Solution NMR Spectroscopy in Target-Based Drug Discovery.
Li, Yan; Kang, Congbao
2017-08-23
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
USDA-ARS?s Scientific Manuscript database
Proteins exist in every plant cell wall. Certain protein residues interfere with lignin characterization and quantification. The current solution-state 2D-NMR technique (gel-NMR) for whole plant cell wall structural profiling provides detailed information regarding cell walls and proteins. However, ...
Solution conformation of carbohydrates: a view by using NMR assisted by modeling.
Díaz, Dolores; Canales-Mayordomo, Angeles; Cañada, F Javier; Jiménez-Barbero, Jesús
2015-01-01
Structural elucidation of complex carbohydrates in solution is not a trivial task. From the NMR view point, the limited chemical shift dispersion of sugar NMR spectra demands the combination of a variety of NMR techniques as well as the employment of molecular modeling methods. Herein, a general protocol for assignment of resonances and determination of inter-proton distances within the saccharides by homonuclear and heteronuclear experiments (i.e., (1)H and (13)C) is described. In addition, several computational tools and procedures for getting a final ensemble of geometries that represent the structure in solution are presented.
Intermediate couplings: NMR at the solids-liquids interface
NASA Astrophysics Data System (ADS)
Spence, Megan
2006-03-01
Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.
Mechanisms of amyloid formation revealed by solution NMR
Karamanos, Theodoros K.; Kalverda, Arnout P.; Thompson, Gary S.; Radford, Sheena E.
2015-01-01
Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein–protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology. PMID:26282197
Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang
2013-01-01
The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ), as well as their applications are reviewed. PMID:28809313
Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)
ERIC Educational Resources Information Center
Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.
2011-01-01
Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…
Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins.
Sanders, C R; Oxenoid, K
2000-11-23
Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.
Proton NMR studies of functionalized nanoparticles in aqueous environments
NASA Astrophysics Data System (ADS)
Tataurova, Yulia Nikolaevna
Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results in high-resolution NMR spectra. This technique is selective for protons on the surface organic functional groups due to their motional averaging in solution. In this study, 1H solution NMR spectroscopy was used to investigate the interface of the organic functional groups in D2O. The pKa for these functional groups covalently bound to the surface of nanoparticles was determined using an NMR-pH titration method based on the variation in the proton chemical shift for the alkyl group protons closest to the amine group with pH. The adsorption of toxic contaminants (chromate and arsenate anions) on the surface of functionalized silicalite-1 and mesoporous silica nanoparticles has been studied by 1H solution NMR spectroscopy. With this method, the surface bound contaminants are detected. The analysis of the intensity and position of these peaks allows quantitative assessment of the relative amounts of functional groups with adsorbed metal ions. These results demonstrate the sensitivity of solution NMR spectroscopy to the electronic environment and structure of the surface functional groups on porous nanomaterials.
Toward nanomolar detection by NMR through SABRE hyperpolarization.
Eshuis, Nan; Hermkens, Niels; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco
2014-02-19
SABRE is a nuclear spin hyperpolarization technique based on the reversible association of a substrate molecule and para-hydrogen (p-H2) to a metal complex. During the lifetime of such a complex, generally fractions of a second, the spin order of p-H2 is transferred to the nuclear spins of the substrate molecule via a transient scalar coupling network, resulting in strongly enhanced NMR signals. This technique is generally applied at relatively high concentrations (mM), in large excess of substrate with respect to metal complex. Dilution of substrate ligands below stoichiometry results in progressive decrease of signal enhancement, which precludes the direct application of SABRE to the NMR analysis of low concentration (μM) solutions. Here, we show that the efficiency of SABRE at low substrate concentrations can be restored by addition of a suitable coordinating ligand to the solution. The proposed method allowed NMR detection below 1 μM in a single scan.
Using NMR to Determine Protein Structure in Solution
NASA Astrophysics Data System (ADS)
Cavagnero, Silvia
2003-02-01
Nuclear magnetic resonance (NMR) is a marvelous spectroscopic technique that chemists, physicists, and biochemists routinely employ for their research around the world. This year half of the Nobel Prize for chemistry went to Kurt Wüthrich, who was recognized for the development of NMR-based techniques that lead to the structure determination of biomolecules in solution. In addition to implementing novel pulse sequences and software packages, Wüthrich also applied his methods to several biological systems of key importance to human health. These include the prion protein, which is heavily involved in the spongiform encephalopathy (best known as 'mad cow disease'), which recently caused numerous human deaths, particularly in the UK, due to ingestion of contaminated meat. Transverse relaxation optimized spectroscopy (TROSY) is the most intriguing new NMR method recently developed by Wüthrich and coworkers. This and other closely related pulse sequences promise to play a pivotal role in the extension of NMR to the conformational analysis of very large (up to the megadalton range) macromolecules and macromolecular complexes. More exciting new developments are expected in the near future.
Surface characterization of hydrophobic core-shell QDs using NMR techniques
NASA Astrophysics Data System (ADS)
Zhang, Chengqi; Zeng, Birong; Palui, Goutam; Mattoussi, Hedi
2018-02-01
Using a few solution phase NMR spectroscopy techniques, including 1H NMR and 31P NMR, we have characterized the organic shell on CdSe-ZnS core-shell quantum dots and tracked changes in its composition when the QD dispersions are subjected to varying degrees of purification. Combining solution phase NMR with diffusion ordered spectroscopy (DOSY), we were able to distinguish between freely diffusing ligands in the sample from those bound on the surfaces. Additionally, matrix assisted laser desorption ionization (MALDI) and FTIR measurements were used to provide complementary and supporting information on the organic ligand coating for these nanocrystals. We found that the organic shell is dominated by monomeric or oligomeric n-hexylphosphonic acid (HPA), along with small portion of 1-hexadecyl amine (HDA). The presence of TOP/TOPO (tri-n-octylphosphine / tri-noctylphosphine oxide) molecules is much smaller, even though large excess of TOP/TOPO were used during the QD growth. These results indicate that HPA (alkyl phosphonate) exhibits the strongest coordination affinity to ZnS-rich QD surfaces grown using the high temperature injection route.
Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun
2015-01-01
Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886
Osmotic dehydration of organic kiwifruit pre-treated by pulsed electric fields and monitored by NMR.
Traffano-Schiffo, Maria Victoria; Laghi, Luca; Castro-Giraldez, Marta; Tylewicz, Urszula; Rocculi, Pietro; Ragni, Luigi; Dalla Rosa, Marco; Fito, Pedro J
2017-12-01
Osmotic dehydration (OD) is a widely used preservation technique that consists in the reduction in food water activity by the immersion of the biological tissue in hypertonic solutions. The aim of this work was to analyze the effect of pulsed electric fields (PEF) in mass transfer as a pre-treatment of the OD using NMR. In this sense, PEF pre-treatments were done using three different voltages (100, 250 and 400V/cm) and 60 number of pulse. The OD of kiwifruit was carried out in 61.5% of sucrose solution at 25°C, for a contact period from 0 to 120min. The water distribution into the cellular tissue was studied by NMR relaxometry. In conclusion, NMR is an excellent technique for quantifying water molecules according to their interactions in the fruit tissue, obtaining the adsorbed water and opening the possibility to apply the BET model to fit the adsorbed isotherm over the whole range of water activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
1H- 14N HSQC detection of choline-containing compounds in solutions
NASA Astrophysics Data System (ADS)
Mao, Jiezhen; Jiang, Ling; Jiang, Bin; Liu, Maili; Mao, Xi-an
2010-09-01
Choline nitrogen ( 14N) has a long relaxation time (seconds) which is due to the highly symmetric chemical environments. 14N in choline also has coupling constants with protons (0.6 Hz to methyl protons, 2.7 Hz to CH 2O protons and 0.2 Hz to NCH 2 protons). Based on these properties, we introduce a two-dimensional NMR method to detect choline and its derivatives in solutions. This method is the 1H- 14N hetero-nuclear single-quantum correlation (HSQC) experiment which has been developed in solid-state NMR in recent years. Experiments have demonstrated that the 1H- 14N HSQC technique is a sensitive method for detection of choline-containing compounds in solutions. From 1 mM choline solution in 16 min on a 500 MHz NMR spectrometer, a 1H- 14N HSQC spectrum has been recorded with a signal-to-noise ratio of 1700. Free choline, phosphocholine and glycerophosphocholine in milk can be well separated in 1H- 14N HSQC spectra. This technique would become a promising analytical approach to mixture analyses where choline-containing compounds are of interest, such as tissue extracts, body fluids and food solutions.
Solution NMR views of dynamical ordering of biomacromolecules.
Ikeya, Teppei; Ban, David; Lee, Donghan; Ito, Yutaka; Kato, Koichi; Griesinger, Christian
2018-02-01
To understand the mechanisms related to the 'dynamical ordering' of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells. In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges. Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques. For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.
NMR and rotational angles in solution conformation of polypeptides
NASA Astrophysics Data System (ADS)
Bystrov, V. F.
1985-01-01
Professor San-Ichiro Mizushima and Professor Yonezo Morino's classical contributions provided unique means and firm basis for understanding of conformational states and internal rotation in polypeptide molecules. Now the NMR spectroscopy is the best choice to study molecular conformation, mechanism of action and structure-functional relationships of peptide and proteins in solution under conditions approaching those of their physiological environments. Crucial details of spatial structure and interactions of these molecules in solution are revealed by using proton-proton and carbon-proton vicinal coupling constants, proton nuclear Overhauser effect and spectral perturbation techniques. The results of NMR conformational analysis are presented for valinomycin "bracelet", gramicidin A double helices, honey-bee neurotoxin apamin, scorpion insectotoxins and snake neurotoxins of long and short types.
Organic solute changes with acidification in Lake Skjervatjern as shown by 1H-NMR spectroscopy
Malcolm, R.L.; Hayes, T.
1994-01-01
1H-NMR spectroscopy has been found to be a useful tool to establish possible real differences and trends between all natural organic solute fractions (fulvic acids, humic acids, and XAD-4 acids) after acid-rain additions to the Lake Skjervatjern watershed. The proton NMR technique used in this study determined the spectral distribution of nonexchangeable protons among four peaks (aliphatic protons; aliphatic protons on carbon ?? or attached to electronegative groups; protons on carbons attached to O or N heteroatoms; and aromatic protons). Differences of 10% or more in the respective peak areas were considered to represent a real difference. After one year of acidification, fulvic acids decreased 13% (relative) in Peak 3 protons on carbon attached to N and O heteratoms and exhibited a decrease in aromatic protons between 27% and 31%. Humic acids also exhibited an 11% relative decrease in aromatic protons as a result of acidification. After one year of acidification, real changes were shown in three of the four proton assignments in XAD-4 acids. Peak 1 aliphatic protons increased by 14% (relative), Peak 3 protons on carbons attached to O and N heteroatoms decreased by 13% (relative), and aromatic protons (Peak 4) decreased by 35% (relative). Upon acidification, there was a trend in all solutes for aromatic protons to decrease and aliphatic protons to increase. The natural variation in organic solutes as shown in the Control Side B of the lake from 1990 to 1991 is perhaps a small limitation to the same data interpretations of acid rain changes at the Lake Skjervatjern site, but the proton NMR technique shows great promise as an independent scientific tool to detect and support other chemical techniques in establishing organic solute changes with different treatments (i.e., additions of acid rain).
Lee, Jung Ho; Cavagnero, Silvia
2013-01-01
NMR is an extremely powerful, yet insensitive technique. Many available nuclear polarization methods that address sensitivity are not directly applicable to low-concentration biomolecules in liquids and are often too invasive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is no exception. It needs high-power laser irradiation, which often leads to sample degradation, and photosensitizer reduction. Here, we introduce a novel tri-enzyme system that significantly overcomes the above challenges rendering photo-CIDNP a practically applicable technique for NMR sensitivity enhancement in solution. The specificity of the nitrate reductase (NR) enzyme is exploited to selectively in situ re-oxidize the reduced photo-CIDNP dye FMNH2. At the same time, the oxygen-scavenging ability of glucose oxidase (GO) and catalase (CAT) is synergistically employed to prevent sample photodegradation. The resulting tri-enzyme system (NR-GO-CAT) enables prolonged sensitivity-enhanced data collection in 1D and 2D heteronuclear NMR, leading to the highest photo-CIDNP sensitivity enhancement (48-fold relative to SE-HSQC) achieved to date for amino acids and polypeptides in solution. NR-GO-CAT extends the concentration limit of photo-CIDNP NMR down to the low micromolar range. In addition, sensitivity (relative to the reference SE-HSQC) is found to be inversely proportional to sample concentration, paving the way to the future analysis of even more diluted samples. PMID:23560683
Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis
Pines, Alexander [Berkeley, CA; Budinger, Thomas [Berkeley, CA; Navon, Gil [Ramat Gan, IL; Song, Yi-Qiao [Berkeley, CA; Appelt, Stephan [Waiblingen, DE; Bifone, Angelo [Rome, IT; Taylor, Rebecca [Berkeley, CA; Goodson, Boyd [Berkeley, CA; Seydoux, Roberto [Berkeley, CA; Room, Toomas [Albany, CA; Pietrass, Tanja [Socorro, NM
2008-06-10
The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
A review of whole cell wall NMR by the direct-dissolution of biomass
Foston, Marcus B.; Samuel, Reichel; He, Jian; ...
2016-01-19
To fully realize the potential of lignocellulosic biomass as a renewable resource for the production of fuels, chemicals, and materials, an improved understanding of the chemical and molecular structures within biomass and how those structures are formed during biosynthesis and transformed during (thermochemical and biological) conversion must be developed. This effort will require analytical techniques which are not only in-depth, rapid, and cost-effective, but also leave native cell wall features intact. Whole plant cell wall nuclear magnetic resonance (NMR) analysis facilitates unparalleled structural characterization of lignocellulosic biomass without causing (or with minimal) structural modification. The objective of this review ismore » to summarize research pertaining to solution- or gel-state whole plant cell wall NMR analysis of biomass, demonstrating the capability of NMR to delineate the structural features and transformations of biomass. In particular, this review will focus on the application of a two-dimensional solution-state NMR technique and perdeuterated ionic liquid based organic electrolyte solvents for the direct dissolution and analysis of biomass. Furthermore, we believe this type of analysis will be critical to advancing biofuel research, improving bioprocessing methodology, and enhancing plant bioengineering efforts.« less
A review of whole cell wall NMR by the direct-dissolution of biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foston, Marcus B.; Samuel, Reichel; He, Jian
To fully realize the potential of lignocellulosic biomass as a renewable resource for the production of fuels, chemicals, and materials, an improved understanding of the chemical and molecular structures within biomass and how those structures are formed during biosynthesis and transformed during (thermochemical and biological) conversion must be developed. This effort will require analytical techniques which are not only in-depth, rapid, and cost-effective, but also leave native cell wall features intact. Whole plant cell wall nuclear magnetic resonance (NMR) analysis facilitates unparalleled structural characterization of lignocellulosic biomass without causing (or with minimal) structural modification. The objective of this review ismore » to summarize research pertaining to solution- or gel-state whole plant cell wall NMR analysis of biomass, demonstrating the capability of NMR to delineate the structural features and transformations of biomass. In particular, this review will focus on the application of a two-dimensional solution-state NMR technique and perdeuterated ionic liquid based organic electrolyte solvents for the direct dissolution and analysis of biomass. Furthermore, we believe this type of analysis will be critical to advancing biofuel research, improving bioprocessing methodology, and enhancing plant bioengineering efforts.« less
NMR high-resolution magic angle spinning rotor design for quantification of metabolic concentrations
NASA Astrophysics Data System (ADS)
Holly, R.; Damyanovich, A.; Peemoeller, H.
2006-05-01
A new high-resolution magic angle spinning nuclear magnetic resonance technique is presented to obtain absolute metabolite concentrations of solutions. The magnetic resonance spectrum of the sample under investigation and an internal reference are acquired simultaneously, ensuring both spectra are obtained under the same experimental conditions. The robustness of the technique is demonstrated using a solution of creatine, and it is shown that the technique can obtain solution concentrations to within 7% or better.
Solution NMR structure of a designed metalloprotein and complementary molecular dynamics refinement.
Calhoun, Jennifer R; Liu, Weixia; Spiegel, Katrin; Dal Peraro, Matteo; Klein, Michael L; Valentine, Kathleen G; Wand, A Joshua; DeGrado, William F
2008-02-01
We report the solution NMR structure of a designed dimetal-binding protein, di-Zn(II) DFsc, along with a secondary refinement step employing molecular dynamics techniques. Calculation of the initial NMR structural ensemble by standard methods led to distortions in the metal-ligand geometries at the active site. Unrestrained molecular dynamics using a nonbonded force field for the metal shell, followed by quantum mechanical/molecular mechanical dynamics of DFsc, were used to relax local frustrations at the dimetal site that were apparent in the initial NMR structure and provide a more realistic description of the structure. The MD model is consistent with NMR restraints, and in good agreement with the structural and functional properties expected for DF proteins. This work demonstrates that NMR structures of metalloproteins can be further refined using classical and first-principles molecular dynamics methods in the presence of explicit solvent to provide otherwise unavailable insight into the geometry of the metal center.
Magic Angle Spinning NMR of Viruses
Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana
2015-01-01
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197
Novel nuclear magnetic resonance techniques for studying biological molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laws, David Douglas
2000-06-01
Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. Inmore » this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13C a, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.« less
The Development of Metabolomic Sampling Procedures for Pichia pastoris, and Baseline Metabolome Data
Tredwell, Gregory D.; Edwards-Jones, Bryn; Leak, David J.; Bundy, Jacob G.
2011-01-01
Metabolic profiling is increasingly being used to investigate a diverse range of biological questions. Due to the rapid turnover of intracellular metabolites it is important to have reliable, reproducible techniques for sampling and sample treatment. Through the use of non-targeted analytical techniques such as NMR and GC-MS we have performed a comprehensive quantitative investigation of sampling techniques for Pichia pastoris. It was clear that quenching metabolism using solutions based on the standard cold methanol protocol caused some metabolite losses from P. pastoris cells. However, these were at a low level, with the NMR results indicating metabolite increases in the quenching solution below 5% of their intracellular level for 75% of metabolites identified; while the GC-MS results suggest a slightly higher level with increases below 15% of their intracellular values. There were subtle differences between the four quenching solutions investigated but broadly, they all gave similar results. Total culture extraction of cells + broth using high cell density cultures typical of P. pastoris fermentations, was an efficient sampling technique for NMR analysis and provided a gold standard of intracellular metabolite levels; however, salts in the media affected the GC-MS analysis. Furthermore, there was no benefit in including an additional washing step in the quenching process, as the results were essentially identical to those obtained just by a single centrifugation step. We have identified the major high-concentration metabolites found in both the extra- and intracellular locations of P. pastoris cultures by NMR spectroscopy and GC-MS. This has provided us with a baseline metabolome for P. pastoris for future studies. The P. pastoris metabolome is significantly different from that of Saccharomyces cerevisiae, with the most notable difference being the production of high concentrations of arabitol by P. pastoris. PMID:21283710
Analysis of ethanol-soluble extractives in southern pine wood by low-field proton NMR
Thomas L. Eberhardt; Thomas Elder; Nicole Labbe
2007-01-01
Low-field portion NMR was evaluated as a nondestructive and rapid technique for measuring ethanol-soluble extractives in southern pine wood. Matchstick-sized wood specimens were steeped in extractive-containing solutions to generate extractive-enriched samples for analysis. decay curves obtained by the Carr-Purcell-Meiboom-gill (CPMG) pulse sequence were analyzed with...
Theoretical NMR correlations based Structure Discussion.
Junker, Jochen
2011-07-28
The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The actual difficulty of the structure elucidation problem depends more on the type of the investigated molecule than on its size. The moment HMBC data is involved in the process or a large number of heteroatoms is present, a possibility of multiple solutions fitting the same data set exists. A structure elucidation software can be used to find such alternative constitutional assignments and help in the discussion in order to find the correct solution. But this is rarely done. This article describes the use of theoretical NMR correlation data in the structure elucidation process with WEBCOCON, not for the initial constitutional assignments, but to define how well a suggested molecule could have been described by NMR correlation data. The results of this analysis can be used to decide on further steps needed to assure the correctness of the structural assignment. As first step the analysis of the deviation of carbon chemical shifts is performed, comparing chemical shifts predicted for each possible solution with the experimental data. The application of this technique to three well known compounds is shown. Using NMR correlation data alone for the description of the constitutions is not always enough, even when including 13C chemical shift prediction.
NASA Technical Reports Server (NTRS)
Manatt, S. L.; Cohen, E. A.; Shiller, A. M.; Chan, S. I.
1973-01-01
Preliminary proton nuclear magnetic resonance (NMR) studies were made to determine the applicability of this technique for the study of interactions between monomeric and polymeric amino acids with monomeric nucleic acid bases and nucleotides. Proton NMR results for aqueous solutions (D2O) demonstrated interactions between the bases cytosine and adenine and acidic and aromatic amino acids. Solutions of 5'-AMP admixed with amino acids exhibited more complex behavior but stacking between aromatic rings and destacking at high amino acids concentration was evident. The multisite nature of 5'-AMP was pointed out. Chemical shift changes for adenine and 5'-AMP with three water soluble polypeptides demonstrated that significant interactions exist. It was found that the linewidth-pH profile of each amino acid is unique. It is concluded that NMR techniques can give significant and quantitative data on the association of amino acid and nucleic acid constituents.
Investigating Protein-Ligand Interactions by Solution Nuclear Magnetic Resonance Spectroscopy.
Becker, Walter; Bhattiprolu, Krishna Chaitanya; Gubensäk, Nina; Zangger, Klaus
2018-04-17
Protein-ligand interactions are of fundamental importance in almost all processes in living organisms. The ligands comprise small molecules, drugs or biological macromolecules and their interaction strength varies over several orders of magnitude. Solution NMR spectroscopy offers a large repertoire of techniques to study such complexes. Here, we give an overview of the different NMR approaches available. The information they provide ranges from the simple information about the presence of binding or epitope mapping to the complete 3 D structure of the complex. NMR spectroscopy is particularly useful for the study of weak interactions and for the screening of binding ligands with atomic resolution. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Solution NMR Spectroscopy for the Study of Enzyme Allostery
Lisi, George P.; Loria, J. Patrick
2016-01-01
Allostery is a ubiquitous biological regulatory process in which distant binding sites within a protein or enzyme are functionally and thermodynamically coupled. Allosteric interactions play essential roles in many enzymological mechanisms, often facilitating formation of enzyme-substrate complexes and/or product release. Thus, elucidating the forces that drive allostery is critical to understanding the complex transformations of biomolecules. Currently, a number of models exist to describe allosteric behavior, taking into account energetics as well as conformational rearrangements and fluctuations. In the following review, we discuss the use of solution NMR techniques designed to probe allosteric mechanisms in enzymes. NMR spectroscopy is unequaled in its ability to detect structural and dynamical changes in biomolecules, and the case studies presented herein demonstrate the range of insights to be gained from this valuable method. We also provide a detailed technical discussion of several specialized NMR experiments that are ideally suited for the study of enzymatic allostery. PMID:26734986
Development of high resolution NMR spectroscopy as a structural tool
NASA Astrophysics Data System (ADS)
Feeney, James
1992-06-01
The discovery of the nuclear magnetic resonance (NMR) phenomenon and its development and exploitation as a scientific tool provide an excellent basis for a case-study for examining the factors which control the evolution of scientific techniques. Since the detection of the NMR phenomenon and the subsequent rapid discovery of all the important NMR spectral parameters in the late 1940s, the method has emerged as one of the most powerful techniques for determining structures of molecules in solution and for analysis of complex mixtures. The method has made a dramatic impact on the development of structural chemistry over the last 30 years and is now one of the key techniques in this area. Support for NMR instrumentation attracts a dominant slice of public funding in most scientifically developed countries. The technique is an excellent example of how instrumentation and technology have revolutionised structural chemistry and it is worth exploring how it has been developed so successfully. Clearly its wide range of application and the relatively direct connection between the NMR data and molecular structure has created a major market for the instrumentation. This has provided several competing manufacturers with the incentive to develop better and better instruments. Understanding the complexity of the basics of NMR spectroscopy has been an ongoing challenge attracting the attention of physicists. The well-organised specialist NMR literature and regular scientific meetings have ensured rapid exploitation of any theoretical advances that have a practical relevance. In parallel, the commercial development of the technology has allowed the fruits of such theoretical advances to be enjoyed by the wider scientific community.
NASA Astrophysics Data System (ADS)
Awojoyogbe, O. B.
2004-08-01
Various biological and physiological properties of living tissue can be studied by means of nuclear magnetic resonance techniques. Unfortunately, the basic physics of extracting the relevant information from the solution of Bloch nuclear magnetic resource (NMR) equations to accurately monitor the clinical state of biological systems is still not yet fully understood. Presently, there are no simple closed solutions known to the Bloch equations for a general RF excitation. Therefore the translational mechanical analysis of the Bloch NMR equations presented in this study, which can be taken as definitions of new functions to be studied in detail may reveal very important information from which various NMR flow parameters can be derived. Fortunately, many of the most important but hidden applications of blood flow parameters can be revealed without too much difficulty if appropriate mathematical techniques are used to solve the equations. In this study we are concerned with a mathematical study of the laws of NMR physics from the point of view of translational mechanical theory. The important contribution of this study is that solutions to the Bloch NMR flow equations do always exist and can be found as accurately as desired. We shall restrict our attention to cases where the radio frequency field can be treated by simple analytical methods. First we shall derive a time dependant second-order non-homogeneous linear differential equation from the Bloch NMR equation in term of the equilibrium magnetization M0, RF B1( t) field, T1 and T2 relaxation times. Then, we would develop a general method of solving the differential equation for the cases when RF B1( t)=0, and when RF B1( t)≠0. This allows us to obtain the intrinsic or natural behavior of the NMR system as well as the response of the system under investigation to a specific influence of external force to the system. Specifically, we consider the case where the RF B1 varies harmonically with time. Here the complete motion of the system consists of two parts. The first part describes the motion of the transverse magnetization My in the absence of RF B( t) field. The second part of the motion described by the particular integral of the derived differential equation does not decay with time but continues its periodic behavior indefinitely. The complete motion of the NMR flow system is then quantitatively and qualitatively described.
NASA Astrophysics Data System (ADS)
Madsen, Louis; Kidd, Bryce; Li, Xiuli; Miller, Katherine; Cooksey, Tyler; Robertson, Megan
Our team seeks to understand dynamic behaviors of block copolymer micelles and their interplay with encapsulated cargo molecules. Quantifying unimer and cargo exchange rates micelles can provide critical information for determining mechanisms of unimer exchange as well as designing systems for specific cargo release dynamics. We are exploring the utility of NMR spectroscopy and diffusometry techniques as complements to existing SANS and fluorescence methods. One promising new method involves time-resolved NMR spin relaxation measurements, wherein mixing of fully protonated and 2H-labeled PEO-b-PCL micelles solutions shows an increase in spin-lattice relaxation time (T1) with time after mixing. This is due to a weakening in magnetic environment surrounding 1H spins as 2H-bearing unimers join fully protonated micelles. We are measuring time constants for unimer exchange of minutes to hours, and we expect to resolve times of <1 min. This method can work on any solution NMR spectrometer and with minimal perturbation to chemical structure (as in dye-labelled fluorescence methods). Multimodal NMR can complement existing characterization tools, expanding and accelerating dynamics measurements for polymer micelle, nanogel, and nanoparticle developers.
Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.
Budhiraja, Vikas; Hellums, J David; Post, Jan F M
2002-11-01
Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.
Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen
2018-01-01
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (~100 μL, i.e. 3 mm diameter NMR tubes). PMID:29459343
NASA Astrophysics Data System (ADS)
Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen
2018-04-01
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 μL, i.e. 3 mm diameter NMR tubes).
Dubroca, Thierry; Smith, Adam N; Pike, Kevin J; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R; Frydman, Lucio; Hill, Stephen
2018-04-01
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T ( 1 H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13 C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31 P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T ( 1 H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 µL, i.e. 3 mm diameter NMR tubes). Copyright © 2018 Elsevier Inc. All rights reserved.
Ionic Liquid-Solute Interactions Studied by 2D NOE NMR Spectroscopy.
Khatun, Sufia; Castner, Edward W
2015-07-23
Intermolecular interactions between a Ru(2+)(bpy)3 solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {(1)H-(19)F} HOESY and {(1)H-(1)H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru(2+)(bpy)3 solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru(2+)(bpy)3 solute interacts with both the polar head and the nonpolar tail groups of the 1-butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.
Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.
Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania
2015-09-09
Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy
Bothe, Jameson R.; Nikolova, Evgenia N.; Eichhorn, Catherine D.; Chugh, Jeetender; Hansen, Alexandar L.; Al-Hashimi, Hashim M.
2012-01-01
Many recently discovered non-coding RNAs do not fold into a single native conformation, but rather, sample many different conformations along their free energy landscape to carry out their biological function. Unprecedented insights into the RNA dynamic structure landscape are provided by solution-state NMR techniques that measure the structural, kinetic, and thermodynamic characteristics of motions spanning picosecond to second timescales at atomic resolution. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering. PMID:22036746
Structure determination of helical filaments by solid-state NMR spectroscopy
Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane
2016-01-01
The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681
Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data
NASA Astrophysics Data System (ADS)
Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.
2017-10-01
The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhange; Higa, Kenneth; Han, Kee Sung
The presence of lithium hexafluorophosphate (LiPF 6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This paper, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and themore » generalized Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF 6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF 6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Finally, transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less
Evaluating Transport Properties and Ionic Dissociation of LiPF 6 in Concentrated Electrolyte
Feng, Zhange; Higa, Kenneth; Han, Kee Sung; ...
2017-08-17
The presence of lithium hexafluorophosphate (LiPF 6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This paper, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and themore » generalized Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF 6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF 6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Finally, transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less
Evaluating Transport Properties and Ionic Dissociation of LiPF 6 in Concentrated Electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhange; Higa, Kenneth; Han, Kee Sung
2017-01-01
The presence of lithium hexafluorophosphate (LiPF6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This work, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and the generalized.more » Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less
Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy
Khatun, Sufia; Castner, Edward W.
2014-11-26
Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less
Enhancement of NMR and MRI in the presence of hyperpolarized noble gases
Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja
2004-11-16
The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.
Jung, Da-Mi; De Ropp, Jeffrey S; Ebeler, Susan E
2002-07-17
Two diffusion-based NMR techniques are presented and used to investigate the binding of selected flavor compounds to macromolecules. A pulsed field gradient NMR (PFG-NMR) method was applied to measure the apparent diffusion coefficients of four alkanone compounds as they associated with bovine serum albumin (BSA). The change in the apparent diffusion coefficient as a function of the BSA/alkanone ratio was fitted to yield binding constants (K(a)()) and binding stoichiometry (n) for each alkanone. The results showed that the apparent diffusion coefficients of alkanones increased with a decrease in the BSA/alkanone ratios, and the measured values of K(a)() and n were comparable with those obtained with other methods and depended on the alkanone structure. A diffusion-based nuclear Overhauser effect (called diffusion NOE pumping) method was also applied to screen mixtures of flavor compounds and identify those that have a binding affinity to complex macromolecules. Using this technique benzaldehyde and vanillin were observed to bind with bovine serum albumin, whereas 2-phenylethanol was identified as a nonbinding or weakly binding ligand with BSA. The diffusion NOE pumping method was also applied to a hydro alcoholic solution of cacao bean tannin extracts to which a mixture of ethylbenzoate, benzaldehyde, and 2-phenylethanol was added. The diffusion NOE pumping technique clearly indicated that ethylbenzoate had a stronger binding affinity to the polymeric (-)-epicatechin units of the cacao bean tannin extracts than the other two flavor compounds. The results successfully demonstrate the potential applications of diffusion-based NMR techniques for studying flavors and nonvolatile food matrix interactions.
Nealon, Gareth L; Howard, Mark J
2016-12-15
Using nuclear magnetic resonance (NMR) spectroscopy in the study of metabolism has been immensely popular in medical- and health-related research but has yet to be widely applied to more fundamental biological problems. This review provides some NMR background relevant to metabolism, describes why 1 H NMR spectra are complex as well as introducing relevant terminology and definitions. The applications and practical considerations of NMR metabolic profiling and 13 C NMR-based flux analyses are discussed together with the elegant 'enzyme trap' approach for identifying novel metabolic pathway intermediates. The importance of sample preparation and data analysis are also described and explained with reference to data precision and multivariate analysis to introduce researchers unfamiliar with NMR and metabolism to consider this technique for their research interests. Finally, a brief glance into the future suggests NMR-based metabolism has room to expand in the 21st century through new isotope labels, and NMR technologies and methodologies. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Wen, Jia-Long; Sun, Shao-Ni; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang
2013-12-01
Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
NMR-based investigations into target DNA search processes of proteins.
Iwahara, Junji; Zandarashvili, Levani; Kemme, Catherine A; Esadze, Alexandre
2018-05-10
To perform their function, transcription factors and DNA-repair/modifying enzymes must first locate their targets in the vast presence of nonspecific, but structurally similar sites on genomic DNA. Before reaching their targets, these proteins stochastically scan DNA and dynamically move from one site to another on DNA. Solution NMR spectroscopy provides unique atomic-level insights into the dynamic DNA-scanning processes, which are difficult to gain by any other experimental means. In this review, we provide an introductory overview on the NMR methods for the structural, dynamic, and kinetic investigations of target DNA search by proteins. We also discuss advantages and disadvantages of these NMR methods over other methods such as single-molecule techniques and biochemical approaches. Copyright © 2018 Elsevier Inc. All rights reserved.
Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E
2017-09-13
Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.
Schanda, Paul; Ernst, Matthias
2016-01-01
Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043
Delius, Judith; Frank, Oliver
2017-01-01
Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151
Spindler, Xanthe; Shimmon, Ronald; Roux, Claude; Lennard, Chris
2015-05-01
Most spectroscopic studies of the reaction products formed by ninhydrin, 1,2-indanedione-zinc (Ind-Zn) and 1,8-diazafluoren-9-one (DFO) when reacted with amino acids or latent fingermarks on paper substrates are focused on visible absorption or luminescence spectroscopy. In addition, structural elucidation studies are typically limited to solution-based mass spectrometry or liquid nuclear magnetic resonance (NMR) spectroscopy, which does not provide an accurate representation of the fingermark development process on common paper substrates. The research presented in this article demonstrates that solid-state carbon-13 magic angle spinning NMR ((13)C-MAS-NMR) is a technique that can not only be utilised for structural studies of fingermark enhancement reagents, but is a promising technique for characterising the effect of paper chemistry on fingermark deposition and enhancement. The latter opens up a research area that has been under-explored to date but has the potential to improve our understanding of how fingermark secretions and enhancement reagents interact with paper substrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass
Wu, Qiong; Huang, Lang; Yu, Shitao; ...
2017-05-26
We investigated the structural characteristics of products derived from the hydrothermal carbonization (HTC) of loblolly pine (LP) and straw grass (SG) via solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS 13C NMR), heteronuclear single-quantum correlation nuclear magnetic resonance (HSQC-NMR), and solution 13C NMR and 31P NMR techniques. Our results revealed that after HTC, hydrochars from both LP and SG mainly consisted of a combination of lignin, furfural, and condensed polyaromatic structures with a high level of fixed carbon content and higher heating value (HHV). Hydrochar from LP exhibited a higher aryl to furan ratio, and those from SG contained moremore » aliphatic functional groups. Solution 13C NMR and HSQC revealed that both liquid chemicals were condensed polyphenolic structures with aliphatic groups that exist mainly in the form of side chains. Although the LP products exhibited a higher proportion of aromatic structures, the types of polyphenol and aliphatic C–H were more diverse in the SG products. Results also indicated that reactions such as chain scission and condensation occurred during hydrothermal carbonization processes. Overall, HTC was found to be an effective refinery treatment for converting different waste biomass into valuable energy materials and chemicals.« less
Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiong; Huang, Lang; Yu, Shitao
We investigated the structural characteristics of products derived from the hydrothermal carbonization (HTC) of loblolly pine (LP) and straw grass (SG) via solid-state cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS 13C NMR), heteronuclear single-quantum correlation nuclear magnetic resonance (HSQC-NMR), and solution 13C NMR and 31P NMR techniques. Our results revealed that after HTC, hydrochars from both LP and SG mainly consisted of a combination of lignin, furfural, and condensed polyaromatic structures with a high level of fixed carbon content and higher heating value (HHV). Hydrochar from LP exhibited a higher aryl to furan ratio, and those from SG contained moremore » aliphatic functional groups. Solution 13C NMR and HSQC revealed that both liquid chemicals were condensed polyphenolic structures with aliphatic groups that exist mainly in the form of side chains. Although the LP products exhibited a higher proportion of aromatic structures, the types of polyphenol and aliphatic C–H were more diverse in the SG products. Results also indicated that reactions such as chain scission and condensation occurred during hydrothermal carbonization processes. Overall, HTC was found to be an effective refinery treatment for converting different waste biomass into valuable energy materials and chemicals.« less
Nuclear magnetic resonance (NMR)-based metabolomics for cancer research.
Ranjan, Renuka; Sinha, Neeraj
2018-05-07
Nuclear magnetic resonance (NMR) has emerged as an effective tool in various spheres of biomedical research, amongst which metabolomics is an important method for the study of various types of disease. Metabolomics has proved its stronghold in cancer research by the development of different NMR methods over time for the study of metabolites, thus identifying key players in the aetiology of cancer. A plethora of one-dimensional and two-dimensional NMR experiments (in solids, semi-solids and solution phases) are utilized to obtain metabolic profiles of biofluids, cell extracts and tissue biopsy samples, which can further be subjected to statistical analysis. Any alteration in the assigned metabolite peaks gives an indication of changes in metabolic pathways. These defined changes demonstrate the utility of NMR in the early diagnosis of cancer and provide further measures to combat malignancy and its progression. This review provides a snapshot of the trending NMR techniques and the statistical analysis involved in the metabolomics of diseases, with emphasis on advances in NMR methodology developed for cancer research. Copyright © 2018 John Wiley & Sons, Ltd.
Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R
2014-08-01
Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.
Improved Spin-Echo-Edited NMR Diffusion Measurements
NASA Astrophysics Data System (ADS)
Otto, William H.; Larive, Cynthia K.
2001-12-01
The need for simple and robust schemes for the analysis of ligand-protein binding has resulted in the development of diffusion-based NMR techniques that can be used to assay binding in protein solutions containing a mixture of several ligands. As a means of gaining spectral selectivity in NMR diffusion measurements, a simple experiment, the gradient modified spin-echo (GOSE), has been developed to reject the resonances of coupled spins and detect only the singlets in the 1H NMR spectrum. This is accomplished by first using a spin echo to null the resonances of the coupled spins. Following the spin echo, the singlet magnetization is flipped out of the transverse plane and a dephasing gradient is applied to reduce the spectral artifacts resulting from incomplete cancellation of the J-coupled resonances. The resulting modular sequence is combined here with the BPPSTE pulse sequence; however, it could be easily incorporated into any pulse sequence where additional spectral selectivity is desired. Results obtained with the GOSE-BPPSTE pulse sequence are compared with those obtained with the BPPSTE and CPMG-BPPSTE experiments for a mixture containing the ligands resorcinol and tryptophan in a solution of human serum albumin.
Gräsing, Daniel; Bielytskyi, Pavlo; Céspedes-Camacho, Isaac F; Alia, A; Marquardsen, Thorsten; Engelke, Frank; Matysik, Jörg
2017-09-21
Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13 C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.
Geometric versus numerical optimal control of a dissipative spin-(1/2) particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapert, M.; Sugny, D.; Zhang, Y.
2010-12-15
We analyze the saturation of a nuclear magnetic resonance (NMR) signal using optimal magnetic fields. We consider both the problems of minimizing the duration of the control and its energy for a fixed duration. We solve the optimal control problems by using geometric methods and a purely numerical approach, the grape algorithm, the two methods being based on the application of the Pontryagin maximum principle. A very good agreement is obtained between the two results. The optimal solutions for the energy-minimization problem are finally implemented experimentally with available NMR techniques.
Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu
2017-07-03
We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.
Dias, David M.; Ciulli, Alessio
2014-01-01
Nuclear magnetic resonance (NMR) spectroscopy is a pivotal method for structure-based and fragment-based lead discovery because it is one of the most robust techniques to provide information on protein structure, dynamics and interaction at an atomic level in solution. Nowadays, in most ligand screening cascades, NMR-based methods are applied to identify and structurally validate small molecule binding. These can be high-throughput and are often used synergistically with other biophysical assays. Here, we describe current state-of-the-art in the portfolio of available NMR-based experiments that are used to aid early-stage lead discovery. We then focus on multi-protein complexes as targets and how NMR spectroscopy allows studying of interactions within the high molecular weight assemblies that make up a vast fraction of the yet untargeted proteome. Finally, we give our perspective on how currently available methods could build an improved strategy for drug discovery against such challenging targets. PMID:25175337
TDPAC and β-NMR applications in chemistry and biochemistry
NASA Astrophysics Data System (ADS)
Jancso, Attila; Correia, Joao G.; Gottberg, Alexander; Schell, Juliana; Stachura, Monika; Szunyogh, Dániel; Pallada, Stavroula; Lupascu, Doru C.; Kowalska, Magdalena; Hemmingsen, Lars
2017-06-01
Time differential perturbed angular correlation (TDPAC) of γ-rays spectroscopy has been applied in chemistry and biochemistry for decades. Herein we aim to present a comprehensive review of chemical and biochemical applications of TDPAC spectroscopy conducted at ISOLDE over the past 15 years, including elucidation of metal site structure and dynamics in proteins and model systems. β-NMR spectroscopy is well established in nuclear physics, solid state physics, and materials science, but only a limited number of applications in chemistry have appeared. Current endeavors at ISOLDE advancing applications of β-NMR towards chemistry and biochemistry are presented, including the first experiment on 31Mg2+ in an ionic liquid solution. Both techniques require the production of radioisotopes combined with advanced spectroscopic instrumentation present at ISOLDE.
Dynamics and cluster formation in charged and uncharged Ficoll70 solutions
NASA Astrophysics Data System (ADS)
Palit, Swomitra; Yethiraj, Anand
2017-08-01
We apply pulsed-field-gradient NMR (PFG NMR) technique to measure the translational diffusion for both uncharged and charged polysaccharide (Ficoll70) in water. Analysis of the data indicates that the NMR signal attenuation above a certain packing fraction can be adequately fitted with a bi-exponential function. The self-diffusion measurements also show that the Ficoll70, an often-used compact, spherical polysucrose molecule, is itself nonideal, exhibiting signs of both softness and attractive interactions in the form of a stable suspension consisting of monomers and clusters. Further, we can quantify the fraction of monomers and clusters. This work strengthens the picture of the existence of a bound water layer within and around a porous Ficoll70 particle.
Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins
Verardi, Raffaello; Traaseth, Nathaniel J.; Masterson, Larry R.; Vostrikov, Vitaly V.; Veglia, Gianluigi
2013-01-01
In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy. PMID:23076578
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn
2014-09-29
In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposedmore » method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.« less
Patil, Sachin Vasant; Patil, Sanyukta Arun; Pratap, Amit Prabhakar
2016-09-01
A series of diester containing zwitterionic gemini surfactants, N,N-dimethyl-N-alkyl-2-[[hydroxy (alkoxy) phosphinyl]oxy]-alkylammonium designated as C8(-)-S-Cn(+), S = 2 and 3, n = 12, 14 and 16, were synthesized and characterized by instrumental techniques namely FT-IR, (1)H NMR, (13)C NMR, (31)P NMR and Mass spectral studies. These new gemini surfactants further investigated for their various surfactant properties. The critical micelle concentration (cmc) and the effectiveness of surface tension reduction (Πcmc) were determined as a function of surfactant concentration by means of surface tension measurement. Micellization and viscosity properties were investigated by surface tension, electrical conductivity, dye micellization and rheology techniques. The findings of the aqueous surfactant system obtained were impacted by polarity, size and the nature of zwitterions as the surface. The thermodynamic and viscosity properties of these surfactants found to be based on the structures of gemini surfactants.
Ramalhete, Susana M.; Nartowski, Karol P.; Sarathchandra, Nichola; Foster, Jamie S.; Round, Andrew N.; Angulo, Jesús
2017-01-01
Abstract Supramolecular hydrogels are composed of self‐assembled solid networks that restrict the flow of water. l‐Phenylalanine is the smallest molecule reported to date to form gel networks in water, and it is of particular interest due to its crystalline gel state. Single and multi‐component hydrogels of l‐phenylalanine are used herein as model materials to develop an NMR‐based analytical approach to gain insight into the mechanisms of supramolecular gelation. Structure and composition of the gel fibres were probed using PXRD, solid‐state NMR experiments and microscopic techniques. Solution‐state NMR studies probed the properties of free gelator molecules in an equilibrium with bound molecules. The dynamics of exchange at the gel/solution interfaces was investigated further using high‐resolution magic angle spinning (HR‐MAS) and saturation transfer difference (STD) NMR experiments. This approach allowed the identification of which additive molecules contributed in modifying the material properties. PMID:28401991
Tautomeric equilibria in solutions of 1-methyl-2-phenacylbenzimidazoles
NASA Astrophysics Data System (ADS)
Skotnicka, Agnieszka; Czeleń, Przemysław; Gawinecki, Ryszard
2017-04-01
Until now the susceptibility of 1-methyl-2-phenacylbenzimidazoles to the proton transfer has not been carefully examined. There only have been selective trials to recognize tautomeric equilibrium of substituted compounds. Unfortunately, conclusions of these studies are often conflicting. Therefore, the aim of this work was to analyze the influence of the factors affecting the tautomeric processes of substituted 1-methyl-2-phenacylbenzimidazoles in solutions of chloroform by spectroscopic technique of 1H and 13C NMR. Complex equilibria may only take place when molecules of tautomeric species contain multiple basic and/or acidic centres. Analysis of NMR spectra show unequivocally that 1-methyl-2-phenacylbenzimidazoles (ketimine tautomeric form) are in equilibrium with (Z)-2-(1-methyl-1H-benzo[d]imidazol-2yl)-1-phenylethenols (enolimine).
Kheddo, Priscilla; Cliff, Matthew J.; Uddin, Shahid; van der Walle, Christopher F.; Golovanov, Alexander P.
2016-01-01
ABSTRACT Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins. PMID:27589351
Kheddo, Priscilla; Cliff, Matthew J; Uddin, Shahid; van der Walle, Christopher F; Golovanov, Alexander P
2016-10-01
Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1 H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins.
Synthesis and anion recognition studies of novel bis (4-hydroxycoumarin) methane azo dyes
NASA Astrophysics Data System (ADS)
Panitsiri, Amorn; Tongkhan, Sukanya; Radchatawedchakoon, Widchaya; Sakee, Uthai
2016-03-01
Four new bis (4-hydroxycoumarin) methane azo dyes were synthesized by the condensation of 4-hydroxycoumarin with four different azo salicylaldehydes and their structures were characterized by FT-IR, 1H NMR, 13C NMR, HRMS. Anion binding ability in dimethyl sulfoxide (DMSO) solutions with tetrabutylammonium (TBA) salts (F-, Cl-, Br-, I-, AcO- and H2PO4-) was investigated by the naked eye, as well as UV-visible spectroscopy. The sensor shows selective recognition towards fluoride and acetate. The binding affinity of the sensors with fluoride and acetate was calculated using UV-visible spectroscopic technique.
In situ nuclear magnetic resonance microimaging of live biofilms in a microchannel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renslow, R. S.; Marshall, M. J.; Tucker, A. E.
Nuclear magnetic resonance (NMR) microimaging and spectroscopy was used to interrogate fluids of biological importance (e.g., water, buffer, medium solution) and live biofilms in a microchannel compatible for analyses at ambient pressure and under vacuum. Studies using buffer, growth medium, and actively growing Shewanella oneidensis biofilms were used to demonstrate in situ NMR microimaging measurement capabilities including velocity mapping, diffusion coefficient mapping, relaxometry, localized spectroscopy, and 2D and 3D imaging within a microchannel suitable for different analytical platforms. This technique is promising for diverse applications of correlative imaging using a portable microfluidic platform.
NASA Astrophysics Data System (ADS)
Protopopescu, V.; D'Helon, C.; Barhen, J.
2003-06-01
A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.
Chaperone-client complexes: A dynamic liaison
NASA Astrophysics Data System (ADS)
Hiller, Sebastian; Burmann, Björn M.
2018-04-01
Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.
Phosphorus Speciation of Sequential Extracts of Organic Amendments using NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Akinremi, O.
2009-04-01
O.O. 1Akinremi Babasola Ajiboye and Donald N. Flaten 1Department of Soil Science, University of Manitoba, Winnipeg, R3T 2NT, Canada We carried out this study in order to determine the forms of phosphorus in various organic amendments using state-of-the art spectroscopic technique. Anaerobically digested biosolids (BIO), hog (HOG), dairy (DAIRY), beef (BEEF) and poultry (POULTRY) manures were subjected to sequential extraction. The extracts were analyzed by solution 31P nuclear magnetic resonance (NMR) spectroscopy. Most of the total P analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) in the sequential extracts of organic amendments were orthophosphate, except POULTRY, which was dominated by organic P. The labile P fraction in all the organic amendments, excluding POULTRY, was mainly orthophosphate P from readily soluble calcium and some aluminum phosphates. In the poultry litter, however, Ca phytate was the main P species controlling P solubility. Such knowledge of the differences in the chemical forms of phosphorus in organic amendments are essential for proper management of these amendments for agro-environmental purposes Key words: organic amendments, solution NMR, sequential fractionation, labile phosphorus
2016-01-01
USING NMR SPECTROSCOPY TO INVESTIGATE THE SOLUTION BEHAVIOR OF NERVE AGENTS AND THEIR BINDING TO...XX-01-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jan – Jun 2015 4. TITLE AND SUBTITLE Using NMR Spectroscopy to Investigate the...MOLECULAR MOTIONS AND NMR SPECTROSCOPY ...................................................................................................3 4. THE
Bestgen, Sebastian; Fuhr, Olaf; Breitung, Ben; Kiran Chakravadhanula, Venkata Sei; Guthausen, Gisela; Hennrich, Frank; Yu, Wen; Kappes, Manfred M; Roesky, Peter W; Fenske, Dieter
2017-03-01
With the aim to synthesize soluble cluster molecules, the silver salt of (4-( tert -butyl)phenyl)methanethiol [AgSCH 2 C 6 H 4 t Bu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag 115 S 34 (SCH 2 C 6 H 4 t Bu) 47 (dpph) 6 ] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31 P/ 109 Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution.
High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates.
Haouas, Mohamed; Trébosc, Julien; Roch-Marchal, Catherine; Cadot, Emmanuel; Taulelle, Francis; Martineau-Corcos, Charlotte
2017-10-01
The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
The effects of lithium hydroxide solution on alkali silica reaction gels created with opal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick
The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhapsmore » stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.« less
Naito, Akira; Matsumori, Nobuaki; Ramamoorthy, Ayyalusamy
2018-02-01
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 3 10 -helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.
Apaydin, Mehmet Serkan; Çatay, Bülent; Patrick, Nicholas; Donald, Bruce R
2011-05-01
Nuclear magnetic resonance (NMR) spectroscopy is an important experimental technique that allows one to study protein structure and dynamics in solution. An important bottleneck in NMR protein structure determination is the assignment of NMR peaks to the corresponding nuclei. Structure-based assignment (SBA) aims to solve this problem with the help of a template protein which is homologous to the target and has applications in the study of structure-activity relationship, protein-protein and protein-ligand interactions. We formulate SBA as a linear assignment problem with additional nuclear overhauser effect constraints, which can be solved within nuclear vector replacement's (NVR) framework (Langmead, C., Yan, A., Lilien, R., Wang, L. and Donald, B. (2003) A Polynomial-Time Nuclear Vector Replacement Algorithm for Automated NMR Resonance Assignments. Proc. the 7th Annual Int. Conf. Research in Computational Molecular Biology (RECOMB) , Berlin, Germany, April 10-13, pp. 176-187. ACM Press, New York, NY. J. Comp. Bio. , (2004), 11, pp. 277-298; Langmead, C. and Donald, B. (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J. Biomol. NMR , 29, 111-138). Our approach uses NVR's scoring function and data types and also gives the option of using CH and NH residual dipolar coupling (RDCs), instead of NH RDCs which NVR requires. We test our technique on NVR's data set as well as on four new proteins. Our results are comparable to NVR's assignment accuracy on NVR's test set, but higher on novel proteins. Our approach allows partial assignments. It is also complete and can return the optimum as well as near-optimum assignments. Furthermore, it allows us to analyze the information content of each data type and is easily extendable to accept new forms of input data, such as additional RDCs.
Segmental Isotopic Labeling of Proteins for Nuclear Magnetic Resonance
Dongsheng, Liu; Xu, Rong; Cowburn, David
2009-01-01
Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as one of the principle techniques of structural biology. It is not only a powerful method for elucidating the 3D structures under near physiological conditions, but also a convenient method for studying protein-ligand interactions and protein dynamics. A major drawback of macromolecular NMR is its size limitation caused by slower tumbling rates and greater complexity of the spectra as size increases. Segmental isotopic labeling allows specific segment(s) within a protein to be selectively examined by NMR thus significantly reducing the spectral complexity for large proteins and allowing a variety of solution-based NMR strategies to be applied. Two related approaches are generally used in the segmental isotopic labeling of proteins: expressed protein ligation and protein trans-splicing. Here we describe the methodology and recent application of expressed protein ligation and protein trans-splicing for NMR structural studies of proteins and protein complexes. We also describe the protocol used in our lab for the segmental isotopic labeling of a 50 kDa protein Csk (C-terminal Src Kinase) using expressed protein ligation methods. PMID:19632474
Dias, David M; Ciulli, Alessio
2014-01-01
Nuclear magnetic resonance (NMR) spectroscopy is a pivotal method for structure-based and fragment-based lead discovery because it is one of the most robust techniques to provide information on protein structure, dynamics and interaction at an atomic level in solution. Nowadays, in most ligand screening cascades, NMR-based methods are applied to identify and structurally validate small molecule binding. These can be high-throughput and are often used synergistically with other biophysical assays. Here, we describe current state-of-the-art in the portfolio of available NMR-based experiments that are used to aid early-stage lead discovery. We then focus on multi-protein complexes as targets and how NMR spectroscopy allows studying of interactions within the high molecular weight assemblies that make up a vast fraction of the yet untargeted proteome. Finally, we give our perspective on how currently available methods could build an improved strategy for drug discovery against such challenging targets. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd
Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Salman, D; Peron, J-M R; Goronga, T; Barton, S; Swinden, J; Nabhani-Gebara, S
2016-03-01
The aim of this study is to conduct a forced degradation study on ifosfamide under several stress conditions to investigate the robustness of the developed HPLC method. It also aims to provide further insight into the stability of ifosfamide and its degradation profile using both HPLC and NMR. Ifosfamide solutions (20mg/mL; n=15, 20mL) were stressed in triplicate by heating (70°C), under acidic (pH 1 & 4) and alkaline (pH 10 & 12) conditions. Samples were analysed periodically using HPLC and FT-NMR. Ifosfamide was most stable under weakly acidic conditions (pH 4). NMR results suggested that the mechanism of ifosfamide degradation involves the cleavage of the PN bond. For all stress conditions, HPLC was not able to detect ifosfamide degradation products that were detected by NMR. These results suggest that the developed HPLC method for ifosfamide did not detect the degradation products shown by NMR. It is possible that degradation products co-elute with ifosfamide, do not elute altogether or are not amenable to the detection method employed. Therefore, investigation of ifosfamide stability requires additional techniques that do not suffer from the aforementioned shortcomings. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Determination of Membrane Protein Structure by Rotational Resonance NMR: Bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Creuzet, F.; McDermott, A.; Gebhard, R.; van der Hoef, K.; Spijker-Assink, M. B.; Herzfeld, J.; Lugtenburg, J.; Levitt, M. H.; Griffin, R. G.
1991-02-01
Rotationally resonant magnetization exchange, a new nuclear magnetic resonance (NMR) technique for measuring internuclear distances between like spins in solids, was used to determine the distance between the C-8 and C-18 carbons of retinal in two model compounds and in the membrane protein bacteriorhodopsin. Magnetization transfer between inequivalent spins with an isotropic shift separation, δ, is driven by magic angle spinning at a speed ω_r that matches the rotational resonance condition δ = nω_r, where n is a small integer. The distances measured in this way for both the 6-s-cis- and 6-s-trans-retinoic acid model compounds agreed well with crystallographically known distances. In bacteriorhodopsin the exchange trajectory between C-8 and C-18 was in good agreement with the internuclear distance for a 6-s-trans configuration [4.2 angstroms (overset{circ}{mathrm A})] and inconsistent with that for a 6-s-cis configuration (3.1 overset{circ}{mathrm A}). The results illustrate that rotational resonance can be used for structural studies in membrane proteins and in other situations where diffraction and solution NMR techniques yield limited information.
Saveyn, Pieter; Cocquyt, Ellen; Zhu, Wuxin; Sinnaeve, Davy; Haustraete, Katrien; Martins, José C; Van der Meeren, Paul
2009-07-14
The solubilization of the poorly water soluble anti-inflammatory drug flurbiprofen in non-ionic Tween 20 surfactant micellar solutions was studied by both (19)F and (1)H NMR spectroscopy in an acidic environment. These non-destructive techniques allowed us to investigate the effect of temperature cycling in situ. Using (19)F NMR, an increased solubilisation capacity was observed as the temperature increased. This effect became more pronounced above the cloud point, which was reduced by more than 30 degrees C in the presence of an excess of flurbiprofen. Upon clouding, peak splitting was observed in the (19)F spectrum, which indicates that two pools of solubilised flurbiprofen exist that are in slow exchange on the NMR frequency timescale. The clouding and solubilization processes were found to be reversible, albeit with slow kinetics. Based on chemical shift differences of both Tween 20 and flurbiprofen, as well as NOESY experiments, the flurbiprofen was found to be accumulated within the palisade layer of the Tween 20 micelles.
Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR
NASA Astrophysics Data System (ADS)
Li, Wei
2017-12-01
To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, David A.; Streamer, Margaret; Rowland, Susan L.
2009-09-02
The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB. The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomericmore » or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.« less
The conformation of cyclo(-D-Pro-Ala4-) as a model for cyclic pentapeptides of the DL4 type.
Heller, Markus; Sukopp, Martin; Tsomaia, Natia; John, Michael; Mierke, Dale F; Reif, Bernd; Kessler, Horst
2006-10-25
The conformation of the cyclic pentapeptide cyclo(-D-Pro-Ala(4)-) in solution and in the solid state was reinvestigated using modern NMR techniques. To allow unequivocal characterization of hydrogen bonds, relaxation behavior, and intramolecular distances, differently labeled isotopomers were synthesized. The NMR results, supported by extensive MD simulations, demonstrate unambiguously that the preferred conformation previously described by us, but recently questioned, is indeed correct. The validation of the conformational preferences of this cyclic peptide is important given that this system is a template for several bioactive compounds and for controlled "spatial screening" for the search of bioactive conformations.
Natural-abundance 17O NMR spectra of some inorganic and biologically important phosphates
NASA Astrophysics Data System (ADS)
Gerothanassis, Ioannis P.; Sheppard, Norman
A number of optimization techniques were employed to obtain 17O NMR spectra at natural abundance for a variety of inorganic and orgnic phosphates and polyphosphates. 17O chemical shifts and some JPO coupling constants are reported for the orthophosphate series of ions from H 3PO 4 to PO 43-, the pyrophosphate ion, P 2O 74-, the linear tripolyphosphate ion, P 3O 105-, and the cyclic trimetaphosphate ion, P 3O 93-; and for disodium DL-α-glycerophosphate and monosodium adenosine monophosphate. 17O- depleted water enables much improved results to be obtained in acqueous solutions.
A novel Schiff-base as a Cu(II) ion fluorescent sensor in aqueous solution
NASA Astrophysics Data System (ADS)
Gündüz, Z. Yurtman; Gündüz, C.; Özpınar, C.; Urucu, O. Aydın
2015-02-01
A new fluorescent Cu(II) sensor (L) obtained from the Schiff base of 5,5‧-methylene-bis-salicylaldehyde with amidol (2,4-diaminophenol) was synthesized and characterized by FT-IR, MS, 1H NMR, 13C NMR techniques. In the presence of pH 6.5 (KHPO4-Na2HPO4) buffer solutions, copper reacted with L to form a stable 2:1 complex. Fluorescence spectroscopic study showed that Schiff base is highly sensitive towards Cu(II) over other metal ions (K+, Na+, Al3+, Ni2+, Co2+, Fe3+, Zn2+, Pb2+) in DMSO/H2O (30%, v/v). The sensor L was successfully applied to the determination of copper in standard reference material. The structural properties and molecular orbitals of the complex formed between L and Cu2+ ions were also investigated using quantum chemical computations.
USDA-ARS?s Scientific Manuscript database
Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...
NASA Astrophysics Data System (ADS)
Bhand, Sujit; Patil, Rishikesh; Shinde, Yogesh; Lande, Dipali N.; Rao, Soniya S.; Kathawate, Laxmi; Gejji, Shridhar P.; Weyhermüller, Thomas; Salunke-Gawali, Sunita
2016-11-01
Structure and spectral characteristics of 'Ortho' ((E)-4-hydroxy-2-(2‧-(4‧-R)-hydroxyphenyl)-imino)-naphthalen-1(2H)-one) and 'para' (2-(2‧-(4‧-R)-hydroxyphenyl)-amino)-1,4-naphthoquinone) tautomers of o-hydroxyanilino-1,4-naphthoquinone derivatives (Rdbnd H, 1A; sbnd CH3, 2A; and -Cl, 3A) are investigated using the 1H, 13C, DEPT, gDQCOSY, gHSQCAD NMR, HPLC, cyclic voltammetry techniques combined with the density functional theory. The compound 2A crystallizes in monoclinic space group P21/c. wherein the polymer chain is facilitated via Osbnd H⋯O and Csbnd H⋯O intermolecular hydrogen bonding. Marginal variations in bond distances in quinonoid and aminophenol moieties render structural flexibility to these compounds those in solution exist as exist in 'ortho - para' tautomers. 1H and 13C NMR spectra in DMSO-d6 showed two sets of peaks in all compounds; whereas only the para tautomer of for 1A and 2A, the para tautomer is predominant in CD3CN solution. Further the ortho-para interconversion is accompanied by a large up-field signals for C(3)sbnd H(3) in their 1H and 13C NMR spectra. These inferences are corroborated by the density functional theoretic calculations.
Determining the Orientation and Localization of Membrane-Bound Peptides
Hohlweg, Walter; Kosol, Simone; Zangger, Klaus
2012-01-01
Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance. PMID:22044140
Ayass, Wassim W; Fodor, Tamás; Farkas, Edit; Lin, Zhengguo; Qasim, Hafiz M; Bhattacharya, Saurav; Mougharbel, Ali S; Abdallah, Khaled; Ullrich, Matthias S; Zaib, Sumera; Iqbal, Jamshed; Harangi, Sándor; Szalontai, Gábor; Bányai, István; Zékány, László; Tóth, Imre; Kortz, Ulrich
2018-06-18
Here we report on the synthesis and structural characterization of the dithallium(III)-containing 30-tungsto -4-phosphate [Tl 2 Na 2 (H 2 O) 2 {P 2 W 15 O 56 } 2 ] 16- (1) by a multitude of solid-state and solution techniques. Polyanion 1 comprises two octahedrally coordinated Tl 3+ ions sandwiched between two trilacunary {P 2 W 15 } Wells-Dawson fragments and represents only the second structurally characterized, discrete thallium-containing polyoxometalate to date. The two outer positions of the central rhombus are occupied by sodium ions. The title polyanion is solution-stable as shown by 31 P and 203/205 Tl NMR. This was also supported by Tl NMR spectra simulations including several spin systems of isotopologues with half-spin nuclei ( 203 Tl, 205 Tl, 31 P, 183 W). 23 Na NMR showed a time-averaged signal of the Na + counter cations and the structurally bonded Na + ions. 203/205 Tl NMR spectra also showed a minor signal tentatively attributed to the trithallium-containing derivative [Tl 3 Na(H 2 O) 2 (P 2 W 15 O 56 ) 2 ] 14- , which could also be identified in the solid state by single-crystal X-ray diffraction. The bioactivity of polyanion 1 was also tested against bacteria and Leishmania.
Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.
2016-01-01
A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174
Dhanuskodi, S; Manivannan, S; Kirschbaum, K
2006-05-15
1-Ethyl-2,6-dimethyl-4-hydroxy pyridinium chloride dihydrate and bromide dihydrate salts have been synthesized and their single crystals were grown by the slow evaporation of aqueous solution at 30 degrees C. The grown crystals were characterized by elemental analysis, FT-NMR and FT-IR techniques to confirm the formation of the expected compound. Optical transmittance window in aqueous solution was found to be 275-1100 nm by UV-vis-NIR technique. Thermogravimetric and differential thermal analyses reveal thermal stability and the presence of two water molecules in the crystal lattices. The crystal structure of chloride salt was also determined by X-ray diffraction method.
NASA Astrophysics Data System (ADS)
Uznanski, Pawel; Zakrzewska, Joanna; Favier, Frederic; Kazmierski, Slawomir; Bryszewska, Ewa
2017-03-01
A comparative study of amine and silver carboxylate adducts [R1COOAg-2(R2NH2)] (R1 = 1, 7, 11; R2 = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, 13C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies (1H and 13C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.
Parameters and symbols for use in nuclear magnetic resonance (IUPAC recommendations 1997).
Harris, R K; Kowalewski, J; Cabral de Menezes, S
1998-01-01
NMR is now frequently the technique of choice for the determination of chemical structure in solution. Its uses also span structure in solids and mobility at the molecular level in all phases. The research literature in the subject is vast and ever-increasing. Unfortunately, many articles do not contain sufficient information for experiments to be repeated elsewhere, and there are many variations in the usage of symbols for the same physical quantity. It is the aim of the present recommendations to provide simple check-lists that will enable such problems to be minimised in a way that is consistent with general IUPAC formulation. The area of medical NMR and imaging is not specifically addressed in these recommendations, which are principally aimed at the mainstream use of NMR by chemists (of all sub-disciplines) and by many physicists, biologists, materials scientists and geologists etc. working with NMR. The document presents recommended notation for use in journal publications involving a significant contribution of nuclear magnetic resonance (NMR) spectroscopy. The recommendations are in two parts: (1) Experimental parameters which should be listed so that the work in question can be repeated elsewhere. (2) A list of symbols (using Roman or Greek characters) to be used for quantities relevant to NMR.
Characterization of the fluid and solid components of cyanogel systems during the gelation process
NASA Astrophysics Data System (ADS)
Fortmeyer, Ivy Camille
The work in this thesis concerns the sol-gel transformation in cyanogel systems comprised of d8 square planar chlorometalates (M=Pd(II), Pt(II)) and d6 octahedral hexacyanometalates (M=Fe(II), Co(III), Ru(II)). The body of this thesis is split into two chapters. The first chapter examines the physical changes in the solvent phase of the sol-gel network, and the second focuses on the polymer backbone of the gel. Studies on the water component of cyanogel systems during the gelation process were carried out with a variety of in situ spectroscopic techniques. The use of high resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) to identify and characterize different water environments was explored, but was ultimately found to disrupt gelation. Standard solution-phase 1H NMR proved sufficient for calculation and qualitative modeling of spin-spin and spin-lattice relaxations, providing distinct spectral markers of the gelation point and subsequent aging process. Vibrational spectroscopy was used to explore the hydrogen bonding environment of the water during gelation. The kinetics of polymerization of the cyanogel backbone was explored using both in situ and ex situ techniques. Data collected by 13C NMR and 195Pt NMR primarily demonstrated first order kinetics, implying a dissociative substitution mechanism at the chlorometalate center. Rate constants for gelation in the presence of various added monopotassium and nitrate salts were calculated. Added chloride was found to significantly slow gelation and was further explored using NMR and vibrational spectroscopy. A mechanism was proposed for the polymerization taking into account the dissociative substitution and the bridging geometries implied by 13C NMR.
Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.
Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul
2016-01-04
Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.
Uznanski, Pawel; Zakrzewska, Joanna; Favier, Frederic; Kazmierski, Slawomir; Bryszewska, Ewa
2017-01-01
A comparative study of amine and silver carboxylate adducts [R 1 COOAg-2(R 2 NH 2 )] (R 1 = 1, 7, 11; R 2 = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, 13 C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ( 1 H and 13 C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism. Graphical abstractThe synthesis of a series (bis)alkylamine silver(I) carboxylate complexes in nonpolar solvents were carried out and fully characterized both in the solid and solution. Carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination. The complexes form layered structures which thermally decompose forming nanoparticles stabilized only by aliphatic carboxylates.
Alam, Todd Michael; Childress, Kimberly Kay; Pastoor, Kevin; ...
2014-09-19
We found that different water environments in poly(N-isopropyl acrylamide) (PNIPAAm) hydrogels are identified and characterized using 1H high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR). Local water environments corresponding to a “free” highly mobile species, along with waters showing restricted dynamics are resolved in these swollen hydro-gels. For photo-initiated polymerized PNIPAAm gels, an additional entrapped water species is observed. Spin–spin R 2 relaxation experiments support the argument of reduced mobility in the restricted and entrapped water species. Furthermore, by combining pulse field gradient techniques with HRMAS NMR it is possible to directly measure the self-diffusion rate for thesemore » different water environments. The behavior of the heterogeneous water environments through the lower critical solution temperature transition is described.« less
Bai, Yubin; Hill, P. Aru; Dmochowski, Ivan J.
2012-01-01
Hyperpolarized 129Xe chemical exchange saturation transfer (129Xe Hyper-CEST) NMR is a powerful technique for the ultrasensitive, indirect detection of Xe host molecules (e.g., cryptophane-A). Irradiation at the appropriate Xe-cryptophane resonant radio frequency results in relaxation of the bound hyperpolarized 129Xe and rapid accumulation of depolarized 129Xe in bulk solution. The cryptophane effectively ‘catalyzes’ this process by providing a unique molecular environment for spin depolarization to occur, while allowing xenon exchange with the bulk solution during the hyperpolarized lifetime (T1 ≈ 1 min). Following this scheme, a triacetic acid cryptophane-A derivative (TAAC) was indirectly detected at 1.4 picomolar concentration at 320 K in aqueous solution, which is the record for a single-unit xenon host. To investigate this sensitivity enhancement, the xenon binding kinetics of TAAC in water was studied by NMR exchange lifetime measurement. At 297 K, kon ≈ 1.5 × 106 M−1s−1 and koff = 45 s−1, which represent the fastest Xe association and dissociation rates measured for a high-affinity, water-soluble xenon host molecule near rt. NMR linewidth measurements provided similar exchange rates at rt, which we assign to solvent-Xe exchange in TAAC. At 320 K, koff was estimated to be 1.1 × 103 s−1. In Hyper-CEST NMR experiments, the rate of 129Xe depolarization achieved by 14 pM TAAC in the presence of RF pulses was calculated to be 0.17 µM·s−1. On a per cryptophane basis, this equates to 1.2 × 104 129Xe atoms s−1 (or 4.6 × 104 Xe atoms s−1, all Xe isotopes), which is more than an order of magnitude faster than koff, the directly measurable Xe-TAAC exchange rate. This compels us to consider multiple Xe exchange processes for cryptophane-mediated bulk 129Xe depolarization, which provide at least 107-fold sensitivity enhancements over directly detected hyperpolarized 129Xe NMR signals. PMID:23106513
Covariance NMR Processing and Analysis for Protein Assignment.
Harden, Bradley J; Frueh, Dominique P
2018-01-01
During NMR resonance assignment it is often necessary to relate nuclei to one another indirectly, through their common correlations to other nuclei. Covariance NMR has emerged as a powerful technique to correlate such nuclei without relying on error-prone peak peaking. However, false-positive artifacts in covariance spectra have impeded a general application to proteins. We recently introduced pre- and postprocessing steps to reduce the prevalence of artifacts in covariance spectra, allowing for the calculation of a variety of 4D covariance maps obtained from diverse combinations of pairs of 3D spectra, and we have employed them to assign backbone and sidechain resonances in two large and challenging proteins. In this chapter, we present a detailed protocol describing how to (1) properly prepare existing 3D spectra for covariance, (2) understand and apply our processing script, and (3) navigate and interpret the resulting 4D spectra. We also provide solutions to a number of errors that may occur when using our script, and we offer practical advice when assigning difficult signals. We believe such 4D spectra, and covariance NMR in general, can play an integral role in the assignment of NMR signals.
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael
2017-04-15
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu
2015-04-06
The maintenance mechanism of the supersaturated state of poorly water-soluble drugs, glibenclamide (GLB) and chlorthalidone (CLT), in hydroxypropyl methylcellulose acetate succinate (HPMC-AS) solution was investigated at a molecular level. HPMC-AS suppressed drug crystallization from supersaturated drug solution and maintained high supersaturated level of drugs with small amount of HPMC-AS for 24 h. However, the dissolution of crystalline GLB into HPMC-AS solution failed to produce supersaturated concentrations, although supersaturated concentrations were achieved by adding amorphous GLB to HPMC-AS solution. HPMC-AS did not improve drug dissolution and/or solubility but efficiently inhibited drug crystallization from supersaturated drug solutions. Such an inhibiting effect led to the long-term maintenance of the amorphous state of GLB in HPMC-AS solution. NMR measurements showed that HPMC-AS suppressed the molecular mobility of CLT depending on their supersaturation level. Highly supersaturated CLT in HPMC-AS solution formed a gel-like structure with HPMC-AS in which the molecular mobility of the CLT was strongly suppressed. The gel-like structure of HPMC-AS could inhibit the reorganization from drug prenuclear aggregates to the crystal nuclei and delay the formation of drug crystals. The prolongation subsequently led to the redissolution of the aggregated drugs in aqueous solution and formed the equilibrium state at the supersaturated drug concentration in HPMC-AS solution. The equilibrium state formation of supersaturated drugs by HPMC-AS should be an essential mechanism underlying the marked drug concentration improvement.
The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids
Hatcher, P.G.; Wilson, M.A.
1991-01-01
Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.
Direct evidence of photochemical α-cleavage of benzoin in fluid solutions
NASA Astrophysics Data System (ADS)
Koyanagi, Motohiko; Futami, Hiroshi; Mukai, Masahiro; Yamauchi, Seigo
1989-02-01
By means of optical absorption, 1 NMR, and transient EPR techniques, the fate of diluted benzoin upon light irradiation to its S 1 (nπ*) state has been investigated in methylcyclohexane and benzene solutions at room temperature. The CIDEP spectrum of benzoin is observed for the first time, and the intermediate radicals involved are assigned. The overall results show that the main scheme of the photochemical reactions is the α-cleavage occurring in the excited triplet state of benzoin, as proved in the almost net emission pattern of the CIDEP spectra. A stoichiometric reaction leading to effective benzaldehyde formation is established for the benzoin solutions.
André, Carolina Bosso; Dos Santos, Andressa; Pfeifer, Carmem Silvia; Giannini, Marcelo; Girotto, Emerson Marcelo; Ferracane, Jack Liborio
2018-04-01
This study evaluated three different sterilization/disinfection techniques for resin composites on bacterial growth and surface modification after decontamination. Two resin composites were sterilized/disinfected with three different techniques: UV light, 1% chloramine T, and 70% ethanol. Four different times were used for each technique to determine the shortest time that the solution or UV light was effective. The influence of sterilization/disinfection technique on bacterial growth was evaluated by analyzing the metabolic activity, using the AlamarBlue™ assay, bacterial viability, and SEM images from biofilms of Streptococcus mutans. The surface change, after the process, was analyzed with ATR/FTIR and SEM images. The solutions used for decontamination (1% chloramine-T and 70% ethanol) were analyzed with 1 H-NMR to identify any resin compounds leached during the process. One minute of decontamination was efficient for all three methods tested. Chloramine-T increased the surface porosity on resin composites, no changes were observed for UV light and 70% ethanol, however, 1 H-NMR identified leached monomers only when 70% ethanol was used. No chemical change of the materials was found under ATR/FTIR analyses after the decontamination process. Chloramine-T, with no previous wash, increased the bacterial viability for both resin composites and increased the bacterial metabolism for the resin composite without fluoride. UV light had no interference on the resin composites properties tested using 1 min of exposure compared to the other decontamination methods. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 945-953, 2018. © 2017 Wiley Periodicals, Inc.
Photo-CIDNP NMR spectroscopy of amino acids and proteins.
Kuhn, Lars T
2013-01-01
Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in "real time". As such, the method can offer - qualitatively and, to a certain extent, quantitatively - residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their "path" to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given.
NASA Astrophysics Data System (ADS)
Narakidze, N. D.; Shaykhutdinov, D. V.; Shirokov, K. M.; Gorbatenko, N. I.; Yanvarev, S. G.
2017-02-01
The quality of lubricating oil in mechanical engineering, technology of creation of units, in particular in equipment of transmission gears, is a factor which considerably defines reliability and safety of the whole propulsion system or the greased constructive components. There are many soluble oil additives such as, for example, different additives for extreme compression conditions or additives against wear. Additives are used with mineral oils, products from mineral oils or synthetic oils for lubricant action or chemical properties improvement. The most exact way of definition of the chemical composition of a substance at the moment is the method of nuclear magnetic resonance (NMR). In the first section of this article, a brief and very simplified review of the NMR basic principles using classical physics is provided. The second section is focused on the description of the hardware solutions and the architecture of the NMR spectrometers. The software developments (LabVIEW programs) of the data-acquisition and signal processing techniques are presented in the third section. At the end, results of measurements are provided.
Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited
ERIC Educational Resources Information Center
Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete
2012-01-01
This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…
Advanced solid-state NMR spectroscopy of natural organic matter.
Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus
2017-05-01
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.
The application of absolute quantitative (1)H NMR spectroscopy in drug discovery and development.
Singh, Suruchi; Roy, Raja
2016-07-01
The identification of a drug candidate and its structural determination is the most important step in the process of the drug discovery and for this, nuclear magnetic resonance (NMR) is one of the most selective analytical techniques. The present review illustrates the various perspectives of absolute quantitative (1)H NMR spectroscopy in drug discovery and development. It deals with the fundamentals of quantitative NMR (qNMR), the physiochemical properties affecting qNMR, and the latest referencing techniques used for quantification. The precise application of qNMR during various stages of drug discovery and development, namely natural product research, drug quantitation in dosage forms, drug metabolism studies, impurity profiling and solubility measurements is elaborated. To achieve this, the authors explore the literature of NMR in drug discovery and development between 1963 and 2015. It also takes into account several other reviews on the subject. qNMR experiments are used for drug discovery and development processes as it is a non-destructive, versatile and robust technique with high intra and interpersonal variability. However, there are several limitations also. qNMR of complex biological samples is incorporated with peak overlap and a low limit of quantification and this can be overcome by using hyphenated chromatographic techniques in addition to NMR.
Hutin, Marie; Sprafke, Johannes K; Odell, Barbara; Anderson, Harry L; Claridge, Tim D W
2013-08-28
Formation of stacked aggregates can dramatically alter the properties of aromatic π-systems, yet the solution-phase structure elucidation of these aggregates is often impossible because broad distributions of species are formed, giving uninformative spectroscopic data. Here, we show that a butadiyne-linked zinc porphyrin tetramer forms a remarkably well-defined aggregate, consisting of exactly three molecules, in a parallel stacked arrangement (in chloroform at room temperature; concentration 1 mM-0.1 μM). The aggregate has a mass of 14.7 kDa. Unlike most previously reported aggregates, it gives sharp NMR resonances and aggregation is in slow exchange on the NMR time scale. The structure was elucidated using a range of NMR techniques, including diffusion-editing, (1)H-(29)Si HMBC, (1)H-(1)H COSY, TOCSY and NOESY, and (1)H-(13)C edited HSQC spectroscopy. Surprisingly, the (1)H-(1)H COSY spectrum revealed many long-range residual dipolar couplings (RDCs), and detailed analysis of magnetic field-induced (1)H-(13)C RDCs provided further evidence for the structural model. The size and shape of the aggregate is supported by small-angle X-ray scattering (SAXS) data. It adopts a geometry that maximizes van der Waals contact between the porphyrins, while avoiding clashes between side chains. The need for interdigitation of the side chains prevents formation of stacks consisting of more than three layers. Although a detailed analysis has only been carried out for one compound (the tetramer), comparison with the NMR spectra of other oligomers indicates that they form similar three-layer stacks. In all cases, aggregation can be prevented by addition of pyridine, although at low pyridine concentrations, disaggregation takes many hours to reach equilibrium.
Akiva-Tal, Anat; Kababya, Shifi; Balazs, Yael S.; Glazer, Lilah; Berman, Amir; Sagi, Amir; Schmidt, Asher
2011-01-01
Bioavailable calcium is maintained by some crustaceans, in particular freshwater crayfish, by stabilizing amorphous calcium carbonate (ACC) within reservoir organs—gastroliths, readily providing the Ca2+ needed to build a new exoskeleton. Despite the key scientific and biomedical importance of the in situ molecular-level picture of biogenic ACC and its stabilization in a bioavailable form, its description has eluded efforts to date. Herein, using multinuclear NMR, we accomplish in situ molecular-level characterization of ACC within intact gastroliths of the crayfish Cherax quadricarinatus. In addition to the known CaCO3, chitin scaffold and inorganic phosphate (Pi), we identify within the gastrolith two primary metabolites, citrate and phosphoenolpyruvate (PEP) and quantify their abundance by applying solution NMR techniques to the gastrolith “soluble matrix.” The long-standing question on the physico-chemical state of ACC stabilizing, P-bearing moieties within the gastrolith is answered directly by the application of solid state rotational-echo double-resonance (REDOR) and transferred-echo double-resonance (TEDOR) NMR to the intact gastroliths: Pi and PEP are found molecularly dispersed throughout the ACC as a solid solution. Citrate carboxylates are found < 5 Å from a phosphate (intermolecular C⋯P distance), an interaction that must be mediated by Ca2+. The high abundance and extensive interactions of these molecules with the ACC matrix identify them as the central constituents stabilizing the bioavailable form of calcium. This study further emphasizes that it is imperative to characterize the intact biogenic CaCO3. Solid state NMR spectroscopy is shown to be a robust and accessible means of determining composition, internal structure, and molecular functionality in situ. PMID:21873244
Renslow, R S; Babauta, J T; Majors, P D; Mehta, H S; Ewing, R J; Ewing, T W; Mueller, K T; Beyenal, H
2014-01-01
Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for noninvasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live biofilms respiring on electrodes. Here, we describe a biofilm microreactor system, including a reusable and a disposable reactor, that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radio frequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system we grew Geobacter sulfurreducens biofilms on electrodes. EC-NMR was used to investigate growth medium flow velocities and depth-resolved acetate concentration inside the biofilm. As a novel contribution we used Monte Carlo error analysis to estimate the standard deviations of the acetate concentration measurements. Overall, we found that the disposable EC-NMR microreactor provided a 9.7 times better signal-to-noise ratio over the reusable reactor. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.
Saal, Wiebke; Ross, Alfred; Wyttenbach, Nicole; Alsenz, Jochem; Kuentz, Martin
2018-01-02
The methacrylate copolymer Eudragit EPO (EPO) has previously shown to greatly enhance solubilization of acidic drugs via ionic interactions and by multiple hydrophobic contacts with polymeric side chains. The latter type of interaction could also play a role for solubilization of other compounds than acids. The aim of this study was therefore to investigate the solubility of six poorly soluble bases in presence and absence of EPO by quantitative ultrapressure liquid chromatography with concomitant X-ray powder diffraction analysis of the solid state. For a better mechanistic understanding, spectra and diffusion data were obtained by 1 H nuclear magnetic resonance (NMR) spectroscopy. Unexpected high solubility enhancement (up to 360-fold) was evidenced in the presence of EPO despite the fact that bases and polymer were both carrying positive charges. This exceptional and unexpected solubilization was not due to a change in the crystalline solid state. NMR spectra and measured diffusion coefficients indicated both strong drug-polymer interactions in the bulk solution, and diffusion data suggested conformational changes of the polymer in solution. Such conformational changes may have increased the accessibility and extent of hydrophobic contacts thereby leading to increased overall molecular interactions. These initially surprising solubilization results demonstrate that excipient selection should not be based solely on simple considerations of, for example, opposite charges of drug and excipient, but it requires a more refined molecular view. Different solution NMR techniques are especially promising tools to gain such mechanistic insights.
Daniel J. Yelle; John Ralph; Charles R. Frihart
2008-01-01
A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...
Daniel J. Yelle; John Ralph; Charles R. Frihart
2011-01-01
Solution-state NMR provides a powerful tool to observe the presence or absence of covalent bonds between wood and adhesives. Finely ground wood can be dissolved in an NMR compatible solvent system containing dimethylsulfoxide-d6 and N-methylimidazole-d6, in which the wood polymers remain largely intact. High-resolution...
From self-assembly fundamental knowledge to nanomedicine developments.
Monduzzi, Maura; Lampis, Sandrina; Murgia, Sergio; Salis, Andrea
2014-03-01
This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food technology. Developments in the applied fields have also been addressed by important progresses in theoretical skills aimed to understand intermolecular forces, and specific ion interactions. Nevertheless, this is still an open question. Our predictive ability has however increased, hence more ambitious targets can be planned. Nanomedicine represents a major challenging field with its main aims: targeted drug delivery, diagnostic, theranostics, tissue engineering, and personalized medicine. Few recent examples will be mentioned. Although the real applications of these systems still need major work, nevertheless new challenges are open, and perspectives based on integrated multidisciplinary approaches would enable both a deeper basic knowledge and the expected advances in biomedical field. © 2013.
Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin
Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Hammed, Leiqaa A.; Al-Amiery, Ahmed A.; San, Ng Hooi; Musa, Ahmed Y.
2014-01-01
A new coumarin derivative, N,N′-((2E,2′E)-2,2′-(1,4-phenylenebis(methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH. PMID:28788680
Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin.
Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Hammed, Leiqaa A; Al-Amiery, Ahmed A; San, Ng Hooi; Musa, Ahmed Y
2014-06-05
A new coumarin derivative, N , N '-((2E,2'E)-2,2'-(1,4-phenylenebis (methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1 H-NMR and carbon-13 nuclear magnetic resonance 13 C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential ( E CORR ), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.
Lim, Kwang Hun; Dasari, Anvesh K. R.; Hung, Ivan; ...
2016-03-21
Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. We report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. These NMR solution results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGHmore » β-sheet.« less
Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.
2010-03-30
An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumner, S.C.J.
1986-01-01
Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemicmore » mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.« less
NASA Astrophysics Data System (ADS)
Alver, Özgür; Dikmen, Gökhan
2016-03-01
Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.
Krudopp, Heimke; Sönnichsen, Frank D; Steffen-Heins, Anja
2015-08-15
The partitioning behavior of paramagnetic nitroxides in dispersed systems can be determined by deconvolution of electron paramagnetic resonance (EPR) spectra giving equivalent results with the validated methods of ultrafiltration techniques (UF) and pulsed-field gradient nuclear magnetic resonance spectroscopy (PFG-NMR). The partitioning behavior of nitroxides with increasing lipophilicity was investigated in anionic, cationic and nonionic micellar systems and 10 wt% o/w emulsions. Apart from EPR spectra deconvolution, the PFG-NMR was used in micellar solutions as a non-destructive approach, while UF based on separation of very small volume of the aqueous phase. As a function of their substituent and lipophilicity, the proportions of nitroxides that were solubilized in the micellar or emulsion interface increased with increasing nitroxide lipophilicity for all emulsifier used. Comparing the different approaches, EPR deconvolution and UF revealed comparable nitroxide proportions that were solubilized in the interfaces. Those proportions were higher than found with PFG-NMR. For PFG-NMR self-diffusion experiments the reduced nitroxides were used revealing a high dynamic of hydroxylamines and emulsifiers. Deconvolution of EPR spectra turned out to be the preferred method for measuring the partitioning behavior of paramagnetic molecules as it enables distinguishing between several populations at their individual solubilization sites. Copyright © 2015 Elsevier Inc. All rights reserved.
Chandramohan, A; Bharathikannan, R; Kandavelu, V; Chandrasekaran, J; Kandhaswamy, M A
2008-12-01
Crystalline substance of naphthalene picrate (NP) was synthesized and single crystals were grown using slow evaporation solution growth technique. The solubility of the naphthalene picrate complex was estimated using different solvents such as chloroform and benzene. The material was characterized by elemental analysis, powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and fourier transform-infrared (FT-IR) techniques. The electronic absorption was studied through UV-vis spectrophotometer. Thermal behavior and stability of the crystal were studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The second harmonic generation (SHG) of the material was confirmed using Nd:YAG laser.
Three-Dimensional Conformation of Folded Polymers in Single Crystals
NASA Astrophysics Data System (ADS)
Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu
2015-10-01
The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.
Thomas, Michael; Anglim Lagones, Thomas; Judd, Martyna; Morshedi, Mahbod; O'Mara, Megan L; White, Nicholas G
2017-07-04
A combination of molecular dynamics (MD), NMR spectroscopy, and single crystal X-ray diffraction (SCXRD) techniques was used to probe the self-assembly of para- and meta-bis(amidinium) compounds with para-, meta-, and ortho-dicarboxylates. Good concordance was observed between the MD and experimental results. In DMSO solution, the systems form several rapidly exchanging assemblies, in part because a range of hydrogen bonding interactions is possible between the amidinium and carboxylate moieties. Upon crystallization, the majority of the systems form 1D supramolecular polymers, which are held together by short N-H⋅⋅⋅O hydrogen bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy.
Grondin, Julie M; Langelaan, David N; Smith, Steven P
2017-01-01
Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1 H- 15 N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate binding partners, to quantify the dissociation constant (K d ) of any identified interactions, and to map the carbohydrate binding site on the structure of the protein. Here, we describe the titration of a family 32 carbohydrate binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction, and map the GalNAc binding site onto the structure of CpCBM32.
Push-through Direction Injectin NMR Automation
Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...
Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip.
Kehayias, P; Jarmola, A; Mosavian, N; Fescenko, I; Benito, F M; Laraoui, A; Smits, J; Bougas, L; Budker, D; Neumann, A; Brueck, S R J; Acosta, V M
2017-08-04
Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy and picoliter NMR studies. We demonstrate NMR spectroscopy of picoliter-volume solutions using a nanostructured diamond chip with dense, high-aspect-ratio nanogratings, enhancing the surface area by 15 times. The nanograting sidewalls are doped with nitrogen-vacancies located a few nanometers from the diamond surface to detect the NMR spectrum of roughly 1 pl of fluid lying within adjacent nanograting grooves. We perform 1 H and 19 F nuclear magnetic resonance spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we determine that 4 ± 2 × 10 12 19 F spins in a 1 pl volume can be detected with a signal-to-noise ratio of 3 in 1 s of integration.Nitrogen vacancy (NV) centres in diamond can be used for NMR spectroscopy, but increased sensitivity is needed to avoid long measurement times. Kehayias et al. present a nanostructured diamond grating with a high density of NV centres, enabling NMR spectroscopy of picoliter-volume solutions.
Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers
2016-01-06
characterize the protein-rich fluid in the various spider silk producing glands. We have been using a battery of magnetic resonance methods including...solution and solid-state nuclear magnetic resonance (NMR) and micro imaging (MRI) in combination with wide angle and small angle X-ray diffraction...range of magnetic resonance methods. We successfully developed magnetic resonance imaging (MRI) techniques with localized spectroscopy to probe the silk
NASA Astrophysics Data System (ADS)
Mangaiyarkarasi, K.; Ravichandran, A. T.; Anitha, K.; Manivel, A.
2018-03-01
The titled compound, L-Phenylalaninium methanesulfonate (LPA-MS) was synthesized and grown into single crystals by slow solvent evaporation solution growth technique in aqueous solution containing equimolar concentrations of L-phenylalanine and methanesulfonic acid at room temperature. The grown crystals were subjected to single crystal X-ray diffraction studies. It crystallizes in the monoclinic crystal structure with P21 space group and the unit cell parameters are a = 5.312 (10) Å, b = 8.883 (2) Å and c = 25.830 (7) Å. The functional groups of the LPA-MS crystal were confirmed with FT-IR and FT-Raman analysis. The carbon-hydrogen skeleton was confirmed with 1H NMR and 13C NMR analysis. TG-DTG and DSC studies were carried out to determine the thermal stability of the crystals. The optical transparency ranges were studied through UV-vis-spectroscopy and the crystal was found to be transparent in the visible region. The second Harmonic generation (SHG) efficiency of the grown LPA-MS crystal was measured by the Kurtz-Perry powder technique. The dipolar nature of the L-phenylalaninium methanesulfonate and the presence of the intermolecular hydrogen bonding between the molecules are the vital factors responsible for the existence of SHG activity in the crystal.
Horst, Reto; Wüthrich, Kurt
2015-07-20
Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [ 2 H, 15 N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al ., 2013). 2D [ 15 N, 1 H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.
Clusters of imidazolium-based ionic liquid in benzene solutions.
Shimomura, Takuya; Takamuku, Toshiyuki; Yamaguchi, Toshio
2011-07-07
Cluster formation of 1-dodecyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (C(12)mim(+)TFSA(-)) in benzene solutions was investigated using small-angle neutron scattering (SANS), NMR, attenuated total reflectance infrared (ATR-IR), and large-angle X-ray scattering (LAXS) techniques. The SANS measurements revealed that C(12)mim(+)TFSA(-) is heterogeneously mixed with benzene in the narrow range of benzene mole fraction 0.9 ≤ x(C6D6) ≤ 0.995 with a maximum heterogeneity at x(C6D6) ≈ 0.99. The NMR results suggested that the imidazolium ring is sandwiched between benzene molecules through the cation-π interaction. Moreover, TFSA(-) probably interacts with the imidazolium ring even in the range of x(C6H6) ≥ 0.9. Thus, the imidazolium rings, benzene molecules, and TFSA(-) would form clusters in the C(12)mim(+)TFSA(-)-benzene solutions. The LAXS measurements showed that the distance between the imidazolium ring and benzene is ∼3.8 Å with that between the benzene molecules of ∼7.5 Å. On the basis of these results, we discussed a plausible reason for the liquid-liquid equilibrium of the C(12)mim(+)TFSA(-)-benzene system.
How to tackle protein structural data from solution and solid state: An integrated approach.
Carlon, Azzurra; Ravera, Enrico; Andrałojć, Witold; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio
2016-02-01
Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule. Copyright © 2016 Elsevier B.V. All rights reserved.
Sahmsipur, Mojtaba; Dastjerdi, Leila Shafiee; Alizadeh, Nader; Bijanzadeh, Hamid Reza
2008-04-01
(133)Cs NMR spectroscopy was used to determine the stoichiometry and stability of the Cs(+) ion complex with dibenzo-21-crown-7 (DB21C7) in acetonitrile-dimethylsulfoxide (96.5:3.5, w/w) and nitromethane-dimethylsulfoxide (96.5:3.5, w/w) mixtures. A competitive (133)Cs NMR technique was also employed to probe the complexation of Na(+), K(+), Rb(+), Ag(+), Tl(+), NH(4)(+), Mg(2+), Ba(2+), Hg(2+), Pb(2+) and UO(2)(2+) ions with DB21C7 in the same solvent systems. All the resulting 1:1 complexes in nitromethane-dimethylsulfoxide were more stable than those in acetonitrile-dimethylsulfoxide solution. In both solvent systems, the stability of the resulting complexes was found to vary in the order Rb(+)>K(+) approximately Ba(2+)>Tl(+)>Cs(+)>NH(4)(+) approximately Pb(2+)>Ag(+)>UO(2)(2+)>Hg(2+)>Mg(2+)>Na(+).
Arges, Christopher G.; Ramani, Vijay
2013-01-01
Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629
NASA Astrophysics Data System (ADS)
Weber, J. K. R.; Benmore, C. J.; Tailor, A. N.; Tumber, S. K.; Neuefeind, J.; Cherry, B.; Yarger, J. L.; Mou, Q.; Weber, W.; Byrn, S. R.
2013-10-01
Acoustic levitation was used to trap 1-3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.
Hiruma-Shimizu, Kazumi; Shimizu, Hiroki; Thompson, Gary S; Kalverda, Arnout P; Patching, Simon G
2015-01-01
Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete deuteration can be used, which eliminate interfering proton signals coming from the detergent itself and also eliminate potential proton relaxation pathways and strong dipole-dipole interactions that contribute line broadening effects. Deuterated detergents have also been used to solubilize membrane proteins for other experimental techniques including small angle neutron scattering and single-crystal neutron diffraction and for studying membrane proteins immobilized on gold electrodes. This is a review of the properties, chemical synthesis and applications of detergents that are currently commercially available and/or that have been synthesized with partial or complete deuteration. Specifically, the detergents are sodium dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-β-D-glucoside (β-OG), n-dodecyl-β-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC). The review also considers effects of deuteration, detergent screening and guidelines for detergent selection. Although deuterated detergents are relatively expensive and not always commercially available due to challenges associated with their chemical synthesis, they will continue to play important roles in structural and functional studies of membrane proteins, especially using solution-state NMR.
Dissolution of lignin in green urea aqueous solution
NASA Astrophysics Data System (ADS)
Wang, Jingyu; Li, Ying; Qiu, Xueqing; Liu, Di; Yang, Dongjie; Liu, Weifeng; Qian, Yong
2017-12-01
The dissolution problem is the main obstacle for the value-added modification and depolymerization of industrial lignin. Here, a green urea aqueous solution for complete dissolution of various lignin is presented and the dissolution mechanism is analyzed by AFM, DLS and NMR. The results show that the molecular interaction of lignin decreases from 32.3 mN/m in pure water to 11.3 mN/m in urea aqueous solution. The immobility of 1H NMR spectra and the shift of 17O NMR spectra of urea in different lignin/urea solutions indicate that the oxygen of carbonyl in urea and the hydrogen of hydroxyl in lignin form new hydrogen bonds and break the original hydrogen bonds among lignin molecules. The shift of 1H NMR spectra of lignin and the decrease of interactions in model compound polystyrene indicate that urea also breaks the π-π interactions between aromatic rings of lignin. Lignin dissolved in urea aqueous has good antioxidant activity and it can scavenge at least 63% free radicals in 16 min.
Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula
2007-12-01
Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.
Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini
2015-01-01
The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.
Conformational Aspects of the O-acetylation of C-tetra(phenyl)calixpyrogallol[4]arene.
Casas-Hinestroza, José Luis; Maldonado, Mauricio
2018-05-20
Reaction between pyrogallol and benzaldehyde results in a conformational mixture of C- tetra(phenyl)pyrogallol[4]arene (crown and chair). The conformer mixture was separated using crystallization procedures and the structures were determined using FTIR, ¹H-NMR, and 13 C-NMR. O -acetylation of C- tetra(phenyl)pyrogallol[4]arene (chair) with acetic anhydride, in pyridine results in the formation of dodecaacetyl-tetra(phenyl)pyrogallol[4]arene. The structure was determined using ¹H-NMR and 13 C-NMR finding that the product maintains the conformation of the starting conformer. On the other hand, the O -acetylation reaction of C- tetra(phenyl)pirogallol[4]arene (crown) under same conditions proceeded efficiently, and its structure was determined using ¹H-NMR and 13 C-NMR. Dynamic ¹H-NMR of acetylated pyrogallolarene was studied by means of variable temperature in DMSO- d ₆ solution, and it revealed that two conformers are formed in the solution. Boat conformations for acetylated pyrogallolarene showed a slow interconversion at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques, David A.; Streamer, Margaret; Rowland, Susan L.
2009-06-01
The crystal structure of Sda, a DNA-replication/damage checkpoint inhibitor of sporulation in B. subtilis, has been solved via the MAD method. The subunit arrangement in the crystal has enabled a reappraisal of previous biophysical data, resulting in a new model for the behaviour of the protein in solution. The crystal structure of the DNA-damage checkpoint inhibitor of sporulation, Sda, from Bacillus subtilis, has been solved by the MAD technique using selenomethionine-substituted protein. The structure closely resembles that previously solved by NMR, as well as the structure of a homologue from Geobacillus stearothermophilus solved in complex with the histidine kinase KinB.more » The structure contains three molecules in the asymmetric unit. The unusual trimeric arrangement, which lacks simple internal symmetry, appears to be preserved in solution based on an essentially ideal fit to previously acquired scattering data for Sda in solution. This interpretation contradicts previous findings that Sda was monomeric or dimeric in solution. This study demonstrates the difficulties that can be associated with the characterization of small proteins and the value of combining multiple biophysical techniques. It also emphasizes the importance of understanding the physical principles behind these techniques and therefore their limitations.« less
NASA Astrophysics Data System (ADS)
Albayrak, Çiğdem; Gümrükçüoğlu, İsmail E.; Odabaşoğlu, Mustafa; İskeleli, Nazan Ocak; Ağar, Erbil
2009-08-01
Some novel azo compounds were prepared by the reaction of 2-hydroxyacetophenone with aniline and its substituted derivatives. The structures of synthesized azo compounds were determined by IR, UV-Vis, 1H NMR and 13C NMR spectroscopic techniques and the structures of some of these compounds were also determined by X-ray diffraction studies. Structural analysis using IR in solid state shows that the azo form is favoured in the azo compounds whereas UV-Vis analysis of the azo compounds in solution has shown that there is a azo and ionic form. The azo compounds in the basic solvents dimethylformamide (DMF) and dimethylsulfoxide (DMSO) are both azo and ionic form while these compounds in ethyl alcohol (EtOH) and chloroform (CHCl 3) are only azo form.
Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu
2010-12-01
The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.
2014-03-01
In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactorsmore » were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.« less
Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.
ERIC Educational Resources Information Center
Borman, Stuart A.
1982-01-01
Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…
ERIC Educational Resources Information Center
Viegas, Aldino; Manso, Joao; Nobrega, Franklin L.; Cabrita, Eurico J.
2011-01-01
Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor…
Expedited Selection of NMR Chiral Solvating Agents for Determination of Enantiopurity
2016-01-01
The use of NMR chiral solvating agents (CSAs) for the analysis of enantiopurity has been known for decades, but has been supplanted in recent years by chromatographic enantioseparation technology. While chromatographic methods for the analysis of enantiopurity are now commonplace and easy to implement, there are still individual compounds and entire classes of analytes where enantioseparation can prove extremely difficult, notably, compounds that are chiral by virtue of very subtle differences such as isotopic substitution or small differences in alkyl chain length. NMR analysis using CSAs can often be useful for such problems, but the traditional approach to selection of an appropriate CSA and the development of an NMR-based analysis method often involves a trial-and-error approach that can be relatively slow and tedious. In this study we describe a high-throughput experimentation approach to the selection of NMR CSAs that employs automation-enabled screening of prepared libraries of CSAs in a systematic fashion. This approach affords excellent results for a standard set of enantioenriched compounds, providing a valuable comparative data set for the effectiveness of CSAs for different classes of compounds. In addition, the technique has been successfully applied to challenging pharmaceutical development problems that are not amenable to chromatographic solutions. Overall, this methodology provides a rapid and powerful approach for investigating enantiopurity that compliments and augments conventional chromatographic approaches. PMID:27280168
High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids
Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua
2014-01-01
High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (< 25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem’ can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086
Compressed NMR: Combining compressive sampling and pure shift NMR techniques.
Aguilar, Juan A; Kenwright, Alan M
2017-12-26
Historically, the resolution of multidimensional nuclear magnetic resonance (NMR) has been orders of magnitude lower than the intrinsic resolution that NMR spectrometers are capable of producing. The slowness of Nyquist sampling as well as the existence of signals as multiplets instead of singlets have been two of the main reasons for this underperformance. Fortunately, two compressive techniques have appeared that can overcome these limitations. Compressive sensing, also known as compressed sampling (CS), avoids the first limitation by exploiting the compressibility of typical NMR spectra, thus allowing sampling at sub-Nyquist rates, and pure shift techniques eliminate the second issue "compressing" multiplets into singlets. This paper explores the possibilities and challenges presented by this combination (compressed NMR). First, a description of the CS framework is given, followed by a description of the importance of combining it with the right pure shift experiment. Second, examples of compressed NMR spectra and how they can be combined with covariance methods will be shown. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.
Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less
Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; ...
2016-02-04
Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less
Interpolymer complexation: comparisons of bulk and interfacial structures.
Cattoz, Beatrice; de Vos, Wiebe M; Cosgrove, Terence; Crossman, Martin; Espidel, Youssef; Prescott, Stuart W
2015-04-14
The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle neutron scattering (SANS), solvent relaxation NMR, and ellipsometry. We show for the first time that complex formation occurs between NaPSS and PVP in solution; the complexes formed were shown not to be influenced by pH variation, whereas increasing the ionic strength increases the complexation of NaPSS but does not influence the PVP directly. The complexes formed contained a large proportion of NaPSS. Study of these interactions at the silica interface demonstrated that complexes also form at the nanoparticle interface where PVP is added in the system prior to NaPSS. For a constant PVP concentration and varying NaPSS concentration, the system remains stable until NaPSS is added in excess, which leads to depletion flocculation. Surface complex formation using the layer-by-layer technique was also reported at a planar silica interface.
A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.
Sgourakis, Nikolaos G; May, Nathan A; Boyd, Lisa F; Ying, Jinfa; Bax, Ad; Margulies, David H
2015-11-27
As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Karabacak, Mehmet; Kose, Etem; Atac, Ahmet; Asiri, Abdullah M.; Kurt, Mustafa
2014-01-01
The spectroscopic properties of 3,5-difluorophenylboronic acid (3,5-DFPBA, C6H3F2B(OH)2) were investigated by FT-IR, FT-Raman UV-Vis, 1H and 13C NMR spectroscopic techniques. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase and 1H and 13C NMR spectra in DMSO solution were recorded. The UV spectra that dissolved in ethanol and water were recorded in the range of 200-400 nm for each solution. The structural and spectroscopic data of the molecule have been obtained for possible three conformers from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. Hydrogen-bonded dimer of title molecule, optimized by counterpoise correction, was also studied B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. 1H and 13C NMR chemical shifts were calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were performed by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (OPDOS) diagrams analysis were presented. The effects due to the substitutions of boric acid group and halogen were investigated. The results of the calculations were applied to simulate spectra of the title compound, which show excellent agreement with observed spectra. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP), nonlinear optical properties (NLO) and thermodynamic features were performed.
High-field EPR on membrane proteins - crossing the gap to NMR.
Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton
2013-11-01
In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented. Copyright © 2013 Elsevier B.V. All rights reserved.
High-resolution solution-state NMR of unfractionated plant cell walls
John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom
2009-01-01
Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...
Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study.
Huang, Rui; Ripstein, Zev A; Augustyniak, Rafal; Lazniewski, Michal; Ginalski, Krzysztof; Kay, Lewis E; Rubinstein, John L
2016-07-19
The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded.
Hanna, G M; Lau-Cam, C A
1996-01-01
A simple, accurate, and specific 1H NMR spectroscopic method was developed for the assay of diatrizoate meglumine or the combination diatrizoate meglumine and diatrizoate sodium in commercial solutions for injection. A mixture of injectable solution and sodium acetate, the internal standard, was diluted with D2O and the 1H NMR spectrum of the solution was obtained. Two approaches were used to calculate the drug content, based on the integral values for the -N-CO-CH3 protons of diatrizoic acid at 2.23 ppm, and -N-CH3 protons of meglumine at 2.73 ppm, and the CH3-CO-protons of sodium acetate at 1.9 ppm. Recoveries (mean +/- standard deviation) of diatrizoic acid and meglumine from 10 synthetic mixtures of various amounts of these compounds with a fixed amount of internal standard were 100.3 +/- 0.55% and 100.1 +/- 0.98%, respectively. In addition to providing a direct means of simultaneously assaying diatrizoic acid and meglumine, the proposed NMR method can also be used to identify diatrizoate meglumine and each of its molecular components.
NASA Astrophysics Data System (ADS)
Hermkens, Niels K. J.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco
2017-03-01
SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H2) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2 min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay.
Parsimony and goodness-of-fit in multi-dimensional NMR inversion
NASA Astrophysics Data System (ADS)
Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos
2017-01-01
Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.
Prakash, M; Geetha, D; Lydia Caroline, M
2013-04-15
Single crystals of L-phenylalanine-benzoic acid (LPBA) were successfully grown from aqueous solution by solvent evaporation technique. Purity of the crystals was increased by the method of recrystallization. The XRD analysis confirms that the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. The chemical structure of compound was established by FT-NMR technique. The presence of functional groups was estimated qualitatively by Fourier transform infrared analysis (FT-IR). Ultraviolet-visible spectral analyses showed that the crystal has low UV cut-off at 254 nm combined with very good transparency of 90% in a wide range. The optical band gap was estimated to be 6.91 eV. Thermal behavior has been studied with TGA/DTA analyses. The existence of second harmonic generation (SHG) efficiency was found to be 0.56 times the value of KDP. The dielectric behavior of the sample was also studied for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brownlee, R.T.; Shehan, B.P.; Wedd, A.G.
1987-07-01
Variable-temperature NMR line width measurements of ZVMo and UN in aqueous solutions of K4(Mo(CN)8) x 2H2O indicate that the stereochemistry of the (Mo(CN)8)U ion in solution is dodecahedral. A value for the ZVMo quadrupole coupling constant of 3.61 MHz is obtained. 27 references, 1 figure, 1 table.
NASA Astrophysics Data System (ADS)
Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.
2016-05-01
A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.
Lesot, Philippe; Kazimierczuk, Krzysztof; Trébosc, Julien; Amoureux, Jean-Paul; Lafon, Olivier
2015-11-01
Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years. Copyright © 2015 John Wiley & Sons, Ltd.
Patiny, Luc; Zasso, Michaël; Kostro, Daniel; Bernal, Andrés; Castillo, Andrés M; Bolaños, Alejandro; Asencio, Miguel A; Pellet, Norman; Todd, Matthew; Schloerer, Nils; Kuhn, Stefan; Holmes, Elaine; Javor, Sacha; Wist, Julien
2017-10-05
NMR is a mature technique that is well established and adopted in a wide range of research facilities from laboratories to hospitals. This accounts for large amounts of valuable experimental data that may be readily exported into a standard and open format. Yet the publication of these data faces an important issue: Raw data are not made available; instead, the information is slimed down into a string of characters (the list of peaks). Although historical limitations of technology explain this practice, it is not acceptable in the era of Internet. The idea of modernizing the strategy for sharing NMR data is not new, and some repositories exist, but sharing raw data is still not an established practice. Here, we present a powerful toolbox built on recent technologies that runs inside the browser and provides a means to store, share, analyse, and interact with original NMR data. Stored spectra can be streamlined into the publication pipeline, to improve the revision process for instance. The set of tools is still basic but is intended to be extended. The project is open source under the Massachusetts Institute of Technology (MIT) licence. Copyright © 2017 John Wiley & Sons, Ltd.
Synthesis and spectroscopic properties of novel asymmetric Schiff bases.
Güngör, Ozlem; Gürkan, Perihan
2010-09-15
Three novel diimine Schiff bases including two asymmetric imines (2-OH)R-CHN-C(6)H(4)-CHN-R'(2-OH) type [where R=R'=phenyl for H(2)L(1); R=naphthyl, R'=phenyl for H(2)L(2) and R=R'=naphthyl for H(2)L(3)] have been synthesized with a new two step method. For this purpose, the starting Schiff bases 4-nitrobenzylidene-2-hydroxyaniline (SB(1)-NO(2)) and 4-nitrobenzylidene-2-hydroxy-3-naphthylamine (SB(2)-NO(2)) have been synthesized, previously. Nitro groups of them have been reduced into their amino derivatives (SB(1)-NH(2) and SB(2)-NH(2)) with sodium dithionite as selective reductant and the other imino groups have been formed by adding salicylaldehyde or 2-hydroxy-1-naphthaldehyde to the same solutions. The structures of the diimine Schiff bases were confirmed by elemental analyses, ESI-MS, FT-IR, (1)H NMR and (13)C NMR spectroscopy. The phenol-imine and keto-amine tautomerism of the Schiff bases were investigated by FT-IR, (1)H NMR, (13)C NMR techniques and UV-vis spectra in different solvents (DMSO, methanol, chloroform, toluene and cyclohexane). The effects of acidic and basic media on the tautomeric equilibria were discussed. Copyright 2010 Elsevier B.V. All rights reserved.
Fuhr, Olaf; Breitung, Ben; Kiran Chakravadhanula, Venkata Sei; Guthausen, Gisela; Hennrich, Frank; Yu, Wen; Kappes, Manfred M.; Roesky, Peter W.
2017-01-01
With the aim to synthesize soluble cluster molecules, the silver salt of (4-(tert-butyl)phenyl)methanethiol [AgSCH2C6H4 tBu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag115S34(SCH2C6H4 tBu)47(dpph)6] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31P/109Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution. PMID:28507679
Sekhar, Ashok; Kay, Lewis E
2013-08-06
The importance of dynamics to biomolecular function is becoming increasingly clear. A description of the structure-function relationship must, therefore, include the role of motion, requiring a shift in paradigm from focus on a single static 3D picture to one where a given biomolecule is considered in terms of an ensemble of interconverting conformers, each with potentially diverse activities. In this Perspective, we describe how recent developments in solution NMR spectroscopy facilitate atomic resolution studies of sparsely populated, transiently formed biomolecular conformations that exchange with the native state. Examples of how this methodology is applied to protein folding and misfolding, ligand binding, and molecular recognition are provided as a means of illustrating both the power of the new techniques and the significant roles that conformationally excited protein states play in biology.
Determining association constants from titration experiments in supramolecular chemistry.
Thordarson, Pall
2011-03-01
The most common approach for quantifying interactions in supramolecular chemistry is a titration of the guest to solution of the host, noting the changes in some physical property through NMR, UV-Vis, fluorescence or other techniques. Despite the apparent simplicity of this approach, there are several issues that need to be carefully addressed to ensure that the final results are reliable. This includes the use of non-linear rather than linear regression methods, careful choice of stoichiometric binding model, the choice of method (e.g., NMR vs. UV-Vis) and concentration of host, the application of advanced data analysis methods such as global analysis and finally the estimation of uncertainties and confidence intervals for the results obtained. This tutorial review will give a systematic overview of all these issues-highlighting some of the key messages herein with simulated data analysis examples.
2017-01-01
unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT: Carbon-13 nuclear magnetic resonance (13C NMR) spectroscopy is a powerful technique for...FLEXIBLE SYMMETRIC TOP ROTOR MODEL 1. INTRODUCTION Nuclear magnetic resonance (NMR) spectroscopy is a tremendously powerful technique for...application of NMR spectroscopy concerns the property of molecular motion, which is related to many physical, and even biological, functions of molecules in
Leenheer, J.A.; Wershaw, R. L.; Brown, P.A.; Noyes, T.I.
1991-01-01
??? Poly(ethylene glycol) (PEG) residues were detected in organic solute isolates from surface water by 1H nuclear magnetic resonance spectrometry (NMR), 13C NMR spectrometry, and colorimetric assay. PEG residues were separated from natural organic solutes in Clear Creek, CO, by a combination of methylation and chromatographic procedures. The isolated PEG residues, characterized by NMR spectrometry, were found to consist of neutral and acidic residues that also contained poly(propylene glycol) moieties. The 1H NMR and the colorimetric assays for poly(ethylene glycol) residues were done on samples collected in the lower Mississippi River and tributaries between St. Louis, MO, and New Orleans, LA, in July-August and November-December 1987. Aqueous concentrations for poly(ethylene glycol) residues based on colorimetric assay ranged from undetectable to ???28 ??g/L. Concentrations based on 1H NMR spectrometry ranged from undetectable to 145 ??g/L.
NASA Astrophysics Data System (ADS)
Karthigha, S.; Krishnamoorthi, C.
2018-03-01
An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.
Surface modification of calcium hydroxyapatite by grafting of etidronic acid
NASA Astrophysics Data System (ADS)
Othmani, Masseoud; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi
2013-06-01
The surface of prepared calcium hydroxyapatite CaHAp has been modified by grafting the etidronic acid (ETD). For that purpose, CaHAp powders have been suspended in an aqueous etidronate solution with different concentrations. The obtained composites CaHAp-(ETD) were characterized by TEM and AFM techniques to determinate morphological properties and were also characterized by XRD, IR, NMR and chemical and thermal analysis to determinate their physico-chemical properties and essentially the nature of the interaction between the inorganic support and the grafted organic ETD. After reaction with ETD, XRD powder analysis shows that the apatitic structure remains unchanged with slight affectation of its crystallinity. The presence of etidronate fragment bounded to hydroxyapatite was confirmed by IR and solid-state NMR spectroscopy. TEM and AFM techniques indicate that the presence of etidronate changes the morphology of the particles. Basing on the obtained results, a reactional mechanism was proposed to explain the formation of covalent Casbnd Osbnd Porg bonds on the hydroxyapatite surface between the superficial hydroxyl groups (tbnd Casbnd OH) of the apatite and phosphonate group (Psbnd OH) of etidronate.
USDA-ARS?s Scientific Manuscript database
Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...
A solution-state NMR approach to elucidating pMDI-wood bonding mechanisms in loblolly pine
Daniel Joseph Yelle
2009-01-01
Solution-state NMR spectroscopy is a powerful tool for unambiguously determining the existence or absence of covalent chemical bonds between wood components and adhesives. Finely ground wood cell wall material dissolves in a solvent system containing DMSO-d6 and NMI-d6, keeping wood component polymers intact and in a near-...
NMR solution structure study of one saturated sulphur-containing amides from Glycosmis lucida.
Geng, Zhu-Feng; Yang, Kai; Li, Yin-Ping; Guo, Shan-Shan; You, Chun-Xue; Zhang, Wen-Juan; Zhang, Zhe; Du, Shu-Shan
2017-04-01
One sulphur-containing amide (N-[2-(4-Hydroxyphenyl)-ethyl]-3-methanesulfonyl-N-methyl-propionamide) which was isolated from Glycosmis lucida Wall ex Huang had a different NMR profile with this kind of compounds' normal case. Based on the information obtained by nuclear magnetic resonance pectroscopy (NMR) and mass spectrometry (MS), its configurations in solution were investigated. The results indicated that the compound would have two stable configurations in solution as the double bond switched between C-N and C-O in an appropriate rate. This phenomenon was clearly exposed by the one dimension selective NOE (1D-NOE) experiments. This conclusion would play an active role in the structure analysis work of this kind of compounds.
NASA Astrophysics Data System (ADS)
Dhandapani, M.; Sugandhi, K.; Nithya, S.; Muthuraja, P.; Balachandar, S.; Aranganayagam, K. R.
2018-05-01
The perovskite type organic-inorganic hybrid benzyltributyl ammoniumtetrachloro manganate (II) monohydrates (BTBA-Mn) are synthesized and the single crystals are grown by slow evaporation solution growth technique. The structure of the grown crystals are confirmed by using X-ray diffraction (XRD), unit cell parameter analysis, Fourier transform Infrared (FTIR), elemental analysis and 13C-NMR spectral studies. Thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning colorimetric (DSC) analysis were carried out to understand thermal stability and occurrence of phase transition.
NASA Astrophysics Data System (ADS)
Veitch, Nigel Charles
Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus peroxidase was essential in confirming the identity of residues participating in the aromatic donor molecule binding site of peroxidases.
Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.
Barskiy, Danila A; Ke, Lucia A; Li, Xingyang; Stevenson, Vincent; Widarman, Nevin; Zhang, Hao; Truxal, Ashley; Pines, Alexander
2018-05-10
Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.
Ghorab, M K; Adeyeye, M C
2001-08-01
The effect of oven-dried wet granulation on the complexation of beta-cyclodextrin with ibuprofen (IBU) in solution was investigated using Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and molecular modeling. Granulation was carried out using 5 mL of three different granulating solvents; water, ethanol (95% v/v), and isopropanol and the granules were oven-dried at 60 degrees C for 2 h. The granules were compared to oven-dried physical mixture and conventionally prepared complex. Phase solubility study was performed to investigate the stability of the granulation-formed complexes in solution. FT-IR was used to examine the complexation in the granules while 1H NMR, and molecular modeling studies were carried out to determine the mechanism of complexation in the water-prepared granules. The solubility studies suggested a 1:1 complex between IBU and betaCD. It also showed that the stability of the complex in solution was in the following order with respect to the granulating solvents: ethanol > water > isopropanol. The FT-IR study revealed a shift in the carboxylic acid stretching band and decrease in the intensities of the C-H bending bands of the isopropyl group and the out-of-plane aromatic ring, of IBU, in granules compared to the oven-dried physical mixture. This indicated that granules might have some extent of solid state complexation that could further enhance dissolution and the IBU-betaCD solution state complexation. 1H NMR showed that water prepared oven-dried granules had a different 1H NMR spectrum compared to similarly made oven-dried physical mixture, indicative of complexation in the former. The 1H NMR and the molecular modeling studies together revealed that solution state complexation from the granules occurred by inclusion of the isopropyl group together with part of the aromatic ring of IBU into the betaCD cavity probably through its wider side. These results indicate that granulation process induced faster complexation in solution which enhances the solubility and the dissolution rate of poorly soluble drugs. The extent of complexation in the granules was dependent on the type of solvent used.
Prasad, Dev; Chauhan, Harsh; Atef, Eman
2016-03-07
We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.
John Ralph; Jane M. Marita; Sally A. Ralph; Ronald D. Hatfield; Fachuang Lu; Richard M. Ede; Junpeng Peng; Larry L. Landucci
1999-01-01
Despite the rather random and heterogeneous nature of isolated lignins, many of their intimate structural details are revealed by diagnostic NMR experiments. 13C-NMR was recognized early-on as a high-resolution method for detailed structural characterization, aided by the almost exact agreement between chemical shifts of carbons in good low-molecular...
Microwave temperature-jump nuclear magnetic resonance system for aqueous solutions
NASA Astrophysics Data System (ADS)
Kawakami, Masaru; Akasaka, Kazuyuki
1998-09-01
A microwave temperature-jump nuclear magnetic resonance (NMR) system suitable for aqueous solutions has been developed. A microwave pulse of a desired length is generated at a frequency of 2.46 GHz from a 1.3 kW magnetron, and is delivered through a waveguide and a coaxial cable to a coupling loop which works as an antenna to the dielectric resonator in the NMR probe. Inside the dielectric resonator, the microwave power is efficiently absorbed by the sample solution (about 100 μl) contained in a glass tube, causing a temperature jump by about 25 °C in less than 20 ms. The temperature after the jump can be maintained by applying intermittent microwave pulses of shorter length. A saddle-type radio-frequency coil is placed around the sample tube inside the hollow of the dielectric resonator to excite spins and detect NMR signals. Both the microwave pulses and the radio-frequency pulses are gated by a pulse programmer of the NMR spectrometer to form a desired temperature-jump pulse sequence. A mechanical mixing device is introduced, which significantly reduces the temperature gradient of the sample solution well within 100 ms after the jump. Application to an aqueous solution of ribonuclease A showed that the protein unfolds within 20 ms of microwave heating.
Cinar, Mehmet; Coruh, Ali; Karabacak, Mehmet
2011-12-01
This study reports the characterization of disperse red 1 acrylate compound by spectral techniques and quantum chemical calculations. The spectroscopic properties were analyzed by FT-IR, UV-vis, (1)H NMR and (13)C NMR techniques. FT-IR spectrum in solid state was recorded in the region 4000-400 cm(-1). The UV-vis absorption spectrum of the compound that dissolved in methanol was recorded in the range of 200-800 nm. The (1)H and (13)C NMR spectra were recorded in CDCl(3) solution. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR spectrum. A satisfactory consistency between the experimental and theoretical spectra was obtained and it shows that the hybrid DFT method is very useful in predicting accurate vibrational structure, especially for high-frequency region. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties were performed by timedependent DFT (TD-DFT) and CIS(D) approach. To investigate non linear optical properties, the electric dipole moment μ, polarizability α, anisotropy of polarizability Δα and molecular first hyperpolarizability β were computed. The linear polarizabilities and first hyperpolarizabilities of the studied molecule indicate that the compound can be a good candidate of nonlinear optical materials. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.
2015-02-21
Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruningmore » of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.« less
NMR study on the network structure of a mixed gel of kappa and iota carrageenans.
Hu, Bingjie; Du, Lei; Matsukawa, Shingo
2016-10-05
The temperature dependencies of the (1)H T2 and diffusion coefficient (D) of a mixed solution of kappa-carrageenan and iota-carrageenan were measured by NMR. Rheological and NMR measurements suggested an exponential formation of rigid aggregates of kappa-carrageenan and a gradual formation of fine aggregates of iota-carrageenan during two step increases of G'. The results also suggested that longer carrageenan chains are preferentially involved in aggregation, thus resulting in a decrease in the average Mw of solute carrageenans. The results of diffusion measurements for poly(ethylene oxide) (PEO) suggested that kappa-carrageenan formed thick aggregates that decreased hindrance to PEO diffusion by decreasing the solute kappa-carrageenan concentration in the voids of the aggregated chains, and that iota-carrageenan formed fine aggregates that decreased the solute iota-carrageenan concentration less. DPEO in a mixed solution of kappa-carrageenan and iota-carrageenan suggested two possibilities for the microscopic network structure: an interpenetrating network structure, or micro-phase separation. Copyright © 2016. Published by Elsevier Ltd.
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Jeffry Todd
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics.more » The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding module for the recently developed NMR remote detection experiment. The feasibility of using hyperpolarized xenon-129 gas as a sensor is discussed. This work also reports the use of an optical atomic magnetometer to detect the nuclear magnetization of Xe-129 gas, which has potential applicability as a detection module for NMR remote detection experiments.« less
Zhuravleva, Anastasia; Korzhnev, Dmitry M
2017-05-01
Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co- and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.
Kakuta, Masaya; Jayawickrama, Dimuthu A; Wolters, Andrew M; Manz, Andreas; Sweedler, Jonathan V
2003-02-15
Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of two capillary flows are mixed rapidly, and then the NMR spectra of the combined flow are recorded at precise time points. The distance after mixing the two fluids and flow rates define the solvent-protein interaction time; this method allows the measurement of NMR spectra at precise mixing time points independent of spectral acquisition time. Integration of a micromixer and a microcoil NMR probe enables low-microliter volumes to be used without losing significant sensitivity in the NMR measurement. Ubiquitin, the model compound, changes its conformation from native to A-state at low pH and in 40% or higher methanol/water solvents. Proton NMR resonances of the His-68 and the Tyr-59 of ubiquitin are used to probe the conformational changes. Mixing ubiquitin and methanol solutions under low pH at microliter per minute flow rates yields both native and A-states. As the flow rate decreases, yielding longer reaction times, the population of the A-state increases. The micromixer-NMR system can probe reaction kinetics on a time scale of seconds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norgaard, J.V.; Olsen, D.; Springer, N.
1995-12-31
A new technique for obtaining water-oil capillary pressure curves, based on NMR imaging of the saturation distribution in flooded cores is presented. In this technique, a steady state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and non-wetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the non-wetting phase is calculated numerically. The paper presents the NMR technique and the proceduremore » for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques.« less
Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study
Huang, Rui; Ripstein, Zev A.; Augustyniak, Rafal; Lazniewski, Michal; Ginalski, Krzysztof; Kay, Lewis E.; Rubinstein, John L.
2016-01-01
The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded. PMID:27402735
Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind
2012-09-27
The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.
Boosting production yield of biomedical peptides
NASA Technical Reports Server (NTRS)
Manatt, S. L.
1978-01-01
Nuclear magnetic resonance (NMR) technique is employed to monitor synthesis of biomedical peptides. Application of NMR technique may improve production yields of insulin, ACTH, and growth hormones, as well as other synthesized biomedical peptides.
USDA-ARS?s Scientific Manuscript database
D-glucaric acid was characterized in solution by comparing NMR spectra from the isotopically unlabeled molecule with those from D-glucaric acid labeled with deuterium or carbon-13 atoms. The NMR studies provided unequivocal assignments for all carbon atoms and non-hydroxyl protons of the molecule. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, G.D.; Weiner, J.H.; Sykes, B.D.
Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a /sup 13/C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D/sub 2/O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H/sub 2/O solutions; in 1:1 H/sub 2/O/D/sub 2/O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with /sup 13/C at the peptide carbonyls ofmore » alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects, the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule. A model of the detergent-solubilized coat protein is constructed from these H-exchange data which is consistent with circular dichroism and other NMR results.« less
Multispectral Analysis of NMR Imagery
NASA Technical Reports Server (NTRS)
Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.
1985-01-01
Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.
99 Tc NMR determination of the oxygen isotope content in 18 O-enriched water.
Tarasov, Valerii P; Kirakosyan, Gayana А; German, Konstantin E
2018-03-01
99 Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH 4 TcO 4 or NaTcO 4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18 O-enriched water have been studied by 99 Tc NMR. The method is based on 16 O/ 17 O/ 18 O intrinsic isotope effects in the 99 Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO 4 - and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99 Tc NMR signals of the Tc 16 O 4-n 18 O n - isotopologues. Because the oxygen exchange between TcO 4 - and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99 Tc NMR shift induced by a single 16 O→ 18 O substitution (-0.43 ± 0.01 ppm) in TcO 4 - and spin coupling constant 1 J( 99 Tc- 17 O) (131.46 Hz) favourable for the observation of individual signals of Tc 16 O 4-n 18 O n - isotopologues. Copyright © 2017 John Wiley & Sons, Ltd.
Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function
Lisi, George P.; Loria, J. Patrick
2015-01-01
Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily through product release, with the chemical reaction occurring much more quickly. As a result, the direct involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown and untested. In the following review, we describe the use of solution NMR techniques designed to probe various timescales of molecular motions and detail examples in which motions play a role in propagating catalytic effects from the active site and directly participate in essential aspects of enzyme function. PMID:26952190
Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition.
Das, Archana M; Ali, Abdul A; Hazarika, Manash P
2014-11-04
Cellulose acetate was synthesized from rice husk by using a simple, efficient, cost-effective and solvent-free method. Cellulose was isolated from rice husk (RH) using standard pretreatment method with dilute alkaline and acid solutions and bleaching with 2% H2O2. Cellulose acetate (CA) was synthesized successfully with the yield of 66% in presence of acetic anhydride and iodine as a catalyst in eco-friendly solvent-free conditions. The reaction parameters were standardized at 80 °C for 300 min and the optimum results were taken for further study. The extent of acetylation was evaluated from % yield and the degree of substitution (DS), which was determined by (1)H NMR and titrimetrically. The synthesized products were characterized with the help modern analytical techniques like FT-IR, (1)H NMR, XRD, etc. and the thermal behavior was evaluated by TGA and DSC thermograms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Matching multiple rigid domain decompositions of proteins
Flynn, Emily; Streinu, Ileana
2017-01-01
We describe efficient methods for consistently coloring and visualizing collections of rigid cluster decompositions obtained from variations of a protein structure, and lay the foundation for more complex setups that may involve different computational and experimental methods. The focus here is on three biological applications: the conceptually simpler problems of visualizing results of dilution and mutation analyses, and the more complex task of matching decompositions of multiple NMR models of the same protein. Implemented into the KINARI web server application, the improved visualization techniques give useful information about protein folding cores, help examining the effect of mutations on protein flexibility and function, and provide insights into the structural motions of PDB proteins solved with solution NMR. These tools have been developed with the goal of improving and validating rigidity analysis as a credible coarse-grained model capturing essential information about a protein’s slow motions near the native state. PMID:28141528
NASA Astrophysics Data System (ADS)
Mohammadi, Asadollah; Safarnejad, Mastaneh
Nine new bis-azo dyes derived from 5-arylidene-2,4-thiazolidinone have been synthesized in two steps using Knoevenagel condensation and diazotization-coupling reaction. The structures of the compounds were confirmed by UV-vis, IR, 1H NMR and 13C NMR spectroscopic techniques. The spectral characterizations demonstrate that there is an equilibrium between the azo (T1) and hydrazine (T2 and T3) tautomers for all prepared dyes in solutions. In addition, the solvatochromic behavior of the prepared dyes was evaluated using polarity/polarizability parameter (π*) in various solvents. The UV-vis absorption spectra of dyes show a bathochromic shift with increasing polarity and base strength of the solvents. Finally, the effects of acid and base on the UV-vis absorption spectra of the dyes with different substituent in diazo component are reported.
Hyperpolarized NMR: d-DNP, PHIP, and SABRE.
Kovtunov, Kirill Viktorovich; Pokochueva, Ekaterina; Salnikov, Oleg; Cousin, Samuel; Kurzbach, Dennis; Vuichoud, Basile; Jannin, Sami; Chekmenev, Eduard; Goodson, Boyd; Barskiy, Danila; Koptyug, Igor
2018-05-23
NMR signals intensities can be enhanced by several orders of magnitude via utilization of techniques for hyperpolarization of different molecules, and it allows one to overcome the main sensitivity challenge of modern NMR/MRI techniques. Hyperpolarized fluids can be successfully used in different applications of material science and biomedicine. This focus review covers the fundamentals of the preparation of hyperpolarized liquids and gases via dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP) in both heterogeneous and homogeneous processes. The different novel aspects of hyperpolarized fluids formation and utilization along with the possibility of NMR signal enhancement observation are described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu
2015-09-18
Quantitative evaluation of drug supersaturation and nanoparticle formation was conducted using in situ evaluation techniques, including nuclear magnetic resonance (NMR) spectroscopy. We prepared a ternary complex of carbamazepine (CBZ) with hydroxypropyl methylcellulose (HPMC) and sodium dodecyl sulfate (SDS) to improve the drug concentration. Different preparation methods, including grinding and spray drying, were performed to prepare the ternary component products, ground mixture (GM) and spray-dried sample (SD), respectively. Although CBZ was completely amorphized in the ternary SD, CBZ was partially amorphized with the remaining CBZ crystals in the ternary GM. Aqueous dispersion of the ternary GM formed nanoparticles of around 150 nm, originating from the CBZ crystals in the ternary GM. In contrast, the ternary SD formed transparent solutions without a precipitate. The molecular-level evaluation using NMR measurements revealed that approximately half a dose of CBZ in the ternary GM dispersion was present as nanoparticles; however, CBZ in the ternary SD was completely dissolved in the aqueous solution. The characteristic difference between the solid states, followed by different preparation methods, induced different solution characteristics in the ternary GM and SD. The permeation study, using a dialysis membrane, showed that the CBZ concentration dissolved in the bulk water phase rapidly reduced in the ternary SD dispersion compared to the ternary GM dispersion; this demonstrated the advantage of ternary GM dispersion in the maintenance of CBZ supersaturation. Long-term maintenance of a supersaturated state of CBZ observed in the ternary GM dispersion rather than in the ternary SD dispersion was achieved by the inhibition of CBZ crystallization owing to the existence of CBZ nanoparticles in the ternary GM dispersion. Nanoparticle formation, combined with drug amorphization, could be a promising approach to improve drug concentrations. The detailed elucidation of solution characteristics using in situ evaluation techniques will lead to the formation of useful solid dispersion and nanoparticle formulations, resulting in improved drug absorption. Copyright © 2015 Elsevier B.V. All rights reserved.
NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi
Research highlights: {yields} The N-terminal domain (NTD, eag domain) containing 135 residues of hERG was expressed and purified from E. coli cells. {yields} Solution structure of NTD was determined with NMR spectroscopy. {yields} The alpha-helical region (residues 13-23) was demonstrated to possess the characteristics of an amphipathic helix. {yields} NMR titration confirmed the interaction between NTD and the peptide from the S4-S5 linker. -- Abstract: The human Ether-a-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation.more » To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.« less
Comparison of phosphorus forms in three extracts of dairy feces by solution 31P NMR analysis
USDA-ARS?s Scientific Manuscript database
Using solution 31P NMR spectroscopy, we compared three extractants, deionized water, sodium acetate buffer (pH 5.0) with fresh sodium dithionite (NaAc-SD), and 0.25 M NaOH-0.05 M EDTA (NaOH-EDTA), for the profile of P compounds in two dairy fecal samples. Phosphorus extracted was 35% for water, and...
Daniel J. Yelle; John Ralph; Charles R. Frihart
2011-01-01
To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...
NASA Astrophysics Data System (ADS)
Tycko, Robert
2015-04-01
Twenty years ago, applications of solid state nuclear magnetic resonance (NMR) methods to real problems involving biological systems or biological materials were few and far between. Starting in the 1980s, a small number of research groups had begun to explore the possibility of obtaining structural and dynamical information about peptides, proteins, and other biopolymers from solid state NMR spectra. Progress was initially slow due to the relatively primitive state of solid state NMR probes, spectrometers, sample preparation methods, and pulse sequence techniques, coupled with the small number of people contributing to this research area. By the early 1990s, with the advent of new ideas about pulse sequence techniques such as dipolar recoupling, improvements in techniques for orienting membrane proteins and in technology for magic-angle spinning (MAS), improvements in the capabilities of commercial NMR spectrometers, and general developments in multidimensional spectroscopy, it began to appear that biomolecular solid state NMR might have a viable future. It was not until 1993 that the annual number of publications in this area crept above twenty.
High-resolution magnetic resonance spectroscopy using a solid-state spin sensor
NASA Astrophysics Data System (ADS)
Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.
2018-03-01
Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.
Recent Advances in Nanodisc Technology for Membrane Proteins Studies (2012–2017)
Rouck, John; Krapf, John; Roy, Jahnabi; Huff, Hannah; Das, Aditi
2017-01-01
Historically, progress in membrane protein research has been hindered due to solubility issues. The introduction of biomembrane mimetics has since stimulated the field’s momentum. One mimetic, the nanodisc, has proved to be an exceptional system for solubilizing membrane proteins. Herein, we critically evaluate the advantages and imperfections from employing nanodiscs in biophysical and biochemical studies. Specifically, we examine the techniques that have been modified to study membrane proteins in nanodiscs. Techniques discussed include fluorescence microscopy, solution state/solid state NMR, electron microscopy, SAXS, and several mass spectroscopy methods. Newer techniques such as SPR, charge sensitive optical detection, and scintillation proximity assays are also reviewed. Lastly, we cover nanodiscs advancing nanotechnology through nanoplasmonic biosensing, lipoprotein-nanoplatelets, and sortase-mediated labeling of nanodiscs. PMID:28581067
Hermkens, Niels K J; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco
2017-03-01
SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H 2 ) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H 2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay. Copyright © 2017 Elsevier Inc. All rights reserved.
Takeda, Mitsuhiro; Chang, Chung-ke; Ikeya, Teppei; Güntert, Peter; Chang, Yuan-hsiang; Hsu, Yen-lan; Huang, Tai-huang; Kainosho, Masatsune
2008-07-18
The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.
Phosphorus NMR of isolated perfused morris hepatomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, R.A.; Meyer, R.A.; Brown, T.R.
1986-03-05
The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. /sup 31/P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia,more » ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin.« less
NASA Astrophysics Data System (ADS)
Singh, Archana; Trivedi, Darshak R.
2017-05-01
A colorimetric receptor R 2-[(2-Hydroxy-naphthalen-1-ylmethylene)-hydrazonomethyl]-quinolin-8-ol has been designed and synthesized with good yield and characterized by the standard spectroscopic techniques such as FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor R showed naked-eye detection and spectral change in the presence of F-, AcO- and H2PO4- over other anions. Interestingly, receptor R displaying high selective recognition towards F-, AcO- ion with a drastic color change from pale yellow to red in dry DMSO solvent and orange in mixed solvent DMSO/H2O (9:1, v/v). The behavior of receptor R towards F-, AcO- ion was investigated using UV-Vis and 1H NMR experiment. The detailed 1H NMR experiment result revealed that the receptor R is forming the hydrogen bonding between imine nitrogen and phenolic sbnd OH proton towards anions. The receptor R is able to detect sodium salts of flouride (NaF) and acetate (NaAcO) in aqueous medium and it exhibited dramatic color change from pale yellow to red. The receptor R demonstrated itself to be useful for real life application by detecting flouride and acetate ion in sea-water and commercially available product such as toothpaste, mouthwash and vinegar solution.
Arbogast, Luke W; Brinson, Robert G; Marino, John P
2016-01-01
Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed. 2016 Published by Elsevier Inc.
Development and Application of a Low-Volume Flow System for Solution-State in Vivo NMR.
Tabatabaei Anaraki, Maryam; Dutta Majumdar, Rudraksha; Wagner, Nicole; Soong, Ronald; Kovacevic, Vera; Reiner, Eric J; Bhavsar, Satyendra P; Ortiz Almirall, Xavier; Lane, Daniel; Simpson, Myrna J; Heumann, Hermann; Schmidt, Sebastian; Simpson, André J
2018-06-18
In vivo nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful technique, since it allows samples to be analyzed in their natural, unaltered state, criteria paramount for living organisms. In this study, a novel continuous low-volume flow system, suitable for in vivo NMR metabolomics studies, is demonstrated. The system allows improved locking, shimming, and water suppression, as well as allowing the use of trace amounts of expensive toxic contaminants or low volumes of precious natural environmental samples as stressors. The use of a double pump design with a sump slurry pump return allows algal food suspensions to be continually supplied without the need for filters, eliminating the possibility of clogging and leaks. Using the flow system, the living organism can be kept alive without stress indefinitely. To evaluate the feasibility and applicability of the flow system, changes in the metabolite profile of 13 C enriched Daphnia magna over a 24-h period are compared when feeding laboratory food vs exposing them to a natural algal bloom sample. Clear metabolic changes are observed over a range of metabolites including carbohydrates, lipids, amino acids, and a nucleotide demonstrating in vivo NMR as a powerful tool to monitor environmental stress. The particular bloom used here was low in microcystins, and the metabolic stress impacts are consistent with the bloom being a poor food source forcing the Daphnia to utilize their own energy reserves.
Chen, Bo-Yang; Zhao, Bao-Cheng; Li, Ming-Fei; Sun, Run-Cang
2018-01-01
A better understanding of the lignin in the straw of rapeseed, Brassica campestris L., is a prerequisite for promoting the biorefinery industry of rapeseed. Two different methods for fractionating lignin from rapeseed straw were proposed in this study. Lignin in the raw material was isolated with alkaline solution and recovered by acid precipitation. A comparison between two lignin preparations obtained from two different methods has been made in terms of yield and purity. The structural features were investigated by gel permeation chromatography, FT-IR spectroscopy, 2D-HSQC NMR and 31 P NMR. Taking into consideration of the yield and purity, the proposed methods are effective for extracting lignin. NMR results showed that syringyl (S) was the predominant unit over guaiacyl (G) or p-hydroxyphenyl (H) units in the lignin preparations, and linkages β-O-4', β-β' and β-5' were also identified and quantified by NMR techniques. This study demonstrated that the combination of hydrothermal or dilute-acid pretreatment and alkaline process could efficiently isolate the lignins from the rapeseed straw to further applications for industries. It was found that the enzymatic hydrolysis of the two-step pretreated rapeseed straw increased 5.9 times than the straw without treatment, which is benefit for bioethanol production from rapeseed straw. Copyright © 2017 Elsevier B.V. All rights reserved.
NMR structural study of the prototropic equilibrium in solution of Schiff bases as model compounds.
Ortegón-Reyna, David; Garcías-Morales, Cesar; Padilla-Martínez, Itzia; García-Báez, Efren; Aríza-Castolo, Armando; Peraza-Campos, Ana; Martínez-Martínez, Francisco
2013-12-31
An NMR titration method has been used to simultaneously measure the acid dissociation constant (pKa) and the intramolecular NHO prototropic constant ΔKNHO on a set of Schiff bases. The model compounds were synthesized from benzylamine and substituted ortho-hydroxyaldehydes, appropriately substituted with electron-donating and electron-withdrawing groups to modulate the acidity of the intramolecular NHO hydrogen bond. The structure in solution was established by 1H-, 13C- and 15N-NMR spectroscopy. The physicochemical parameters of the intramolecular NHO hydrogen bond (pKa, ΔKNHO and ΔΔG°) were obtained from 1H-NMR titration data and pH measurements. The Henderson-Hasselbalch data analysis indicated that the systems are weakly acidic, and the predominant NHO equilibrium was established using Polster-Lachmann δ-diagram analysis and Perrin model data linearization.
Magneto-optical contrast in liquid-state optically detected NMR spectroscopy
Pagliero, Daniela; Meriles, Carlos A.
2011-01-01
We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736
Automatic Assignment of Methyl-NMR Spectra of Supramolecular Machines Using Graph Theory.
Pritišanac, Iva; Degiacomi, Matteo T; Alderson, T Reid; Carneiro, Marta G; Ab, Eiso; Siegal, Gregg; Baldwin, Andrew J
2017-07-19
Methyl groups are powerful probes for the analysis of structure, dynamics and function of supramolecular assemblies, using both solution- and solid-state NMR. Widespread application of the methodology has been limited due to the challenges associated with assigning spectral resonances to specific locations within a biomolecule. Here, we present Methyl Assignment by Graph Matching (MAGMA), for the automatic assignment of methyl resonances. A graph matching protocol examines all possibilities for each resonance in order to determine an exact assignment that includes a complete description of any ambiguity. MAGMA gives 100% accuracy in confident assignments when tested against both synthetic data, and 9 cross-validated examples using both solution- and solid-state NMR data. We show that this remarkable accuracy enables a user to distinguish between alternative protein structures. In a drug discovery application on HSP90, we show the method can rapidly and efficiently distinguish between possible ligand binding modes. By providing an exact and robust solution to methyl resonance assignment, MAGMA can facilitate significantly accelerated studies of supramolecular machines using methyl-based NMR spectroscopy.
Rinaldelli, Mauro; Ravera, Enrico; Calderone, Vito; Parigi, Giacomo; Murshudov, Garib N; Luchinat, Claudio
2014-04-01
The program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic data and paramagnetic NMR data (pseudocontact shifts and self-orientation residual dipolar couplings) and/or diamagnetic residual dipolar couplings. Incorporation of these long-range NMR restraints in REFMAC5 can reveal differences between solid-state and solution conformations of molecules or, in their absence, can be used together with X-ray crystallographic data for structural refinement. Since NMR and X-ray data are complementary, when a single structure is consistent with both sets of data and still maintains reasonably `ideal' geometries, the reliability of the derived atomic model is expected to increase. The program was tested on five different proteins: the catalytic domain of matrix metalloproteinase 1, GB3, ubiquitin, free calmodulin and calmodulin complexed with a peptide. In some cases the joint refinement produced a single model consistent with both sets of observations, while in other cases it indicated, outside the experimental uncertainty, the presence of different protein conformations in solution and in the solid state.
Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick
1989-01-01
Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.
Xu, Xianzhong; Xu, Wei; Rayo, Josep; Ishida, Yuko; Leal, Walter S; Ames, James B
2010-02-23
The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through the aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from A. transitella (AtraPBP1) in solution at pH 4.5 determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments, multiangle light scattering, and (15)N NMR relaxation analysis indicate that AtraPBP1 forms a stable monomer in solution at pH 4.5 in contrast to forming mostly dimers at pH 7. The NMR structure of AtraPBP1 at pH 4.5 contains seven alpha-helices (alpha1, L8-L23; alpha2, D27-F36; alpha3, R46-V62; alpha4, A73-M78; alpha5, D84-S100; alpha6, R107-L125; alpha7, M131-E141) that adopt an overall main-chain fold similar to that of PBPs found in Antheraea polyphemus and Bombyx mori. The AtraPBP1 structure is stabilized by three disulfide bonds formed by C19/C54, C50/C108, and C97/C117 and salt bridges formed by H69/E60, H70/E57, H80/E132, H95/E141, and H123/D40. All five His residues are cationic at pH 4.5, whereas H80 and H95 become neutral at pH 7.0. The C-terminal helix (alpha7) contains hydrophobic residues (M131, V133, V134, V135, V138, L139, and A140) that contact conserved residues (W37, L59, A73, F76, A77, I94, V111, and V115) suggested to interact with bound pheromone. Our NMR studies reveal that acid-induced formation of the C-terminal helix at pH 4.5 is triggered by a histidine protonation switch that promotes rapid release of bound pheromone under acidic conditions.
Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.
Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy
2017-04-18
Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1 H- 1 H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1 H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1 H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of protons for structure determination using 1 H- 1 H dipolar couplings and to evaluate the changes in chemical environments as well as the relative orientation to the external magnetic field using proton CSA. Due to the boost in signal sensitivity enabled by proton detection under ultrafast MAS, by virtue of high proton natural abundance and gyromagnetic ratio, proton-detected multidimensional experiments involving low-γ nuclei can now be accomplished within a reasonable time, while the higher dimension also offers additional resolution enhancement. In addition, the application of proton-based ssNMR spectroscopy under ultrafast MAS in various challenging and crystalline systems is also presented. Finally, we briefly discuss the limitations and challenges pertaining to proton-based ssNMR spectroscopy under ultrafast MAS conditions, such as the presence of high-order dipolar couplings, friction-induced sample heating, and limited sample volume. Although there are still a number of challenges that must be circumvented by further developments in radio frequency pulse sequences, MAS probe technology and approaches to prepare NMR-friendly samples, proton-based ssNMR has already gained much popularity in various research domains, especially in proteins where uniform or site-selective deuteration can be relatively easily achieved. In addition, implementation of the recently developed fast data acquisition approaches would also enable further developments in the design and applications of proton-based ultrafast MAS multidimensional ssNMR techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinacchi, Giorgio; Domenici, Valentina
The Saupe ordering matrix of a banana-shaped mesogenic molecule as a solute in a common nematic calamitic solvent has been determined by {sup 2}H-NMR spectroscopy as a function of temperature. The temperature dependence of the Saupe ordering matrix element associated with the principal molecular axis is consistent with a glassy behavior in the reorientational motion of this particular solute molecule. The Haller expression, appropriately modified, provides a good fit to the experimental data.
Koskela, Harri; Hakala, Ullastiina; Vanninen, Paula
2010-06-15
Decontamination solutions, which are usually composed of strong alkaline chemicals, are used for efficient detoxification of chemical warfare agents (CWAs). The analysis of CWA degradation products directly in decontamination solutions is challenging due to the nature of the matrix. Furthermore, occasionally an unforeseen degradation pathway can result in degradation products which could be eluded to in standard analyses. Here, we present the results of the application of proton band-selective (1)H-(31)P NMR spectroscopy, i.e., band-selective 1D (1)H-(31)P heteronuclear single quantum coherence (HSQC) and band-selective 2D (1)H-(31)P HSQC-total correlation spectroscopy (TOCSY), for ester side chain characterization of organophosphorus nerve agent degradation products in decontamination solutions. The viability of the approach is demonstrated with a test mixture of typical degradation products of nerve agents sarin, soman, and VX. The proton band-selective (1)H-(31)P NMR spectroscopy is also applied in characterization of unusual degradation products of VX in GDS 2000 solution.
Bocian, Wojciech; Borowicz, Piotr; Mikołajczyk, Jerzy; Sitkowski, Jerzy; Tarnowska, Anna; Bednarek, Elzbieta; Głabski, Tadeusz; Tejchman-Małecka, Bozena; Bogiel, Monika; Kozerski, Lech
2008-10-01
A solution NMR-derived structure of a new long -acting, B31(Lys)-B32(Arg) (LysArg), engineered human insulin monomer, in H(2)O/CD(3)CN, 65/35 vol %, pH 3.6, is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Smith, et al., Acta Crystallogr D 2003, 59, 474) and with NMR structure of human insulin in the same solvent (Bocian, et al., J Biomol NMR 2008, 40, 55-64). Detailed analysis using PFGSE NMR (Pulsed Field Gradient Spin Echo NMR) in dilution experiments and CSI analysis prove that the structure is monomeric in the concentration range 0.1-3 mM. The presence of long-range interstrand NOEs in a studied structure, relevant to the distances found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Therefore the results suggest that this solvent system is a suitable medium for studying the native conformation of the protein, especially in situations (as found for insulins) in which extensive aggregation renders structure elucidations in water difficult or impossible. Starting from the structures calculated by the program CYANA, two different molecular dynamics (MD) simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER_VC), or including a generalized Born solvent model (AMBER_GB). Here we present another independent evidence to the one presented recently by us (Bocian et al., J Biomol NMR 2008, 40, 55-64), that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. (c) 2008 Wiley Periodicals, Inc.
Daniel J. Yelle; John Ralph; Charles R. Frihart
2009-01-01
The objectives of this study are the following: (1) Use solution-state NMR to assign contours in HSQC spectra of the reaction products between pMDI model compounds and: (a) lignin model compounds, (b) milled-wood lignin, (c) ball-milled wood, (d) microtomed loblolly pine; (2) Determine where and to what degree urethane formation occurs with loblolly pine cell wall...
NASA Astrophysics Data System (ADS)
Hatzipanayioti, Despina; Veneris, Antonis
2009-10-01
The reaction of Gd(III) with asymmetric tetramine 1,4,7,11-tetraazaundecane (2,2,3-tet, L1) ligand has been studied via NMR spectroscopy. The ligand proton longitudinal relaxation rates ( R1) have been used to estimate the distances of these protons from the Gd(III) center, in Gd(III)- L1 reaction solutions, in H 2O/D 2O 5/1 mixtures. Two Gd(III) complexes [Gd(III)( L1)(NH 3)(H 2O) 4](CH 3COO) 3·2H 2O ( 1) and [Gd(III)( L1)(NH 3)(H 2O) 2]Cl 3·EtOH ( 2) have been isolated and characterized by elemental analyses, TGA, IR, NMR and relaxometry measurements. The NMR relaxation measurements of 2 in aqueous solutions have been performed, under various temperature or concentration conditions, and compared with those of the commercial contrast agents Gd(III)-DTPA and Gd(III)-DTPA-BMA. It has also been studied the influence of (i) the Gd(III) inner-sphere water molecule number ( q) alteration and (ii) the steric constraint enhancement on the metal site, over the relaxation rate values of the parent aqueous solution of Gd(III)-2,2,3-tet, and of the aqueous solutions of 2.
PSYCHE Pure Shift NMR Spectroscopy.
Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias
2018-03-13
Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.
2012-01-01
NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…
Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby
2012-01-01
Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...
Use of multi-coil parallel-gap resonators for co-registration EPR/NMR imaging
NASA Astrophysics Data System (ADS)
Kawada, Yuuki; Hirata, Hiroshi; Fujii, Hirodata
2007-01-01
This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8 MHz for NMR and 670 MHz for EPR. A smaller resonator (22 mm in diameter) for use in EPR was placed coaxially in a larger resonator (40 mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.
Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J
2015-02-01
We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924. Copyright © 2014 Elsevier Inc. All rights reserved.
Amezcua, Carlos A; Szabo, Christina M
2013-06-01
In this work, we applied nuclear magnetic resonance (NMR) spectroscopy to rapidly assess higher order structure (HOS) comparability in protein samples. Using a variation of the NMR fingerprinting approach described by Panjwani et al. [2010. J Pharm Sci 99(8):3334-3342], three nonglycosylated proteins spanning a molecular weight range of 6.5-67 kDa were analyzed. A simple statistical method termed easy comparability of HOS by NMR (ECHOS-NMR) was developed. In this method, HOS similarity between two samples is measured via the correlation coefficient derived from linear regression analysis of binned NMR spectra. Applications of this method include HOS comparability assessment during new product development, manufacturing process changes, supplier changes, next-generation products, and the development of biosimilars to name just a few. We foresee ECHOS-NMR becoming a routine technique applied to comparability exercises used to complement data from other analytical techniques. Copyright © 2013 Wiley Periodicals, Inc.
Persistent dopants and phase segregation in organolead mixed-halide perovskites
Rosales, Bryan A.; Men, Long; Cady, Sarah D.; ...
2016-07-25
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
Persistent dopants and phase segregation in organolead mixed-halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales, Bryan A.; Men, Long; Cady, Sarah D.
Organolead mixed-halide perovskites such as CH 3NH 3PbX 3–aX' a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the truemore » chemical speciation and composition of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less
NASA Astrophysics Data System (ADS)
Palke, A. C.; Geiger, C. A.; Stebbins, J. F.
2015-12-01
The petrological importance of silicate garnet is derived from the presence of three distinct cation sites of varying size and coordination number. This allows for a wide range of trace, minor, and major element substitutions. However, a full and precise crystal-chemical understanding of the nature of transition metals in garnet is not at hand. Possible mechanisms of various charge-balanced substitutions (e.g. octahedral Ti4+ or tetrahedral Al3+) and the structural state of solid solutions (i.e. short- to long-range ordering) need study. We report on ongoing efforts in these directions using 27Al and 29Si Magic-Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Early work on synthetic and natural Fe- and Mn-bearing pyrope- and grossular-rich garnets focused on the effect these paramagnetic transition metals have in measuring and interpreting NMR spectra. These results have been expanded with NMR measurements on synthetic pyrope-rich garnets containing other paramagnetic transition metals including Cr3+, V3+, Co2+, and Ni2+ as well as diamagnetic Ti4+. NMR peaks are severely broadened in the presence of even small concentrations of Cr3+, Mn2+, and Fe3+ leading to a loss of spectral resolution. On the other hand, the spectra of garnet containing V3+, Fe2+, Co2+, and Ni2+ have better resolution and show separate paramagnetically shifted NMR peaks. In some cases, crystal-chemical information can be obtained because of the large frequency separations between the NMR peaks that can be assigned to various local atomic configurations around Al and Si. Furthermore, the 27Al NMR spectrum of a synthetic pyrope garnet with about 2% diamagnetic Ti4+ on the octahedral site showed the absence of any tetrahedral Al3+, which rules out the substitution mechanism VITi + IVAl = VIAl + IVSi in the solid solution. Our NMR investigations on garnet are now being made at the exploratory level. We think that NMR spectra of diamagnetic garnet can provide information on a number of crystal-chemical properties. Spectra of garnet containing various paramagnetic transition elements can also, in some cases, give local structural information. With a better understanding of paramagnetic effects in NMR spectroscopy, this type of study can possibly be expanded to other geologically important paramagnetic minerals and phases.
NASA Astrophysics Data System (ADS)
Suman, G. R.; Bubbly, S. G.; Gudennavar, S. B.; Muthu, S.; Roopashree, B.; Gayatri, V.; Nanje Gowda, N. M.
2017-07-01
The Schiff base 2-[(3‧-N-salicylidenephenyl)benzimidazole] (Spbzl) was characterized by FT-Raman, 1H NMR, 13C NMR and single crystal X-ray diffraction technique. Crystallographic studies reveal the presence of two water molecules in the asymmetry unit which aid the intermolecular hydrogen bonding with imidazole ring, and the trans-conformation of the azomethine bond. Theoretical computations conducted using density functional theory (DFT) analysis support the experimental facts. Energy levels estimated by DFT studies are in good agreement with the values obtained from cyclic voltammetry technique. Frontier molecular orbital analysis shows that charge transfer has taken place from donor to acceptor moiety, which is also supported by the high hyperpolarizability values in both gaseous and solution phases, indicating high charge transfer capability of the molecule. A comparative theoretical study of Spbzl with derivative 4-((3-(1H-benzimidazol-2-yl)phenylimino)methyl)-3-hydroxybenzoic acid (Pbzlb) having an added anchor group COOH substituted at para position in the acceptor ring has been made. The result shows the feasibility of charge transfer to the semiconductor surface in dye sensitized solar cell (DSSC) applications for Pbzlb.
NASA Astrophysics Data System (ADS)
Gryff-Keller, A.; Kraska-Dziadecka, A.
2011-12-01
13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH < 7 show dynamic broadenings. The lineshape analysis of these signals has provided information on the kinetics of the processes running in the dynamic acid-base equilibrium. The kinetic data determined this way have been used to clarify the mechanisms of these processes. The numerical analysis has shown that under the investigated conditions deprotonation of the neutral solute molecules undergoes not only via a simple transfer of the C-H proton to water molecules but also through a process with participation of the barbiturate anions. Moreover, the importance of tautomerism, or association, or both these phenomena for the kinetics of the acid-base transformations in the investigated system has been shown. Qualitatively similar changes of 13C NMR spectra with the solution pH variation have been observed for the parent barbituric acid.
Giménez, Vanessa; James, Craig; Armiñán, Ana; Schweins, Ralf; Paul, Alison; Vicent, María J
2012-04-30
The design of improved polymeric carriers to be used in the next generation of polymer therapeutics is an ongoing challenge. Biodegradable systems present potential advantages regarding safety benefit apart from the possibility to use higher molecular weight (Mw) carriers allowing PK optimization, by exploiting the enhanced permeability and retention (EPR)-mediated tumor targeting. Within this context, we previously designed pH-responsive polyacetalic systems, tert-polymers, where a drug with the adequate diol-functionality was incorporated within the polymer mainchain. The synthetic, non-steroidal estrogen, diethylstilboestrol (DES) clinically used for the treatment of advanced prostate cancer was chosen as drug. In order to improve the properties of this tert-polymer, novel polyacetalic systems as block-co-polymers, with more defined structure have been obtained. This second generation polyacetals allowed higher drug capacity than the tert-polymer, a biphasic DES release profile at acidic pH and due to its controlled amphiphilic character readily formed micelle-like structures in solution. These features result in an enhancement of conjugate therapeutic value in selected prostate cancer cell models. Exhaustive physico-chemical characterization focusing on nanoconjugate solution behavior and using advanced techniques, such as, pulsed-gradient spin-echo NMR (PGSE-NMR) and small-angle neutron scattering (SANS), has been carried out in order to demonstrate this hypothesis. Clear evidence of significantly different conformation in solution has been obtained for both polyacetals. These results demonstrate that an adequate control on molecular or supramolecular conformation in solution with polymer therapeutics is crucial in order to achieve the desired therapeutic output. Copyright © 2012 Elsevier B.V. All rights reserved.
A Primer of Fourier Transform NMR.
ERIC Educational Resources Information Center
Macomber, Roger S.
1985-01-01
Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)
Siskos, Michael G; Choudhary, M Iqbal; Gerothanassis, Ioannis P
2017-03-07
The exact knowledge of hydrogen atomic positions of O-H···O hydrogen bonds in solution and in the solid state has been a major challenge in structural and physical organic chemistry. The objective of this review article is to summarize recent developments in the refinement of labile hydrogen positions with the use of: (i) density functional theory (DFT) calculations after a structure has been determined by X-ray from single crystals or from powders; (ii) ¹H-NMR chemical shifts as constraints in DFT calculations, and (iii) use of root-mean-square deviation between experimentally determined and DFT calculated ¹H-NMR chemical shifts considering the great sensitivity of ¹H-NMR shielding to hydrogen bonding properties.
NMR studies of multiphase flows II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altobelli, S.A.; Caprihan, A.; Fukushima, E.
NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.
Xu, Xianzhong; Pulavarti, Surya V S R K; Eletsky, Alexander; Huang, Yuanpeng Janet; Acton, Thomas B; Xiao, Rong; Everett, John K; Montelione, Gaetano T; Szyperski, Thomas
2014-12-01
High-quality solution NMR structures of three homeodomains from human proteins ALX4, ZHX1 and CASP8AP2 were solved. These domains were chosen as targets of a biomedical theme project pursued by the Northeast Structural Genomics Consortium. This project focuses on increasing the structural coverage of human proteins associated with cancer.
Kozerski, L; Sierzputowska-Gracz, H; Krzyzosiak, W; Bratek-Wiewiórowska, M; Jaskólski, M; Wiewiórowski, M
1984-01-01
The 1H, 13C, 15N NMR spectra of cytidine /Cyd/, ethenocytidine /epsilon Cyd/ and their hydrochlorides /Cyd X HC1/ and /epsilon Cyd X HC1/ have been analysed to compare structural differences observed in solution with those existing in the crystalline state. The effects of ethenobridging and protonation of the hertero-aromatic base on the intramolecular stereochemistry, intermolecular interactions and electronic structure of the whole molecule are discussed on the basis of the NMR studies in DMSO solutions. Particular interest is devoted to the discussion of the conformation of the ribose ring, the presence of the intramolecular C-5'-0...H-6-C hydrogen bond, unambiguous assignment of the site of protonation, the mechanism of the 5C-H deuterium exchange in Cyd X HC1, and the intermolecular interactions in solution. PMID:6701098
Oztop, Mecit H; Rosenberg, Moshe; Rosenberg, Yael; McCarthy, Kathryn L; McCarthy, Michael J
2010-10-01
Effective means for controlled delivery of nutrients and nutraceuticals are needed. Whey protein-based gels, as a model system and as a potential delivery system, exhibit pH-dependent swelling when placed in aqueous solutions. Understanding the physics that govern gel swelling is thus important when designing gel-based delivery platforms. The extent of swelling over time was monitored gravimetrically. In addition to gravimetric measurements, magnetic resonance imaging (MRI) a real-time noninvasive imaging technique that quantified changes in geometry and water content of these gels was utilized. Heat-set whey protein gels were prepared at pH 7 and swelling was monitored in aqueous solutions with pH values of 2.5, 7, and 10. Changes in dimension over time, as characterized by the number of voxels in an image, were correlated to gravimetric measurements. Excellent correlations between mass uptake and volume change (R(2)= 0.99) were obtained for the gels in aqueous solutions at pH 7 and 10, but not for gels in the aqueous solution at pH 2.5. To provide insight into the mechanisms for water uptake, nuclear magnetic resonance (NMR) relaxation times were measured in independent experiments. The relaxation spectrum for the spin-spin relaxation time (T(2)) showed the presence of 3 proton pools for pH 7 and 10 trials and 4 proton pools for pH 2.5 trials. Results demonstrate that MRI and NMR relaxation measurements provided information about swelling in whey protein gels that can constitute a new means for investigating and developing effective delivery systems for foods.
Polymeric proanthocyanidins 13C NMR studies of procyanidins
Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway
1982-01-01
Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...
Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials
NASA Astrophysics Data System (ADS)
Paik, Younkee
Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.
A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution.
Feigon, J; Wang, A H; van der Marel, G A; Van Boom, J H; Rich, A
1984-01-01
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation. PMID:6694910
Determining pH at elevated pressure and temperature using in situ ¹³C NMR.
Surface, J Andrew; Wang, Fei; Zhu, Yanzhe; Hayes, Sophia E; Giammar, Daniel E; Conradi, Mark S
2015-02-03
We have developed an approach for determining pH at elevated pressures and temperatures by using (13)C NMR measurements of inorganic carbon species together with a geochemical equilibrium model. The approach can determine in situ pH with precision better than 0.1 pH units at pressures, temperatures, and ionic strengths typical of geologic carbon sequestration systems. A custom-built high pressure NMR probe was used to collect (13)C NMR spectra of (13)C-labeled CO2 reactions with NaOH solutions and Mg(OH)2 suspensions at pressures up to 107 bar and temperatures of 80 °C. The quantitative nature of NMR spectroscopy allows the concentration ratio [CO2]/[HCO3(-)] to be experimentally determined. This ratio is then used with equilibrium constants calculated for the specific pressure and temperature conditions and appropriate activity coefficients for the solutes to calculate the in situ pH. The experimentally determined [CO2]/[HCO3(-)] ratios agree well with the predicted values for experiments performed with three different concentrations of NaOH and equilibration with multiple pressures of CO2. The approach was then applied to experiments with Mg(OH)2 slurries in which the change in pH could track the dissolution of CO2 into solution, rapid initial Mg(OH)2 dissolution, and onset of magnesium carbonate precipitation.
LC-NMR Technique in the Analysis of Phytosterols in Natural Extracts
Horník, Štěpán; Sajfrtová, Marie; Sýkora, Jan; Březinová, Anna; Wimmer, Zdeněk
2013-01-01
The ability of LC-NMR to detect simultaneously free and conjugated phytosterols in natural extracts was tested. The advantages and disadvantages of a gradient HPLC-NMR method were compared to the fast composition screening using SEC-NMR method. Fractions of free and conjugated phytosterols were isolated and analyzed by isocratic HPLC-NMR methods. The results of qualitative and quantitative analyses were in a good agreement with the literature data. PMID:24455424
Sgarlata, Carmelo; Raymond, Kenneth N
2016-07-05
The entropic and enthalpic driving forces for encapsulation versus sequential exterior guest binding to the [Ga4L6](12-) supramolecular host in solution are very different, which significantly complicates the determination of these thermodynamic parameters. The simultaneous use of complementary techniques, such as NMR, UV-vis, and isothermal titration calorimetry, enables the disentanglement of such multiple host-guest interactions. Indeed, data collected by each technique measure different components of the host-guest equilibria and together provide a complete picture of the solution thermodynamics. Unfortunately, commercially available programs do not allow for global analysis of different physical observables. We thus resorted to a novel procedure for the simultaneous refinement of multiple parameters (ΔG°, ΔH°, and ΔS°) by treating different observables through a weighted nonlinear least-squares analysis of a constrained model. The refinement procedure is discussed for the multiple binding of the Et4N(+) guest, but it is broadly applicable to the deconvolution of other intricate host-guest equilibria.
Kamran, Muhammad; Khan, Abdul L; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung
2017-01-01
Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus , Aloe vera , Ginkgo biloba , and Cymbopogon jwarancusa . Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from G. biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n -hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1 . This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10, and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.
NASA Astrophysics Data System (ADS)
Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung
2017-05-01
Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus, Aloe vera, Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from Ginkgo biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10 and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.
Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung
2017-01-01
Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus,Aloe vera,Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from G. biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10, and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control. PMID:28553632
Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise
ERIC Educational Resources Information Center
Helms, Eric; Arpaia, Nicholas; Widener, Melissa
2007-01-01
Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.
Pulsed-field-gradient measurements of time-dependent gas diffusion
NASA Technical Reports Server (NTRS)
Mair, R. W.; Cory, D. G.; Peled, S.; Tseng, C. H.; Patz, S.; Walsworth, R. L.
1998-01-01
Pulsed-field-gradient NMR techniques are demonstrated for measurements of time-dependent gas diffusion. The standard PGSE technique and variants, applied to a free gas mixture of thermally polarized xenon and O2, are found to provide a reproducible measure of the xenon diffusion coefficient (5.71 x 10(-6) m2 s-1 for 1 atm of pure xenon), in excellent agreement with previous, non-NMR measurements. The utility of pulsed-field-gradient NMR techniques is demonstrated by the first measurement of time-dependent (i.e., restricted) gas diffusion inside a porous medium (a random pack of glass beads), with results that agree well with theory. Two modified NMR pulse sequences derived from the PGSE technique (named the Pulsed Gradient Echo, or PGE, and the Pulsed Gradient Multiple Spin Echo, or PGMSE) are also applied to measurements of time dependent diffusion of laser polarized xenon gas, with results in good agreement with previous measurements on thermally polarized gas. The PGMSE technique is found to be superior to the PGE method, and to standard PGSE techniques and variants, for efficiently measuring laser polarized noble gas diffusion over a wide range of diffusion times. Copyright 1998 Academic Press.
The NMR contribution to protein-protein networking in Fe-S protein maturation.
Banci, Lucia; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Piccioli, Mario
2018-03-22
Iron-sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe-S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe-2S], [3Fe-4S] and [4Fe-4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe-S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe-S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of "Fe-S interactomics". This contribution was particularly effective when protein-protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.
NASA Astrophysics Data System (ADS)
Mahfouz, R. M.; Siddiqui, M. R. H.; Al-Wassil, A. I.; Al-Resayes, S. I.; Al-Otaibi, A. M.
2005-05-01
The present work is a study on radiolyses of 4-iodophenol in aqueous methanol solutions. The radiolysis products are separated and identified using spectrophotometric and chromatographic techniques. The radiolytic products (I-2, I- and IO3-) formed in aerated solutions at room temperature were identified and the yields are investigated as a function of absorbed gamma-ray dose. The formation of I-2 is mainly dependent on the acidity of solution and produced via the pathway of secondary free radical reactions. Aromatic products of lower and higher molecular weight than the corresponding investigated compound were analysed and separated by HPLC. The results have been discussed in view of mechanisms based on free radicals and ion-molecule interactions. The chemical effects induced by gamma-irradiation in solid 4-iodophenol have also been investigated and the degradation products were identified in solid state by NMR, GC/MS experiments and HPLC after dissolution in aqueous methanol. The results were evaluated and compared with radiolysis data.
Mekkaoui, Choukri; Reese, Timothy G; Jackowski, Marcel P; Bhat, Himanshu; Sosnovik, David E
2017-03-01
Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non-rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion-weighted MR acquisition sequences combined with advanced post-processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual-gated stimulated echo approach, a velocity- (M 1 ) or an acceleration- (M 2 ) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well-established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Dračínský, Martin; Buděšínský, Miloš; Warżajtis, Beata; Rychlewska, Urszula
2012-01-12
Selected guaianolide type sesquiterpene lactones were studied combining solution and solid-state NMR spectroscopy with theoretical calculations of the chemical shifts in both environments and with the X-ray data. The experimental (1)H and (13)C chemical shifts in solution were successfully reproduced by theoretical calculations (with the GIAO method and DFT B3LYP 6-31++G**) after geometry optimization (DFT B3LYP 6-31 G**) in vacuum. The GIPAW method was used for calculations of solid-state (13)C chemical shifts. The studied cases involved two polymorphs of helenalin, two pseudopolymorphs of 6α-hydroxydihydro-aromaticin and two cases of multiple asymmetric units in crystals: one in which the symmetry-independent molecules were connected by a series of hydrogen bonds (geigerinin) and the other in which the symmetry-independent molecules, deprived of any specific intermolecular interactions, differed in the conformation of the side chain (badkhysin). Geometrically different molecules present in the crystal lattices could be easily distinguished in the solid-state NMR spectra. Moreover, the experimental differences in the (13)C chemical shifts corresponding to nuclei in different polymorphs or in geometrically different molecules were nicely reproduced with the GIPAW calculations.
ERIC Educational Resources Information Center
Yearty, Kasey L.; Sharp, Joseph T.; Meehan, Emma K.; Wallace, Doyle R.; Jackson, Douglas M.; Morrison, Richard W.
2017-01-01
[Superscript 1]H NMR analysis is an important analytical technique presented in introductory organic chemistry courses. NMR instrument access is limited for undergraduate organic chemistry students due to the size of the instrument, price of NMR solvents, and the maintenance level required for instrument upkeep. The University of Georgia Chemistry…
Wittlich, F; Kohno, K; Mies, G; Norris, D G; Hoehn-Berlage, M
1995-01-01
NMR bolus track measurements were correlated with autoradiographically determined regional cerebral blood flow (rCBF). The NMR method is based on bolus infusion of the contrast agent gadolinium diethylenetriaminepentaacetate and high-speed T*2-sensitive NMR imaging. The first pass of the contrast agent through the image plane causes a transient decrease of the signal intensity. This time course of the signal intensity is transformed into relative concentrations of the contrast agent in each pixel. The mean transit time and relative blood flow and volume are calculated from such indicator dilution curves. We investigated whether this NMR technique correctly expresses the relative rCBF. The relative blood flow data, calculated from NMR bolus track experiments, and the absolute values of iodo[14C]antipyrine autoradiography were compared. A linear relationship was observed, indicating the proportionality of the transient NMR signal change with CBF. Excellent interindividual reproducibility of calibration constants is observed (r = 0.963). For a given NMR protocol, bolus track measurements calibrated with autoradiography after the experiment allow determination of absolute values for rCBF and regional blood volume. Images Fig. 2 Fig. 3 PMID:7892189
Advanced solid-state NMR spectroscopy of natural organic matter
USDA-ARS?s Scientific Manuscript database
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...
Wagstaff, Jane L; Taylor, Samantha L; Howard, Mark J
2013-04-05
This review aims to illustrate that STD NMR is not simply a method for drug screening and discovery, but has qualitative and quantitative applications that can answer fundamental and applied biological and biomedical questions involving molecular interactions between ligands and proteins. We begin with a basic introduction to the technique of STD NMR and report on recent advances and biological applications of STD including studies to follow the interactions of non-steroidal anti-inflammatories, minimum binding requirements for virus infection and understating inhibition of amyloid fibre formation. We expand on this introduction by reporting recent STD NMR studies of live-cell receptor systems, new methodologies using scanning STD, magic-angle spinning STD and approaches to use STD NMR in a quantitative fashion for dissociation constants and group epitope mapping (GEM) determination. We finish by outlining new approaches that have potential to influence future applications of the technique; NMR isotope-editing, heteronuclear multidimensional STD and (19)F STD methods that are becoming more amenable due to the latest NMR equipment technologies.
Koptyug, Igor V; Sagdeev, Dmitry R; Gerkema, Edo; Van As, Henk; Sagdeev, Renad Z
2005-07-01
Multidimensional images of Al2O3 pellets, cordierite monolith, glass tube, polycrystalline V2O5 and other materials have been detected by 27Al, 51V, and 23Na NMR imaging using techniques and instrumentation conventionally employed for imaging of liquids. These results demonstrate that, contrary to the widely accepted opinion, imaging of "rigid" solids does not necessarily require utilization of solid state NMR imaging approaches, pulse sequences and hardware even for quadrupolar nuclei which exhibit line widths in excess of 100 kHz, such as 51V in polycrystalline V2O5. It is further demonstrated that both 27Al NMR signal intensity and spin-lattice relaxation time decrease with increasing temperature and thus can potentially serve as temperature sensitive parameters for spatially resolved NMR thermometry.
Solution structure of an antifreeze protein CfAFP-501 from Choristoneura fumiferana.
Li, Congmin; Guo, Xianrong; Jia, Zongchao; Xia, Bin; Jin, Changwen
2005-07-01
Antifreeze proteins (AFPs) are widely employed by various organisms as part of their overwintering survival strategy. AFPs have the unique ability to suppress the freezing point of aqueous solution and inhibit ice recrystallization through binding to the ice seed crystals and restricting their growth. The solution structure of CfAFP-501 from spruce budworm has been determined by NMR spectroscopy. Our result demonstrates that CfAFP-501 retains its rigid and highly regular structure in solution. Overall, the solution structure is similar to the crystal structure except the N- and C-terminal regions. NMR spin-relaxation experiments further indicate the overall rigidity of the protein and identify a collection of residues with greater flexibilities. Furthermore, Pro91 shows a cis conformation in solution instead of the trans conformation determined in the crystal structure.
Ma, Nyuk Ling; Teh, Kit Yinn; Lam, Su Shiung; Kaben, Anne Marie; Cha, Thye San
2015-08-01
This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%). In contrast, NMR analysis showed the highest intensity of bioactive metabolites obtained for homogenized extracts pre-treated with freeze-drying, indicating that homogenizing is a more favorable approach to recover bioactive substances from the disrupted microalgae. The results show the potential of NMR as a useful metabolic fingerprinting tool for assessing compound diversity in complex microalgae extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Swartz, Mason A.; Tubergen, Philip J.; Tatko, Chad D.; Baker, Rachael A.
2018-01-01
This lab experiment uses [superscript 31]P NMR spectroscopy of biomolecules to determine pK[subscript a] values and the binding energies of metal/biomolecule complexes. Solutions of adenosine nucleotides are prepared, and a series of [superscript 31]P NMR spectra are collected as a function of pH and in the absence and presence of magnesium or…
Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy
ERIC Educational Resources Information Center
Ruhayel, Rasha A.; Berners-Price, Susan J.
2010-01-01
2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…
Koczor, Bálint; Rohonczy, János
2015-01-01
Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. Copyright © 2015 Elsevier Inc. All rights reserved.
Ma, Dejian; Tillman, Tommy S; Tang, Pei; Meirovitch, Eva; Eckenhoff, Roderic; Carnini, Anna; Xu, Yan
2008-10-28
Structural studies of polytopic membrane proteins are often hampered by the vagaries of these proteins in membrane mimetic environments and by the difficulties in handling them with conventional techniques. Designing and creating water-soluble analogues with preserved native structures offer an attractive alternative. We report here solution NMR studies of WSK3, a water-soluble analogue of the potassium channel KcsA. The WSK3 NMR structure (PDB ID code 2K1E) resembles the KcsA crystal structures, validating the approach. By more stringent comparison criteria, however, the introduction of several charged residues aimed at improving water solubility seems to have led to the possible formations of a few salt bridges and hydrogen bonds not present in the native structure, resulting in slight differences in the structure of WSK3 relative to KcsA. NMR dynamics measurements show that WSK3 is highly flexible in the absence of a lipid environment. Reduced spectral density mapping and model-free analyses reveal dynamic characteristics consistent with an isotropically tumbling tetramer experiencing slow (nanosecond) motions with unusually low local ordering. An altered hydrogen-bond network near the selectivity filter and the pore helix, and the intrinsically dynamic nature of the selectivity filter, support the notion that this region is crucial for slow inactivation. Our results have implications not only for the design of water-soluble analogues of membrane proteins but also for our understanding of the basic determinants of intrinsic protein structure and dynamics.
Politi, Matteo; Zloh, Mire; Pintado, Manuela E; Castro, Paula M L; Heinrich, Michael; Prieto, Jose M
2009-01-01
Tinctures are widely used liquid pharmaceutical preparations traditionally obtained by maceration of one or more medicinal plants in ethanol-water solutions. Such a process results in the extraction of virtually hundreds of structurally diverse compounds with different polarities. Owing to the large chemical diversity of the constituents present in the herbal tinctures, the analytical tools used for the quality control of tinctures are usually optimised only for the detection of single chemical entities or specific class of compounds. In order to overcome the major limitations of the current methods used for analysis of tinctures, a new methodological approach based on NMR spectroscopy and MS spectrometry has been tested with different commercial tinctures. Diffusion-edited 1H-NMR (1D DOSY) and 1H-NMR with suppression of the ethanol and water signals have been applied here for the first time to the direct analysis of commercial herbal tinctures derived from Echinacea purpurea, Hypericum perforatum, Ginkgo biloba and Valeriana officinalis. The direct injection of the tinctures in the MS detector in order to obtain the corresponding metabolic profiles was also performed. Using both NMR and MS methods it was possible, without evaporation or separation steps, to obtain a metabolic fingerprint able to distinguish between tinctures prepared with different plants. Batch-to-batch homogeneity, as well as degradation after the expiry date of a batch, was also investigated. The techniques proposed here represent fast and convenient direct analyses of medicinal herbal tinctures.
Gurriarán-Rodríguez, Uxía; Mosteiro, Carlos S.; Álvarez-Pérez, Juan C.; Otero-Alén, María; Camiña, Jesús P.; Gallego, Rosalía; García-Caballero, Tomás; Martín-Pastor, Manuel; Casanueva, Felipe F.; Jiménez-Barbero, Jesús; Pazos, Yolanda
2012-01-01
The quest for therapeutic applications of obestatin involves, as a first step, the determination of its 3D solution structure and the relationship between this structure and the biological activity of obestatin. On this basis, we have employed a combination of circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy, and modeling techniques to determine the solution structure of human obestatin (1). Other analogues, including human non-amidated obestatin (2) and the fragment peptides (6–23)-obestatin (3), (11–23)-obestatin (4), and (16–23)-obestatin (5) have also been scrutinized. These studies have been performed in a micellar environment to mimic the cell membrane (sodium dodecyl sulfate, SDS). Furthermore, structural-activity relationship studies have been performed by assessing the in vitro proliferative capabilities of these peptides in the human retinal pigmented epithelial cell line ARPE-19 (ERK1/2 and Akt phosphorylation, Ki67 expression, and cellular proliferation). Our findings emphasize the importance of both the primary structure (composition and size) and particular segments of the obestatin molecule that posses significant α-helical characteristics. Additionally, details of a species-specific role for obestatin have also been hypothesized by comparing human and mouse obestatins (1 and 6, respectively) at both the structural and bioactivity levels. PMID:23056203
Alén, Begoña O; Nieto, Lidia; Gurriarán-Rodríguez, Uxía; Mosteiro, Carlos S; Álvarez-Pérez, Juan C; Otero-Alén, María; Camiña, Jesús P; Gallego, Rosalía; García-Caballero, Tomás; Martín-Pastor, Manuel; Casanueva, Felipe F; Jiménez-Barbero, Jesús; Pazos, Yolanda
2012-01-01
The quest for therapeutic applications of obestatin involves, as a first step, the determination of its 3D solution structure and the relationship between this structure and the biological activity of obestatin. On this basis, we have employed a combination of circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy, and modeling techniques to determine the solution structure of human obestatin (1). Other analogues, including human non-amidated obestatin (2) and the fragment peptides (6-23)-obestatin (3), (11-23)-obestatin (4), and (16-23)-obestatin (5) have also been scrutinized. These studies have been performed in a micellar environment to mimic the cell membrane (sodium dodecyl sulfate, SDS). Furthermore, structural-activity relationship studies have been performed by assessing the in vitro proliferative capabilities of these peptides in the human retinal pigmented epithelial cell line ARPE-19 (ERK1/2 and Akt phosphorylation, Ki67 expression, and cellular proliferation). Our findings emphasize the importance of both the primary structure (composition and size) and particular segments of the obestatin molecule that posses significant α-helical characteristics. Additionally, details of a species-specific role for obestatin have also been hypothesized by comparing human and mouse obestatins (1 and 6, respectively) at both the structural and bioactivity levels.
Vancomycin: ligand recognition, dimerization and super-complex formation.
Jia, ZhiGuang; O'Mara, Megan L; Zuegg, Johannes; Cooper, Matthew A; Mark, Alan E
2013-03-01
The antibiotic vancomycin targets lipid II, blocking cell wall synthesis in Gram-positive bacteria. Despite extensive study, questions remain regarding how it recognizes its primary ligand and what is the most biologically relevant form of vancomycin. In this study, molecular dynamics simulation techniques have been used to examine the process of ligand binding and dimerization of vancomycin. Starting from one or more vancomycin monomers in solution, together with different peptide ligands derived from lipid II, the simulations predict the structures of the ligated monomeric and dimeric complexes to within 0.1 nm rmsd of the structures determined experimentally. The simulations reproduce the conformation transitions observed by NMR and suggest that proposed differences between the crystal structure and the solution structure are an artifact of the way the NMR data has been interpreted in terms of a structural model. The spontaneous formation of both back-to-back and face-to-face dimers was observed in the simulations. This has allowed a detailed analysis of the origin of the cooperatively between ligand binding and dimerization and suggests that the formation of face-to-face dimers could be functionally significant. The work also highlights the possible role of structural water in stabilizing the vancomycin ligand complex and its role in the manifestation of vancomycin resistance. © 2013 The Authors Journal compilation © 2013 FEBS.
Fang, Min; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen; Cheng, Yiyun
2012-03-15
Drug molecules bearing multiple charges usually form precipitates with cationic dendrimers, which presents a challenge during the preparation of dendrimer inclusions for these drugs. In the present study, fully acetylated polyamidoamine (PAMAM) dendrimers were proposed as stable vehicles for drug molecules bearing two negative charges such as Congo red and indocyanine green. NMR techniques including (1)H NMR and (1)H-(1)H NOESY were used to characterize the host-guest chemistry of acetylated dendrimer and these guest molecules. The cationic PAMAM dendrimer was found to form a precipitate with Congo red and indocyanine green, but the acetylated one avoided the formation of cross-linking structures in aqueous solutions. NOESY studies revealed the encapsulation of Congo red and indocyanine green within the interior cavities of PAMAM dendrimers at mild acidic conditions and acetylated dendrimers show much stronger ability to encapsulate the guest molecules than cationic ones. Also, UV-vis-NIR studies suggest that acetylated dendrimers significantly improve the photostability of indocyanine green and prevent the formation of indocyanine green J-aggregates in aqueous solutions. The present study provides a new insight into dendrimer-based host-guest systems, especially for those guest molecules bearing multiple charges. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Mic, Mihaela; Pırnǎu, Adrian; Bogdan, Mircea; Turcu, Ioan
2013-11-01
The supramolecular structure of the inclusion complex of β-cyclodextrin with benzocaine in aqueous solution has been investigated by 1H NMR spectroscopy and isothermal titration nanocalorimetry (ITC). Analysis of 1H NMR data by continuous variation method indicates that the benzocaine: β-cyclodextrin inclusion complex occurs and has a 1:1 stoichiometry. Rotating frame NOE spectroscopy (ROESY) was used to ascertain the solution geometry of the host-guest complex which indicates that the benzocaine molecule was included with the aromatic ring into the cyclodextrin cavity. Although the affinity of benzocaine for cyclodextrin is relatively high, the association constant cannot be measured using ITC due to the low solubility of benzocaine in water.
McDonald, G G; Vanderkooi, J M
1975-05-20
A pulsed-gradient Fourier transform nuclear magnetic resonance (NMR) technique was appplied to the study of diffusion of phospholipid vesicles. The diffusion coefficient of dimyristoyllecithin vesicles (DML) in a D2O-phospahte buffer at 37 degrees is D = 1.9 TIMES 10(-6) cm2/sec. In a solution made viscous by DNA addition, the diffusion coefficient of DML vesicles was 3.5 times 10(-7) cm2/sec. These values compare favorably with the diffusion rate for liposomes as determined by ultracentrifugation and by Stokes law calculation. The data suggest that DML diffusion is controlled primarily by whole liposome migration as opposed to movement of individual molecules within the liposome, liposome rotation, or fast exchange between lecithin molecules in solution and in vesicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.; Maestre, M.F.; Fish, R.H.
We report what we believe is the first example of bioorganometallic hosts, 1-4, [Cp{sup *}Rh(9-methyladenine)]{sub 3}(OTf){sub 3} (1), [Cp{sup *}Rh(Me-5`-AMP)]{sub 3} (4), being able to recognize aromatic amino acid guests L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) in aqueous media at pH 7. Results show that the molecular recognition of aromatic amino acids with bioorganometallic hosts 1-4 in aqueous solution, as studied by {sup 1}H NMR and NOE techniques, occurs predominately via a {pi}-{pi} interaction, and, in the case of L-Trp, additional electronic/hydrophobic interactions with hosts are possible. 7 refs., 1 fig., 1 tab.
Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S
2016-05-04
The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.
Computational approach to integrate 3D X-ray microtomography and NMR data
NASA Astrophysics Data System (ADS)
Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Trevizan, Willian A.; Fortulan, Carlos A.; Bonagamba, Tito J.
2018-07-01
Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials.
Didanosine polymorphism in a supercritical antisolvent process.
Bettini, R; Menabeni, R; Tozzi, R; Pranzo, M B; Pasquali, I; Chierotti, M R; Gobetto, R; Pellegrino, L
2010-04-01
Solid-state properties of active ingredients are crucial in pharmaceutical development owing to their significant clinical and economical implications. In the present work we investigated the solid-state properties and the solubility in water of didanosine, DDI, re-crystallized from a dimethylsulfoxide solution using supercritical CO(2) as an antisolvent (SAS process) for comparison with the commercially available drug product. We also applied modern solid-state NMR (SS NMR) techniques, namely 2D (1)H DQ CRAMPS (Combined Rotation And Multiple Pulse Spectroscopy) and (1)H-(13)C on- and off-resonance CP (cross polarization) FSLG-HETCOR experiments, known for providing reliable information about (1)H-(1)H and (1)H-(13)C intra- and intermolecular proximities, in order to address polymorphism issues arising from the crystallization of a new form in the supercritical process. A new polymorph of didanosine was obtained from the supercritical antisolvent process and characterized by means of 1D and 2D multinuclear ((1)H, (13)C, (15)N) SS NMR. The particle size of the new crystal phase was reduced by varying the antisolvent density through a pressure increase. The structural differences between the commercial product and the SAS re-crystallized DDI are highlighted by X-ray diffractometry and well described by solid-state NMR. The carbon C6 (13)C chemical shift suggests that both commercial and re-crystallized didanosine samples are in the enol form. The analysis of homo- and heteronuclear proximities obtained by means of 2D NMR experiments shows that commercial and SAS re-crystallized DDI possess very similar molecular conformation and hydrogen bond network, but different packing. The new polymorph proved to be a metastable form at ambient conditions, showing higher solubility in water and lower stability to mechanical stress. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
2009-01-01
Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (± 0.1) × 10-5 s-1 for a solution:solid of 10:1 and 1.6 (± 0.8) × 10-4 s-1 for a solution:solid of 5:1 (batch mode; T = 150°C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at δiso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (± 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR. PMID:19144195
NMR of thin layers using a meanderline surface coil
Cowgill, Donald F.
2001-01-01
A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.
Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives
NASA Astrophysics Data System (ADS)
Odeh, F.; Al-Bawab, A.; Li, Y.
2018-02-01
Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.
ERIC Educational Resources Information Center
Alty, Lisa T.
2005-01-01
A study identifies a compound from a set of monoterpenes using infrared (IR) and one-dimensional (1D) nuclear magnetic resonance (NMR) techniques. After identifying the unknown, each carbon and proton signal can be interpreted and assigned to the structure using the information in the two-dimensional (2D) NMR spectra, correlation spectroscopy…
Tompa, Kálmán; Bánki, Péter; Bokor, Mónika; Kamasa, Pawel; Lasanda, György; Tompa, Péter
2009-01-01
Wide-line 1H-NMR and differential scanning calorimetry measurements were done in aqueous solutions and on lyophilized samples of human ubiquitin between −70°C and +45°C. The measured properties (size, thermal evolution, and wide-line NMR spectra) of the protein-water interfacial region are substantially different in the double-distilled and buffered-water solutions of ubiquitin. The characteristic transition in water mobility is identified as the melting of the nonfreezing/hydrate water. The amount of water in the low-temperature mobile fraction is 0.4 g/g protein for the pure water solution. The amount of mobile water is higher and its temperature dependence more pronounced for the buffered solution. The specific heat of the nonfreezing/hydrate water was evaluated using combined differential scanning calorimetry and NMR data. Considering the interfacial region as an independent phase, the values obtained are 5.0–5.8 J·g−1·K−1, and the magnitudes are higher than that of pure/bulk water (4.2 J·g−1·K−1). This unexpected discrepancy can only be resolved in principle by assuming that hydrate water is in tight H-bond coupling with the protein matrix. The specific heat for the system composed of the protein molecule and its hydration water is 2.3 J·g−1·K−1. It could be concluded that the protein ubiquitin and its hydrate layer behave as a highly interconnected single phase in a thermodynamic sense. PMID:19348762
Refinement of NMR structures using implicit solvent and advanced sampling techniques.
Chen, Jianhan; Im, Wonpil; Brooks, Charles L
2004-12-15
NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified force field and then refines these structures with implicit solvent using the REX method. We systematically examine the reliability and efficacy of this protocol using four proteins of various sizes ranging from the 56-residue B1 domain of Streptococcal protein G to the 370-residue Maltose-binding protein. Significant improvement in the structures was observed in all cases when refinement was based on low-redundancy restraint data. The proposed protocol is anticipated to be particularly useful in early stages of NMR structure determination where a reliable estimate of the native fold from limited data can significantly expedite the overall process. This refinement procedure is also expected to be useful when redundant experimental data are not readily available, such as for large multidomain biomolecules and in solid-state NMR structure determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth
2007-10-22
Understanding the solution behavior of supramolecular assemblies is essential for a full understanding of the formation and chemistry of synthetic host-guest systems. While the interaction between host and guest molecules is generally the focus of mechanistic studies of host-guest complexes, the interaction of the host-guest complex with other species in solution remains largely unknown, although in principle accessible by diffusion studies. Several NMR techniques are available to monitor diffusion and have recently been reviewed. Pulsed gradient spin-echo (PGSE) NMR methods have attracted increasing interest, since they allow diffusion coefficients to be measured with high accuracy; they have been successfully usedmore » with observation of {sup 7}Li and {sup 31}P nuclei as well as with {sup 1}H NMR. We report here the direct measurement of diffusion coefficients to observe ion-association interactions by counter cations with a highly-charged supramolecular assembly. Raymond and coworkers have described the design and chemistry of a class of metal-ligand supramolecular assemblies over the past decade. The [Ga{sub 4}L{sub 6}]{sup 12-} (L = 1,5-bis(2,3-dihydroxybenzamido)naphthalene) (1) (Figure 1) assembly has garnered the most attention, with the exploration of the dynamics and mechanism of guest exchange as well as the ability of 1 to achieve either stoichiometric or catalytic reactions inside its interior cavity. Recent studies have revealed the importance of counter cations in solution on the chemistry of 1. During the mechanistic study of the C-H bond activation of aldehydes by [Cp*Ir(PMe{sub 3})(olefin){sup +} {contained_in} 1]{sup 11-} a stepwise guest dissociation mechanism with an ion-paired intermediate was proposed. Similarly, in the mechanism for the hydrolysis of iminium cations generated from the 3-aza Cope rearrangement of enammonium cations in 1, the presence of an exterior ion association was part of the kinetic model. To further substantiate the indirect kinetic evidence for such ion-paired species, we sought to explore the solution behavior of 1 by studying the diffusion of 1 with varying alkali and tetraalkyl ammonium cations. For large molecules in solution, such as synthetic supramolecular assemblies, the diffusion behavior of host and guest molecules can provide valuable information on host-guest interaction. One characteristic feature of a stable host-guest complex is that the host and guest molecules diffuse at the same rate in solution; this has been observed in a number of supramolecular systems. In order to confirm that this system was suitable for study by diffusion NMR spectroscopy, a PGSE-DOSY spectrum was acquired of [NEt{sub 4} {contained_in} 1]{sup 11-} (Figure 2), which shows that the host and guest molecules diffuse at the same rate. Quantitative analysis of the data, from monitoring the integral of host and guest resonances as a function of applied gradient strength, gave identical diffusion coefficients, confirming that the host and guest molecules diffuse together.« less
A New Way to Produce Cellobiose Carbonates Using Green Chemistry.
Khiari, R; Brochier-Salon, M-C; Mhenni, M F; Mauret, E; Belgacem, M N
2016-08-23
The preparation of cellulose derivatives using green (i.e., environmentally friendly) reagents would improve sustainability and reduce concerns arising from the use of non-green reagents. The objective of this work was to prepare cellobiose carbonate using a green reagent, dimethyl carbonate. The carbonation reaction was carried out in the presence of ethanolic potassium hydroxide solution and dimethyl carbonate for 6 h at a range of temperatures (25-70 °C). A cellobiose derivative was successfully prepared with a recovered yield of more than 70 % and characterized by FTIR and NMR spectroscopy techniques. The presence of a grafted disaccharide with a degree of substitution higher than 2 was determined by (13) C NMR analysis. The spectra of the prepared cellobiose carbonate exhibited peaks that were associated with cellulose molecules (C1 -C6 ) and corresponded to carbonate functions at around 159.4 ppm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function.
Lisi, George P; Loria, J Patrick
2016-02-01
Conformational motions play an essential role in enzyme function, often facilitating the formation of enzyme-substrate complexes and/or product release. Although considerable debate remains regarding the role of molecular motions in the conversion of enzymatic substrates to products, numerous examples have found motions to be crucial for optimization of enzyme scaffolds, effective substrate binding, and product dissociation. Conformational fluctuations are often rate-limiting to enzyme catalysis, primarily through product release, with the chemical reaction occurring much more quickly. As a result, the direct involvement of motions at various stages along the enzyme reaction coordinate remains largely unknown and untested. In the following review, we describe the use of solution NMR techniques designed to probe various timescales of molecular motions and detail examples in which motions play a role in propagating catalytic effects from the active site and directly participate in essential aspects of enzyme function. Copyright © 2015 Elsevier B.V. All rights reserved.
Francesconi, Oscar; Gentili, Matteo; Roelens, Stefano
2012-09-07
The carbohydrate recognition properties of synthetic tripodal receptors relying on H-bonding interactions have highlighted the crucial role played by the functional groups matching saccharidic hydroxyls. Herein, pyrrole and pyridine, which emerged as two of the most effective H-bonding groups, were quantitatively compared through their isostructural substitution within the architecture of a shape-persistent bicyclic cage receptor. NMR and ITC binding studies gave for the pyrrolic receptor a 20-fold larger affinity toward octyl-β-d-glucopyranoside in CDCl(3), demonstrating the superior recognition properties of pyrrole under conditions in which differences would depend on the intrinsic binding ability of the two groups. The three-dimensional structures of the two glucoside complexes in solution were elucidated by combined NMR and molecular mechanics computational techniques, showing that the origin of the stability difference between the two closely similar complex structures resides in the ability of pyrrole to establish shorter/stronger H-bonds with the glucosidic ligand compared to pyridine.
Structure and dynamics of the influenza A M2 channel: a comparison of three structures.
Leonov, Hadas; Arkin, Isaiah T
2009-11-01
The M2 protein is an essential component of the Influenza virus' infectivity cycle. It is a homo-tetrameric bundle forming a pH-gated H(+) channel. The structure of M2 was solved by three different groups, using different techniques, protein sequences and pH environment. For example, solid-state NMR spectroscopy was used on a protein in lipid bilayers, while X-ray crystallography and solution NMR spectroscopy were applied on a protein in detergent micelles. The resulting structures from the above efforts are rather distinct. Herein, we examine the different structures under uniform conditions such as a lipid bilayer and specified protonation state. We employ extensive molecular dynamics simulations, in several protonation states, representing both closed and open forms of the channel. Exploring the properties of each of these structures has shown that the X-ray structure is more stable than the other structures according to various criteria, although its water conductance and water-wire formation do not correlate to the protonation state of the channel.
Full analytical solution of the bloch equation when using a hyperbolic-secant driving function.
Zhang, Jinjin; Garwood, Michael; Park, Jang-Yeon
2017-04-01
The frequency-swept pulse known as the hyperbolic-secant (HS) pulse is popular in NMR for achieving adiabatic spin inversion. The HS pulse has also shown utility for achieving excitation and refocusing in gradient-echo and spin-echo sequences, including new ultrashort echo-time imaging (e.g., Sweep Imaging with Fourier Transform, SWIFT) and B 1 mapping techniques. To facilitate the analysis of these techniques, the complete theoretical solution of the Bloch equation, as driven by the HS pulse, was derived for an arbitrary state of initial magnetization. The solution of the Bloch-Riccati equation for transverse and longitudinal magnetization for an arbitrary initial state was derived analytically in terms of HS pulse parameters. The analytical solution was compared with the solutions using both the Runge-Kutta method and the small-tip approximation. The analytical solution was demonstrated on different initial states at different frequency offsets with/without a combination of HS pulses. Evolution of the transverse magnetization was influenced significantly by the choice of HS pulse parameters. The deviation of the magnitude of the transverse magnetization, as obtained by comparing the small-tip approximation to the analytical solution, was < 5% for flip angles < 30 °, but > 10% for the flip angles > 40 °. The derived analytical solution provides insights into the influence of HS pulse parameters on the magnetization evolution. Magn Reson Med 77:1630-1638, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
1994-05-11
analyses, 1H NM&, and JR specPit oscopy. The purities were also determined quantitatively by a thermometric titration technique. 19 By titrting...enantiomers of NapEt with 18- crown-6 (SIGMA Chemical Company, its purity was 99.5% as determined by therm--ometric titration agtains a standard NaBr...isoperibol titration calorimetry at 25.0 - 0.1oC in CACi6CHOH solvent mixtures. The initial solution volume in the dewar was 20 mL Tne calorimeter (wac
González-Olvera, Rodrigo; Espinoza-Vázquez, Araceli; Negrón-Silva, Guillermo E; Palomar-Pardavé, Manuel E; Romero-Romo, Mario A; Santillan, Rosa
2013-12-06
A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and high resolution mass spectrometry. These compounds were investigated as corrosion inhibitors for steel in 1 M HCl solution, using electrochemical impedance spectroscopy (EIS) technique. The results indicate that these heterocyclic compounds are promising acidic corrosion inhibitors for steel.
Ishima, Rieko
2016-01-01
Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944
Giri, Jyotsnendu; Diallo, Mamadou S; Simpson, André J; Liu, Yi; Goddard, William A; Kumar, Rajeev; Woods, Gwen C
2011-05-24
The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K(b)) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined (1)H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer-HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K(b)) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR (1)H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The (1)H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH(2)vs G4-NH(2)) and terminal groups (G4-NH(2)vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4).
Cryptophane Nanoscale Assemblies Expand 129Xe NMR Biosensing.
Zemerov, Serge D; Roose, Benjamin W; Greenberg, Mara L; Wang, Yanfei; Dmochowski, Ivan J
2018-06-19
Cryptophane-based biosensors are promising agents for the ultrasensitive detection of biomedically relevant targets via 129 Xe NMR. Dynamic light scattering revealed that cryptophanes form water-soluble aggregates tens to hundreds of nanometers in size. Acridine orange fluorescence quenching assays allowed quantitation of the aggregation state, with critical concentrations ranging from 200 nM to 600 nM, depending on the cryptophane species in solution. The addition of excess carbonic anhydrase (CA) protein target to a benzenesulfonamide-functionalized cryptophane biosensor (C8B) led to C8B disaggregation and produced the expected 1:1 C8B-CA complex. C8B showed higher affinity at 298 K for the cytoplasmic isozyme CAII than the extracellular CAXII isozyme, which is a biomarker of cancer. Using hyper-CEST NMR, we explored the role of stoichiometry in detecting these two isozymes. Under CA-saturating conditions, we observed that isozyme CAII produces a larger 129 Xe NMR chemical shift change (δ = 5.9 ppm, relative to free biosensor) than CAXII (δ = 2.7 ppm), which indicates the strong potential for isozyme-specific detection. However, stoichiometry-dependent chemical shift data indicated that biosensor disaggregation contributes to the observed 129 Xe NMR chemical shift change that is normally assigned to biosensor-target binding. Finally, we determined that monomeric cryptophane solutions improve hyper-CEST saturation contrast, which enables ultrasensitive detection of biosensor-protein complexes. These insights into cryptophane-solution behavior support further development of xenon biosensors, but will require reinterpretation of the data previously obtained for many water-soluble cryptophanes.
NMR Studies of Low-Gamma Nuclei in Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasylishen, Roderick E.; Forgeron, Michelle A.; Siegel, Renee
2006-07-24
Over the past five years we have devoted considerable time to solid-state NMR investigaitons of nuclei, which are traditionally known as "difficult" because of their small magnetic moments. These include quadrupolar nuclei such as 35Cl, 53 Cr, 91Zr, 95Mo, 99Ru, 131 Xe, as well as spin-1/2 nuclei such as 109Ag. While NMR studies of such isotopes remain challenging, the use of moderate to high magnetic field strengths together with a variety of enhancement techniques is leading to many interesting applications. In this talk some of our successes in studying these isotopes will be presented. For example, we will present preliminarymore » results of 131Xe NMR studies of solid sodium perxenate, as well as 109Ag NMR studies of silver dialkylphosphites. Our experience using population enhancement techniques that utilize hyperbolic secant pulses will also be discussed.« less
A Training Program in Breast Cancer Research Using NMR Techniques
2005-07-01
to explore the application NMR molecular imaging techniques developed in this program in detection of amyloid plaques in the Alzheimer diseased mouse...one is to utilize the molecular imaging technique to exploit new application in imaging of amyloid plaques in Alzheimer disease. A abridge of each...matched, non-demented elderly suggests that volumetric studies of ante-mortem neuroimages may provide an early marker of AD in aging populations. In
Tallavaara, Pekka; Jokisaari, Jukka
2008-03-28
An alternative NMR method for determining nuclear shielding anisotropies in molecules is proposed. The method is quite simple, linear and particularly applicable for heteronuclear spin systems. In the technique, molecules of interest are dissolved in a thermotropic liquid crystal (LC) which is confined in a mesoporous material, such as controlled pore glass (CPG) used in this study. CPG materials consist of roughly spherical particles with a randomly oriented and connected pore network inside. LC Merck Phase 4 was confined in the pores of average diameter from 81 to 375 A and LC Merck ZLI 1115 in the pores of average diameter 81 A. In order to demonstrate the functionality of the method, the (13)C shielding anisotropy of (13)C-enriched methyl iodide, (13)CH(3)I, was determined as a function of temperature using one dimensional (13)C NMR spectroscopy. Methane gas, (13)CH(4), was used as an internal chemical shift reference. It appeared that methyl iodide molecules experience on average an isotropic environment in LCs inside the smallest pores within the whole temperature range studied, ranging from bulk solid to isotropic phase. In contrast, in the spaces in between the particles, whose diameter is approximately 150 microm, LCs behave as in the bulk. Consequently, isotropic values of the shielding tensor can be determined from spectra arising from molecules inside the pores at exactly the same temperature as the anisotropic ones from molecules outside the pores. Thus, for the first time in the solution state, shielding anisotropies can easily be determined as a function of temperature. The effects of pore size as well as of different LC media on the shielding anisotropy are examined and discussed.
Uccello-Barretta, Gloria; Balzano, Federica; Aiello, Federica; Falugiani, Niccolò; Desideri, Ielizza
2015-03-25
In total parenteral nutrition (TPN), especially in the case of preterm infants, simultaneous administration of vitamins and trace elements is still a problematic issue: guidelines put in evidence the lack of specific documentation. In this work NMR spectroscopy was applied to the study of vitamins (pyridoxine hydrochloride, thiamine nitrate, riboflavin-5'-phosphate and nicotinamide) stability in presence of salts and trace elements. Vitamins in D2O were first analyzed by (1)H NMR spectroscopy in absence of salts and trace elements; changes in chemical shifts or in diffusion coefficients, measured by NMR DOSY technique, were analyzed. The effects of salts and trace elements on single vitamins and on their admixtures were then investigated by performing quantitative analyses during 48h. Selected vitamins are subject to intermolecular interactions. No degradative effects were observed in presence of salts and trace elements. Only riboflavin-5'-phosphate is subject to precipitation in presence of divalent cations; however, at low concentration and in presence of other vitamins this effect was not observed. Solutions analyzed, in the condition of this study, are stable for at least 48h and vitamins and trace elements can be administered together in TPN. Copyright © 2014 Elsevier B.V. All rights reserved.
Selective Injection of Magnetization by Slow Chemical Exchange in NMR
NASA Astrophysics Data System (ADS)
Boulat, Benoit; Epstein, David M.; Rance, Mark
1999-06-01
In a system in slow dynamic equilibrium two NMR methods are shown to be suitable for injecting magnetization from one resonance to another by means of slow chemical exchange. The combined outputs of the methods may be employed to measure the value of the off-rate constant κoff in the complex. The methods are implemented experimentally using the complex of molecules composed of the enzyme Esherichia coli dihydrofolate reductase (DHFR) and the ligand folate. In an equilibrium solution with DHFR, folate is known to undergo chemical exchange between a free state and a bound state. The modified synchronous nutation method is applied to a spin of the folate molecule in the free and bound states; magnetization transfer occurs between the two sites due to the underlying exchange process. As a preliminary step for the application of the synchronous nutation method, a new one-dimensional 1H NMR technique is proposed which facilitates the assignment of the resonance of a spin in the bound state, provided the resonance of its exchange partner in the free state is known. This experiment is also used to obtain quantitative estimates of the transverse relaxation rate constant of the bound resonance. The numerical procedure necessary to analyze the experimental results of the synchronous nutation experiment is presented.
Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory
ERIC Educational Resources Information Center
Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.
2007-01-01
The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.
NASA Astrophysics Data System (ADS)
Nieto, Carla I.; Sanz, Dionisia; Claramunt, Rosa M.; Torralba, M. Carmen; Torres, M. Rosario; Alkorta, Ibon; Elguero, José
2018-03-01
The crystals of two 1,4-diazepines prepared from curcuminoid β-diketones and ethylenediamine were studied by X-ray crystallography and NMR. Their tautomerism, intramolecular hydrogen bonds and conformation were determined.
Systematic Comparison of Crystal and NMR Protein Structures Deposited in the Protein Data Bank
Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero
2010-01-01
Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR – X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution. PMID:21293729
Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.
Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier
2016-09-01
Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Correlations between the 1H NMR chemical shieldings and the pKa values of organic acids and amines.
Lu, Juanfeng; Lu, Tingting; Zhao, Xinyun; Chen, Xi; Zhan, Chang-Guo
2018-06-01
The acid dissociation constants and 1 H NMR chemical shieldings of organic compounds are important properties that have attracted much research interest. However, few studies have explored the relationship between these two properties. In this work, we theoretically studied the NMR chemical shifts of a series of carboxylic acids and amines in the gas phase and in aqueous solution. It was found that the negative logarithms of the experimental acid dissociation constants (i.e., the pK a values) of the organic acids and amines in aqueous solution correlate almost linearly with the corresponding calculated NMR chemical shieldings. Key factors that affect the theoretically predicted pK a values are discussed in this paper. The present work provides a new way to predict the pK a values of organic/biochemical compounds. Graphical abstract The chemical shielding values of organic acids and amines correlate near linearly with their corresponding pK a values.
Biomolecular solid state NMR with magic-angle spinning at 25K.
Thurber, Kent R; Tycko, Robert
2008-12-01
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.
Rapid NMR method for the quantification of organic compounds in thin stillage.
Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T
2011-10-12
Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.
Heteronuclear Multidimensional Protein NMR in a Teaching Laboratory
ERIC Educational Resources Information Center
Wright, Nathan T.
2016-01-01
Heteronuclear multidimensional NMR techniques are commonly used to study protein structure, function, and dynamics, yet they are rarely taught at the undergraduate level. Here, we describe a senior undergraduate laboratory where students collect, process, and analyze heteronuclear multidimensional NMR experiments using an unstudied Ig domain (Ig2…
Norwood, Daniel L; Mullis, James O; Davis, Mark; Pennino, Scott; Egert, Thomas; Gonnella, Nina C
2013-01-01
The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds representing the chemical diversity of extractables. This study demonstrates the complementary nature of SPE-LC/NMR with LC/MS for this particular pharmaceutical application. The identification of impurities leached into drugs from the components and materials associated with pharmaceutical containers, packaging components, and materials has historically been done using laboratory techniques based on the combination of chromatography with mass spectrometry. Such analytical techniques are widely recognized as having the selectivity and sensitivity required to separate the complex mixtures of impurities often encountered in such identification studies, including both the identification of leachable impurities as well as potential leachable impurities produced by laboratory extraction of packaging components and materials. However, while mass spectrometry-based analytical techniques have limitations for this application, newer analytical techniques based on the combination of chromatography with nuclear magnetic resonance spectroscopy provide an added dimension of structural definition. This article describes the development, optimization, and application of an analytical technique based on the combination of chromatography and nuclear magnetic resonance spectroscopy to the identification of potential leachable impurities from a pharmaceutical packaging material. The complementary nature of the analytical techniques for this particular pharmaceutical application is demonstrated.
Interaction Between Cyanine Dye IR-783 and Polystyrene Nanoparticles in Solution.
Zhang, Yunzhi; Xu, Hui; Casabianca, Leah B
2018-05-17
The interactions between small molecule drugs or dyes and nanoparticles are important to the use of nanoparticles in medicine. Noncovalent adsorption of dyes on nanoparticle surfaces is also important to the development of nanoparticle dual-use imaging contrast agents. In the present work, solution-state NMR is used to examine the noncovalent interaction between a near-infrared cyanine dye and the surface of polystyrene nanoparticles in solution. Using 1D proton NMR, we can approximate the number of dye molecules that associate with each nanoparticle for different sized nanoparticles. Saturation-Transfer Difference (STD)-NMR was also used to show that protons near the positively-charged nitrogen in the dye are more strongly associated with the negatively-charged nanoparticle surface than protons near the negatively-charged sulfate groups of the dye. The methods described here can be used to study similar drug or dye molecules interacting with the surface of organic nanoparticles. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Vaccher, Claude; Berthelot, Pascal; Debaert, Michel; Vermeersch, Gaston; Guyon, René; Pirard, Bernard; Vercauteren, Daniel P.; Dory, Magdalena; Evrard, Guy; Durant, François
1993-12-01
The conformations of 3-(substituted furan-2-yl) and 3-(substituted thien-2-yl)-γ-aminobutyric acid 1-9 in solution (D 2O) are estimated from high-resolution (300 MHz) 1H NMR coupling data. Conformations and populations of conformers are calculated by means of a modified Karplus-like relationship for the vicinal coupling constants. The results are compared with X-ray crystallographic investigations (torsion angles) and ab initio HF MO ST-3G or STO-3G* calculations. 1H NMR spectral analysis shows how 1-9 in solution retain the preferred g- conformation around the C3C4 bond, as found in the solid state, while a partial rotation is set up around the C2C3 bond: the conformations about C2C3 are all highly populated in solution. The 13C spin-lattice relaxation times are also discussed.
NASA Astrophysics Data System (ADS)
Gackowski, Mariusz; Kuterasiński, Łukasz; Podobiński, Jerzy; Sulikowski, Bogdan; Datka, Jerzy
2018-03-01
Ammonia treatment of ultrastable zeolite Y has a great impact on its features. XRD showed a partial loss of crystallinity coupled with a loss of long-distance zeolite ordering. However, a typical short-range zeolite ordering, in the light of 29Si NMR studies, was largely preserved. 27Al MAS NMR spectra evidenced that most of Al was located in zeolitic tetrahedral positions, but some of them adopted a distorted configuration. Evolution of zeolites acidity was followed quantitatively by using IR. In particular, such studies revealed the presence of strongly acidic Sisbnd OHsbnd Al groups. IR studies suggest also heterogeneity of these OH groups. The heterogeneity of Sisbnd OHsbnd Al groups was a consequence of the less ordered structure of zeolites treated with ammonia solutions. It was also found that the treatment with ammonia solutions yields hierarchical material. The samples revealed promising catalytic properties in the liquid phase isomerization of α-pinene. Zeolites desilicated with ammonia may constitute an inexpensive route yielding viable hierarchical catalysts.
Gäb, Jürgen; John, Harald; Melzer, Marco; Blum, Marc-Michael
2010-05-15
Buffering compounds like TRIS are frequently used in chemical, biochemical and biomedical applications to control pH in solution. One of the prerequisites of a buffer compound, in addition to sufficient buffering capacity and pH stability over time, is its non-reactivity with other constituents of the solution. This is especially important in the field of analytical chemistry where analytes are to be determined quantitatively. Investigating the enzymatic hydrolysis of G-type nerve agents sarin, soman and cyclosarin in buffered solution we have identified stable buffer adducts of TRIS, TES and other buffer compounds with the nerve agents. We identified the molecular structure of these adducts as phosphonic diesters using 1D (1)H-(31)P HSQC NMR and LC-ESI-MS/MS techniques. Reaction rates with TRIS and TES are fast enough to compete with spontaneous hydrolysis in aqueous solution and to yield substantial amounts (up to 20-40%) of buffer adduct over the course of several hours. A reaction mechanism is proposed in which the amino function of the buffer serves as an intramolecular proton acceptor rendering the buffer hydroxyl groups nucleophilic enough for attack on the phosphorus atom of the agents. Results show that similar buffer adducts are formed with a range of hydroxyl and amino function containing buffers including TES, BES, TRIS, BIS-TRIS, BIS-TRIS propane, Tricine, Bicine, HEPES and triethanol amine. It is recommended to use alternative buffers like MOPS, MES and CHES when working with G-type nerve agents especially at higher concentrations and over prolonged times. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Jaźwiński, Jarosław; Sadlej, Agnieszka
2013-10-01
The complexation of rhodium(II) tetraacetate, tetrakistrifluoroaceate and tetrakisoctanoate with a set of diamines (ethane-1,diamine, propane-1,3-diamine and nonane-1,9-diamine) and their N,N'-dimethyl and N,N,N',N'-tetramethyl derivatives in chloroform solution has been investigated by (1) H and (13) C NMR spectroscopy and density functional theory (DFT) modelling. A combination of two bifunctional reagents, diamines and rhodium(II) tetracarboxylates, yielded insoluble coordination polymers as main products of complexation and various adducts in the solution, being in equilibrium with insoluble material. All diamines initially formed the 2 : 1 (blue), (1 : 1)n oligomeric (red) and 1 : 2 (red) axial adducts in solution, depending on the reagents' molar ratio. Adducts of primary and secondary diamines decomposed in the presence of ligand excess, the former via unstable equatorial complexes. The complexation of secondary diamines slowed down the inversion at nitrogen atoms in NH(CH3 ) functional groups and resulted in the formation of nitrogenous stereogenic centres, detectable by NMR. Axial adducts of tertiary diamines appeared to be relatively stable. The presence of long aliphatic chains in molecules (adducts of nonane-1,9-diamines or rhodium(II) tetrakisoctanoate) increased adduct solubility. Hypothetical structures of the equatorial adduct of rhodium(II) tetraacetate with ethane-1,2-diamine and their NMR parameters were explored by means of DFT calculations. Copyright © 2013 John Wiley & Sons, Ltd.
Hwang, P M; Zhou, N; Shan, X; Arrowsmith, C H; Vogel, H J
1998-03-24
The solution structure of bovine lactoferricin (LfcinB) has been determined using 2D 1H NMR spectroscopy. LfcinB is a 25-residue antimicrobial peptide released by pepsin cleavage of lactoferrin, an 80 kDa iron-binding glycoprotein with many immunologically important functions. The NMR structure of LfcinB reveals a somewhat distorted antiparallel beta-sheet. This contrasts with the X-ray structure of bovine lactoferrin, in which residues 1-13 (of LfcinB) form an alpha-helix. Hence, this region of lactoferricin B appears able to adopt a helical or sheetlike conformation, similar to what has been proposed for the amyloidogenic prion proteins and Alzheimer's beta-peptides. LfcinB has an extended hydrophobic surface comprised of residues Phe1, Cys3, Trp6, Trp8, Pro16, Ile18, and Cys20. The side chains of these residues are well-defined in the NMR structure. Many hydrophilic and positively charged residues surround the hydrophobic surface, giving LfcinB an amphipathic character. LfcinB bears numerous similarities to a vast number of cationic peptides which exert their antimicrobial activities through membrane disruption. The structures of many of these peptides have been well characterized, and models of their membrane-permeabilizing mechanisms have been proposed. The NMR solution structure of LfcinB may be more relevant to membrane interaction than that suggested by the X-ray structure of intact lactoferrin. Based on the solution structure, it is now possible to propose potential mechanisms for the antimicrobial action of LfcinB.
High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane
Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua
2005-01-01
Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chénard, Etienne; Sutrisno, Andre; Zhu, Lingyang
2016-03-31
Following the discovery of the redox-active 1,4- bis-BF 3-quinoxaline complex, we undertook a structure- activity study with the objective to understand the active nature of the quinoxaline complex. Through systematic synthesis and characterization, we have compared complexes prepared from pyridine and pyrazine derivatives, as heterocyclic core analogues. This paper reports the structural requirements that give rise to the electrochemical features of the 1,4-bis-BF 3-quinoxaline adduct. Using solution and solidstate NMR spectroscopy, the role of aromatic ring fusion and nitrogen incorporation in bonding and electronics was elucidated. We establish the boron atom location and its interaction with its environment from 1Dmore » and 2D solution NMR, X-ray diffraction analysis, and 11B solid-state NMR experiments. Crystallographic analysis of single crystals helped to correlate the boron geometry with 11B quadrupolar coupling constant (CQ) and asymmetry parameter (ηQ), extracted from 11B solid-state NMR spectra. Additionally, computations based on density functional theory were performed to predict electrochemical behavior of the BF 3-heteroaromatic complexes. We then experimentally measured electrochemical potential using cyclic voltammetry and found that the redox potentials and CQ values are similarly affected by electronic changes in the complexes.« less
NASA Astrophysics Data System (ADS)
Saçmacı, Mustafa; Çavuş, Hatice Kanbur; Arı, Hatice; Şahingöz, Recep; Özpozan, Talat
2012-11-01
Novel acid mono azo dye, 2-[(E)-(8-hydroxyquinolin-5yl)-diazenyl]-4,5-dimethoxybenzoic acid (HQD), was synthesized by coupling diazonium salt solution of 2-amino-4,5-dimethoxybenzoic acid (DMA) with 8-hydroxyquinoline (HQ). This dye was characterized by UV-vis, IR & Raman, 1H and 13C NMR spectroscopic techniques and elemental analysis. The normal coordinate analysis of HQD was also performed to assign each band in vibrational spectra. DFT (B3LYP and B3PW91) calculations were employed to optimize the geometry, to interpret NMR spectra, to calculate and to determine the stable tautomeric structure of the compound. Natural Bond Orbital (NBO) analysis was performed to investigate intramolecular interactions. The vibrational spectral data obtained from solid phase IR & Raman spectra were assigned based on the results of the theoretical calculations. UV-vis spectroscopic technique was employed to obtain the optical band gap of HQD. The analysis of the optical absorption data revealed the existence of direct and indirect transitions in the optical band gaps. The optical band gaps of HQD have been found 1.95 and 1.90 eV for direct and indirect transitions, respectively.
Stein, Paul C; di Cagno, Massimiliano; Bauer-Brandl, Annette
2011-09-01
In this work a new, accurate and convenient technique for the measurement of distribution coefficients and membrane permeabilities based on nuclear magnetic resonance (NMR) is described. This method is a novel implementation of localized NMR spectroscopy and enables the simultaneous analysis of the drug content in the octanol and in the water phase without separation. For validation of the method, the distribution coefficients at pH = 7.4 of four active pharmaceutical ingredients (APIs), namely ibuprofen, ketoprofen, nadolol, and paracetamol (acetaminophen), were determined using a classical approach. These results were compared to the NMR experiments which are described in this work. For all substances, the respective distribution coefficients found with the two techniques coincided very well. Furthermore, the NMR experiments make it possible to follow the distribution of the drug between the phases as a function of position and time. Our results show that the technique, which is available on any modern NMR spectrometer, is well suited to the measurement of distribution coefficients. The experiments present also new insight into the dynamics of the water-octanol interface itself and permit measurement of the interface permeability.
Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun
2015-06-02
Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.
Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph
2004-01-01
Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...
Magic Angle Spinning NMR Metabolomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi Hu, Jian
Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.
Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging
2016-02-13
switchable array, RF magnetic field, NQR , MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic...Resonance (NMR) or Nuclear Quadrupole Resonance ( NQR ) techniques. REF [1] and [6] explain the differences between NMR and NQR . What NMR and NQR ...of resonance NQR frequency of 28.1MHz. The matching and tuning is explain in detail in the next section of this paper. Rectangle Surface Coil
Chakravorty, Dhruva K.; Wang, Bing; Lee, Chul Won; Guerra, Alfredo J.; Giedroc, David P.; Merz, Kenneth M.
2013-01-01
Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational dynamics in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies. PMID:23609042
NASA Astrophysics Data System (ADS)
Rabaeh, Khalid A.; Eyadeh, Molham M.; Hailat, Tariq F.; Aldweri, Feras M.; Alheet, Samer M.; Eid, Rania M.
2018-07-01
A new composition of Ferrous sulphate-Metheylthymol blue (MTB)-Polyvinyl alcohol (PVA) dosimeter is introduced in this work and evaluated using nuclear magnetic resonance (NMR) and absorbance spectrophotometry techniques. The Fricke-MTB-PVA dosimeters were irradiated using a medical linear accelerator in a cubic water phantom. The dose response of the dosimeters was investigated using NMR in terms of spin-spin relaxation rate (R2), and ultraviolet and visible regions (UV-Vis) spectrophotometry in terms of absorbance. The dosimeter presents a linear dose response for doses up to 20 Gy with UV-Vis and 40 Gy with NMR method. The sample with 0.1 mM MTB, 5% PVA by weight showed highest dose sensitivity for both techniques. The Fricke-MTB-PVA dosimeter developed in this work has a significant advance over the Fricke-MTB-gelatin system: the NMR sensitivity was remarkably improved; the auto-oxidation rate was seven times lower, and no significant dose rate or photon energy effects were observed.
NMR in Pulsed Magnetic Fields on the Orthogonal Shastry-Sutherland spin system SrCu2 (BO3)2
NASA Astrophysics Data System (ADS)
Stern, Raivo; Kohlrautz, Jonas; Kühne, Hannes; Greene, Liz; Wosnitza, Jochen; Haase, Jügen
2015-03-01
SrCu2(BO3)2 is a quasi-two-dimensional spin system consisting of Cu2+ ions which form orthogonal spin singlet dimers, also known as the Shastry-Sutherland lattice, in the ground state. Though this system has been studied extensively using a variety of techniques to probe the spin triplet excitations, including recent magnetization measurements over 100 T, microscopic techniques, such as nuclear magnetic resonance (NMR), could provide further insight into the spin excitations and spin-coupling mechanisms. We demonstrate the feasibility of performing NMR on real physics system in pulsed magnets. We present 11B NMR spectra measured in pulsed magnetic fields up to 53 T, and compare those with prior results obtained in static magnetic fields. Herewith we prove the efficacy of this technique and then extend to higher fields to fully explore the spin structure of the 1/3 plateau. Support by EMFL, DFG, ETAg (EML+ & PUT210).
Hahn, Seung-yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu
2010-01-01
This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet. PMID:20407595
Bayesian reconstruction of projection reconstruction NMR (PR-NMR).
Yoon, Ji Won
2014-11-01
Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. Copyright © 2014 Elsevier Ltd. All rights reserved.
The U.S. Dairy Forage Research Center (USDFRC) condensed tannin NMR database
USDA-ARS?s Scientific Manuscript database
This perspective describes a solution-state NMR database for flavan-3-ol monomers and condensed tannin dimers through tetramers obtained from the literature to 2015, containing data searchable by structure, molecular formula, degrees of polymerization, 1H and 13C chemical shifts of the condensed tan...
Grieco, Paolo; Brancaccio, Diego; Novellino, Ettore; Hruby, Victor J; Carotenuto, Alfonso
2011-09-01
The melanocortin receptors are involved in many physiological functions, including pigmentation, sexual function, feeding behavior, and energy homeostasis, making them potential targets to treat obesity, sexual dysfunction, etc. Understanding the basis of the ligand-receptor interactions is crucial for the design of potent and selective ligands for these receptors. The conformational preferences of the cyclic melanocortin ligands MTII (Ac-Nle(4)-c[Asp(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)) and SHU9119 (Ac-Nle(4)-c[Asp(5)-His(6)-DNal(2')(7)-Arg(8)-Trp(9)-Lys(10)]-NH(2)), which show agonist and antagonist activity at the h-MC4R, respectively, were comprehensively investigated by solution NMR spectroscopy in different environments. In particular, water and water/DMSO (8:2) solutions were used as isotropic solutions and an aqueous solution of DPC (dodecylphosphocholine) micelles was used as a membrane mimetic environment. NMR-derived conformations of these two ligands were docked within h-MC4R models. NMR and docking studies revealed intriguing differences which can help explain the different activities of these two ligands. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Yang, Xi; Wang, Shanshan; Ghiviriga, Ion; ...
2015-05-19
A novel synthetic method to create gold based metallo–oligomers/polymers via the combination of inorganic click (iClick) with intermolecular aurophilic interactions is demonstrated. Complexes [PEt 3Au] 4(μ-N 3C 2C 6H 5) (1) and [PPhMe 2Au] 43C 2C 6H 5) (2) and {[PEt 3Au] 4[(μ-N 3C 2) 2-9,9-dihexyl-9H-fluorene]} n (8) have been synthesized via iClick. The tetranuclear structures of 1 and 2, induced by aurophilic bonding, are confirmed in the solid state through single crystal X-ray diffraction experiments and in solution via variable temperature NMR spectroscopy. The extended 1D structure of 8 is constructed by aurophilic induced self-assembly. 1H DOSY NMR analysismore » reveals that the aurophilic bonds in 1, 2, and 8 are retained in the solution phase. The degree of polymerization within complex 8 is temperature and concentration dependent, as determined by 1H DOSY NMR. The complex 8 is a rare example of a solution stable higher ordered structure linked by aurophilic interactions.« less
Lin, Zhenguang; Mu, Yingdi; Liu, Yihui; Ren, Yeming; Lin, Jimao
2010-03-01
The structure of (1alpha, 2beta, 4beta, 5alpha, 7beta)-7-[(hydroxydi-2-thienylacetyl) oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo [3.3.1.0(2,4)] nonane bromide monohydrate was studied using 1D and 2D NMR techniques. Complete NMR assignments of the compound were obtained using DEPT, H-H COSY, as well as HMQC and HMBC heteronuclear correlation techniques. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Prakash, M.; Geetha, D.; Lydia Caroline, M.; Ramesh, P. S.
2011-12-01
Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180 °C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time.
NASA Astrophysics Data System (ADS)
Dugo, Giacomo; Rotondo, Archimede; Mallamace, Domenico; Cicero, Nicola; Salvo, Andrea; Rotondo, Enrico; Corsaro, Carmelo
2015-02-01
High resolution Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful tool for comprehensive food analyses and especially for Extra-Virgin Olive Oils (EVOOs). We use the NMR technique to study the spectral region of aldehydes (8-10 ppm) for EVOOs coming from the south part of Italy. We perform novel experiments by using mono and bidimensional band selective spin-echo pulse sequences and identify four structural classes of aldehydes in EVOOs. For the first time such species are identified in EVOOs without any chemical treatment; only dilution with CDCl3 is employed. This would allow the discrimination of different EVOOs for the aldehydes content increasing the potentiality of the NMR technique in the screening of metabolites for geographical characterization of EVOOs.
Online monitoring of fermentation processes via non-invasive low-field NMR.
Kreyenschulte, Dirk; Paciok, Eva; Regestein, Lars; Blümich, Bernhard; Büchs, Jochen
2015-09-01
For the development of biotechnological processes in academia as well as in industry new techniques are required which enable online monitoring for process characterization and control. Nuclear magnetic resonance (NMR) spectroscopy is a promising analytical tool, which has already found broad applications in offline process analysis. The use of online monitoring, however, is oftentimes constrained by high complexity of custom-made NMR bioreactors and considerable costs for high-field NMR instruments (>US$200,000). Therefore, low-field (1) H NMR was investigated in this study in a bypass system for real-time observation of fermentation processes. The new technique was validated with two microbial systems. For the yeast Hansenula polymorpha glycerol consumption could accurately be assessed in spite of the presence of high amounts of complex constituents in the medium. During cultivation of the fungal strain Ustilago maydis, which is accompanied by the formation of several by-products, the concentrations of glucose, itaconic acid, and the relative amount of glycolipids could be quantified. While low-field spectra are characterized by reduced spectral resolution compared to high-field NMR, the compact design combined with the high temporal resolution (15 s-8 min) of spectra acquisition allowed online monitoring of the respective processes. Both applications clearly demonstrate that the investigated technique is well suited for reaction monitoring in opaque media while at the same time it is highly robust and chemically specific. It can thus be concluded that low-field NMR spectroscopy has a great potential for non-invasive online monitoring of biotechnological processes at the research and practical industrial scales. © 2015 Wiley Periodicals, Inc.
Preparation of Amyloid Fibrils Seeded from Brain and Meninges.
Scherpelz, Kathryn P; Lu, Jun-Xia; Tycko, Robert; Meredith, Stephen C
2016-01-01
Seeding of amyloid fibrils into fresh solutions of the same peptide or protein in disaggregated form leads to the formation of replicate fibrils, with close structural similarity or identity to the original fibrillar seeds. Here we describe procedures for isolating fibrils composed mainly of β-amyloid (Aβ) from human brain and from leptomeninges, a source of cerebral blood vessels, for investigating Alzheimer's disease and cerebral amyloid angiopathy. We also describe methods for seeding isotopically labeled, disaggregated Aβ peptide solutions for study using solid-state NMR and other techniques. These methods should be applicable to other types of amyloid fibrils, to Aβ fibrils from mice or other species, tissues other than brain, and to some non-fibrillar aggregates. These procedures allow for the examination of authentic amyloid fibrils and other protein aggregates from biological tissues without the need for labeling the tissue.
SAIL--stereo-array isotope labeling.
Kainosho, Masatsune; Güntert, Peter
2009-11-01
Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.
An Introduction to Biological NMR Spectroscopy*
Marion, Dominique
2013-01-01
NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612
A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy
Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian
2016-01-01
Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925
Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P
2017-01-01
Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid 13 C and solution 31 P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid 13 C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution 31 P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.
[Effect of Tween 80 on yuxingcao injection and volatile oils from Houttuynia cordata].
Tan, Zhigao; Chao, Zhimao; Sui, Yu; Liu, Haiping; Wu, Xiaoyi; Sun, Jian; Yan, Han
2011-01-01
To research the effect of polysorbate 80 (Tween 80) on Yuxingcao injection and volatile oils from Houttuynia cordata. 1H-NMR spectra of aldehydic and new matter in Yuxingcao injection, volatile oils of H. cordata, and solutions of Tween 80 and volatile oil of H. cordata are determined and compared from various angles of growing origin, storage temperature, and storage time. Three aldehydic singlets in 1H-NMR spectra of every volatile oil from 4 aerial part of H. cordata were observed. These aldehydic peaks were basically disappeared and a new peak at delta 8.30 was found in 1H-NMR spectra of the volatile oil solutions in tween 80. Any obvious aldehydic peak in 1H-NMR spectra did not be observed in Yuxincao injection. A weak peak at 8 8.30 was found in 1H-NMR spectra in Yuxincao injection, and the peak high of delta 8.30 was remarked gone up when the injection was stored in 40 degrees C for 1 to 3 months. Tween 80 might cause the obvious reduce of aldehydic compounds contents and the production of a novel singal at delta 8.30 in 1H-NMR spectra when it was mixed with the volatile oil from the aerial part of H. cordata. The novel signal at delta 8.30 in 1H-NMR spectra existed in Yuxincao injection and was very small, but was increased remarkably when the Yuxincao injection was stored at 40 degrees C for 1 month at least.
How well do force fields capture the strength of salt bridges in proteins?
Ahmed, Mustapha Carab; Papaleo, Elena
2018-01-01
Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1) to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.
Koenig, B W; Strey, H H; Gawrisch, K
1997-01-01
The elastic area compressibility modulus, Ka, of lamellar liquid crystalline bilayers was determined by a new experimental approach using 2H-NMR order parameters of lipid hydrocarbon chains together with lamellar repeat spacings measured by x-ray diffraction. The combination of NMR and x-ray techniques yields accurate determination of lateral area per lipid molecule. Samples of saturated, monounsaturated, and polyunsaturated phospholipids were equilibrated with polyethylene glycol (PEG) 20,000 solutions in water at concentrations from 0 to 55 wt % PEG at 30 degrees C. This procedure is equivalent to applying 0 to 8 dyn/cm lateral pressure to the bilayers. The resulting reductions in area per lipid were measured with a resolution of +/-0.2 A2 and the fractional area decrease was proportional to applied lateral pressure. For 1,2-dimyristoyl(d54)-sn-glycero-3-phosphocholine, 1-stearoyl(d35)-2-oleoyl-sn-glycero-3-phosphocholine (SOPC-d35), and 1-stearoyl(d35)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC-d35) cross-sectional areas per molecule in excess water of 59.5, 61.4, and 69.2 A2 and bilayer elastic area compressibility moduli of 141, 221, and 121 dyn/cm were determined, respectively. Combining NMR and x-ray results enables the determination of compressibility differences between saturated and unsaturated hydrocarbon chains. In mixed-chain SOPC-d35 both chains have similar compressibility moduli; however, in mixed-chain polyunsaturated SDPC-d35, the saturated stearic acid chain appears to be far less compressible than the polyunsaturated docosahexaenoic acid chain. Images FIGURE 3 FIGURE 5 PMID:9336191
Richardson, Peter M.; Jackson, Scott; Parrott, Andrew J.; Nordon, Alison; Duckett, Simon B.
2018-01-01
Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H2, to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand‐held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF‐dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. PMID:29193324
NASA Astrophysics Data System (ADS)
Knicker, Heike; Paneque-Carmona, Marina; Velasco-Molina, Marta; de la Rosa, José Maria; León-Ovelar, Laura Regina; Fernandez-Boy, Elena
2017-04-01
Intense research on biochar and charcoal of the last years has revealed that depending on the production conditions, the chemical and physical characteristics of their aromatic network can greatly vary. Since such variations are determining the behavior and stability of charred material in soils, a better understanding of the structural changes occurring during their heating and the impact of those changes on their function is needed. One method to characterize pyrogenic organic matter (PyOM) represents solid-state 13C NMR spectroscopy applying the cross polarization (CP) magic angle spinning technique (MAS). A drawback of this technique is that the quantification of NMR spectra of samples with highly condensed and proton-depleted structures is assumed to be bias. Typical samples with such attributes are charcoals produced at temperatures above 700°C under pyrolytic conditions. Commonly their high condensation degree leads to graphenic structures that are not only reducing the CP efficiency but create also a conductive lattice which acts as a shield and prevents the entering of the excitation pulse into the sample during the NMR experiments. Since the latter can damage the NMR probe and in the most cases the obtained NMR spectra show only one broad signal assignable to aromatic C, this technique is rarely applied for characterizing high temperature chars or soot. As a consequence, a more detailed knowledge of the nature of the aromatic ring systems is still missing. The latter is also true for the aromatic domains of PyOM produced at lower temperatures, since older NMR instruments operating at low magnetic fields deliver solid-state 13C NMR spectra with low resolution which turns a more detailed analysis of the aromatic chemical shift region into a challenging task. In order to overcome this disadvantages, modern NMR spectroscopy offers not only instruments with greatly improved resolution but also special pulse sequences for NMR experiments which allow a more detailed chemical shift assignment. Applying the latter to various charcoals and biochars, we intended to test their usefulness for a better characterization of PyOM and elucidation how specific aromatic features can affect their behavior in soils. We could demonstrate that furans represent the major compound class of low temperature chars produced from woody material. As indicated by 2D techniques, residual alkyl C in such chars has minor covalent binding to the aromatic network. Reducing the electrical conductivity of high-temperature chars by addition of aluminum oxide permitted the application of the cross CP technique. Determination of the relaxation and CP dynamics confirmed high rigidity of their aromatic domains which were dominated by coronene-type moieties. In contrast to common view, we could demonstrate that quantifiable CP NMR spectra can be obtained from high temperature chars with contact times of 3 to 5 ms and pulse delays > 3 s.
Çakır, Dilek; Göksel, Meltem; Çakır, Volkan; Durmuş, Mahmut; Biyiklioglu, Zekeriya; Kantekin, Halit
2015-05-28
Peripherally and non-peripherally tetra-substituted zinc(ii) phthalocyanines bearing 2-(2-{2-[3-(dimethylamino)phenoxy]ethoxy}ethoxy)ethoxy and 2-(2-{2-[3-(diethylamino)phenoxy]ethoxy}ethoxy)ethoxy groups (, , and ) were synthesized by cyclotetramerization of the corresponding phthalonitriles (, , and ). Their quaternized ionic derivatives (, , and ) were also synthesized by the reaction of them with methyl iodide. The novel compounds were characterized by using standard spectroscopic techniques such as FT-IR, (1)H NMR, (13)C NMR, UV-vis, mass and elemental analyses. The obtained quaternized phthalocyanines (, , and ) showed amphiphilic behaviour with excellent solubility in both organic and aqueous solutions, which makes them potential photosensitizers for use in photodynamic therapy (PDT) of cancer. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen and photodegradation quantum yields) properties of these novel phthalocyanines were studied in DMSO for both non-ionic and ionic quaternized derivatives. However, these properties were examined in both DMSO and phosphate buffer solution (PBS) for quaternized ionic phthalocyanines. The effects of the positions of substituents (peripheral or non-peripheral) and the quaternization of the nitrogen atoms on the substituents about their photophysical and photochemical properties were also compared in this study. The bovine serum albumin (BSA) binding behaviours of the studied quaternized ionic zinc(ii) phthalocyanines were also described in PBS solutions. The quaternized phthalocyanines (, , and ) successfully displayed light-dependent photodamage in HeLa and HuH-7 cancer cells in photodynamic therapy treatment. The photosensitivity and the intensity of damage were found directly related to the concentration of the photosensitizers.
ERIC Educational Resources Information Center
Bell, Peter T.; Whaley, W. Lance; Tochterman, Alyssa D.; Mueller, Karl S.; Schultz, Linda D.
2017-01-01
NMR spectroscopy is currently a premier technique for structural elucidation of organic molecules. Quantitative NMR (qNMR) methodology has developed more slowly but is now widely accepted, especially in the areas of natural product and medicinal chemistry. However, many undergraduate students are not routinely exposed to this important concept.…
Nakagami, Ryutaro; Yamaguchi, Masayuki; Ezawa, Kenji; Kimura, Sadaaki; Hamamichi, Shusei; Sekine, Norio; Furukawa, Akira; Niitsu, Mamoru; Fujii, Hirofumi
2014-01-01
We explored a recovery correction technique that can correct metabolite loss during perchloric acid (PCA) extraction and minimize inter-assay variance in quantitative (1)H nuclear magnetic resonance (NMR) spectroscopy of the brain and evaluated its efficacy in 5-fluorouracil (5-FU)- and saline-administered rats. We measured the recovery of creatine and dl-valine-2,3-d2 from PCA extract containing both compounds (0.5 to 8 mM). We intravenously administered either 5-FU for 4 days (total, 100 mg/kg body weight) or saline into 2 groups of 11 rats each. We subsequently performed PCA extraction of the whole brain on Day 9, externally adding 7 µmol of dl-valine-2,3-d2. We estimated metabolite concentrations using an NMR spectrometer with recovery correction, correcting metabolite concentrations based on the recovery factor of dl-valine-2,3-d2. For each metabolite concentration, we calculated the coefficient of variation (CEV) and compared differences between the 2 groups using unpaired t-test. Equivalent recoveries of dl-valine-2,3-d2 (89.4 ± 3.9%) and creatine (89.7 ± 3.9%) in the PCA extract of the mixed solution indicated the suitability of dl-valine-2,3-d2 as an internal reference. In the rat study, recovery of dl-valine-2,3-d2 was 90.6 ± 9.2%. Nine major metabolite concentrations adjusted by recovery of dl-valine-2,3-d2 in saline-administered rats were comparable to data in the literature. CEVs of these metabolites were reduced from 10 to 17% before to 7 to 16% after correction. The significance of differences in alanine and taurine between the 5-FU- and saline-administered groups was determined only after recovery correction (0.75 ± 0.12 versus 0.86 ± 0.07 for alanine; 5.17 ± 0.59 versus 5.66 ± 0.42 for taurine [µmol/g brain tissue]; P < 0.05). A new recovery correction technique corrected metabolite loss during PCA extraction, minimized inter-assay variance in quantitative (1)H NMR spectroscopy of brain tissue, and effectively detected inter-group differences in concentrations of brain metabolites between 5-FU- and saline-administered rats.
Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI
NASA Astrophysics Data System (ADS)
Iwasa, Yukikazu; Bascuñán, Juan; Hahn, Seungyong; Park, Dong Keun
This paper describes a solid-cryogen cooling technique currently being developed at the M.I.T. Francis Bitter Magnet Laboratory for application to superconducting magnets of NMR and MRI. The technique is particularly appropriate for "dry" magnets that do not rely on liquid cryogen, e.g., liquid helium (LHe), as their primary cooling sources. In addition, the advantages of a cryocirculator (a combination of a cryocooler and a working fluid circulator) over a cryocooler as the primary cooling source for dry magnets are described. The four magnets described here, all incorporating this cooling technique described and currently being developed at the FBML, are: 1) a solid-nitrogen (SN2)-cooled Nb3Sn 500-MHz/200-mm MRI magnet with an operating temperature range between 4.2 K (nominal) and 6.0 K (maximum with its primary cooling source off); 2) an SN2-cooled MgB2 0.5-T/800-mm MRI magnet, 1015 K; 3) an SN2-cooled compact YBCO "annulus" 100-MHz/9-mm NMR magnet, 10-15 K; 4) an SN2-cooled 1.5T/75-mm NbTi magnet for slow magic-angle-spinning NMR/MRI, 4.5-5.5 K.
NASA Astrophysics Data System (ADS)
Lantushenko, Anastasia O.; Mukhina, Yulia V.; Veselkov, Kyrill A.; Davies, David B.; Veselkov, Alexei N.
2004-07-01
NMR spectroscopy has been used to elucidate the molecular mechanism of solubilization action of hydrotropic agents nicotinamide (NA) and caffeine (CAF). Hetero-association of NA with riboflavine-mononucleotide (FMN) and CAF with low soluble in aqueous solution synthetic analogue of antibiotic actinomycin D, actinocyl-bis-(3-dimethylaminopropyl) amine (Actill), has been investigated by 500 MHz 1H NMR spectroscopy. Concentration and temperature dependences of proton chemical shifts have been analysed in terms of a statistical-thermodynamic model of indefinite self- and heteroassociation of aromatic molecules. The obtained results enable to conclude that NA-FMN and CAF-Actill intermolecular complexes are mainly stabilized by the stacking interactions of the aromatic chromophores. Hetero-association of the investigated molecules plays an important role in solubilization of aromatic drugs by hydrotropic agents nicotinamide and caffeine.
NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization.
Kruk, Joanna; Doskocz, Marek; Jodłowska, Elżbieta; Zacharzewska, Anna; Łakomiec, Joanna; Czaja, Kornelia; Kujawski, Jacek
2017-01-01
Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as 1 H, 13 C, 31 P, 19 F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.
Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, Boyd McLean
1999-12-01
Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less
Revisiting HgCl 2: A solution- and solid-state 199Hg NMR and ZORA-DFT computational study
NASA Astrophysics Data System (ADS)
Taylor, R. E.; Carver, Colin T.; Larsen, Ross E.; Dmitrenko, Olga; Bai, Shi; Dybowski, C.
2009-07-01
The 199Hg chemical-shift tensor of solid HgCl 2 was determined from spectra of polycrystalline materials, using static and magic-angle spinning (MAS) techniques at multiple spinning frequencies and field strengths. The chemical-shift tensor of solid HgCl 2 is axially symmetric ( η = 0) within experimental error. The 199Hg chemical-shift anisotropy (CSA) of HgCl 2 in a frozen solution in dimethylsulfoxide (DMSO) is significantly smaller than that of the solid, implying that the local electronic structure in the solid is different from that of the material in solution. The experimental chemical-shift results (solution and solid state) are compared with those predicted by density functional theory (DFT) calculations using the zeroth-order regular approximation (ZORA) to account for relativistic effects. 199Hg spin-lattice relaxation of HgCl 2 dissolved in DMSO is dominated by a CSA mechanism, but a second contribution to relaxation arises from ligand exchange. Relaxation in the solid state is independent of temperature, suggesting relaxation by paramagnetic impurities or defects.
Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy
Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.
2017-01-01
Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522
Chen, Kew-Yu; Chang, Che-Wei
2014-01-01
Three symmetric alkylamino-substituted perylene bisimides with different n-alkyl chain lengths (n = 6, 12, or 18), 1,7-bis-(N,N-dialkylamino)perylene bisimides (1a–1c), were synthesized under mild condition and were characterized by 1H NMR, 13C NMR and high resolution mass spectroscopy. Their optical and electrochemical properties were measured using UV-Vis and emission spectroscopic techniques as well as cyclic voltammetry (CV). These compounds show deep green color in both solution and solid state, and are highly soluble in dichloromethane and even in nonpolar solvents such as hexane. The shapes of the absorption spectra of 1a–1c in the solution and solid state were found to be almost the same, indicating that the long alkyl chains could efficiently prevent intermolecular contact and aggregation. They show a unique charge transfer emission in the near-infrared region, of which the peak wavelengths exhibit strong solvatochromism. The dipole moments of the molecules have been estimated using the Lippert–Mataga equation, and upon excitation, they show larger dipole moment changes than that of 1,7-diaminoperylene bisimide (2). Moreover, all the dyes exhibit two irreversible one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane at modest potentials. Complementary density functional theory calculations performed on these chromophores are reported in order to rationalize their electronic structure and optical properties. PMID:28788262
Kober, Ewa; Nerkowski, Tomasz; Janas, Zofia; Jerzykiewicz, Lucjan B
2012-05-07
A new imidazolidine-bridged bis(aryloxido) ligand precursor (H(2)L) [H(2)L = 2,2'-(imidazolidine-1,3-diylbis(methylene))bis(4-(1,1,3,3-tetramethylbutyl-2-yl)phenol)] was prepared in a relatively high yield (∼60%) via a single-step Mannich condensation of 4-(1,1,3,3-tetramethylbutyl)phenol, ethylenediamine and paraformaldehyde at 2:1:3 molar ratio and characterized by chemical and physical techniques including X-ray crystallography. Reactions of H(2)L with [VO(OEt)(3)] at 1:1 and 1:2 molar ratios in toluene afforded [V(L-κ(3)O,N,N,O)(O)(OEt)] (1) and [V(2)(μ-L-κ(4)O,N,N,O)(μ-OEt)(2)(O)(2)(OEt)(2)] (2), respectively. Alcoholysis of 1 with EtOH enables elimination of one molecule of H(2)L and the formation of 2. Compounds 1 and 2 were characterized by IR and NMR spectroscopy as well as ES-MS experiments. The definitive molecular structure of 2 was provided by a single-crystal analysis and revealed its dinuclear nature, featuring two octahedral vanadium centres bridged by both OEt groups and the L ligand. The (51)V, (1)H and (13)C NMR spectra as well as ES-MS showed that 2 does not stay intact in solution and undergoes dissociation to give 1 and [VO(OEt)(3)].
Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2012-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592
Oktaviani, Nur Alia; Risør, Michael W; Lee, Young-Ho; Megens, Rik P; de Jong, Djurre H; Otten, Renee; Scheek, Ruud M; Enghild, Jan J; Nielsen, Niels Chr; Ikegami, Takahisa; Mulder, Frans A A
2015-06-01
Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T 1 values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in 'proton-less' NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α1-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h.
Verly, Rodrigo M.; Moraes, Cléria Mendonça de; Resende, Jarbas M.; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C.L.; Bechinger, Burkhard
2009-01-01
DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an α-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. PMID:19289046
Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2013-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.
Fenwick, Matthew; Hoch, Jeffrey C.; Ulrich, Eldon; Gryk, Michael R.
2015-01-01
Reproducibility is a cornerstone of the scientific method, essential for validation of results by independent laboratories and the sine qua non of scientific progress. A key step toward reproducibility of biomolecular NMR studies was the establishment of public data repositories (PDB and BMRB). Nevertheless, bio-NMR studies routinely fall short of the requirement for reproducibility that all the data needed to reproduce the results are published. A key limitation is that considerable metadata goes unpublished, notably manual interventions that are typically applied during the assignment of multidimensional NMR spectra. A general solution to this problem has been elusive, in part because of the wide range of approaches and software packages employed in the analysis of protein NMR spectra. Here we describe an approach for capturing missing metadata during the assignment of protein NMR spectra that can be generalized to arbitrary workflows, different software packages, other biomolecules, or other stages of data analysis in bio-NMR. We also present extensions to the NMR-STAR data dictionary that enable machine archival and retrieval of the “missing” metadata. PMID:26253947
Recent advances in nuclear magnetic resonance quantum information processing.
Criger, Ben; Passante, Gina; Park, Daniel; Laflamme, Raymond
2012-10-13
Quantum information processors have the potential to drastically change the way we communicate and process information. Nuclear magnetic resonance (NMR) has been one of the first experimental implementations of quantum information processing (QIP) and continues to be an excellent testbed to develop new QIP techniques. We review the recent progress made in NMR QIP, focusing on decoupling, pulse engineering and indirect nuclear control. These advances have enhanced the capabilities of NMR QIP, and have useful applications in both traditional NMR and other QIP architectures.
De Poli, Matteo; De Zotti, Marta; Raftery, James; Aguilar, Juan A; Morris, Gareth A; Clayden, Jonathan
2013-03-15
Oligomers of the achiral amino acid Aib adopt helical conformations in which the screw-sense may be controlled by a single N-terminal residue. Using crystallographic and NMR techniques, we show that the left- or right-handed sense of helical induction arises from the nature of the β-turn at the N terminus: the tertiary amino acid L-Val induces a left-handed type II β-turn in both the solid state and in solution, while the corresponding quaternary amino acid L-α-methylvaline induces a right-handed type III β-turn.
Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J
2004-06-01
Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.
Marchand, Jérémy; Martineau, Estelle; Guitton, Yann; Dervilly-Pinel, Gaud; Giraudeau, Patrick
2017-02-01
Multi-dimensional NMR is an appealing approach for dealing with the challenging complexity of biological samples in metabolomics. This article describes how spectroscopists have recently challenged their imagination in order to make 2D NMR a powerful tool for quantitative metabolomics, based on innovative pulse sequences combined with meticulous analytical chemistry approaches. Clever time-saving strategies have also been explored to make 2D NMR a high-throughput tool for metabolomics, relying on alternative data acquisition schemes such as ultrafast NMR. Currently, much work is aimed at drastically boosting the NMR sensitivity thanks to hyperpolarisation techniques, which have been used in combination with fast acquisition methods and could greatly expand the application potential of NMR metabolomics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gilbert, Alexis; Hattori, Ryota; Silvestre, Virginie; Wasano, Nariaki; Akoka, Serge; Hirano, Satoshi; Yamada, Keita; Yoshida, Naohiro; Remaud, Gérald S
2012-09-15
Isotopic (13)C NMR is a relatively recent technique which allows the determination of intramolecular (13)C isotope composition at natural abundance. It has been used in various scientific fields such as authentication, counterfeiting or plant metabolism. Although its precision has already been evaluated, the determination of its trueness remains still challenging. To deal with that issue, a comparison with another normalized technique must be achieved. In this work, we compare the intramolecular (13)C isotope distribution of ethanol from different origins obtained using both Isotope Ratio Mass Spectrometry (IRMS) and Nuclear Magnetic Resonance (NMR) spectrometry techniques. The IRMS approach consists of the oxidation of ethanol to acetic acid followed by the degradation of the latter for the analysis of each fragments formed. We show here that the oxidation of ethanol to acetic acid does not bring any significant error on the determination of the site-specific δ(13)C (δ(13)C(i)) of ethanol using the IRMS approach. The difference between the data obtained for 16 samples from different origins using IRMS and NMR approaches is not statistically significant and remains below 0.3‰. These results are encouraging for the future studies using isotopic NMR, especially in combination with the IRMS approach. Copyright © 2012. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech
2018-01-01
The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1H, 13C and 15N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH3salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO2salDAMN and naphDAMN only one form (X) was observed.
Kinetics of de-N-acetylation of the chitin disaccharide in aqueous sodium hydroxide solution.
Khong, Thang Trung; Aachmann, Finn L; Vårum, Kjell M
2012-05-01
Chitosan is prepared from chitin, a process which is carried out at highly alkaline conditions, and that can be performed either on chitin in solution (homogeneous deacetylation) or heterogeneously with the chitin as a solid throughout the reaction. We report here a study of the de-N-acetylation reaction of the chitin dimer (GlcNAc-GlcNAc) in solution. The reaction was followed by (1)H NMR spectroscopy in deuterated aqueous sodium hydroxide solution as a function of time, sodium-hydroxide concentration and temperature. The (1)H NMR spectrum of GlcNAc-GlcNAc in 2.77 M deuterated aqueous sodium hydroxide solution was assigned. The interpretation of the (1)H NMR spectra allowed us to determine the rates of de-N-acetylation of the reducing and non-reducing ends, showing that the reaction rate at the reducing end is twice the rate at the non-reducing end. The total deacetylation reaction rate was determined as a function of the hydroxide ion concentration, showing for the first time that this de-N-acetylation reaction is second order with respect to hydroxide ion concentration. No significant difference in the deacetylation rates in deuterated water compared to water was observed. The activation energy for the reaction (26-54 °C) was determined to 114.4 and 98.6 kJ/mol at 2.77 and 5.5 M in deuterated aqueous sodium hydroxide solution, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry
Walker, Peter
2017-01-01
Abstract The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. PMID:28108663
NASA Astrophysics Data System (ADS)
Amato, Maria E.; Bandoli, Giuliano; Casellato, Umberto; Pappalardo, Giuseppe C.; Toja, Emilio
1990-10-01
The crystal and molecular structures of the nootropics (±)1-benzenesulphonyl-2-oxo-5-ethoxypyrrolidine ( 1), (±)1-(3-pyridinylsulphonyl)-2-oxo-5-ethoxypyrrolidine ( 2) and (±)1-benzenesulphonyl-2-oxo-5-isopropyloxypyrrolidine ( 3) have been determined by X-ray analysis. The solution conformation of 1, 2 and 3 has been investigated by 1H NMR spectroscopy. In the solid state, the main feature consists of the similar structural parameters and conformations, with the exception of the conformation adopted by the 5-ethoxy moiety which changes on passing from 1 to 2. The solid state overall enveloped conformation of the 2-pyrrolidinone ring for the three nootropics is found to be retained in solution on the basis of NMR evidence. Comparison between calculated and experimental coupling constant values shows that one of the two possible puckered opposite conformational isomers (half-chair shapes) occurs in solution. The relative pharmacological potencies of 1, 2 and 3 cannot therefore be interpreted in terms of the different conformation features presently detectable by available experimental methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Wang, Shanshan; Ghiviriga, Ion
A novel synthetic method to create gold based metallo–oligomers/polymers via the combination of inorganic click (iClick) with intermolecular aurophilic interactions is demonstrated. Complexes [PEt 3Au] 4(μ-N 3C 2C 6H 5) (1) and [PPhMe 2Au] 43C 2C 6H 5) (2) and {[PEt 3Au] 4[(μ-N 3C 2) 2-9,9-dihexyl-9H-fluorene]} n (8) have been synthesized via iClick. The tetranuclear structures of 1 and 2, induced by aurophilic bonding, are confirmed in the solid state through single crystal X-ray diffraction experiments and in solution via variable temperature NMR spectroscopy. The extended 1D structure of 8 is constructed by aurophilic induced self-assembly. 1H DOSY NMR analysismore » reveals that the aurophilic bonds in 1, 2, and 8 are retained in the solution phase. The degree of polymerization within complex 8 is temperature and concentration dependent, as determined by 1H DOSY NMR. The complex 8 is a rare example of a solution stable higher ordered structure linked by aurophilic interactions.« less
Prata, Maria I M; André, João P; Kovács, Zoltán; Takács, Anett I; Tircsó, Gyula; Tóth, Imre; Geraldes, Carlos F G C
2017-12-01
Three triaza macrocyclic ligands, H 6 NOTP (1,4,7-triazacyclononane-N,N',N″-trimethylene phosphonic acid), H 4 NO2AP (1,4,7-triazacyclononane-N-methylenephosphonic acid-N',N″-dimethylenecarboxylic acid), and H 5 NOA2P (1,4,7-triazacyclononane-N,N'-bis(methylenephosphonic acid)-N″-methylene carboxylic acid), and their gallium(III) chelates were studied in view of their potential interest as scintigraphic and PET (Positron Emission Tomography) imaging agents. A 1 H, 31 P and 71 Ga multinuclear NMR study gave an insight on the structure, internal dynamics and stability of the chelates in aqueous solution. In particular, the analysis of 71 Ga NMR spectra gave information on the symmetry of the Ga 3+ coordination sphere and the stability of the chelates towards hydrolysis. The 31 P NMR spectra afforded information on the protonation of the non-coordinated oxygen atoms from the pendant phosphonate groups and on the number of species in solution. The 1 H NMR spectra allowed the analysis of the structure and the number of species in solution. 31 P and 1 H NMR titrations combined with potentiometry afforded the measurement of the protonation constants (log K Hi ) and the microscopic protonation scheme of the triaza macrocyclic ligands. The remarkably high thermodynamic stability constant (log K GaL =34.44 (0.04) and stepwise protonation constants of Ga(NOA2P) 2- were determined by potentiometry and 69 Ga and 31 P NMR titrations. Biodistribution and gamma imaging studies have been performed on Wistar rats using the radiolabeled 67 Ga(NO2AP) - and 67 Ga(NOA2P) 2- chelates, having both demonstrated to have renal excretion. The correlation of the molecular properties of the chelates with their pharmacokinetic properties has been analysed. Copyright © 2017 Elsevier Inc. All rights reserved.
Han, Lingyu; Ratcliffe, I; Williams, P A
2017-12-15
A series of inulin derivatives were synthesized in aqueous solution using acyl chlorides with varying alkyl chain length (C10-C16). They were characterised using a number of techniques including MALDI TOF-MS, 1 H NMR and FTIR and their degree of substitution determined. The solution properties of the hydrophobically modified inulins were investigated using dye solubilisation and surface tension and it was confirmed that the molecules aggregated in solution above a critical concentration (critical aggregation concentration, CAC). The value of the CAC was found to be reasonably consistent between the different techniques and was shown to decrease with increasing hydrophobe chain length. It was found that the C10, C12 and C14 derivatives formed stable oil-in-water emulsions and the emulsion droplet size decreased with increasing alkyl chain length. The C16 derivative was not able to produce stable oil-in-water emulsions; however, it was able to form stable water-in-oil emulsions. The fact that the derivatives are able to form micellar-like aggregates and stabilise emulsions makes them suitable candidates for the encapsulation and delivery of active compounds with potential application in food, cosmetic, personal care and pharmaceutical formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.
2002-01-01
We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.
NASA Astrophysics Data System (ADS)
Rimbert, J. N.; Dumas, F.; Lafargue, C.; Kellershohn, C.; Brunelle, F.; Lallemand, D.
1990-07-01
Craniopharyngioma, an intracranial tumor, exhibits hyperintensity in the Spin-Echo-T2-NMR image and a hyposignal in the SE-T1-image. However, in some cases (15-20% cases), hypersignals are seen in both SE-T1 and T2-MRI. Using spectroscopic techniques, Mössbauer spectrometry in particular, we have demonstrated that the T1 hypersignal is due to ferritin, dissolved in the cystic liquid, after tumor cell lysis, in the course of time. Other possible reasons inducing a shortening of the T1 relaxation time (presence of lipids, intratumoral hemorrhage) have been rejected.
Structural comparison of Gilsonite and Trinidad Lake Asphalt using 13C-NMR technique
NASA Astrophysics Data System (ADS)
Nciri, Nader; Cho, Namjun
2017-04-01
The recent increased importance of natural asphalt as an alternative binder for sustainable road pavement has dictated that more knowledge should be acquired about its structure and properties. Earlier, Carbon-13 NMR spectroscopy has been applied to very few natural bituminous materials. In this work, two types of raw binders namely Gilsonite and Trinidad Lake asphalt (TLA) have been subjected to an extensive investigation by using 13C-NMR technique. Results have shown that valuable chemical data can be readily withdrawn on aromatic ring structures and ring substituents in natural asphalts derived from different sources. The chemical significance of these findings will be discussed.
NASA Technical Reports Server (NTRS)
Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.
1984-01-01
A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.
Ueda, Keisuke; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu
2013-10-07
We examined the inhibitory effect of hydroxypropyl methylcellulose acetate succinate (HPMC-AS) on drug recrystallization from a supersaturated solution using carbamazepine (CBZ) and phenytoin (PHT) as model drugs. HPMC-AS HF grade (HF) inhibited the recrystallization of CBZ more strongly than that by HPMC-AS LF grade (LF). 1D-1H NMR measurements showed that the molecular mobility of CBZ was clearly suppressed in the HF solution compared to that in the LF solution. Interaction between CBZ and HF in a supersaturated solution was directly detected using nuclear Overhauser effect spectroscopy (NOESY). The cross-peak intensity obtained using NOESY of HF protons with CBZ aromatic protons was greater than that with the amide proton, which indicated that CBZ had hydrophobic interactions with HF in a supersaturated solution. In contrast, no interaction was observed between CBZ and LF in the LF solution. Saturation transfer difference NMR measurement was used to determine the interaction sites between CBZ and HF. Strong interaction with CBZ was observed with the acetyl substituent of HPMC-AS although the interaction with the succinoyl substituent was quite small. The acetyl groups played an important role in the hydrophobic interaction between HF and CBZ. In addition, HF appeared to be more hydrophobic than LF because of the smaller ratio of the succinoyl substituent. This might be responsible for the strong hydrophobic interaction between HF and CBZ. The intermolecular interactions between CBZ and HPMC-AS shown by using NMR spectroscopy clearly explained the strength of inhibition of HPMC-AS on drug recrystallization.
Lead(II) Complex Formation with L-cysteine in Aqueous Solution
Jalilehvand, Farideh; Sisombath, Natalie S.; Schell, Adam C.; Facey, Glenn A.
2015-01-01
The lead(II) complexes formed with the multidentate chelator L-cysteine (H2Cys) in alkaline aqueous solution were studied using 207Pb, 13C and 1H NMR, Pb LIII-edge X-ray absorption and UV-vis. spectroscopic techniques, complemented by electro-spray ion mass spectrometry (ESI-MS). The H2Cys/Pb(II) mole ratios were varied from 2.1 to 10.0 for two sets of solutions with CPb(II) = 0.01 and 0.1 M, respectively, prepared at pH values (9.1 – 10.4) for which precipitates of Pb(II)-cysteine dissolved. At low H2Cys/Pb(II) mole ratios (2.1 – 3.0) a mixture of the dithiolate [Pb(S,N-Cys)2]2− and [Pb(S,N,O-Cys)(S-HCys)]− complexes with the average Pb-(N/O) and Pb-S distances 2.42 ± 0.04 Å and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (> 0.7 M) a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys)2]2−, including a minor amount of a PbS3 coordinated [Pb(S-HCys)3]− complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra, and by the 207Pb NMR signals in the chemical shift range δPb = 2006 – 2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic angle spinning (MAS) 207Pb NMR spectra of crystalline Pb(aet)2 (Haet = 2-aminoethanethiol or cysteamine) with PbS2N2 coordination were measured for comparison (δiso = 2105 ppm). The UV-vis. spectra displayed absorption maxima at 298 – 300 nm (S− → PbII charge transfer) for the dithiolate PbS2N(N/O) species; with increasing ligand excess a shoulder appeared at ∼ 330 nm for the trithiolate PbS3N and PbS3 (minor) complexes. The results provide spectroscopic fingerprints for structural models for Pb(II) coordination modes to proteins and enzymes. PMID:25695880
Lead(II) complex formation with l-cysteine in aqueous solution
Jalilehvand, Farideh; Sisombath, Natalie S.; Schell, Adam C.; ...
2015-02-19
The lead(II) complexes formed with the multidentate chelator l-cysteine (H 2Cys) in an alkaline aqueous solution were studied using 207Pb, 13C, and 1H NMR, Pb L III-edge X-ray absorption, and UV–vis spectroscopic techniques, complemented by electrospray ion mass spectrometry (ESI-MS). The H 2Cys/Pb II mole ratios were varied from 2.1 to 10.0 for two sets of solutions with C PbII = 0.01 and 0.1 M, respectively, prepared at pH values (9.1–10.4) for which precipitates of lead(II) cysteine dissolved. At low H 2Cys/Pb II mole ratios (2.1–3.0), a mixture of the dithiolate [Pb(S,N-Cys) 2] 2– and [Pb(S,N,O-Cys)(S-HCys)] – complexes with averagemore » Pb–(N/O) and Pb–S distances of 2.42 ± 0.04 and 2.64 ± 0.04 Å, respectively, was found to dominate. At high concentration of free cysteinate (>0.7 M), a significant amount converts to the trithiolate [Pb(S,N-Cys)(S-HCys) 2] 2–, including a minor amount of a PbS 3-coordinated [Pb(S-HCys) 3] – complex. The coordination mode was evaluated by fitting linear combinations of EXAFS oscillations to the experimental spectra and by examining the 207Pb NMR signals in the chemical shift range δ Pb = 2006–2507 ppm, which became increasingly deshielded with increasing free cysteinate concentration. One-pulse magic-angle-spinning (MAS) 207Pb NMR spectra of crystalline Pb(aet) 2 (Haet = 2-aminoethanethiol or cysteamine) with PbS 2N 2 coordination were measured for comparison (δ iso = 2105 ppm). The UV–vis spectra displayed absorption maxima at 298–300 nm (S – → Pb II charge transfer) for the dithiolate PbS 2N(N/O) species; with increasing ligand excess, a shoulder appeared at ~330 nm for the trithiolate PbS 3N and PbS 3 (minor) complexes. Finally, the results provide spectroscopic fingerprints for structural models for lead(II) coordination modes to proteins and enzymes.« less
Effects of Pressure on Stability of Biomolecules in Solutions Studied by Neutron Scattering
NASA Astrophysics Data System (ADS)
Bellissent-Funel, Marie-Claire-; Appavou, Marie-Sousai; Gibrat, Gabriel
Studies of the pressure dependence on protein structure and dynamics contribute not only to the basic knowledge of biological molecules but have also a considerable relevance in full technology, like in food sterilization and pharmacy. Conformational changes induced by pressure as well as the effects on the protein stability have been mostly studied by optical techniques (optical absorption, fluorescence, phosphorescence), and by NMR. Most optical techniques used so far give information related to the local nature of the used probe (fluorescent or phosphorescent tryptophan). Small angle neutron scattering and quasi-elastic neutron scattering provide essential complementary information to the optical data, giving quantitative data on change of conformation of soluble globular proteins such as bovine pancreatic trypsin inhibitor (BPTI) and on the mobility of protons belonging to the protein surface residues.
Roos, Matthias; Hofmann, Marius; Link, Susanne; Ott, Maria; Balbach, Jochen; Rössler, Ernst; Saalwächter, Kay; Krushelnitsky, Alexey
2015-12-01
Inter-protein interactions in solution affect the auto-correlation function of Brownian tumbling not only in terms of a simple increase of the correlation time, they also lead to the appearance of a weak slow component ("long tail") of the correlation function due to a slowly changing local anisotropy of the microenvironment. The conventional protocol of correlation time estimation from the relaxation rate ratio R1/R2 assumes a single-component tumbling correlation function, and thus can provide incorrect results as soon as the "long tail" is of relevance. This effect, however, has been underestimated in many instances. In this work we present a detailed systematic study of the tumbling correlation function of two proteins, lysozyme and bovine serum albumin, at different concentrations and temperatures using proton field-cycling relaxometry combined with R1ρ and R2 measurements. Unlike high-field NMR relaxation methods, these techniques enable a detailed study of dynamics on a time scale longer than the normal protein tumbling correlation time and, thus, a reliable estimate of the parameters of the "long tail". In this work we analyze the concentration dependence of the intensity and correlation time of the slow component and perform simulations of high-field (15)N NMR relaxation data demonstrating the importance of taking the "long tail" in the analysis into account.
Ayed, Lamia; Bakir, Karima; Ben Mansour, Hedi; Hammami, Saousen; Cheref, Abdelkrim; Bakhrouf, Amina
2017-02-01
Staphylococcus aureus, showing the greatest decolorization ability, was further investigated for Methyl Red (MR) Congo Red (CR), Crystal Violet (CV) and Malachite Green (MG) decolorization using response surface methodology (RSM). The chemometric methods use, based on statistical design of experiments (DOEs) such as RSM is becoming increasingly widespread in several sciences such as analytical chemistry, engineering and environmental chemistry. Stapphylococcus aureus ATCC 25923, Stapphylococcus aureus (S1) and Stapphylococcus aureus (S2), were isolated from textile wastewater plant located in KsarHellal, Tunisia and were tested for their decolorization capacity. PCR technique was utilized to identify the 3 bacterial strains and to detect the adhesin gene "cna". Biodegradation of MR, CR, CV and MG (750 ppm), were investigated under shaking condition in Mineral Salt Medium (MSM) solution at pH 7.5 and temperature 30 °C, using a 3.7 × 10 5 CFU/ml as inoculum size. Our results showed that Staphylococcus aureus had a high decolorization capacity. Nuclear magnetic resonance (NMR) spectroscopy analysis confirmed the biodegradation of dyes. The four dyes mutagenicity with the S9 metabolizing system decreased significantly after biodegradation and totally disappeared. Nuclear magnetic resonance (NMR) spectroscopy analysis confirmed the biodegradation of dyes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oxygen-17 NMR Shifts Caused by Cr{Sup ++} in Aqueous Solutions
DOE R&D Accomplishments Database
Jackson, J. A.; Lemons, J. F.; Taube, H.
1962-01-01
Cr{sup ++} in solution produces a paramagnetic shift in the NMR absorption of O{sup 17} in ClO{sub 4}{sup -}, as well as the expected paramagnetic shift for O{sup 17} in H{sub 2}O. As the concentration of ClO{sub 4}{sup -} increases, the shift in the H{sub 2}O{sup 17} absorption is diminished, and eventually changes sign. The effects are ascribed to preferential replacement by ClO{sub 4}{sup -} of water molecules from the axial positions in the first coordination sphere about Cr{sup ++}.
Structural characterization of NRAS isoform 5
Mal, Tapas K.; Yuan, Chunhua; Courtney, Nicholas B.; Patel, Mitra; Stiff, Andrew R.; Blachly, James; Walker, Christopher; Eisfeld, Ann‐Kathrin; de la Chapelle, Albert
2016-01-01
Abstract It was recently discovered that the NRAS isoform 5 (20 amino acids) is expressed in melanoma and results in a more aggressive cell phenotype. This novel isoform is responsible for increased phosphorylation of downstream targets such as AKT, MEK, and ERK as well as increased cellular proliferation. This structure report describes the NMR solution structure of NRAS isoform 5 to be used as a starting point to understand its biophysical interactions. The isoform is highly flexible in aqueous solution, but forms a helix‐turn‐coil structure in the presence of trifluoroethanol as determined by NMR and CD spectroscopy. PMID:26947772
NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.
Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke
2017-01-01
The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Caldarelli, Stefano; Catalano, Donata; Di Bari, Lorenzo; Lumetti, Marco; Ciofalo, Maurizio; Alberto Veracini, Carlo
1994-07-01
The dipolar couplings observed by NMR spectroscopy of solutes in nematic solvents (LX-NMR) are used to build up the maximum entropy (ME) probability distribution function of the variables describing the orientational and internal motion of the molecule. The ME conformational distributions of 2,2'- and 3,3'-dithiophene and 2,2':5',2″-terthiophene (α-terthienyl)thus obtained are compared with the results of previous studies. The 2,2'- and 3,3'-dithiophene molecules exhibit equilibria among cisoid and transoid forms; the probability maxima correspond to planar and twisted conformers for 2,2'- or 3,3'-dithiophene, respectively, 2,2':5',2″-Terthiophene has two internal degrees of freedom; the ME approach indicates that the trans, trans and cis, trans planar conformations are the most probable. The correlation between the two intramolecular rotations is also discussed.
Turner, Benjamin L; Newman, Susan; Reddy, K Ramesh
2006-05-15
Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.
He, Chao; Lin, Guangxin; Upton, Kathleen T; Imanaka, Hiroshi; Smith, Mark A
2012-05-17
Titan, the largest moon of Saturn, is enveloped in a reddish brown organic haze. Titan haze is presumed to be formed from methane and nitrogen (CH(4) and N(2)) in Titan's upper atmosphere through energetic photochemistry and particle bombardment. Though Titan haze has been directly investigated using methods including the Cassini mission, its formation mechanism and the contributing chemical structures and prebiotic potential are still not well developed. We report here the structural investigation of the (13)C and (15)N labeled, simulated Titan haze aerosol (tholin) by solution-state NMR. The one-dimensional (1)H, (13)C, and (15)N NMR spectra and decoupling experiments indicate that the tholin sample contains amine, nitrile, imine, and N-heteroaromatic compounds of tremendous import in understanding complex organic chemistry in anaerobic, extraterrestrial environments.
NMR analyses of complex d-glucose anomerization.
Kaufmann, Martin; Mügge, Clemens; Kroh, Lothar W
2018-11-01
Analyzing the 1 H NMR spectrum of d-glucose, the resonance frequencies of the anomeric protons of five d-glucose anomers could be determined in dependence on temperature. Besides, the relative concentrations of all cyclic d-glucose anomers could be quantified. Based on that, thermodynamic parameters were calculated. In addition, ring opening rate constants of all cyclic d-glucose anomers were measured for the first time using 1 H selective blind saturation transfer NMR spectroscopy. The results presented here give rise to the assumption that furanoid anomers highly influence the reactivity of total d-glucose. Finally, the complex anomeric equilibration curves for a freshly prepared solution of crystalline α-d-glucopyranose are presented. Based on that, it is hypothesized that the reactivity of a solution of a reducing sugar in general and d-glucose in particular depends on time until the thermodynamic equilibrium state is reached. Copyright © 2018 Elsevier Ltd. All rights reserved.
Solution structure of leptospiral LigA4 Big domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Song; Zhang, Jiahai; Zhang, Xuecheng
Pathogenic Leptospiraspecies express immunoglobulin-like proteins which serve as adhesins to bind to the extracellular matrices of host cells. Leptospiral immunoglobulin-like protein A (LigA), a surface exposed protein containing tandem repeats of bacterial immunoglobulin-like (Big) domains, has been proved to be involved in the interaction of pathogenic Leptospira with mammalian host. In this study, the solution structure of the fourth Big domain of LigA (LigA4 Big domain) from Leptospira interrogans was solved by nuclear magnetic resonance (NMR). The structure of LigA4 Big domain displays a similar bacterial immunoglobulin-like fold compared with other Big domains, implying some common structural aspects of Bigmore » domain family. On the other hand, it displays some structural characteristics significantly different from classic Ig-like domain. Furthermore, Stains-all assay and NMR chemical shift perturbation revealed the Ca{sup 2+} binding property of LigA4 Big domain. - Highlights: • Determining the solution structure of a bacterial immunoglobulin-like domain from a surface protein of Leptospira. • The solution structure shows some structural characteristics significantly different from the classic Ig-like domains. • A potential Ca{sup 2+}-binding site was identified by strains-all and NMR chemical shift perturbation.« less
Rathner, Petr; Rathner, Adriana; Horničáková, Michaela; Wohlschlager, Christian; Chandra, Kousik; Kohoutová, Jaroslava; Ettrich, Rüdiger; Wimmer, Reinhard; Müller, Norbert
2015-09-01
The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N-terminal residues 1-45 the solution structure deviates significantly from the X-ray crystallographic one, while the four-helix bundle core found previously is confirmed. A short α-helix is observed in the solution structure at the location where a β-strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N-terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β-strand are found. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Speciation of platinum(IV) in nitric acid solutions.
Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Korenev, Sergey
2013-09-16
The speciation of platinum(IV) ions in nitric acid (6-15.8 M) solutions of H2[Pt(OH)6] has been studied by (195)Pt NMR and Raman spectroscopy. Series of aqua-hydroxo-nitrato complexes [Pt(L)(x)(NO3)(6-x)] (L = H2O or OH(-); x = 0, ..., 6) were found to exist in such solutions. The pair additivity model of chemical shifts and statistical theory were used to assign signals in NMR spectra to particular [Pt(L)(x)(NO3)(6-x)] species. Mononuclear hexanitratoplatinates(IV) have been isolated in solid state in substantial yield as pyridinium salt (PyH)2[Pt(NO3)6] and characterized by single-crystal X-ray diffraction. Aging of the platinum nitric acid solutions for more than 5-6 h results in oligomerization of [Pt(L)(x)(NO3)(6-x)] species and the formation of oligonuclear aqua-hydroxo-nitrato complexes with OH(-) and NO3(-) bridging ligands. Oligomeric platinum(IV) complexes with two and four nuclei were unambiguously detected by NMR on (195)Pt -enriched samples. Oligomers with even higher nuclearity were also detected. Dimeric anions [Pt2(μ-OH)2(NO3)8](2-) have been isolated as single crystals of tetramethylammonium salt and characterized by X-ray diffraction.
Toll-Like Receptor-9-Mediated Invasion in Breast Cancer
2011-07-01
Molecular Dynamics Simulations. Theoretical structural models were obtained from molecular dynamics simulations using explicit solvation by...with AMBER by MARDIGRAS. The solution structure was then derived by coupling the resulting NMR distance restraints with a molecular dynamic ...Overlay of NMR restrained structure (red) with theoretical molecular dynamic simulated annealing structure (blue). Energetic stability of the 9-mer
USDA-ARS?s Scientific Manuscript database
Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions...
NASA Astrophysics Data System (ADS)
Wang, Hongyi
2005-09-01
An application of ChemDraw NMR Tool was demonstrated by correlation of program-generated 13 C NMR chemical shifts and p K a values of para-substituted benzoic acids. Experimental 13 C NMR chemical shifts were analyzed in the same way for comparison. The project can be used as an assignment at the end of the first-year organic chemistry course to review topics or explore new techniques: Hammett equation, acid base equilibrium theory, electronic nature of functional groups, inductive and resonance effects, structure reactivity relationship, NMR spectroscopy, literature search, database search, and ChemDraw software.
Gouré, Eric; Carboni, Michaël; Troussier, Angélique; Lebrun, Colette; Pécaut, Jacques; Jacquot, Jean-François; Dubourdeaux, Patrick; Clémancey, Martin; Blondin, Geneviève; Latour, Jean-Marc
2015-05-26
Identifying the active nucleophile in hydrolysis reactions catalyzed by binuclear hydrolases is a recurrent problem and a matter of intense debate. We report on the phosphate ester hydrolysis by a Fe(III)Fe(II) complex of a binucleating ligand. This complex presents activities in the range of those observed for similar biomimetic compounds in the literature. The specific electronic properties of the Fe(III)Fe(II) complex allowed us to use (1)H NMR and Mössbauer spectroscopies to investigate the nature of the various species present in the solution in the pH range of 5-10. Both techniques showed that the hydrolysis activity is associated to a μ-hydroxido Fe(III)Fe(II) species. Further (1)H NMR experiments show that binding of anions or the substrate changes this bonding mode suggesting that a terminal hydroxide is the likely nucleophile in these hydrolysis reactions. This view is further supported by the structure determination of the hydrolysis product. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scaling exponent and dispersity of polymers in solution by diffusion NMR.
Williamson, Nathan H; Röding, Magnus; Miklavcic, Stanley J; Nydén, Magnus
2017-05-01
Molecular mass distribution measurements by pulsed gradient spin echo nuclear magnetic resonance (PGSE NMR) spectroscopy currently require prior knowledge of scaling parameters to convert from polymer self-diffusion coefficient to molecular mass. Reversing the problem, we utilize the scaling relation as prior knowledge to uncover the scaling exponent from within the PGSE data. Thus, the scaling exponent-a measure of polymer conformation and solvent quality-and the dispersity (M w /M n ) are obtainable from one simple PGSE experiment. The method utilizes constraints and parametric distribution models in a two-step fitting routine involving first the mass-weighted signal and second the number-weighted signal. The method is developed using lognormal and gamma distribution models and tested on experimental PGSE attenuation of the terminal methylene signal and on the sum of all methylene signals of polyethylene glycol in D 2 O. Scaling exponent and dispersity estimates agree with known values in the majority of instances, leading to the potential application of the method to polymers for which characterization is not possible with alternative techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Ikeya, Teppei; Terauchi, Tsutomu; Güntert, Peter; Kainosho, Masatsune
2006-07-01
Recently we have developed the stereo-array isotope labeling (SAIL) technique to overcome the conventional molecular size limitation in NMR protein structure determination by employing complete stereo- and regiospecific patterns of stable isotopes. SAIL sharpens signals and simplifies spectra without the loss of requisite structural information, thus making large classes of proteins newly accessible to detailed solution structure determination. The automated structure calculation program CYANA can efficiently analyze SAIL-NOESY spectra and calculate structures without manual analysis. Nevertheless, the original SAIL method might not be capable of determining the structures of proteins larger than 50 kDa or membrane proteins, for which the spectra are characterized by many broadened and overlapped peaks. Here we have carried out simulations of new SAIL patterns optimized for minimal relaxation and overlap, to evaluate the combined use of SAIL and CYANA for solving the structures of larger proteins and membrane proteins. The modified approach reduces the number of peaks to nearly half of that observed with uniform labeling, while still yielding well-defined structures and is expected to enable NMR structure determinations of these challenging systems.
Pseudopeptide foldamers: the homo-oligomers of pyroglutamic acid.
Bernardi, Fernando; Garavelli, Marco; Scatizzi, Marco; Tomasini, Claudia; Trigari, Valerio; Crisma, Marco; Formaggio, Fernando; Peggion, Cristina; Toniolo, Claudio
2002-06-03
As a part of a program evaluating substituted gamma-lactams as conformationally constrained building blocks of pseudopeptide foldamers, we synthesized the homo-oligomers of L-pyroglutamic acid up to the tetramer level by solution methods. The preferred conformation of this pseudopeptide series in structure-supporting solvents was assessed by FT-IR absorption, 1H NMR and CD techniques. In addition, the crystal structure of the N alpha-protected dimer was established by X-ray diffraction. A high-level DFT computational modeling was performed based on the crystallographic parameters. In this analysis, we demonstrated that an alpha C-H...O=C intramolecular hydrogen bond is responsible for the stabilization of the s-trans L-pGlu-L-pGlu conformation by 1.4 kcal mol-1. This effect can be easily detected by 1H NMR spectroscopy, owing to the anomalous chemical shifts of the alpha CH protons present in all of the oligomers. In summary, we have developed a new polyimide-based, foldameric structure that, if appropriately functionalized, has promise as a rigid scaffold for novel functions and applications.
Francàs, Laia; Richmond, Craig; Garrido-Barros, Pablo; Planas, Nora; Roeser, Stephan; Benet-Buchholz, Jordi; Escriche, Lluís; Sala, Xavier; Llobet, Antoni
2016-04-04
Three distinct functionalisation strategies have been applied to the in,in-[{Ru(II)(trpy)}2(μ-bpp)(H2O)2](3+) (trpy=2,2':6',2''-terpyridine, bpp=bis(pyridine)pyrazolate) water-oxidation catalyst framework to form new derivatives that can adsorb onto titania substrates. Modifications included the addition of sulfonate, carboxylate, and phosphonate anchoring groups to the terpyridine and bis(pyridyl)pyrazolate ligands. The complexes were characterised in solution by using 1D NMR, 2D NMR, and UV/Vis spectroscopic analysis and electrochemical techniques. The complexes were then anchored on TiO2-coated fluorinated tin oxide (FTO) films, and the reactivity of these new materials as water-oxidation catalysts was tested electrochemically through controlled-potential electrolysis (CPE) with oxygen evolution detected by headspace analysis with a Clark electrode. The results obtained highlight the importance of the catalyst orientation with respect to the titania surface in regard to its capacity to catalytically oxidize water to dioxygen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basti, M.M.
1988-01-01
Both sections of this study include the use of several high-resolution nuclear magnetic resonance (NMR) techniques. The first part is concerned with the conformational analysis of dibucaine (a local anesthetic) by the use of the lanthanide shift reagent Yb(fod){sub 3} and by computer calculations. The second part of the dissertation is concerned with the study of dioctanoylphosphatidylcholine and dodecylphosphorylcholine and the sulfur analogues of these molecules in deuterated chloroform and chloroform/methanol (2:1 v/v). 2D COSY and {sup 1}H-{sup 13}C heteronuclear correlation experiments were used to make {sup 1}H and {sup 13}C assignments. In both analogues of the phosphatidylcholine molecule, themore » three-bond {sup 1}H-{sup 1}H, {sup 31}P-{sup 13}C, and {sup 31}P-{sup 1}H coupling constants were measured using {sup 1}H, {sup 13}C and {sup 31}P NMR spectroscopy. A number of these coupling constants were significantly different between the two analogues.« less
Kamiya, Narutoshi; Mitomo, Daisuke; Shea, Joan-Emma; Higo, Junichi
2007-05-17
The free-energy landscape of the Alzheimer beta-amyloid peptide Abeta(12-36) in a 40% (v/v) 2,2,2-trifluoroethanol (TFE)/water solution was determined by using multicanonical molecular dynamics simulations. Simulations using this enhanced conformational sampling technique were initiated from a random unfolded polypeptide conformation. Our simulations reliably folded the peptide to the experimental NMR structure, which consists of two linked helices. The shape of the free energy landscape for folding was found to be strongly dependent on temperature: Above 325 K, the overall shape was funnel-like, with the bottom of the funnel coinciding exactly with the NMR structure. Below 325 K, on the other hand, the landscape became increasingly rugged, with the emergence of new conformational clusters connected by low free-energy pathways. Finally, our simulations reveal that water and TFE solvate the polypeptide in different ways: The hydrogen bond formation between TFE and Abeta was enhanced with decreasing temperature, while that between water and Abeta was depressed.
Wawer, Iwona; Pisklak, Maciej; Chilmonczyk, Zdzisław
2005-08-10
Sildenafil citrate (SC) (Viagra) and sildenafil base in pure form are easily and unequivocally characterized by multinuclear NMR spectroscopy. Analysis of chemical shifts indicates that: (i) N6-H forms intramolecular hydrogen bonds, (ii) N25 is protonated in the salt and (iii) intermolecular OH...N hydrogen bonds involving N2 and N4 are present in the solid sildenafil citrate. 13C CPMAS NMR method has been proposed for the identification and quantitation of Viagra in its pharmaceutical formulations.
Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R
2014-01-24
Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Şenkuytu, Elif; Tanrıverdi Eçik, Esra
2018-06-01
In the study, the new hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) have been successfully synthesized and characterized by using general spectroscopic techniques such as 1H, 13C and 31P NMR spectroscopies. The photophysical and metal sensing properties in THF solutions of dendrimeric cyclotriphosphazene conjugates (HBCP 1 and 2) were investigated by UV-Vis and fluorescence spectroscopies in dilute tetrahydrofuran solutions. These dendrimers showed strong absorption bands 501 and 641 nm at low concentration with high molar extinction coefficients. In addition, the stoichiometry of the complex between the conjugate (HBCP 2) and Co2+ ions were determined by a Job's plot obtained from fluorescence titrations. The metal sensing data showed that the hexa-bodipy functionalized dendrimeric cyclotriphosphazene conjugate (HBCP 2) is a candidate for fluorescent chemosensor for Co2+ ions due to showing high selectivity with a low limit of detection.
Fractional motion model for characterization of anomalous diffusion from NMR signals.
Fan, Yang; Gao, Jia-Hong
2015-07-01
Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.
Fractional motion model for characterization of anomalous diffusion from NMR signals
NASA Astrophysics Data System (ADS)
Fan, Yang; Gao, Jia-Hong
2015-07-01
Measuring molecular diffusion has been used to characterize the properties of living organisms and porous materials. NMR is able to detect the diffusion process in vivo and noninvasively. The fractional motion (FM) model is appropriate to describe anomalous diffusion phenomenon in crowded environments, such as living cells. However, no FM-based NMR theory has yet been established. Here, we present a general formulation of the FM-based NMR signal under the influence of arbitrary magnetic field gradient waveforms. An explicit analytic solution of the stretched exponential decay format for NMR signals with finite-width Stejskal-Tanner bipolar pulse magnetic field gradients is presented. Signals from a numerical simulation matched well with the theoretical prediction. In vivo diffusion-weighted brain images were acquired and analyzed using the proposed theory, and the resulting parametric maps exhibit remarkable contrasts between different brain tissues.
Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.
Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt
2015-08-24
High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mondin, Andrea; Bogialli, Sara; Venzo, Alfonso; Favaro, Gabriella; Badocco, Denis; Pastore, Paolo
2014-01-01
The present paper reports the determination of the tri-amine N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (TA) present in a raw material called LONZABAC used to formulate various, widely used commercial biocides. The active principle, TA, is present in LONZABAC together with other molecules at lower concentration levels. Three independent analytical approaches, namely solution NMR spectroscopy, liquid chromatography coupled to high resolution mass spectrometry (LC/HRMS) and acid-base titration in mixed solvent, were used to overcome the problem of the non-availability of the active principle as high purity standard. NMR analysis of raw material, using a suitable internal standard, evidenced in all analyzed lots the presence of the active principle, the N-dodecyl-1,3-propanediamine (DA) and the n-dodecylamine (MA) and the absence of non-organic, NMR-inactive species. NMR peak integration led to a rough composition of the MA:DA:TA as 1:9:90. The LC/HRMS analysis allowed the accurate determination of DA and MA and confirmed in all samples the presence of the TA, which was estimated by difference: MA=1.4±0.3%, DA=11.1±0.7%, TA=87.5±1.3%. The obtained results were used to setup an easy, rapid and cheap acid-base titration method able to furnish a sufficiently accurate evaluation of the active principle both in the raw material and in diluted commercial products. For the raw material the results were: TA+MA=91.1±0.8% and DA-MA=8.9±0.8%, statistically coherent with LC/MS ones. The LC/MS approach demonstrated also its great potentialities to recognize trace of the biocide components both in environmental samples and in the formulated commercial products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Computational approach to integrate 3D X-ray microtomography and NMR data.
Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G; Trevizan, Willian A; Fortulan, Carlos A; Bonagamba, Tito J
2018-05-04
Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T 1 and T 2 , respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials. Copyright © 2018 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The favored method of organic P identification over the last few decades has been 31P NMR. While this technique has the distinct advantage of speciating the organic P fraction, it has a relatively poor detection threshold (0.05 mg/ml), which typically limits 31P NMR to qualitative or confirmative ap...
NMR Microscopy - Micron-Level Resolution.
NASA Astrophysics Data System (ADS)
Kwok, Wing-Chi Edmund
1990-01-01
Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is to implement a higher static magnetic field which will increase signal strength. In the future, NMR microscopy should prove to be useful in the studies of cell linings, T1 & T2 relaxation mechanisms and NMR contrast agents.
Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana
2012-09-12
A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.
An Accessible Two-Dimensional Solution Nuclear Magnetic Resonance Experiment on Human Ubiquitin
ERIC Educational Resources Information Center
Rovnyak, David; Thompson, Laura E.
2005-01-01
Solution-state nuclear magnetic resonance (NMR) is an invaluable tool in structural and molecular biology research, but may be underutilized in undergraduate laboratories because instrumentation for performing structural studies of macromolecules in aqueous solutions is not yet widely available for use in undergraduate laboratories. We have…
NASA Astrophysics Data System (ADS)
Xu, Y.; Simpson, M. J.; Eyles, N.; Simpson, A.; Baer, A. J.
2009-05-01
Cryoconite is a dark-colored, dust-like material found on the surfaces of glaciers. Cryoconite holes, which are produced by accelerated ice melt due to more solar radiation absorption by cryoconite than bare ice, act as habitats for microbial life and biologically mediated chemical reactions on otherwise relatively inert glacier surfaces. Cryoconite holes may behave as bacterial shelters during "Snowball Earth" events postulated for the Neoproterozoic Earth. In this study organic matter (OM) biomarkers and a host of one- and two-dimensional NMR techniques were used to characterize cryoconite organic matter (COM) collected from the Athabasca Glacier in the Canadian Rocky Mountains. Solvent extracts contain large quantities of fatty acids, n-alkanols, n- alkanes, wax esters and sterols. A large contribution of C23 and C25 relative to C29 and C31 n-alkanes ([C23/(C23+C29)] = 0.51) suggests that allochthonous COM is derived mainly from lower order plants such as mosses and lichens. This is confirmed by the absence of lignin-derived phenols, a biomarker of terrestrial vascular plants, after copper (II) oxidation in extracts and NMR analyses of COM. Solution-state 1H NMR reveals prominent peptide/protein structures which are characteristic of microbial inputs, while solid-state 13C CP/MAS NMR analysis shows a very high alkyl/O-alkyl ratio (2.16), suggesting that COM is unique compared to organic matter found in nearby soils which have alkyl/O-alkyl ratio of ~0.39. Our NMR results suggest that COM is dominated by microbial-derived compounds, which is also confirmed by phospholipid fatty acid results (6,950µg/gOC) which show significant microbial contributions to COM primarily from bacteria and minor microeukaryotes. Both biomarker and NMR data suggest that COM likely supports active microbial communities on the Athabasca Glacier. Given that such material is incorporated within the glacier in the accumulation zone or flushed by meltwaters into subglacial environments, reworked COM may provide nutrient sources for active microbial communities found within and under glaciers.
Probing porous media with gas diffusion NMR
NASA Technical Reports Server (NTRS)
Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.
1999-01-01
We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.
Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei
Perras, Frederic A.
2015-12-15
Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.
Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang
2016-01-20
Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.
Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques
NASA Astrophysics Data System (ADS)
Hassan, Jamal
2012-09-01
The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.
NASA Astrophysics Data System (ADS)
Karabacak, M.; Kose, E.; Sas, E. B.; Kurt, M.; Asiri, A. M.; Atac, A.
2015-02-01
The spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The 1H and 13C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.
Richardson, Peter M; Jackson, Scott; Parrott, Andrew J; Nordon, Alison; Duckett, Simon B; Halse, Meghan E
2018-07-01
Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H 2 , to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand-held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF-dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. © 2017 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.
Alizadeh, Nina
2011-01-01
Lithium-7 NMR measurements were used to investigate the stoichiometry and stability of Li+ complexes with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), dibenzo-15-crown-5 (DB15C5) and 12-crown-4 (12C4) in a number of nitromethane (NM)-acetonitrile (AN) binary mixtures. In all cases, the exchange between the free and complexed lithium ion was fast on the NMR time scale and a single population average resonance was observed. While all crown ethers form 1:1 complexes with Li+ ion in the binary mixtures used, both 1:1 and 2:1 (sandwich) complexes were observed between lithium ion and 12C4 in pure nitromethane solution. Stepwise formation constants of the 1:1 and 2:1 (ligand/metal) complexes were evaluated from computer fitting of the NMR-mole ratio data to equations which relate the observed metal ion chemical shifts to formation constants. There is an inverse linear relationship between the logarithms of the stability constants and the mole fraction of acetonitrile in the solvent mixtures. The stability order of the 1:1 complexes was found to be 15C5·Li+>B15C5·Li+>DB15C5·Li+>12C4·Li+. The optimized structures of the free ligands and their 1:1 and 2:1 complexes with Li+ ion were predicted by ab initio theoretical calculations using the Gaussian 98 software, and the results are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
Characterization of Whole Porewater Dissolved Organic Matter by 1H NMR
NASA Astrophysics Data System (ADS)
Fox, C.; Lewicki, J. P.; Abdulla, H. A.; Burdige, D.; Magen, C.; Chanton, J.; Komada, T.
2014-12-01
Dissolved organic matter (DOM) is a key intermediate in microbial remineralization of organic matter, but only a small percentage of this complex pool has been fully characterized. We present the results of a novel approach to the characterization of DOM in whole porewater samples from the anoxic sediments of the Santa Barbara Basin, California Borderland, using solution state nuclear magnetic resonance (NMR) techniques. Profiles of porewater DOM were obtained by 1H NMR from 95 to 435 cm sediment depth. 1H NMR spectra of each whole porewater sample showed continuous, broad regions from ~0.5 to ~4.5 ppm, indicative of significant signal overlap inherent to complex mixtures, superimposed on a few highly resolved peaks. The individual samples consist of a broad range of chemical environments with varying relative abundances that show a near linear trend with depth. The normalized spectral data were analyzed by principal component analysis to resolve variations in chemical composition of DOM as a function of depth. In addition to detecting the major components such as carbohydrates, cyclic aliphatics and aromatics, our results demonstrate a negative correlation between carbohydrates concurrent with a relative increase in levels of aliphatics. Furthermore, we have identified a decrease in the abundance of alkenes coupled with an increase in a broad region from ~1.9 to ~3.2 ppm, likely corresponding to signals from carboxylic-rich alicyclic molecules. In both trends, the greatest variation occurs between 115 and 135 cm, which straddles the sulfate-methane transition zone (~125 cm), potentially highlighting a region of relatively high DOM transformation. Our work has also identified thiol species which are thought to be formed by dissolved (inorganic) sulfide incorporation into porewater DOM compounds. The implications of these results with respect to carbon cycling in anaerobic sediments will be discussed.
Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A
2015-02-05
The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing. Copyright © 2014 Elsevier B.V. All rights reserved.
NMR of samples containing metal foils.
Xiong, J; Lock, H; Tao, T; Keeler, C; Maciel, G E
1999-07-01
By using spool configurations of a sample containing aluminum foil, in which the axis of the spool is collinear with the RF coil axis, one can obtain high-quality 13C NMR spectra of static samples of organic material attached to the aluminum foil. By combining such a spool configuration (or, alternatively, analogous samples containing equivalent amounts of fine aluminum powder) with the magic-angle hopping (MAH) technique, one can achieve a high degree of isotropic averaging of the 13C spectrum. This opens to NMR techniques the study of a variety of samples containing macroscopic pieces of metal foils, e.g., thin films deposited on metal foils and electrochemical systems with species adsorbed on metal-foil electrodes.
Ferro, Monica; Castiglione, Franca; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea
2016-08-15
The chemical cross-linking of β-cyclodextrin (β-CD) with ethylenediaminetetraacetic dianhydride (EDTA) led to branched polymers referred to as cyclodextrin nanosponges (CDNSEDTA). Two different preparations are described with 1:4 and 1:8 CD-EDTA molar ratios. The corresponding cross-linked polymers were contacted with 0.27 M aqueous solution of ibuprofen sodium salt (IP) leading to homogeneous, colorless, drug loaded hydrogels. The systems were characterized by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. Pulsed field gradient spin echo (PGSE) NMR spectroscopy was used to determine the mean square displacement (MSD) of IP inside the polymeric gel at different observation times td. The data were further processed in order to study the time dependence of MSD: MSD = f(td). The proposed methodology is useful to characterize the different diffusion regimes that, in principle, the solute may experience inside the hydrogel, namely normal or anomalous diffusion. The full protocols including the polymer preparation and purification, the obtainment of drug-loaded hydrogels, the NMR sample preparation, the measurement of MSD by HR-MAS NMR spectroscopy and the final data processing to achieve the time dependence of MSD are here reported and discussed. The presented experiments represent a paradigmatic case and the data are discussed in terms of innovative approach to the characterization of the transport properties of an encapsulated guest within a polymeric host of potential application for drug delivery.
Aroulanda, Christie; Lafon, Olivier; Lesot, Philippe
2009-08-06
The conformational dynamics and orientational behavior of two model cyclic molecules, cis-decalin (cis-dec) and tetrahydrofurane (THF), dissolved in weakly ordering, polypeptidic chiral liquid crystals (CLCs) are theoretically discussed and experimentally investigated using deuterium and carbon-13 NMR spectroscopies. The analysis of enantiomeric and enantiotopic discriminations in these compounds is shown to depend on the rate of conformational exchange regime, slow or fast. The slow exchange regime is illustrated through the case of cis-dec at low temperature (243 K). We show that the deuterium NMR spectra in this regime can be qualitatively and quantitatively interpreted by restricting the conformational pathway of cis-dec to two enantiomeric conformers of C(2)-symmetry. The orientational order parameters of these interconverting enantiomers are calculated by matching the (2)H quadrupolar splittings with calculated conformer structures. The fast exchange regime is investigated through the examples of cis-dec at high temperature (356 K) and THF at room temperature (300 K). The (2)H NMR spectra above the coalescence temperature are analyzed by introducing the concept of "average molecular structure". This fictitious structure allows easily identifying NMR equivalences of solutes dissolved in CLC. However, it cannot be applied to determine consistent orientational order parameters. This study emphasizes that enantiotopic discriminations observed for flexible molecules in the fast exchange regime can be quantitatively interpreted only by considering the orientational order of each conformer.
Maina, Ndegwa Henry; Pitkänen, Leena; Heikkinen, Sami; Tuomainen, Päivi; Virkki, Liisa; Tenkanen, Maija
2014-01-01
Dilute solutions of various dextran standards, a high-molar mass (HMM) commercial dextran from Leuconostoc spp., and HMM dextrans isolated from Weissella confusa and Leuconostoc citreum were analyzed with high-performance size-exclusion chromatography (HPSEC), asymmetric flow field-flow fractionation (AsFlFFF), and diffusion-ordered NMR spectroscopy (DOSY). HPSEC analyses were performed in aqueous and dimethyl sulfoxide (DMSO) solutions, while only aqueous solutions were utilized in AsFlFFF and DOSY. The study showed that all methods were applicable to dextran analysis, but differences between the aqueous and DMSO-based solutions were obtained for HMM samples. These differences were attributed to the presence of aggregates in aqueous solution that were less prevalent in DMSO. The study showed that DOSY provides an estimate of the size of HMM dextrans, though calibration standards may be required for each experimental set-up. To our knowledge, this is the first study utilizing these three methods in analyzing HMM dextrans. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaumann, Gabriele E.; Conte, Pellegrino; Jäger, Alexander; Alonzo, Giuseppe; Bertmer, Marko
2010-05-01
The molecular size of humic substances is still under debate and is believed to range up to several hundred thousands Dalton, although a number of recent studies suggest much lower molecular weights. Nowadays an increasing number of authors suggest a model of molecular aggregates. One explanation why results on the molecular mass of humic materials are contradictory, may be that individual OM molecules are linked via intermolecular interactions, by bridges of water molecules or by cations bridging cation exchange sites (Schaumann, 2006a, b). Properties of such cross-linked systems can be similar to macromolecular systems revealing covalent cross-links. In this context, multivalent cations play an important ecological role, serving as reversible cross-linking agent. Formation and disruption of such cation bridges may close or open sorption sites in soil organic matter. Although cross-linking by multivalent cations has been proposed in many studies, the cross-linking effect has not yet been demonstrated on the molecular scale. The objective of this study was to investigate the interactions between cations and peat organic matter using NMR wideline techniques as well as static and fast field cycling (FFC) NMR relaxometry. Peat treated with solutions containing either Na+, Ca2+ or Al3+ was investigated in air-dried state for longitudinal relaxation times (T1) and NMR wideline characteristics. T1 distributions were separated into two Gaussian functions which were interpreted to represent two proton populations belonging to two environments of differing mobility. The relaxation rates (R1 = T1-1) in the cation treated samples spread over a range of 87-123 s-1 (R1a: fast component) and 32-42 s-1 (R1b: slow component). The rates in all treatments are significantly different from each other. and decrease in the order conditioned sample > desalinated sample > Na-treated sample. The treatment with multivalent cations affects R1a and R1b in different ways and needs more detailed explanation. Wideline proton NMR spectra can be used to quantify proton containing material, mainly water, based on their mobility. Spectra were decomposed into a Gaussian and Lorentzian line and changes to mobility after heat treatment indicate the water binding strength. In this study, differences in the various NMR parameters on the cation treatments will be presented and discussed with respect to the crosslinking hypothesis.
International NMR-based Environmental Metabolomics Intercomparison Exercise
Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun
In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO- d 6) and hexamethylphosphoramide (HMPA- d 18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO- d 6/HMPA-d 18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass,more » facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less
Pu, Yunqiao; Ragauskas, Arthur J.; Yoo, Chang Geun; ...
2016-04-26
In recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO- d 6) and hexamethylphosphoramide (HMPA- d 18). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. Moreover, the structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO- d 6/HMPA-d 18; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass,more » facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. Furthermore, it also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities.« less
A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu
The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor tomore » be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.« less
Yoo, Chang Geun; Pu, Yunqiao; Li, Mi; Ragauskas, Arthur J
2016-05-23
Recent developments of NMR methods for characterization of lignocellulosic biomass allow improved understanding of plant cell-wall structures with minimal deconstruction and modification of biomass. This study introduces a new NMR solvent system composed of dimethylsulfoxide (DMSO-d6 ) and hexamethylphosphoramide (HMPA-d18 ). HMPA as a co-solvent enhanced swelling and mobility of the biomass samples; thereby it allowed enhancing signals of NMR spectra. The structural information of biomass was successfully analyzed by the proposed NMR solvent system (DMSO-d6 /HMPA-d18 ; 4:1, v/v) with different biomass. The proposed bi-solvent system does not require derivatization or isolation of biomass, facilitating a facile sample preparation and involving with no signals overlapping with biomass peaks. It also allows analyzing biomass with a room-temperature NMR probe instead of cryo-probes, which are traditionally used for enhancing signal intensities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Santiago, C. J. S.; Solatpour, R.; Kantzas, A.
2017-12-01
The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing the best permeability estimation model for tight reservoirs data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, N.S.K.
In aqueous lysine-sucrose model systems, the effects of reaction time, pH and molar ratio were studied on the formation of non-enzymatic browning reaction (NBR) products. The extent of sucrose hydrolysis was measured and the antioxidant effect of NBR products on linoleic acid emulsions was examined. Nuclear magnetic resonance (NMR) spectra were obtained at various stages of browning. Sucrose produced NMR produces with lysine in an aqueous system at 100/sup 0/C. The C-13 NMR spectra indicated that the NBR started when sucrose and lysine were dissolved in water. The C-13 NMR spectra also showed that heating did not have an effectmore » on the gross composition of polymeric species. The absorbance at 480 nm of 0.75 M lysine-sucrose solution heated up to 6 hours increased with reaction times. The pH values of heated lysine-sucrose solution gradually decreased with reaction time. When 0.75 M sucrose or lysine solution was heated separately up to 6 hours, there were no changes in absorbance in pH. In the pH range of 3.52-6.35, higher absorbance was obtained from heated lysine-sucrose solution at acidic pH levels than at neutral pH levels. As the concentration of lysine and sucrose solution was increased, the absorbance increased. At longer reaction times or acidic pH levels, enhanced hydrolysis of sucrose to reducing sugars resulted in more NBR products. NBR products obtained at a longer reaction time, an acidic pH, and higher concentration of reactants showed a darker brown color and were effective in preventing the formation of peroxides. The oxygen uptake of linoleic acid emulsion having NBR products was smaller than that of linoleic acid emulsion without NBR products. Based on these results, it was concluded that sucrose may act as an antioxidant in processed foods containing both amino acids and lipids.« less
NASA Astrophysics Data System (ADS)
Beckman, Robert A.; Moreland, David; Louise-May, Shirley; Humblet, Christine
2006-05-01
Nuclear magnetic resonance (NMR) provides structural and dynamic information reflecting an average, often non-linear, of multiple solution-state conformations. Therefore, a single optimized structure derived from NMR refinement may be misleading if the NMR data actually result from averaging of distinct conformers. It is hypothesized that a conformational ensemble generated by a valid molecular dynamics (MD) simulation should be able to improve agreement with the NMR data set compared with the single optimized starting structure. Using a model system consisting of two sequence-related self-complementary ribonucleotide octamers for which NMR data was available, 0.3 ns particle mesh Ewald MD simulations were performed in the AMBER force field in the presence of explicit water and counterions. Agreement of the averaged properties of the molecular dynamics ensembles with NMR data such as homonuclear proton nuclear Overhauser effect (NOE)-based distance constraints, homonuclear proton and heteronuclear 1H-31P coupling constant ( J) data, and qualitative NMR information on hydrogen bond occupancy, was systematically assessed. Despite the short length of the simulation, the ensemble generated from it agreed with the NMR experimental constraints more completely than the single optimized NMR structure. This suggests that short unrestrained MD simulations may be of utility in interpreting NMR results. As expected, a 0.5 ns simulation utilizing a distance dependent dielectric did not improve agreement with the NMR data, consistent with its inferior exploration of conformational space as assessed by 2-D RMSD plots. Thus, ability to rapidly improve agreement with NMR constraints may be a sensitive diagnostic of the MD methods themselves.
Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech
2018-01-15
The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1 H, 13 C and 15 N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH 3 salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO 2 salDAMN and naphDAMN only one form (X) was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Afonin, Sergii; Kubyshkin, Vladimir; Mykhailiuk, Pavel K; Komarov, Igor V; Ulrich, Anne S
2017-07-13
The cell-penetrating peptide SAP, which was designed as an amphipathic poly-l-proline helix II (PPII), was suggested to self-assemble into regular fibrils that are relevant for its internalization. Herein we have analyzed the structure of SAP in the membrane-bound state by solid-state 19 F-NMR, which revealed other structural states, in addition to the expected surface-aligned PPII. Trifluoromethyl-bicyclopentyl-glycine (CF 3 -Bpg) and two rigid isomers of trifluoromethyl-4,5-methanoprolines (CF 3 -MePro) were used as labels for 19 F-NMR analysis. The equilibria between different conformations of SAP were studied and were found to be shifted by the substituents at Pro-11. Synchrotron-CD results suggested that substituting Pro-11 by CF 3 -MePro governed the coil-to-PPII equilibrium in solution and in the presence of a lipid bilayer. Using CD and 19 F-NMR, we examined the slow kinetics of the association of SAP with membranes and the dependence of the SAP conformational dynamics on the lipid composition. The peptide did not bind to lipids in the solid ordered phase and aggregated only in the liquid ordered "raft"-like bilayers. Self-association could not be detected in solution or in the presence of liquid disordered membranes. Surface-bound amphipathic SAP in a nonaggregated state was structured as a mixture of nonideal extended conformations reflecting the equilibrium already present in solution, i.e., before binding to the membrane.
LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.
Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco
2013-10-18
Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons the Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
ERIC Educational Resources Information Center
Wackerly, Jay Wm.; Dunne, James F.
2017-01-01
A procedure for the solution polymerization of styrene using di-"tert"-butyl peroxide (DTBP) as the initiator is described. The use of DTBP allows for end-group analysis by [superscript 1]H NMR spectroscopy and calculation of the number-average molecular weight of the polymer. This experiment was designed as a laboratory introduction to…
Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning
2010-09-30
Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchko, Garry W.; Hewitt, Stephen N.; Van Voorhis, Wesley C.
Thioredoxins (Trxs) are small ubiquitous proteins that participate in a diverse variety of redox reactions via the reversible oxidation of two cysteine thiol groups in a structurally conserved active site, CGPC. Here, we describe the NMR solution structures of a Trx from Ehrlichia chaffeensis (Ec-Trx, ECH_0218), the etiological agent responsible for human monocytic ehrlichiosis, in both the oxidized and reduced states. The overall topology of the calculated structures is similar in both redox states and similar to other Trx structures, a five-strand, mixed -sheet (1:3:2:4:5) surrounded by four -helices. Unlike other Trxs studied by NMR in both redox states, themore » 1H-15N HSQC spectra of reduced Ec-Trx was missing eight amide cross peaks relative to the spectra of oxidized Ec-Trx. These missing amides correspond to residues C32-E39 in the active site containing helix (2) and S72-I75 in a loop near the active site and suggest a substantial change in the backbone dynamics associated with the formation of an intramolecular C32-C35 disulfide bond.« less
Hassanin, Hanaa A.; Hannibal, Luciana; Jacobsen, Donald W.; Brown, Kenneth L.
2009-01-01
The structure of nitrosylcobalamin (NOCbl) in solution has been studied by NMR spectroscopy and the 1H and 13C NMR spectra have been assigned. 13C and 31P NMR chemical shifts, the UV-vis spectrum of NOCbl and the observed pK base-off value of ~5.1 for NOCbl provide evidence that a significant fraction of NOCbl is present in the base-off, 5,6-dimethylbenzimidazole (DMB) deprotonated, form in solution. NOE-restrained molecular mechanics modelling of base-on NOCbl gave annealed structures with minor conformational differences in the flexible side chains and the nucleotide loop position compared with the X-ray structure. A molecular dynamics simulation at 300 K showed that DMB remains in close proximity to the α face of the corrin in the base-off form of NOCbl. Simulated annealing calculations produced two major conformations of base-off NOCbl. In the first, the DMB is perpendicular to the corrin and its B3 nitrogen is about 3.1 Å away from and pointing directly at the metal ion; in the second the DMB is parallel to and tucked beneath the D ring of the corrin. PMID:19122899
An improved 13C-tracer method for the study of lignin structure and reactions : differential 13C-NMR
Noritsugu Terashima; Dmitry Evtuguin; Carlos Pascoal Neto; Jim Parkas; Magnus Paulsson; Ulla Westermark; Sally Ralph; John Ralph
2003-01-01
The technique of selective 13C-enrichment of specific carbons in lignin combined with 13C-NMR differential spectrometry between spectra of 13C-enriched and unenriched lignins (Ã13C-NMR) provides definitive information on the structure of the lignin macromolecule. Improvements were made on, (1) specific 13C-enrichment of almost all carbons involved in inter-unit bonds...
Perspectives on NMR in drug discovery: a technique comes of age
Pellecchia, Maurizio; Bertini, Ivano; Cowburn, David; Dalvit, Claudio; Giralt, Ernest; Jahnke, Wolfgang; James, Thomas L.; Homans, Steve W.; Kessler, Horst; Luchinat, Claudio; Meyer, Bernd; Oschkinat, Hartmut; Peng, Jeff; Schwalbe, Harald; Siegal, Gregg
2009-01-01
In the past decade, the potential of harnessing the ability of nuclear magnetic resonance (NMR) spectroscopy to monitor intermolecular interactions as a tool for drug discovery has been increasingly appreciated in academia and industry. In this Perspective, we highlight some of the major applications of NMR in drug discovery, focusing on hit and lead generation, and provide a critical analysis of its current and potential utility. PMID:19172689
Song, Yukun; Cheng, Shasha; Wang, Huihui; Zhu, Bei-Wei; Zhou, Dayong; Yang, Peiqiang; Tan, Mingqian
2018-01-24
A nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) system with a 45 mm variable temperature (VT) sample probe (VT-NMR-MRI) was developed as an innovative technique for in situ monitoring of food phase transition. The system was designed to allow for dual deployment in either a freezing (-37 °C) or high temperature (150 °C) environment. The major breakthrough of the developed VT-NMR-MRI system is that it is able to measure the water states simultaneously in situ during food processing. The performance of the VT-NMR-MRI system was evaluated by measuring the phase transition for salmon flesh and hen egg samples. The NMR relaxometry results demonstrated that the freezing point of salmon flesh was -8.08 °C, and the salmon flesh denaturation temperature was 42.16 °C. The protein denaturation of egg was 70.61 °C, and the protein denaturation occurred at 24.12 min. Meanwhile, the use of MRI in phase transition of food was also investigated to gain internal structural information. All these results showed that the VT-NMR-MRI system provided an effective means for in situ monitoring of phase transition in food processing.
First principles NMR study of fluorapatite under pressure.
Pavan, Barbara; Ceresoli, Davide; Tecklenburg, Mary M J; Fornari, Marco
2012-01-01
NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method (Pickard and Mauri, 2001). Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from -5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as (43)Ca and (17)O. Copyright © 2012 Elsevier Inc. All rights reserved.
First Principles NMR Study of Fluorapatite under Pressure
Pavan, Barbara; Ceresoli, Davide; Tecklenburg, Mary M. J.; Fornari, Marco
2012-01-01
NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method [Pickard and Mauri, 2001]. Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from −5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as 43Ca and 17O. PMID:22770669
A Markov Random Field Framework for Protein Side-Chain Resonance Assignment
NASA Astrophysics Data System (ADS)
Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall
Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff-based computation is employed in the scoring function to evaluate the probability of side-chain resonance assignments to generate the observed NMR spectra. The complexity of the assignment problem is first reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is used to find a set of optimal side-chain resonance assignments that best fit the NMR data. We have tested our algorithm on NMR data for five proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), human ubiquitin, the ubiquitin-binding zinc finger domain of the human Y-family DNA polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain (hSRI). Our algorithm assigns resonances for more than 90% of the protons in the proteins, and achieves about 80% correct side-chain resonance assignments. The final structures computed using distance restraints resulting from the set of assigned side-chain resonances have backbone RMSD 0.5 - 1.4 Å and all-heavy-atom RMSD 1.0 - 2.2 Å from the reference structures that were determined by X-ray crystallography or traditional NMR approaches. These results demonstrate that our algorithm can be successfully applied to automate side-chain resonance assignment and high-quality protein structure determination. Since our algorithm does not require any specific NMR experiments for measuring the through-bond interactions with side-chain protons, it can save a significant amount of both experimental cost and spectrometer time, and hence accelerate the NMR structure determination process.
Protein Dynamics from NMR and Computer Simulation
NASA Astrophysics Data System (ADS)
Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn
2002-03-01
Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).
Portable, low-cost NMR with laser-lathe lithography produced microcoils.
Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey
2007-11-01
Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.
Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization
NASA Astrophysics Data System (ADS)
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.
2016-09-01
We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.
Siva Lakshmi Devi, A; Srinivasa Rao, Y; Suresh, Y; Yogeswar Reddy, M; Jyothi, G; Rajababu, B; Prasad, V S R; Umamaheswar Rao, V
2007-05-01
We report the complete (1)H and (13)C NMR assignment of impurities of six Lopinavir (2S)-N-[(2S, 4S, 5S)-5-{[2-(2,6-dimethylphenoxy)acetyl]amino}-4-hydroxy-1,6-diphenyl hexan-2-yl]-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butan- amide. Two of the impurities are regioisomers and GCOSY used to differentiate the two structures. The spectral assignments for all six impurities were achieved by concerted application of one and two-dimensional NMR techniques ((1)H NMR, (13)C NMR, DEPT, GCOSY, GHSQC and GHMBC). Copyright (c) 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Isab, Anvarhusein A.; Wazeer, Mohamed I. M.
2006-09-01
Complexation of Ag + with captopril, 1-[(2 S)-3-mercapto-2-methylpropionyl]- L-proline, has been studied by 1H and 13C-NMR spectroscopy. The equilibrium constants for the trans to cis isomers of captopril bound to Ag + were measured by 1H NMR spectroscopy. It is observed that the trans isomer of the drug binds more strongly to Ag + between pH 5 and 8, as shown by the broadening of the trans isomer's resonances in 13C NMR spectra on complexation. A monodentate complexation of the trans captopril with Ag + via the thiol site is proposed based on the solid-state NMR and IR data. A superior antimicrobial activity is exhibited by the Cap-Ag(I) complex compared to captopril ligand itself against Heterotrotropic Plate Counts (HPC), Pseudomonas aeruginosa and Fecal streptococcus bacteria.
Studying the Structure and Dynamics of Biomolecules by Using Soluble Paramagnetic Probes
Hocking, Henry G; Zangger, Klaus; Madl, Tobias
2013-01-01
Characterisation of the structure and dynamics of large biomolecules and biomolecular complexes by NMR spectroscopy is hampered by increasing overlap and severe broadening of NMR signals. As a consequence, the number of available NMR spectroscopy data is often sparse and new approaches to provide complementary NMR spectroscopy data are needed. Paramagnetic relaxation enhancements (PREs) obtained from inert and soluble paramagnetic probes (solvent PREs) provide detailed quantitative information about the solvent accessibility of NMR-active nuclei. Solvent PREs can be easily measured without modification of the biomolecule; are sensitive to molecular structure and dynamics; and are therefore becoming increasingly powerful for the study of biomolecules, such as proteins, nucleic acids, ligands and their complexes in solution. In this Minireview, we give an overview of the available solvent PRE probes and discuss their applications for structural and dynamic characterisation of biomolecules and biomolecular complexes. PMID:23836693
USDA-ARS?s Scientific Manuscript database
The thermo-sensitive polymer, poly(N-isopropylacrylamide) (PNIPAM) undergoes a coil-to-globule transition in an aqueous solution as the temperature is raised through the lower critical solution temperature. Thus far, little is known about the dynamical states of the water molecules that contribute ...
Han, Dongmei; Försterling, F. Holger; Li, Xiaoyan; Deschamps, Jeffrey R.; Parrish, Damon; Cao, Hui; Rallapalli, Sundari; Clayton, Terry; Teng, Yun; Majumder, Samarpan; Sankar, Subramaniam; Roth, Bryan L.; Sieghart, Werner; Furtmuller, Roman; Rowlett, James; Weed, Mike R.; Cook, James M.
2013-01-01
The stable conformations of GABAA-benzodiazepine receptor bivalent ligands were determined by low temperature NMR spectroscopy and confirmed by single crystal X-ray analysis. The stable conformations in solution correlated well with those in the solid state. The linear conformation was important for these dimers to access the binding site and exhibit potent in vitro affinity and was illustrated for α5 subtype selective ligands. Bivalent ligands with an oxygen-containing linker folded back upon themselves both in solution and the solid state. Dimers which are folded do not bind to Bz receptors. PMID:18790643
Revisiting the formation of cyclic clusters in liquid ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balanay, Mannix P.; Fan, Haiyan, E-mail: haiyan.fan@nu.edu.kz; Kim, Dong Hee
2016-04-21
The liquid phase of ethanol in pure and in non-polar solvents was studied at room temperature using Fourier transform infrared (FT-IR) and {sup 1}H nuclear magnetic resonance (NMR) spectroscopies together with theoretical approach. The FT-IR spectra for pure ethanol and solution in cyclohexane at different dilution stages are consistent with {sup 1}H NMR results. The results from both methods were best explained by the results of the density functional theory based on a multimeric model. It is suggested that cyclic trimers and tetramers are dominated in the solution of cyclohexane/hexane with the concentration greater than 0.5M at room temperature. Inmore » liquid ethanol, while the primary components at room temperature are cyclic trimers and tetramers, there is a certain amount (∼14%) of open hydroxide group representing the existence of chain like structures in the equilibria. The cyclic cluster model in the liquid and concentrated solution phase (>0.5M) can be used to explain the anomalously lower freezing point of ethanol (159 K) than that of water (273 K) at ambient conditions. In addition, {sup 1}H NMR at various dilution stages reveals the dynamics for the formation of cyclic clusters.« less
Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry.
Shi, Xuesong; Walker, Peter; Harbury, Pehr B; Herschlag, Daniel
2017-05-05
The conformational ensembles of structured RNA's are crucial for biological function, but they remain difficult to elucidate experimentally. We demonstrate with HIV-1 TAR RNA that X-ray scattering interferometry (XSI) can be used to determine RNA conformational ensembles. X-ray scattering interferometry (XSI) is based on site-specifically labeling RNA with pairs of heavy atom probes, and precisely measuring the distribution of inter-probe distances that arise from a heterogeneous mixture of RNA solution structures. We show that the XSI-based model of the TAR RNA ensemble closely resembles an independent model derived from NMR-RDC data. Further, we show how the TAR RNA ensemble changes shape at different salt concentrations. Finally, we demonstrate that a single hybrid model of the TAR RNA ensemble simultaneously fits both the XSI and NMR-RDC data set and show that XSI can be combined with NMR-RDC to further improve the quality of the determined ensemble. The results suggest that XSI-RNA will be a powerful approach for characterizing the solution conformational ensembles of RNAs and RNA-protein complexes under diverse solution conditions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Benković, T.; Kenđel, A.; Parlov-Vuković, J.; Kontrec, D.; Chiş, V.; Miljanić, S.; Galić, N.
2018-02-01
Structural analyses of aroylhydrazones were performed by computational and spectroscopic methods (solid state NMR, 1 and 2D NMR spectroscopy, FT-IR (ATR) spectroscopy, Raman spectroscopy, UV-Vis spectrometry and spectrofluorimetry) in solid state and in solution. The studied compounds were N‧-(2,3-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (1), N‧-(2,5-dihydroxyphenylmethylidene)-3-pyridinecarbohydrazide (2), N‧-(3-chloro-2-hydroxy-phenylmethylidene)-3-pyridinecarbohydrazide (3), and N‧-(2-hydroxy-4-methoxyphenyl-methylidene)-3-pyridinecarbohydrazide (4). Both in solid state and in solution, all compounds were in ketoamine form (form I, sbnd COsbnd NHsbnd Ndbnd Csbnd), stabilized by intramolecular H-bond between hydroxyl proton and nitrogen atom of the Cdbnd N group. In solid state, the Cdbnd O group of 1-4 were involved in additional intermolecular H-bond between closely packed molecules. Among hydrazones studied, the chloro- and methoxy-derivatives have shown pH dependent and reversible fluorescence emission connected to deprotonation/protonation of salicylidene part of the molecules. All findings acquired by experimental methods (NMR, IR, Raman, and UV-Vis spectra) were in excellent agreement with those obtained by computational methods.
Effect of clathrate hydrate formation and decomposition on NMR parameters in THF-D2O solution.
Rousina-Webb, Alexander; Leek, Donald M; Ripmeester, John
2012-06-28
The NMR spin-lattice relaxation time (T(1)), spin-spin relaxation time (T(2)) and the diffusion coefficient D were measured for (1)H in a 1:17 mol % solution of tetrahydrofuran (THF) in D(2)O. The aim of the work was to clarify some earlier points raised regarding the utility of these measurements to convey structural information on hydrate formation and reformation. A number of irregularities in T(1) and T(2) measurements during hydrate processes reported earlier are explained in terms of the presence of interfaces and possible temperature gradients. We observe that T(1) and T(2) in solution are exactly the same before and after hydrate formation, thus confirming that the solution is isotropic. This is inconsistent with the presence of memory effects, at least those that may affect the dynamics to which T(1) and T(2) are sensitive. The measurement of the diffusion coefficient for a number of hours in the subcooled solution before nucleation proved invariant with time, again suggesting that the solution remains isotropic without affecting the guest dynamics and diffusion.
Prakash, M; Geetha, D; Caroline, M Lydia; Ramesh, P S
2011-12-01
Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180°C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.
Ambruso, D R; Hawkins, B; Johnson, D L; Fritzberg, A R; Klingensmith, W C; McCabe, E R
1986-06-01
Conditions for blood storage are chosen to assure adequate levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG). Because of the invasive nature of the techniques, biochemical assays are not routinely used to measure levels of these compounds in stored blood. However, 31P NMR spectroscopy measures phosphorylated intermediates in intact cells and could be used without disruption of the storage pack. We compared levels of ATP and 2,3-DPG measured by 31P spectroscopy and standard enzyme-linked biochemical assays in whole blood (WB) and packed red blood cells (PRBCs) at weekly intervals during a 35-day storage period. NMR demonstrated a marked decrease in 2,3-DPG and an increase in inorganic phosphate after the first week of storage. No significant differences in ATP concentrations were seen in WB during the storage period, but a significant decrease in ATP in PRBCs was documented. There was good agreement in levels of ATP and 2,3-DPG measured by NMR and biochemical techniques. 31P NMR spectroscopy is a noninvasive technique for measuring ATP and 2,3-DPG which has a potential use in quality assurance of stored blood.
Quantitative trace analysis of complex mixtures using SABRE hyperpolarization.
Eshuis, Nan; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco
2015-01-26
Signal amplification by reversible exchange (SABRE) is an emerging nuclear spin hyperpolarization technique that strongly enhances NMR signals of small molecules in solution. However, such signal enhancements have never been exploited for concentration determination, as the efficiency of SABRE can strongly vary between different substrates or even between nuclear spins in the same molecule. The first application of SABRE for the quantitative analysis of a complex mixture is now reported. Despite the inherent complexity of the system under investigation, which involves thousands of competing binding equilibria, analytes at concentrations in the low micromolar range could be quantified from single-scan SABRE spectra using a standard-addition approach. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ogura, Tatsuki; Date, Yasuhiro; Kikuchi, Jun
2013-01-01
Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an “ECOMICS” web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation. PMID:23840554
Karabacak, Mehmet; Cinar, Mehmet
2012-10-01
This study presents the structural and spectroscopic characterization of 3,5-dibromoanthranilic acid with help of experimental techniques (FT-IR, FT-Raman, UV, NMR) and quantum chemical calculations. The vibrational spectra of title compound were recorded in solid state with FT-IR and FT-Raman in the range of 4000-400 and 4000-50 cm(-1), respectively. The vibrational frequencies were also computed using B3LYP method of DFT with 6-311++G(d,p) basis set. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The (1)H, (13)C and DEPT NMR spectra were recorded in DMSO solution and calculated by gauge-invariant atomic orbitals (GIAO) method. The UV absorption spectra of the compound were recorded in the range of 200-400 nm in ethanol, water and DMSO solutions. Solvent effects were calculated using time-dependent density functional theory and CIS method. The ground state geometrical structure of compound was predicted by B3LYP method and compared with the crystallographic structure of similar compounds. All calculations were made for monomeric and dimeric structure of compound. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties were performed. Mulliken atomic charges of neutral and anionic form of the molecule were computed and compared with anthranilic acid. Copyright © 2012 Elsevier B.V. All rights reserved.
Neuronal current detection with low-field magnetic resonance: simulations and methods.
Cassará, Antonino Mario; Maraviglia, Bruno; Hartwig, Stefan; Trahms, Lutz; Burghoff, Martin
2009-10-01
The noninvasive detection of neuronal currents in active brain networks [or direct neuronal imaging (DNI)] by means of nuclear magnetic resonance (NMR) remains a scientific challenge. Many different attempts using NMR scanners with magnetic fields >1 T (high-field NMR) have been made in the past years to detect phase shifts or magnitude changes in the NMR signals. However, the many physiological (i.e., the contemporarily BOLD effect, the weakness of the neuronal-induced magnetic field, etc.) and technical limitations (e.g., the spatial resolution) in observing the weak signals have led to some contradicting results. In contrast, only a few attempts have been made using low-field NMR techniques. As such, this paper was aimed at reviewing two recent developments in this front. The detection schemes discussed in this manuscript, the resonant mechanism (RM) and the DC method, are specific to NMR instrumentations with main fields below the earth magnetic field (50 microT), while some even below a few microteslas (ULF-NMR). However, the experimental validation for both techniques, with differentiating sensitivity to the various neuronal activities at specific temporal and spatial resolutions, is still in progress and requires carefully designed magnetic field sensor technology. Additional care should be taken to ensure a stringent magnetic shield from the ambient magnetic field fluctuations. In this review, we discuss the characteristics and prospect of these two methods in detecting neuronal currents, along with the technical requirements on the instrumentation.
Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data.
Teixeira, João M C; Skinner, Simon P; Arbesú, Miguel; Breeze, Alexander L; Pons, Miquel
2018-05-11
We present Farseer-NMR ( https://git.io/vAueU ), a software package to treat, evaluate and combine NMR spectroscopic data from sets of protein-derived peaklists covering a range of experimental conditions. The combined advances in NMR and molecular biology enable the study of complex biomolecular systems such as flexible proteins or large multibody complexes, which display a strong and functionally relevant response to their environmental conditions, e.g. the presence of ligands, site-directed mutations, post translational modifications, molecular crowders or the chemical composition of the solution. These advances have created a growing need to analyse those systems' responses to multiple variables. The combined analysis of NMR peaklists from large and multivariable datasets has become a new bottleneck in the NMR analysis pipeline, whereby information-rich NMR-derived parameters have to be manually generated, which can be tedious, repetitive and prone to human error, or even unfeasible for very large datasets. There is a persistent gap in the development and distribution of software focused on peaklist treatment, analysis and representation, and specifically able to handle large multivariable datasets, which are becoming more commonplace. In this regard, Farseer-NMR aims to close this longstanding gap in the automated NMR user pipeline and, altogether, reduce the time burden of analysis of large sets of peaklists from days/weeks to seconds/minutes. We have implemented some of the most common, as well as new, routines for calculation of NMR parameters and several publication-quality plotting templates to improve NMR data representation. Farseer-NMR has been written entirely in Python and its modular code base enables facile extension.
Jayawickrama, D A; Larive, C K
1999-06-01
The binding of a small molecule, (trimethylsilyl)propionic acid (TSP), to a 17-residue peptide, β(12-28), is examined using (1)H NMR spectroscopy. β(12-28) (VHHQKLVFFAEDVGSNK) is a central fragment of the 40-42-residue Alzheimer's-associated Aβ peptide. This peptide has been previously shown to form soluble aggregates in low-pH aqueous solution. The TSP resonance is broadened appreciably in solutions containing relatively high concentrations (∼2 mM) of the peptide. The changes in TSP line width measured by titration of a peptide solution with TSP indicate a 1:1 binding stoichiometry. If the concentrations of both the peptide and TSP are reduced by 1 order of magnitude, the resonances of both species are sharp, suggesting that TSP binds predominately to the aggregated peptide. Nuclear Overhauser effect experiments indicate that the TSP interacts predominately with the side chains of the aliphatic peptide residues Leu(17) and Val(18). Pulsed-field gradient NMR measurements of TSP and peptide diffusion coefficients provide a more quantitative picture of the TSP-peptide binding equilibrium. The measured diffusion coefficients were used to calculate the fractions of the free and bound TSP. These results substantiate the conclusion that the stoichiometry of the TSP-peptide binding equilibrium is essentially 1:1 and further indicate anticooperative behavior in solutions containing an excess of TSP resulting in a dissociation of the peptide aggregates.
Aguilar, Juan A; Adams, Ralph W; Duckett, Simon B; Green, Gary G R; Kandiah, Rathika
2011-01-01
A new family of NMR pulse sequences is reported for the recording of para-hydrogen enhanced NMR spectra. This Only Para-hydrogen SpectroscopY (OPSY) approach uses coherence selection to separate hyperpolarized signals from those of fully relaxed and thermally equilibrated protons. Sequence design, performance, practical aspects and applicability to other hyperpolarization techniques are discussed. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Knicker, Heike
2016-04-01
"Nuclear magnetic resonance (NMR) does not lie". More than anything else, this statement of a former colleague and friend has shaped my relation to solid-state NMR spectroscopy. Indeed, if this technique leads to results which contradict the expectations, it is because i) some parts of the instrument are broken, ii) maladjustment of the acquisition parameters or iii) wrong preparation or confusion of samples. However, it may be even simpler, namely that the expectations were wrong. Of course, for researchers, the latter is the most interesting possibility since it forces to reassess accepted views and to search for new explanations. As my major analytical tool, NMR spectroscopy has confronted me with this challenge often enough to turn this issue into the main subject of my talk and to share with the audience how it formed my understanding of function and nature of soil organic matter (SOM). Already shortly after its introduction into soil science in the 1980's, the data obtained with solid-state 13C NMR spectroscopy opened the stage for ongoing discussions, since they showed that in humified SOM aromatic carbon is considerably less important than previously thought. This finding had major implications regarding the understanding of the origin of SOM and the mechanisms by which it is formed. Certainly, the discrepancy between the new results and previous paradigms contributed to mistrust in the reliability of solid-state NMR techniques. The respective discussion has survived up to our days, although already in the 1980's and 1990's fundamental studies could demonstrate that quantitative solid-state NMR data can be obtained if i) correct acquisition parameters are chosen, ii) the impact of paramagnetic compounds is reduced and iii) the presence of soot in soils can be excluded. On the other hand, this mistrust led to a detailed analysis of the impact of paramagnetics on the NMR behavior of C groups which then improved our understanding of the role of carbohydrates for organo-mineral interactions. Since decent solid-state NMR spectra cannot be obtained from graphenic components, the successful acquisition of solid-state 13C and 15N NMR spectra of charcoals challenged the well accepted model of their chemical nature. Application of advanced 2D NMR approaches confirmed the new view of charcoal as a heterogeneous material, the composition of which depends upon the feedstock and charring condition. The respective consequences of this alternative for the understanding of C sequestration are still matter of ongoing debates. Although the sensitivity of 15N for NMR spectroscopy is 50 times lower than that of 13C, first solid-state 15N NMR spectra of soils with natural 15N abundance were already published in the 1990's. They clearly identified peptide-like structures as the main organic N form in unburnt soils. However, in spite of their high contribution to SOM, the role of peptides in soils is far from understood. Considering the new technological developments in the field of NMR spectroscopy, this technique will certainly not stop to contribute to unexpected results.
Medina, Jessica; Caro Rodríguez, Diana; Arana, Victoria A; Bernal, Andrés; Esseiva, Pierre; Wist, Julien
2017-01-01
The sensorial properties of Colombian coffee are renowned worldwide, which is reflected in its market value. This raises the threat of fraud by adulteration using coffee grains from other countries, thus creating a demand for robust and cost-effective methods for the determination of geographical origin of coffee samples. Spectroscopic techniques such as Nuclear Magnetic Resonance (NMR), near infrared (NIR), and mid-infrared (mIR) have arisen as strong candidates for the task. Although a body of work exists that reports on their individual performances, a faithful comparison has not been established yet. We evaluated the performance of 1 H-NMR, Attenuated Total Reflectance mIR (ATR-mIR), and NIR applied to fraud detection in Colombian coffee. For each technique, we built classification models for discrimination by species ( C. arabica versus C. canephora (or robusta )) and by origin (Colombia versus other C. arabica ) using a common set of coffee samples. All techniques successfully discriminated samples by species, as expected. Regarding origin determination, ATR-mIR and 1 H-NMR showed comparable capacity to discriminate Colombian coffee samples, while NIR fell short by comparison. In conclusion, ATR-mIR, a less common technique in the field of coffee adulteration and fraud detection, emerges as a strong candidate, faster and with lower cost compared to 1 H-NMR and more discriminating compared to NIR.
Unilateral NMR applied to the conservation of works of art.
Del Federico, Eleonora; Centeno, Silvia A; Kehlet, Cindie; Currier, Penelope; Stockman, Denise; Jerschow, Alexej
2010-01-01
In conventional NMR, samples from works of art in sizes above those considered acceptable in the field of art conservation would have to be removed to place them into the bore of large superconducting magnets. The portable permanent-magnet-based systems, by contrast, can be used in situ to study works of art, in a noninvasive manner. One of these portable NMR systems, NMR-MOUSE(R), measures the information contained in one pixel in an NMR image from a region of about 1 cm(2), which can be as thin as 2-3 microm. With such a high depth resolution, profiles through the structures of art objects can be measured to characterize the materials, the artists' techniques, and the deterioration processes. A novel application of the technique to study a deterioration process and to follow up a conservation treatment is presented in which micrometer-thick oil stains on paper are differentiated and characterized. In this example, the spin-spin relaxation T (2) of the stain is correlated to the iodine number and to the degree of cross-linking of the oil, parameters that are crucial in choosing an appropriate conservation treatment to remove them. It is also shown that the variation of T (2) over the course of treatments with organic solvents can be used to monitor the progress of the conservation interventions. It is expected that unilateral NMR in combination with multivariate data analysis will fill a gap within the set of high-spatial-resolution techniques currently available for the noninvasive analysis of materials in works of art, where procedures to study the inorganic components are currently far more developed than those suitable for the study of the organic components.
NASA Astrophysics Data System (ADS)
Almodarresiyeh, H. A.; Shahab, S. N.; Zelenkovsky, V. M.; Ariko, N. G.; Filippovich, L. N.; Agabekov, V. E.
2014-03-01
The new substance diethyl 2,2'-[(1,1'-biphenyl)-4,4'-diylbis(azanediyl)]diacetate (M13) was modeled using the Hartree-Fock and density functional theory methods and then synthesized. The electronic absorption spectrum of M13 in dimethylformamide solution was calculated. The UV, IR, and NMR spectra of M13 were presented.
Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen
2018-01-02
NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.
Lokesh, N; Seegerer, Andreas; Hioe, Johnny; Gschwind, Ruth M
2018-02-07
The low sensitivity of NMR and transient key intermediates below detection limit are the central problems studying reaction mechanisms by NMR. Sensitivity can be enhanced by hyperpolarization techniques such as dynamic nuclear polarization or the incorporation/interaction of special hyperpolarized molecules. However, all of these techniques require special equipment, are restricted to selective reactions, or undesirably influence the reaction pathways. Here, we apply the chemical exchange saturation transfer (CEST) technique for the first time to NMR detect and characterize previously unobserved transient reaction intermediates in organocatalysis. The higher sensitivity of CEST and chemical equilibria present in the reaction pathway are exploited to access population and kinetics information on low populated intermediates. The potential of the method is demonstrated on the proline-catalyzed enamine formation for unprecedented in situ detection of a DPU stabilized zwitterionic iminium species, the elusive key intermediate between enamine and oxazolidinones. The quantitative analysis of CEST data at 250 K revealed the population ratio of [Z-iminium]/[exo-oxazolidinone] 0.02, relative free energy +8.1 kJ/mol (calculated +7.3 kJ/mol), and free energy barrier of +45.9 kJ/mol (ΔG ⧧ calc. (268 K) = +42.2 kJ/mol) for Z-iminium → exo-oxazolidinone. The findings underpin the iminium ion participation in enamine formation pathway corroborating our earlier theoretical prediction and help in better understanding. The reliability of CEST is validated using 1D EXSY-build-up techniques at low temperature (213 K). The CEST method thus serves as a new tool for mechanistic investigations in organocatalysis to access key information, such as chemical shifts, populations, and reaction kinetics of intermediates below the standard NMR detection limit.
Bertelli, Davide; Brighenti, Virginia; Marchetti, Lucia; Reik, Anna; Pellati, Federica
2018-06-01
Humulus lupulus L. (hop) represents one of the most cultivated crops, it being a key ingredient in the brewing process. Many health-related properties have been described for hop extracts, making this plant gain more interest in the field of pharmaceutical and nutraceutical research. Among the analytical tools available for the phytochemical characterization of plant extracts, quantitative nuclear magnetic resonance (qNMR) represents a new and powerful technique. In this ambit, the present study was aimed at the development of a new, simple, and efficient qNMR method for the metabolite fingerprinting of bioactive compounds in hop cones, taking advantage of the novel ERETIC 2 tool. To the best of our knowledge, this is the first attempt to apply this method to complex matrices of natural origin, such as hop extracts. The qNMR method set up in this study was applied to the quantification of both prenylflavonoids and bitter acids in eight hop cultivars. The performance of this analytical method was compared with that of HPLC-UV/DAD, which represents the most frequently used technique in the field of natural product analysis. The quantitative data obtained for hop samples by means of the two aforementioned techniques highlighted that the amount of bioactive compounds was slightly higher when qNMR was applied, although the order of magnitude of the values was the same. The accuracy of qNMR was comparable to that of the chromatographic method, thus proving to be a reliable tool for the analysis of these secondary metabolites in hop extracts. Graphical abstract Graphical abstract related to the extraction and analytical methods applied in this work for the analysis of bioactive compounds in Humulus lupulus L. (hop) cones.
Schreiber, Roy E; Avram, Liat; Neumann, Ronny
2018-01-09
High-order elementary reactions in homogeneous solutions involving more than two molecules are statistically improbable and very slow to proceed. They are not generally considered in classical transition-state or collision theories. Yet, rather selective, high-yield product formation is common in self-assembly processes that require many reaction steps. On the basis of recent observations of crystallization as well as reactions in dense phases, it is shown that self-assembly can occur by preorganization of reactants in a noncovalent supramolecular assembly, whereby directing forces can lead to an apparent one-step transformation of multiple reactants. A simple and general kinetic model for multiple reactant transformation in a dense phase that can account for many-bodied transformations was developed. Furthermore, the self-assembly of polyfluoroxometalate anion [H 2 F 6 NaW 18 O 56 ] 7- from simple tungstate Na 2 WO 2 F 4 was demonstrated by using 2D 19 F- 19 F NOESY, 2D 19 F- 19 F COSY NMR spectroscopy, a new 2D 19 F{ 183 W} NMR technique, as well as ESI-MS and diffusion NMR spectroscopy, and the crucial involvement of a supramolecular assembly was found. The deterministic kinetic reaction model explains the reaction in a dense phase and supports the suggested self-assembly mechanism. Reactions in dense phases may be of general importance in understanding other self-assembly reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterizing Covalently Sidewall-Functionalized SWCNTs by using 1H NMR Spectroscopy
Nelson, Donna J.; Kumar, Ravi
2013-01-01
Unambiguous evidence for covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) has been a difficult task, especially for nanomaterials in which slight differences in functionality structure produce significant changes in molecular characteristics. Nuclear magnetic resonance (NMR) spectroscopy provides clear information about the structural skeleton of molecules attached to SWCNTs. In order to establish the generality of proton NMR as an analytical technique for characterizing covalently functionalized SWCNTs, we have obtained and analyzed proton NMR data of SWCNT-substituted benzenes across a variety of para substituents. Trends obtained for differences in proton NMR chemical shifts and the impact of o-, p-, and m-directing effects of electrophilic aromatic substituents on phenyl groups covalently bonded to SWCNTs are discussed. PMID:24009779