface moieties, and intercalated cations) was assessed by calculating the enthalpy of reaction of the MAX phase (ideal composition Ti 3AlC 2) to form MXene, The very exothermic enthalpy of reaction confirms the stability of MXene in an aqueous environment. The surface terminations (O, OH and F) and cations (Li) chemisorbed on the surface and intercalated in the interlayers play a major role in the thermodynamic stabilization of MXene. These findings help to understand and potentially improve properties and performance by characterizing the energetics of species binding to MXene surfaces during synthesis and in energy storage, water desalination and other applications.« less

  19. A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.

    PubMed

    Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E

    2018-06-12

    Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.

  20. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang-Don; Kim, Soojeong; Li, Dongguo

    2017-05-19

    Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn2+ ion chemistry. Several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. This study utilizes a combination of analytical tools to probe the chemistry of a nanostructured delta-MnO2 cathode in association with a nonaqueous acetonitrile-Zn(TFSI)(2) electrolytemore » and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. Numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/delta-MnO2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less

  1. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide

    NASA Astrophysics Data System (ADS)

    Meng, Na; Zhang, Shuang-Quan; Zhou, Ning-Lin; Shen, Jian

    2010-05-01

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.

  2. Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes

    PubMed Central

    Ovchinnikov, Nikolay L; Karasev, Nikita S; Kochkina, Nataliya E; Agafonov, Alexander V; Vinogradov, Alexandr V

    2018-01-01

    We report on a new approach for the synthesis of TiO2-pillared montmorillonite, where the pillars exhibit a high degree of crystallinity (nanocrystals) representing a mixture of anatase and rutile phases. The structures exhibit improved adsorption and photocatalytic activity as a result of hydrothermally activated intercalation of titanium polyhydroxo complexes (i.e., TiCl4 hydrolysis products) in a solution with a concentration close to the sol formation limit. The materials, produced at various annealing temperatures from the intercalated samples, were characterized by infrared spectroscopy, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), X-ray diffraction, dynamic light scattering (DLS) measurements, and liquefied nitrogen adsorption/desorption. The photocatalytic activity of the TiO2-pillared materials was studied using the degradation of anionic (methyl orange, MO) and cationic (rhodamine B, RhB) dyes in water under UV irradiation. The combined effect of adsorption and photocatalysis resulted in removal of 100% MO and 97.5% RhB (with an initial concentration of 40 mg/L and a photocatalyst-sorbent concentration of 1 g/L) in about 100 minutes. The produced TiO2-pillared montmorillonite showed increased photocatalytic activity as compared to the commercially available photocatalyst Degussa P25. PMID:29515950

  3. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  4. Metal complexes as DNA intercalators.

    PubMed

    Liu, Hong-Ke; Sadler, Peter J

    2011-05-17

    DNA has a strong affinity for many heterocyclic aromatic dyes, such as acridine and its derivatives. Lerman in 1961 first proposed intercalation as the source of this affinity, and this mode of DNA binding has since attracted considerable research scrutiny. Organic intercalators can inhibit nucleic acid synthesis in vivo, and they are now common anticancer drugs in clinical therapy. The covalent attachment of organic intercalators to transition metal coordination complexes, yielding metallointercalators, can lead to novel DNA interactions that influence biological activity. Metal complexes with σ-bonded aromatic side arms can act as dual-function complexes: they bind to DNA both by metal coordination and through intercalation of the attached aromatic ligand. These aromatic side arms introduce new modes of DNA binding, involving mutual interactions of functional groups held in close proximity. The biological activity of both cis- and trans-diamine Pt(II) complexes is dramatically enhanced by the addition of σ-bonded intercalators. We have explored a new class of organometallic "piano-stool" Ru(II) and Os(II) arene anticancer complexes of the type [(η(6)-arene)Ru/Os(XY)Cl](+). Here XY is, for example, ethylenediamine (en), and the arene ligand can take many forms, including tetrahydroanthracene, biphenyl, or p-cymene. Arene-nucleobase stacking interactions can have a significant influence on both the kinetics and thermodynamics of DNA binding. In particular, the cytotoxic activity, conformational distortions, recognition by DNA-binding proteins, and repair mechanisms are dependent on the arene. A major difficulty in developing anticancer drugs is cross-resistance, a phenomenon whereby a cell that is resistant to one drug is also resistant to another drug in the same class. These new complexes are non-cross-resistant with cisplatin towards cancer cells: they constitute a new class of anticancer agents, with a mechanism of action that differs from the anticancer drug cisplatin and its analogs. The Ru-arene complexes with dual functions are more potent towards cancer cells than their nonintercalating analogs. In this Account, we focus on recent studies of dual-function organometallic Ru(II)- and Os(II)-arene complexes and the methods used to detect arene-DNA intercalation. We relate these interactions to the mechanism of anticancer activity and to structure-activity relationships. The interactions between these complexes and DNA show close similarities to those of covalent polycyclic aromatic carcinogens, especially to N7-alkylating intercalation compounds. However, Ru-arene complexes exhibit some new features. Classical intercalation and base extrusion next to the metallated base is observed for {(η(6)-biphenyl)Ru(ethylenediamine)}(2+) adducts of a 14-mer duplex, while penetrating arene intercalation occurs for adducts of the nonaromatic bulky intercalator {(η(6)-tetrahydroanthracene)Ru(ethylenediamine)}(2+) with a 6-mer duplex. The introduction of dual-function Ru-arene complexes introduces new mechanisms of antitumor activity, novel mechanisms for attack on DNA, and new concepts for developing structure- activity relationships. We hope this discussion will stimulate thoughtful and focused research on the design of anticancer chemotherapeutic agents using these unique approaches.

  5. Superconducting selenides intercalated with organic molecules: synthesis, crystal structure, electric and magnetic properties, superconducting properties, and phase separation in iron based-chalcogenides and hybrid organic-inorganic superconductors

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, Anna; Pesko, Edyta; Puzniak, Roman

    2018-06-01

    Layered iron-based superconducting chalcogenides intercalated with molecular species are the subject of intensive studies, especially in the field of solid state chemistry and condensed matter physics, because of their intriguing chemistry and tunable electric and magnetic properties. Considerable progress in the research, revealing superconducting inorganic–organic hybrid materials with transition temperatures to superconducting state, T c, up to 46 K, has been brought in recent years. These novel materials are synthesized by low-temperature intercalation of molecular species, such as solvates of alkali metals and nitrogen-containing donor compounds, into layered FeSe-type structure. Both the chemical nature as well as orientation of organic molecules between the layers of inorganic host, play an important role in structural modifications and may be used for fine tuning of superconducting properties. Furthermore, a variety of donor species compatible with alkali metals, as well as the possibility of doping also in the host structure (either on Fe or Se sites), makes this system quite flexible and gives a vast array of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed with a particular attention paid to the influence of the unique nature of intercalating species on the crystal structure and physical properties of the hybrid inorganic–organic materials. To get a full picture of these materials, a comprehensive description of the most effective chemical and electrochemical methods, utilized for synthesis of intercalated species, with critical evaluation of their strong and weak points, related to feasibility of synthesis, phase purity, crystal size and morphology of final products, is included as well.

  6. Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors.

    PubMed

    Bissett, Mark A; Kinloch, Ian A; Dryfe, Robert A W

    2015-08-12

    Two-dimensional materials, such as graphene and molybdenum disulfide (MoS2), can greatly increase the performance of electrochemical energy storage devices because of the combination of high surface area and electrical conductivity. Here, we have investigated the performance of solution exfoliated MoS2 thin flexible membranes as supercapacitor electrodes in a symmetrical coin cell arrangement using an aqueous electrolyte (Na2SO4). By adding highly conductive graphene to form nanocomposite membranes, it was possible to increase the specific capacitance by reducing the resistivity of the electrode and altering the morphology of the membrane. With continued charge/discharge cycles the performance of the membranes was found to increase significantly (up to 800%), because of partial re-exfoliation of the layered material with continued ion intercalation, as well as increasing the specific capacitance through intercalation pseudocapacitance. These results demonstrate a simple and scalable application of layered 2D materials toward electrochemical energy storage.

  7. Polymer Layered Silicate Nanocomposites: A Review

    PubMed Central

    Mittal, Vikas

    2009-01-01

    This review aims to present recent advances in the synthesis and structure characterization as well as the properties of polymer layered silicate nanocomposites. The advent of polymer layered silicate nanocomposites has revolutionized research into polymer composite materials. Nanocomposites are organic-inorganic hybrid materials in which at least one dimension of the filler is less than 100 nm. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or pre-polymers from solution, in-situ polymerization, melt intercalation etc. The nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modifications, exhibit significant improvement in the composite properties, which include enhanced mechanical strength, gas barrier, thermal stability, flame retardancy etc. Only a small amount of filler is generally required for the enhancement in the properties, which helps the composite materials retain transparency and low density.

  8. Rocking-Chair Configuration in Ultrathin Lithium Vanadate-Graphene Hybrid Nanosheets for Electrical Modulation

    PubMed Central

    Zhu, Haiou; Qin, Xinming; Sun, Xu; Yan, Wensheng; Yang, Jinlong; Xie, Yi

    2013-01-01

    The ability to control electronic property of a material by externally applied voltage is greatly anticipated in modern electronics, and graphene provide potential application foreground for this issue on account of its exotic ambipolar transport property. In this study, we proposed that inorganic-graphene intercalated nanosheet is an effective solution to optimize the transport property of graphene. As an example, lithium vanadate-graphene (LiVO-graphene) alternately intercalated nanosheets were designed and successfully synthesized. Theoretical calculation implied that its rocking chair configuration may provide a new pathway to switch the carrier in graphene layer between p-type and n-type while the position of embedded Li ions is controlled by an external field. Thus, a demo transistor was fabricated with layer-by-layer overlapping of LiVO-graphene nanosheets which proved that this inorganic-graphene structure could be used for electrical modulation in electronic devices. PMID:23409237

  9. Synthesis and controlled release properties of 2,4-dichlorophenoxy acetate-zinc layered hydroxide nanohybrid

    NASA Astrophysics Data System (ADS)

    Bashi, Abbas M.; Hussein, Mohd Zobir; Zainal, Zulkarnain; Tichit, Didier

    2013-07-01

    Direct reaction of ZnO with 2,4-dichlorophenoxyacetic acid (24D) solutions of different concentrations allows obtaining new organic-inorganic nanohybrid materials formed by intercalation of 24D into interlayers of zinc layered hydroxide (ZLH). XRD patterns show a progressive evolution of the structure as 24D concentration increases. The nanohybrid obtained at higher 24D concentration (24D-ZLH(0.4)) reveals a well ordered layered structure with two different basal spacings at 25.2 Å and 24 Å. The FTIR spectrum showing the vibrations bands of the functional groups of 24D and of the ZLH confirms the intercalation. SEM images are in agreement with the structural evolution observed by XRD and reveal the ribbon morphology of the nanohybrids. The release studies of 24D showed a rapid release of 94% for the first 100 min governed by the pseudo-second order kinetic model.

  10. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc iron layered double hydroxides by one-step coprecipitation route

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wen, Xing; Wang, Yingxia

    2007-05-01

    Inorganic sulfate- and organic dodecylbenzenesulfonate (DBS)-intercalated zinc-iron layered double hydroxides (LDHs) materials were prepared by one-step coprecipitation method from a mixed salt solutions containing Zn(II), Fe(II) and Fe(III) salts. The as-prepared samples have been characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption, scanning electron microscopy (SEM), inductively coupled plasma emission spectroscopy (ICP), and Mössbauer spectroscopy (MS). The XRD analyses demonstrate the typical LDH-like layered structural characteristics of both products. The room temperature MS results reveal the characteristics of both the Fe(II) and Fe(III) species for SO 42--containing product, while only the Fe(III) characteristic for DBS-containing one. The combination characterization results and Rietveld analysis illustrate that the SO 42--containing product possesses the Green Rust two (GR2)-like crystal structure with an approximate chemical composition of [Zn 0.435·Fe II0.094·Fe III0.470·(OH) 2]·(SO 42-) 0.235·1.0H 2O, while the DBS-containing one exhibits the common LDH compound-like structure. The contact angle measurement indicates the evident hydrophobic properties of DBS-containing nanocomposite, compared with SO 42--containing product, due to the modification of the internal and external surface of LDHs by the organic hydrophobic chain of DBS.

  11. Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation.

    PubMed

    Grayfer, Ekaterina D; Kozlova, Mariia N; Fedorov, Vladimir E

    2017-07-01

    This review focuses on the exfoliation of transition metal dichalcogenides MQ 2 (TMD, M=Mo, W, etc., Q=S, Se, Te) in liquid media, leading to the formation of 2D nanosheets dispersed in colloids. Nowadays, colloidal dispersions of MoS 2 , MoSe 2 , WS 2 and other related materials are considered for a wide range of applications, including electronic and optoelectronic devices, energy storage and conversion, sensors for gases, catalysts and catalyst supports, biomedicine, etc. We address various methods developed so far for transferring these materials from bulk to nanoscale thickness, and discuss their stabilization and factors influencing it. Long-time known exfoliation through Li intercalation has received renewed attention in recent years, and is recognized as a method yielding highest dispersed concentrations of single-layer MoS 2 and related materials. Latest trends in the intercalation/exfoliation approach include electrochemical lithium intercalation, experimenting with various intercalating agents, multi-step intercalation, etc. On the other hand, direct sonication in solvents is a much simpler technique that allows one to avoid dangerous reagents, long reaction times and purifying steps. The influence of the solvent characteristics on the colloid formation was closely investigated in numerous recent studies. Moreover, it is being recognized that, besides solvent properties, sonication parameters and solvent transformations may affect the process in a crucial way. The latest data on the interaction of MoS 2 with solvents evidence that not only solution thermodynamics should be employed to understand the formation and stabilization of such colloids, but also general and organic chemistry. It appears that due to the sonolysis of the solvents and cutting of the MoS 2 layers in various directions, the reactive edges of the colloidal nanosheets may bear various functionalities, which participate in their stabilization in the colloidal state. In most cases, direct exfoliation of MQ 2 into colloidal nanosheets is conducted in organic solvents, while a small amount of works report low-concentrated colloids in pure water. To improve the dispersion abilities of transition metal dichalcogenides in water, various stabilizers are often introduced into the reaction media, and their interactions with nanosheets play an important role in the stabilization of the dispersions. Surfactants, polymers and biomolecules usually interact with transition metal dichalcogenide nanosheets through non-covalent mechanisms, similarly to the cases of graphene and carbon nanotubes. Finally, we survey covalent chemical modification of colloidal MQ 2 nanosheets, a special and different approach, consisting in the functionalization of MQ 2 surfaces with help of thiol chemistry, interaction with electrophiles, or formation of inorganic coordination complexes. The intentional design of surface chemistry of the nanosheets is a very promising way to control their solubility, compatibility with other moieties and incorporation into hybrid structures. Although the scope of the present review is limited to transition metal dichalcogenides, the dispersion in colloids of other chalcogenides (such as NbS 3 , VS 4 , Mo 2 S 3 , etc.) in many ways follows similar trends. We conclude the review by discussing current challenges in the area of exfoliation of MoS 2 and its related materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Boukos, N.; Psycharis, V.; Lei, C.; Lekakou, C.; Petridis, D.; Trapalis, C.

    2017-01-01

    Benzidine, a compound bearing aromatic rings and terminal amino groups, was employed for the intercalation and simultaneous reduction of graphite oxide (GO). The aromatic diamine can be intercalated into GO as follows: (1) by grafting with the epoxy groups of GO, (2) by hydrogen bonding with the oxygen containing groups of GO. Stacking between benzidine aromatic rings and unoxidized domains of GO may occur through π-π interaction. The role of benzidine is influenced by pH conditions and the weight ratio GO/benzidine. Two weight ratios were tested i.e. 1:2 and 1:3. Under strong alkaline conditions through K2CO3 addition (pH ∼10.4-10.6) both intercalation and reduction of GO via amino groups occur, while under strong acidic conditions through HCl addition (pH ∼1.4-2.2) π-π stacking is preferred. When no base or acid is added (pH ∼5.2) and the weight ratio is 1:2, there are indications that reduction and π-π stacking occur, while at a GO/benzidine weight ratio 1:3 intercalation via amino groups and reduction seem to dominate. The aforementioned remarks render benzidine a multifunctional tool towards production of reduced graphene oxide. The effect of pH conditions and the GO/benzidine weight ratio on the quality and the electrochemical properties of the produced graphene-based materials were investigated. Cyclic voltammetry measurements using three-electrode cell and KCl aqueous solution as an electrolyte gave specific capacitance values up to ∼178 F/g. When electric double-layer capacitors (EDLC) were fabricated from these materials, the maximum capacitance in organic electrolyte i.e., tetraethyl ammonium tetrafluoroborate (TEABF4) in polycarbonate (PC) was ∼29 F/g.

  13. The influence of oxalate-promoted growth of saponite and talc crystals

    USGS Publications Warehouse

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2013-01-01

    The intercalating growth of new silicate layers or metal hydroxide layers in the interlayer space of other clay minerals is known from various mixed-layer clay minerals such as illite-smectite (I-S), chlorite-vermiculite, and mica-vermiculite. In a recent study, the present authors proposed that smectite-group minerals can be synthesized from solution as new 2:1 silicate layers within the low-charge interlayers of rectorite. That study showed how oxalate catalyzes the crystallization of saponite from a silicate gel at low temperatures (60ºC) and ambient pressure. As an extension of this work the aim of the present study was to test the claim that new 2:1 silicate layers can be synthesized as new intercalating layers in the low-charge interlayers of rectorite and whether oxalate could promote such an intercalation synthesis. Two experiments were conducted at 60ºC and atmospheric pressure. First, disodium oxalate solution was added to a suspension of rectorite in order to investigate the effects that oxalate anions have on the structure of rectorite. In a second experiment, silicate gel of saponitic composition (calculated interlayer charge −0.33 eq/O10(OH)2) was mixed with a suspension of rectorite and incubated in disodium oxalate solution. The synthesis products were extracted after 3 months and analyzed by X-ray diffraction and high-resolution transmission electron microscopy (HRTEM). The treatment of ultrathin sections with octadecylammonium (nC = 18) cations revealed the presence of 2:1 layer silicates with different interlayer charges that grew from the silicate gel. The oxalate-promoted nucleation of saponite and talc crystallites on the rectorite led to the alteration and ultimately to the destruction of the rectorite structure. The change was documented in HRTEM lattice-fringe images. The crystallization of new 2:1 layer silicates also occurred within the expandable interlayers of rectorite but not as new 2:1 silicate layers parallel to the previous 2:1 silicate layers. Instead, they grew independently of any orientation predetermined by the rectorite crystal substrate and their crystallization was responsible for the destruction of the rectorite structure.

  14. Room-Temperature Fluorine-Induced Decrease in the Stability of Bromine and Iodine Intercalated Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers, which were intercalated with 18 wt percent bromine, 1 hour of fluorine exposure resulted in a large weight increase but caused only a small decrease in thermal stability. An additional 89 hours of fluorine exposure time resulted in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena of weight increase and stability decrease do not occur if the intercalated fibers are exposed to 250 C fluorine. These observations suggest that, at room temperature, fluorine is absorbed quickly by the intercalated fibers and is intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. In an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for 2 weeks, the brominated fibers lost about 45% of their bromine, and their resistivity increased from 64 mu(Omega)-cm to a range of 95-170 mu(Omega)-cm. This is still much lower than the value of 300 mu(Omega)-cm for pristine P-100. For practical purposes, to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature or to any intercalate at a temperature where, upon direct contact with graphite, an intercalation compound can easily be formed.

  15. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery.

    PubMed

    Kang, Shaohong; Yu, Tao; Liu, Tingting; Guan, Shiyou

    2018-02-15

    We proposed a large-sized graphene preparation method by short-circuit discharge of the lithium-graphite primary battery for the first time. LiC x is obtained through lithium ions intercalation into graphite cathode in the above primary battery. Graphene was acquired by chemical reaction between LiC x and stripper agents with dispersion under sonication conditions. The gained graphene is characterized by Raman spectrum, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Atomic force microscope (AFM) and Scanning electron microscopy (SEM). The results indicate that the as-prepared graphene has a large size and few defects, and it is monolayer or less than three layers. The quality of graphene is significant improved compared to the reported electrochemical methods. The yield of graphene can reach 8.76% when the ratio of the H 2 O and NMP is 3:7. This method provides a potential solution for the recycling of waste lithium ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Dissecting the Dynamic Pathways of Stereoselective DNA Threading Intercalation

    PubMed Central

    Almaqwashi, Ali A.; Andersson, Johanna; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2016-01-01

    DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2]4+ (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics. PMID:27028636

  17. Is it intelligent to intercalate? A two centre cross-sectional study exploring the value of intercalated degrees, and the possible effects of the recent tuition fee rise in England.

    PubMed

    Stubbs, Timothy Alan; Lightman, Elewys G; Mathieson, Peter

    2013-01-24

    To explore the value of intercalated degrees, including student perceptions and academic sequelae. To gauge the likely effect of the recent tuition fee rise and to identify any differences in intercalated degrees between Bristol and Sheffield universities. Cross-sectional study using questionnaires. Bristol and Sheffield Medical Schools, UK. 1484 medical students in their clinical years were e-mailed the questionnaire. 578 students responded: 291 from Bristol and 287 from Sheffield (n=578; mean age=22.41; SD 1.944; 38.9% male; 61.1% female). The response rate from previous intercalators was 52.5% from Bristol and 58.7% from Sheffield, while for non-intercalators it was 27.7% and 34.6%, respectively. (1) Student preconceptions, opinions, results and academic sequelae from intercalated degrees at both centres. (2) Students' attitudes concerning the effect of the increase in tuition fees. Those with clinical academic supervisors gained significantly more posters (p=0.0002) and publications (p<0.0001), and also showed a trend to gain more first class honours (p=0.055). Students at Sheffield had a significantly greater proportion of clinical academic supervisors than students at Bristol (p<0.0001). 89.2% said that an intercalated degree was the right decision for them; however, only 27.4% stated they would have intercalated if fees had been £9000 per annum. Students clearly value intercalated degrees, feel they gained a substantial advantage over their peers as well as skills helpful for their future careers. The rise in tuition fees is likely to reduce the number of medical students opting to undertake an intercalated degree, and could result in a further reduction in numbers following an academic path. Sheffield University have more intercalating students supervised by clinical academics. Clinical academics appear more effective as supervisors for medical students undertaking an intercalated degree in terms of results and additional academic sequelae.

  18. Layered Compounds and Intercalation Chemistry: An Example of Chemistry and Diffusion in Solids.

    ERIC Educational Resources Information Center

    Whittingham, M. Stanley; Chianelli, Russell R.

    1980-01-01

    Considers a few areas of oxide/sulfide and intercalation-type chemistry. Discusses synthesis of the disulfides of the metals of group IVB, VB, and VIB; the intercalation reaction between lithium and titanium disulfide; other intercalates; and sulfide catalysts. (CS)

  19. Resolving DNA-ligand intercalation in the entropic stretching regime

    NASA Astrophysics Data System (ADS)

    Almaqwashi, Ali A.

    Single molecule studies of DNA intercalation are typically conducted by applying stretching forces to obtain force-dependent DNA elongation measurements. The zero-force properties of DNA intercalation are determined by equilibrium and kinetic force-analysis. However, the applied stretching forces that are above the entropic regime (>5 pN) prevent DNA-DNA contact which may eliminate competitive DNA-ligand interactions. In particular, it is noted that cationic mono-intercalators investigated by single molecule force spectroscopy are mostly found to intercalate DNA with single rate, while bulk studies reported additional slower rates. Here, a proposed framework quantifies DNA intercalation by cationic ligands in competition with relatively rapid kinetic DNA-ligand aggregation. At a constant applied force in the entropic stretching regime, the analysis illustrates that DNA intercalation would be measurably optimized only within a narrow range of low ligand concentrations. As DNA intercalators are considered for potential DNA-targeted therapeutics, this analysis provides insights in tuning ligand concertation to maximize therapeutics efficiency.

  20. Synthesis and properties of mecoprop-intercalated layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Ahmed Khan, Modabber; Choi, Choong-Lyeal; Lee, Dong-Hoon; Park, Man; Lim, Bu-Kug; Lee, Jong-Yoon; Choi, Jyung

    2007-08-01

    This study carried out to elucidate the synthesis of MCPP LDH hybrid, release pattern of MCPP from MCPP LDH hybrid and their properties. MCPP LDH hybrid was synthesized from MCPP and Mg Al complex. Release pattern of MCPP from MCPP LDH hybrid was slower in distilled water and soil solution but it was slower in distilled water than soil solution. MCPP LDH hybrid has shown more stable condition than CO32- form of LDH in thermal and acidic condition. Therefore, MCPP LDH hybrid would lead as functional and benign pesticide to minimize the harmful effects on soil environment by bulk herbicides.

  1. Mechanics of Micro- and Nano-Textured Systems: Nanofibers, Nanochannels, Nanoparticles and Slurries

    NASA Astrophysics Data System (ADS)

    Sinha Ray, Suman

    The first chapter of this work deals with bundles of microscopically long carbon nanochannels, which were assembled as a nanofluidic device to study bi-layer flows of n-decane and air. These experiments were accompanied and supported by theoretical considerations. The study paradoxically showed that it is possible to deliver more liquid through the nanochannels if they are partially filled with liquid in comparison to those which are completely filled with liquid. In the following chapter these nanochannels were used to produce thermoresponsive nanoparticles (˜400 nm in diameter) at a very high production rate of 107 particles/sec. These nanoparticles were loaded with a low molecular weight dye to study the thermoresponsive release profile experimentally. The experiments were accompanied and guided by theoretical work. In the third part of the work, a rigorous electron microscopy revealed the 2-nm islands of thermoresponsive hydrogels nanofibers produced by electrospinning and cross-linking of electropun PNIPAM-containing nanofibers. These islands were found to be responsible for positive thermosensitivity in dye release experiments. In the following chapters meltblowing was studied both experimentally and theoretically. The role of air turbulence in this process was elucidated experimentally by blowing a solid flexible threadline in high-speed gas flow. Using this information, theoretical understanding of polymer jet/gas jet turbulent interactions was achieved and a theory of small (linearized) and large (nonlinear) bending perturbations of polymer jets was developed. This theory was extended to simulate numerically multiple polymer jets being deposited on a screen moving normally to the blowing direction. In the subsequent chapter, a novel method, solution blowing, for producing monolithic and core-shell nanofibers was developed. The core-shell fibers were also converted into hollow carbon nanotubes. The carbon nanofiber mats produced by this method were used as an electrode in a microbial fuel cell, which showed a higher current density in comparison to standard polycrystalline graphite rods. In addition, solution blowing was used to form soy-protein-containing biodegradable nanofibers. In the next chapter, a novel method of intercalating wax and butter en masse into carbon nanotubes was demonstrated. It was shown that by manipulating the intercalated solute the working temperature range of phase-change materials (PCM) can be significantly widened, while the response time reduced to minimum. In the final part of the work the elongational rheology of gypsum slurries was also studied and corroborated using the data from the corresponding shear rheological studies. It was shown that the gypsum slurries approximately follow the tensorial Ostwald-de-Waele (power law) constitutive equation.

  2. Onset of superconductivity in sodium and potassium intercalated molybdenum disulphide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Rembaum, A.

    1971-01-01

    Molybdenum disulfide in the form of natural crystals or powder has been intercalated at -65 to -70 C with sodium and potassium using the liquid ammonia technique. All intercalated samples were found to show a superconducting transition. A plot of the percent of diamagnetic throw versus temperature indicates the possible existence of two phases in the potassium intercalated molybdenum disulfide. The onset of superconductivity in potassium and sodium intercalated molybdenite powder was found to be approximately 6.2 and approximately 4.5 K, respectively. The observed superconductivity is believed to be due to an increase in electron density as a result of intercalation.

  3. Environmental stability of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.; Jaworske, D. A.

    1985-01-01

    Graphite fibers intercalated with bromine, iodine monochloride, ferric chloride, and cupric chloride were subjected to stability tests under four environments which are encountered by engineering materials in the aerospace industry: ambient laboratory conditions, as would be experienced during handling operations and terrestrial applications; high vacuum, as would be experienced in space applications; high humidity, as would be experienced in marine applications; and high temperature, as would be experienced in some processing steps and applications. Monitoring the resistance of the fibers at ambient laboratory conditions revealed that only the ferric chloride intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were stable for long periods under high vacuum. Ferric chloride, cupric chloride, and iodine monochloride intercalated fibers were sensitive to high humidity conditions. All intercalated fibers began to degrade above 250 C. The order of their thermal stability, from lowest to highest, was cupric chloride, iodine monochloride, bromine, and ferric chloride. Of the four types of intercalated fibers tested, the bromine intercalated fibers appear to have the most potential for application, based on environmental stability.

  4. Highly Conductive and Transparent Large-Area Bilayer Graphene Realized by MoCl5 Intercalation.

    PubMed

    Kinoshita, Hiroki; Jeon, Il; Maruyama, Mina; Kawahara, Kenji; Terao, Yuri; Ding, Dong; Matsumoto, Rika; Matsuo, Yutaka; Okada, Susumu; Ago, Hiroki

    2017-11-01

    Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl 5 ) into a large-area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl 5 intercalation strongly depends on the stacking order of the graphene; twist-stacked graphene shows a much higher degree of intercalation than AB-stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist-stacked graphene contributes to the effective intercalation. By selectively synthesizing twist-rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ▫ -1 ) is realized after MoCl 5 intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA and lengthen linear DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verebová, Valéria; Adamcik, Jozef; Danko, Patrik

    2014-01-31

    Highlights: • Anthraquinones quinizarin and danthron unwind negatively supercoiled DNA. • Anthraquinones quinizarin and danthron lengthen linear DNA. • Anthraquinones quinizarin and danthron possess middle binding affinity to DNA. • Anthraquinones quinizarin and danthron interact with DNA by intercalating mode. - Abstract: The intercalating drugs possess a planar aromatic chromophore unit by which they insert between DNA bases causing the distortion of classical B-DNA form. The planar tricyclic structure of anthraquinones belongs to the group of chromophore units and enables anthraquinones to bind to DNA by intercalating mode. The interactions of simple derivatives of anthraquinone, quinizarin (1,4-dihydroxyanthraquinone) and danthron (1,8-dihydroxyanthraquinone),more » with negatively supercoiled and linear DNA were investigated using a combination of the electrophoretic methods, fluorescence spectrophotometry and single molecule technique an atomic force microscopy. The detection of the topological change of negatively supercoiled plasmid DNA, unwinding of negatively supercoiled DNA, corresponding to appearance of DNA topoisomers with the low superhelicity and an increase of the contour length of linear DNA in the presence of quinizarin and danthron indicate the binding of both anthraquinones to DNA by intercalating mode.« less

  6. Intercalation and de-intercalation pathway of proflavine through the minor and major grooves of DNA: roles of water and entropy.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2013-05-07

    DNA intercalation is a clinically relevant biophysical process due to its potential to inhibit the growth and survival of tumor cells and microbes through the arrest of the transcription and replication processes. Extensive kinetic and thermodynamic studies have followed since the discovery of the intercalative binding mode. However, the molecular mechanism and the origin of the thermodynamic and kinetic profile of the process are still not clear. Here we have constructed the free energy landscape of intercalation, de-intercalation and dissociation from both the major and minor grooves of DNA using extensive all-atom metadynamics simulations, capturing both the free energy barriers and stability in close agreement with fluorescence kinetic experiments. In the intercalated state, an alternate orientation of proflavine is found with an almost equal stability compared to the crystal orientation, however, separated by a 5.0 kcal mol(-1) barrier that decreases as the drug approaches the groove edges. This study provides a comprehensive picture in comparison with experiments, which indicates that the intercalation and de-intercalation of proflavine happen through the major groove side, although the effective intercalation barrier increases because the path of intercalation goes through the stable (abortive) minor groove bound state, making the process a millisecond long one in excellent agreement with the experiments. The molecular origin of the higher barrier for the intercalation from the minor groove side is attributed to the desolvation energy of DNA and the loss of entropy, while the barrier from the major groove, in the absence of desolvation energy, is primarily entropic.

  7. Reshaping the Energy Landscape Transforms the Mechanism and Binding Kinetics of DNA Threading Intercalation.

    PubMed

    Clark, Andrew G; Naufer, M Nabuan; Westerlund, Fredrik; Lincoln, Per; Rouzina, Ioulia; Paramanathan, Thayaparan; Williams, Mark C

    2018-02-06

    Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.

  8. New porphyrins bearing positively charged peripheral groups linked by a sulfonamide group to meso-tetraphenylporphyrin: interactions with calf thymus DNA.

    PubMed

    Manono, Janet; Marzilli, Patricia A; Marzilli, Luigi G

    2009-07-06

    New water-soluble cationic meso-tetraarylporphyrins (TArP, Ar = 4-C(6)H(4)) and some metal derivatives have been synthesized and characterized. One main goal was to assess if N-methylpyridinium (N-Mepy) groups must be directly attached to the porphyrin core for intercalative binding of porphyrins to DNA. The new porphyrins have the general formula, [T(R(2)R(1)NSO(2)Ar)P]X(4/8) (R(1) = CH(3) or H and R(2) = N-Mepy-n-CH(2) with n = 2, 3, or 4; or R(1) = R(2) = Et(3)NCH(2)CH(2)). Interactions of selected porphyrins and metalloporphyrins (Cu(II), Zn(II)) with calf thymus DNA were investigated by visible circular dichroism (CD), absorption, and fluorescence spectroscopies. The DNA-induced changes in the porphyrin Soret region (a positive induced CD feature and, at high DNA concentration, increases in the Soret band and fluorescence intensities) indicate that the new porphyrins interact with DNA in an outside, non-self-stacking binding mode. Several new metalloporphyrins did not increase DNA solution viscosity and thus do not intercalate, confirming the conclusion drawn from spectroscopic studies. Porphyrins known to intercalate typically bear two or more N-Mepy groups directly attached to the porphyrin ring, such as the prototypical meso-tetra(N-Mepy)porphyrin tetracation (TMpyP(4)). The distances between the nitrogens of the N-Mepy group are estimated to be approximately 11 A (cis) and 16 A (trans) for the relatively rigid TMpyP(4). For the new flexible porphyrin, [T(N-Mepy-4-CH(2)(CH(3))NSO(2)Ar)P]Cl(4), the distances between the nitrogens are estimated to be able to span the range from approximately 9 to approximately 25 A. Thus, the N-Mepy groups in the new porphyrins can adopt the same spacing as in known intercalators such as TMpyP(4). The absence of intercalation by the new porphyrins indicates that the propensity for the N-Mepy group to facilitate DNA intercalation of cationic porphyrins requires direct attachment of N-Mepy groups to the porphyrin core.

  9. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    PubMed

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effectiveness of Co intercalation between Graphene and Ir(1 1 1)

    NASA Astrophysics Data System (ADS)

    Carlomagno, I.; Drnec, J.; Scaparro, A. M.; Cicia, S.; Mobilio, S.; Felici, R.; Meneghini, C.

    2018-04-01

    Graphene can be used to avoid the oxidation of metallic films. This work explores the effectiveness of such stabilizing effect on Cobalt (Co) films intercalated between Graphene and Ir(1 1 1). After intercalation at 300 °C, two Co films are exposed to ambient pressure and investigated using Co-K edge X-ray Absorption Near Edge Spectroscopy. The formation of a disordered oxide phase is observed, and associated to the presence of some non-intercalated Co. Further annealing at 500 °C causes the oxide reduction to metallic Co which further intercalates below the Graphene. Once the intercalation is completed, Graphene prevents the Co from oxidation under ambient pressure conditions.

  11. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.

    PubMed

    Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng

    2014-02-01

    A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  12. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Abdullah Ahmed Ali, E-mail: abdullah2803@gmail.com; Talib, Zainal Abidin; Hussein, Mohd Zobir

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8.more » The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by the SDS concentration which indicated changes to the environment around the DS molecule in LDH interlayer.« less

  13. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    PubMed

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  14. Is it intelligent to intercalate? A two centre cross-sectional study exploring the value of intercalated degrees, and the possible effects of the recent tuition fee rise in England

    PubMed Central

    Stubbs, Timothy Alan; Lightman, Elewys G; Mathieson, Peter

    2013-01-01

    Aims and objectives To explore the value of intercalated degrees, including student perceptions and academic sequelae. To gauge the likely effect of the recent tuition fee rise and to identify any differences in intercalated degrees between Bristol and Sheffield universities. Design Cross-sectional study using questionnaires. Setting Bristol and Sheffield Medical Schools, UK. Participants 1484 medical students in their clinical years were e-mailed the questionnaire. 578 students responded: 291 from Bristol and 287 from Sheffield (n=578; mean age=22.41; SD 1.944; 38.9% male; 61.1% female). The response rate from previous intercalators was 52.5% from Bristol and 58.7% from Sheffield, while for non-intercalators it was 27.7% and 34.6%, respectively. Main outcome measures (1) Student preconceptions, opinions, results and academic sequelae from intercalated degrees at both centres. (2) Students’ attitudes concerning the effect of the increase in tuition fees. Results Those with clinical academic supervisors gained significantly more posters (p=0.0002) and publications (p<0.0001), and also showed a trend to gain more first class honours (p=0.055). Students at Sheffield had a significantly greater proportion of clinical academic supervisors than students at Bristol (p<0.0001). 89.2% said that an intercalated degree was the right decision for them; however, only 27.4% stated they would have intercalated if fees had been £9000 per annum. Conclusions Students clearly value intercalated degrees, feel they gained a substantial advantage over their peers as well as skills helpful for their future careers. The rise in tuition fees is likely to reduce the number of medical students opting to undertake an intercalated degree, and could result in a further reduction in numbers following an academic path. Sheffield University have more intercalating students supervised by clinical academics. Clinical academics appear more effective as supervisors for medical students undertaking an intercalated degree in terms of results and additional academic sequelae. PMID:23355672

  15. Proflavine binding to poly(rC-rA) inverts the CD spectrum but not the helix handedness.

    PubMed

    Westhof, E; Sundaralingam, M

    1984-08-01

    The interaction of proflavine hemisulfate with the sodium salt of poly(rC-rA) in solution (unbuffered) yields an inverted (mirror-like) circular dichroism (CD) spectrum to that of the free poly(rC-rA). Simultaneously, an induced negative Cotton effect appears in the proflavine band region with a maximum at 467 nm and a slight shoulder at 420 nm. This observation may be explained as resulting from the formation of a poly(rC-rA).proflavine complex with the polynucleotide existing as a right-handed parallel chain duplex with the proflavine intercalated between the CpA sequence and not the ApC sequence. The intercalation geometry here is expected to be analogous to that found in the crystal structure of the dinucleotide CpA.proflavine complex (Westhof et al. J. Mol. Biol., 1981) which forms a miniature right-handed helix. Although normally an inverted spectra could be attributed to a reversal in the helix handedness, the similarity in the 31P nuclear magnetic resonance spectra between the free and proflavine bound poly(rC-rA) indicates that their handedness is the same. The inverted CD spectrum may be a result of the different stacking orientation between the intercalated proflavine and the A-A base-pair on one hand and the triply hydrogen bonded protonated C-C base-pair on the other.

  16. Mechanism of Zn Insertion into Nanostructured δ-MnO 2 : A Nonaqueous Rechargeable Zn Metal Battery

    DOE PAGES

    Han, Sang-Don; Kim, Soojeong; Li, Dongguo; ...

    2017-05-08

    Unlike the more established lithium-ion based energy storage chemistries, the complex intercalation chemistry of multivalent cations in a host lattice is not well understood, especially the relationship between the intercalating species solution chemistry and the prevalence and type of side reactions. Among multivalent metals, a promising model system can be based on nonaqueous Zn 2+ ion chemistry. There are several examples of these systems support the use of a Zn metal anode, and reversible intercalation cathodes have been reported. Our study utilizes a combination of analytical tools to probe the chemistry of a nanostructured δ-MnO 2 cathode in association withmore » a nonaqueous acetonitrile–Zn(TFSI) 2 electrolyte and a Zn metal anode. As many of the issues related to understanding a multivalent battery relate to the electrolyte–electrode interface, the high surface area of a nanostructured cathode provides a significant interface between the electrolyte and cathode host that maximizes the spectroscopic signal of any side reactions or minor mechanistic pathways. There are numerous factors affecting capacity fade and issues associated with the second phase formation including Mn dissolution in heavily cycled Zn/δ-MnO 2 cells are presented including dramatic mechanistic differences in the storage mechanism of this couple when compared to similar aqueous electrolytes are noted.« less

  17. Interlayer interaction in Ca-Fe layered double hydroxides intercalated with nitrate and chloride species

    NASA Astrophysics Data System (ADS)

    Al-Jaberi, Muayad; Naille, Sébastien; Dossot, Manuel; Ruby, Christian

    2015-12-01

    Ca-Fe layered double hydroxide (LDH) intercalated with chloride and nitrate ions has been synthesized with varying CaII:FeIII molar ratios of the initial solution. Phase pure LDH is observed with CaII:FeIII molar ratio of 2:1 and a mixture of LDH and Ca(OH)2 is formed for CaII:FeIII molar ratios higher than 2:1. Vibrational spectroscopies (Raman and IR) were used successfully to understand the interaction between the cationic and anionic sheets. The Raman bands positions at lower frequencies (150-600 cm-1) are intimately correlated to the nature of the divalent and trivalent ions but also to the nature of the anions. Indeed, a shift of ˜9 cm-1 is observed for the Raman double bands situated in the 300-400 cm-1 region when comparing Raman spectra of CaFe-LDH containing either nitrate or chloride ions. Two types of nitrate environments are observed namely free (non-hydrogen bonded) nitrate and nitrate hydrogen bonded to the interlayer water or to the 'brucite-like' hydroxyl surface. Multiple types of water structure are observed and would result from different hydrogen bond structures. Water bending modes are identified at 1645 cm-1 greater than the one observed for LDH intercalated with chloride anions (1618 cm-1), indicating that the water is strongly hydrogen bonded to the nitrate anions.

  18. Dynamics of DNA/intercalator complexes

    NASA Astrophysics Data System (ADS)

    Schurr, J. M.; Wu, Pengguang; Fujimoto, Bryant S.

    1990-05-01

    Complexes of linear and supercoiled DNAs with different intercalating dyes are studied by time-resolved fluorescence polarization anisotropy using intercalated ethidium as the probe. Existing theory is generalized to take account of excitation transfer between intercalated ethidiums, and Forster theory is shown to be valid in this context. The effects of intercalated ethidium, 9-aminoacridine, and proflavine on the torsional rigidity of linear and supercoiled DNAs are studied up to rather high binding ratios. Evidence is presented that metastable secondary structure persists in dye-relaxed supercoiled DNAs, which contradicts the standard model of supercoiled DNAs.

  19. A Novel Battery Cathode Material Based on intercalation Chemistry: Redox Reactions of the 2,5-Dimercapto-1,3,4-Thiadiazole/V2O5 Xerogel System

    DTIC Science & Technology

    1998-06-29

    of some interstitial water during intercalation of the disulfide polymer of DMcT. Elemental analysis gives a composition for the intercalation...the disulfide polymer of DMcT. Elemental analysis gives a composition for the intercalation material of [(polyDMcT)o25*V205𔃻.4H20]. The cyclic...13.5 A). This change is consistent with loss of some interstitial water during intercalation of the disulfide polymer of DMcT. Elemental analysis

  20. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  1. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    NASA Astrophysics Data System (ADS)

    Suraja, P. V.; Binitha, N. N.; Yaakob, Z.; Silija, P. P.

    2011-02-01

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4·3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  2. Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR spectroscopy.

    PubMed

    Spielmann, H P; Wemmer, D E; Jacobsen, J P

    1995-07-11

    We have used two-dimensional 1H NMR spectroscopy to determine the solution structure of the DNA oligonucleotide d(5'-CGCTAGCG-3')2 complexed with the bis-intercalating dye 1,1'-(4,4,8,8-tetramethyl-4,8-diazaundecamethylene)bis[4-(3-methyl -2,3- dihydrobenzo-1,3-thiazolyl-2-methylidene)qui nolinium] tetraiodide (TOTO). The determination of the structure was based on total relaxation matrix analysis of the NOESY cross-peak intensities using the program MARDIGRAS. Improved procedures to consider the experimental "noise" in NOESY spectra during these calculations have been employed. The NOE-derived distance restraints were applied in restrained molecular dynamics calculations. Twenty final structures each were generated for the TOTO complex from both A-form and B-form dsDNA starting structures. The root-mean-square (rms) deviation of the coordinates for the 40 structures of the complex was 1.45 A. The local DNA structure is distorted in the complex. The helix is unwound by 60 degrees and has an overall helical repeat of 12 base pairs, caused by bis-intercalation of TOTO. The poly(propylenamine) linker chain is located in the minor groove of dsDNA. Calculations indicate that the benzothiazole ring system is twisted relative to the quinoline in the uncomplexed TOTO molecule. The site selectivity of TOTO for the CTAG-CTAG site is explained by its ability to adapt to the base pair propeller twist of dsDNA to optimize stacking and the hydrophobic interaction between the thymidine methyl group and the benzothiazole ring. There is a 3000-fold fluorescence enhancement upon binding of TOTO to dsDNA. Rotation about the cyanine methine bonds is possible in free TOTO, allowing relaxation nonradiatively. When bound to dsDNA, the benzothiazole ring and the quinolinium ring are clamped by the nucleobases preventing this rotation, and the chromophore loses excitation energy by fluorescence instead.

  3. Inosine Can Increase DNA's Susceptibility to Photo-oxidation by a RuII Complex due to Structural Change in the Minor Groove.

    PubMed

    Keane, Páraic M; Hall, James P; Poynton, Fergus E; Poulsen, Bjørn C; Gurung, Sarah P; Clark, Ian P; Sazanovich, Igor V; Towrie, Michael; Gunnlaugsson, Thorfinnur; Quinn, Susan J; Cardin, Christine J; Kelly, John M

    2017-08-01

    Key to the development of DNA-targeting phototherapeutic drugs is determining the interplay between the photoactivity of the drug and its binding preference for a target sequence. For the photo-oxidising lambda-[Ru(TAP) 2 (dppz)] 2+ (Λ-1) (dppz=dipyridophenazine) complex bound to either d{T 1 C 2 G 3 G 4 C 5 G 6 C 7 C 8 G 9 A 10 } 2 (G9) or d{TCGGCGCCIA} 2 (I9), the X-ray crystal structures show the dppz intercalated at the terminal T 1 C 2 ;G 9 A 10 step or T 1 C 2 ;I 9 A 10 step. Thus substitution of the G 9 nucleobase by inosine does not affect intercalation in the solid state although with I9 the dppz is more deeply inserted. In solution it is found that the extent of guanine photo-oxidation, and the rate of back electron-transfer, as determined by pico- and nanosecond time-resolved infrared and transient visible absorption spectroscopy, is enhanced in I9, despite it containing the less oxidisable inosine. This is attributed to the nature of the binding in the minor groove due to the absence of an NH 2 group. Similar behaviour and the same binding site in the crystal are found for d{TTGGCGCCAA} 2 (A9). In solution, we propose that intercalation occurs at the C 2 G 3 ;C 8 I 9 or T 2 G 3 ;C 8 A 9 steps, respectively, with G 3 the likely target for photo-oxidation. This demonstrates how changes in the minor groove (in this case removal of an NH 2 group) can facilitate binding of Ru II dppz complexes and hence influence any sensitised reactions occurring at these sites. No similar enhancement of photooxidation on binding to I9 is found for the delta enantiomer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sequence specificity of mutagen-nucleic acid complexes in solution: intercalation and mutagen-base pair overlap geometries for proflavine binding to dC-dC-dG-dG and dG-dG-dC-dC self-complementary duplexes.

    PubMed

    Patel, D J; Canuel, L L

    1977-07-01

    The complex formed between the mutagen proflavine and the dC-dC-dG-dG and dG-dG-dC-dC self-complementary tetranucleotide duplexes has been monitored by proton high resolution nuclear magnetic resonance spectroscopy in 0.1 M phosphate solution at high nucleotide/drug ratios. The large upfield shifts (0.5 to 0.85 ppm) observed at all the proflavine ring nonexchangeable protons on complex formation are consistent with intercalation of the mutagen between base pairs of the tetranucleotide duplex. We have proposed an approximate overlap geometry between the proflavine ring and nearest neighbor base pairs at the intercalation site from a comparison between experimental shifts and those calculated for various stacking orientations. We have compared the binding of actinomycin D, propidium diiodide, and proflavine to self-complementary tetranucleotide sequences dC-dC-dG-dG and dG-dG-dC-dC by UV absorbance changes in the drug bands between 400 and 500 nm. Actinomycin D exhibits a pronounced specificity for sequences with dG-dC sites (dG-dG-dC-dC), while propidium diiodide and proflavine exhibit a specificity for sequences with dC-dG sites (dC-dC-dG-dG). Actinomycin D binds more strongly than propidium diiodide and proflavine to dC-dG-dC-dG (contains dC-dG and dG-dC binding sites), indicative of the additional stabilization from hydrogen bonding and hydrophobic interactions between the pentapeptide lactone rings of actinomycin D and the base pair edges and sugar-phosphate backbone of the tetranucleotide duplex.

  5. Sequence specificity of mutagen-nucleic acid complexes in solution: Intercalation and mutagen-base pair overlap geometries for proflavine binding to dC-dC-dG-dG and dG-dG-dC-dC self-complementary duplexes

    PubMed Central

    Patel, Dinshaw J.; Canuel, Lita L.

    1977-01-01

    The complex formed between the mutagen proflavine and the dC-dC-dG-dG and dG-dG-dC-dC self-complementary tetranucleotide duplexes has been monitored by proton high resolution nuclear magnetic resonance spectroscopy in 0.1 M phosphate solution at high nucleotide/drug ratios. The large upfield shifts (0.5 to 0.85 ppm) observed at all the proflavine ring nonexchangeable protons on complex formation are consistent with intercalation of the mutagen between base pairs of the tetranucleotide duplex. We have proposed an approximate overlap geometry between the proflavine ring and nearest neighbor base pairs at the intercalation site from a comparison between experimental shifts and those calculated for various stacking orientations. We have compared the binding of actinomycin D, propidium diiodide, and proflavine to self-complementary tetranucleotide sequences dC-dC-dG-dG and dG-dG-dC-dC by UV absorbance changes in the drug bands between 400 and 500 nm. Actinomycin D exhibits a pronounced specificity for sequences with dG-dC sites (dG-dG-dC-dC), while propidium diiodide and proflavine exhibit a specificity for sequences with dC-dG sites (dC-dC-dG-dG). Actinomycin D binds more strongly than propidium diiodide and proflavine to dC-dG-dC-dG (contains dC-dG and dG-dC binding sites), indicative of the additional stabilization from hydrogen bonding and hydrophobic interactions between the pentapeptide lactone rings of actinomycin D and the base pair edges and sugar-phosphate backbone of the tetranucleotide duplex. PMID:268613

  6. The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery.

    PubMed

    Bhauriyal, Preeti; Mahata, Arup; Pathak, Biswarup

    2017-03-15

    Identifying a suitable electrode material with desirable electrochemical properties remains a primary challenge for rechargeable Al-ion batteries. Recently an ultrafast rechargeable Al-ion battery was reported with high charge/discharge rate, (relatively) high discharge voltage and high capacity that uses a graphite-based cathode. Using calculations from first-principles, we have investigated the staging mechanism of AlCl 4 intercalation into bulk graphite and evaluated the stability, specific capacity and voltage profile of AlCl 4 intercalated compounds. Ab initio molecular dynamics is performed to investigate the thermal stability of AlCl 4 intercalated graphite structures. Our voltage profiles show that the first AlCl 4 intercalation step could be a more sluggish step than the successive intercalation steps. However, the diffusion of AlCl 4 is very fast in the expanded graphite host layers with a diffusion barrier of ∼0.01 eV, which justifies the ultrafast charging rate of a graphite based Al-ion battery. And such an AlCl 4 intercalated battery provides an average voltage of 2.01-2.3 V with a maximum specific capacity of 69.62 mA h g -1 , which is excellent for anion intercalated batteries. Our density of states and Bader charge analysis shows that the AlCl 4 intercalation into the bulk graphite is a charging process. Hence, we believe that our present study will be helpful in understanding the staging mechanism of AlCl 4 intercalation into graphite-like layered electrodes for Al-ion batteries, thus encouraging further experimental work.

  7. A facile method to modify bentonite nanoclay with silane

    NASA Astrophysics Data System (ADS)

    Abeywardena, Sujani B. Y.; Perera, Srimala; Nalin de Silva, K. M.; Tissera, Nadeeka P.

    2017-07-01

    Immobilization of smectite clay onto a desirable surface has received much attention, since its nanospace can be utilized for many applications in material science. Here, we present an efficient method to functionalize surface of bentonite nanoclay (BNC) through the grafting of 3-aminotriethoxysilane (APTES). Infrared spectroscopy and elemental analysis confirmed the presence of organic chains and amine groups in modified nanoclay. XRD analysis confirmed grafting of APTES on the surface of bentonite nanoclay without intercalation. The accomplishment of the surface modification was quantitatively proved by TGA analysis. Modified BNC can covalently couple with different material surfaces, allowing its nanospace to be utilized for intercalation of cations, bio-molecules, and polymeric materials, to be used in advanced military aerospace, pharmaceuticals, and many other commercial applications.

  8. Synthesis and selective IR absorption properties of iminodiacetic-acid intercalated MgAl-layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Lijing; Xu Xiangyu; Evans, David G.

    2010-05-15

    An MgAl-NO{sub 3}-layered double hydroxide (LDH) precursor has been prepared by a method involving separate nucleation and aging steps (SNAS). Reaction with iminodiacetic acid (IDA) under weakly acidic conditions led to the replacement of the interlayer nitrate anions by iminodiacetic acid anions. The product was characterized by XRD, FT-IR, TG-DTA, ICP, elemental analysis and SEM. The results show that the original interlayer nitrate anions of LDHs precursor were replaced by iminodiacetic acid anions and that the resulting intercalation product MgAl-IDA-LDH has an ordered crystalline structure. MgAl-IDA-LDH was mixed with low density polyethylene (LDPE) using a masterbatch method. LDPE films filledmore » with MgAl-IDA-LDH showed a higher mid to far infrared absorption than films filled with MgAl-CO{sub 3}-LDH in the 7-25 {mu}m range, particularly in the key 9-11 {mu}m range required for application in agricultural plastic films. - Graphical abstract: Intercalation of iminodiacetic acid (IDA) anions in a MgAl-NO{sub 3}-layered double hydroxide host leads to an enhancement of its infrared absorbing ability for application in agricultural plastic films.« less

  9. Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation

    USGS Publications Warehouse

    Eberl, D.D.; Nüesch, R.; Šucha, Vladimír; Tsipursky, S.

    1998-01-01

    The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swelling and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weight of 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydrothermal and low-grade metamorphic I-S indicate that there are at least 2 types of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertant-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small differences in layer thicknesses) generally has a Gaussian distribution in the log-normal-type illites, but is often absent in the asymptotic-type illites.

  10. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    PubMed

    Banerjee, T; Banerjee, S; Sett, S; Ghosh, S; Rakshit, T; Mukhopadhyay, R

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  11. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy

    PubMed Central

    Sett, S.; Ghosh, S.; Rakshit, T.; Mukhopadhyay, R.

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA—the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA—the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time. PMID:27183010

  12. Carbon dioxide intercalation in Na-fluorohectorite clay at near-ambient conditions

    NASA Astrophysics Data System (ADS)

    Fossum, Jon Otto; Hemmen, Henrik; Rolseth, Erlend G.; Fonseca, Davi; Lindbo Hansen, Elisabeth; Plivelic, Tomas

    2012-02-01

    A molecular dynamics study by Cygan et al.[1] shows the possibility of intercalation and retention of CO2 in smectite clays at 37 ^oC and 200 bar, which suggests that clay minerals may prove suitable for carbon capture and carbon dioxide sequestration. In this work we show from x-ray diffraction measurements that gaseous CO2 intercalates into the interlayer space of the synthetic smectite clay Na-fluorohectorite. The mean interlayer distance of the clay when CO2 is intercalated is 12.5 å at -20 C and 15 bar. The magnitude of the expansion of the interlayer upon intercalation is indistinguishable from that of the dehydrated-monohydrated intercalation of H2O, but this possibility is ruled out by careful repeating the measurements exposing the clay to nitrogen gas. The dynamics of the CO2 intercalation process displays a higher intercalation rate at increased pressure, and the rate is several orders of magnitude slower than that of water or vapor at ambient pressure and temperature.[4pt] [1] Cygan, R. T.; Romanov, V. N.; Myshakin, E. M. Natural materials for carbon capture; Techincal report SAND2010-7217; Sandia National Laboratories: Albuquerque, New Mexico, November, 2010.

  13. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    PubMed

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-05-09

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  14. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    NASA Astrophysics Data System (ADS)

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-03-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

  15. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate.

    PubMed

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-12-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy (μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO 4 , K 2 Cr 2 O 7 ) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO 4 and NaClO 3 .

  16. Stacking interactions and DNA intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dr. Shen; Cooper, Valentino R; Thonhauser, Prof. Timo

    2009-01-01

    The relationship between stacking interactions and the intercalation of proflavine and ellipticine within DNA is investigated using a nonempirical van der Waals density functional for the correlation energy. Our results, employing a binary stack model, highlight fundamental, qualitative differences between base-pair base-pair interactions and that of the stacked intercalator base pair system. Most notable result is the paucity of torque which so distinctively defines the Twist of DNA. Surprisingly, this model, when combined with a constraint on the twist of the surrounding base-pair steps to match the observed unwinding of the sugar-phosphate backbone, was sufficient for explaining the experimentally observedmore » proflavine intercalator configuration. Our extensive mapping of the potential energy surface of base-pair intercalator interactions can provide valuable information for future nonempirical studies of DNA intercalation dynamics.« less

  17. Cobalt intercalation at the graphene/iridium(111) interface: Influence of rotational domains, wrinkles, and atomic steps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlaic, S.; Kimouche, A.; Coraux, J.

    Using low-energy electron microscopy, we study Co intercalation under graphene grown on Ir(111). Depending on the rotational domain of graphene on which it is deposited, Co is found intercalated at different locations. While intercalated Co is observed preferentially at the substrate step edges below certain rotational domains, it is mostly found close to wrinkles below other domains. These results indicate that curved regions (near substrate atomic steps and wrinkles) of the graphene sheet facilitate Co intercalation and suggest that the strength of the graphene/Ir interaction determines which pathway is energetically more favorable.

  18. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    PubMed

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  19. SUPPRESSION OF HUMORAL IMMUNE RESPONSES BY 2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN INTERCALATED IN SMECTITE CLAY

    PubMed Central

    Boyd, Stephen A.; Johnston, Cliff T.; Pinnavaia, Thomas J.; Kaminski, Norbert E.; Teppen, Brian J.; Li, Hui; Khan, Bushra; Crawford, Robert B.; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L.F.

    2018-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. PMID:21994089

  20. Intercalated degrees, learning styles, and career preferences: prospective longitudinal study of UK medical students

    PubMed Central

    McManus, I C; Richards, P; Winder, B C

    1999-01-01

    Objectives To assess the effects of taking an intercalated degree (BSc) on the study habits and learning styles of medical students and on their interest in a career in medical research. Design Longitudinal questionnaire study of medical students at application to medical school and in their final year. Setting All UK medical schools. Participants 6901 medical school applicants for admission in 1991 were studied in the autumn of 1990. 3333 entered medical school in 1991 or 1992, and 2695 who were due to qualify in 1996 or 1997 were studied 3 months before the end of their clinical course. Response rates were 92% for applicants and 56% for final year students. Main outcome measures Study habits (surface, deep, and strategic learning style) and interest in different medical careers, including medical research. Identical questions were used at time of application and in final year. Results Students who had taken an intercalated degree had higher deep and strategic learning scores than at application to medical school. Those with highest degree classes had higher strategic and deep learning scores and lower surface learning scores. Students taking intercalated degrees showed greater interest in careers in medical research and laboratory medicine and less interest in general practice than their peers. The effects of the course on interest in medical research and learning styles were independent. The effect of the intercalated degree was greatest in schools where relatively few students took intercalated degrees. Conclusions Intercalated degrees result in a greater interest in research careers and higher deep and strategic learning scores. However, the effects are much reduced in schools where most students intercalate a degree. Introduction of intercalated degrees for all medical students without sufficient resources may not therefore achieve its expected effects. Key messagesAlthough intercalated degrees are well established, little is known about their effect on medical studentsIn this longitudinal study final year students who had taken intercalated degree were more interested in medical research, and had higher deep and strategic learning style scores than other studentsThe effects of the intercalated degree were dose dependent, being greatest in those gaining a first class degreeThe effects of the intercalated degree were greatest in medical schools where a relatively small proportion of medical students took the degree.Differences between medical schools are most easily explained by resource dilution PMID:10463892

  1. Hybridization of the natural antibiotic, cinnamic acid, with layered double hydroxides (LDH) as green pesticide.

    PubMed

    Park, Man; Lee, Chang-Il; Seo, Young Jin; Woo, Sang Ryung; Shin, Dongill; Choi, Jyung

    2010-01-01

    Heavy application of highly toxic synthetic pesticides has been committed to protect crops against insects and diseases, which have brought about serious environmental problems. Thus, an inevitable and fundamental issue has been how to protect crops without harmful effects on nature. As a fascinating nature-compatible approach, we have attempted to hybridize soil-compatible layered double hydroxides (LDHs) with natural antibiotic substances. Only a few of natural antibiotic substances are available for pest control mainly because of their inherent properties such as easy degradability, high minimum inhibition concentration for practical application, and often extremely low availability, whereas LDHs exhibit unique properties such as anion exchange capacity, acid lability, and high affinity to ubiquitous carbonate ion which make them an excellent inorganic matrix to carry labile biomolecules in soils. This study focuses on the behavior of cinnamate-LDH hybrid in soils and the evaluation of its potentials as a green pesticide. The cinnamate-LDH hybrid was synthesized by a typical coprecipitation method. Cinnamic acid was analyzed by high performance liquid chromatography which was operated at 280 nm with C18 column. Its controlled release property was evaluated in a cultivated soil as well as a simulated soil solution. Its antifungal activity was examined against the growth of Phytophyhora capsici in a potato dextrose agar medium and a red pepper seedling, respectively. Structural characterization by X-ray diffraction, infra-red, and thermal analysis indicates that cinnamate molecules are safely intercalated into the interlayer space of inorganic layers of LDH by the electrostatic interaction to have an empirical formula of Mg(3)Al(OH)(8).CAN . 3.1H(2)O. The overall release pattern of the intercalated cinnamate in the soil solution could be best described by the power-function equation [Formula: see text]. This suggests that diffusion-controlled processes besides simple ion-exchange process play an important role in release of the intercalated cinnamate. Furthermore, its behavior in a cultivated soil clearly shows that hybridization leads to protection of cinnamate against the degradation as well as to a controlled release in soils. Its antifungal activity against the growth of P. capsici in a potato dextrose agar medium and a red pepper seedling definitely shows that the hybrid is very effective in controlling the root rot of red pepper. This study demonstrates that the hybridization of natural antibiotic substances with layered double hydroxides could be a fascinating alternative for green formulation of pesticides. This unique hybrid system leads to the salient features such as protection of the substances against chemical and microbial degradations, controlled release, and nature compatibility. This study suggests one of the sound strategies to make a breakthrough in the formulation of green pesticides. Hybridization with inorganic matrixes not only enables the natural antibiotic substances to replace the synthetic ingredients but also adjuvants to be excluded from the formulations. Furthermore, the resulting hybrid exhibits a controlled release of the intercalated substances. Although substantiated further, this study is expected to attract a great deal of attention to reliable application of natural antibiotic substances in green protection of crops and agricultural products.

  2. Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-12-01

    Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.

  3. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    PubMed

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  4. Anticancer Activity Expressed by a Library of 2,9-Diazaperopyrenium Dications

    PubMed Central

    2016-01-01

    Polyaromatic compounds are well-known to intercalate DNA. Numerous anticancer chemotherapeutics have been developed upon the basis of this recognition motif. The compounds have been designed such that they interfere with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although many promising chemotherapeutics have been developed upon the basis of polyaromatic DNA intercalating systems, these candidates did not proceed past clinical trials on account of their dose-limiting toxicity. Herein, we discuss an alternative, water-soluble class of polyaromatic compounds, the 2,9-diazaperopyrenium dications, and report in vitro cell studies for a library of these dications. These investigations reveal that a number of 2,9-diazaperopyrenium dications show similar activities as doxorubicin toward a variety of cancer cell lines. Additionally, we report the solid-state structures of these dications, and we relate their tendency to aggregate in solution to their toxicity profiles. The addition of bulky substituents to these polyaromatic dications decreases their tendency to aggregate in solution. The derivative substituted with 2,6-diisopropylphenyl groups proved to be the most cytotoxic against the majority of the cell lines tested. In the solid state, the 2,6-diisopropylphenyl-functionalized derivative does not undergo π···π stacking, while in aqueous solution, dynamic light scattering reveals that this derivative forms very small (50–100 nm) aggregates, in contrast with the larger ones formed by dications with less bulky substituents. Alteration of the aromaticitiy in the terminal heterocycles of selected dications reveals a drastic change in the toxicity of these polyaromatic species toward specific cell lines. PMID:25555133

  5. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    NASA Astrophysics Data System (ADS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  6. Ethidium and proflavine binding to a 2',5'-linked RNA duplex.

    PubMed

    Horowitz, Eric D; Hud, Nicholas V

    2006-12-06

    Despite over 40 years of physical investigations, fundamental questions persist regarding the energetics of RNA and DNA intercalation. The dramatic unwinding of a nucleic acid duplex upon intercalation immediately suggests that the nucleic acid backbone should play a significant role in dictating the free energy of intercalation. However, the contribution of the backbone to intercalation free energy is difficult to appreciate given the intertwined energetics associated with intercalation (e.g., pi-pi stacking and solvent effects). Fluorescence titrations were used to determine the association constants of two known intercalators, proflavine and ethidium, for duplex 2',5'-linked RNA. Proflavine was found to bind 2',5' RNA with an association constant 25-fold greater than that measured for standard, 3',5'-linked RNA. In contrast, ethidium binds 2',5' RNA less favorably than standard RNA.

  7. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  8. Observation of Image Potential State in Oxygen Intercalated Graphene on Iridium by Two-Photon-Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Li, Yunzhe; Sadowski, Jerzy; Dadap, Jerry; Jin, Wencan; Osgood, Richard

    In this talk, we report our experimental results on the first direct observation of image potential state (IPS) in oxygen-intercalated graphene on iridium by two-photo-photoemission spectroscopy. We demonstrate how oxygen intercalation influences the IPS in Gr/Ir and decouples the interlayer interaction. We present measurements of the electronic dispersion and work function in pristine Gr/Ir, oxygen-intercalated Gr/O/Ir, and deintercalated Gr/Ir. LEED patterns are measured during the pristine, oxygen-intercalated, and deintercalated phases of the Gr/Ir sample. Based on these measurements, relative to the pristine case, the work function and the energy location of n =1 IPS relative to the Fermi level increases by 0.39 eV and 0.3 eV, respectively, due to oxygen intercalation, whereas the effective mass of n =1 IPS is hardly influenced by the intercalation process. Moreover, we achieve the quenching and restoration of the resonance from Ir Rashba states to n =1 IPS in Gr/Ir by oxygen intercalation and deintercalation. This work was supported by the DOE, Office of Basic Energy Sciences, Division of MSE under Contract No. DE-FG 02-04-ER-46157. This research used resources of the CFN, which is the U.S. DOE Office of Science User Facility, under Contract No. DE-SC0012704.

  9. Spectroscopic analysis on the resveratrol-DNA binding interactions at physiological pH

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Jing, Zhihong; Qu, Fengli

    2011-11-01

    The interaction of resveratrol with calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was studied by spectroscopy, fluorescence spectroscopy and viscosity measurement method, respectively. Results indicated that a complex of resveratrol with ctDNA was formed with a binding constant of K17 °C = 5.49 × 10 3 L mol -1 and K37 °C = 1.90 × 10 4 L mol -1. The fluorescence quenching mechanism of acridine orange (AO)-ctDNA by resveratrol was shown to be a static quenching type. The thermodynamic parameters of the complex were calculated by a double reciprocal method: ΔHms=4.64×10 J mol, ΔSms=231.8 J K mol and ΔGms=-2.54×10 J mol (37 °C). Spectroscopic techniques together with viscosity determination provided evidences of intercalation mode of binding for the interaction between resveratrol and ctDNA.

  10. Torsional mechanics of DNA are regulated by small-molecule intercalation.

    PubMed

    Celedon, Alfredo; Wirtz, Denis; Sun, Sean

    2010-12-23

    Whether the bend and twist mechanics of DNA molecules are coupled is unclear. Here, we report the direct measurement of the resistive torque of single DNA molecules to study the effect of ethidium bromide (EtBr) intercalation and pulling force on DNA twist mechanics. DNA molecules were overwound and unwound using recently developed magnetic tweezers where the molecular resistive torque was obtained from Brownian angular fluctuations. The effect of EtBr intercalation on the twist stiffness was found to be significantly different from the effect on the bend persistence length. The twist stiffness of DNA was dramatically reduced at low intercalator concentration (<10 nM); however, it did not decrease further when the intercalator concentration was increased by 3 orders of magnitude. We also determined the dependence of EtBr intercalation on the torque applied to DNA. We propose a model for the elasticity of DNA base pairs with intercalated EtBr molecules to explain the abrupt decrease of twist stiffness at low EtBr concentration. These results indicate that the bend and twist stiffnesses of DNA are independent and can be differently affected by small-molecule binding.

  11. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    DOE PAGES

    Allu, S.; Kalnaus, S.; Simunovic, S.; ...

    2016-06-09

    Through this study, we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allowsmore » for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Finally, its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.« less

  12. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    PubMed

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.

  13. Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica.

    PubMed

    Ji, Yazhou; Caskey, Christopher; Richards, Ryan M

    2015-07-09

    As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability.

  14. Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica

    PubMed Central

    Ji, Yazhou; Caskey, Christopher; Richards, Ryan M.

    2015-01-01

    As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability. PMID:26274058

  15. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-06-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  16. Synergetic effects of K + and Mg 2+ ion intercalation on the electrochemical and actuation properties of the two-dimensional Ti 3 C 2 MXene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Qiang; Come, Jeremy; Naguib, Michael

    2017-01-01

    Two-dimensional materials, such as MXenes, are attractive candidates for energy storage and electrochemical actuators due to their high volume changes upon ion intercalation. Of special interest for boosting energy storage is the intercalation of multivalent ions such as Mg 2+, which suffers from sluggish intercalation and transport kinetics due to its ion size. By combining traditional electrochemical characterization techniques with electrochemical dilatometry and contact resonance atomic force microscopy, the synergetic effects of the pre-intercalation of K +ions are demonstrated to improve the charge storage of multivalent ions, as well as tune the mechanical and actuation properties of the Ti 3Cmore » 2MXene. Our results have important implications for quantitatively understanding the charge storage processes in intercalation compounds and provide a new path for studying the mechanical evolution of energy storage materials.« less

  17. Low-coverage surface diffusion in complex periodic energy landscapes: Analytical solution for systems with symmetric hops and application to intercalation in topological insulators

    NASA Astrophysics Data System (ADS)

    Gosálvez, Miguel A.; Otrokov, Mikhail M.; Ferrando, Nestor; Ryabishchenkova, Anastasia G.; Ayuela, Andres; Echenique, Pedro M.; Chulkov, Evgueni V.

    2016-02-01

    This is the first of two papers that introduce a general expression for the tracer diffusivity in complex, periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low-coverage, single-tracer limit). The present report focuses on the analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials. For diffusion in two dimensions, a number of formulas are presented for complex combinations of the different hops in systems with triangular, rectangular, and square symmetry. The formulas provide values in excellent agreement with kinetic Monte Carlo simulations, concluding that the diffusion coefficient can be directly determined from the proposed expressions without performing the simulations. Based on the diffusion barriers obtained from first-principles calculations and a physically meaningful estimate of the attempt frequencies, the proposed formulas are used to analyze the diffusion of Cu, Ag, and Rb adatoms on the surface and within the van der Waals (vdW) gap of a model topological insulator, Bi2Se3 . Considering the possibility of adsorbate intercalation from the terraces to the vdW gaps at morphological steps, we infer that, at low coverage and room temperature, (i) a majority of the Rb atoms bounce back at the steps and remain on the terraces, (ii) Cu atoms mostly intercalate into the vdW gap, the remaining fraction staying at the steps, and (iii) Ag atoms essentially accumulate at the steps and gradually intercalate into the vdW gap. These conclusions are in good qualitative agreement with previous experiments. The companion report (M. A. Gosálvez et al., Phys. Rev. B, submitted] extends the present study to the description of systems that contain asymmetric hops.

  18. Neocarzinostatin as a probe for DNA protection activity--molecular interaction with caffeine.

    PubMed

    Chin, Der-Hang; Li, Huang-Hsien; Kuo, Hsiu-Maan; Chao, Pei-Dawn Lee; Liu, Chia-Wen

    2012-04-01

    Neocarzinostatin (NCS), a potent mutagen and carcinogen, consists of an enediyne prodrug and a protein carrier. It has a unique double role in that it intercalates into DNA and imposes radical-mediated damage after thiol activation. Here we employed NCS as a probe to examine the DNA-protection capability of caffeine, one of common dietary phytochemicals with potential cancer-chemopreventive activity. NCS at the nanomolar concentration range could induce significant single- and double-strand lesions in DNA, but up to 75 ± 5% of such lesions were found to be efficiently inhibited by caffeine. The percentage of inhibition was caffeine-concentration dependent, but was not sensitive to the DNA-lesion types. The well-characterized activation reactions of NCS allowed us to explore the effect of caffeine on the enediyne-generated radicals. Postactivation analyses by chromatographic and mass spectroscopic methods identified a caffeine-quenched enediyne-radical adduct, but the yield was too small to fully account for the large inhibition effect on DNA lesions. The affinity between NCS chromophore and DNA was characterized by a fluorescence-based kinetic method. The drug-DNA intercalation was hampered by caffeine, and the caffeine-induced increases in DNA-drug dissociation constant was caffeine-concentration dependent, suggesting importance of binding affinity in the protection mechanism. Caffeine has been shown to be both an effective free radical scavenger and an intercalation inhibitor. Our results demonstrated that caffeine ingeniously protected DNA against the enediyne-induced damages mainly by inhibiting DNA intercalation beforehand. The direct scavenging of the DNA-bound NCS free radicals by caffeine played only a minor role. Copyright © 2011 Wiley Periodicals, Inc.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Hui; Zou Kang; Guo Shaohuan

    A nanostructural drug-inorganic clay composite involving a pharmaceutically active compound captopril (Cpl) intercalated Mg-Al-layered double hydroxides (Cpl-LDHs) with Mg/Al molar ratio of 2.06 has been assembled by coprecipitation method. Powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR) and Raman spectra analysis indicate a successful intercalation of Cpl between the layers with a vertical orientation of Cpl disulphide-containing S-S linkage. SEM photo indicates that as-synthesized Cpl-LDHs possess compact and non-porous structure with approximately and linked elliptical shape particles of ca. 50 nm. TG-DTA analyses suggest that the thermal stability of intercalated organic species is largely enhanced due to host-guest interactionmore » involving the hydrogen bond compared to pure form before intercalation. The in vitro release studies show that both the release rate and release percentages markedly decrease with increasing pH from 4.60 to 7.45 due to possible change of release mechanism during the release process. The kinetic simulation for the release data, and XRD and FT-IR analyses for samples recovered from release media indicate that the dissolution mechanism is mainly responsible for the release behaviour of Cpl-LDHs at pH 4.60, while the ion-exchange one is responsible for that at pH 7.45. - Graphical abstract: Based on XRD, FT-IR and Raman spectra analyses, it is suggested that captopril (Cpl) exists as its disulphide metabolites in the interlayer of Mg-Al-LDHs via hydrogen bonding between guest carboxylate function and hydroxyl group of the host layers. A schematic supramolecular structure of Cpl intercalates involving a vertical orientation of Cpl disulphide-containing S-S bond between the layers with carboxylate anions pointing to both hydroxide layers is presented.« less

  20. Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries

    DOE PAGES

    Li, Juchuan; Zhang, Qinglin; Xiao, Xingcheng; ...

    2015-10-18

    The intercalation compounds are generally considered as ideal electrode materials for lithium-ion batteries thanks to their minimum volume expansion and fast lithium ion diffusion. However, cracking still occurs in those compounds and has been identified as one of the critical issues responsible for their capacity decay and short cycle life, although the diffusion-induced stress and volume expansion are much smaller than those in alloying-type electrodes. Here, we designed a thin-film model system that enables us to tailor the cation ordering in LiNi 0.5Mn 1.5O 4 spinels and correlate the stress patterns, phase evolution, and cycle performances. Surprisingly, we found thatmore » distinct reaction paths cause negligible difference in the overall stress patterns but significantly different cracking behaviors and cycling performances: 95% capacity retention for disordered LiNi 0.5Mn 1.5O 4 and 48% capacity retention for ordered LiNi 0.5Mn 1.5O 4 after 2000 cycles. We were able to pinpoint that the extended solid-solution region with suppressed phase transformation attributed to the superior electrochemical performance of disordered spinel. Furthermore, this work envisions a strategy for rationally designing stable cathodes for lithium-ion batteries through engineering the atomic structure that extends the solid-solution region and suppresses phase transformation.« less

  1. Preparation of 2D MoSe2/PEDOT:PSS composite and its thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Li, Xia; Liu, Congcong; Wang, Tongzhou; Wang, Wenfang; Wang, Xiaodong; Jiang, Qinglin; Jiang, Fengxing; Xu, Jingkun

    2017-11-01

    Nowadays, inorganic/polymer composites have attracted significant interest in thermoelectric field, since the composite materials usually achieve their respective advantages complementary to each other. In this work, molybdenum diselenide (MoSe2) was synthesized by a facile hydrothermal method. Solution processible two-dimensional (2D) MoSe2 nanosheets (NSs) were successfully obtained using dimethylsulfoxide (DMSO) solvent or lithium intercalation procedure. Combined with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), MoSe2/PEDOT:PSS composite thin films were fabricated by direct vacuum-filtration method. Thermoelectric properties of composite thin films were investigated systematically and found that 2D MoSe2 NSs and PEDOT:PSS have the synergistic effect on improving thermoelectric properties. The maximum power factor was calculated to be 48.6 µW m-1 K-2 with 5 wt% 2D MoSe2 NSs embedding into PEDOT:PSS matrix, which is almost 69% higher than that of pure PEDOT:PSS. These results demonstrate that 2D inorganic/polymer composite method is one of promising strategies to get high-performance polymer-based thermoelectric composites.

  2. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions

    PubMed Central

    Webb, Michael R.; Min, Kyungmi; Ebeler, Susan E.

    2009-01-01

    Anthocyanins and their aglycone anthocyanidins are pigmented flavonoids found in significant amounts in many commonly consumed foods. They exhibit a complex chemistry in aqueous solution, which makes it difficult to study their chemistry under physiological conditions. Here we used a gel electrophoresis assay employing supercoiled DNA plasmid to examine the ability of these compounds (1) to intercalate DNA, (2) to inhibit human topoisomerase I through both inhibition of plasmid relaxation activity (catalytic inhibition) and stabilization of the cleavable DNA-topoisomerase complex (poisoning), and (3) to inhibit or enhance oxidative single-strand DNA nicking. We found no evidence of DNA intercalation by anthocyan(id)ins in the physiological pH range for any of the compounds used in this study—cyanidin chloride, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, malvidin 3-O-glucoside and luteolinidin chloride. The anthocyanins inhibited topoisomerase relaxation activity only at high concentrations (> 50 μM) and we could find no evidence of topoisomerase I cleavable complex stabilization by these compounds. However, we observed that all of the anthocyan(id)ins used in this study were capable of inducing significant oxidative DNA strand cleavage (nicking) in the presence of 1 mM DTT (dithiothreitol), while the free radical scavenger, DMSO, at concentrations typically used in similar studies, completely inhibited DNA nicking. Finally, we propose a mechanism to explain the anthocyan(id)in induced oxidative DNA cleavage observed under our experimental conditions. PMID:19924259

  3. Microstructural control of new intercalation layered titanoniobates with large and reversible d-spacing for easy Na+ ion uptake

    PubMed Central

    Park, Hyunjung; Kwon, Jiseok; Choi, Heechae; Song, Taeseup; Paik, Ungyu

    2017-01-01

    Key issues for Na-ion batteries are the development of promising electrode materials with favorable sites for Na+ ion intercalation/deintercalation and an understanding of the reaction mechanisms due to its high activation energy and poor electrochemical reversibility. We first report a layered H0.43Ti0.93Nb1.07O5 as a new anode material. This anode material is engineered to have dominant (200) and (020) planes with both a sufficiently large d-spacing of ~8.3 Å and two-dimensional ionic channels for easy Na+ ion uptake, which leads to a small volume expansion of ~0.6 Å along the c direction upon Na insertion (discharging) and the lowest energy barrier of 0.19 eV in the [020] plane among titanium oxide–based materials ever reported. The material intercalates and deintercalates reversibly 1.7 Na ions (~200 mAh g−1) without a capacity fading in a potential window of 0.01 to 3.0 V versus Na/Na+. Na insertion/deinsertion takes place through a solid-solution reaction without a phase separation, which prevents coherent strain or stress in the microstructure during cycling and ensures promising sodium storage properties. These findings demonstrate a great potential of H0.43Ti0.93Nb1.07O5 as the anode, and our strategy can be applied to other layered metal oxides for promising sodium storage properties. PMID:28989960

  4. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  5. Physics and chemistry of MoS2 intercalation compounds

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Somoano, R. B.

    1977-01-01

    An investigation is made of the physics and chemistry of MoS2 intercalation compounds. These compounds may be separated into two groups according to their stoichiometry, structure and superconducting properties. The first group consists of Na, Ca, and Sr intercalates, and the second group consists of K, Rb, and Cs intercalates. Particular attention is given to the structure of the electronic energy band and to the normal state and superconducting properties of these compounds.

  6. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar spacemore » of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.« less

  7. Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2014-01-01

    DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Δ,Δ-[μ‐bidppz‐(phen)4Ru2]4+ (Δ,Δ-P). We measure the DNA elongation at a range of constant stretching forces using optical tweezers, allowing direct characterization of the intercalation kinetics as well as the amount intercalated at equilibrium. Higher forces exponentially facilitate the intercalative binding, leading to a profound decrease in the binding site size that results in one ligand intercalated at almost every DNA base stack. The zero force Δ,Δ-P intercalation Kd is 44 nM, 25-fold stronger than the analogous mono-nuclear ligand (Δ-P). The force-dependent kinetics analysis reveals a mechanism that requires DNA elongation of 0.33 nm for association, relaxation to an equilibrium elongation of 0.19 nm, and an additional elongation of 0.14 nm from the equilibrium state for dissociation. In cells, a molecule with binding properties similar to Δ,Δ-P may rapidly bind DNA destabilized by enzymes during replication or transcription, but upon enzyme dissociation it is predicted to remain intercalated for several hours, thereby interfering with essential biological processes. PMID:25245944

  8. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahuie, Farahnaz; Hussein, Mohd Zobir, E-mail: mzobir@putra.upm.edu.my; Arulselvan, Palanisamy

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the propertiesmore » of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites with slightly different physico-chemical properties. • Chlorogenate-zinc aluminium layered double hydroxide nanohybrids have the potential to be used as a controlled release formulation. • The thermal stability of chlorogenic acid is markedly enhanced upon the intercalation process. • The inhibition of cancer cell growth is higher for nanohybrids than for free chlorogenic acid.« less

  9. Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin intercalated in smectite clay.

    PubMed

    Boyd, Stephen A; Johnston, Cliff T; Pinnavaia, Thomas J; Kaminski, Norbert E; Teppen, Brian J; Li, Hui; Khan, Bushra; Crawford, Robert B; Kovalova, Natalia; Kim, Seong-Su; Shao, Hua; Gu, Cheng; Kaplan, Barbara L F

    2011-12-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant found in soils and sediments. Because of its exceptionally low water solubility, this compound exists predominantly in the sorbed state in natural environments. Clay minerals, especially expandable smectite clays, are one of the major component geosorbents in soils and sediments that can function as an effective adsorbent for environmental dioxins, including TCDD. In this study, TCDD was intercalated in the smectite clay saponite by an incipient wetness method. The primary goal of this study was to intercalate TCDD in natural K-saponite clay and evaluate its immunotoxic effects in vivo. The relative bioavailability of TCDD was evaluated by comparing the metabolic activity of TCDD administered in the adsorbed state as an intercalate in saponite and freely dissolved in corn oil. This comparison revealed nearly identical TCDD-induced suppression of humoral immunity, a well-established and sensitive sequela, in a mammalian (mouse) model. This result suggests that TCDD adsorbed by clays is likely to be available for biouptake and biodistribution in mammals, consistent with previous observations of TCDD in livestock exposed to dioxin-contaminated ball clays that were used as feed additives. Adsorption of TCDD by clay minerals does not appear to mitigate risk associated with TCDD exposure substantially. Copyright © 2011 SETAC.

  10. Real-time electrochemical LAMP: a rational comparative study of different DNA intercalating and non-intercalating redox probes.

    PubMed

    Martin, Alexandra; Bouffier, Laurent; Grant, Kathryn B; Limoges, Benoît; Marchal, Damien

    2016-06-20

    We present a comparative study of ten redox-active probes for use in real-time electrochemical loop-mediated isothermal amplification (LAMP). Our main objectives were to establish the criteria that need to be fulfilled for minimizing some of the current limitations of the technique and to provide future guidelines in the search for ideal redox reporters. To ensure a reliable comparative study, each redox probe was tested under similar conditions using the same LAMP reaction and the same entirely automatized custom-made real-time electrochemical device (designed for electrochemically monitoring in real-time and in parallel up to 48 LAMP samples). Electrochemical melt curve analyses were recorded immediately at the end of each LAMP reaction. Our results show that there are a number of intercalating and non-intercalating redox compounds suitable for real-time electrochemical LAMP and that the best candidates are those able to intercalate strongly into ds-DNA but not too much to avoid inhibition of the LAMP reaction. The strongest intercalating redox probes were finally shown to provide higher LAMP sensitivity, speed, greater signal amplitude, and cleaner-cut DNA melting curves than the non-intercalating molecules.

  11. Transition metal intercalated bilayer silicene

    NASA Astrophysics Data System (ADS)

    Pandey, Dhanshree; Kamal, C.; Chakrabarti, Aparna

    2018-04-01

    We investigate the electronic and magnetic properties of Mn, Fe and Co-intercalated silicene bilayer with AA and AB stacking by using spin polarized density functional theory. The intercalation of Mn increases the gap between the two layers of silicene due to the larger atomic radii of Mn as compared to Fe and Co. Bader charge analysis has been performed to understand the bonding between the TM and Si atoms. This also helps in explaining the magnetic moment possessed by the composite systems after intercalating TM in between the layers of bilayer silicene system. This study reveals that a significant net magnetic moment is observed in cases of Mn-intercalated silicene bilayers, whereas Fe has a very small moment of 0.78 µB in the case of AA stacking configuration only. Co intercalation leads to net zero magnetic moment. Further, we find that Fe and Co marginally favor the AB stacking whereas Mn has a slight preference of the AA over the AB configuration. The composite systems, specifically when intercalated with Fe and Co atoms, favor a hybridization which is far away from sp3-like hybridization along the plane of Si atoms in bilayer silicene.

  12. Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V 2 O 5 · n H 2 O Xerogel Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sa, Niya; Kinnibrugh, Tiffany L.; Wang, Hao

    Functional multivalent intercalation cathodes represent one of the largest hurdles in the development of Mg batteries. While there are many reports of Mg cathodes, many times the evidence of intercalation chemistry is only circumstantial. In this work, direct evidence of Mg intercalation into a bilayer structure of V2O5·nH2O xerogel is confirmed, and the nature of the Mg intercalated species is reported. The interlayer spacing of V2O5·nH2O contracts upon Mg intercalation and expands for Mg deintercalation due to the strong electrostatic interaction between the divalent cation and the cathode. A combination of NMR, pair distribution function (PDF) analysis, and X-ray absorptionmore » near edge spectroscopy (XANES) confirmed reversible Mg insertion into the V2O5·nH2O material, and structural evolution of Mg intercalation leads to the formation of multiple new phases. Structures of V2O5·nH2O with Mg intercalation were further supported by the first principle simulations. A solvent cointercalated Mg in V2O5·nH2O is observed for the first time, and the 25Mg magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy was used to elucidate the structure obtained upon electrochemical cycling. Specifically, existence of a well-defined Mg–O environment is revealed for the Mg intercalated structures. Information reported here reveals the fundamental Mg ion intercalation mechanism in a bilayer structure of V2O5·nH2O material and provides insightful design metrics for future Mg cathodes.« less

  13. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex DNA probed by all-atom molecular dynamics simulations with explicit solvent.

    PubMed

    Mulholland, Kelly; Siddiquei, Farzana; Wu, Chun

    2017-07-19

    RHPS4, a potent binder to human telomeric DNA G-quadruplex, shows high efficacy in tumor cell growth inhibition. However, it's preferential binding to DNA G-quadruplex over DNA duplex (about 10 fold) remains to be improved toward its clinical application. A high resolution structure of the single-stranded telomeric DNA G-quadruplexes, or B-DNA duplex, in complex with RHPS4 is not available yet, and the binding nature of this ligand to these DNA forms remains to be elusive. In this study, we carried out 40 μs molecular dynamics binding simulations with a free ligand to decipher the binding pathway of RHPS4 to a DNA duplex and three G-quadruplex folders (parallel, antiparallel and hybrid) of the human telomeric DNA sequence. The most stable binding mode identified for the duplex, parallel, antiparallel and hybrid G-quadruplexes is an intercalation, bottom stacking, top intercalation and bottom intercalation mode, respectively. The intercalation mode with similar binding strength to both the duplex and the G-quadruplexes, explains the lack of binding selectivity of RHPS4 to the G-quadruplex form. Therefore, a ligand modification that destabilizes the duplex intercalation mode but stabilizes the G-quadruplex intercalation mode will improve the binding selectivity toward G-quadruplex. The intercalation mode of RHPS4 to both the duplex and the antiparallel and the hybrid G-quadruplex follows a base flipping-insertion mechanism rather than an open-insertion mechanism. The groove binding, the side binding and the intercalation with flipping out of base were observed to be intermediate states before the full intercalation state with paired bases.

  14. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    PubMed

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  15. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    NASA Astrophysics Data System (ADS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-12-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4‧-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules.

  16. Synthesis of new oligothiophene derivatives and their intercalation compounds: Orientation effects

    USGS Publications Warehouse

    Ibrahim, M.A.; Lee, B.-G.; Park, N.-G.; Pugh, J.R.; Eberl, D.D.; Frank, A.J.

    1999-01-01

    The orientation dependence of intercalated oligothiophene derivatives in vermiculite and metal disulfides MS2 (M = Mo, Ti and Zr) on the pendant group on the thiophene ring and the host material was studied by X-ray diffraction (XRD) and solid state nuclear magnetic resonance spectroscopy. Amino and nitro derivatives of bi-, ter- and quarter-thiophenes were synthesized for the first time. The amino-oligothiophenes were intercalated into vermiculite by an exchange reaction with previously intercalated octadecylammonium vermiculite and into MS2 by the intercalation-exfoliation technique. Analysis of the XRD data indicates that a monolayer of amino-oligothiophene orients perpendicularly to the silicate surface in vermiculite and lies flat in the van der Waals gap of MS2.

  17. Rechargeable LiNiO2/carbon cells

    NASA Astrophysics Data System (ADS)

    Dahn, J. R.; von Sacken, U.; Juzkow, M. W.; Al-Janaby, H.

    1991-08-01

    Rechargeable cells can be made using two different intercalation compounds, in which the chemical potential of the intercalant differs by several eV, for the electrodes. The factors that play a role in the selection of appropriate lithium intercalation compounds for such cells are discussed. For the ease of cell assembly, the cathode should be stable in air when it is fully intercalated, like LiNiO2. For the anode, the chemical potential of the intercalated Li should be close to that of Li metal, like it is in Li(x)C6. The intercalation of Li in LiNiO2 is discussed, and then in petroleum coke. Then, it is shown that LiNiO2/coke cells have high energy density, long cycle life, excellent high-temperature performance, low self-discharge rates, can be repeatedly discharged to zero volts without damage, and are easily fabricated. It is considered that this type of cell shows far more promise for widespread applications than traditional secondary Li cells using metallic Li anodes.

  18. Accumulation of zirconium phosphate by a Serratia sp.: a benign system for the removal of radionuclides from aqueous flows.

    PubMed

    Mennan, Claire; Paterson-Beedle, Marion; Macaskie, Lynne E

    2010-10-01

    Metal phosphate deposited enzymatically on Serratia sp. has been used successfully for the removal of radionuclides from aqueous flows. Previous studies using biogenic hydrogen uranyl phosphate (HUP) on Serratia sp. biofilm showed removal of 100% of (90)Sr, (137)Cs, and (60)Co via their intercalation into biogenic HUP crystals. Zirconium phosphates (ZrP) offer a potential non-toxic and non-radioactive alternative to HUP for water decontamination. A method was developed for biomanufacturing ZrP. Biogenic ZrP removed ca. 100% of Sr(2+) and Co(2+) (0.5 mM) from solutions to a molar ratio at saturation of ca. 1:0.6 for both Zr:Sr and Zr:Co. The potential for drinking water decontamination via bio-ZrP is discussed with respect to bio-HUP and also other commercially available materials.

  19. Study of DNA-emodin interaction by FTIR and UV-vis spectroscopy.

    PubMed

    Saito, Samuel T; Silva, Givaldo; Pungartnik, Cristina; Brendel, Martin

    2012-06-04

    Emodin, a plant- and fungus-derived anthraquinone, exerts genotoxic and antioxidative effects and shows promise in antitumor and antibacterial therapies. The aim of this study was to examine the molecular interactions of emodin with DNA in aqueous solution at physiological pH using spectroscopic methods. Fourier Transform Infrared (FTIR) Spectroscopy and UV absorption spectra were used to determine the structural features, the binding mode and the association constants. Our UV-spectroscopic results indicate that emodin interacts with DNA by intercalation and by external binding. FTIR results suggest that emodin interaction occurs preferably via adenine and thymine base pairs and also weakly with the phosphate backbone of the DNA double helix. The binding constant for emodin-DNA complex formation is estimated to be K=5.59×10(3)M(-1). No significant changes of DNA conformation were observed upon emodin-DNA complexation. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. New X-ray insight into oxygen intercalation in epitaxial graphene grown on 4H-SiC(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G., E-mail: kowal@fuw.edu.pl; Tokarczyk, M.; Dąbrowski, P.

    Efficient control of intercalation of epitaxial graphene by specific elements is a way to change properties of the graphene. Results of several experimental techniques, such as X-ray photoelectron spectroscopy, micro-Raman mapping, reflectivity, attenuated total reflection, X-ray diffraction, and X-ray reflectometry, gave a new insight into the intercalation of oxygen in the epitaxial graphene grown on 4H-SiC(0001). These results confirmed that oxygen intercalation decouples the graphene buffer layer from the 4H-SiC surface and converts it into the graphene layer. However, in contrast to the hydrogen intercalation, oxygen does not intercalate between carbon planes (in the case of few layer graphene) andmore » the interlayer spacing stays constant at the level of 3.35–3.32 Å. Moreover, X-ray reflectometry showed the presence of an oxide layer having the thickness of about 0.8 Å underneath the graphene layers. Apart from the formation of the nonuniform thin oxide layer, generation of defects in graphene caused by oxygen was also evidenced. Last but not least, water islands underneath defected graphene regions in both intercalated and non-intercalated samples were most probably revealed. These water islands are formed in the case of all the samples stored under ambient laboratory conditions. Water islands can be removed from underneath the few layer graphene stacks by relevant thermal treatment or by UV illumination.« less

  1. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells

    NASA Astrophysics Data System (ADS)

    Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo

    2016-04-01

    The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c

  2. On lunisolar calendars and intercalation schemes in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Gislén, Lars

    2018-04-01

    This is a survey of different calendar intercalation schemes, mainly in Southeast Asia. The Thai and Burmese Calendars, superficially very similar, are shown to have quite different and interesting intercalation schemes. We also investigate similarities between the original Burmese Calendar and the Romakasiddhânta from India.

  3. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry.

    PubMed

    Lu, Ke; Hu, Ziyu; Ma, Jizhen; Ma, Houyi; Dai, Liming; Zhang, Jintao

    2017-09-13

    Graphitic carbons have been used as conductive supports for developing rechargeable batteries. However, the classic ion intercalation in graphitic carbon has yet to be coupled with extrinsic redox reactions to develop rechargeable batteries. Herein, we demonstrate the preparation of a free-standing, flexible nitrogen and phosphorus co-doped hierarchically porous graphitic carbon for iodine loading by pyrolysis of polyaniline coated cellulose wiper. We find that heteroatoms could provide additional defect sites for encapsulating iodine while the porous carbon skeleton facilitates redox reactions of iodine and ion intercalation. The combination of ion intercalation with redox reactions of iodine allows for developing rechargeable iodine-carbon batteries free from the unsafe lithium/sodium metals, and hence eliminates the long-standing safety issue. The unique architecture of the hierarchically porous graphitic carbon with heteroatom doping not only provides suitable spaces for both iodine encapsulation and cation intercalation but also generates efficient electronic and ionic transport pathways, thus leading to enhanced performance.Carbon-based electrodes able to intercalate Li + and Na + ions have been exploited for high performing energy storage devices. Here, the authors combine the ion intercalation properties of porous graphitic carbons with the redox chemistry of iodine to produce iodine-carbon batteries with high reversible capacities.

  4. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  5. Methoxy-modified kaolinite as a novel carrier for high-capacity loading and controlled-release of the herbicide amitrole

    PubMed Central

    Tan, Daoyong; Yuan, Peng; Annabi-Bergaya, Faïza; Liu, Dong; He, Hongping

    2015-01-01

    Methoxy-modified kaolinite was used as a novel carrier for loading and release of the herbicide 3-amino-1,2,4-triazole, known as amitrole (abbreviated here as AMT). The methoxy modification made the interlayer space of the kaolinite available for AMT intercalation. The AMT loading content in methoxy-modified kaolinite reached up to 20.8 mass% (twice the loading content by unmodified kaolinite). About 48% of this amount is located in the interlayer space. The release profiles of the AMT fit with the modified Korsmeyer-Peppas model. Due to the diffusional restriction of the intercalated AMT by the lamellar structure of the kaolinite and the strong electrostatic attraction between the intercalated AMT and the kaolinite, a slow release of AMT from the methoxy-modified kaolinite was achieved. These results show that the methoxy-modification is a facile method to make the interlayer space of kaolinite available for hosting other guest molecules. The methoxy-modified kaolinite is a promising candidate for high-capacity loading and controlled-release of other molecules such as drugs, agrochemicals, and biochemicals. PMID:25747124

  6. Methoxy-modified kaolinite as a novel carrier for high-capacity loading and controlled-release of the herbicide amitrole

    NASA Astrophysics Data System (ADS)

    Tan, Daoyong; Yuan, Peng; Annabi-Bergaya, Faïza; Liu, Dong; He, Hongping

    2015-03-01

    Methoxy-modified kaolinite was used as a novel carrier for loading and release of the herbicide 3-amino-1,2,4-triazole, known as amitrole (abbreviated here as AMT). The methoxy modification made the interlayer space of the kaolinite available for AMT intercalation. The AMT loading content in methoxy-modified kaolinite reached up to 20.8 mass% (twice the loading content by unmodified kaolinite). About 48% of this amount is located in the interlayer space. The release profiles of the AMT fit with the modified Korsmeyer-Peppas model. Due to the diffusional restriction of the intercalated AMT by the lamellar structure of the kaolinite and the strong electrostatic attraction between the intercalated AMT and the kaolinite, a slow release of AMT from the methoxy-modified kaolinite was achieved. These results show that the methoxy-modification is a facile method to make the interlayer space of kaolinite available for hosting other guest molecules. The methoxy-modified kaolinite is a promising candidate for high-capacity loading and controlled-release of other molecules such as drugs, agrochemicals, and biochemicals.

  7. Size dependence effect of carbon-based anode material on intercalation characteristics of Li-ion battery

    NASA Astrophysics Data System (ADS)

    Anwar, Miftahul; Jupri, Dwi Rahmat; Saraswati, Teguh Endah

    2017-01-01

    This work aims to study the effect of the different size of Li-ion battery anode during charging state. Carbon-Based nanomaterial using arc-discharge in a liquid which is much simpler and cheaper compared to other techniques, i.e., CVD, laser vaporization, etc. The experiment was performed using intermediate DC power supply (1300 W) to produce an arc, and commercial graphite pencils (with 5 mm diameter) as negative and positive electrodes. Deionized water mixed with ethanol was used as a heat absorber. The result shows that arc discharge in deionized water could effectively produce carbon nanomaterial (i.e., nano-onions). In addition, finite element method-based simulation of the different intercalating process of Li-ion to the different shape of the anode, i.e., bulk semi-porous and porous anode materials for battery application is also presented. The results show that intercalation of Li ions depends on the anode structure due to the different potential density at anode region. This finding will provide support for design of Li-ion battery based on carbon nanomaterial

  8. A novel material of cross-linked styrylpyridinium salt intercalated montmorillonite for drug delivery

    PubMed Central

    2014-01-01

    A facile synthesis of a styrylpyridinium salt (SbQ)/montmorillonite (MMT) via cationic exchange interactions between styrylpyridinium species (specifically SbQ) and MMT platelets is reported in this work. The SbQ-MMT solutions were irradiated under ultraviolet (UV) light for a specific time to obtain the cross-linked SbQ-MMT materials. Scanning electron microscopy and atomic force microscopy analyses revealed the structures and morphologies of MMT and modified MMT. X-ray diffraction and transmission electron microscope analyses indicated that the basal spacing increased from 1.24 to 1.53 nm compared with the pristine MMT, which proved that SbQ had interacted with MMT. Thermal gravimetric analysis curves showed that the amount of SbQ in the MMT interlayers was 35.71 meq/100 g. Fourier transform infrared spectroscopy also confirmed the intercalation of SbQ species into MMT interlayers, and UV spectroscopy was used to follow up the cross-linking of SbQ-MMT. This novel material has potential applications in drug delivery, and it can also be used as an additive to improve the mechanical properties of polymers. PMID:25170328

  9. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications.

    PubMed

    Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender

    2017-11-01

    Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Tanghong; Chen, Wei; Cheng, Lei

    Reversible intercalation reactions provide the basis for modern battery electrodes. In spite of the decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K+ ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopymore » confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. Our study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  11. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Tanghong; Chen, Wei; Cheng, Lei

    Reversible intercalation reactions provide the basis for modern battery electrodes. Despite decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K + ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopy confirmed themore » existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. This study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  12. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE PAGES

    Yi, Tanghong; Chen, Wei; Cheng, Lei; ...

    2017-01-20

    Reversible intercalation reactions provide the basis for modern battery electrodes. In spite of the decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K+ ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopymore » confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. Our study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  13. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly hasmore » been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.« less

  14. Novel Nano Boehmite prepared by Solvothermal reaction of aluminum hydroxide gel in Monoethanolamine

    NASA Astrophysics Data System (ADS)

    Ohta, Yasuhiro; Hayakawa, Tomokatsu; Inomata, Tomohiko; Ozawa, Tomohiro; Masuda, Hideki

    2017-07-01

    Solvothermal reaction of aluminum hydroxide gel (AHG) in monoethanolamine (MEA) was studied at several temperatures (100, 120, 150, and 200 °C) in several reaction times (2, 3, 4, 5, 6, and 13 h). The reaction product prepared at a low temperature of 120 °C in the reaction time more than 6 h gave a blue photoluminescence nanoboehmite intercalated with monoethanolamine derivatives (BM-MEA) in the colloidal solution, which showed a photoluminescence emission centered at 420 nm with an excitation of 360 nm. The powdery samples recovered from the reaction products were characterized by using elemental analysis, XRD analysis, IR spectroscopy, thermogravimetric (TG)-DTA, 13C and 27Al CP/MAS NMR spectroscopies, N2 gas adsorption/desorption isotherm, SEM and TEM images, and photoluminescence spectroscopy. The X-ray diffraction revealed that the basal space in BM-MEA was expanded from 0.61 to 1.2 nm by intercalation of MEA derivatives to boehmite, and the IR and 13C CP/MAS NMR spectra determined that the intercalated MEA derivatives are protonated- and carbamate-substituted MEAs, which are formed in the layers through a covalent bond with Al-OH groups on boehmite surface. The empirical formula of BM-MEA was estimated to be AlO(OH)0.82(OCH2CH2NH3 +)0.05(OCH2CH2NHCOO-)0.13 on the basis of the elemental TG-DTA and IR spectral analyses. We discuss the reaction mechanism of a unique blue photoluminescence BM-MEA formed by proceeding in CO2-H2O-alkanolamine system.

  15. Unveiling the Mode of Interaction of Berberine Alkaloid in Different Supramolecular Confined Environments: Interplay of Surface Charge between Nano-Confined Charged Layer and DNA.

    PubMed

    Kundu, Niloy; Roy, Arpita; Banik, Debasis; Sarkar, Nilmoni

    2016-02-18

    In this Article, we demonstrate a detailed characterization of binding interaction of berberine chloride (BBCl) with calf-thymus DNA (CT-DNA) in buffer solution as well as in two differently charged reverse micelles (RMs). The photophyscial properties of this alkaloid have been modulated within these microheterogeneous bioassemblies. The mode of binding of this alkaloid with DNA is of debate to date. However, fluorescence spectroscopic measurements, circular dichroism (CD) measurement, and temperature-dependent study unambiguously establish that BBCl partially intercalates into the DNA base pairs. The nonplanarity imposed by partial saturation in their structure causes the nonclassical types of intercalation into DNA. Besides the intercalation, electrostatic interactions also play a significant role in the binding between BBCl and DNA. DNA structure turns into a condensed form after encapsulation into RMs, which is followed by the CD spectra and microscopy study. The probe location and dynamics in the nanopool of the RMs depended on the electrostatic interaction between the charged surfactants and cationic berberine. The structural alteration of CT-DNA from B form to condensed form and the interplay of surface charge between RMs and DNA determine the interaction between the alkaloid and DNA in RMs. Time-resolved study and fluorescence anisotropy measurements successfully provide the binding interaction of BBCl in the nanopool of the RMs in the absence and in the presence of DNA. This study motivates us to judge further the potential applicability of this alkaloid in other biological systems or other biomimicking organized assemblies.

  16. A micrographic and gravimetric study of intercalation and deintercalation of graphite fibers

    NASA Technical Reports Server (NTRS)

    Hung, C. C.

    1985-01-01

    Intercalation and deintercalation of Union Carbide P-100 graphite fibers with liquid and vaporous bromine was studied gravimetrically and microscopically. The mass of the bromine intercalated fibers was found to be 17 to 20 percent greater than their pristine counterpart. This variation decreased to 17 to 18 percent after heating in air for 3 days at 200 C and to 14.5 to 18 percent after 6 days of 260 C heating. The fiber length did not change throughout the experiment. The fiber diameter increased during intercalation and decreased slightly upon deintercalation but was not affected by heating to 260 C for 3 days in air. Comparing the mass and volume data to those with highly oriented pyrolitic graphite or natural single crystal graphite suggested the possibility that the intercalated P-100 fibers could be mostly stage 4.

  17. Intercalating dyes for enhanced contrast in second-harmonic generation imaging of protein crystals

    PubMed Central

    Newman, Justin A.; Scarborough, Nicole M.; Pogranichniy, Nicholas R.; Shrestha, Rashmi K.; Closser, Richard G.; Das, Chittaranjan; Simpson, Garth J.

    2015-01-01

    The second-harmonic generation (SHG) activity of protein crystals was found to be enhanced by up to ∼1000-fold by the intercalation of SHG phores within the crystal lattice. Unlike the intercalation of fluorophores, the SHG phores produced no significant background SHG from solvated dye or from dye intercalated into amorphous aggregates. The polarization-dependent SHG is consistent with the chromophores adopting the symmetry of the crystal lattice. In addition, the degree of enhancement for different symmetries of dyes is consistent with theoretical predictions based on the molecular nonlinear optical response. Kinetics studies indicate that intercalation arises over a timeframe of several minutes in lysozyme, with detectable enhancements within seconds. These results provide a potential means to increase the overall diversity of protein crystals and crystal sizes amenable to characterization by SHG microscopy. PMID:26143918

  18. Microwave-assisted synthesis and electrochemical evaluation of VO 2 (B) nanostructures

    DOE PAGES

    Ashton, Thomas E.; Borras, David Hevia; Iadecola, Antonella; ...

    2015-12-01

    Understanding how intercalation materials change during electrochemical operation is paramount to optimising their behaviour and function and in situ characterisation methods allow us to observe these changes without sample destruction. Here, we first report the improved intercalation properties of bronze phase vanadium dioxide VO2 (B) prepared by a microwave assisted route which exhibits a larger electrochemical capacity (232 mAh g -1) compared to VO 2 (B) prepared by a solvothermal route (197 mAh g -1). These electrochemical differences have also been followed using in situ X-ray absorption spectroscopy allowing us to follow oxidation state changes as they occur during batterymore » operation.« less

  19. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaassis, Abdessamad Y.A.; Xu, Si-Min; Guan, Shanyue

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co{sub 1.2}Zn{sub 3.8}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (CoZn-NO{sub 3}), [Ni{sub 2}Zn{sub 3}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (NiZn-NO{sub 3}) and [Zn{sub 5}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (Zn-NO{sub 3}). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO{sub 3} but when it was reacted with Zn-NO{sub 3} the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verifiedmore » by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO{sub 3} and Zn-NO{sub 3} is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO{sub 3} and of Val into CoZn-NO{sub 3} are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted.« less

  20. Highly Conducting Graphite Epoxy Composite Demonstrated

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Weight savings as high as 80 percent could be achieved if graphite polymer composites could replace aluminum in structures such as electromagnetic interference shielding covers and grounding planes. This could result in significant cost savings, especially for the mobile electronics found in spacecraft, aircraft, automobiles, and hand-held consumer electronics. However, such composites had not yet been fabricated with conductivity sufficient to enable these applications. To address this lack, a partnership of the NASA Lewis Research Center, Manchester College, and Applied Sciences, Inc., fabricated nonmetallic composites with unprecedented electrical conductivity. For these composites, heat-treated, vapor-grown graphite fibers were selected which have a resistivity of about 80 mW-cm, more than 20 times more conductive than typical carbon fibers. These fibers were then intercalated with iodine bromide (IBr). Intercalation is the insertion of guest atoms or molecules between the carbon planes of the graphite fibers. Since the carbon planes are not highly distorted in the process, intercalation has little effect on mechanical and thermal properties. Intercalation does, however, lower the carbon fiber resistivity to less than 10 mW-cm, which is comparable to that of metal fibers. Scaleup of the reaction was required since the initial intercalation experiments would be carried out on 20-mg quantities of fibers, and tens of grams of intercalated fibers would be needed to fabricate even small demonstration composites. The reaction was first optimized through a time and temperature study that yielded fibers with a resistivity of 8.7 2 mW-cm when exposed to IBr vapor at 114 C for 24 hours. Stability studies indicated that the intercalated fibers rapidly lost their conductivity when exposed to temperatures as low as 40 C in air. They were not, however, susceptible to degradation by water vapor in the manner of most graphite intercalation compounds. The 1000-fold scaleup experiments concluded that 114 C was near the optimum temperature, but that the intercalation time needed to be lengthened by a factor of 3.

  1. Exfoliation of non-oxidized graphene flakes for scalable conductive film.

    PubMed

    Park, Kwang Hyun; Kim, Bo Hyun; Song, Sung Ho; Kwon, Jiyoung; Kong, Byung Seon; Kang, Kisuk; Jeon, Seokwoo

    2012-06-13

    The increasing demand for graphene has required a new route for its mass production without causing extreme damages. Here we demonstrate a simple and cost-effective intercalation based exfoliation method for preparing high quality graphene flakes, which form a stable dispersion in organic solvents without any functionalization and surfactant. Successful intercalation of alkali metal between graphite interlayers through liquid-state diffusion from ternary KCl-NaCl-ZnCl(2) eutectic system is confirmed by X-ray diffraction and X-ray photoelectric spectroscopy. Chemical composition and morphology analyses prove that the graphene flakes preserve their intrinsic properties without any degradation. The graphene flakes remain dispersed in a mixture of pyridine and salts for more than 6 months. We apply these results to produce transparent conducting (∼930 Ω/□ at ∼75% transmission) graphene films using the modified Langmuir-Blodgett method. The overall results suggest that our method can be a scalable (>1 g/batch) and economical route for the synthesis of nonoxidized graphene flakes.

  2. IR study of dickite-formamide intercalate, Al 2Si 2O 5(OH) 4-H 2NCOH

    NASA Astrophysics Data System (ADS)

    Zamama, M.; Knidiri, Mohamed

    2000-05-01

    Direct intercalation of formamide (FAM) in dickite occurs spontaneously when samples are treated by ultrason. The X-ray diffraction patterns show that this intercalation increases the d 001 spacing from 7.19 to 10.77 Å. It is concluded from infrared studies that hydrogen bonds are formed between CO groups of formamide and inner surface hydroxyls of dickite, indicated by the shift of the hydroxyl bands from 3708, 3654 cm -1 and 3622 for natural dickite to 3575, 3520, 3450 and 3612 cm -1 for FAM-intercalated dickite.

  3. IR study of dickite-formamide intercalate, Al2Si2O5(OH)4-H2NCOH.

    PubMed

    Zamama, M; Knidiri, M

    2000-05-01

    Direct intercalation of formamide (FAM) in dickite occurs spontaneously when samples are treated by ultrason. The X-ray diffraction patterns show that this intercalation increases the d001 spacing from 7.19 to 10.77 A. It is concluded from infrared studies that hydrogen bonds are formed between C=O groups of formamide and inner surface hydroxyls of dickite, indicated by the shift of the hydroxyl bands from 3708, 3654 cm(-1) and 3622 for natural dickite to 3575, 3520, 3450 and 3612 cm(-1) for FAM-intercalated dickite.

  4. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye

    PubMed Central

    Ahberg, Christian D.; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio. PMID:26088868

  5. Interactions of vitamin K3 with herring-sperm DNA using spectroscopy and electrochemistry.

    PubMed

    Huang, Jianhang; Wang, Xingming; Fei, Dan; Ding, Lisheng

    2010-10-01

    By means of ultraviolet-visible (UV-Vis) and fluorescence spectra, the binding ratio between vitamin K(3) and herring-sperm DNA in a physiological pH environment (pH = 7.40) was determined as n(K3):n(DNA) = 2:1, and the binding constants of vitamin K(3) binding to DNA at different temperatures were determined as K(θ)(298K) = 1.28 × 10(5) L·mol(-1) and K(θ)(310K) = 7.19 × 10(4) L·mol(-1), which were confirmed using the double reciprocal method are Δ(r)H(m)(θ) = -3.57 × 10(4) J·mol(-1), Δ(r)G(m)(θ) = -2.92 × 10(4) J·mol(-1), and Δ(r)S(m)(θ) = 217.67 J·mol(-1)K(-1). The driving power of this process was enthalpy. An intercalation binding of the vitamin K(3) with DNA was supported by a competitive experiment using acridine orange (AO) as a spectral probe. By combination analysis of the Scatchard method and cyclic voltammetry, we suggested that the interaction mode between vitamin K(3) and herring-sperm DNA would be a mixed mode. The quinonoid, duality fused-ring of vitamin K(3) can intercalate into the base pairs of DNA, and there is an electrostatic binding along with intercalation binding.

  6. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    NASA Astrophysics Data System (ADS)

    Zsirka, Balázs; Horváth, Erzsébet; Szabó, Péter; Juzsakova, Tatjána; Szilágyi, Róbert K.; Fertig, Dávid; Makó, Éva; Varga, Tamás; Kónya, Zoltán; Kukovecz, Ákos; Kristóf, János

    2017-03-01

    Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the 'c'-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the 'c'-crystal direction. The d(001) value showed a diffuse pattern at 7.4-7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  7. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis.

    PubMed

    Walck-Shannon, Elise; Lucas, Bethany; Chin-Sang, Ian; Reiner, David; Kumfer, Kraig; Cochran, Hunter; Bothfeld, William; Hardin, Jeff

    2016-11-01

    Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation.

  8. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis

    PubMed Central

    Lucas, Bethany; Chin-Sang, Ian; Reiner, David; Kumfer, Kraig

    2016-01-01

    Cell intercalation is a highly directed cell rearrangement that is essential for animal morphogenesis. As such, intercalation requires orchestration of cell polarity across the plane of the tissue. CDC-42 is a Rho family GTPase with key functions in cell polarity, yet its role during epithelial intercalation has not been established because its roles early in embryogenesis have historically made it difficult to study. To circumvent these early requirements, in this paper we use tissue-specific and conditional loss-of-function approaches to identify a role for CDC-42 during intercalation of the Caenorhabditis elegans dorsal embryonic epidermis. CDC-42 activity is enriched in the medial tips of intercalating cells, which extend as cells migrate past one another. Moreover, CDC-42 is involved in both the efficient formation and orientation of cell tips during cell rearrangement. Using conditional loss-of-function we also show that the PAR complex functions in tip formation and orientation. Additionally, we find that the sole C. elegans Eph receptor, VAB-1, functions during this process in an Ephrin-independent manner. Using epistasis analysis, we find that vab-1 lies in the same genetic pathway as cdc-42 and is responsible for polarizing CDC-42 activity to the medial tip. Together, these data establish a previously uncharacterized role for polarized CDC-42, in conjunction with PAR-6, PAR-3 and an Eph receptor, during epithelial intercalation. PMID:27861585

  9. An intercalated BSc degree is associated with higher marks in subsequent medical school examinations.

    PubMed

    Cleland, Jennifer A; Milne, Andrew; Sinclair, Hazel; Lee, Amanda J

    2009-05-19

    To compare medical students on a modern MBChB programme who did an optional intercalated degree with their peers who did not intercalate; in particular, to monitor performance in subsequent undergraduate degree exams. This was a retrospective, observational study of anonymised databases of medical student assessment outcomes. Data were accessed for graduates, University of Aberdeen Medical School, Scotland, UK, from the years 2003 to 2007 (n = 861). The main outcome measure was marks for summative degree assessments taken after intercalating. Of 861 medical students, 154 (17.9%) students did an intercalated degree. After adjustment for cohort, maturity, gender and baseline (3rd year) performance in matching exam type, having done an IC degree was significantly associated with attaining high (18-20) common assessment scale (CAS) marks in three of the six degree assessments occurring after the IC students rejoined the course: the 4th year written exam (p < 0.001), 4th year OSCE (p = 0.001) and the 5th year Elective project (p = 0.010). Intercalating was associated with improved performance in Years 4 and 5 of the MBChB. This improved performance will further contribute to higher academic ranking for Foundation Year posts. Long-term follow-up is required to identify if doing an optional intercalated degree as part of a modern medical degree is associated with following a career in academic medicine.

  10. A TDDFT study of the ruthenium(II) polyazaaromatic complex [Ru(dppz)(phen) 2] 2+ in solution

    NASA Astrophysics Data System (ADS)

    Fantacci, Simona; De Angelis, Filippo; Sgamellotti, Antonio; Re, Nazzareno

    2004-09-01

    DFT/TDDFT calculations were performed to investigate the structural, electronic and optical properties of the [Ru(dppz)(phen) 2] 2+ complex in solution. TDDFT calculations in water show two groups of metal-to-ligand charge transfer (MLCT) transitions at ≈450 and 415 nm whose superposition gives account of the broad absorption band experimentally characterized at 440 nm. Also, a group of almost coincident MLCT transitions partially mixed with dppz intraligand π-π ∗ transitions centered at ≈380 nm is found to give rise to the narrow absorption band experimentally found at 380 nm. Our results provide insight into the hypochromic shifts experimentally characterized upon intercalation of the title complex into DNA.

  11. A solution blending route to ethylene propylene diene terpolymer/layered double hydroxide nanocomposites

    PubMed Central

    Acharya, H; Bhowmick, Anil K

    2007-01-01

    Ethylene propylene diene terpolymer (EPDM)/MgAl layered double hydroxide (LDH) nanocomposites have been synthesized by solution intercalation using organically modified LDH (DS-LDH). The molecular level dispersion of LDH nanolayers has been verified by the disappearance of basal XRD peak of DS-LDH in the composites. The internal structures, of the nanocomposite with the dispersion nature of LDH particles in EPDM matrix have been studied by TEM and AFM. Thermogravimetric analysis (TGA) shows thermal stability of nanocomposites improved by ≈40 °C when 10% weight loss was selected as point of comparison. The degradation for pure EPDM is faster above 380 °C while in case of its nanocomposites, it is much slower.

  12. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: investigating the fundamental forces of DNA-intercalator interactions.

    PubMed

    Hohenstein, Edward G; Parrish, Robert M; Sherrill, C David; Turney, Justin M; Schaefer, Henry F

    2011-11-07

    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.

  13. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions

    NASA Astrophysics Data System (ADS)

    Hohenstein, Edward G.; Parrish, Robert M.; Sherrill, C. David; Turney, Justin M.; Schaefer, Henry F.

    2011-11-01

    Symmetry-adapted perturbation theory (SAPT) provides a means of probing the fundamental nature of intermolecular interactions. Low-orders of SAPT (here, SAPT0) are especially attractive since they provide qualitative (sometimes quantitative) results while remaining tractable for large systems. The application of density fitting and Laplace transformation techniques to SAPT0 can significantly reduce the expense associated with these computations and make even larger systems accessible. We present new factorizations of the SAPT0 equations with density-fitted two-electron integrals and the first application of Laplace transformations of energy denominators to SAPT. The improved scalability of the DF-SAPT0 implementation allows it to be applied to systems with more than 200 atoms and 2800 basis functions. The Laplace-transformed energy denominators are compared to analogous partial Cholesky decompositions of the energy denominator tensor. Application of our new DF-SAPT0 program to the intercalation of DNA by proflavine has allowed us to determine the nature of the proflavine-DNA interaction. Overall, the proflavine-DNA interaction contains important contributions from both electrostatics and dispersion. The energetics of the intercalator interaction are are dominated by the stacking interactions (two-thirds of the total), but contain important contributions from the intercalator-backbone interactions. It is hypothesized that the geometry of the complex will be determined by the interactions of the intercalator with the backbone, because by shifting toward one side of the backbone, the intercalator can form two long hydrogen-bonding type interactions. The long-range interactions between the intercalator and the next-nearest base pairs appear to be negligible, justifying the use of truncated DNA models in computational studies of intercalation interaction energies.

  14. Synthesis of a drug delivery vehicle for cancer treatment utilizing DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Brann, Tyler

    The treatment of cancer with chemotherapeutic agents has made great strides in the last few decades but still introduces major systemic side effects. The potent drugs needed to kill cancer cells often cause irreparable damage to otherwise healthy organs leading to further morbidity and mortality. A therapy with intrinsic selective properties and/or an inducible activation has the potential to change the way cancer can be treated. Gold nanoparticles (GNPs) are biocompatible and chemically versatile tools that can be readily functionalized to serve as molecular vehicles. The ability of these particles to strongly absorb light with wavelengths in the therapeutic window combined with the heating effect of surface plasmon resonance makes them uniquely suited for noninvasive heating in biologic applications. Specially designed DNA aptamers have shown their ability to serve as drug carriers through intercalation as well as directly acting as therapeutic agents. By combining these separate molecules a multifaceted drug delivery vehicle can be created with great potential as a selective and controllable treatment for cancer. Oligonucleotide-coated GNPs have been created using spherical GNPs but little work has been reported using gold nanoplates in this way. Using the Diasynth method gold nanoplates were produced to absorb strongly in the therapeutic near infrared (nIR) window. These particles were functionalized with two DNA oligonucleotides: one serving as an intercalation site for doxorubicin, and another, AS1411, serving directly as an anticancer targeting/therapeutic agent. These functional particles were fully synthesized and processed along with confirmation of DNA functionalization and doxorubicin intercalation. Doxorubicin is released via denaturation of the DNA structure into which doxorubicin is intercalated upon the heating of the gold nanoplate well above the DNA melting temperature. This temperature increase, due to light stimulation of surface plasmon resonance, was measured during laser application. Successful release of doxorubicin via laser application was measured with fluorescence measurements providing proof that the doxorubicin was successfully intercalated and released.

  15. Calcium intercalation into layered fluorinated sodium iron phosphate

    DOE PAGES

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; ...

    2017-10-09

    Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less

  16. Calcium intercalation into layered fluorinated sodium iron phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei

    Here, the energy density and cost of battery systems could be improved by moving to alternative battery chemistries such as Ca-ion. However, in order to switch chemistries many problems need to be solved including the identification of cathode materials with high energy density, and electrolytes that can plate and strip calcium metal. Herein, the feasibility and cycling performance of Ca 2+ intercalation into a desodiated layered Na 2FePO 4F host is described. This is the first demonstration of Ca 2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca 2+ intercalation. Althoughmore » substantial effort is still needed to identify a high energy density cathode material, this study and others demonstrate the feasibility of Ca 2+ intercalation into multiple materials making it more probable that such a cathode material can be found.« less

  17. Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald; Hirschfeld, Peter; Valenti, Roser

    2015-03-01

    We present a theoretical investigation of alkali metal/ammonia intercalated iron selenide. Using ab-initio density functional theory we unravel how charge doping and dimensionality of the electronic structure can be controlled through the chemical composition of the intercalated molecules. Within random phase approximation spin fluctuation theory we analyze the impact of intercalation on the superconducting pairing strength. We find that high Tc is to be expected away from perfect nesting. While experimental studies have focused on the intercalation of larger molecules in the spacer layer so far, we argue that no higher Tc can be achieved this way. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SPP 1458, the National Science Foundation under Grant No. PHY11-25915 and the Department of Energy under Grant No. DE-FG02-05ER46236.

  18. Intercalation of paracetamol into the hydrotalcite-like host

    NASA Astrophysics Data System (ADS)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-12-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.

  19. Effect of adsorbed/intercalated anionic dyes into the mechanical properties of PVA: layered zinc hydroxide nitrate nanocomposites.

    PubMed

    Marangoni, Rafael; Mikowski, Alexandre; Wypych, Fernando

    2010-11-15

    Zinc hydroxide nitrate (ZHN) was adsorbed with anions of blue dyes (Chicago sky blue, CSB; Evans blue, EB; and Niagara blue, NB) and intercalated with anions of orange dyes (Orange G, OG; Orange II, OII; methyl orange, MO). Transparent, homogeneous and colored nanocomposite films were obtained by casting after dispersing the pigments (dye-intercalated/adsorbed into LHSs) into commercial poly(vinyl alcohol) (PVA). The films were characterized by XRD, UV-Vis spectroscopy, and mechanical testing. The mechanical properties of the PVA compounded with the dye-intercalated/adsorbed ZHN were evaluated, and reasonable increases in Young's modulus and ultimate tensile strength were observed, depending on the amount and choice of layered filler. These results demonstrate the possibility of using a new class of layered hydroxide salts intercalated and adsorbed with anionic dyes to prepare multifunctional polymer nanocomposite materials. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as an anticancer nanodelivery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahuie, Farahnaz; Hussein, Mohd Zobir, E-mail: mzobir@upm.edu.my; Gani, Shafinaz Abd

    2015-01-15

    Protocatechuic acid, an active anticancer agent, has been intercalated into Zn/Al–layered double hydroxide at Zn/Al=2) using two different preparation methods, co-precipitation and ion-exchange, which are labelled as PZAE and PZAC, respectively. The release of protocatechuate from the nanocomposites occurred in a controlled manner and was fitted satisfactorily to pseudo-second order kinetics. The basal spacing of the resulting nanocomposites PZAE and PZAC was 10.2 and 11.0 Å, respectively, indicating successful intercalation of protocatechuate anions into the interlayer galleries of Zn/Al–NO{sub 3}–LDH in a monolayer arrangement with angles of 24 and 33° from the z-axis in PZAE and PZAC, respectively. The formationmore » of nanocomposites was further confirmed by a Fourier transform infrared study. Thermogravimetric and differential thermogravimetric analyses indicated that the thermal stability of the intercalated protocatechuic acid was significantly enhanced compared to its free protocatechuic acid, and the drug content in the nanocomposites was estimated to be approximately 32.6% in PZAE and 29.2% in PZAC. Both PZAE and PZAC nanocomposites inhibit the growth of human cervical, liver and colorectal cancer cell lines and exhibit no toxic effects towards normal fibroblast 3T3 cell after 72 h of treatment. - Graphical abstract: Protocatechuate anions were arranged in monolayer mode with the angle of 24° for PZAE and 33° for PZAC from Z axis to maximize interaction between carboxylate groups and brucite-like layers. - Highlights: • Two methods gave nanocomposites with slightly different physico-chemical properties. • PZAE and PZAC have the potential to be used as a controlled release formulation. • The thermal stability of PA is markedly enhanced upon the intercalation process. • Higher cancer cell growth inhibition for PZAE and PZAC nanocomposites than for PA.« less

  1. Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents

    NASA Astrophysics Data System (ADS)

    Jin, Miao; Li, Wanjing; Spillane, Dominic E. M.; Geraldes, Carlos F. G. C.; Williams, Gareth R.; Bligh, S. W. Annie

    2016-03-01

    A series of Mn(II) aminophosphonate complexes were successfully synthesized and intercalated into the hydroxy double salt [Zn5(OH)8]Cl2·yH2O. Complex incorporation led to an increase in the interlayer spacing from 7.8 to 10-12 Å. Infrared spectroscopy showed the presence of the characteristic vibration peaks of the Mn(II) complexes in the intercalates' spectra, indicating successful incorporation. The complex-loaded composites had somewhat lower proton relaxivities than the pure complexes. Nevertheless, these intercalates may have use as MRI contrast agents for patients with poor kidney function, where traditional Gd(III)-based contrast agents cause severe renal failure.

  2. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia

    PubMed Central

    Bishop, Jesse M.; Lee, Hyun-Wook; Handlogten, Mary E.; Han, Ki-Hwan; Verlander, Jill W.

    2013-01-01

    The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia. PMID:23220726

  3. A trap potential model investigation of the optical activity induced in dye-DNA intercalation complexes

    NASA Astrophysics Data System (ADS)

    Kamiya, Mamoru

    1988-02-01

    The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.

  4. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite

    NASA Astrophysics Data System (ADS)

    Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan

    2018-06-01

    Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.

  5. Durability of Intercalated Graphite Epoxy Composites in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Davidson, Michelle L.; Shively, Rhonda

    1996-01-01

    The electrical conductivity of graphite epoxy composites can be substantially increased by intercalating (inserting guest atoms or molecules between the graphene planes) the graphite fibers before composite formation. The resulting high strength, low density, electrically conducting composites have been proposed for EMI shielding in spacecraft. Questions have been raised, however, about their durability in the space environment, especially with respect to outgassing of the intercalates, which are corrosive species such as bromine. To answer those concerns, six samples of bromine intercalated graphite epoxy composites were included in the third Evaluation of Oxygen Interaction with Materials (EOIM-3) experiment flown on the Space Shuttle Discovery (STS-46). Changes in electrical conductivity, optical reflectance, surface texture, and mass loss for SiO2 protected and unprotected samples were measured after being exposed to the LEO environment for 42 hours. SiO2 protected samples showed no degradation, verifying conventional protection strategies are applicable to bromine intercalated composites. The unprotected samples showed that bromine intercalation does not alter the degradation of graphite-epoxy composites. No bromine was detected to have been released by the fibers allaying fears that outgassing could be disruptive to the sensitive electronics the EMI shield is meant to protect.

  6. Modification of thermal and electronic properties of bilayer graphene by using slow Na+ ions

    NASA Astrophysics Data System (ADS)

    Ryu, Mintae; Lee, Paengro; Kim, Jingul; Park, Heemin; Chung, Jinwook

    2016-12-01

    Bilayer graphene (BLG) has an extensive list of industrial applications in graphene-based nanodevices such as energy storage devices, flexible displays, and thermoelectric devices. By doping slow Na+ ions on Li-intercalated BLG, we find significantly improved thermal and electronic properties of BLG by using angle-resolved photoemission and high-resolution core level spectroscopy (HRCLS) with synchrotron photons. Our HRCLS data reveal that the adsorbed Na+ ions on a BLG produced by Li-intercalation through single layer graphene (SLG) spontaneously intercalate below the BLG, and substitute Li atoms to form Na-Si bonds at the SiC interface while preserving the same phase of BLG. This is in sharp contrast with no intercalation of Na+ ions on SLG though neutral Na atoms intercalate. The Na+-induced BLG is found to be stable upon heating up to T = 400 °C, but returns to SLG when heated at T d = 500 °C. The evolution of the π-bands upon doping the Na+ ions followed by thermal annealing shows that the carrier concentration of the π-band may be artificially controlled without damaging the Dirac nature of the π-electrons. The doubled desorption temperature from that (T d = 250 °C) of the Na-intercalated SLG together with the electronic stability of the Na+-intercalated BLG may find more practical and effective applications in advancing graphene-based thermoelectric devices and anode materials for rechargeable batteries.

  7. Modelling of adsorption and intercalation of hydrogen on/into tungsten disulphide multilayers and multiwall nanotubes.

    PubMed

    Martínez, José I; Laikhtman, Alex; Moon, Hoi Ri; Zak, Alla; Alonso, Julio A

    2018-05-07

    Understanding the interaction of hydrogen with layered materials is crucial in the fields of sensors, catalysis, fuel cells and hydrogen storage, among others. Density functional theory, improved by the introduction of van der Waals dispersion forces, provides an efficient and practical workbench to investigate the interaction of molecular and atomic hydrogen with WS 2 multilayers and nanotubes. We find that H 2 physisorbs on the surface of those materials on top of W atoms, while atomic H chemisorbs on top of S atoms. In the case of nanotubes, the chemisorption strength is sensitive to the nanotube diameter. Diffusion of H 2 on the surface of WS 2 encounters quite small activation barriers whose magnitude helps to explain previous and new experimental results for the observed dependence of the hydrogen concentration with temperature. Intercalation of H 2 between adjacent planar WS 2 layers reveals an endothermic character. Intercalating H atoms is energetically favorable, but the intercalation energy does not compensate for the cost of dissociating the molecules. When H 2 molecules are intercalated between the walls of a double wall nanotube, the rigid confinement induces the dissociation of the confined molecules. A remarkable result is that the presence of a full H 2 monolayer adsorbed on top of the first WS 2 layer of a WS 2 multilayer system strongly facilitates the intercalation of H 2 between WS 2 layers underneath. This opens up an additional gate to intercalation processes.

  8. Kinetics of intercalation of lithium into NbSe3 and TiS2 cathodes

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Nagasubramanian, G.; Di Stefano, S.; Bankston, C. P.

    1992-01-01

    Titanium disulfide and niobium triselenide are two well-studied candidate materials for positive electrodes in rechargeable lithium cells. A comparative study of the kinetics of intercalation of lithium in both the cathodes is made here based on various electrochemical techniques, i.e., linear polarization, potentiodynamic polarization, and ac impedance under different experimental conditions such as prismatic or disk configuration of fresh, partially discharged, or cycled electrode. Further, the diffusion coefficients of lithium ions in these cathodes are estimated under these conditions using conventional techniques, i.e., ac impedance, chronocoulometry, chronoamperometry, and current pulse relaxation. Based on the values of the diffusion coefficients, the applicability of these methods for the determination of diffusion coefficients is discussed.

  9. Effect of hydrotalcite-like compounds on the aqueous solubility of some poorly water-soluble drugs.

    PubMed

    Ambrogi, Valeria; Fardella, Giuseppe; Grandolini, Giuliano; Nocchetti, Morena; Perioli, Luana

    2003-07-01

    A new approach of improving drug dissolution properties is described. This method exploits the property of a carrier owing to the hydrotalcite-type anionic clays (HTlc). HTlc is an inorganic layered solid that lodges anionic compounds among its layers. As HTlc dissolves at acidic pH values (pH < 4), the anions intercalated among the layers are promptly released in the medium. In this article some nonsteroidal antiinflammatory drugs were chosen as models of poorly water-soluble drugs. They were intercalated in HTlc and solubility measurements in acidic medium were performed. A remarkable improvement of drug solubility was observed especially in the case of indomethacin. Copyright 2003 Wiley-Liss, Inc. and the American Pharmacists Association

  10. Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2016-02-01

    Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g-1, and good rate performance of 126.7 F g-1 at 50 A g-1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g-1 and much improved rate performance (213.4 F g-1 at 50 A g-1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g-1), it still exhibits a very high specific capacitance of 245.8 F g-1, which is 65.2% retention of the initial capacitance (377.0 F g-1 at 1 A g-1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds.

  11. Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

    PubMed Central

    Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2016-01-01

    Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g−1, and good rate performance of 126.7 F g−1 at 50 A g−1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g−1 and much improved rate performance (213.4 F g−1 at 50 A g−1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g−1), it still exhibits a very high specific capacitance of 245.8 F g−1, which is 65.2% retention of the initial capacitance (377.0 F g−1 at 1 A g−1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds. PMID:26880276

  12. Electrochemical oxygen intercalation into Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Fruchter, L.; Brouet, V.; Colson, D.; Moussy, J.-B.; Forget, A.; Li, Z. Z.

    2018-01-01

    Oxygen was electrochemically intercalated into Sr2IrO4 sintered samples, single crystals and a thin film. We estimate the diffusion length to a few μm and the concentration of the intercalated oxygen to δ ≃ 0.01. The latter is thus much smaller than for the cuprate and nickelate parent compounds, for which δ > 0.1 is obtained, which could be a consequence of larger steric effects. The influence of the oxygen doping state on resistivity is small, indicating also a poor charge transfer to the conduction band. It is shown that electrochemical intercalation of oxygen may also contribute to doping, when gating thin films with ionic liquid in the presence of water.

  13. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  14. H-1 NMR study of ternary ammonia-alkali metal-graphite intercalation compounds

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.; Qian, X. W.; Solin, S. A.

    1987-01-01

    For the first-stage ternary ammonia-alkali metal-graphite intercalation compounds M(NH3)(x)C24(x of about 4, M = K, Rb, Cs), three sets of triplet H-1 NMR spectral lines have been observed at various temperatures and orientations due to the H-1 - H-1 and N-14 - H-1 dipolar interactions. The structures of these compounds have been inferred as mobile (liquid-like) intercalant layers of planar M(NH3)4 ions in between the carbon layers. For the intercalated ammonia molecules, the potential barrier is about 0.2 eV and the molecular geometry is very close to the free NH3 in gas phase.

  15. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  16. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries.

    PubMed

    Kim, Haegyeom; Yoon, Gabin; Lim, Kyungmi; Kang, Kisuk

    2016-10-18

    Here, we demonstrate that graphite can serve as a versatile electrode for various rechargeable battery types by reversibly accommodating solvated alkali ions (such as K, Na, and Li) through co-intercalation in its galleries. The co-intercalation of alkali ions is observed to occur via staging reactions. Notably, their insertion behaviors, including their specific capacity, are remarkably similar regardless of the alkali ion species despite the different solubility limits of K, Na, and Li ions in graphite. Nevertheless, the insertion potentials of the solvated alkali ions differ from each other and are observed to be correlated with the interlayer distance in the intercalated graphite gallery.

  17. Intercalating cobalt between graphene and iridium (111): Spatially dependent kinetics from the edges

    NASA Astrophysics Data System (ADS)

    Vlaic, Sergio; Rougemaille, Nicolas; Kimouche, Amina; Burgos, Benito Santos; Locatelli, Andrea; Coraux, Johann

    2017-10-01

    Using low-energy electron microscopy, we image in real time the intercalation of a cobalt monolayer between graphene and the (111) surface of iridium. Our measurements reveal that the edges of a graphene flake represent an energy barrier to intercalation. Based on a simple description of the growth kinetics, we estimate this energy barrier and find small, but substantial, local variations. These local variations suggest a possible influence of the graphene orientation with respect to its substrate and of the graphene edge termination on the energy value of the barrier height. Besides, our measurements show that intercalated cobalt is energetically more favorable than cobalt on bare iridium, indicating a surfactant role of graphene.

  18. An ultrasensitive label-free biosensor for assaying of sequence-specific DNA-binding protein based on amplifying fluorescent conjugated polymer.

    PubMed

    Liu, Xingfen; Ouyang, Lan; Cai, Xiaohui; Huang, Yanqin; Feng, Xiaomiao; Fan, Quli; Huang, Wei

    2013-03-15

    Sensitive, reliable, and simple detection of sequence-specific DNA-binding proteins (DBP) is of paramount importance in the area of proteomics, genomics, and biomedicine. We describe herein a novel fluorescent-amplified strategy for ultrasensitive, visual, quantitative, and "turn-on" detection of DBP. A Förster resonance energy transfer (FRET) assay utilizing a cationic conjugated polymer (CCP) and an intercalating dye was designed to detect a key transcription factor, nuclear factor-kappa B (NF-κB), the model target. A series of label-free DNA probes bearing one or two protein-binding sites (PBS) were used to identify the target protein specifically. The binding DBP protects the probe from digestion by exonuclease III, resulting in high efficient FRET due to the high affinity between the intercalating dye and duplex DNA, as well as strong electrostatic interactions between the CCP and DNA probe. By using label-free hairpin DNA or double-stranded DNA containing two PBS as probe, we could detect as low as 1 pg/μL of NF-κB in HeLa nuclear extracts, which is 10000-fold more sensitive than the previously reported methods. The approach also allows naked-eye detection by observing fluorescent color of solutions with the assistance of a hand-held UV lamp. Additionally, a less than 10% relative standard deviation was obtained, which offers a new platform for superior precision, low-cost, and simple detection of DBP. The features of our optical biosensor shows promising potential for early diagnosis of many diseases and high-throughput screening of new drugs targeted to DNA-binding proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Chitosan/zinc oxide-polyvinylpyrrolidone (CS/ZnO-PVP) nanocomposite for better thermal and antibacterial activity.

    PubMed

    Karpuraranjith, M; Thambidurai, S

    2017-11-01

    A new biopolymer based ZnO-PVP nanocomposite was successfully synthesized by single step in situ precipitation method using chitosan as biosurfactant, zinc chloride as a source material, PVP as stabilizing agent and sodium hydroxide as precipitating agent. The chemical bonding and crystalline behaviors of chitosan, zinc oxide and PVP were confirmed by FT-IR and XRD analysis. The biopolymer connected ZnO particles intercalated PVP matrix was layer and rod like structure appeared in nanometer range confirmed by HR-SEM and TEM analysis. The surface topography image of CS/ZnO-PVP nanocomposite was obtained in the average thickness of 12nm was confirmed by AFM analysis. Thermal stability of cationic biopolymer based ZnO intercalated PVP has higher stability than CS-PVP and chitosan. Consequently, antimicrobial activity of chitosan/ZnO-PVP matrix acts as a better microbial inhibition activity than PVP-ZnO nanocomposite. The obtained above results demonstrate that CS and ZnO intercalated PVP matrix has better reinforced effect than other components. Therefore, Chitosan/ZnO-PVP nanocomposite may be a promising material for the biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE PAGES

    Li, Jing; He, Kai; Meng, Qingping; ...

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  1. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; He, Kai; Meng, Qingping

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  2. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sakthivel, A.; Pravin, N.

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 102 to 105 indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  3. Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy densities

    NASA Astrophysics Data System (ADS)

    Lin, Sheng-Chi; Lu, Yi-Ting; Chien, Yu-An; Wang, Jeng-An; Chen, Po-Yu; Ma, Chen-Chi M.; Hu, Chi-Chang

    2018-07-01

    The sodium-pre-intercalated δ-MnO2 is in-situ grown on carbon nanofiber via a simple, one-step method for the application of asymmetric supercapacitors. The pre-intercalation of Na ions into the layered structure of δ-MnO2 reduces the crystallinity, beneficial to Na+ diffusion into/out the interlayer structure and pseudocapacitive utilization of MnO2. This NaxMnO2@CNF nanocomposite with desirable pseudo-capacitance from δ-NaxMnO2 and high electric conductivity from CNF network shows a high specific capacitance of 321 F g-1 at 1 A g-1 with ca. 75.2% capacitance retention from 1 to 32 A g-1. An ASC cell consisting of this nanocomposite and activated carbon as the positive and negative electrodes can be reversibly charged and discharged to a cell voltage of 2.0 V in 1 M Na2SO4 and 4 mM NaHCO3 with specific energy and power of 21 Wh kg-1 and 1 kW kg-1, respectively. This ASC also shows excellent cell capacitance retention (7% decay) in the 2 V, 10,000-cycle stability test, revealing superior performance.

  4. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-05-01

    Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  5. Automated cell tracking identifies mechanically oriented cell divisions during Drosophila axis elongation.

    PubMed

    Wang, Michael F Z; Hunter, Miranda V; Wang, Gang; McFaul, Christopher; Yip, Christopher M; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryos extend their anterior-posterior (AP) axis in a conserved process known as axis elongation. Drosophila axis elongation occurs in an epithelial monolayer, the germband, and is driven by cell intercalation, cell shape changes, and oriented cell divisions at the posterior germband. Anterior germband cells also divide during axis elongation. We developed image analysis and pattern-recognition methods to track dividing cells from confocal microscopy movies in a generally applicable approach. Mesectoderm cells, forming the ventral midline, divided parallel to the AP axis, while lateral cells displayed a uniform distribution of division orientations. Mesectoderm cells did not intercalate and sustained increased AP strain before cell division. After division, mesectoderm cell density increased along the AP axis, thus relieving strain. We used laser ablation to isolate mesectoderm cells from the influence of other tissues. Uncoupling the mesectoderm from intercalating cells did not affect cell division orientation. Conversely, separating the mesectoderm from the anterior and posterior poles of the embryo resulted in uniformly oriented divisions. Our data suggest that mesectoderm cells align their division angle to reduce strain caused by mechanical forces along the AP axis of the embryo. © 2017. Published by The Company of Biologists Ltd.

  6. Viral persistence in surface and drinking water: Suitability of PCR pre-treatment with intercalating dyes.

    PubMed

    Prevost, B; Goulet, M; Lucas, F S; Joyeux, M; Moulin, L; Wurtzer, S

    2016-03-15

    After many outbreaks of enteric virus associated with consumption of drinking water, the study of enteric viruses in water has increased significantly in recent years. In order to better understand the dynamics of enteric viruses in environmental water and the associated viral risk, it is necessary to estimate viral persistence in different conditions. In this study, two representative models of human enteric viruses, adenovirus 41 (AdV 41) and coxsackievirus B2 (CV-B2), were used to evaluate the persistence of enteric viruses in environmental water. The persistence of infectious particles, encapsidated genomes and free nucleic acids of AdV 41 and CV-B2 was evaluated in drinking water and surface water at different temperatures (4 °C, 20 °C and 37 °C). The infectivity of AdV 41 and CV-B2 persisted for at least 25 days, whatever the water temperature, and for more than 70 days at 4 °C and 20 °C, in both drinking and surface water. Encapsidated genomes persisted beyond 70 days, whatever the water temperature. Free nucleic acids (i.e. without capsid) also were able to persist for at least 16 days in drinking and surface water. The usefulness of a detection method based on an intercalating dye pre-treatment, which specifically targets preserved particles, was investigated for the discrimination of free and encapsidated genomes and it was compared to virus infectivity. Further, the resistance of AdV 41 and CV-B2 against two major disinfection treatments applied in drinking water plants (UV and chlorination) was evaluated. Even after the application of UV rays and chlorine at high doses (400 mJ/cm(2) and 10 mg.min/L, respectively), viral genomes were still detected with molecular biology methods. Although the intercalating dye pre-treatment had little use for the detection of the effects of UV treatment, it was useful in the case of treatment by chlorination and less than 1 log10 difference in the results was found as compared to the infectivity measurements. Finally, for the first time, the suitability of intercalating dye pre-treatment for the estimation of the quality of the water produced by treatment plants was demonstrated using samples from four drinking-water plants and two rivers. Although 55% (27/49) of drinking water samples were positive for enteric viruses using molecular detection, none of the samples were positive when the intercalating dye pre-treatment method was used. This could indicate that the viruses that were detected are not infectious. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. First-principles study on interlayer state in alkali and alkaline earth metal atoms intercalated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Saito, Riichiro

    2017-11-01

    Energetics and electronic structures of alkali metal (Li, Na, K, Rb, and Cs) and alkaline earth metal (Be, Mg, Ca, Sr, and Ba) atoms intercalated bilayer graphene are systematically investigated using first-principles calculations based on density functional theory. Formation of alkali and alkaline earth metal atoms intercalated bilayer graphene is exothermic except for Be and Mg. The interlayer state between two graphene layers is occupied for K, Rb, Cs, Ca, Sr, and Ba. We find that the energetic position of the interlayer states between bilayer graphene monotonically shifts downward with increasing of interlayer distance. The interlayer distances of more than 4.5 Å and 4.0 Å, respectively, are necessary for the occupation of the interlayer state in bilayer graphene for alkali and alkaline earth metal atoms, which is almost independent of the intercalant metal species. We discuss the relevance to occurrence of superconductivity for the metal intercalated bilayer graphene in terms of the occupation of the interlayer state and the phonon frequency of metal ions.

  8. Iodine Intercalation of Bundles of Single Wall Carbon Nanotubes (SWNT)

    NASA Astrophysics Data System (ADS)

    Grigorian, L.; Fang, S. L.; Williams, K. A.; Sumanasekera, G. U.; Dickey, E. C.; Eklund, P. C.; Pennycock, S.; Rinzler, A. G.; Smalley, R. E.

    1998-03-01

    We have been able to intercalate iodine into the interstitial channels within the rope lattice by direct contact of SWNT mats with molten iodine. These continuously filled channels were observed by Z-contrast STEM imaging. The intercalated iodine atoms provide a ``chemical wedge'' which expands the rope lattice as found from x-ray powder diffraction. At low doping level, Raman-active modes and photoluminescence were used to identify the intercalated species as (I_3)^-I2 linear polyiodide chains. The observed upshift of the high-frequency tangential Raman mode, as well as decreased values of four-probe electrical resistance and thermopower are all consistent with electron transfer from SWNT to iodine. At higher doping level, another iodine-SWNT compound was formed as evidenced by a different x-ray diffraction pattern and Raman spectrum. This new compound exhibits a number of new Raman lines, apparently unrelated to the intercalated iodine, in addition to the usual SWNT Raman modes. We discuss possible mechanisms responsible for activating new Raman modes in SWNT.

  9. Intercalated hybrid of kaolinite with KH2PO4 showing high ionic conductivity (∼10-4 S cm-1) at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Shao-Xian; Xue, Chen; Yang, Hao; Huang, Xiao-Qing; Zou, Yang; Ding, Yan-Ni; Li, Li; Ren, Xiao-Ming

    2017-12-01

    In this paper, we present the study of preparation and ionic conductance for an intercalated hybrid of kaolinite with potassium dihydrogen. The intercalation efficiency is high up to ca. 90%. The intercalated hybrid has been characterized by powder X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. The ionic conductivity (σ) of the hybrid material is strongly dependent on the moisture in the environment, with σ = 8.4 × 10-10 S cm-1 at 293 K and gradually increases to 7.16 × 10-9 S cm-1 under N2 atmosphere (anhydrous environment) at 353 K as well as an activation energy of Ea = 0.618 e V, whereas σ = 2.19 × 10-4 S cm-1 at 100% relative humidity and 293 K with Ea = 0.44 eV. The mechanism that the moisture affects the ionic conductance of the intercalated hybrid is further discussed.

  10. Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Bernardini, Jame N.; Stam, Christina N.

    2010-01-01

    The combination of ethidium monoazide (EMA) and post-fragmentation, randomly primed DNA amplification technologies will enhance the analytical capability to discern viable from non-viable bacterial cells in spacecraft-related samples. Intercalating agents have been widely used since the inception of molecular biology to stain and visualize nucleic acids. Only recently, intercalating agents such as EMA have been exploited to selectively distinguish viable from dead bacterial cells. Intercalating dyes can only penetrate the membranes of dead cells. Once through the membrane and actually inside the cell, they intercalate DNA and, upon photolysis with visible light, produce stable DNA monoadducts. Once the DNA is crosslinked, it becomes insoluble and unable to be fragmented for post-fragmentation, randomly primed DNA library formation. Viable organisms DNA remains unaffected by the intercalating agents, allowing for amplification via post-fragmentation, randomly primed technologies. This results in the ability to carry out downstream nucleic acid-based analyses on viable microbes to the exclusion of all non-viable cells.

  11. Electrochemical and in-situ X-ray diffraction studies of Ti 3C 2T x MXene in ionic liquid electrolyte

    DOE PAGES

    Lin, Zifeng; Rozier, Patrick; Duployer, Benjamin; ...

    2016-08-26

    2D titanium carbide (Ti 3C 2T x MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti 3C 2T x electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from – 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI + cations and/or TFSI– anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti 3C 2T x flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effectmore » between intercalated TFSI– anions and positively charged Ti 3C 2T x nanosheets or steric effect caused by de-intercalation of EMI + cations. In conclusion, the expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.« less

  12. Calcium intercalation into layered fluorinated sodium iron phosphate

    NASA Astrophysics Data System (ADS)

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.

    2017-11-01

    The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.

  13. One-step synthesis of layered yttrium hydroxides in immiscible liquid-liquid systems: Intercalation of sterically-bulky hydrophobic organic anions and doping of europium ions

    NASA Astrophysics Data System (ADS)

    Watanabe, Mebae; Fujihara, Shinobu

    2014-02-01

    Inorganic-organic layered rare-earth compounds were synthesized on the basis of a biphasic liquid-liquid system in one pot. Layered yttrium hydroxides (LYHs) were chosen as a host material for the intercalation of hydrophobic organic guest anions such as benzoate, sebacate, or laurate. In a typical synthesis, an organic phase dissolving carboxylic acid was placed in contact with an equal amount of an aqueous phase dissolving yttrium nitrate n-hydrate and urea. At elevated temperatures up to 80 °C, urea was hydrolyzed to release hydroxyl anions which were used to form yttrium hydroxide layers. LYHs were then precipitated with the intercalation of carboxylate anions delivered from the organic phase under the distribution law. The structure and the morphology of the LYHs could be modulated by the intercalated anions. Doped with Eu3+ ions, the LYHs exhibited red photoluminescence which was enhanced by the intercalated anions due to the antenna effect.

  14. Competitive Sorption of CO2 and H2O in 2:1 Layer Phyllosilicates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Loring, John S.; Glezakou, Vassiliki Alexandra

    The salting out effect, where increasing the ionic strength of aqueous solutions decreases the solubility of dissolved gases is a well-known phenomenon. Less explored is the opposite process where an initially anhydrous system containing a volatile, relatively non-polar component and inorganic ions is systematically hydrated. Expandable clays such as montmorillonite are ideal systems for exploring this scenario as they have readily accessible exchange sites containing cations that can be systematically dehydrated or hydrated, from near anhydrous to almost bulk-like water conditions. This phenomenon has new significance with the simultaneous implementation of geological sequestration and secondary utilization of CO2 to bothmore » mitigate climate warming and enhance extraction of methane from hydrated clay-rich formations. Here, the partitioning of CO2 and H2O between Na-, Ca-, and Mg-exchanged montmorillonite and variably hydrated supercritical CO2 (scCO2) was investigated using in situ X-ray diffraction, infrared (IR)spectroscopic titrations, and quartz crystal microbalance (QCM) measurements. Density functional theory calculations provided mechanistic insights. Structural volumetric changes were correlated to quantified changes in sorbed H2O and CO2 concentrations as a function of %H2O saturated in scCO2. Intercalation of CO2 is favored at low H2O/CO2 ratios in the interlayer region, where CO2 can solvate the interlayer cation. As the clay becomes more hydrated and the H2O/CO2 ratio increases, H2O displaces CO2 from the solvation shell of the cation and CO2 tends to segregate. This transition decreases both the entropic and enthalpic driving force for CO2 intercalation, consistent with experimentally observed loss of intercalated CO2.« less

  15. Investigation of the complex structure, comparative DNA-binding and DNA cleavage of two water-soluble mono-nuclear lanthanum(III) complexes and cytotoxic activity of chitosan-coated magnetic nanoparticles as drug delivery for the complexes

    NASA Astrophysics Data System (ADS)

    Asadi, Zahra; Nasrollahi, Neda; Karbalaei-Heidari, Hamidreza; Eigner, Vaclav; Dusek, Michal; Mobaraki, Nabiallah; Pournejati, Roya

    2017-05-01

    Two water-soluble mono-nuclear macrocyclic lanthanum(III) complexes of 2,6-diformyl-4-methylphenol with 1,3-diamino-2-propanol (C1) or 1,3-propylenediamine (C2) were synthesized and characterized by UV-Vis, FT-IR, 13C and 1H NMR spectroscopy and elemental analysis. C1 complex was structurally characterized by single-crystal X-ray diffraction, which revealed that the complex was mononuclear and ten-coordinated. The coordination sites around lanthanum(III) were occupied with a five-dentate ligand, two bidentate nitrates, and one water molecule. The interaction of complexes with DNA was studied in buffered aqueous solution at pH 7.4. UV-Vis absorption spectroscopy, emission spectroscopy, circular dichroism (CD) and viscometric measurements provided clear evidence of the intercalation mechanism of binding. The obtained intrinsic binding constants (Kb) 9.3 × 103 and 1.2 × 103 M- 1 for C1 and C2, respectively confirmed that C1 is better intercalator than C2. The DNA docking studies suggested that the complexes bind with DNA in a groove binding mode with the binding affinity of C1 > C2. Moreover, agarose gel electrophoresis study of the DNA-complex for both compounds revealed that the C1 intercalation cause ethidium bromide replacement in a competitive manner which confirms the suggested mechanism of binding. Finally, the anticancer experiments for the treated cancerous cell lines with both synthesized compounds show that these hydrophilic molecules need a suitable carrier to pass through the hydrophobic nature of cell membrane efficiently.

  16. Electronic properties of carbon fibers intercalated with copper chloride

    NASA Technical Reports Server (NTRS)

    Oshima, H.; Natarajan, V.; Woollam, J. A.; Yavrouian, A.; Haugland, E. J.; Tsuzuku, T.

    1984-01-01

    Copper chloride intercalated pitch-based carbon fibers are found to have electrical resistivities as low as 12.9 micro-ohm-cm, and are air- and thermally-stable at and above room temperature. This is therefore a good candidate system for conductor application. In addition, Shubnikov-deHaas quantum oscillatory effects were found, and electronic properties of the intercalated fiber are studied using magnetic fields to 20 tesla.

  17. Kaolinite Nanocomposite Platelets Synthesized by Intercalation and Imidization of Poly(styrene-co-maleic anhydride)

    PubMed Central

    Samyn, Pieter; Schoukens, Gustaaf; Stanssens, Dirk

    2015-01-01

    A synthesis route is presented for the subsequent intercalation, exfoliation and surface modification of kaolinite (Kln) by an imidization reaction of high-molecular weight poly(styrene-co-maleic anhydride) or SMA in the presence of ammonium hydroxide. In a first step, the intercalation of ammonolyzed SMA by guest displacement of intercalated dimethylsulfoxide has been proven. In a second step, the imidization of ammonolyzed SMA at 160 °C results in exfoliation of the kaolinite layers and deposition of poly(styrene-co-maleimide) or SMI nanoparticles onto the kaolinite surfaces. Compared with a physical mixture of Kln/SMI, the chemically reacted Kln/SMI provides more efficient exfoliation and hydrogen bonding between the nanoparticles and the kaolinite. The kaolinite nanocomposite particles are synthesized in aqueous dispersion with solid content of 65 wt %. The intercalation and exfoliation are optimized for a concentration ratio of Kln/SMI = 70:30, resulting in maximum intercalation and interlayer distance in combination with highest imide content. After thermal curing at 135 °C, the imidization proceeds towards a maximum conversion of the intermediate amic acid moieties. The changes in O–H stretching and kaolinite lattice vibrations have been illustrated by infrared and FT-Raman spectroscopy, which allow for a good quantification of concentration and imidization effects. PMID:28793445

  18. Structural Analysis of HMGD-DNA Complexes Reveal Influence of Intercalation on Sequence Selectivity and DNA Bending

    PubMed Central

    Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.

    2010-01-01

    The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069

  19. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.

    PubMed

    Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang

    2018-05-01

    Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Collecting Duct Intercalated Cell Function and Regulation

    PubMed Central

    Roy, Ankita; Al-bataineh, Mohammad M.

    2015-01-01

    Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105

  1. Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yang; Gu, Meng; Xiao, Haiyan

    2016-04-13

    Reversible insertion and extraction of ionic species into a host lattice governs the basic operating principle for both rechargeable battery (such as lithium batteries) and electrochromic devices (such as ANA Boeing 787-8 Dreamliner electrochromic window). Intercalation and/or conversion are two fundamental chemical processes for some materials in response to the ion insertion. The interplay between these two chemical processes has never been established. It is speculated that the conversion reaction is initiated by ion intercalation. However, experimental evidence of intercalation and subsequent conversion remains unexplored. Here, using in situ HRTEM and spectroscopy, we captured the atomistic conversion reaction processes duringmore » lithium, sodium and calcium ion insertion into tungsten trioxide (WO3) single crystal model electrodes. An intercalation step right prior to conversion is explicitly revealed at atomic scale for the first time for these three ion species. Combining nanoscale diffraction and ab initio molecular dynamics simulations, it is found that, beyond intercalation, the inserted ion-oxygen bonding formation destabilized the transition-metal framework which gradually shrunk, distorted and finally collapsed to a pseudo-amorphous structure. This study provides a full atomistic picture on the transition from intercalation to conversion, which is of essential for material applications in both secondary ion batteries and electrochromic devices.« less

  2. Effect of humidity and water intercalation on the tribological behavior of graphene and graphene oxide.

    PubMed

    Arif, Taib; Colas, Guillaume; Filleter, Tobin

    2018-06-12

    In this work, the effect of humidity and water intercalation on the friction and wear behavior of few-layers of graphene and graphene oxide (GO) was studied using friction force microscopy. Thickness measurements demonstrated significant water intercalation within GO affecting its surface topography (roughness and protrusions), whereas negligible water intercalation of graphene was observed. It was found that water intercalation in GO contributed to wearing of layers at a relative humidity as low as ~30%. The influence of surface wettability and water adsorption was also studied by comparing the sliding behavior of SiO2/GO, SiO2/Graphene, and SiO2/SiO2 interfaces. Friction for the SiO2/GO interface increased with relative humidity due to water intercalation and condensation of water. In contrast, it was observed that adsorption of water molecules lubricated the SiO2/SiO2 interface due to easy shearing of water on the hydrophobic surface, particularly once the adsorbed water layers had transitioned from "ice-like water" to "liquid-like water" structures. Lastly, an opposite friction trend was observed for the graphene/SiO2 interface with water molecules failing to lubricate the interface as compared to the dry graphene/SiO2 contact.

  3. Li intercalation in graphite: A van der Waals density-functional study

    NASA Astrophysics Data System (ADS)

    Hazrati, E.; de Wijs, G. A.; Brocks, G.

    2014-10-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.

  4. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.

    2011-11-15

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate wasmore » more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: > LDH-PET compatibility is enhanced by preintercalation of organic anions. > Dodecylsulphate performance is much better than that of terephthalate. > Microwave heating improves the thermal stability of the composites. > Microwave heating improves as well the dispersion of the inorganic phase.« less

  5. A study of phosphate absorption by magnesium iron hydroxycarbonate.

    PubMed

    Du, Yi; Rees, Nicholas; O'Hare, Dermot

    2009-10-21

    A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.

  6. Intercalation of paracetamol into the hydrotalcite-like host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovanda, Frantisek, E-mail: Frantisek.Kovanda@vscht.cz; Maryskova, Zuzana; Kovar, Petr

    2011-12-15

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 Degree-Sign C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly nearmore » the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals. - Graphical abstract: Molecular simulations showed disordered arrangement of paracetamol molecules in the interlayer; most of the interlayer water molecules are located near the hydroxide sheets. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Paracetamol was intercalated in Mg-Al hydrotalcite-like host by rehydration/reconstruction procedure. Black-Right-Pointing-Pointer Paracetamol phenolic groups interact with positively charged sites in hydroxide sheets. Black-Right-Pointing-Pointer Molecular simulations showed disordered arrangement of guest molecules in the interlayer. Black-Right-Pointing-Pointer Slower release of paracetamol intercalated in the hydrotalcite-like host was observed.« less

  7. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis.

    PubMed

    Narayanan, Neethu; Gupta, Suman; Gajbhiye, V T; Manjaiah, K M

    2017-04-01

    A carboxy methyl cellulose-nano organoclay (nano montmorillonite modified with 35-45 wt % dimethyl dialkyl (C 14 -C 18 ) amine (DMDA)) composite was prepared by solution intercalation method. The prepared composite was characterized by infrared spectroscopy (FTIR), X-Ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The composite was utilized for its pesticide sorption efficiency for atrazine, imidacloprid and thiamethoxam. The sorption data was fitted into Langmuir and Freundlich isotherms using linear and non linear methods. The linear regression method suggested best fitting of sorption data into Type II Langmuir and Freundlich isotherms. In order to avoid the bias resulting from linearization, seven different error parameters were also analyzed by non linear regression method. The non linear error analysis suggested that the sorption data fitted well into Langmuir model rather than in Freundlich model. The maximum sorption capacity, Q 0 (μg/g) was given by imidacloprid (2000) followed by thiamethoxam (1667) and atrazine (1429). The study suggests that the degree of determination of linear regression alone cannot be used for comparing the best fitting of Langmuir and Freundlich models and non-linear error analysis needs to be done to avoid inaccurate results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, S.; Zhang, D.; Paukstelis, P. J.

    DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less

  9. Nanocomposites coated with xyloglucan for drug delivery: In vitro studies.

    PubMed

    Ribeiro, C; Arizaga, G G C; Wypych, F; Sierakowski, M-R

    2009-02-09

    Enalaprilate (Enal), an active pharmaceutical component, was intercalated into a layered double hydroxide (Mg/Al-LDH) by an ion exchange reaction. The use of a layered double hydroxide (LDH) to release active drugs is limited by the low pH of the stomach (pH approximately 1.2), in whose condition it is readily dissolved. To overcome this limitation, xyloglucan (XG) extracted from Hymenaea courbaril (jatobá) seeds, Brazilian species, was used to protect the LDH and allow the drug to pass through the gastrointestinal tract. All the materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, elemental analyses, transmission electronic microscopy, thermal analyses, and a kinetic study of the in vitro release was monitored by ultraviolet spectroscopy. The resulting hybrid system containing HDL-Enal-XG(3) slowly released the Enal. In an 8-h of test, the system protected 40% (w/v) of the drug. The kinetic profile showed that the drug release was a co-effect behavior, involving dissolution of inorganic material and ion exchange between the intercalated anions in the lamella and those of phosphate in the buffer solution. The nanocomposite coated protection with XG was therefore efficient in obtaining a slow release of Enal.

  10. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  11. Electrochemical exfoliation of graphite to stage-III graphite bisulfate flakes in low concentration sulfuric acid solution: A novel synthesis route to completely trilayer graphene suspension

    NASA Astrophysics Data System (ADS)

    Mir, Afkham; Shukla, Anupam

    2018-06-01

    Graphene produced from electrochemical exfoliation of graphite show a scatter in the number of layers. This scatter is a serious drawback for sensor and opto-electronic applications since the electronic properties of graphene change with number of layers. The scatter in the layer number of graphene is caused by formation of the intermediate graphite intercalation compounds (GIC) of different stage numbers as well as simultaneous cleaving of the GICs in the dispersion-unsuitable aqueous environment. In this work, we show the synthesis of stage-III graphite bisulfate (GB) enriched flakes by electrochemical exfoliation of graphite in low concentration (0.1 M) sulfuric acid from two different routes. We further show that the intercalated bisulfate planes provide sites for selective cleaving of the GB particles to trilayer graphene in DMF, a solvent favorable for graphene dispersion. Morphological characterizations show that while GB particles from one of the routes give graphene with a small scatter in the layer numbers, the other route provides a completely trilayer graphene dispersion. TEM and optical micrographs show graphene flakes have linear dimensions of several micrometers and a low aspect ratio suitable for use in sensor applications.

  12. In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, Mie Møller, E-mail: mmst@dtu.dk; Johnsen, Rune E.; Norby, Poul

    2016-08-15

    Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermalmore » reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses. - Graphical abstract: In situ X-ray diffraction results for of the modified Hummers synthesis and the thermal reduction of graphene oxide, revealing three stages for both syntheses as well as new GO diffraction peaks and unidentified crystalline material for the Hummers synthesis and a disordered stage for the thermal reduction of graphene oxide. Display Omitted - Highlights: • Hummers synthesis consists of three stages: dissolution, intercalation and crystal. • GO is produced early on during the synthesis and display new diffraction peaks. • An unidentified triclinic phase is observed for the Hummers synthesis. • Thermal reduction of GO display three stages: GO, a disordered stage and rGO. • In situ XRD indicate reformation of rGO even for fast heated thermal reduction.« less

  13. Organo-Soluble Porphyrin Mixed Monolayer-Protected Gold Nanorods with Intercalated Fullerenes

    DTIC Science & Technology

    2012-03-16

    Mixed Monolayer- Protected Gold Nanorods with Intercalated Fullerenes Chenming Xue, Yongqian Xu, Yi Pang, Dingshan Yu, Liming Dai, Min Gao, Augustine...Protected Gold Nanorods with Intercalated Fullerenes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT... Fullerenes Chenming Xue, † Yongqian Xu, ‡ Yi Pang, ‡ Dingshan Yu, § Liming Dai, § Min Gao, † Augustine Urbas ± and Quan

  14. Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces

    DOE PAGES

    Osti, Naresh C.; Naguib, Michael; Ostadhossein, Alireza; ...

    2016-03-24

    MXenes are a recently discovered class of 2D materials with an excellent potential for energy storage applications. Because MXene surfaces are hydrophilic and attractive interaction forces between the layers are relatively weak, water molecules can spontaneously intercalate at ambient humidity and significantly influence the key properties of this 2D material. Using complementary X-ray and neutron scattering techniques, we demonstrate that intercalation with potassium cations significantly improves structural homogeneity and water stability in MXenes. Furthermore, in agreement with molecular dynamics simulations, intercalated potassium ions reduce the water self-diffusion coefficient by 2 orders of magnitude, suggesting greater stability of hydrated MXene againstmore » changing environmental conditions.« less

  15. Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film.

    PubMed

    Rhim, Jong-Whan

    2012-12-01

    Binary blend films with different mixing ratio of agar and κ-carrageenan were prepared using a solution casting method with and without nanoclay and the effect of their composition on the mechanical, water vapor barrier, and water resistance properties was tested. The tensile strength (TS) of the κ-carrageenan film was greater than that of agar film. The water vapor permeability (WVP) of the agar film was lower than that of κ-carrageenan film, the swelling ratio (SR) and water solubility (WS) of κ-carrageenan film were higher than those of agar film. Each property of the binary blend films varied proportionately depending on the mixing ratio of each component. The XRD result indicated that the nanocomposite with agar/κ-carrageenan/clay (Cloisite(®) Na(+)) was intercalated. Consequently, the mechanical strength, water vapor barrier properties, and water contact angle (CA) were significantly (P < 0.05) improved through nanocomposite formation. © 2012 Institute of Food Technologists®

  16. A new oxyfluorinated titanium phosphate anode for a high-energy lithium-ion battery.

    PubMed

    Ma, Zhaohui; Sun, Chunwen; Lyu, Yingchun; Wang, Yuesheng; Kim, Youngsik; Chen, Liquan

    2015-01-21

    Na3[Ti2P2O10F] was synthesized by a hydrothermal method. It has an open framework structure consisting of TiFO5 octahedra and PO4 tetrahedra. The feasibility of Na3[Ti2P2O10F] as an anode material for lithium-ion batteries was first studied. Na3[Ti2P2O10F] exhibits a reversible capacity of more than 200 mAh g(-1) at a discharge/charge current rate of 20 mA g(-1) (∼0.1 C) and 105 mA g(-1) at a discharge/charge current rate of 400 mA g(-1) (∼2 C) with a lower intercalation voltage. The result of in situ X-ray diffraction test shows the structural evolution during the first discharge/charge cycle. The structure of Na3[Ti2P2O10F] was kept during discharge/charge with a slight change of the lattice parameters, which indicates a lithium solid solution behavior.

  17. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries.

    PubMed

    Liao, Mingna; Zhang, Qilun; Tang, Fengling; Xu, Zhiwei; Zhou, Xin; Li, Youpeng; Zhang, Yali; Yang, Chenghao; Ru, Qiang; Zhao, Lingzhi

    2018-03-22

    The synthesis of nanosized CoO anodes with unique morphologies via a hydrothermal method is investigated. By adjusting the pH values of reaction solutions, nanoflakes (CoO-NFs) and nanoflowers (CoO-FLs) are successfully located on copper foam. Compared with CoO-FLs, CoO-NFs as anodes for lithium ion batteries present ameliorated lithium storage properties, such as good rate capability, excellent cycling stability, and large CoO nanoflakes; CoO nanoflowers; anodes; binder free; lithium ion batteriesreversible capacity. The initial discharge capacity is 1470 mA h g -1 , while the reversible capacity is maintained at 1776 m Ah g -1 after 80 cycles at a current density of 100 mA h g -1 . The excellent electrochemical performance is ascribed to enough free space and enhanced conductivity, which play crucial roles in facilitating electron transport during repetitive Li⁺ intercalation and extraction reaction as well as buffering the volume expansion.

  18. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites.

    PubMed

    Ma, Renzhi; Sasaki, Takayoshi

    2010-12-01

    A wide variety of cation-exchangeable layered transition metal oxides and their relatively rare counterparts, anion-exchangeable layered hydroxides, have been exfoliated into individual host layers, i.e., nanosheets. Exfoliation is generally achieved via a high degree of swelling, typically driven either by intercalation of bulky organic ions (quaternary ammonium cations, propylammonium cations, etc.) for the layered oxides or by solvation with organic solvents (formamide, butanol, etc.) for the hydroxides. Ultimate two-dimensional (2D) anisotropy for the nanosheets, with thickness of around one nanometer versus lateral size ranging from submicrometer to several tens of micrometers, allows them to serve either as an ideal quantum system for fundamental study or as a basic building block for functional assembly. The charge-bearing inorganic macromolecule-like nanosheets can be assembled or organized through various solution-based processing techniques (e.g., flocculation, electrostatic sequential deposition, or the Langmuir-Blodgett method) to produce a range of nanocomposites, multilayer nanofilms, and core-shell nanoarchitectures, which have great potential for electronic, magnetic, optical, photochemical, and catalytic applications.

  19. Supercritical fluid extraction of bi & multi-layer graphene sheets from graphite by using exfoliation technique

    NASA Astrophysics Data System (ADS)

    Xavier, Gauravi; Dave, Bhoomi; Khanna, Sakshum

    2018-05-01

    In recent times, researchers have turned to explore the possibility of using Supercritical Fluid (SCFs) system to penetrate into the inert-gaping of graphite and exfoliate it into a number of layer graphene sheets. The supercritical fluid holds excellent wetting surfaces with low interfacial tension and high diffusion coefficients. Although SCFs exfoliation approach looks promising to developed large scale & low-cost graphene sheet but has not received much attention. To arouse interest and reflection on this approach, this review is organized to summarize the recent progress in graphene production by SCF technology. Here we present the simplest route to obtained layers of graphene sheets by intercalating and exfoliating graphite using supercritical CO2 processing. The layers graphene nano-sheets were collected in dichloromethane (DCM) solution which prevents the restocking of sheets. The obtained graphene sheets show the desired characteristics and thus can be used in physical, chemical and biological sciences. Thus this method provides an effortless and eco-friendly approach for the synthesis of layers of graphene sheets.

  20. Method for forming solar cell materials from particulars

    DOEpatents

    Eberspacher, Chris; Pauls, Karen Lea

    2001-01-01

    Materials in bulk and film forms are prepared from fine particulate precursors such as single-phase, mixed-metal oxides; multi-phase, mixed-metal particles comprising a metal oxide; multinary metal particles; mixtures of such particles with other particles; and particulate materials intercalated with other materials.

  1. Atomic intercalation to measure adhesion of graphene on graphite

    PubMed Central

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; Belianinov, Alexei; Kalinin, Sergei V.; Baddorf, Arthur P.; Maksymovych, Petro

    2016-01-01

    The interest in mechanical properties of two-dimensional materials has emerged in light of new device concepts taking advantage of flexing, adhesion and friction. Here we demonstrate an effective method to measure adhesion of graphene atop highly ordered pyrolytic graphite, utilizing atomic-scale ‘blisters' created in the top layer by neon atom intercalates. Detailed analysis of scanning tunnelling microscopy images is used to reconstruct atomic positions and the strain map within the deformed graphene layer, and demonstrate the tip-induced subsurface translation of neon atoms. We invoke an analytical model, originally devised for graphene macroscopic deformations, to determine the graphite adhesion energy of 0.221±0.011 J m−2. This value is in excellent agreement with reported macroscopic values and our atomistic simulations. This implies mechanical properties of graphene scale down to a few-nanometre length. The simplicity of our method provides a unique opportunity to investigate the local variability of nanomechanical properties in layered materials. PMID:27796294

  2. Intercalated graphitic carbon nitride: a fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyi; Huang, Jindou; Yuan, Qing; Dong, Bin

    2014-07-01

    We develop a novel humidity nanosensor based on intercalated graphitic carbon nitride (g-C3N4) nanosheets fabricated by a facile thermal polymerization of common urea in the presence of LiCl as the intercalated guest under air and ambient pressure. The response and recovery times of an optimal nanosensor can reach ~0.9 s and ~1.4 s, respectively, which are superior to most of the traditional oxide ceramic-based humidity nanosensors tested under similar conditions. By combining with the theoretical calculations, it is proposed that the ultrafast response-recovery time for this nanosensor is attributed to their unique 2D intercalated nanostructure by which Li species linked with the ``nitrogen pots'' of g-C3N4 can make the protons conduct in the first adsorbed water layer. Meanwhile, the physically adsorbed water on the surface of LiCl-intercalated g-C3N4 nanosheets can be desorbed rapidly at a relative lower RH environment due to their high adsorption energy and the strong diffusion effect of water molecules.We develop a novel humidity nanosensor based on intercalated graphitic carbon nitride (g-C3N4) nanosheets fabricated by a facile thermal polymerization of common urea in the presence of LiCl as the intercalated guest under air and ambient pressure. The response and recovery times of an optimal nanosensor can reach ~0.9 s and ~1.4 s, respectively, which are superior to most of the traditional oxide ceramic-based humidity nanosensors tested under similar conditions. By combining with the theoretical calculations, it is proposed that the ultrafast response-recovery time for this nanosensor is attributed to their unique 2D intercalated nanostructure by which Li species linked with the ``nitrogen pots'' of g-C3N4 can make the protons conduct in the first adsorbed water layer. Meanwhile, the physically adsorbed water on the surface of LiCl-intercalated g-C3N4 nanosheets can be desorbed rapidly at a relative lower RH environment due to their high adsorption energy and the strong diffusion effect of water molecules. Electronic supplementary information (ESI) available: Fig. S1-S8 and Table S1 including SEM, TEM and theoretical calculations. See DOI: 10.1039/c4nr01570c

  3. A Novel Nanocomposite as an Efficient Adsorbent for the Rapid Adsorption of Ni(II) from Aqueous Solution

    PubMed Central

    Wang, Ximing; Chen, Zhangjing

    2017-01-01

    A sulfhydryl-lignocellulose/montmorillonite (SLT) nanocomposite was prepared using a chemical intercalation reaction. The SLT nanocomposite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscopy (TEM), the results demonstrated that an intercalated-exfoliated nanostructure was formed in the SLT nanocomposite. Batch experiments were conducted to optimize parameters such as SLT nanocomposite dosage, the initial concentration of Ni(II), solution pH, temperature, and time. The results indicated that the attractive adsorption capacity reached 1134.08 mg/g with 0.05 g of SLT at an initial concentration of Ni(II) of 700 mg/L, solution pH of 5.5, adsorption temperature of 50 °C, and adsorption time of 40 min, meanwhile, the Ni(II) adsorption capacity significantly decreased with the increase in ionic strength. The pseudo-second order kinetic model could describe the whole adsorption process well, and the isotherm adsorption equilibrium conformed to the Freundlich model. The adsorption mechanism of SLT was also discussed by means of FTIR and Energy-Dispersive X-Ray (EDX). Dramatically, the introduction of sulfhydryl achieves the increased activated functional groups content of SLT nanocomposite, leading to remarkably higher adsorption amount on Ni(II). The desorption capacity of SLT was dependent on parameters such as HNO3 concentration, desorption temperature, and ultrasonic desorption time. The satisfactory desorption capacity and desorption efficiency of 458.21 mg/g and 40.40% were obtained at an HNO3 concentration, desorption temperature, and ultrasonic desorption time of 0.4 mol/L, 40 °C, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of SLT was consistent for four cycles without any appreciable loss and confirmed that the SLT was reusable. Owing to such outstanding features, the novel SLT nanocomposite proved the great potential in adsorption for Ni(II) removal from aqueous solution, and exhibited an extremely significant amount of Ni(II), compared to pristine lignocellulose/montmorillonite and the conventional spent adsorbents. PMID:28937606

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wertsching, Alan Kevin; Trantor, Troy Joseph; Ebner, Matthias Anthony

    A method and device for producing secure, high-density tritium bonded with carbon. A substrate comprising carbon is provided. A precursor is intercalated between carbon in the substrate. The precursor intercalated in the substrate is irradiated until at least a portion of the precursor, preferably a majority of the precursor, is transmutated into tritium and bonds with carbon of the substrate forming bonded tritium. The resulting bonded tritium, tritium bonded with carbon, produces electrons via beta decay. The substrate is preferably a substrate from the list of substrates consisting of highly-ordered pyrolytic graphite, carbon fibers, carbon nanotunes, buckministerfullerenes, and combinations thereof.more » The precursor is preferably boron-10, more preferably lithium-6. Preferably, thermal neutrons are used to irradiate the precursor. The resulting bonded tritium is preferably used to generate electricity either directly or indirectly.« less

  5. Montmorillonite-Alginate Composites as a Drug delivery System: Intercalation and In vitro Release of Diclofenac sodium

    PubMed Central

    Kevadiya, B. D.; Patel, H. A.; Joshi, G. V.; Abdi, S. H. R.; Bajaj, H. C.

    2010-01-01

    Diclofenac sodium and alginate was intercalated into montmorillonite to form uniform sized beads by gelation method. The structure and surface morphology of the synthesized composite beads were characterized by powdered X-ray diffraction, Fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. Diclofenac release kinetics of the composite in simulated intestinal fluid medium (pH 7.4) and effect of montmorillonite content on the in vitro release of diclofenac from diclofenac-montmorillonite-alginate composites bead was investigated by UV/Vis spectrophotometer. Diclofenac encapsulation efficiency in the montmorillonite-alginate composites bead increases with an increase in the montmorillonite content. The control release of diclofenac from diclofenac-montmorillonite-alginate composites beads was observed to be better as compared to diclofenac-alginate beads. PMID:21969745

  6. ⁹⁹mTc pyrene derivative complex causes double-strand breaks in dsDNA mainly through cluster-mediated indirect effect in aqueous solution.

    PubMed

    Chung, Wei-Ju; Cui, Yujia; Huang, Feng-Yun J; Tu, Tzu-Hui; Yang, Tzu-Sen; Lo, Jem-Mau; Chiang, Chi-Shiun; Hsu, Ian C

    2014-01-01

    Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating double-strand breaks (DSB). A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope ⁹⁹mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative ⁹⁹mTc complex on plasmid DNA by using gel electrophoresis in both aqueous and methanol solutions. In aqueous solutions, the average yield per decay for double-strand breaks is 0.011±0.005 at low dose range, decreasing to 0.0005±0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO). The apparent yield per decay for single-strand breaks (SSB) is 0.04±0.02, decreasing to approximately a fifth with 1 M DMSO. In methanol, the average yield per decay of DSB is 0.54±0.06 and drops to undetectable levels in 2 M DMSO. The SSB yield per decay is 7.2±0.2, changing to 0.4±0.2 in the presence of 2 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by ⁹⁹mTc conjugated to intercalators are primarily caused by indirect effects through clustering.

  7. Zerovalent Copper Intercalated Birnessite as a Cathode for Lithium Ion Batteries: Extending Cycle Life

    DOE PAGES

    Li, Yue Ru; Poyraz, Altug S.; Hu, Xiaobing; ...

    2017-01-01

    Birnessite type layered manganese dioxides (δ-MnO 2) have attracted considerable attention in recent years as 2D intercalation cathodes for rechargeable Li +, Na +, and Mg 2+ batteries due to fast ion diffusion through their negatively charged δ-MnO 2 sheets separated by interlayer cations and a stable Mn 3+/4+ redox couple. Here we report the preparation and electrochemistry of zero and divalent copper co-intercalated birnessite type manganese dioxide (Cu 0 0.03Cu 2+ 0.21Na 0.12MnO 2·0.9H 2O). The copper intercalated birnessite materials were fully characterized utilizing powder X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM).more » The mixed valent nature of intercalated Cu 0 and Cu 2+ was confirmed by X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). Electrochemical evaluation results show that zero valent copper intercalated birnessite exhibits higher discharge capability, improved cyclability, and lower impedance compared to the Cu 2+ only intercalated (Cu 0.26MnO 2·1.0H 2O) and Cu free Na birnessite (Na 0.40MnO 2·1.0H 2O) materials. Remarkably, zero valent copper birnessite shows almost no fade after 10 cycles at 0.1 mV/s. Electrochemical impedance spectroscopy results suggest that charge transfer resistivity of Cu 0 modified samples was much lower than that of Cu 2+ and Cu free birnessite, indicating that the presence of a small amount of Cu 0 improves the conductivity of birnessite and results in better electrochemical cyclability, rate capability, and lower impedance.« less

  8. Ultrastructural and biochemical localization of N-RAP at the interface between myofibrils and intercalated disks in the mouse heart.

    PubMed

    Zhang, J Q; Elzey, B; Williams, G; Lu, S; Law, D J; Horowits, R

    2001-12-11

    N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.

  9. Preparation of graphite intercalation compounds containing oligo and polyethers

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyang; Lerner, Michael M.

    2016-02-01

    Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets.Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets. Electronic supplementary information (ESI) available: Domain size, additional Raman spectra info, compositional calculation, and packing fractions. See DOI: 10.1039/c5nr08226a

  10. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    PubMed

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  11. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.

    PubMed

    Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-07

    Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.

  12. A molecular model for proflavine-DNA intercalation.

    PubMed Central

    Neidle, S; Pearl, L H; Herzyk, P; Berman, H M

    1988-01-01

    A molecular model has been derived for the intercalation of proflavine into the CpG site of the decamer duplex of d(GATACGATAC). The starting geometry of the intercalation site was taken from previous crystallographic studies on the d(CpG)-proflavine complex, and molecular mechanics used to obtain a stereochemically acceptable structure. This has widened grooves compared to standard A- or B- double helices, as well as distinct conformational, roll, twist and tilt features. PMID:3174439

  13. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  14. Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers

    DOE PAGES

    Osti, Naresh C.; Naguib, Michael; Ganeshan, Karthik; ...

    2017-11-21

    Two-dimensional carbides and nitrides of early transition metals (MXenes) combine high conductivity with hydrophilic surfaces, which make them promising for energy storage, electrocatalysis, and water desalination. Effects of intercalated metal ions on the vibrational states of water confined in Ti 3C 2T x MXenes have been explored using inelastic neutron scattering (INS) and molecular dynamics simulations to better understand the mechanisms that control MXenes’ behavior in aqueous electrolytes, water purification and other important applications. Here, we observe INS signal from water in all samples, pristine and with lithium, sodium or potassium ions intercalated between the 2D Ti 3C 2T xmore » layers. However, only a small amount of water is found to reside in Ti 3C 2T x intercalated with metal ions. Water in pristine Ti 3C 2T x is more disordered, with bulk-like characteristics, in contrast to intercalated Ti 3C 2T x, where water is more ordered, irrespective of the metal ions used for intercalation. The ordering of the confined water increases with the ion size. Lastly, this finding is further confirmed from molecular dynamics simulation which showed an increase in interference of water molecules with increasing ion size resulting in a concomitant decrease in water mobility, therefore, providing a guidance to tailor MXene properties for energy and environmental applications.« less

  15. New Lithium- and Diamine-Intercalated Superconductors Lix(CnH2n+4N2)yMoSe2 (n = 2,6)

    NASA Astrophysics Data System (ADS)

    Sato, Kazuki; Noji, Takashi; Hatakeda, Takehiro; Kawamata, Takayuki; Kato, Masatsune; Koike, Yoji

    2018-05-01

    We have succeeded in synthesizing new intercalation superconductors Lix(C2H8N2)yMoSe2 and Lix(C6H16N2)yMoSe2 with Tc = 4.2 and 3.8-6.0 K, respectively, via the co-intercalation of lithium and ethylenediamine or hexamethylenediamine into semiconducting 2H-MoSe2. It has been found that the Tc values are related not to the interlayer spacing between MoSe2 layers so much but to the electronic density of states (EDOS) at the Fermi level. Moreover, only Li-intercalated LixMoSe2 with a small interlayer spacing has been found to be non-superconducting. Accordingly, it has been concluded that not only a sufficient amount of EDOS at the Fermi level due to the charge transfer from intercalated Li to MoSe2 layers but also the enhancement of the two-dimensionality of the crystal structure and/or electronic structure due to the expansion of the interlayer spacing between MoSe2 layers is necessary for the appearance of superconductivity in MoSe2-based intercalation superconductors. The pairing mechanism and the analogy to the superconductivity in the electric double-layer transistors of 2H-MoX2 (X = S, Se, Te) are discussed.

  16. Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osti, Naresh C.; Naguib, Michael; Ganeshan, Karthik

    Two-dimensional carbides and nitrides of early transition metals (MXenes) combine high conductivity with hydrophilic surfaces, which make them promising for energy storage, electrocatalysis, and water desalination. Effects of intercalated metal ions on the vibrational states of water confined in Ti 3C 2T x MXenes have been explored using inelastic neutron scattering (INS) and molecular dynamics simulations to better understand the mechanisms that control MXenes’ behavior in aqueous electrolytes, water purification and other important applications. Here, we observe INS signal from water in all samples, pristine and with lithium, sodium or potassium ions intercalated between the 2D Ti 3C 2T xmore » layers. However, only a small amount of water is found to reside in Ti 3C 2T x intercalated with metal ions. Water in pristine Ti 3C 2T x is more disordered, with bulk-like characteristics, in contrast to intercalated Ti 3C 2T x, where water is more ordered, irrespective of the metal ions used for intercalation. The ordering of the confined water increases with the ion size. Lastly, this finding is further confirmed from molecular dynamics simulation which showed an increase in interference of water molecules with increasing ion size resulting in a concomitant decrease in water mobility, therefore, providing a guidance to tailor MXene properties for energy and environmental applications.« less

  17. Stability of bromine, iodine monochloride, copper (II) chloride, and nickel (II) chloride intercalated pitch-based graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Shaffer, Nanette

    1987-01-01

    Four different grades of pitch-based graphite fibers (Amoco P-55, P-75, P-100. and P-120) were intercalated with each of four different intercalates: bromine (Br2), iodine monochloride (ICl), copper (II) chloride (CuCl2), and nickel (II) chloride (NiCl2). The P-55 fibers did not react with Br2 or NiCl2, and the P-75 did not react with NiCl2. The stability of the electrical resistance of the intercalated fibers was monitored over long periods of time in ambient, high humidity (100 percent at 60 C), vacuum (10 to the -6 torr), and high temperature (up to 400 C) conditions. Fibers with lower graphitization form graphite intercalation compounds (GIC's) which are more stable than those with higher graphitization (i.e., P-55 (most stable) greater than P-75 greater than P-100 greater than P-120 (least stable). Br2 formed the most stable GIC's followed in order of decreasing stability by ICl, CuCl2, and NiCl2. While Br2 GIC's had the most stability, ICl had the advantages of forming GIC's with slightly greater reduction in resistance (by about 10%) than Br2, and the ability to intercalate P-55 fiber. Transition metal chlorides are susceptible to water vapor and high temperature. The stability of fibers in composites differs.

  18. Controlled deposition of fullerene derivatives within a graphene template by means of a modified Langmuir-Schaefer method.

    PubMed

    Kouloumpis, Antonios; Vourdas, Nikolaos; Zygouri, Panagiota; Chalmpes, Nikolaos; Potsi, Georgia; Kostas, Vasilios; Spyrou, Konstantinos; Stathopoulos, Vassilis N; Gournis, Dimitrios; Rudolf, Petra

    2018-04-12

    The scientific and technological potential of graphene's includes the development of light, open 3D hybrid structures with high surface area, tunable pore size and aromatic functionalities. Towards this aim, we describe a scalable and low-cost bottom-up approach that combines self-assembly and Langmuir-Schaefer deposition for the production of fullerene-intercalated graphene oxide hybrids. This method uses graphene oxide (GO) nanosheets as template for the attachment of two types of fullerene derivatives (bromo-fullerenes, C 60 Br 24 and fullerols, C 60 (OH) 24 ) in a bi-dimensional arrangement, allowing a layer-by-layer growth with control at nanoscale. Our film preparation approach relies on a bottom-up process that includes the formation of a hybrid organo-graphene Langmuir film, which is transferred onto a substrate and then brought in contact with C 60 (OH) 24 molecules in solution to induce self-assembly. In the case of grafting C 60 Br 24 molecules into graphene a further modification of the GO platelets was performed by bringing the surface of the transferred GO Langmuir film in contact with a second amino surfactant solution. Repeating these deposition cycles, pillared structures were fabricated in thin films form. These fullerene-based hybrid thin films were characterized by Raman and X-ray photoelectron (XPS) spectroscopies, X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and contact angle measurements. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The role of ionic liquid electrolyte in an aluminum–graphite electrochemical cell

    DOE PAGES

    Agiorgousis, Michael L.; Sun, Yi -Yang; Zhang, Shengbai

    2017-02-17

    Using first-principles calculations and molecular dynamics simulation, we study the working mechanism in an aluminum–graphite electrochemical cell, which was recently reported to exhibit attractive performance. We exclude the possibility of Al 3+ cation intercalation into graphite as in standard Li-ion batteries. Instead, we show that the AlCl 4 – anion intercalation mechanism is thermodynamically feasible. By including the ionic liquid electrolyte in the overall redox reaction, we are able to reproduce the high voltage observed in experiment. The active involvement of electrolyte in the reaction suggests that the evaluation of energy density needs to take the electrolyte into consideration. Here,more » our proposed structural model is consistent with the new peaks appearing in X-ray diffraction from the intercalation compound. The high rate capability is explained by the ultralow diffusion barriers of the AlCl 4 intercalant. With the clarified working mechanism, it becomes clear that the high voltage of the Al–graphite cell is a result of the thermodynamic instability of the AlCl 4-intercalated graphite.« less

  20. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.

    PubMed

    Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe

    2006-02-01

    High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.

  1. Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, Jonathan D., E-mail: jdemery@anl.gov, E-mail: bedzyk@northwestern.edu; Johns, James E.; McBriarty, Martin E.

    2014-10-20

    The intercalation of various atomic species, such as hydrogen, to the interface between epitaxial graphene (EG) and its SiC substrate is known to significantly influence the electronic properties of the graphene overlayers. Here, we use high-resolution X-ray reflectivity to investigate the structural consequences of the hydrogen intercalation process used in the formation of quasi-free-standing (QFS) EG/SiC(0001). We confirm that the interfacial layer is converted to a layer structurally indistinguishable from that of the overlying graphene layers. This newly formed graphene layer becomes decoupled from the SiC substrate and, along with the other graphene layers within the film, is vertically displacedmore » by ∼2.1 Å. The number of total carbon layers is conserved during the process, and we observe no other structural changes such as interlayer intercalation or expansion of the graphene d-spacing. These results clarify the under-determined structure of hydrogen intercalated QFS-EG/SiC(0001) and provide a precise model to inform further fundamental and practical understanding of the system.« less

  2. Nanoencapsulation of Insulin into Zirconium Phosphate for Oral Delivery Applications

    PubMed Central

    Díaz, Agustín; David, Amanda; Pérez, Riviam; González, Millie L.; Báez, Adriana; Wark, Stacey E.; Zhang, Paul; Clearfield, Abraham; Colón, Jorge L.

    2010-01-01

    The encapsulation of insulin into different kinds of materials for non-invasive delivery is an important field of study because of the many drawbacks of painful needle and syringe delivery such as physiological stress, infection, and local hypertrophy, among others.1 A stable, robust, non-toxic, and viable non-invasive carrier for insulin delivery is needed. We present a new approach for protein nanoencapsulation using layered zirconium phosphate (ZrP) nanoparticles produced without any preintercalator present. The use of ZrP without preintercalators produces a highly pure material, without any kinds of contaminants, such as the preintercalator, which can be noxious. Cytotoxicity cell viability in vitro experiments for the ZrP nanoparticles show that ZrP is not toxic, or harmful, in a biological environment, as previously reported for rats.2 Contrary to previous preintercalator-based methods, we show that insulin can be nanoencapsulated in ZrP if a highly hydrate phase of ZrP with an interlayer distance of 10.3 Å (10.3 Å-ZrP or θ-ZrP) is used as precursor. The intercalation of insulin into ZrP produced a new insulin-intercalated ZrP phase with a ca. 27 Å interlayer distance, as determined by X-ray powder diffraction, demonstrating a successful nanoencapsulation of the hormone. The in vitro release profile of the hormone after the intercalation was determined and circular dichroism was used to study the hormone stability upon intercalation and release. The insulin remains stable in the layered material, at room temperature, for a considerable amount of time, improving the shell life of the peptidic hormone. This type of materials represents a strong candidate to develop a non-invasive insulin carrier for the treatment of diabetes mellitus. PMID:20707305

  3. Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Yuki; Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712; Oshiyama, Atsushi

    2015-11-07

    We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ionmore » battery.« less

  4. Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation

    NASA Astrophysics Data System (ADS)

    Eknapakul, T.; Fongkaew, I.; Siriroj, S.; Jindata, W.; Chaiyachad, S.; Mo, S.-K.; Thakur, S.; Petaccia, L.; Takagi, H.; Limpijumnong, S.; Meevasana, W.

    2018-05-01

    By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe2 has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p -orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV, respectively. Our calculations indicate that such behavior is driven by the band deformation potential, which is a result of our observed strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between intercalation and strain, as well as for large-scale two-dimensional straintronics.

  5. Heat capacities of kaolinite from 7 to 380 K and of DMSO- intercalated kaolinite from 20 to 310 K. The entropy of kaolinite Al2Si2O5(OH)4

    USGS Publications Warehouse

    Robie, Richard A.; Hemingway, Bruce S.

    1991-01-01

    The heat capacities of kaolinite (7 to 380 K) and of dimethyl sulfoxide (DMSO) intercalated kaolinite (20 to 310 K) were measured by adiabatically shielded calorimetry. The third law entropy of kaolinite, S°298, is 200.9 ± 0.5 J ⋅ mol-1 ⋅ K-1.The "melting point" of the DMSO in the intercalate, 288.0 ± 0.2 K, is 3.7 K lower than that of pure DMSO, 291.67 K. The heat capacity of DMSO in the intercalate above 290 K is approximately 5.2 J ⋅ mol-1 ⋅ K-1 smaller than that of pure liquid DMSO at the same temperature.

  6. Molecular mechanism of direct proflavine-DNA intercalation: evidence for drug-induced minimum base-stacking penalty pathway.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2012-10-11

    DNA intercalation, a biophysical process of enormous clinical significance, has surprisingly eluded molecular understanding for several decades. With appropriate configurational restraint (to prevent dissociation) in all-atom metadynamics simulations, we capture the free energy surface of direct intercalation from minor groove-bound state for the first time using an anticancer agent proflavine. Mechanism along the minimum free energy path reveals that intercalation happens through a minimum base stacking penalty pathway where nonstacking parameters (Twist→Slide/Shift) change first, followed by base stacking parameters (Buckle/Roll→Rise). This mechanism defies the natural fluctuation hypothesis and provides molecular evidence for the drug-induced cavity formation hypothesis. The thermodynamic origin of the barrier is found to be a combination of entropy and desolvation energy.

  7. Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Jiang, Xiankai; Song, Bo; Tománek, David

    2018-04-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.

  8. Feasibility of intercalated graphite railgun armatures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Gooden, Clarence E.; Yashan, Doreen; Naud, Steven

    1990-01-01

    Graphite intercalation compounds may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have the desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations were performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading are addressed for the case of highly oriented pyrolytic graphite.

  9. Poly(vinyl acetate)/clay nanocomposite materials for organic thin film transistor application.

    PubMed

    Park, B J; Sung, J H; Park, J H; Choi, J S; Choi, H J

    2008-05-01

    Nanocomposite materials of poly(vinyl acetate) (PVAc) and organoclay were fabricated, in order to be utilized as dielectric materials of the organic thin film transistor (OTFT). Spin coating condition of the nanocomposite solution was examined considering shear viscosity of the composite materials dissolved in chloroform. Intercalated structure of the PVAc/clay nanocomposites was characterized using both wide-angle X-ray diffraction and TEM. Fracture morphology of the composite film on silicon wafer was also observed by SEM. Dielectric constant (4.15) of the nanocomposite materials shows that the PVAc/clay nanocomposites are applicable for the gate dielectric materials.

  10. Probing Atomic, Electronic, and Optical Structures of Nanoparticle Photocatalysts Using Fast Electrons

    NASA Astrophysics Data System (ADS)

    Liu, Qianlang

    Graphene has attracted great interest in many fields due to its outstanding electronic and chemical properties. Among them, its surface inertness and high thermal stability makes graphene a promising candidate as a protective material for transition metal surfaces. Recent studies show, however, that small molecules, such as O2, CO and H2O, intercalate between a graphene film and a metal substrate at particular temperatures. The intercalation of O2 between graphene and Ru(0001) is studied with 3 keV helium ion scattering and low energy electron diffraction. It is shown that O2 intercalates between the graphene and the Ru(0001) substrate at a temperature of 650 K and does not adsorb onto the graphene surface. Nevertheless, the graphene layer efficiently avoids both intercalation and adsorption of oxygen at room temperature. It is also found that the intercalated oxygen thermally desorbs from the surface after it is heated to 800 K. Such a desorption is not, however, observed for oxygen dissociatively adsorbed on a bare Ru(0001) surface until 1200 K. It is thus inferred that the oxygen intercalated between graphene and Ru(0001) is in a molecular form. In addition, part of the graphene overlayer is etched by a chemical reaction during the thermal desorption of oxygen. The role of the defects on the graphene layer is also studied. Defects are introduced by 50 eV Ar+ sputtering, which creates single vacancies with a quick sputtering or larger open areas of substrate following a prolonged sputtering. It is found that oxygen molecularly adsorbs at single carbon vacancies even at room temperature, which does not occur on a complete graphene layer. Following post-annealing to 600 K, it is observed that such adsorbed oxygen diffuses to become intercalated between graphene and Ru(0001). Oxygen dissociatively adsorbs in the large open areas of exposed substrate by forming strong oxygen-metal bonds. It is also found that the presence of defects facilitates the intercalation of oxygen and improves the etching efficiency of the graphene during the desorption of oxygen.

  11. Electronic structure ‘engineering’ in the development of materials for Li-ion and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Molenda, Janina

    2017-03-01

    Transition metal oxides with a general formula A x M a O b (A  =  Li, Na, M  =  transition metal) constitute a group of potential electrode materials for a new generation of alkaline batteries. This application is related to the fact that these compounds can reversibly intercalate high amounts of alkaline ions (1 or more moles per mole of M a O b ) already at room temperature, without significant changes in their crystallographic structure. The author of this work basing on her own investigations of A x M a O b (A  =  Li, Na; M  =  3d, 4d, 5d) has demonstrated that the electronic structure of these materials plays an important role in the intercalation process. Electronic model of intercalation process is presented. Author’s studies show that electronic structure ‘engineering’ is an excellent method of controlling properties of the cathode materials for Li-ion and Na-ion batteries, changing their unfavorable character of the discharge curve, from step-like to monotonic, through modification and control density of states function of a cathode material. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  12. Synthesis of protocatechuic acid-zinc/aluminium-layered double hydroxide nanocomposite as an anticancer nanodelivery system

    NASA Astrophysics Data System (ADS)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Gani, Shafinaz Abd; Fakurazi, Sharida; Zainal, Zulkarnain

    2015-01-01

    Protocatechuic acid, an active anticancer agent, has been intercalated into Zn/Al-layered double hydroxide at Zn/Al=2) using two different preparation methods, co-precipitation and ion-exchange, which are labelled as PZAE and PZAC, respectively. The release of protocatechuate from the nanocomposites occurred in a controlled manner and was fitted satisfactorily to pseudo-second order kinetics. The basal spacing of the resulting nanocomposites PZAE and PZAC was 10.2 and 11.0 Å, respectively, indicating successful intercalation of protocatechuate anions into the interlayer galleries of Zn/Al-NO3-LDH in a monolayer arrangement with angles of 24 and 33° from the z-axis in PZAE and PZAC, respectively. The formation of nanocomposites was further confirmed by a Fourier transform infrared study. Thermogravimetric and differential thermogravimetric analyses indicated that the thermal stability of the intercalated protocatechuic acid was significantly enhanced compared to its free protocatechuic acid, and the drug content in the nanocomposites was estimated to be approximately 32.6% in PZAE and 29.2% in PZAC. Both PZAE and PZAC nanocomposites inhibit the growth of human cervical, liver and colorectal cancer cell lines and exhibit no toxic effects towards normal fibroblast 3T3 cell after 72 h of treatment.

  13. Electrochemical lithium intercalation into Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Shimono, Takahiro; Kobayashi, Wataru; Nitani, Hiroaki; Kumai, Reiji; Moritomo, Yutaka

    2013-04-01

    We have prepared Li-intercalated LixBi2Sr2CaCu2O8+δ (x =0-2.0) samples by using electrochemical method, and performed synchrotron x-ray diffraction, Cu K-edge x-ray absorption fine structure (XAFS), and magnetic susceptibility measurements. With increasing x, a- and c-lattice parameters monotonically increase, which shows lithium intercalation into Bi2Sr2CaCu2O8+δ. Accompanied by the lithium insertion, the valence of Cu ion changes from Cu2+/Cu3+ to Cu1+/Cu2+ to realize charge neutrality. This change of the valence was detected by Cu K-edge XAFS measurement. A clear increase of spectral weight that corresponds to 1s→ 4pπ(3d10L) was observed at around 8982 eV with x. The superconducting (SC) transition temperature TC significantly changes from 74 K for x = 0 to 90 K for x = 0.8, which is attributed to modified density of states by the decrease of hole concentration. A volume fraction of the superconducting phase was 1-2 % for x >= 0.6 implying phase separation where Li-rich non SC phase and Li-poor SC phase coexist. Such a phase separation is universally seen in electrode active materials.

  14. Study of Early Transition Metal Carbides for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Dall'Agnese, Yohan

    An increase in energy and power density is needed to match the growing energy storage demands linked with the development of renewable energy production, and portable electronics. Several energy storage technologies exist including lithium-ion batteries, sodium-ion batteries, fuel cells and supercapacitors. These systems are mutually complementary. For example, supercapacitors can deliver high power densities whereas batteries can be used for high energy density applications. The first objective of this work was to investigate the electrochemical performances of a new family of 2-D materials called MXenes by cyclic voltammetry and galvanostatic charge-discharge measurements and to propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focused on Ti3C 2-based MXenes behavior as electrode materials for supercapacitors in aqueous electrolytes. The charge storage mechanisms in basic and neutral aqueous electrolytes, investigated by X-ray diffraction, were demonstrated to be attributed to cations intercalation between Ti3C2 layers. X-ray photoelectron spectroscopy highlighted the contribution of oxygenated functional groups on surface redox reactions in sulfuric acid. High capacitances were achieved, up to 520 F/cm3 and 325 F/g. Then the electrochemical behaviors of MXenes in sodium-based organic electrolytes were explored. A new hybrid system of sodium-ion capacitor was proposed. It was demonstrated that V2C-based MXene electrodes were suitable to be used as positive electrodes with an operating potential from 1 V to 3.5 V vs. Na+/Na. Continuous intercalation and de-intercalation of sodium ions between the V2C layers during sodiation and desodiation were showed by X-ray diffraction. An asymmetric sodium-ion capacitor full cell was assembled using hard carbon as negative electrode and showed promising results, with a capacity of 50 mAh/g. The last part was focused on the study of MXene electrodes for supercapacitors in an organic electrolyte; 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) in acetonitrile. High volumetric capacitances, up to 245 F/cm 3, were achieved by using carbon nanotubes as an additive to improve ion accessibility to Ti3C2 layers. The redox intercalation of large EMI+ cations between Ti3C2 layers at -0.4 V vs. Ag was observed by X-ray diffraction.

  15. Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant

    DOEpatents

    Gillaspie, Dane T; Weir, Douglas G

    2014-04-01

    An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

  16. Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant

    DOEpatents

    Gillaspie, Dane T.; Weir, Douglas Glenn John

    2017-05-16

    An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

  17. Preparation and properties of recycled HDPE/clay hybrids

    Treesearch

    Yong Lei; Qinglin Wu; Craig M. Clemons

    2007-01-01

    Hybrids based on recycled high density polyethylene (RHDPE) and organic clay were made by melt compounding. The influence of blending method, compatibilizers, and clay content on clay intercalation and exfoliation, RHDPE crystallization behavior, and the mechanical properties of RHDPE/clay hybrids were investigated. Both maleated polyethylene (MAPE) and titanate could...

  18. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi{sub 2}Se{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabishchenkova, A. G., E-mail: ryaange@gmail.com; Otrokov, M. M.; Kuznetsov, V. M.

    2015-09-15

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi{sub 2}Se{sub 3} has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results havemore » been discussed in the context of existing experimental data.« less

  19. Effect of lightning strike on bromine intercalated graphite fiber/epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Brink, Norman O.

    1991-01-01

    Laminar composites were fabricated from pristine and bromine intercalated pitch based graphite fibers. It was found that laminar composites could be fabricated using either pristine or intercalated graphite fibers using standard fabrication techniques. The intercalated graphite fiber composites had electrical properties which were markedly improved over both the corresponding pitch based and polyacrylonitrile (PAN) based composites. Despite composites resistivities more than an order of magnitude lower for pitch based fiber composites, the lightning strike resistance was poorer than that of the Pan based fiber composites. This leads to the conclusion that the mechanical properties of the pitch fibers are more important than electrical or thermal properties in determining the lightning strike resistance. Based on indicated lightning strike tolerance for high elongation to failure materials, the use of vapor grown, rather than pitch based graphite fibers appears promising.

  20. Graphite fiber intercalation: Basic properties of copper chloride intercalated fibers

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Miller, J. D.

    1986-01-01

    In situ resistance measurements were used to follow the intercalation of copper chloride in pitch-based fibers. Subsequent single fiber resistivity measurements reveal a large range of resistivities, from 13 to 160 micro-ohms cm. Additional density measurements reveal a bimodal distribution of mass densities. The dense fibers have lower resistivities and correspond to the stage III compound identified by X-ray diffraction. Neither resistivity nor density correlate with diameter. Both energy dispersive spectroscopy and mass density data suggest that excess chlorine resides in the intercalated fiber, resulting in a stoichiometry of C4.9n CuCl2.5 (where n is the stage number) for the denser fibers. Finally, thermogravimetric analysis shows a 33 percent loss in mass upon heating to 700C. This loss in mass is attributed to loss of both chlorine and carbon.

  1. Stable loop in the crystal structure of the intercalated four-stranded cytosine-rich metazoan telomere

    NASA Technical Reports Server (NTRS)

    Kang, C.; Berger, I.; Lockshin, C.; Ratliff, R.; Moyzis, R.; Rich, A.

    1995-01-01

    In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.

  2. A ruthenium dimer complex with a flexible linker slowly threads between DNA bases in two distinct steps.

    PubMed

    Bahira, Meriem; McCauley, Micah J; Almaqwashi, Ali A; Lincoln, Per; Westerlund, Fredrik; Rouzina, Ioulia; Williams, Mark C

    2015-10-15

    Several multi-component DNA intercalating small molecules have been designed around ruthenium-based intercalating monomers to optimize DNA binding properties for therapeutic use. Here we probe the DNA binding ligand [μ-C4(cpdppz)2(phen)4Ru2](4+), which consists of two Ru(phen)2dppz(2+) moieties joined by a flexible linker. To quantify ligand binding, double-stranded DNA is stretched with optical tweezers and exposed to ligand under constant applied force. In contrast to other bis-intercalators, we find that ligand association is described by a two-step process, which consists of fast bimolecular intercalation of the first dppz moiety followed by ∼10-fold slower intercalation of the second dppz moiety. The second step is rate-limited by the requirement for a DNA-ligand conformational change that allows the flexible linker to pass through the DNA duplex. Based on our measured force-dependent binding rates and ligand-induced DNA elongation measurements, we are able to map out the energy landscape and structural dynamics for both ligand binding steps. In addition, we find that at zero force the overall binding process involves fast association (∼10 s), slow dissociation (∼300 s), and very high affinity (Kd ∼10 nM). The methodology developed in this work will be useful for studying the mechanism of DNA binding by other multi-step intercalating ligands and proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Antiproliferative, DNA intercalation and redox cycling activities of dioxonaphtho[2,3-d]imidazolium analogs of YM155: A structure-activity relationship study.

    PubMed

    Ho, Si-Han Sherman; Sim, Mei-Yi; Yee, Wei-Loong Sherman; Yang, Tianming; Yuen, Shyi-Peng John; Go, Mei-Lin

    2015-11-02

    The anticancer agent YM155 is widely investigated as a specific survivin suppressant. More recently, YM155 was found to induce DNA damage and this has raised doubts as to whether survivin is its primary target. In an effort to assess the contribution of DNA damage to the anticancer activity of YM155, several analogs were prepared and evaluated for antiproliferative activity on malignant cells, participation in DNA intercalation and free radical generation by redox cycling. The intact positively charged scaffold was found to be essential for antiproliferative activity and intercalation but was less critical for redox cycling where the minimal requirement was a pared down bicyclic quinone. Side chain requirements at the N(1) and N(3) positions of the scaffold were more alike for redox cycling and intercalation than antiproliferative activity, underscoring yet again, the limited structural overlaps for these activities. Furthermore, antiproliferative activities were poorly correlated to DNA intercalation and redox cycling. Potent antiproliferative activity (IC50 9-23 nM), exceeding that of YM155, was found for a minimally substituted methyl analog AB7. Like YM155 and other dioxonaphthoimidazoliums, AB7 was a modest DNA intercalator but with weak redox cycling activity. Thus, the capacity of this scaffold to inflict direct DNA damage leading to cell death may not be significant and YM155 should not be routinely classified as a DNA damaging agent. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy

    PubMed Central

    Díaz, Agustín; González, Millie L.; Pérez, Riviam J.; David, Amanda; Mukherjee, Atashi; Báez, Adriana; Clearfield, Abraham

    2014-01-01

    We report the use of zirconium phosphate nanoplatelets (ZrP) for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct-ion exchange and was tested in-vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is produced with an interlayer distance of 9.3 Å. The in-vitro release profile of the intercalated drug by pH stimulus shows that at low pH under lysosomal conditions the platinum complex is released with simultaneous hydrolysis of the zirconium phosphate material, while at higher pH the complex is not released. Experiments with the MCF-7 cell line show that cisPt@ZrP reduced the cell viability up to 40%. The cisPt@ZrP intercalation product is envisioned as a future nanotherapy agent for cancer. Taking advantage of the shape and sizes of the ZrP particles and controlled release of the drug at low pH, it is intended to exploit the enhanced permeability and retention effect of tumors, as well as their intrinsic acidity, for the destruction of malignant cells. PMID:24072038

  5. Hydration of nucleic acid fragments: comparison of theory and experiment for high-resolution crystal structures of RNA, DNA, and DNA-drug complexes.

    PubMed Central

    Hummer, G; García, A E; Soumpasis, D M

    1995-01-01

    A computationally efficient method to describe the organization of water around solvated biomolecules is presented. It is based on a statistical mechanical expression for the water-density distribution in terms of particle correlation functions. The method is applied to analyze the hydration of small nucleic acid molecules in the crystal environment, for which high-resolution x-ray crystal structures have been reported. Results for RNA [r(ApU).r(ApU)] and DNA [d(CpG).d(CpG) in Z form and with parallel strand orientation] and for DNA-drug complexes [d(CpG).d(CpG) with the drug proflavine intercalated] are described. A detailed comparison of theoretical and experimental data shows positional agreement for the experimentally observed water sites. The presented method can be used for refinement of the water structure in x-ray crystallography, hydration analysis of nuclear magnetic resonance structures, and theoretical modeling of biological macromolecules such as molecular docking studies. The speed of the computations allows hydration analyses of molecules of almost arbitrary size (tRNA, protein-nucleic acid complexes, etc.) in the crystal environment and in aqueous solution. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 6 FIGURE 9 FIGURE 12 FIGURE 13 PMID:7542034

  6. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida

    2013-01-01

    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours. PMID:24255593

  7. Probing the recognition surface of a DNA triplex: binding studies with intercalator-neomycin conjugates.

    PubMed

    Xue, Liang; Xi, Hongjuan; Kumar, Sunil; Gray, David; Davis, Erik; Hamilton, Paris; Skriba, Michael; Arya, Dev P

    2010-07-06

    Thermodynamic studies on the interactions between intercalator-neomycin conjugates and a DNA polynucleotide triplex [poly(dA).2poly(dT)] were conducted. To draw a complete picture of such interactions, naphthalene diimide-neomycin (3) and anthraquinone-neomycin (4) conjugates were synthesized and used together with two other analogues, previously synthesized pyrene-neomycin (1) and BQQ-neomycin (2) conjugates, in our investigations. A combination of experiments, including UV denaturation, circular dichroism (CD) titration, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC), revealed that all four conjugates (1-4) stabilized poly(dA).2poly(dT) much more than its parent compound, neomycin. UV melting experiments clearly showed that the temperature (T(m3-->2)) at which poly(dA).2poly(dT) dissociated into poly(dA).poly(dT) and poly(dT) increased dramatically (>12 degrees C) in the presence of intercalator-neomycin conjugates (1-4) even at a very low concentration (2 muM). In contrast to intercalator-neomycin conjugates, the increment of T(m3-->2) of poly(dA).2poly(dT) induced by neomycin was negligible under the same conditions. The binding preference of intercalator-neomycin conjugates (1-4) to poly(dA).2poly(dT) was also confirmed by competition dialysis and a fluorescent intercalator displacement assay. Circular dichroism titration studies revealed that compounds 1-4 had slightly larger binding site size ( approximately 7-7.5) with poly(dA).2poly(dT) as compared to neomycin ( approximately 6.5). The thermodynamic parameters of these intercalator-neomycin conjugates with poly(dA).2poly(dT) were derived from an integrated van't Hoff equation using the T(m3-->2) values, the binding site size numbers, and other parameters obtained from DSC and ITC. The binding affinity of all tested ligands with poly(dA).2poly(dT) increased in the following order: neomycin < 1 < 3 < 4 < 2. Among them, the binding constant [(2.7 +/- 0.3) x 10(8) M(-1)] of 2 with poly(dA).2poly(dT) was the highest, almost 1000-fold greater than that of neomycin. The binding of compounds 1-4 with poly(dA).2poly(dT) was mostly enthalpy-driven and gave negative DeltaC(p) values. The results described here suggest that the binding affinity of intercalator-neomycin conjugates for poly(dA).2poly(dT) increases as a function of the surface area of the intercalator moiety.

  8. Graphite intercalation with fluoroanions by chemical and electrochemical methods

    NASA Astrophysics Data System (ADS)

    Ozmen-Monkul, Bahar

    New acceptor-type graphite intercalation compounds (GICs) containing perfluoroalkyl anions have been synthesized by using both chemical and electrochemical methods and characterized by elemental and thermogravimetric analyses. Investigation into these graphite intercalation compounds can provide novel materials and a detailed understanding of their properties. GICs of composition Cx[FB(C2F 5)3]·deltaF are prepared for the first time by the intercalation of fluoro-tris(pentafluoroethyl)borate anion, [FB(C2F 5)3]-, under ambient conditions in aqueous (48%) hydrofluoric acid containing the oxidant K2[MnF6]. Powder-XRD data indicate that products are pure stage 2 and physical mixture of stage 2 and stage 3 after 1 h to 20 h reaction times. The calculated basal repeat distance, Ic, is 1.20 nm for stage 2 and 1.54-1.56 nm for stage 3 GICs, corresponding to gallery heights of di = 0.86-0.89 nm. In addition, stage 2 GIC of C x[FB(C2F5)3]·deltaCH 3NO2 having di = 0.84 nm is prepared by electrochemical oxidation of graphite in a nitromethane electrolyte. The elemental analyses of these complex GICs required that a new sample digestion protocol be developed. After digestion, the fluoride amounts in these GIC samples were analyzed by using ion-selective fluoride combination electrode. The method developed is able to provide fluoride anion content in GICs without interference from the decomposition products of [FB(C 2F5)3]- anion. For the boron analyses the same digestion procedure above is used and the B contents were determined by ICP-AES. For Cx[FB(C2F 5)3]·deltaF, both compositional parameters x and delta are obtained from the results of elemental B and F analyses. For the chemically prepared GICs at 1 h to 20 h, calculated x values were in the range of 51-56 and the calculated delta values increased with reaction time from approx. 0-2. Combining B analysis and TGA mass loss gives a composition of x = 44 and delta = 0.37 for the electrochemically prepared GIC of Cx[FB(C2F5)3]·deltaCH 3NO2. Energy minimized structure for the isolated borate anion and powder XRD data show that the borate anions adopt a "lying-down" orientation where the long axes of [FB(C2F5)3] - intercalate anions are parallel to the encasing graphene sheets. The same electrochemical synthesis strategy is also used for the preparation of a new acceptor-type GIC containing the cyclo-hexafluoropropane-1,3-bis(sulfonyl)amide anion, [CF2(CF2SO2)2N] -. The gallery heights of 0.85-0.86 nm are determined by powder X-ray diffraction for stage 2 and 3 products. These GICs are obtained by electrochemical oxidation of graphite in a nitromethane electrolyte. GICs containing the linear anion, [(CF3SO2)2N]- are also prepared in order to compare the gallery heights and the electron charge distributions that helps to understand the GIC stabilities within the graphene sheets. The compositions of GICs containing [CF2(CF 2SO2)2N]- are determined by thermogravimetric, fluorine and nitrogen elemental analyses. GICs of composition Cx[(C2F 5)3PF3] are prepared for the first time by the intercalation of tris(pentafluoroethyl)trifluorophosphate (FAP) anion, [(C 2F5)3PF3]- by electrochemical oxidation of graphite. Powder-XRD data indicate that products are of stages 2-4 with gallery heights of 0.82-0.86 nm. These GICs are characterized by the same methods using TGA and F ion-selective probe analyses.

  9. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    NASA Astrophysics Data System (ADS)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  10. Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation

    NASA Astrophysics Data System (ADS)

    Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B.

    2013-08-01

    The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.

  11. Chemical Intercalation of Topological Insulator Grid Nanostructures for High-Performance Transparent Electrodes.

    PubMed

    Guo, Yunfan; Zhou, Jinyuan; Liu, Yujing; Zhou, Xu; Yao, Fengrui; Tan, Congwei; Wu, Jinxiong; Lin, Li; Liu, Kaihui; Liu, Zhongfan; Peng, Hailin

    2017-11-01

    2D layered nanomaterials with strong covalent bonding within layers and weak van der Waals' interactions between layers have attracted tremendous interest in recent years. Layered Bi 2 Se 3 is a representative topological insulator material in this family, which holds promise for exploration of the fundamental physics and practical applications such as transparent electrode. Here, a simultaneous enhancement of optical transmittancy and electrical conductivity in Bi 2 Se 3 grid electrodes by copper-atom intercalation is presented. These Cu-intercalated 2D Bi 2 Se 3 electrodes exhibit high uniformity over large area and excellent stabilities to environmental perturbations, such as UV light, thermal fluctuation, and mechanical distortion. Remarkably, by intercalating a high density of copper atoms, the electrical and optical performance of Bi 2 Se 3 grid electrodes is greatly improved from 900 Ω sq -1 , 68% to 300 Ω sq -1 , 82% in the visible range; with better performance of 300 Ω sq -1 , 91% achieved in the near-infrared region. These unique properties of Cu-intercalated topological insulator grid nanostructures may boost their potential applications in high-performance optoelectronics, especially for infrared optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Use of anionic clays for photoprotection and sunscreen photostability: Hydrotalcites and phenylbenzimidazole sulfonic acid

    NASA Astrophysics Data System (ADS)

    Perioli, Luana; Ambrogi, Valeria; Rossi, Carlo; Latterini, Loredana; Nocchetti, Morena; Costantino, Umberto

    2006-05-01

    Layered double hydroxides of hydrotalcite (HTlc) type have many applications as matrices in pharmaceutical and cosmetic fields when intercalated with active species in anionic form. The aim of this work was to intercalate 2-phenyl-1H-benzimidazole-5-sulfonic acid (Eusolex 232) (EUS) as sunscreen molecule into hydrotalcites in order to obtain the sunscreen stabilization, the reduction of its photodegradation and the elimination of close contact between skin and filter. Hydrotalcites MgAl and ZnAl were used as hosts and the intercalation products obtained were characterized by TG, RX and DSC. They were also submitted to spectrophotometric assays in order to study the matrix influence on sunlight protection and on sunscreen photostability. These experiments showed that both MgAl and ZnAl HTlc intercalation products maintained the sunscreen properties and eusolex photodegradation was reduced. The in vitro EUS release from both formulations was almost negligible when compared with formulations containing free EUS. The EUS intercalation in HTlc and the respective formulations provided advantages in the maintenance of photoprotection efficacy, filter photostabilization and avoidance of a close contact between skin and filter, with consequent elimination of allergy problems and photocross reactions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which wasmore » actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.« less

  14. Capacitive Sensing of Intercalated H2O Molecules Using Graphene.

    PubMed

    Olson, Eric J; Ma, Rui; Sun, Tao; Ebrish, Mona A; Haratipour, Nazila; Min, Kyoungmin; Aluru, Narayana R; Koester, Steven J

    2015-11-25

    Understanding the interactions of ambient molecules with graphene and adjacent dielectrics is of fundamental importance for a range of graphene-based devices, particularly sensors, where such interactions could influence the operation of the device. It is well-known that water can be trapped underneath graphene and its host substrate; however, the electrical effect of water beneath graphene and the dynamics of how the interfacial water changes with different ambient conditions has not been quantified. Here, using a metal-oxide-graphene variable-capacitor (varactor) structure, we show that graphene can be used to capacitively sense the intercalation of water between graphene and HfO2 and that this process is reversible on a fast time scale. Atomic force microscopy is used to confirm the intercalation and quantify the displacement of graphene as a function of humidity. Density functional theory simulations are used to quantify the displacement of graphene induced by intercalated water and also explain the observed Dirac point shifts as being due to the combined effect of water and oxygen on the carrier concentration in the graphene. Finally, molecular dynamics simulations indicate that a likely mechanism for the intercalation involves adsorption and lateral diffusion of water molecules beneath the graphene.

  15. Two-dimensional triangular lattice and its application to lithium-intercalated layered compounds

    NASA Astrophysics Data System (ADS)

    Decerqueira, R. O.

    1982-08-01

    Good rechargeable batteries are being searched for use in electric vehicles and in energy storage during off-peak consumption periods and from solar sources. The interest in lithium intercalation compounds has been recently enhanced by the search for such batteries. The process of intercalation of lithium in several transition metal dichalcogenides can provide an emf of several volts. The progress achieved in the last decade in the investigation of these intercalates has been facilitated by the availability of the dichalcogenides as single crystals and by their chemical stability. The transition-metal dichalcogenides and their Li-intercalates are studied, with emphasis on the Li/su xTa/sub yTi/sub l-y/S2 series. The interactions between the Li atoms and the applicability of a lattice gas model to the problem of ordering of these atoms is discussed. A formulation is presented of the cluster-variation aproximation to the lattice gas problem. The single-site and the nearest-neighbor triangle basic clusters are considered as models for Li/sub x TiS2. Also a theory is presented for the effects of a random distribution of different species of host atoms, as in Ta/sub y/Ti/sub l-y/S2.

  16. Superconductivity and magnetism in iron sulfides intercalated by metal hydroxides† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05268a Click here for additional data file.

    PubMed Central

    Zhou, Xiuquan; Eckberg, Christopher; Wilfong, Brandon; Liou, Sz-Chian; Vivanco, Hector K.; Paglione, Johnpierre

    2017-01-01

    Inspired by naturally occurring sulfide minerals, we present a new family of iron-based superconductors. A metastable form of FeS known as the mineral mackinawite forms two-dimensional sheets that can be readily intercalated by various cationic guest species. Under hydrothermal conditions using alkali metal hydroxides, we prepare three different cation and metal hydroxide-intercalated FeS phases including (Li1–xFexOH)FeS, [(Na1–xFex)(OH)2]FeS, and KxFe2–yS2. Upon successful intercalation of the FeS layer, the superconducting critical temperature T c of mackinawite is enhanced from 5 K to 8 K for the (Li1–xFexOH)δ+ intercalate. Layered heterostructures of [(Na1–xFex)(OH)2]FeS resemble the natural mineral tochilinite, which contains an iron square lattice interleaved with a hexagonal hydroxide lattice. Whilst heterostructured [(Na1–xFex)(OH)2]FeS displays long-range magnetic ordering near 15 K, KxFe2–yS2 displays short range antiferromagnetism. PMID:28580110

  17. Photoinduced electron transfer from nucleotides to DNA intercalating viologens. A study by laser-flash photolysis and spectroelectrochemistry.

    PubMed

    Knapp, C; Lecomte, J P; Mesmaeker, A K; Orellana, G

    1996-10-01

    Fluorescent DNA-binding N,N'-dialkyl 6-(2-pyridinium)phenanthridinium dications (where dialkyl stands for -(CH2)2-or-(CH2)3-, abbreviated dq2pyp and dq3pyp, respectively) associate with GMP (guanosine-5'-monophosphate) in 0.1-mol l-1, pH 3.5-5.5, phosphate buffer solution to yield 1:1 and 1:2 non-emissive complexes, the formation constants of which range from 197-63 and 19-11 l mol-1, respectively. In addition to the strong static quenching, dynamic deactivation of their excited state occurs at diffusion-controlled rate ki = 5.2 x 10(9) l mol-1 s-1). Illumination of the GMP-containing solutions of the dyes with a 355 nm laser pulse produces a transient, with strong absorbance at 510 and 720 nm for dq2pyp, and 420 and 560 nm for dq3pyp. An identical transient is produced in the presence of ascorbic acid instead of the mononucleotide. By comparison to the electrochemically generated absorption spectra of the monoreduced dyes, the photogenerated transients have been assigned unequivocally to their corresponding radical-cations, formed by electron transfer to the anglet excited state. The back redox reaction between the oxidized quencher and dq2pyp+ proceeds at a rate of 1-2 x 10(9) l mol-1 s-1. The same transient has been observed also for the DNA intercalated viologens; this result, together with the little ability of these dyes to sensitize the formation of singlet dioxygen or to produce superoxide anion, demonstrate that their DNA photocleavaging activity is initiated by an efficient light-induced electron transfer from the nucleobases.

  18. Coverage dependent work function of graphene on a Cu(111) substrate with intercalated alkali metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Brandon G.; Russakoff, Arthur; Varga, Kalman

    2015-05-26

    Using first-principles calculations, it is shown that the work function of graphene on copper can be adjusted by varying the concentration of intercalated alkali metals. Using density functional theory, we calculate the modulation of work function when Li, Na, or K are intercalated between graphene and a Cu(111) surface. Furthermore, the physical origins of the change in work function are explained in terms of phenomenological models accounting for the formation and depolarization of interfacial dipoles and the shift in the Fermi-level induced via charge transfer.

  19. Stereochemical model for proflavin intercalation in A-DNA.

    PubMed Central

    Alden, C J; Arnott, S

    1977-01-01

    Linked-atom molecular modelling was employed to determine the steric and torsional requirements for intercalation of proflavine into a double-stranded region of DNA compatible with adjacent regions of cohelical A-DNA. The optimum intercalation conformation is characterized by the dihedral angles xi and psi becoming trans, with all sugars retaining the characteristics C3'-endo pucker. This extended conformation results in virtually no helical unwinding, suggesting it may be an appropriate model for an intercalative intermediary in mutagenesis by virtue of its similarity to standard helical DNA. PMID:593890

  20. STM/STS studies of Ca-intercalated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Shimizu, Ryota; Sugawara, Katsuaki; Kanetani, Kohei; Iwaya, Katsuya; Sato, Takafumi; Takahashi, Takashi; Hitosugi, Taro

    2013-03-01

    We have performed low temperature scanning tunneling microscopy/spectroscopy (STM/STS) measurements on a two-dimensional Ca-intercalated bilayer graphene epitaxially grown on a 6H-SiC(0001) substrate. The STM topographic images clearly resolve each intercalated Ca atom with graphene-based honeycomb lattice. Furthermore, we found a clear ×2.5 modulation in the topography, implying charge density wave or Moiré pattern originated from the interaction with the SiC substrate. Comparison with ARPES measurements provided us of further insight into the Fermi surface deduced from STS.

  1. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    PubMed

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assary, Rajeev S.; Curtiss, Larry A.; Moore, Jeffrey S.

    2014-06-05

    The Li-S battery (secondary cell or redox flow) technology is a promising future alternative to the present lithium intercalation-based energy storage and, therefore, a molecular level understanding of the chemical processes and properties such as stability of intermediates, reactivity of polysulfides and reactivity towards the non-aqueous electrolytes in the Li-S batteries is of great interest. In this paper, quantum chemical methods (G4MP2, MP2, and B3LYP) were utilized to compute reduction potentials of lithium polysulfides and polysulfide molecular clusters, energetics of disproportionation and association reactions of likely intermediates, and their reactions with ether-based electrolytes. Based on the computed reaction energetics inmore » solution, a probable mechanism during the discharge process for polysulfide anions and lithium polysulfides in solution is proposed and likely intermediates such as S42-,S32-, S22-, and S31- radical were identified. Additionally, the stability and reactivity of propylene carbonate and tetraglyme solvent molecules were assessed against the above-mentioned intermediates and other reactive species by computing the reaction energetics required to initiate the solvent decomposition reactions in solution. Calculations suggest that the propylene carbonate molecule is unstable against the polysulfide anions such as S22-, S32-, and S42- (ΔH† < 0.8 eV) and highly reactive towards Li2S2 and Li2S3. Even though the tetraglyme solvent molecule exhibits increased stability towards polysulfide anions compared to propylene carbonate, this molecule too is vulnerable to nucleophilic attack from Li2S2 and Li2S3 species in solutions. Hence, a long- term stability of the ether molecules is unlikely if high concentration of these reactive intermediates present in the Li-S energy storage systems.« less

  3. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CO2: Implications for Caprock Integrity

    NASA Astrophysics Data System (ADS)

    Loring, J. S.; Chen, J.; Thompson, C.; Schaef, T.; Miller, Q. R.; Martin, P. F.; Ilton, E. S.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2012-12-01

    The effectiveness of geologic sequestration as an enterprise for CO2 storage depends partly on the reactivity of supercritical CO2 (scCO2) with caprock minerals. Injection of scCO2 will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Caprock formations have high concentrations of clay minerals, including expandable montmorillonites. Water-bearing scCO2 is highly reactive and capable of hydrating or dehydrating clays, possibly leading to porosity and permeability changes that directly impact caprock performance. Dehydration will cause montmorillonite clay minerals in caprocks to contract, thereby decreasing solid volume and possibly increasing caprock permeability and porosity. On the other hand, water intercalation will cause these clays to expand, thereby increasing solid volume and possibly leading to self-sealing of caprock fractures. Pacific Northwest National Laboratory's Carbon Sequestration Initiative is developing capabilities for studying wet scCO2-mineral reactions in situ. Here, we introduce novel in situ infrared (IR) spectroscopic instrumentation that enables quantitative titrations of reactant minerals with water in scCO2. Results are presented for the infrared spectroscopic titrations of Na-, Ca-, and Mg-saturated Wyoming betonites with water over concentrations ranging from zero to scCO2 saturated. These experiments were carried out at 50°C and 90 bar. Transmission IR spectroscopy was used to measure concentrations of water dissolved in the scCO2 or intercalated into the clays. The titration curves evaluated from the transmission-IR data are compared between the three types of clays to assess the effects of the cation on water partitioning. Single-reflection attenuated total reflection (ATR) IR spectroscopy was used to collect the spectrum of the clays as they hydrate at every total water concentration during the titration. Clay hydration is evidenced by increases in absorbance of the OH stretching and HOH bending modes of the intercalated waters. The ATR-IR data also indicate that CO2 is intercalated in the clay. The asymmetric stretching band of the CO2 molecules that are intercalated in the clay is narrower than that stretching band of bulk scCO2, which indicates that the spectral contribution from rotational fine structure is minimal and the intercalated CO2 is rotationally constrained. A chemometrics analysis of the complete set of ATR-IR spectra spanning the range of total water concentrations covered in the titration finds that there are at least two types of intercalated waters, two types of intercalated CO2 molecules, and the concentrations of these intercalated waters and CO2 molecules are correlated. These quantitative data, when coupled with in situ XRD results that predict interlayer spacing and clay volume, demonstrate that water and CO2 intercalation processes in expandable montmorillonite clays could lead to porosity and permeability changes that directly impact caprock performance.

  4. Probing the role of intercalating protein sidechains for kink formation in DNA

    PubMed Central

    Sandmann, Achim

    2018-01-01

    Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD) simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP) and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP), one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d) each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future. PMID:29432448

  5. Probing the role of intercalating protein sidechains for kink formation in DNA.

    PubMed

    Sandmann, Achim; Sticht, Heinrich

    2018-01-01

    Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD) simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP) and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP), one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d) each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future.

  6. In situ oligomerization of 2-(thiophen-3-yl)acetate intercalated into Zn{sub 2}Al layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronto, Jairo, E-mail: jairotronto@ufv.br; Pinto, Frederico G.; Costa, Liovando M. da

    2015-01-15

    A layered double hydroxide (LDH) with cation composition Zn{sub 2}Al was intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers. To achieve in situ polymerization and/or oligomerization of the intercalated monomers, soft thermal treatments were carried out, and subsequent hybrid LDH materials were analyzed by means of several characterization techniques using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), {sup 13}C CP–MAS nuclear magnetic resonance (NMR), electron spin resonance (EPR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy (ICP–OES), and elemental analysis. PXRD analysis suggested that the intercalated monomers formed a bilayer. Thermalmore » treatment of the hybrid LDH assembly above 120 °C provokes partially the breakdown of the layered structure, generating the phase zincite. EPR results indicated that vicinal monomers (oligomerization) were bound to each other after hydrothermal or thermal treatment, leading to a polaron response characteristic of electron conductivity localized on a restricted number of thiophene-based monomer segments. Localized unpaired electrons exist in the material and interact with the {sup 27}Al nuclei of the LDH layers by superhyperfine coupling. These unpaired electrons also interact with the surface of ZnO (O{sup 2−} vacancies), formed during the thermal treatments. - Graphical abstract: We synthesized a layered double hydroxide (LDH) with cation composition Zn{sub 2}Al, intercalated with 2-(thiophen-3-yl)acetate (3-TA) monomers, by coprecipitation at constant pH. We thermally treated the material, to achieve in situ polymerization and/or oligomerization of the intercalated monomers. - Highlights: • A Zn{sub 2}Al–LDH was intercalated with 2-(thiophen-3-yl)acetate monomers. • To achieve in situ oligomerization of the monomers, thermal treatments were made. • Thermal treatment above 120 °C causes partially breakdown of the LDH structure. • ESR results indicated a polaron response characteristic of electron conductivity.« less

  7. Controlling the actuation properties of MXene paper electrodes upon cation intercalation

    DOE PAGES

    Come, Jeremy E.; Black, Jennifer M.; Naguib, Michael; ...

    2015-08-05

    Atomic force microscopy was used to monitor the macroscopic deformation in a delaminated Ti₃C₂ paper electrode in-situ, during charge/discharge in a variety of aqueous electrolytes to examine the effect of the cation intercalation on the electrochemical behavior and mechanical response. The results show a strong dependence of the electrode deformation on cation size and charge. The electrode undergoes a large contraction during Li⁺, Na⁺ or Mg²⁺ intercalation, differentiating the Ti₃C₂ paper from conventional electrodes where redox intercalation of ions (e.g. Li⁺) into the bulk phase (e.g. graphite, silicon) results in volumetric expansion. This feature may explain the excellent rate performancemore » and cyclability reported for MXenes. We also demonstrated that the variation of the electromechanical contraction can be easily adjusted by electrolyte exchange, and shows interesting characteristics for the design of actuators based on 2D metal carbides.« less

  8. Alternate-strand triple-helix formation by the 3'-3'-linked oligodeoxynucleotides with the intercalators at the junction point.

    PubMed

    Ueno, Y; Mikawa, M; Hoshika, S; Takeba, M; Kitade, Y; Matsuda, A

    2001-01-01

    3'-3'-Linked oligodeoxynucleotides (ODNs) with the anthraquinonyl group at the junction point were synthesized on a DNA synthesizer using a controlled pore glass (CPG), which has pentaerythritol carrying the intercalator at one of the four hydroxymethyl groups. Stability of the triplexes with the target duplexes was studied by thermal denaturation. The 3'-3'-linked ODNs with the anthraquinonyl group enhanced the thermal stability of the triplexes when compared with those without the intercalator and the unmodified nonamer. The inhibitory activity of the 3'-3'-linked ODNs against the cleavage of the target DNA by the restriction enzyme Hind III was tested. It was found that the 3'-3'-linked ODN with the anthraquinonyl group at the junction point inhibited the cleavage by the enzyme more effectively than the nonamer and the 3'-3'-linked ODN without the intercalator.

  9. Intercalated europium metal in epitaxial graphene on SiC

    DOE PAGES

    Anderson, Nathaniel; Hupalo, Myron; Keavney, David; ...

    2017-10-25

    X-ray magnetic circular dichroism (XMCD) reveals the magnetic properties of intercalated europium metal under graphene on SiC(0001). Intercalation of Eu nanoclusters (average size 2.5 nm) between graphene and SiC substate are formed by deposition of Eu on epitaxially grown graphene that is subsequently annealed at various temperatures while keeping the integrity of the graphene layer. Using sum-rules analysis of the XMCD of Eu M 4,5 edges at T = 15 K, our samples show paramagnetic-like behavior with distinct anomaly at T ≈ 90 K, which may be related to the Nèel transition, T N = 91 K, of bulk metalmore » Eu. Here, we find no evidence of ferromagnetism due to EuO or antiferromagnetism due to Eu 2 O 3, indicating that the graphene layer protects the intercalated metallic Eu against oxidation over months of exposure to atmospheric environment.« less

  10. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    NASA Astrophysics Data System (ADS)

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-10-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  11. Preparation and Characterization of Novel Montmorillonite Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mansa, Rola

    Clay minerals have historically played a consequential role in human health. While the beginnings were rooted in geophagy, a primitive act of consuming earth, the health-related uses of clay minerals have evolved and diversified over time.. As excipients in pharmaceutical formulations, clay minerals can attribute novel properties onto intercalated compounds. Intercalating oxybenzone, a UV filter, within the interlamellar space of montmorillonite is desirable in order to minimize direct contact with skin. Intercalating resveratrol, a compound known for attributing beneficial effects onto human health, may be advantageous since this compound is susceptible to cis-trans isomerisation. The strategy of using alkylammonium--modified clay was undertaken and proved successful for the intercalation of oxybenzone. The field of biopolymer/layered silicate nanocomposites is heavily researched for use in a multitude of applications. Novel montmorillonite nanocomposites were prepared with neutral guar gum and cationic guar gum, using an environmentally friendly process and are fully characterized.

  12. Intercalation of Li Ions into a Graphite Anode Material: Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Abou Hamad, Ibrahim; Novotny, Mark

    2008-03-01

    Large-scale molecular dynamics simulations of the anode half-cell of a lithium-ion battery are presented. The model system is composed of an anode represented by a stack of graphite sheets, an electrolyte of ethylene carbonate and propylene carbonate molecules, and lithium and hexafluorophosphate ions. The simulations are done in the NVT ensemble and at room temperature. One charging scheme explored is normal charging in which intercalation is enhanced by electric charges on the graphitic sheets. The second charging mechanism has an external applied oscillatory electric field of amplitude A and frequency f. The simulations were performed on 2.6 GHz Opteron processors, using 160 processors at a time. Our simulation results show an improvement in the intercalation time of the lithium ions for the second charging mechanism. The dependence of the intercalation time on A and f will be discussed.

  13. Potassium-intercalated H2Pc films: Alkali-induced electronic and geometrical modifications

    NASA Astrophysics Data System (ADS)

    Nilson, K.; Åhlund, J.; Shariati, M.-N.; Schiessling, J.; Palmgren, P.; Brena, B.; Göthelid, E.; Hennies, F.; Huismans, Y.; Evangelista, F.; Rudolf, P.; Göthelid, M.; Mârtensson, N.; Puglia, C.

    2012-07-01

    X-ray spectroscopy studies of potassium intercalated metal-free phthalocyanine multilayers adsorbed on Al(110) have been undertaken. Photoelectron spectroscopy measurements show the presence of several charge states of the molecules upon K intercalation, due to a charge transfer from the alkali. In addition, the comparison of valence band photoemission spectra with the density functional theory calculations of the density of states of the H2Pc- anion indicates a filling of the formerly lowest unoccupied molecular orbital by charge transfer from the alkali. This is further confirmed by x-ray absorption spectroscopy (XAS) studies, which show a decreased density of unoccupied states. XAS measurements in different experimental geometries reveal that the molecules in the pristine film are standing upright on the surface or are only slightly tilted away from the surface normal but upon K intercalation, the molecular orientation is changed in that the tilt angle of the molecules increases.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danial, Wan Hazman, E-mail: hazmandanial@gmail.com; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my; Aziz, Madzlan

    The present work reports the synthesis and characterization of graphene via electrochemical exfoliation of graphite rod using two-electrode system assisted by Sodium Dodecyl Sulphate (SDS) as a surfactant. The electrochemical process was carried out with sequence of intercalation of SDS onto the graphite anode followed by exfoliation of the SDS-intercalated graphite electrode when the anode was treated as cathode. The effect of intercalation potential from 5 V to 9 V and concentration of the SDS surfactant of 0.1 M and 0.01 M were investigated. UV-vis Spectroscopic analysis indicated an increase in the graphene production with higher intercalation potential. Transmission Electron Microscopy (TEM)more » analysis showed a well-ordered hexagonal lattice of graphene image and indicated an angle of 60° between two zigzag directions within the honeycomb crystal lattice. Raman spectroscopy analysis shows the graphitic information effects after the exfoliation process.« less

  15. Intercalation complex of proflavine with DNA: Structure and dynamics by solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Pei; Juang, Chilong; Harbison, G.S.

    1990-07-06

    The structure of the complex formed between the intercalating agent proflavine and fibrous native DNA was studied by one- and two-dimensional high-resolution solid-state nuclear magnetic resonance (NMR). Carbon-13-labeled proflavine was used to show that the drug is stacked with the aromatic ring plane perpendicular to the fiber axis and that it is essentially immobile. Natural abundance carbon-13 NMR of the DNA itself shows that proflavine binding does not change the puckering of the deoxyribose ring. However, phosphorus-31 NMR spectra show profound changes in the orientation of the phosphodiester grouping on proflavine binding, with some of the phosphodiesters tilting almost parallelmore » to the helix axis, and a second set almost perpendicular. The first group to the phosphodiesters probably spans the intercalation sites, whereas the tilting of the second set likely compensates for the unwinding of the DNA by the intercalator.« less

  16. Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Jinlong; Gan, Mengyu; Ma, Li; Zhang, Jun; Xie, Shuang; Xu, Fenfang; Shen, JiYue Zheng Xiaoyu; Yin, Hui

    2015-02-01

    The polymeric nanocomposites (PANI/AD-LDH) were prepared by in situ polymerization based on polyaniline (PANI) and decavanadate-intercalated and γ-aminopropyltriethoxysilane (APTS)-grafted ZnAl-layered double hydroxide (AD-LDH). FTIR and XRD studies confirm the grafting of APTS with decavanadate-intercalated LDH (D-LDH). The extent of grafting (wt%) has also been estimated on the basis of the residue left in nitrogen atmosphere at 800 °C in TGA. SEM and XPS studies show the partial exfoliation of grafted LDH in the PANI matrix and the interfacial interaction between PANI and grafted LDH, respectively. The grafted intercalated layered double hydroxide in reinforcing the properties of the PANI nanocomposites has also been investigated by open circuit potential (OCP), tafel polarization curves (TAF), electrochemical impendence spectroscopy (EIS), salt spray test and TGA-DTA. The experimental results indicate that the PANI/AD-LDH has a higher thermal stability and anticorrosion properties relative to the PANI.

  17. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation.

    PubMed

    Paternò, G M; Skoda, M W A; Dalgliesh, Robert; Cacialli, F; Sakai, V García

    2016-10-04

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  18. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    PubMed Central

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-01-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs). PMID:27698410

  19. Carbon Nanotube Anodes Being Evaluated for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Gennett, Tom; VanderWal, Randy L.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center is evaluating the use of carbon nanotubes as anode materials for thin-film lithium-ion (Li) batteries. The motivation for this work lies in the fact that, in contrast to carbon black, directed structured nanotubes and nanofibers offer a superior intercalation media for Li-ion batteries. Carbon lamellas in carbon blacks are circumferentially oriented and block much of the particle interior, rendering much of the matrix useless as intercalation material. Nanofibers, on the other hand, can be grown so as to provide 100-percent accessibility of the entire carbon structure to intercalation. These tubes can be visualized as "rolled-up" sheets of carbon hexagons (see the following figure). One tube is approximately 1/10,000th the diameter of a human hair. In addition, the high accessibility of the structure confers a high mobility to ion-exchange processes, a fundamental for the batteries to respond dynamically because of intercalation.

  20. Intercalated europium metal in epitaxial graphene on SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Nathaniel; Hupalo, Myron; Keavney, David

    X-ray magnetic circular dichroism (XMCD) reveals the magnetic properties of intercalated europium metal under graphene on SiC(0001). Intercalation of Eu nanoclusters (average size 2.5 nm) between graphene and SiC substate are formed by deposition of Eu on epitaxially grown graphene that is subsequently annealed at various temperatures while keeping the integrity of the graphene layer. Using sum-rules analysis of the XMCD of Eu M 4,5 edges at T = 15 K, our samples show paramagnetic-like behavior with distinct anomaly at T ≈ 90 K, which may be related to the Nèel transition, T N = 91 K, of bulk metalmore » Eu. Here, we find no evidence of ferromagnetism due to EuO or antiferromagnetism due to Eu 2 O 3, indicating that the graphene layer protects the intercalated metallic Eu against oxidation over months of exposure to atmospheric environment.« less

  1. Preparation of C.I. Pigment 52:1 anion-pillared layered double hydroxide and the thermo- and photostability of the resulting intercalated material

    NASA Astrophysics Data System (ADS)

    Guo, Shengchang; Evans, David G.; Li, Dianqing

    2006-05-01

    Intercalation of 2-naphthalenecarboxylic acid, 4-((4-chloro-5-methyl-2-sulfophenyl) azo)-3-hydroxy-, calcium salt (1:1) (C.I. Pigment Red 52:1, also known as New Rubine S6B) into a layered double hydroxide (LDHs) host was carried out using MgAl NO3 LDHs as a precursor in an effort to improve the thermal and photo stability of the pigment. After intercalation, the powder X-ray diffraction (XRD) pattern shows that the basal spacing of the LDHs increased from 0.86 to 1.92 nm. Infrared spectra and TG DTA curves demonstrate that there are supramolecular host guest interactions. It was found that the intercalated material is more stable than the pristine pigment at high temperatures. The pigment anion-pillared LDHs also exhibit much higher photostablity to UV-light than the pristine pigment.

  2. Mechanisms and chemistry of dye adsorption on manganese oxides-modified diatomite.

    PubMed

    Al-Ghouti, Mohammad A; Al-Degs, Yehya S; Khraisheh, Majeda A M; Ahmad, Mohammad N; Allen, Stephen J

    2009-08-01

    The investigations into structural changes which occur during adsorbent modification and the adsorption mechanisms are essential for an effective design of adsorption systems. Manganese oxides were impregnated onto diatomite to form the type known as delta-birnessite. Initial investigations established the effectiveness of manganese oxides-modified diatomite (MOMD) to remove basic and reactive dyes from aqueous solution. The adsorption capacity of MOMD for methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was 320, 419, and 204mg/g, respectively. Various analytical techniques were used to characterise the structure and the mechanisms of the dye adsorption process onto MOMD such as Fourier transform infrared (FTIR), X-ray diffraction (XRD) and atomic absorption spectrometry (A.A.). A small shift to higher values of the d-spacing of dye/MOMD was observed indicating that a small amount of the dye molecules were intercalated in the MOMD structure and other molecules were adsorbed on the external surface of MOMD. Two mechanisms of dye adsorption onto MOMD were proposed; intercalation of the dye in the octahedral layers and adsorption of the dye on the MOMD external surface. Moreover, the results demonstrated that the MOMD structure was changed upon insertion of MB and RY with an obvious decrease in the intensity of the second main peak of the MOMD X-ray pattern.

  3. Effects of methyl substitution on DNA binding enthalpies of enantiopure Ru(phenanthroline)2dipyridophenazine2+ complexes.

    PubMed

    Mårtensson, Anna K F; Lincoln, Per

    2018-04-25

    Isothermal titration calorimetry (ITC) has been utilized to investigate the effect of methyl substituents on the intercalating dppz ligand of the enantiomers of the parent complex Ru(phen)2dppz2+ (phen = 1,10-phenanthroline; dppz = dipyrido[3,2-a:2',3'-c]phenazine) on DNA binding thermodynamics. The methylated complexes (10-methyl-dppz and 11,12-dimethyl-dppz) have large, concentration-dependent, positive heats of dilution, and a strong endothermic background is also apparent in the ITC-profiles from titration of methylated complexes into poly(dAdT)2, which make direct comparison between complexes difficult. By augmenting a simple cooperative binding model with one equilibrium for complex self-aggregation in solution and one equilibrium for complex aggregation on saturated DNA, it was possible to find an excellent global fit to the experimental data with DNA affinity parameters restricted to be equal for all Δ-enantiomers as well as for all Λ-enantiomers. In general, enthalpic differences, compared to the unsubstituted complex, were small and less than 4 kJ mol-1, except for the heat of intercalation of Δ-10-methyl-dppz (-11,6 kJ mol-1) and Λ-11,12-dimethyl-dppz (+4.3 kJ mol-1).

  4. Study of the growth of CeO2 nanoparticles onto titanate nanotubes

    NASA Astrophysics Data System (ADS)

    Marques, Thalles M. F.; Ferreira, Odair P.; da Costa, Jose A. P.; Fujisawa, Kazunori; Terrones, Mauricio; Viana, Bartolomeu C.

    2015-12-01

    We report the study of the growth of CeO2 nanoparticles on the external walls and Ce4+ intercalation within the titanate nanotubes. The materials were fully characterized by multiple techniques, such as: Raman spectroscopy, infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The ion exchange processes in the titanate nanotubes were carried out using different concentrations of Ce4+ in aqueous solution. Our results indicate that the growth of CeO2 nanoparticles grown mediated by the hydrolysis in the colloidal species of Ce and the attachment onto the titanate nanotubes happened and get it strongly anchored to the titanate nanotube surface by a simple electrostatic interaction between the nanoparticles and titanate nanotubes, which can explain the small size and even distribution of nanoparticles on titanate supports. It was demonstrated that it is possible to control the amount and size of CeO2 nanoparticles onto the nanotube surface, the species of the Ce ions intercalated between the layers of titanate nanotubes, and the materials could be tuned for using in specific catalysis in according with the amount of CeO2 nanoparticles, their oxygen vacancies/defects and the types of Ce species (Ce4+ or Ce3+) present into the nanotubes.

  5. Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cursino, Ana Cristina Trindade, E-mail: anacursino@ufpr.br; Rives, Vicente, E-mail: vrives@usal.es; Arizaga, Gregorio Guadalupe Carbajal, E-mail: gregoriocarbajal@yahoo.com.mx

    2015-10-15

    Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The UV absorption ability was improved after intercalation/grafting in relation to that shown by the parent material. - Highlights: • Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide were synthesized. • Intercalated nitrate anions were exchanged by 2-aminobenzoate. • In all the 2-aminobenzoate containing compounds, the grafting reaction was detected. • The UV absorption ability was improved after the exchange reactions. • Rare earth hydroxide salts are potential matrixes to produce luminescentmore » materials. - Abstract: Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The obtained compounds were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and ultraviolet visible (UV–vis) spectroscopies, fluorescence measurements and thermal analysis (TGA/DTA). The results from FTIR spectroscopy suggest a direct coordination of 2-aminobenzoate to the metal cations of the inorganic layered structure. The organic derivative products from the intercalation reactions absorb a broader range of UV-light in relation to that shown by the parent material; the photoluminescence measurements present a strong violet, blue and green luminescence under UV-light excitation for layered compounds with, Zn, Y and Tb, respectively. Rare earth hydroxide salts (RE-LHS) are potential alternative matrices for the immobilization of organic species to produce luminescent materials.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yue Ru; Poyraz, Altug S.; Hu, Xiaobing

    Birnessite type layered manganese dioxides (δ-MnO 2) have attracted considerable attention in recent years as 2D intercalation cathodes for rechargeable Li +, Na +, and Mg 2+ batteries due to fast ion diffusion through their negatively charged δ-MnO 2 sheets separated by interlayer cations and a stable Mn 3+/4+ redox couple. Here we report the preparation and electrochemistry of zero and divalent copper co-intercalated birnessite type manganese dioxide (Cu 0 0.03Cu 2+ 0.21Na 0.12MnO 2·0.9H 2O). The copper intercalated birnessite materials were fully characterized utilizing powder X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES), transmission electron microscopy (TEM).more » The mixed valent nature of intercalated Cu 0 and Cu 2+ was confirmed by X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). Electrochemical evaluation results show that zero valent copper intercalated birnessite exhibits higher discharge capability, improved cyclability, and lower impedance compared to the Cu 2+ only intercalated (Cu 0.26MnO 2·1.0H 2O) and Cu free Na birnessite (Na 0.40MnO 2·1.0H 2O) materials. Remarkably, zero valent copper birnessite shows almost no fade after 10 cycles at 0.1 mV/s. Electrochemical impedance spectroscopy results suggest that charge transfer resistivity of Cu 0 modified samples was much lower than that of Cu 2+ and Cu free birnessite, indicating that the presence of a small amount of Cu 0 improves the conductivity of birnessite and results in better electrochemical cyclability, rate capability, and lower impedance.« less

  7. Stability of Ruddlesden–Popper-structured oxides in humid conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtimäki, M.; Yamauchi, H.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    2013-08-15

    Some of layered transition-metal oxides are known to react with atmospheric humidity to form through topotactic intercalation reactions new water-containing layered structures. Here we investigate the influence of oxygen content (7−δ) of the Ruddlesden–Popper-structured Sr{sub 3}FeMO{sub 7−δ} (M=Ni, Mn, Ti) oxides on the water-intercalation reaction. It is found that their oxygen contents influence greatly the reactivity of the phases with water. Other factors possibly affecting the reactivity are discussed on the basis of the present data in combination with a comprehensive review of previous works on Ruddlesden–Popper and related layered oxide phases. - Graphical abstract: Many of the Ruddlesden–Popper-structured A{submore » 3}B{sub 2}O{sub 7−δ} oxides readily react with water via intercalation reactions. Three possible factors affecting the water intercalation are identified: oxygen content of the phase, ionic radius of cation A and valence state of cation B. The resultant layered water-derivative phases can be categorised into two groups, depending on the crystal symmetry of the phase. Highlights: • Ruddlesden–Popper oxides A{sub 3}B{sub 2}O{sub 7−δ} often accommodate water via intercalation reaction. • The lower the oxygen content 7−δ is the more readily the intercalation reaction occurs. • The second factor promoting the reaction is the large size of cation A. • The third possible factor is the high valence state of cation B. • Resultant water-derivatives can be categorised into two groups depending on symmetry.« less

  8. Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Maletti, S.; Sarapulova, A.; Tsirlin, A. A.; Oswald, S.; Fauth, F.; Giebeler, L.; Bramnik, N. N.; Ehrenberg, H.; Mikhailova, D.

    2018-01-01

    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3O8, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3O8 can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg-1 after 10 cycles in the potential window of 0.8-3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+ and Na+ cations into LiV3O8, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7Na0.7V3O8 in Na-rich electrolytes, or to Li4V3O8 in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3O8 are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7Na0.7V3O8-type structure favors intercalation of Na+, whereas the LiV3O8-type prefers to accommodate Li+ cations.

  9. Effect of Intercalated Water on Potassium Ion Transport through Kv1.2 Channels Studied via On-the-Fly Free-Energy Parametrization.

    PubMed

    Paz, S Alexis; Maragliano, Luca; Abrams, Cameron F

    2018-05-08

    We introduce a two-dimensional version of the method called on-the-fly free energy parametrization (OTFP) to reconstruct free-energy surfaces using Molecular Dynamics simulations, which we name OTFP-2D. We first test the new method by reconstructing the well-known dihedral angles free energy surface of solvated alanine dipeptide. Then, we use it to investigate the process of K + ions translocation inside the Kv1.2 channel. By comparing a series of two-dimensional free energy surfaces for ion movement calculated with different conditions on the intercalated water molecules, we first recapitulate the widely accepted knock-on mechanism for ion translocation and then confirm that permeation occurs with water molecules alternated among the ions, in accordance with the latest experimental findings. From a methodological standpoint, our new OTFP-2D algorithm demonstrates the excellent sampling acceleration of temperature-accelerated molecular dynamics and the ability to efficiently compute 2D free-energy surfaces. It will therefore be useful in large variety complex biomacromolecular simulations.

  10. A novel method to delaminate nitrate-intercalated MgAl layered double hydroxides in water and application in heavy metals removal from waste water.

    PubMed

    Rahman, Mir Tamzid; Kameda, Tomohito; Kumagai, Shogo; Yoshioka, Toshiaki

    2018-07-01

    Nitrate-intercalated MgAl layered double hydroxide (LDH) was successfully delaminated in water by a facile and effective method upon reflux at 120 °C for 24 h followed by sonication at 40 °C for 5 h. This process is environmentally friendly since water is the only solvent used. The delaminated nanosheets were characterized by microscopic, spectroscopic, and particle size analyses. The delamination process successfully produced octahedron-shaped single-layer nanosheets 50-150 nm in size. X-ray photoelectron spectroscopy (XPS) data confirmed that the surface elements and their chemical status are consistent with the basic layer of MgAl LDH. The delaminated nanosheets displayed higher adsorption capacity for removing heavy metals from waste water than the original powdered LDH. After treating the waste water, a sharp and intense peak in the X-ray powder diffraction (XRD) pattern of the precipitate confirms the restacking of the LDH nanosheets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Tavallaie, Roya; Ibugo, Amaye I; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W S; Thomas, Shane R; Kumar, Naresh; Gooding, J Justin; Manefield, Mike

    2015-02-11

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation.

  12. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  13. Optical signatures of bulk and solutions of KC{sub 8} and KC{sub 24}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tristant, Damien; LPCNO, UMR-5215 CNRS, INSA, Université Fédérale de Toulouse-Midi-Pyrénées, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse; Wang, Yu

    2015-07-28

    We first performed an analysis of the shape of the Raman features of potassium-intercalated graphite at stage 1 (KC{sub 8} GIC) and 2 (KC{sub 24} GIC), respectively. By varying the excitation energy from ultraviolet to infrared, we observed a sign change of the Fano coupling factor below and above the optical transition related to the shift of the Fermi level which was determined from first principle calculations. This behavior is explained by a sign change in the Raman scattering amplitude of the electronic continuum. The GICs were then dissolved in two different solvents (N-Methyl-2-pyrrolidone and tetrahydrofuran), and the absorbance ofmore » the graphenide solutions obtained was measured in the UV range. Two peaks were observed which correspond to the maximum of the computed imaginary part of the optical index.« less

  14. Biochip for Real-Time Monitoring of Hepatitis B Virus (HBV) by Combined Loop-Mediated Isothermal Amplification and Solution-Phase Electrochemical Detection

    NASA Astrophysics Data System (ADS)

    Tien, Bui Quang; Ngoc, Nguyen Thy; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-06-01

    Accurate in situ diagnostic tests play a key role in patient management and control of most infectious diseases. To achieve this, use of handheld biochips that implement sample handling, sample analysis, and result readout together is an ideal approach. We present herein a fluid-handling biochip for real-time electrochemical monitoring of nucleic acid amplification based on loop-mediated isothermal amplification and real-time electrochemical detection on a microfluidic platform. Intercalation between amplifying DNA and free redox probe in solution phase was used to monitor the number of DNA copies. The whole diagnostic process is completed within 70 min. Our platform offers a fast and easy tool for quantification of viral pathogens in shorter time and with limited risk of all potential forms of cross-contamination. Such diagnostic tools have potential to make a huge difference to the lives of millions of people worldwide.

  15. In Operando XRD and TXM Study on the Metastable Structure Change of NaNi 1/3Fe 1/3Mn 1/3O 2 under Electrochemical Sodium-Ion Intercalation

    DOE PAGES

    Xie, Yingying; Wang, Hong; Xu, Guiliang; ...

    2016-09-02

    In operando XRD and TXM-XANES approaches demonstrate that structure evolution in NaNi 1/3Fe 1/3Mn 1/3O 2 during cycling follows a continuous change, and the formation of a nonequilibrium solid solution phase in the existence of two phases. Here, an O3' and P3' monoclinic phase occur, and redox couples of Ni 3+/Ni 4+ and Fe 3+/Fe 4+ are mainly responsible in the charge voltage range from 4.0 to 4.3 V.

  16. MEMS floating element sensor array for wall shear stress measurement under a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zong, Zhaowang

    A novel electrochromic thin film transistor (EC-TFT) was fabricated and characterized in this work. This concept relies on ion transport to control gating. The channel material is tungsten oxide (WOx), produced by reactive magnetron sputtering. In its oxidized state WO3 is a transparent, wide band gap insulator (> 3 eV). However upon intercalation of light ions (H+, Li+) the material becomes both electrically conducting and opaque to visible light. This allows the EC-TFT to generate a complementary optical response. We optimized the fabrication of individual layers of the EC-TFT, and found that controlling the stoichiometry of WOx is a key step. Using RF magnetron sputtering, it was found that there is a narrow window to obtain material capable of reversible switching. Fully oxidized films proved it is difficult to intercalate ions efficiently. In contrast, insufficient oxygen produced films that were always in a metallic like state. Best results were obtained with the sputter power set at 200 W using O2 fractions of 42%-46% in argon. In the preliminary studies, the device was tested in a two-step fashion. First, devices were placed in solution and cyclic voltammetry was used to set the level of ion intercalation. Samples were then removed from the electrolyte, dried, and the source/drain current was measured on a probe station. This demonstrated the concept of the EC-TFT, showing that the transistor could be turned on and off reversely with a current ratio of Ion/Ioff ~ 1000, and showed significant color change during the intercalation. However, the conductivity in off state was too high to be a promising transistor, the two step approach made the data rather noisy, it was difficult to make good contacts and this was not an in situ measurement. In order to get the in situ measurement, macrodevices with large electrodes were fabricated and characterized, which made it easier to make electrical contacts. However, after the initial cycle the macrodevices were always in on state and could not be turned off because of the dielectric. In addition, it showed no significant color change. The top source/drain structure showed similar behavior as the bottom configuration. It was found that in these configurations the supply of electrons was insufficient to allow intercalation, and permanent defects in the Al2O3 dielectric developed to compensate. To address these issues, 3-terminal devices were fabricated and characterized simultaneously. These devices showed similar behaviors with the preliminary 2-step device. The IDS increased with decreasing gate biasing with a low threshold voltage -0.8 V. In addition, we observed the color changing. However, the conduction through the electrolyte resulted very low on/off ratio (<5). In conclusion, it is the conduction through the electrolyte contributes to the low on/off ratio.

  17. Change of the binding mode of the DNA/proflavine system induced by ethanol.

    PubMed

    García, Begoña; Leal, José M; Ruiz, Rebeca; Biver, Tarita; Secco, Fernando; Venturini, M

    2010-07-01

    The equilibria and kinetics of the binding of proflavine to poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) were investigated in ethanol/water mixtures using spectrophotometric, circular dichroism, viscometric, and T-jump methods. All methods concur in showing that two modes of interaction are operative: intercalation and surface binding. The latter mode is favored by increasing ethanol and/or the proflavine content. Both static and kinetic experiments show that, concerning the poly(dG-dC).poly(dG-dC)/proflavine system, intercalation largely prevails up to 20% EtOH. For higher EtOH levels surface binding becomes dominant. Concerning the poly(dA-dT).poly(dA-dT)/proflavine system, melting experiments show that addition of proflavine stabilizes the double stranded structure, but the effect is reduced in the presence of EtOH. The DeltaH degrees and DeltaS degrees values of the melting process, measured at different concentrations of added proflavine, are linearly correlated, revealing the presence of the enthalpy-entropy compensation phenomenon (EEC). The nonmonotonicity of the "entropic term" of the EEC reveals the transition between the two binding modes. T-jump experiments show two relaxation effects, but at the highest levels of EtOH (>25%) the kinetic curves become monophasic, confirming the prevalence of the surface complex. A branched mechanism is proposed where diffusion controlled formation of a precursor complex occurs in the early stage of the binding process. This evolves toward the surface and/or the intercalated complex according to two rate-determining parallel steps. CD spectra suggest that, in the surface complex, proflavine is bound to DNA in the form of an aggregate.

  18. Insertion of Ag atoms into layered MoO{sub 3} via a template route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Ke, E-mail: shaoke@szu.edu.cn; Wang, Hao

    2012-11-15

    Graphical abstract: PVP–Ag{sup +} complex self-assembled with inorganic (Mo{sub x}O{sub y}){sub ∞}{sup n−} chains into a layered hybrid, in which the PVP–Ag complex was intercalated between the (Mo{sub x}O{sub y}){sub ∞}{sup n−} layers. Calcinations of this hybrid at 500 °C lead to formation of Ag/MoO{sub 3} nanohybrid. By this method we have successfully inserted Ag atoms into the semiconductor MoO{sub 3} lattice. Display Omitted Highlights: ► We fabricated a PVP–Ag/polyoxomolybdate layered hybrid via in situ self-assembly. ► The PVP–Ag complex has been inserted between the molybdenum oxide layers. ► This layered hybrid transformed into Ag/MoO{sub 3} nanocomposite after calcinations. ►more » HR-TEM images show that Ag atoms of about 1 nm have been inserted in the MoO{sub 3} layers. -- Abstract: We report insertion of Ag atoms into layered MoO{sub 3} via an in situ template route. PVP–Ag{sup +} complex self-assembled with inorganic (Mo{sub x}O{sub y}){sub ∞}{sup n−} chains into a layered hybrid, in which the PVP–Ag complex was intercalated between the (Mo{sub x}O{sub y}){sub ∞}{sup n−} layers. Calcinations of this hybrid at 500 °C lead to formation of Ag/MoO{sub 3} hybrid, in which Ag nanoparticles of about 1 nm have been inserted between the MoO{sub 3} layers. By this method pillared MoO{sub 3} has been obtained very easily. We believe that this research opens new routes to fabricate novel intercalation compounds and metal/semiconductor nanohybrids via an efficient and green route.« less

  19. Metallic conductivity and air stability in copper chloride intercalated carbon fibers

    NASA Astrophysics Data System (ADS)

    Oshima, H.; Woollam, J. A.; Yavrouian, A.

    1982-12-01

    Carbon-copper chloride intercalation compounds have been obtained by using variously graphitized carbon fibers as host materials. The resultant conductors are air stable, thermally stable to 450 K, have electrical resistivities as low as 12.9 microohm cm at room temperature, and have metallic conductivity temperature dependencies. These intercalated fibers have tensile strengths of 160000 psi, and Young's moduli of 25 x 10 to the 6th psi. For aerospace use, 1/(resistivity x density) is a figure of merit. On this basis, a reduction in resistivity by a factor of two will make this conductor competitive with copper.

  20. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)

    DOE PAGES

    Mashtalir, O.; Lukatskaya, Maria R.; Kolesnikov, Alexander I.; ...

    2016-03-25

    Herein we show that hydrazine intercalation into 2D titanium carbide (Ti 3C 2-based MXene) results in changes in its surface chemistry by decreasing the amounts of fluorine, OH surface groups and intercalated water. It also creates a pillaring effect between Ti 3C 2T x layers pre-opening the structure and improving the accessability to active sites. Furthermore, the hydrazine treated material has demonstrated a greatly improved capacitance of 250 F g –1 in acidic electrolytes with an excellent cycling ability for electrodes as thick as 75 μm.

Top