Parallel solution-phase synthesis of a 2-aminothiazole library including fully automated work-up.
Buchstaller, Hans-Peter; Anlauf, Uwe
2011-02-01
A straightforward and effective procedure for the solution phase preparation of a 2-aminothiazole combinatorial library is described. Reaction, work-up and isolation of the title compounds as free bases was accomplished in a fully automated fashion using the Chemspeed ASW 2000 automated synthesizer. The compounds were obtained in good yields and excellent purities without any further purification procedure.
Stochastic dynamics and combinatorial optimization
NASA Astrophysics Data System (ADS)
Ovchinnikov, Igor V.; Wang, Kang L.
2017-11-01
Natural dynamics is often dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, etc., that exhibit scale-free statistics much in the spirit of the logarithmic Ritcher scale for earthquake magnitudes. On phase diagrams, stochastic dynamical systems (DSs) exhibiting this type of dynamics belong to the finite-width phase (N-phase for brevity) that precedes ordinary chaotic behavior and that is known under such names as noise-induced chaos, self-organized criticality, dynamical complexity, etc. Within the recently proposed supersymmetric theory of stochastic dynamics, the N-phase can be roughly interpreted as the noise-induced “overlap” between integrable and chaotic deterministic dynamics. As a result, the N-phase dynamics inherits the properties of the both. Here, we analyze this unique set of properties and conclude that the N-phase DSs must naturally be the most efficient optimizers: on one hand, N-phase DSs have integrable flows with well-defined attractors that can be associated with candidate solutions and, on the other hand, the noise-induced attractor-to-attractor dynamics in the N-phase is effectively chaotic or aperiodic so that a DS must avoid revisiting solutions/attractors thus accelerating the search for the best solution. Based on this understanding, we propose a method for stochastic dynamical optimization using the N-phase DSs. This method can be viewed as a hybrid of the simulated and chaotic annealing methods. Our proposition can result in a new generation of hardware devices for efficient solution of various search and/or combinatorial optimization problems.
Statistical Mechanics of Combinatorial Auctions
NASA Astrophysics Data System (ADS)
Galla, Tobias; Leone, Michele; Marsili, Matteo; Sellitto, Mauro; Weigt, Martin; Zecchina, Riccardo
2006-09-01
Combinatorial auctions are formulated as frustrated lattice gases on sparse random graphs, allowing the determination of the optimal revenue by methods of statistical physics. Transitions between computationally easy and hard regimes are found and interpreted in terms of the geometric structure of the space of solutions. We introduce an iterative algorithm to solve intermediate and large instances, and discuss competing states of optimal revenue and maximal number of satisfied bidders. The algorithm can be generalized to the hard phase and to more sophisticated auction protocols.
Mao, Fang; Taher, Mamoun; Kryshtal, Oleksandr; Kruk, Adam; Czyrska-Filemonowicz, Aleksandra; Ottosson, Mikael; Andersson, Anna M; Wiklund, Urban; Jansson, Ulf
2016-11-09
A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way. For low Al contents (<13 atom %), a highly (111)-textured fcc phase was formed. At higher Al contents, a (002)-textured hcp solid solution phase was formed followed by a fcc phase in the most Al-rich regions. No indication of a μ phase was observed. The Ag-Al films with fcc-Ag matrix is prone to adhesive material transfer leading to a high friction coefficient (>1) and adhesive wear, similar to the behavior of pure Ag. In contrast, the hexagonal solid solution phase (from ca. 15 atom %Al) exhibited dramatically reduced friction coefficients (about 15% of that of the fcc phase) and dramatically reduced adhesive wear when tested against the pure Ag counter surface. The increase in contact resistance of the Ag-Al films is limited to only 50% higher than a pure Ag reference sample at the low friction and low wear region (19-27 atom %). This suggests that a hcp Ag-Al alloy can have a potential use in sliding electrical contact applications and in the future will replace pure Ag in specific electromechanical applications.
Suram, Santosh K.; Xue, Yexiang; Bai, Junwen; ...
2016-11-21
Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs’ phase rule into the algorithm, physically meaningful phase mapsmore » are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V–Mn–Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band gap energy of MnV 2O 6. Lastly, the open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suram, Santosh K.; Xue, Yexiang; Bai, Junwen
Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs’ phase rule into the algorithm, physically meaningful phase mapsmore » are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V–Mn–Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band gap energy of MnV 2O 6. Lastly, the open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery.« less
Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems
Van Benthem, Mark H.; Keenan, Michael R.
2008-11-11
A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.
OPTIMIZING THROUGH CO-EVOLUTIONARY AVALANCHES
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. BOETTCHER; A. PERCUS
2000-08-01
We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.« less
Combining local search with co-evolution in a remarkably simple way
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boettcher, S.; Percus, A.
2000-05-01
The authors explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problem. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. In contrast to genetic algorithms, which operate on an entire gene-pool of possible solutions, extremal optimization successively replaces extremely undesirable elements of a single sub-optimal solution with new, random ones. Large fluctuations, or avalanches, ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements heuristics inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Phase transitions are found in many combinatorial optimization problems, and have been conjectured to occur in the region of parameter space containing the hardest instances. We demonstrate how extremal optimization can be implemented for a variety of hard optimization problems. We believe that this will be a useful tool in the investigation of phase transitions in combinatorial optimization, thereby helping to elucidate the origin of computational complexity.« less
Brown, Colby R; McCalla, Eric; Watson, Cody; Dahn, J R
2015-06-08
Combinatorial synthesis has proven extremely effective in screening for new battery materials for Li-ion battery electrodes. Here, a study in the Li-Ni-Mn-Co-O system is presented, wherein samples with nearly 800 distinct compositions were prepared using a combinatorial and high-throughput method to screen for single-phase materials of high interest as next generation positive electrode materials. X-ray diffraction is used to determine the crystal structure of each sample. The Gibbs' pyramid representing the pseudoquaternary system was studied by making samples within three distinct pseudoternary planes defined at fractional cobalt metal contents of 10%, 20%, and 30% within the Li-Ni-Mn-Co-O system. Two large single-phase regions were observed in the system: the layered region (ordered rocksalt) and cubic spinel region; both of which are of interest for next-generation positive electrodes in lithium-ion batteries. These regions were each found to stretch over a wide range of compositions within the Li-Ni-Mn-Co-O pseudoquaternary system and had complex coexistence regions existing between them. The sample cooling rate was found to have a significant effect on the position of the phase boundaries of the single-phase regions. The results of this work are intended to guide further research by narrowing the composition ranges worthy of study and to illustrate the broad range of applications where solution-based combinatorial synthesis can have significant impact.
Evaluation of the Current Status of the Combinatorial Approach for the Study of Phase Diagrams
Wong-Ng, W.
2012-01-01
This paper provides an evaluation of the effectiveness of using the high throughput combinatorial approach for preparing phase diagrams of thin film and bulk materials. Our evaluation is based primarily on examples of combinatorial phase diagrams that have been reported in the literature as well as based on our own laboratory experiments. Various factors that affect the construction of these phase diagrams are examined. Instrumentation and analytical approaches needed to improve data acquisition and data analysis are summarized. PMID:26900530
Lexicographic goal programming and assessment tools for a combinatorial production problem.
DOT National Transportation Integrated Search
2008-01-01
NP-complete combinatorial problems often necessitate the use of near-optimal solution techniques including : heuristics and metaheuristics. The addition of multiple optimization criteria can further complicate : comparison of these solution technique...
Baek, Hyoung Gee; Liu, Ruiwu; Lam, Kit S
2009-01-01
The one-bead one-compound (OBOC) combinatorial library method enables the rapid generation and screening of millions of discrete chemical compounds on beads. Most of the OBOC screening methods require the library compounds to remain tethered to the bead during screening process. Methods have also been developed to release library compounds from immobilized beads for in situ solution phase or "lawn" assays. However, this latter approach, while extremely powerful, is severely limited by the lack of suitable solid supports for such assays. Here, we report on the development of a novel hydrogel TentaGel shell-core (HTSC) bead in which hydrogel is grafted onto the polystyrene-based TentaGel (TG) bead as an outer shell (5-80 mum thick) via free radical surface-initiated polymerization. This novel shell-core bilayer resin enables the preparation of encoded OBOC combinatorial small molecule libraries, such that the library compounds reside on the highly hydrophilic outer layer and the coding tags reside in the polystyrene-based TG core. Using fluorescein as a model small molecule compound, we have demonstrated that fluorescein molecules that have been linked covalently to the hydrogel shell via a disulfide bond could readily diffuse out of the hydrogel layer into the bead surrounding after reduction with dithiothreitol. In contrast, under identical condition, the released fluorescein molecules remained bound to unmodified TG bead. We have prepared an encoded OBOC small molecule library on the novel shell-core beads and demonstrated that the beads can be readily decoded.
Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie
2000-01-01
Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.
Students' Verification Strategies for Combinatorial Problems
ERIC Educational Resources Information Center
Mashiach Eizenberg, Michal; Zaslavsky, Orit
2004-01-01
We focus on a major difficulty in solving combinatorial problems, namely, on the verification of a solution. Our study aimed at identifying undergraduate students' tendencies to verify their solutions, and the verification strategies that they employ when solving these problems. In addition, an attempt was made to evaluate the level of efficiency…
ERIC Educational Resources Information Center
Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie
2008-01-01
Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…
Designing a multiroute synthesis scheme in combinatorial chemistry.
Akavia, Adi; Senderowitz, Hanoch; Lerner, Alon; Shamir, Ron
2004-01-01
Solid-phase mix-and-split combinatorial synthesis is often used to produce large arrays of compounds to be tested during the various stages of the drug development process. This method can be represented by a synthesis graph in which nodes correspond to grow operations and arcs to beads transferred among the different reaction vessels. In this work, we address the problem of designing such a graph which maximizes the number of produced target compounds (namely, compounds out of an input library of desired molecules), given constraints on the number of beads used for library synthesis and on the number of reaction vessels available for concurrent grow steps. We present a heuristic based on a discrete search for solving this problem, test our solution on several data sets, explore its behavior, and show that it achieves good performance.
"One-sample concept" micro-combinatory for high throughput TEM of binary films.
Sáfrán, György
2018-04-01
Phases of thin films may remarkably differ from that of bulk. Unlike to the comprehensive data files of Binary Phase Diagrams [1] available for bulk, complete phase maps for thin binary layers do not exist. This is due to both the diverse metastable, non-equilibrium or instable phases feasible in thin films and the required volume of characterization work with analytical techniques like TEM, SAED and EDS. The aim of the present work was to develop a method that remarkably facilitates the TEM study of the diverse binary phases of thin films, or the creation of phase maps. A micro-combinatorial method was worked out that enables both preparation and study of a gradient two-component film within a single TEM specimen. For a demonstration of the technique thin Mn x Al 1- x binary samples with evolving concentration from x = 0 to x = 1 have been prepared so that the transition from pure Mn to pure Al covers a 1.5 mm long track within the 3 mm diameter TEM grid. The proposed method enables the preparation and study of thin combinatorial samples including all feasible phases as a function of composition or other deposition parameters. Contrary to known "combinatorial chemistry", in which a series of different samples are deposited in one run, and investigated, one at a time, the present micro-combinatorial method produces a single specimen condensing a complete library of a binary system that can be studied, efficiently, within a single TEM session. That provides extremely high throughput for TEM characterization of composition-dependent phases, exploration of new materials, or the construction of phase diagrams of binary films. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Doerr, Timothy; Alves, Gelio; Yu, Yi-Kuo
2006-03-01
Typical combinatorial optimizations are NP-hard; however, for a particular class of cost functions the corresponding combinatorial optimizations can be solved in polynomial time. This suggests a way to efficiently find approximate solutions - - find a transformation that makes the cost function as similar as possible to that of the solvable class. After keeping many high-ranking solutions using the approximate cost function, one may then re-assess these solutions with the full cost function to find the best approximate solution. Under this approach, it is important to be able to assess the quality of the solutions obtained, e.g., by finding the true ranking of kth best approximate solution when all possible solutions are considered exhaustively. To tackle this statistical issue, we provide a systematic method starting with a scaling function generated from the fininte number of high- ranking solutions followed by a convergent iterative mapping. This method, useful in a variant of the directed paths in random media problem proposed here, can also provide a statistical significance assessment for one of the most important proteomic tasks - - peptide sequencing using tandem mass spectrometry data.
Nour, Hany F; Islam, Tuhidul; Fernández-Lahore, Marcelo; Kuhnert, Nikolai
2012-12-30
Over the past few decades, bacterial resistance to antibiotics has emerged as a real threat to human health. Accordingly, there is an urgent demand for the development of innovative strategies for discovering new antibiotics. We present the first use of tetra-carbohydrazide cyclophane macrocycles in dynamic combinatorial chemistry (DCC) and molecular recognition as chiral hosts binding oligopeptides, which mimic bacterial cell wall. This study introduces an innovative application of electrospray ionisation time-of-flight mass spectrometry (ESI-TOF MS) to oligopeptides recognition using DCC. A small dynamic library composed of eight functionalised macrocycles has been generated in solution and all members were characterised by ESI-TOF MS. We also probed the dynamic reversibility and mechanism of formation of tetra-carbohydrazide cyclophanes in real-time using ESI-TOF MS. Dynamic reversibility of tetra-carbohydrazide cyclophanes is favored under thermodynamic control. The mechanism of formation of tetra-carbohydrazide cyclophanes involves key dialdehyde intermediates, which have been detected and assigned according to their high-resolution m/z values. Three members of the dynamic library bind efficiently in the gas phase to a selection of oligopeptides, unique to bacteria, allowing observation of host/guest complex ions in the gas phase. We probed the mechanism of the [2+2]-cyclocondensation reaction forming library members, proved dynamic reversibility of tetra-carbohydrazide cyclophanes and showed that complex ions formed between library members and hosts can be observed in the gas phase, allowing the solution of an important problem of biological interest. Copyright © 2012 John Wiley & Sons, Ltd.
Combinatorial invariants and covariants as tools for conical intersections.
Ryb, Itai; Baer, Roi
2004-12-01
The combinatorial invariant and covariant are introduced as practical tools for analysis of conical intersections in molecules. The combinatorial invariant is a quantity depending on adiabatic electronic states taken at discrete nuclear configuration points. It is invariant to the phase choice (gauge) of these states. In the limit that the points trace a loop in nuclear configuration space, the value of the invariant approaches the corresponding Berry phase factor. The Berry phase indicates the presence of an odd or even number of conical intersections on surfaces bounded by these loops. Based on the combinatorial invariant, we develop a computationally simple and efficient method for locating conical intersections. The method is robust due to its use of gauge invariant nature. It does not rely on the landscape of intersecting potential energy surfaces nor does it require the computation of nonadiabatic couplings. We generalize the concept to open paths and combinatorial covariants for higher dimensions obtaining a technique for the construction of the gauge-covariant adiabatic-diabatic transformation matrix. This too does not make use of nonadiabatic couplings. The importance of using gauge-covariant expressions is underlined throughout. These techniques can be readily implemented by standard quantum chemistry codes. (c) 2004 American Institute of Physics.
Zhang, Lei; Lushington, Gerald H; Neuenswander, Benjamin; Hershberger, John C; Malinakova, Helena C
2008-01-01
Parallel solution-phase synthesis of combinatorial libraries of hexahydro-1 H-isoindolones exploiting a novel "tactical combination" of Cu-catalyzed three-component coupling and Diels-Alder reactions was accomplished. Three distinct libraries consisting of 24 members (library I), 60 members (library II), and 32 members (library III) were constructed. Variation of three substituents on the isoindolone scaffold in library I was exclusively achieved by the choice of the building blocks. In the syntheses of libraries II and III, sublibraries of isoindolone scaffolds were prepared initially in a one-pot/two-step process and were further diversified via Pd-catalyzed Suzuki cross-coupling reaction with boronic acids at two different diversification points. The Lipinski profiles and calculated ADME properties of the compounds are also reported.
Su, Zhangli
2016-01-01
Combinatorial patterns of histone modifications are key indicators of different chromatin states. Most of the current approaches rely on the usage of antibodies to analyze combinatorial histone modifications. Here we detail an antibody-free method named MARCC (Matrix-Assisted Reader Chromatin Capture) to enrich combinatorial histone modifications. The combinatorial patterns are enriched on native nucleosomes extracted from cultured mammalian cells and prepared by micrococcal nuclease digestion. Such enrichment is achieved by recombinant chromatin-interacting protein modules, or so-called reader domains, which can bind in a combinatorial modification-dependent manner. The enriched chromatin can be quantified by western blotting or mass spectrometry for the co-existence of histone modifications, while the associated DNA content can be analyzed by qPCR or next-generation sequencing. Altogether, MARCC provides a reproducible, efficient and customizable solution to enrich and analyze combinatorial histone modifications. PMID:26131849
Townsend, Jared B; Shaheen, Farzana; Liu, Ruiwu; Lam, Kit S
2010-09-13
A method to efficiently immobilize and partition large quantities of microbeads in an array format in microfabricated poly(dimethylsiloxane) (PDMS) cassette for ultrahigh-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound (OBOC) combinatorial libraries is described. Commercially available Jeffamine triamine T-403 (∼440 Da) was derivatized such that two of its amino groups were protected by Fmoc and the remaining amino group capped with succinic anhydride to generate a carboxyl group. This resulting trifunctional hydrophilic polymer was then sequentially coupled two times to the outer layer of topologically segregated bilayer TentaGel (TG) beads with solid phase peptide synthesis chemistry resulting in beads with increased loading capacity, hydrophilicity, and porosity at the outer layer. We have found that such bead configuration can facilitate ultrahigh-throughput in situ releasable solution-phase screening of OBOC libraries. An encoded releasable OBOC small molecule library was constructed on Jeffamine derivatized TG beads with library compounds tethered to the outer layer via a disulfide linker and coding tags in the interior of the beads. Compound-beads could be efficiently loaded (5-10 min) into a 5 cm diameter Petri dish containing a 10,000-well PDMS microbead cassette, such that over 90% of the microwells were each filled with only one compound-bead. Jurkat T-lymphoid cancer cells suspended in Matrigel were then layered over the microbead cassette to immobilize the compound-beads. After 24 h of incubation at 37 °C, dithiothreitol was added to trigger the release of library compounds. Forty-eight hours later, MTT reporter assay was used to identify regions of reduced cell viability surrounding each positive bead. From a total of about 20,000 beads screened, 3 positive beads were detected and physically isolated for decoding. A strong consensus motif was identified for these three positive compounds. These compounds were resynthesized and found to be cytotoxic (IC(50) 50-150 μM) against two T-lymphoma cell lines and less so against the MDA-MB 231 breast cancer cell line. This novel ultrahigh-throughput OBOC releasable method can potentially be adapted to many existing 96- or 384-well solution-phase cell-based or biochemical assays.
Townsend, Jared B.; Shaheen, Farzana; Liu, Ruiwu; Lam, Kit S.
2011-01-01
A method to efficiently immobilize and partition large quantities of microbeads in an array format in microfabricated polydimethylsiloxane (PDMS) cassette for high-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound (OBOC) combinatorial libraries is described. Commercially available Jeffamine triamine T-403 (∼440 Da) was derivatized such that two of its amino groups were protected by Fmoc and the remaining amino group capped with succinic anhydride to generate a carboxyl group. This resulting tri-functional hydrophilic polymer was then sequentially coupled two times to the outer layer of topologically segregated bilayer TentaGel (TG) beads with solid phase peptide synthesis chemistry, resulting in beads with increased loading capacity, hydrophilicity and porosity at the outer layer. We have found that such bead configuration can facilitate ultra high-throughput in situ releasable solution-phase screening of OBOC libraries. An encoded releasable OBOC small molecule library was constructed on Jeffamine derivatized TG beads with library compounds tethered to the outer layer via a disulfide linker and coding tags in the interior of the beads. Compound-beads could be efficiently loaded (5-10 minutes) into a 5 cm diameter Petri dish containing a 10,000-well PDMS microbead cassette, such that over 90% of the microwells were each filled with only one compound-bead. Jurkat T-lymphoid cancer cells suspended in Matrigel® were then layered over the microbead cassette to immobilize the compound-beads. After 24 hours of incubation at 37°C, dithiothreitol was added to trigger the release of library compounds. Forty-eight hours later, MTT reporter assay was used to identify regions of reduced cell viability surrounding each positive bead. From a total of about 20,000 beads screened, 3 positive beads were detected and physically isolated for decoding. A strong consensus motif was identified for these three positive compounds. These compounds were re-synthesized and found to be cytotoxic (IC50 50-150 μM) against two T-lymphoma cell lines and less so against the MDA-MB 231 breast cancer cell line. This novel ultra high-throughput OBOC releasable method can potentially be adapted to many existing 96- or 384-well solution-phase cell-based or biochemical assays. PMID:20593859
ERIC Educational Resources Information Center
Fuller, Amelia A.
2016-01-01
A five-week, research-based experiment suitable for second-semester introductory organic laboratory students is described. Each student designs, prepares, and analyzes a combinatorial array of six aromatic oligoamides. Molecules are prepared on solid phase via a six-step synthetic sequence, and purities and identities are determined by analysis of…
Exploiting Quantum Resonance to Solve Combinatorial Problems
NASA Technical Reports Server (NTRS)
Zak, Michail; Fijany, Amir
2006-01-01
Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.
Quantum Resonance Approach to Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Zak, Michail
1997-01-01
It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.
NASA Astrophysics Data System (ADS)
Leukhin, Anatolii N.
2005-08-01
The algebraic solution of a 'complex' problem of synthesis of phase-coded (PC) sequences with the zero level of side lobes of the cyclic autocorrelation function (ACF) is proposed. It is shown that the solution of the synthesis problem is connected with the existence of difference sets for a given code dimension. The problem of estimating the number of possible code combinations for a given code dimension is solved. It is pointed out that the problem of synthesis of PC sequences is related to the fundamental problems of discrete mathematics and, first of all, to a number of combinatorial problems, which can be solved, as the number factorisation problem, by algebraic methods by using the theory of Galois fields and groups.
Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization.
Hartenfeller, Markus; Proschak, Ewgenij; Schüller, Andreas; Schneider, Gisbert
2008-07-01
We present a fast stochastic optimization algorithm for fragment-based molecular de novo design (COLIBREE, Combinatorial Library Breeding). The search strategy is based on a discrete version of particle swarm optimization. Molecules are represented by a scaffold, which remains constant during optimization, and variable linkers and side chains. Different linkers represent virtual chemical reactions. Side-chain building blocks were obtained from pseudo-retrosynthetic dissection of large compound databases. Here, ligand-based design was performed using chemically advanced template search (CATS) topological pharmacophore similarity to reference ligands as fitness function. A weighting scheme was included for particle swarm optimization-based molecular design, which permits the use of many reference ligands and allows for positive and negative design to be performed simultaneously. In a case study, the approach was applied to the de novo design of potential peroxisome proliferator-activated receptor subtype-selective agonists. The results demonstrate the ability of the technique to cope with large combinatorial chemistry spaces and its applicability to focused library design. The technique was able to perform exploitation of a known scheme and at the same time explorative search for novel ligands within the framework of a given molecular core structure. It thereby represents a practical solution for compound screening in the early hit and lead finding phase of a drug discovery project.
A gradient system solution to Potts mean field equations and its electronic implementation.
Urahama, K; Ueno, S
1993-03-01
A gradient system solution method is presented for solving Potts mean field equations for combinatorial optimization problems subject to winner-take-all constraints. In the proposed solution method the optimum solution is searched by using gradient descent differential equations whose trajectory is confined within the feasible solution space of optimization problems. This gradient system is proven theoretically to always produce a legal local optimum solution of combinatorial optimization problems. An elementary analog electronic circuit implementing the presented method is designed on the basis of current-mode subthreshold MOS technologies. The core constituent of the circuit is the winner-take-all circuit developed by Lazzaro et al. Correct functioning of the presented circuit is exemplified with simulations of the circuits implementing the scheme for solving the shortest path problems.
Distributed Combinatorial Optimization Using Privacy on Mobile Phones
NASA Astrophysics Data System (ADS)
Ono, Satoshi; Katayama, Kimihiro; Nakayama, Shigeru
This paper proposes a method for distributed combinatorial optimization which uses mobile phones as computers. In the proposed method, an ordinary computer generates solution candidates and mobile phones evaluates them by referring privacy — private information and preferences. Users therefore does not have to send their privacy to any other computers and does not have to refrain from inputting their preferences. They therefore can obtain satisfactory solution. Experimental results have showed the proposed method solved room assignment problems without sending users' privacy to a server.
Damer, Bruce; Deamer, David
2015-01-01
Hydrothermal fields on the prebiotic Earth are candidate environments for biogenesis. We propose a model in which molecular systems driven by cycles of hydration and dehydration in such sites undergo chemical evolution in dehydrated films on mineral surfaces followed by encapsulation and combinatorial selection in a hydrated bulk phase. The dehydrated phase can consist of concentrated eutectic mixtures or multilamellar liquid crystalline matrices. Both conditions organize and concentrate potential monomers and thereby promote polymerization reactions that are driven by reduced water activity in the dehydrated phase. In the case of multilamellar lipid matrices, polymers that have been synthesized are captured in lipid vesicles upon rehydration to produce a variety of molecular systems. Each vesicle represents a protocell, an “experiment” in a natural version of combinatorial chemistry. Two kinds of selective processes can then occur. The first is a physical process in which relatively stable molecular systems will be preferentially selected. The second is a chemical process in which rare combinations of encapsulated polymers form systems capable of capturing energy and nutrients to undergo growth by catalyzed polymerization. Given continued cycling over extended time spans, such combinatorial processes will give rise to molecular systems having the fundamental properties of life. PMID:25780958
Polynomial functors and combinatorial Dyson-Schwinger equations
NASA Astrophysics Data System (ADS)
Kock, Joachim
2017-04-01
We present a general abstract framework for combinatorial Dyson-Schwinger equations, in which combinatorial identities are lifted to explicit bijections of sets, and more generally equivalences of groupoids. Key features of combinatorial Dyson-Schwinger equations are revealed to follow from general categorical constructions and universal properties. Rather than beginning with an equation inside a given Hopf algebra and referring to given Hochschild 1-cocycles, our starting point is an abstract fixpoint equation in groupoids, shown canonically to generate all the algebraic structures. Precisely, for any finitary polynomial endofunctor P defined over groupoids, the system of combinatorial Dyson-Schwinger equations X = 1 + P(X) has a universal solution, namely the groupoid of P-trees. The isoclasses of P-trees generate naturally a Connes-Kreimer-like bialgebra, in which the abstract Dyson-Schwinger equation can be internalised in terms of canonical B+-operators. The solution to this equation is a series (the Green function), which always enjoys a Faà di Bruno formula, and hence generates a sub-bialgebra isomorphic to the Faà di Bruno bialgebra. Varying P yields different bialgebras, and cartesian natural transformations between various P yield bialgebra homomorphisms and sub-bialgebras, corresponding for example to truncation of Dyson-Schwinger equations. Finally, all constructions can be pushed inside the classical Connes-Kreimer Hopf algebra of trees by the operation of taking core of P-trees. A byproduct of the theory is an interpretation of combinatorial Green functions as inductive data types in the sense of Martin-Löf type theory (expounded elsewhere).
NASA Astrophysics Data System (ADS)
Doerr, Timothy P.; Alves, Gelio; Yu, Yi-Kuo
2005-08-01
Typical combinatorial optimizations are NP-hard; however, for a particular class of cost functions the corresponding combinatorial optimizations can be solved in polynomial time using the transfer matrix technique or, equivalently, the dynamic programming approach. This suggests a way to efficiently find approximate solutions-find a transformation that makes the cost function as similar as possible to that of the solvable class. After keeping many high-ranking solutions using the approximate cost function, one may then re-assess these solutions with the full cost function to find the best approximate solution. Under this approach, it is important to be able to assess the quality of the solutions obtained, e.g., by finding the true ranking of the kth best approximate solution when all possible solutions are considered exhaustively. To tackle this statistical issue, we provide a systematic method starting with a scaling function generated from the finite number of high-ranking solutions followed by a convergent iterative mapping. This method, useful in a variant of the directed paths in random media problem proposed here, can also provide a statistical significance assessment for one of the most important proteomic tasks-peptide sequencing using tandem mass spectrometry data. For directed paths in random media, the scaling function depends on the particular realization of randomness; in the mass spectrometry case, the scaling function is spectrum-specific.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2005-01-01
High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.
Roberts, Gareth; Lewandowski, Jirka; Galantucci, Bruno
2015-08-01
Communication systems are exposed to two different pressures: a pressure for transmission efficiency, such that messages are simple to produce and perceive, and a pressure for referential efficiency, such that messages are easy to understand with their intended meaning. A solution to the first pressure is combinatoriality--the recombination of a few basic meaningless forms to express an infinite number of meanings. A solution to the second is iconicity--the use of forms that resemble what they refer to. These two solutions appear to be incompatible with each other, as iconic forms are ill-suited for use as meaningless combinatorial units. Furthermore, in the early stages of a communication system, when basic referential forms are in the process of being established, the pressure for referential efficiency is likely to be particularly strong, which may lead it to trump the pressure for transmission efficiency. This means that, where iconicity is available as a strategy, it is likely to impede the emergence of combinatoriality. Although this hypothesis seems consistent with some observations of natural language, it was unclear until recently how it could be soundly tested. This has changed thanks to the development of a line of research, known as Experimental Semiotics, in which participants construct novel communication systems in the laboratory using an unfamiliar medium. We conducted an Experimental Semiotic study in which we manipulated the opportunity for iconicity by varying the kind of referents to be communicated, while keeping the communication medium constant. We then measured the combinatoriality and transmission efficiency of the communication systems. We found that, where iconicity was available, it provided scaffolding for the construction of communication systems and was overwhelmingly adopted. Where it was not available, however, the resulting communication systems were more combinatorial and their forms more efficient to produce. This study enriches our understanding of the fundamental design principles of human communication and contributes tools to enrich it further. Copyright © 2015 Elsevier B.V. All rights reserved.
Solution-Phase Photochemical Nanopatterning Enabled by High-Refractive-Index Beam Pen Arrays.
Xie, Zhuang; Gordiichuk, Pavlo; Lin, Qing-Yuan; Meckes, Brian; Chen, Peng-Cheng; Sun, Lin; Du, Jingshan S; Zhu, Jinghan; Liu, Yuan; Dravid, Vinayak P; Mirkin, Chad A
2017-08-22
A high-throughput, solution-based, scanning-probe photochemical nanopatterning approach, which does not require the use of probes with subwavelength apertures, is reported. Specifically, pyramid arrays made from high-refractive-index polymeric materials were constructed and studied as patterning tools in a conventional liquid-phase beam pen lithography experiment. Two versions of the arrays were explored with either metal-coated or metal-free tips. Importantly, light can be channeled through both types of tips and the appropriate solution phase (e.g., H 2 O or CH 3 OH) and focused on subwavelength regions of a substrate to effect a photoreaction in solution that results in localized patterning of a self-assembled monolayer (SAM)-coated Au thin film substrate. Arrays with as many as 4500 pyramid-shaped probes were used to simultaneously initiate thousands of localized free-radical photoreactions (decomposition of a lithium acylphosphinate photoinitiator in an aqueous solution) that result in oxidative removal of the SAM. The technique is attractive since it allows one to rapidly generate features less than 200 nm in diameter, and the metal-free tips afford more than 10-fold higher intensity than the tips with nanoapertures over a micrometer propagation length. In principle, this mask-free method can be utilized as a versatile tool for performing a wide variety of photochemistries across multiple scales that may be important in high-throughput combinatorial screening applications related to chemistry, biology, and materials science.
Hernando, Leticia; Mendiburu, Alexander; Lozano, Jose A
2013-01-01
The solution of many combinatorial optimization problems is carried out by metaheuristics, which generally make use of local search algorithms. These algorithms use some kind of neighborhood structure over the search space. The performance of the algorithms strongly depends on the properties that the neighborhood imposes on the search space. One of these properties is the number of local optima. Given an instance of a combinatorial optimization problem and a neighborhood, the estimation of the number of local optima can help not only to measure the complexity of the instance, but also to choose the most convenient neighborhood to solve it. In this paper we review and evaluate several methods to estimate the number of local optima in combinatorial optimization problems. The methods reviewed not only come from the combinatorial optimization literature, but also from the statistical literature. A thorough evaluation in synthetic as well as real problems is given. We conclude by providing recommendations of methods for several scenarios.
NASA Astrophysics Data System (ADS)
Tong, Wei
2017-04-01
Combinatorial material research offers fast and efficient solutions to identify promising and advanced materials. It has revolutionized the pharmaceutical industry and now is being applied to accelerate the discovery of other new compounds, e.g. superconductors, luminescent materials, catalysts etc. Differing from the traditional trial-and-error process, this approach allows for the synthesis of a large number of compositionally diverse compounds by varying the combinations of the components and adjusting the ratios. It largely reduces the cost of single-sample synthesis/characterization, along with the turnaround time in the material discovery process, therefore, could dramatically change the existing paradigm for discovering and commercializing new materials. This talk outlines the use of combinatorial materials approach in the material discovery in transportation sector. It covers the general introduction to the combinatorial material concept, state of art for its application in energy-related research. At the end, LBNL capabilities in combinatorial materials synthesis and high throughput characterization that are applicable for material discovery research will be highlighted.
NASA Astrophysics Data System (ADS)
Umam, M. I. H.; Santosa, B.
2018-04-01
Combinatorial optimization has been frequently used to solve both problems in science, engineering, and commercial applications. One combinatorial problems in the field of transportation is to find a shortest travel route that can be taken from the initial point of departure to point of destination, as well as minimizing travel costs and travel time. When the distance from one (initial) node to another (destination) node is the same with the distance to travel back from destination to initial, this problems known to the Traveling Salesman Problem (TSP), otherwise it call as an Asymmetric Traveling Salesman Problem (ATSP). The most recent optimization techniques is Symbiotic Organisms Search (SOS). This paper discuss how to hybrid the SOS algorithm with variable neighborhoods search (SOS-VNS) that can be applied to solve the ATSP problem. The proposed mechanism to add the variable neighborhoods search as a local search is to generate the better initial solution and then we modify the phase of parasites with adapting mechanism of mutation. After modification, the performance of the algorithm SOS-VNS is evaluated with several data sets and then the results is compared with the best known solution and some algorithm such PSO algorithm and SOS original algorithm. The SOS-VNS algorithm shows better results based on convergence, divergence and computing time.
Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications
2015-06-24
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly
TARCMO: Theory and Algorithms for Robust, Combinatorial, Multicriteria Optimization
2016-11-28
objective 9 4.6 On The Recoverable Robust Traveling Salesman Problem . . . . . 11 4.7 A Bicriteria Approach to Robust Optimization...be found. 4.6 On The Recoverable Robust Traveling Salesman Problem The traveling salesman problem (TSP) is a well-known combinatorial optimiza- tion...procedure for the robust traveling salesman problem . While this iterative algorithms results in an optimal solution to the robust TSP, computation
Experimental Design for Combinatorial and High Throughput Materials Development
NASA Astrophysics Data System (ADS)
Cawse, James N.
2002-12-01
In the past decade, combinatorial and high throughput experimental methods have revolutionized the pharmaceutical industry, allowing researchers to conduct more experiments in a week than was previously possible in a year. Now high throughput experimentation is rapidly spreading from its origins in the pharmaceutical world to larger industrial research establishments such as GE and DuPont, and even to smaller companies and universities. Consequently, researchers need to know the kinds of problems, desired outcomes, and appropriate patterns for these new strategies. Editor James Cawse's far-reaching study identifies and applies, with specific examples, these important new principles and techniques. Experimental Design for Combinatorial and High Throughput Materials Development progresses from methods that are now standard, such as gradient arrays, to mathematical developments that are breaking new ground. The former will be particularly useful to researchers entering the field, while the latter should inspire and challenge advanced practitioners. The book's contents are contributed by leading researchers in their respective fields. Chapters include: -High Throughput Synthetic Approaches for the Investigation of Inorganic Phase Space -Combinatorial Mapping of Polymer Blends Phase Behavior -Split-Plot Designs -Artificial Neural Networks in Catalyst Development -The Monte Carlo Approach to Library Design and Redesign This book also contains over 200 useful charts and drawings. Industrial chemists, chemical engineers, materials scientists, and physicists working in combinatorial and high throughput chemistry will find James Cawse's study to be an invaluable resource.
Dubey, Ritesh; Desiraju, Gautam R.
2015-01-01
The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O—H⋯N and O—H⋯O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular ‘confusion’ that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution. PMID:26175900
Fuel management optimization using genetic algorithms and code independence
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1994-12-31
Fuel management optimization is a hard problem for traditional optimization techniques. Loading pattern optimization is a large combinatorial problem without analytical derivative information. Therefore, methods designed for continuous functions, such as linear programming, do not always work well. Genetic algorithms (GAs) address these problems and, therefore, appear ideal for fuel management optimization. They do not require derivative information and work well with combinatorial. functions. The GAs are a stochastic method based on concepts from biological genetics. They take a group of candidate solutions, called the population, and use selection, crossover, and mutation operators to create the next generation of bettermore » solutions. The selection operator is a {open_quotes}survival-of-the-fittest{close_quotes} operation and chooses the solutions for the next generation. The crossover operator is analogous to biological mating, where children inherit a mixture of traits from their parents, and the mutation operator makes small random changes to the solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, Andrés; Patiny, Luc; Castillo, Andrés M.
2015-02-21
Nuclear magnetic resonance (NMR) assignment of small molecules is presented as a typical example of a combinatorial optimization problem in chemical physics. Three strategies that help improve the efficiency of solution search by the branch and bound method are presented: 1. reduction of the size of the solution space by resort to a condensed structure formula, wherein symmetric nuclei are grouped together; 2. partitioning of the solution space based on symmetry, that becomes the basis for an efficient branching procedure; and 3. a criterion of selection of input restrictions that leads to increased gaps between branches and thus faster pruningmore » of non-viable solutions. Although the examples chosen to illustrate this work focus on small-molecule NMR assignment, the results are generic and might help solving other combinatorial optimization problems.« less
Lin, En-Chiang; Cole, Jesse J; Jacobs, Heiko O
2010-11-10
This article reports and applies a recently discovered programmable multimaterial deposition process to the formation and combinatorial improvement of 3D nanostructured devices. The gas-phase deposition process produces charged <5 nm particles of silver, tungsten, and platinum and uses externally biased electrodes to control the material flux and to turn deposition ON/OFF in selected domains. Domains host nanostructured dielectrics to define arrays of electrodynamic 10 × nanolenses to further control the flux to form <100 nm resolution deposits. The unique feature of the process is that material type, amount, and sequence can be altered from one domain to the next leading to different types of nanostructures including multimaterial bridges, interconnects, or nanowire arrays with 20 nm positional accuracy. These features enable combinatorial nanostructured materials and device discovery. As a first demonstration, we produce and identify in a combinatorial way 3D nanostructured electrode designs that improve light scattering, absorption, and minority carrier extraction of bulk heterojunction photovoltaic cells. Photovoltaic cells from domains with long and dense nanowire arrays improve the relative power conversion efficiency by 47% when compared to flat domains on the same substrate.
Xiang, X D
Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.
Synthesis and binding studies of Alzheimer ligands on solid support.
Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas
2007-05-11
Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.
Chang, Yi-Pin; Chu, Yen-Ho
2014-05-16
The design, synthesis and screening of diversity-oriented peptide libraries using a "libraries from libraries" strategy for the development of inhibitors of α1-antitrypsin deficiency are described. The major buttress of the biochemical approach presented here is the use of well-established solid-phase split-and-mix method for the generation of mixture-based libraries. The combinatorial technique iterative deconvolution was employed for library screening. While molecular diversity is the general consideration of combinatorial libraries, exquisite design through systematic screening of small individual libraries is a prerequisite for effective library screening and can avoid potential problems in some cases. This review will also illustrate how large peptide libraries were designed, as well as how a conformation-sensitive assay was developed based on the mechanism of the conformational disease. Finally, the combinatorially selected peptide inhibitor capable of blocking abnormal protein aggregation will be characterized by biophysical, cellular and computational methods.
Optimizing Perioperative Decision Making: Improved Information for Clinical Workflow Planning
Doebbeling, Bradley N.; Burton, Matthew M.; Wiebke, Eric A.; Miller, Spencer; Baxter, Laurence; Miller, Donald; Alvarez, Jorge; Pekny, Joseph
2012-01-01
Perioperative care is complex and involves multiple interconnected subsystems. Delayed starts, prolonged cases and overtime are common. Surgical procedures account for 40–70% of hospital revenues and 30–40% of total costs. Most planning and scheduling in healthcare is done without modern planning tools, which have potential for improving access by assisting in operations planning support. We identified key planning scenarios of interest to perioperative leaders, in order to examine the feasibility of applying combinatorial optimization software solving some of those planning issues in the operative setting. Perioperative leaders desire a broad range of tools for planning and assessing alternate solutions. Our modeled solutions generated feasible solutions that varied as expected, based on resource and policy assumptions and found better utilization of scarce resources. Combinatorial optimization modeling can effectively evaluate alternatives to support key decisions for planning clinical workflow and improving care efficiency and satisfaction. PMID:23304284
Optimizing perioperative decision making: improved information for clinical workflow planning.
Doebbeling, Bradley N; Burton, Matthew M; Wiebke, Eric A; Miller, Spencer; Baxter, Laurence; Miller, Donald; Alvarez, Jorge; Pekny, Joseph
2012-01-01
Perioperative care is complex and involves multiple interconnected subsystems. Delayed starts, prolonged cases and overtime are common. Surgical procedures account for 40-70% of hospital revenues and 30-40% of total costs. Most planning and scheduling in healthcare is done without modern planning tools, which have potential for improving access by assisting in operations planning support. We identified key planning scenarios of interest to perioperative leaders, in order to examine the feasibility of applying combinatorial optimization software solving some of those planning issues in the operative setting. Perioperative leaders desire a broad range of tools for planning and assessing alternate solutions. Our modeled solutions generated feasible solutions that varied as expected, based on resource and policy assumptions and found better utilization of scarce resources. Combinatorial optimization modeling can effectively evaluate alternatives to support key decisions for planning clinical workflow and improving care efficiency and satisfaction.
Combinatorial interpretation of Haldane-Wu fractional exclusion statistics.
Aringazin, A K; Mazhitov, M I
2002-08-01
Assuming that the maximal allowed number of identical particles in a state is an integer parameter, q, we derive the statistical weight and analyze the associated equation that defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases q=1 and q--> infinity (n(i)/q-->1), respectively. We show that the derived statistical weight provides a natural combinatorial interpretation of Haldane-Wu fractional exclusion statistics, and present exact solutions of the distribution equation.
Wilkinson, Mia; Kafizas, Andreas; Bawaked, Salem M; Obaid, Abdullah Y; Al-Thabaiti, Shaeel A; Basahel, Sulaiman N; Carmalt, Claire J; Parkin, Ivan P
2013-06-10
A combinatorial film with a phase gradient from V:TiO₂ (V: Ti ≥ 0.08), through a range of TiO₂-VO₂ composites, to a vanadium-rich composite (V: Ti = 1.81) was grown by combinatorial atmospheric pressure chemical vapor deposition (cAPCVD). The film was grown from the reaction of TiCl₄, VCl₄, ethyl acetate (EtAc), and H₂O at 550 °C on glass. The gradient in gas mixtures across the reactor induced compositional film growth, producing a single film with numerous phases and compositions at different positions. Seventeen unique positions distributed evenly along a central horizontal strip were investigated. The physical properties were characterized by wavelength dispersive X-ray (WDX) analysis, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and UV-visible spectroscopy. The functional properties examined included the degree of photoinduced hydrophilicity (PIH), UVC-photocatalysis, and thermochromism. Superhydrophilic contact angles could be achieved at all positions, even within a highly VO₂-rich composite (V: Ti = 1.81). A maximum level of UVC photocatalysis was observed at a position bordering the solubility limit of V:TiO₂ (V: Ti ≈ 0.21) and fragmentation into a mixed-phase composite. Within the mixed-phase TiO₂: VO₂ composition region (V: Ti = 1.09 to 1.81) a decrease in the semiconductor-to-metal transition temperature of VO₂ from 68 to 51 °C was observed.
ERIC Educational Resources Information Center
Levin,Oscar; Roberts, Gerri M.
2013-01-01
To understand better some of the classic knights and knaves puzzles, we count them. Doing so reveals a surprising connection between puzzles and solutions, and highlights some beautiful combinatorial identities.
Brennan; Biddison; Frauendorf; Schwarcz; Keen; Ecker; Davis; Tinder; Swayze
1998-01-01
An automated, 96-well parallel array synthesizer for solid-phase organic synthesis has been designed and constructed. The instrument employs a unique reagent array delivery format, in which each reagent utilized has a dedicated plumbing system. An inert atmosphere is maintained during all phases of a synthesis, and temperature can be controlled via a thermal transfer plate which holds the injection molded reaction block. The reaction plate assembly slides in the X-axis direction, while eight nozzle blocks holding the reagent lines slide in the Y-axis direction, allowing for the extremely rapid delivery of any of 64 reagents to 96 wells. In addition, there are six banks of fixed nozzle blocks, which deliver the same reagent or solvent to eight wells at once, for a total of 72 possible reagents. The instrument is controlled by software which allows the straightforward programming of the synthesis of a larger number of compounds. This is accomplished by supplying a general synthetic procedure in the form of a command file, which calls upon certain reagents to be added to specific wells via lookup in a sequence file. The bottle position, flow rate, and concentration of each reagent is stored in a separate reagent table file. To demonstrate the utility of the parallel array synthesizer, a small combinatorial library of hydroxamic acids was prepared in high throughput mode for biological screening. Approximately 1300 compounds were prepared on a 10 μmole scale (3-5 mg) in a few weeks. The resulting crude compounds were generally >80% pure, and were utilized directly for high throughput screening in antibacterial assays. Several active wells were found, and the activity was verified by solution-phase synthesis of analytically pure material, indicating that the system described herein is an efficient means for the parallel synthesis of compounds for lead discovery. Copyright 1998 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Hartmann, Alexander K.; Weigt, Martin
2005-10-01
A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.
Genetic algorithms for the vehicle routing problem
NASA Astrophysics Data System (ADS)
Volna, Eva
2016-06-01
The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing the optimal set of routes for fleet of vehicles in order to serve a given set of customers. Evolutionary algorithms are general iterative algorithms for combinatorial optimization. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper we have performed an experimental study that indicates the suitable use of genetic algorithms for the vehicle routing problem.
Combinatorial chemistry on solid support in the search for central nervous system agents.
Zajdel, Paweł; Pawłowski, Maciej; Martinez, Jean; Subra, Gilles
2009-08-01
The advent of combinatorial chemistry was one of the most important developments, that has significantly contributed to the drug discovery process. Within just a few years, its initial concept aimed at production of libraries containing huge number of compounds (thousands to millions), so called screening libraries, has shifted towards preparation of small and medium-sized rationally designed libraries. When applicable, the use of solid supports for the generation of libraries has been a real breakthrough in enhancing productivity. With a limited amount of resin and simple manual workups, the split/mix procedure may generate thousands of bead-tethered compounds. Beads can be chemically or physically encoded to facilitate the identification of a hit after the biological assay. Compartmentalization of solid supports using small reactors like teabags, kans or pellicular discrete supports like Lanterns resulted in powerful sort and combine technologies, relying on codes 'written' on the reactor, and thus reducing the need for automation and improving the number of compounds synthesized. These methods of solid-phase combinatorial chemistry have been recently supported by introduction of solid-supported reagents and scavenger resins. The first part of this review discusses the general premises of combinatorial chemistry and some methods used in the design of primary and focused combinatorial libraries. The aim of the second part is to present combinatorial chemistry methodologies aimed at discovering bioactive compounds acting on diverse GPCR involved in central nervous system disorders.
NASA Astrophysics Data System (ADS)
Zhou, Yingfang; Helland, Johan Olav; Hatzignatiou, Dimitrios G.
2014-07-01
We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe - Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are not generically different from those already encountered in network models previously, except that the size and shape of oil layers that are surrounded by gas and water are described more realistically. The significance of the results for describing oil connectivity in porous media accurately can only be evaluated by including throats with more complex cross-sections in three-phase pore-network models.
Charleston, M A
1995-01-01
This article introduces a coherent language base for describing and working with characteristics of combinatorial optimization problems, which is at once general enough to be used in all such problems and precise enough to allow subtle concepts in this field to be discussed unambiguously. An example is provided of how this nomenclature is applied to an instance of the phylogeny problem. Also noted is the beneficial effect, on the landscape of the solution space, of transforming the observed data to account for multiple changes of character state.
The Wisdom of the Crowd in Combinatorial Problems
ERIC Educational Resources Information Center
Yi, Sheng Kung Michael; Steyvers, Mark; Lee, Michael D.; Dry, Matthew J.
2012-01-01
The "wisdom of the crowd" phenomenon refers to the finding that the aggregate of a set of proposed solutions from a group of individuals performs better than the majority of individual solutions. Most often, wisdom of the crowd effects have been investigated for problems that require single numerical estimates. We investigate whether the effect…
Chetta, M.; Drmanac, A.; Santacroce, R.; Grandone, E.; Surrey, S.; Fortina, P.; Margaglione, M.
2008-01-01
BACKGROUND: Standard methods of mutation detection are time consuming in Hemophilia A (HA) rendering their application unavailable in some analysis such as prenatal diagnosis. OBJECTIVES: To evaluate the feasibility of combinatorial sequencing-by-hybridization (cSBH) as an alternative and reliable tool for mutation detection in FVIII gene. PATIENTS/METHODS: We have applied a new method of cSBH that uses two different colors for detection of multiple point mutations in the FVIII gene. The 26 exons encompassing the HA gene were analyzed in 7 newly diagnosed Italian patients and in 19 previously characterized individuals with FVIII deficiency. RESULTS: Data show that, when solution-phase TAMRA and QUASAR labeled 5-mer oligonucleotide sets mixed with unlabeled target PCR templates are co-hybridized in the presence of DNA ligase to universal 6-mer oligonucleotide probe-based arrays, a number of mutations can be successfully detected. The technique was reliable also in identifying a mutant FVIII allele in an obligate heterozygote. A novel missense mutation (Leu1843Thr) in exon 16 and three novel neutral polymorphisms are presented with an updated protocol for 2-color cSBH. CONCLUSIONS: cSBH is a reliable tool for mutation detection in FVIII gene and may represent a complementary method for the genetic screening of HA patients. PMID:20300295
Combinatorial Optimization in Project Selection Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Dewi, Sari; Sawaluddin
2018-01-01
This paper discusses the problem of project selection in the presence of two objective functions that maximize profit and minimize cost and the existence of some limitations is limited resources availability and time available so that there is need allocation of resources in each project. These resources are human resources, machine resources, raw material resources. This is treated as a consideration to not exceed the budget that has been determined. So that can be formulated mathematics for objective function (multi-objective) with boundaries that fulfilled. To assist the project selection process, a multi-objective combinatorial optimization approach is used to obtain an optimal solution for the selection of the right project. It then described a multi-objective method of genetic algorithm as one method of multi-objective combinatorial optimization approach to simplify the project selection process in a large scope.
Zhang, Yuhuan; Liu, Wei; Zhang, Wentao; Yu, Shaoxuan; Yue, Xiaoyue; Zhu, Wenxin; Zhang, Daohong; Wang, Yanru; Wang, Jianlong
2015-10-15
Herein, the structure of two DNA strands which are complementary except fourteen T-T and C-C mismatches was programmed for the design of the combinatorial logic operation by utilizing the different protective capacities of single chain DNA, part-hybridized DNA and completed-hybridized DNA on unmodified gold nanoparticles. In the presence of either Hg(2+) or Ag(+), the T-Hg(2+)-T or C-Ag(+)-C coordination chemistry could lead to the formation of part-hybridized DNA which keeps gold nanoparticles from clumping after the addition of 40 μL 0.2M NaClO4 solution, but the protection would be screened by 120 μL 0.2M NaClO4 solution. While the coexistence of Hg(2+), Ag(+) caused the formation of completed-hybridized DNA and the protection for gold nanoparticles lost in either 40 μL or 120 μL NaClO4 solutions. Benefiting from sharing of the same inputs of Hg(2+) and Ag(+), OR and AND logic gates were easily integrated into a simple colorimetric combinatorial logic operation in one system, which make it possible to execute logic gates in parallel to mimic arithmetic calculations on a binary digit. Furthermore, two other logic gates including INHIBIT1 and INHIBIT2 were realized to integrated with OR logic gate both for simultaneous qualitative discrimination and quantitative determination of Hg(2+) and Ag(+). Results indicate that the developed logic system based on the different protective capacities of DNA structure on gold nanoparticles provides a new pathway for the design of the combinatorial logic operation in one system and presents a useful strategy for development of advanced sensors, which may have potential applications in multiplex chemical analysis and molecular-scale computer design. Copyright © 2015 Elsevier B.V. All rights reserved.
An evolutionary strategy based on partial imitation for solving optimization problems
NASA Astrophysics Data System (ADS)
Javarone, Marco Alberto
2016-12-01
In this work we introduce an evolutionary strategy to solve combinatorial optimization tasks, i.e. problems characterized by a discrete search space. In particular, we focus on the Traveling Salesman Problem (TSP), i.e. a famous problem whose search space grows exponentially, increasing the number of cities, up to becoming NP-hard. The solutions of the TSP can be codified by arrays of cities, and can be evaluated by fitness, computed according to a cost function (e.g. the length of a path). Our method is based on the evolution of an agent population by means of an imitative mechanism, we define 'partial imitation'. In particular, agents receive a random solution and then, interacting among themselves, may imitate the solutions of agents with a higher fitness. Since the imitation mechanism is only partial, agents copy only one entry (randomly chosen) of another array (i.e. solution). In doing so, the population converges towards a shared solution, behaving like a spin system undergoing a cooling process, i.e. driven towards an ordered phase. We highlight that the adopted 'partial imitation' mechanism allows the population to generate solutions over time, before reaching the final equilibrium. Results of numerical simulations show that our method is able to find, in a finite time, both optimal and suboptimal solutions, depending on the size of the considered search space.
Combinatorial synthesis of phosphors using arc-imaging furnace
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-01-01
We have applied a novel ‘melt synthesis technique’ rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10–60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1–5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10–60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions. PMID:27877432
Combinatorial synthesis of phosphors using arc-imaging furnace
NASA Astrophysics Data System (ADS)
Ishigaki, Tadashi; Toda, Kenji; Yoshimura, Masahiro; Uematsu, Kazuyoshi; Sato, Mineo
2011-10-01
We have applied a novel 'melt synthesis technique' rather than a conventional solid-state reaction to rapidly synthesize phosphor materials. During a synthesis, the mixture of oxides or their precursors is melted by light pulses (10-60 s) in an arc-imaging furnace on a water-cooled copper hearth to form a globule of 1-5 mm diameter, which is then rapidly cooled by turning off the light. Using this method, we synthesized several phosphor compounds including Y3Al5O12:Ce(YAG) and SrAl2O4:Eu,Dy. Complex phosphor oxides are difficult to produce by conventional solid-state reaction techniques because of the slow reaction rates among solid oxides; as a result, the oxides form homogeneous compounds or solid solutions. On the other hand, melt reactions are very fast (10-60 s) and result in homogeneous compounds owing to rapid diffusion and mixing in the liquid phase. Therefore, melt synthesis techniques are suitable for preparing multi component homogeneous compounds and solid solutions.
LSI logic for phase-control rectifiers
NASA Technical Reports Server (NTRS)
Dolland, C.
1980-01-01
Signals for controlling phase-controlled rectifier circuit are generated by combinatorial logic than can be implemented in large-scale integration (LSI). LSI circuit saves space, weight, and assembly time compared to previous controls that employ one-shot multivibrators, latches, and capacitors. LSI logic functions by sensing three phases of ac power source and by comparing actual currents with intended currents.
Combinatorial optimization problem solution based on improved genetic algorithm
NASA Astrophysics Data System (ADS)
Zhang, Peng
2017-08-01
Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.
Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju
2004-10-01
Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.
The damper placement problem for large flexible space structures
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
1992-01-01
The damper placement problem for large flexible space truss structures is formulated as a combinatorial optimization problem. The objective is to determine the p truss members of the structure to replace with active (or passive) dampers so that the modal damping ratio is as large as possible for all significant modes of vibration. Equivalently, given a strain energy matrix with rows indexed on the modes and the columns indexed on the truss members, we seek to find the set of p columns such that the smallest row sum, over the p columns, is maximized. We develop a tabu search heuristic for the damper placement problems on the Controls Structures Interaction (CSI) Phase 1 Evolutionary Model (10 modes and 1507 truss members). The resulting solutions are shown to be of high quality.
Expediting Combinatorial Data Set Analysis by Combining Human and Algorithmic Analysis.
Stein, Helge Sören; Jiao, Sally; Ludwig, Alfred
2017-01-09
A challenge in combinatorial materials science remains the efficient analysis of X-ray diffraction (XRD) data and its correlation to functional properties. Rapid identification of phase-regions and proper assignment of corresponding crystal structures is necessary to keep pace with the improved methods for synthesizing and characterizing materials libraries. Therefore, a new modular software called htAx (high-throughput analysis of X-ray and functional properties data) is presented that couples human intelligence tasks used for "ground-truth" phase-region identification with subsequent unbiased verification by an algorithm to efficiently analyze which phases are present in a materials library. Identified phases and phase-regions may then be correlated to functional properties in an expedited manner. For the functionality of htAx to be proven, two previously published XRD benchmark data sets of the materials systems Al-Cr-Fe-O and Ni-Ti-Cu are analyzed by htAx. The analysis of ∼1000 XRD patterns takes less than 1 day with htAx. The proposed method reliably identifies phase-region boundaries and robustly identifies multiphase structures. The method also addresses the problem of identifying regions with previously unpublished crystal structures using a special daisy ternary plot.
Yu, Jong-Sung; Kim, Min-Sik; Kim, Jung Ho
2010-12-14
Combinatorial synthesis and screening were used to identify methanol-tolerant non-platinum cathode electrocatalysts for use in direct methanol fuel cells (DMFCs). Oxygen reduction consumes protons at the surface of DMFC cathode catalysts. In combinatorial screening, this pH change allows one to differentiate active catalysts using fluorescent acid-base indicators. Combinatorial libraries of carbon-supported catalyst compositions containing Ru, Mo, W, Sn, and Se were screened. Ternary and quaternary compositions containing Ru, Sn, Mo, Se were more active than the "standard" Alonso-Vante catalyst, Ru(3)Mo(0.08)Se(2), when tested in liquid-feed DMFCs. Physical characterization of the most active catalysts by powder X-ray diffraction, gas adsorption, and X-ray photoelectron spectroscopy revealed that the predominant crystalline phase was hexagonal close-packed (hcp) ruthenium, and showed a surface mostly covered with oxide. The best new catalyst, Ru(7.0)Sn(1.0)Se(1.0), was significantly more active than Ru(3)Se(2)Mo(0.08), even though the latter contained smaller particles.
Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam
2015-06-05
Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Jiménez-Moreno, Ester; Gómez, Ana M; Bastida, Agatha; Corzana, Francisco; Jiménez-Oses, Gonzalo; Jiménez-Barbero, Jesús; Asensio, Juan Luis
2015-03-27
Electrostatic and charge-transfer contributions to CH-π complexes can be modulated by attaching electron-withdrawing substituents to the carbon atom. While clearly stabilizing in the gas phase, the outcome of this chemical modification in water is more difficult to predict. Herein we provide a definitive and quantitative answer to this question employing a simple strategy based on dynamic combinatorial chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graphene Microcapsule Arrays for Combinatorial Electron Microscopy and Spectroscopy in Liquids
Yulaev, Alexander; Guo, Hongxuan; Strelcov, Evgheni; ...
2017-04-27
Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here in this paper, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studyingmore » a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.« less
Combinatorial optimization games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, X.; Ibaraki, Toshihide; Nagamochi, Hiroshi
1997-06-01
We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic andmore » complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.« less
Combinatorial solutions to integrable hierarchies
NASA Astrophysics Data System (ADS)
Kazarian, M. E.; Lando, S. K.
2015-06-01
This paper reviews modern approaches to the construction of formal solutions to integrable hierarchies of mathematical physics whose coefficients are answers to various enumerative problems. The relationship between these approaches and the combinatorics of symmetric groups and their representations is explained. Applications of the results to the construction of efficient computations in problems related to models of quantum field theories are described. Bibliography: 34 titles.
Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang
2008-11-15
In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.
Kell, Douglas B
2012-01-01
A considerable number of areas of bioscience, including gene and drug discovery, metabolic engineering for the biotechnological improvement of organisms, and the processes of natural and directed evolution, are best viewed in terms of a ‘landscape’ representing a large search space of possible solutions or experiments populated by a considerably smaller number of actual solutions that then emerge. This is what makes these problems ‘hard’, but as such these are to be seen as combinatorial optimisation problems that are best attacked by heuristic methods known from that field. Such landscapes, which may also represent or include multiple objectives, are effectively modelled in silico, with modern active learning algorithms such as those based on Darwinian evolution providing guidance, using existing knowledge, as to what is the ‘best’ experiment to do next. An awareness, and the application, of these methods can thereby enhance the scientific discovery process considerably. This analysis fits comfortably with an emerging epistemology that sees scientific reasoning, the search for solutions, and scientific discovery as Bayesian processes. PMID:22252984
Kell, Douglas B
2012-03-01
A considerable number of areas of bioscience, including gene and drug discovery, metabolic engineering for the biotechnological improvement of organisms, and the processes of natural and directed evolution, are best viewed in terms of a 'landscape' representing a large search space of possible solutions or experiments populated by a considerably smaller number of actual solutions that then emerge. This is what makes these problems 'hard', but as such these are to be seen as combinatorial optimisation problems that are best attacked by heuristic methods known from that field. Such landscapes, which may also represent or include multiple objectives, are effectively modelled in silico, with modern active learning algorithms such as those based on Darwinian evolution providing guidance, using existing knowledge, as to what is the 'best' experiment to do next. An awareness, and the application, of these methods can thereby enhance the scientific discovery process considerably. This analysis fits comfortably with an emerging epistemology that sees scientific reasoning, the search for solutions, and scientific discovery as Bayesian processes. Copyright © 2012 WILEY Periodicals, Inc.
A preliminary study to metaheuristic approach in multilayer radiation shielding optimization
NASA Astrophysics Data System (ADS)
Arif Sazali, Muhammad; Rashid, Nahrul Khair Alang Md; Hamzah, Khaidzir
2018-01-01
Metaheuristics are high-level algorithmic concepts that can be used to develop heuristic optimization algorithms. One of their applications is to find optimal or near optimal solutions to combinatorial optimization problems (COPs) such as scheduling, vehicle routing, and timetabling. Combinatorial optimization deals with finding optimal combinations or permutations in a given set of problem components when exhaustive search is not feasible. A radiation shield made of several layers of different materials can be regarded as a COP. The time taken to optimize the shield may be too high when several parameters are involved such as the number of materials, the thickness of layers, and the arrangement of materials. Metaheuristics can be applied to reduce the optimization time, trading guaranteed optimal solutions for near-optimal solutions in comparably short amount of time. The application of metaheuristics for radiation shield optimization is lacking. In this paper, we present a review on the suitability of using metaheuristics in multilayer shielding design, specifically the genetic algorithm and ant colony optimization algorithm (ACO). We would also like to propose an optimization model based on the ACO method.
Impact of nonlinear effective interactions on group field theory quantum gravity condensates
NASA Astrophysics Data System (ADS)
Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar
2016-09-01
We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.
Combinatorial studies of (1-x)Na0.5Bi0.5TiO3-xBaTiO3 thin-film chips
NASA Astrophysics Data System (ADS)
Cheng, Hong-Wei; Zhang, Xue-Jin; Zhang, Shan-Tao; Feng, Yan; Chen, Yan-Feng; Liu, Zhi-Guo; Cheng, Guang-Xi
2004-09-01
Applying a combinatorial methodology, (1-x)Na0.5Bi0.5TiO3-xBaTiO3 (NBT-BT) thin-film chips were fabricated on (001)-LaAlO3 substrates by pulsed laser deposition with a few quaternary masks. A series of NBT-BT library with the composition of BT ranged from 0 to 44% was obtained with uniform composition and well crystallinity. The relation between the concentration of NBT-BT and their structural and dielectric properties were investigated by x-ray diffraction (XRD), evanescent microwave probe, atomic force microscopy, and Raman spectroscopy. An obvious morphotropic phase boundary (MPB) was established to be about 9% BT by XRD, Raman frequency shift, and dielectric anomaly, different from the well-known MPB of the materials. The result shows the high efficiency of combinatorial method in searching new relaxor ferroelectrics.
Zhuang, Yaqiang; Wang, Guangming; Liang, Jiangang; Cai, Tong; Tang, Xiao-Lan; Guo, Tongfeng; Zhang, Qingfeng
2017-11-29
This paper proposes an easy, efficient strategy for designing broadband, wide-angle and polarization-independent diffusion metasurface for radar cross section (RCS) reduction. A dual-resonance unit cell, composed of a cross wire and cross loop (CWCL), is employed to enhance the phase bandwidth covering the 2π range. Both oblique-gradient and horizontal-gradient phase supercells are designed for illustration. The numerical results agree well with the theoretical ones. To significantly reduce backward scattering, the random combinatorial gradient metasurface (RCGM) is subsequently constructed by collecting eight supercells with randomly distributed gradient directions. The proposed metasurface features an enhanced specular RCS reduction performance and less design complexity compared to other candidates. Both simulated and measured results show that the proposed RCGM can significantly suppress RCS and exhibits broadband, wide-angle and polarization independence features.
Method and apparatus for combinatorial chemistry
Foote, Robert S.
2007-02-20
A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.
Method and apparatus for combinatorial chemistry
Foote, Robert S [Oak Ridge, TN
2012-06-05
A method and apparatus are provided for performing light-directed reactions in spatially addressable channels within a plurality of channels. One aspect of the invention employs photoactivatable reagents in solutions disposed into spatially addressable flow streams to control the parallel synthesis of molecules immobilized within the channels. The reagents may be photoactivated within a subset of channels at the site of immobilized substrate molecules or at a light-addressable site upstream from the substrate molecules. The method and apparatus of the invention find particularly utility in the synthesis of biopolymer arrays, e.g., oligonucleotides, peptides and carbohydrates, and in the combinatorial synthesis of small molecule arrays for drug discovery.
Chemical Compound Design Using Nuclear Charge Distributions
2012-03-01
Finding optimal solutions to design problems in chemistry is hampered by the combinatorially large search space. We develop a general theoretical ... framework for finding chemical compounds with prescribed properties using nuclear charge distributions. The key is the reformulation of the design
Fei, Yiyan; Landry, James P; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S
2010-01-01
We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm x 4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide.
Fei, Yiyan; Landry, James P.; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S.
2010-01-01
We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm×4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide. PMID:20210464
Ma, Zhanjun
2017-01-01
Poor viability of engrafted bone marrow mesenchymal stem cells (BMSCs) often hinders their application for wound healing, and the strategy of how to take full advantage of their angiogenic capacity within wounds still remains unclear. Negative pressure wound therapy (NPWT) has been demonstrated to be effective for enhancing wound healing, especially for the promotion of angiogenesis within wounds. Here we utilized combinatory strategy using the transplantation of BMSCs and NPWT to investigate whether this combinatory therapy could accelerate angiogenesis in wounds. In vitro, after 9-day culture, BMSCs proliferation significantly increased in NPWT group. Furthermore, NPWT induced their differentiation into the angiogenic related cells, which are indispensable for wound angiogenesis. In vivo, rat full-thickness cutaneous wounds treated with BMSCs combined with NPWT exhibited better viability of the cells and enhanced angiogenesis and maturation of functional blood vessels than did local BMSC injection or NPWT alone. Expression of angiogenesis markers (NG2, VEGF, CD31, and α-SMA) was upregulated in wounds treated with combined BMSCs with NPWT. Our data suggest that NPWT may act as an inductive role to enhance BMSCs angiogenic capacity and this combinatorial therapy may serve as a simple but efficient clinical solution for complex wounds with large defects. PMID:28243602
NASA Astrophysics Data System (ADS)
Yan, Zongkai; Zhang, Xiaokun; Li, Guang; Cui, Yuxing; Jiang, Zhaolian; Liu, Wen; Peng, Zhi; Xiang, Yong
2018-01-01
The conventional methods for designing and preparing thin film based on wet process remain a challenge due to disadvantages such as time-consuming and ineffective, which hinders the development of novel materials. Herein, we present a high-throughput combinatorial technique for continuous thin film preparation relied on chemical bath deposition (CBD). The method is ideally used to prepare high-throughput combinatorial material library with low decomposition temperatures and high water- or oxygen-sensitivity at relatively high-temperature. To check this system, a Cu(In, Ga)Se (CIGS) thin films library doped with 0-19.04 at.% of antimony (Sb) was taken as an example to evaluate the regulation of varying Sb doping concentration on the grain growth, structure, morphology and electrical properties of CIGS thin film systemically. Combined with the Energy Dispersive Spectrometer (EDS), X-ray Photoelectron Spectroscopy (XPS), automated X-ray Diffraction (XRD) for rapid screening and Localized Electrochemical Impedance Spectroscopy (LEIS), it was confirmed that this combinatorial high-throughput system could be used to identify the composition with the optimal grain orientation growth, microstructure and electrical properties systematically, through accurately monitoring the doping content and material composition. According to the characterization results, a Sb2Se3 quasi-liquid phase promoted CIGS film-growth model has been put forward. In addition to CIGS thin film reported here, the combinatorial CBD also could be applied to the high-throughput screening of other sulfide thin film material systems.
Breeding novel solutions in the brain: a model of Darwinian neurodynamics.
Szilágyi, András; Zachar, István; Fedor, Anna; de Vladar, Harold P; Szathmáry, Eörs
2016-01-01
Background : The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods : We combine known components of the brain - recurrent neural networks (acting as attractors), the action selection loop and implicit working memory - to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results : We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns) with hereditary variation and novel variants appear due to (i) noisy recall of patterns from the attractor networks, (ii) noise during transmission of candidate solutions as messages between networks, and, (iii) spontaneously generated, untrained patterns in spurious attractors. Conclusions : Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection) and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.
Perspective. Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy
Wu, J.; Bozovic, I.
2015-04-06
Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.
Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio
2012-09-01
Avocado (Persea americana) proteins have been scarcely studied despite their importance, especially in food related allergies. The proteome of avocado pulp was explored in depth by extracting proteins with capture by combinatorial peptide ligand libraries at pH 7.4 and under conditions mimicking reverse-phase capture at pH 2.2. The total number of unique gene products identified amounts to 1012 proteins, of which 174 are in common with the control, untreated sample, 190 are present only in the control and 648 represent the new species detected via combinatorial peptide ligand libraries of all combined eluates and likely represent low-abundance proteins. Among the 1012 proteins, it was possible to identify the already known avocado allergen Pers a 1 and different proteins susceptible to be allergens such as a profilin, a polygalacturonase, a thaumatin-like protein, a glucanase, and an isoflavone reductase like protein. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.
Smith, J E
2012-01-01
Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes outperform global reward schemes in combinatorial spaces, unlike in continuous spaces. An analysis of evolving meme behaviour is used to explain these findings.
Combinatorics of transformations from standard to non-standard bases in Brauer algebras
NASA Astrophysics Data System (ADS)
Chilla, Vincenzo
2007-05-01
Transformation coefficients between standard bases for irreducible representations of the Brauer centralizer algebra \\mathfrak{B}_f(x) and split bases adapted to the \\mathfrak{B}_{f_1} (x) \\times \\mathfrak{B}_{f_2} (x) \\subset \\mathfrak{B}_f (x) subalgebra (f1 + f2 = f) are considered. After providing the suitable combinatorial background, based on the definition of the i-coupling relation on nodes of the subduction grid, we introduce a generalized version of the subduction graph which extends the one given in Chilla (2006 J. Phys. A: Math. Gen. 39 7657) for symmetric groups. Thus, we can describe the structure of the subduction system arising from the linear method and give an outline of the form of the solution space. An ordering relation on the grid is also given and then, as in the case of symmetric groups, the choices of the phases and of the free factors governing the multiplicity separations are discussed.
Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G
2016-01-01
This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.
ERIC Educational Resources Information Center
Kolata, Gina
1985-01-01
To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)
Development of the PEBLebl Traveling Salesman Problem Computerized Testbed
ERIC Educational Resources Information Center
Mueller, Shane T.; Perelman, Brandon S.; Tan, Yin Yin; Thanasuan, Kejkaew
2015-01-01
The traveling salesman problem (TSP) is a combinatorial optimization problem that requires finding the shortest path through a set of points ("cities") that returns to the starting point. Because humans provide heuristic near-optimal solutions to Euclidean versions of the problem, it has sometimes been used to investigate human visual…
Resolving combinatorial ambiguities in dilepton t t¯ event topologies with constrained M2 variables
NASA Astrophysics Data System (ADS)
Debnath, Dipsikha; Kim, Doojin; Kim, Jeong Han; Kong, Kyoungchul; Matchev, Konstantin T.
2017-10-01
We advocate the use of on-shell constrained M2 variables in order to mitigate the combinatorial problem in supersymmetry-like events with two invisible particles at the LHC. We show that in comparison to other approaches in the literature, the constrained M2 variables provide superior ansätze for the unmeasured invisible momenta and therefore can be usefully applied to discriminate combinatorial ambiguities. We illustrate our procedure with the example of dilepton t t ¯ events. We critically review the existing methods based on the Cambridge MT 2 variable and MAOS reconstruction of invisible momenta, and show that their algorithm can be simplified without loss of sensitivity, due to a perfect correlation between events with complex solutions for the invisible momenta and events exhibiting a kinematic endpoint violation. Then we demonstrate that the efficiency for selecting the correct partition is further improved by utilizing the M2 variables instead. Finally, we also consider the general case when the underlying mass spectrum is unknown, and no kinematic endpoint information is available.
Buenconsejo, Pio John S; Siegel, Alexander; Savan, Alan; Thienhaus, Sigurd; Ludwig, Alfred
2012-01-09
For different areas of combinatorial materials science, it is desirable to have multiple materials libraries: especially for irreversible high-throughput studies, like, for example, corrosion resistance testing in different media or annealing of complete materials libraries at different temperatures. Therefore a new combinatorial sputter-deposition process was developed which yields 24 materials libraries in one experiment on a single substrate. It is discussed with the example of 24 Ti-Ni-Ag materials libraries. They are divided based on the composition coverage and orientation of composition gradient into two sets of 12 nearly identical materials libraries. Each materials library covers at least 30-40% of the complete ternary composition range. An acid etch test in buffered-HF solution was performed, illustrating the feasibility of our approach for destructive materials characterization. The results revealed that within the composition range of Ni < 30 at.%, the films were severely etched. The composition range which shows reversible martensitic transformations was confirmed to be outside this region. The high output of the present method makes it attractive for combinatorial studies requiring multiple materials libraries.
Elder, D
1984-06-07
The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.
It looks easy! Heuristics for combinatorial optimization problems.
Chronicle, Edward P; MacGregor, James N; Ormerod, Thomas C; Burr, Alistair
2006-04-01
Human performance on instances of computationally intractable optimization problems, such as the travelling salesperson problem (TSP), can be excellent. We have proposed a boundary-following heuristic to account for this finding. We report three experiments with TSPs where the capacity to employ this heuristic was varied. In Experiment 1, participants free to use the heuristic produced solutions significantly closer to optimal than did those prevented from doing so. Experiments 2 and 3 together replicated this finding in larger problems and demonstrated that a potential confound had no effect. In all three experiments, performance was closely matched by a boundary-following model. The results implicate global rather than purely local processes. Humans may have access to simple, perceptually based, heuristics that are suited to some combinatorial optimization tasks.
Exact solution of large asymmetric traveling salesman problems.
Miller, D L; Pekny, J F
1991-02-15
The traveling salesman problem is one of a class of difficult problems in combinatorial optimization that is representative of a large number of important scientific and engineering problems. A survey is given of recent applications and methods for solving large problems. In addition, an algorithm for the exact solution of the asymmetric traveling salesman problem is presented along with computational results for several classes of problems. The results show that the algorithm performs remarkably well for some classes of problems, determining an optimal solution even for problems with large numbers of cities, yet for other classes, even small problems thwart determination of a provably optimal solution.
NASA Astrophysics Data System (ADS)
Martin, Brian
Combinatorial approaches have proven useful for rapid alloy fabrication and optimization. A new method of producing controlled isothermal gradients using the Gleeble Thermomechanical simulator has been developed, and demonstrated on the metastable beta-Ti alloy beta-21S, achieving a thermal gradient of 525-700 °C. This thermal gradient method has subsequently been coupled with existing combinatorial methods of producing composition gradients using the LENS(TM) additive manufacturing system, through the use of elemental blended powders. This has been demonstrated with a binary Ti-(0-15) wt% Cr build, which has subsequently been characterized with optical and electron microscopy, with special attention to the precipitate of TiCr2 Laves phases. The TiCr2 phase has been explored for its high temperature mechanical properties in a new oxidation resistant beta-Ti alloy, which serves as a demonstration of the new bicombinatorial methods developed as applied to a multicomponent alloy system.
Fast and Efficient Discrimination of Traveling Salesperson Problem Stimulus Difficulty
ERIC Educational Resources Information Center
Dry, Matthew J.; Fontaine, Elizabeth L.
2014-01-01
The Traveling Salesperson Problem (TSP) is a computationally difficult combinatorial optimization problem. In spite of its relative difficulty, human solvers are able to generate close-to-optimal solutions in a close-to-linear time frame, and it has been suggested that this is due to the visual system's inherent sensitivity to certain geometric…
NASA Astrophysics Data System (ADS)
Vatutin, Eduard
2017-12-01
The article deals with the problem of analysis of effectiveness of the heuristic methods with limited depth-first search techniques of decision obtaining in the test problem of getting the shortest path in graph. The article briefly describes the group of methods based on the limit of branches number of the combinatorial search tree and limit of analyzed subtree depth used to solve the problem. The methodology of comparing experimental data for the estimation of the quality of solutions based on the performing of computational experiments with samples of graphs with pseudo-random structure and selected vertices and arcs number using the BOINC platform is considered. It also shows description of obtained experimental results which allow to identify the areas of the preferable usage of selected subset of heuristic methods depending on the size of the problem and power of constraints. It is shown that the considered pair of methods is ineffective in the selected problem and significantly inferior to the quality of solutions that are provided by ant colony optimization method and its modification with combinatorial returns.
Bagheri, Neda; Shiina, Marisa; Lauffenburger, Douglas A; Korn, W Michael
2011-02-01
Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions, are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to dramatically improve non-surgical cancer treatment, especially in locally advanced or metastatic cases where treatment options remain limited.
Hegde, Mahesh; Mantelingu, Kempegowda; Pandey, Monica; Pavankumar, Chottanahalli S; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C
2016-10-01
Cancer is a multifactorial disease, which makes it difficult to cure. Since more than one defective cellular component is often involved during oncogenesis, combination therapy is gaining prominence in the field of cancer therapeutics. The purpose of this study was to investigate the combinatorial effects of a novel PARP inhibitor, P10, and HDAC inhibitor, SAHA, in leukemic cells. Combinatorial effects of P10 and SAHA were tested using propidium iodide staining in different leukemic cells. Further, flowcytometry-based assays such as calcein-AM/ethidium homodimer staining, annexin-FITC/PI staining, and JC-1 staining were carried out to elucidate the mechanism of cell death. In addition, cell-cycle analysis, immunocytochemistry studies, and western blotting analysis were conducted to check the combinatorial effect in Nalm6 cells. Propidium iodide staining showed that P10 in combination with SAHA induced cell death in Nalm6 cells, in which PARP expression and activity is high with a combination index of <0.2. Annexin-FITC/PI staining, JC-1 staining, and other biochemical assays revealed that P10 in combination with SAHA induced apoptosis by causing a change in mitochondrial membrane potential in >65 % cells. Importantly, combinatorial treatment induced S phase arrest in 40-45 % cells due to DNA damage and plausible replicative stress. Finally, we demonstrated that treatment with P10 led to DNA strand breaks, which were further potentiated by SAHA (p < 0.01), leading to activation of apoptosis and increased cell death in PARP-positive leukemic cells. Our study reveals that coadministration of PARP inhibitor with SAHA could be used as a combination therapy against leukemic cells that possess high levels of intrinsic PARP activity.
D'Amato, Alfonsina; Fasoli, Elisa; Kravchuk, Alexander V; Righetti, Pier Giorgio
2011-05-06
The "invisible" proteome of a Cola drink, stated to be produced with a kola nut extract, has been investigated via capture with combinatorial peptide ligand libraries (CPLL). Indeed, a few proteins in the M(r) 15-20 kDa range could be identified by treating large beverage volumes (1 L) and performing the capture with CPLLs at very acidic pH values (pH 2.2) under conditions mimicking reverse-phase adsorption. Ascertaining the presence of proteins deriving from plant extracts has confirmed the genuineness of such beverage and suggests the possibility of certifying whether soft drinks present on the market are indeed made with vegetable extracts or only with artificial chemical flavoring.
ERIC Educational Resources Information Center
Scott, William L.; Denton, Ryan E.; Marrs, Kathleen A.; Durrant, Jacob D.; Samaritoni, J. Geno; Abraham, Milata M.; Brown, Stephen P.; Carnahan, Jon M.; Fischer, Lindsey G.; Glos, Courtney E.; Sempsrott, Peter J.; O'Donnell, Martin J.
2015-01-01
The Distributed Drug Discovery (D3) program trains students in three drug discovery disciplines (synthesis, computational analysis, and biological screening) while addressing the important challenge of discovering drug leads for neglected diseases. This article focuses on implementation of the synthesis component in the second-semester…
Anatomy of the Attraction Basins: Breaking with the Intuition.
Hernando, Leticia; Mendiburu, Alexander; Lozano, Jose A
2018-05-22
Solving combinatorial optimization problems efficiently requires the development of algorithms that consider the specific properties of the problems. In this sense, local search algorithms are designed over a neighborhood structure that partially accounts for these properties. Considering a neighborhood, the space is usually interpreted as a natural landscape, with valleys and mountains. Under this perception, it is commonly believed that, if maximizing, the solutions located in the slopes of the same mountain belong to the same attraction basin, with the peaks of the mountains being the local optima. Unfortunately, this is a widespread erroneous visualization of a combinatorial landscape. Thus, our aim is to clarify this aspect, providing a detailed analysis of, first, the existence of plateaus where the local optima are involved, and second, the properties that define the topology of the attraction basins, picturing a reliable visualization of the landscapes. Some of the features explored in this paper have never been examined before. Hence, new findings about the structure of the attraction basins are shown. The study is focused on instances of permutation-based combinatorial optimization problems considering the 2-exchange and the insert neighborhoods. As a consequence of this work, we break away from the extended belief about the anatomy of attraction basins.
Searching Fragment Spaces with feature trees.
Lessel, Uta; Wellenzohn, Bernd; Lilienthal, Markus; Claussen, Holger
2009-02-01
Virtual combinatorial chemistry easily produces billions of compounds, for which conventional virtual screening cannot be performed even with the fastest methods available. An efficient solution for such a scenario is the generation of Fragment Spaces, which encode huge numbers of virtual compounds by their fragments/reagents and rules of how to combine them. Similarity-based searches can be performed in such spaces without ever fully enumerating all virtual products. Here we describe the generation of a huge Fragment Space encoding about 5 * 10(11) compounds based on established in-house synthesis protocols for combinatorial libraries, i.e., we encode practically evaluated combinatorial chemistry protocols in a machine readable form, rendering them accessible to in silico search methods. We show how such searches in this Fragment Space can be integrated as a first step in an overall workflow. It reduces the extremely huge number of virtual products by several orders of magnitude so that the resulting list of molecules becomes more manageable for further more elaborated and time-consuming analysis steps. Results of a case study are presented and discussed, which lead to some general conclusions for an efficient expansion of the chemical space to be screened in pharmaceutical companies.
ERIC Educational Resources Information Center
Sriraman, Bharath
2003-01-01
Nine freshmen in a ninth-grade accelerated algebra class were asked to solve five nonroutine combinatorial problems. The four mathematically gifted students were successful in discovering and verbalizing the generality that characterized the solutions to the five problems, whereas the five nongifted students were unable to discover the hidden…
Enumeration of Rectangles in a Tableau Shape
ERIC Educational Resources Information Center
Mingus, Tabitha T. Y.; Grassl, Richard M.; Diaz, Ricardo; Andrew, Lane; Parker, Frieda
2010-01-01
This article analyzes the challenge of counting the number of rectangles of all sizes in the n-tableau and to provide a combinatorial reason for the answer. The authors present a solution on enumerating rectangles in the n-tableau using Grassl and Mingus results. The authors demonstrate their conjecture for the n-tableau and attempt to apply their…
Effect of the Implicit Combinatorial Model on Combinatorial Reasoning in Secondary School Pupils.
ERIC Educational Resources Information Center
Batanero, Carmen; And Others
1997-01-01
Elementary combinatorial problems may be classified into three different combinatorial models: (1) selection; (2) partition; and (3) distribution. The main goal of this research was to determine the effect of the implicit combinatorial model on pupils' combinatorial reasoning before and after instruction. Gives an analysis of variance of the…
Tuning the metal-insulator transition of VO2 by introducing W dopants via a combinatorial approach
NASA Astrophysics Data System (ADS)
Liang, Yangang; Lee, Seunghun; Zhang, Xiaohang; Takeuchi, Ichiro
We have systematically studied the structural phase transition and the electronic properties of composition spread V1-xWxO2 (0 <= x <= 0.037) thin films fabricated on silicon (001) and c-cut sapphire substrates through combinatorial pulsed laser deposition of a V2O5 target and a WO3 target. Our in-situ temperature-dependent x-ray diffraction measurements reveal a gradual change in the film structure from a monoclinic phase to a tetragonal phase via an intermediate mixture of the two as the concentration of tungsten increases from 0% to 3.7% at 300 K. At 358 K, the film is found to be in a tetragonal phase for the entire composition range we studied. The results also suggest that the volume of the unit cell increases as the concentration of tungsten increases. Electrical transport results further show that both the phase transition temperature and the width of the hysteresis loop decrease with the increasing of the concentration of tungsten. Especially, epitaxial V1-xWxO2 films fabricated on c-cut sapphire substrates show narrower hysteresis loop compared to textured V1-xWxO2 films fabricated on Si (100) substrates. In addition, the Hall effect measurements on the epitaxial V1-xWxO2 thin films at various temperature points provide important information for the change in the electronic structure upon increasing the concentration of tungsten. This work was supported by CNAM.
Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.; ...
2017-05-09
Here, the controlled decomposition of metastable alloys is an attractive route to form nanostructured thermoelectric materials with reduced thermal conductivity. The ternary SnTe–MnTe and SnTe–SnSe heterostructural alloys have been demonstrated as promising materials for thermoelectric applications. In this work, the quaternary Sn 1–yMnyTe 1–xSe x phase space serves as a relevant model system to explore how a combination of computational and combinatorial-growth methods can be used to study equilibrium and non-equilibrium solubility limits. Results from first principle calculations indicate low equilibrium solubility for x,y < 0.05 that are in good agreement with results obtained from bulk equilibrium synthesis experiments andmore » predict significantly higher spinodal limits. An experimental screening using sputtered combinatorial thin film sample libraries showed a remarkable increase in non-equilibrium solubility for x,y > 0.2. These theoretical and experimental results were used to guide the bulk synthesis of metastable alloys. The ability to reproduce the non-equilibrium solubility levels in bulk materials indicates that such theoretical calculations and combinatorial growth can inform bulk synthetic routes. Further, the large difference between equilibrium and non-equilibrium solubility limits in Sn 1–yMn yTe 1–xSe x indicates these metastable alloys are attractive in terms of nano-precipitate formation for potential thermoelectric applications.« less
BPS counting for knots and combinatorics on words
NASA Astrophysics Data System (ADS)
Kucharski, Piotr; Sułkowski, Piotr
2016-11-01
We discuss relations between quantum BPS invariants defined in terms of a product decomposition of certain series, and difference equations (quantum A-polynomials) that annihilate such series. We construct combinatorial models whose structure is encoded in the form of such difference equations, and whose generating functions (Hilbert-Poincaré series) are solutions to those equations and reproduce generating series that encode BPS invariants. Furthermore, BPS invariants in question are expressed in terms of Lyndon words in an appropriate language, thereby relating counting of BPS states to the branch of mathematics referred to as combinatorics on words. We illustrate these results in the framework of colored extremal knot polynomials: among others we determine dual quantum extremal A-polynomials for various knots, present associated combinatorial models, find corresponding BPS invariants (extremal Labastida-Mariño-Ooguri-Vafa invariants) and discuss their integrality.
Haplotyping for disease association: a combinatorial approach.
Lancia, Giuseppe; Ravi, R; Rizzi, Romeo
2008-01-01
We consider a combinatorial problem derived from haplotyping a population with respect to a genetic disease, either recessive or dominant. Given a set of individuals, partitioned into healthy and diseased, and the corresponding sets of genotypes, we want to infer "bad'' and "good'' haplotypes to account for these genotypes and for the disease. Assume e.g. the disease is recessive. Then, the resolving haplotypes must consist of bad and good haplotypes, so that (i) each genotype belonging to a diseased individual is explained by a pair of bad haplotypes and (ii) each genotype belonging to a healthy individual is explained by a pair of haplotypes of which at least one is good. We prove that the associated decision problem is NP-complete. However, we also prove that there is a simple solution, provided the data satisfy a very weak requirement.
Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R.
2015-01-01
We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines. PMID:26193265
Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R
2015-07-17
We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines.
Hybrid Nested Partitions and Math Programming Framework for Large-scale Combinatorial Optimization
2010-03-31
optimization problems: 1) exact algorithms and 2) metaheuristic algorithms . This project will integrate concepts from these two technologies to develop...optimal solutions within an acceptable amount of computation time, and 2) metaheuristic algorithms such as genetic algorithms , tabu search, and the...integer programming decomposition approaches, such as Dantzig Wolfe decomposition and Lagrangian relaxation, and metaheuristics such as the Nested
Navigation Solution for a Multiple Satellite and Multiple Ground Architecture
2014-09-14
Primer Vector Theory . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.6 The Traveling Salesman Problem . . . . . . . . . . . . . . . . . . 12...the Traveling Salesman problem [42]. It is framed as a nonlinear programming, complete combinatorial optimization where the orbital debris pieces relate...impulsive maneuvers and applies his findings to a Hohmann transfer with the addition of mid-course burns and wait times. 2.2.6 The Traveling Salesman
Lin, Jingjing; Jing, Honglei
2016-01-01
Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms (CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation, and composition, the traditional CSAs often suffer from the premature convergence and unsatisfied accuracy. To address these concerning issues, a recombination operator inspired by the biological combinatorial recombination is proposed at first. The recombination operator could generate the promising candidate solution to enhance search ability of the CSA by fusing the information from random chosen parents. Furthermore, a modified hypermutation operator is introduced to construct more promising and efficient candidate solutions. A set of 16 common used benchmark functions are adopted to test the effectiveness and efficiency of the recombination and hypermutation operators. The comparisons with classic CSA, CSA with recombination operator (RCSA), and CSA with recombination and modified hypermutation operator (RHCSA) demonstrate that the proposed algorithm significantly improves the performance of classic CSA. Moreover, comparison with the state-of-the-art algorithms shows that the proposed algorithm is quite competitive. PMID:27698662
Hybridization of decomposition and local search for multiobjective optimization.
Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto
2014-10-01
Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems.
Combinatorial-topological framework for the analysis of global dynamics.
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Combinatorial-topological framework for the analysis of global dynamics
NASA Astrophysics Data System (ADS)
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
2013-06-17
of the films without having to fabricate capacitors. In addition, the use of X - ray diffraction (XRD) analysis enabled Chikyow et al.40 to identify an...effects of Al doping and annealing on the thermal stabil- ity of the Y2O3/Si gate stack were studied by X - ray photoemission spectroscopy (XPS) and X - ray ...the major diffraction features in the phase distribution. For a given structural phase, the X - ray peak intensity allows one to track the compositional
NASA Astrophysics Data System (ADS)
Regnier, David; Lacroix, Denis; Scamps, Guillaume; Hashimoto, Yukio
2018-03-01
In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions) on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should at least average over different initial relative gauge-angles. In the present work, we propose a new approach to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking this approach in a schematic model, we apply it to the collision 20O+20O at various energies below the Coulomb barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced. The applicability of the PSC method to asymmetric nuclear collisions is investigated for the 14O+20O collision and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground for probing gauge-angle effects in nuclear reaction and/or for applying the proposed PSC approach on pair transfer is the collisions of identical open-shell spherical nuclei.
On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks
Solé, Ricard; Amor, Daniel R.; Valverde, Sergi
2016-01-01
It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a “black hole” of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime. PMID:26821277
On Singularities and Black Holes in Combination-Driven Models of Technological Innovation Networks.
Solé, Ricard; Amor, Daniel R; Valverde, Sergi
2016-01-01
It has been suggested that innovations occur mainly by combination: the more inventions accumulate, the higher the probability that new inventions are obtained from previous designs. Additionally, it has been conjectured that the combinatorial nature of innovations naturally leads to a singularity: at some finite time, the number of innovations should diverge. Although these ideas are certainly appealing, no general models have been yet developed to test the conditions under which combinatorial technology should become explosive. Here we present a generalised model of technological evolution that takes into account two major properties: the number of previous technologies needed to create a novel one and how rapidly technology ages. Two different models of combinatorial growth are considered, involving different forms of ageing. When long-range memory is used and thus old inventions are available for novel innovations, singularities can emerge under some conditions with two phases separated by a critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities will be observed. Instead, a "black hole" of old innovations appears and expands in time, making the rate of invention creation slow down into a linear regime.
O'Neill, J.C.; Blackwell, H. E.
2008-01-01
Diketopiperazines (DKPs) are a well-known class of heterocycles that have recently emerged as a promising biologically active scaffold. Solid-phase organic synthesis has become an important tool in the combinatorial exploration of these privileged structures, expediting the synthesis and, therefore, the discovery of active compounds. To date, certain DKPs have shown potent activities against a range of diseases and biological phenomena, including bacterial infections, various cancers, asthma, infertility, premature labor, and HIV. Recent applications of solid-phase DKP synthesis, with a particular focus on cyclative cleavage and microwave-assisted reactions, are highlighted herein. PMID:18288948
The disadvantage of combinatorial communication.
Lachmann, Michael; Bergstrom, Carl T.
2004-01-01
Combinatorial communication allows rapid and efficient transfer of detailed information, yet combinatorial communication is used by few, if any, non-human species. To complement recent studies illustrating the advantages of combinatorial communication, we highlight a critical disadvantage. We use the concept of information value to show that deception poses a greater and qualitatively different threat to combinatorial signalling than to non-combinatorial systems. This additional potential for deception may represent a strategic barrier that has prevented widespread evolution of combinatorial communication. Our approach has the additional benefit of drawing clear distinctions among several types of deception that can occur in communication systems. PMID:15556886
The disadvantage of combinatorial communication.
Lachmann, Michael; Bergstrom, Carl T
2004-11-22
Combinatorial communication allows rapid and efficient transfer of detailed information, yet combinatorial communication is used by few, if any, non-human species. To complement recent studies illustrating the advantages of combinatorial communication, we highlight a critical disadvantage. We use the concept of information value to show that deception poses a greater and qualitatively different threat to combinatorial signalling than to non-combinatorial systems. This additional potential for deception may represent a strategic barrier that has prevented widespread evolution of combinatorial communication. Our approach has the additional benefit of drawing clear distinctions among several types of deception that can occur in communication systems.
NASA Astrophysics Data System (ADS)
Ushijima, Timothy T.; Yeh, William W.-G.
2013-10-01
An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.
A combinatorial approach to the design of vaccines.
Martínez, Luis; Milanič, Martin; Legarreta, Leire; Medvedev, Paul; Malaina, Iker; de la Fuente, Ildefonso M
2015-05-01
We present two new problems of combinatorial optimization and discuss their applications to the computational design of vaccines. In the shortest λ-superstring problem, given a family S1,...,S(k) of strings over a finite alphabet, a set Τ of "target" strings over that alphabet, and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ target strings as substrings of S(i). In the shortest λ-cover superstring problem, given a collection X1,...,X(n) of finite sets of strings over a finite alphabet and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ elements of X(i) as substrings. The two problems are polynomially equivalent, and the shortest λ-cover superstring problem is a common generalization of two well known combinatorial optimization problems, the shortest common superstring problem and the set cover problem. We present two approaches to obtain exact or approximate solutions to the shortest λ-superstring and λ-cover superstring problems: one based on integer programming, and a hill-climbing algorithm. An application is given to the computational design of vaccines and the algorithms are applied to experimental data taken from patients infected by H5N1 and HIV-1.
Causal gene identification using combinatorial V-structure search.
Cai, Ruichu; Zhang, Zhenjie; Hao, Zhifeng
2013-07-01
With the advances of biomedical techniques in the last decade, the costs of human genomic sequencing and genomic activity monitoring are coming down rapidly. To support the huge genome-based business in the near future, researchers are eager to find killer applications based on human genome information. Causal gene identification is one of the most promising applications, which may help the potential patients to estimate the risk of certain genetic diseases and locate the target gene for further genetic therapy. Unfortunately, existing pattern recognition techniques, such as Bayesian networks, cannot be directly applied to find the accurate causal relationship between genes and diseases. This is mainly due to the insufficient number of samples and the extremely high dimensionality of the gene space. In this paper, we present the first practical solution to causal gene identification, utilizing a new combinatorial formulation over V-Structures commonly used in conventional Bayesian networks, by exploring the combinations of significant V-Structures. We prove the NP-hardness of the combinatorial search problem under a general settings on the significance measure on the V-Structures, and present a greedy algorithm to find sub-optimal results. Extensive experiments show that our proposal is both scalable and effective, particularly with interesting findings on the causal genes over real human genome data. Copyright © 2013 Elsevier Ltd. All rights reserved.
Scott-Phillips, Thomas C; Blythe, Richard A
2013-11-06
In a combinatorial communication system, some signals consist of the combinations of other signals. Such systems are more efficient than equivalent, non-combinatorial systems, yet despite this they are rare in nature. Why? Previous explanations have focused on the adaptive limits of combinatorial communication, or on its purported cognitive difficulties, but neither of these explains the full distribution of combinatorial communication in the natural world. Here, we present a nonlinear dynamical model of the emergence of combinatorial communication that, unlike previous models, considers how initially non-communicative behaviour evolves to take on a communicative function. We derive three basic principles about the emergence of combinatorial communication. We hence show that the interdependence of signals and responses places significant constraints on the historical pathways by which combinatorial signals might emerge, to the extent that anything other than the most simple form of combinatorial communication is extremely unlikely. We also argue that these constraints can be bypassed if individuals have the socio-cognitive capacity to engage in ostensive communication. Humans, but probably no other species, have this ability. This may explain why language, which is massively combinatorial, is such an extreme exception to nature's general trend for non-combinatorial communication.
ERIC Educational Resources Information Center
Lockwood, Elise; Swinyard, Craig A.
2016-01-01
In this paper, we present a set of activities for an introduction to solving counting problems. These activities emerged from a teaching experiment with two university students, during which they reinvented four basic counting formulas. Here we present a three-phase set of activities: orienting counting activities; reinvention counting activities;…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, H.B. III; Rosenkrantz, D.J.; Stearns, R.E.
We study both the complexity and approximability of various graph and combinatorial problems specified using two dimensional narrow periodic specifications (see [CM93, HW92, KMW67, KO91, Or84b, Wa93]). The following two general kinds of results are presented. (1) We prove that a number of natural graph and combinatorial problems are NEXPTIME- or EXPSPACE-complete when instances are so specified; (2) In contrast, we prove that the optimization versions of several of these NEXPTIME-, EXPSPACE-complete problems have polynomial time approximation algorithms with constant performance guarantees. Moreover, some of these problems even have polynomial time approximation schemes. We also sketch how our NEXPTIME-hardness resultsmore » can be used to prove analogous NEXPTIME-hardness results for problems specified using other kinds of succinct specification languages. Our results provide the first natural problems for which there is a proven exponential (and possibly doubly exponential) gap between the complexities of finding exact and approximate solutions.« less
Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation
NASA Astrophysics Data System (ADS)
Lichtor, Phillip A.; Miller, Scott J.
2012-12-01
Selectivity in the catalytic functionalization of complex molecules is a major challenge in chemical synthesis. The problem is magnified when there are several possible stereochemical outcomes and when similar functional groups occur repeatedly within the same molecule. Selective polyene oxidation provides an archetypical example of this challenge. Historically, enzymatic catalysis has provided the only precedents. Although non-enzymatic catalysts that meet some of these challenges became known, a comprehensive solution has remained elusive. Here, we describe low molecular weight peptide-based catalysts, discovered through a combinatorial synthesis and screening protocol, that exhibit site- and enantioselective oxidation of certain positions of various isoprenols. This diversity-based approach, which exhibits features reminiscent of the directed evolution of enzymes, delivers catalysts that compare favourably to the state-of-the-art for the asymmetric oxidation of these compounds. Moreover, the approach culminated in catalysts that exhibit alternative-site selectivity in comparison to oxidation catalysts previously described.
NASA Astrophysics Data System (ADS)
Chandra, Rishabh
Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.
Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization.
Bauer, Markus; Klau, Gunnar W; Reinert, Knut
2007-07-27
The discovery of functional non-coding RNA sequences has led to an increasing interest in algorithms related to RNA analysis. Traditional sequence alignment algorithms, however, fail at computing reliable alignments of low-homology RNA sequences. The spatial conformation of RNA sequences largely determines their function, and therefore RNA alignment algorithms have to take structural information into account. We present a graph-based representation for sequence-structure alignments, which we model as an integer linear program (ILP). We sketch how we compute an optimal or near-optimal solution to the ILP using methods from combinatorial optimization, and present results on a recently published benchmark set for RNA alignments. The implementation of our algorithm yields better alignments in terms of two published scores than the other programs that we tested: This is especially the case with an increasing number of input sequences. Our program LARA is freely available for academic purposes from http://www.planet-lisa.net.
Multiclass Data Segmentation using Diffuse Interface Methods on Graphs
2014-01-01
37] that performs interac- tive image segmentation using the solution to a combinatorial Dirichlet problem. Elmoataz et al . have developed general...izations of the graph Laplacian [25] for image denoising and manifold smoothing. Couprie et al . in [18] define a conve- niently parameterized graph...continuous setting carry over to the discrete graph representation. For general data segmentation, Bresson et al . in [8], present rigorous convergence
Performance evaluation of coherent Ising machines against classical neural networks
NASA Astrophysics Data System (ADS)
Haribara, Yoshitaka; Ishikawa, Hitoshi; Utsunomiya, Shoko; Aihara, Kazuyuki; Yamamoto, Yoshihisa
2017-12-01
The coherent Ising machine is expected to find a near-optimal solution in various combinatorial optimization problems, which has been experimentally confirmed with optical parametric oscillators and a field programmable gate array circuit. The similar mathematical models were proposed three decades ago by Hopfield et al in the context of classical neural networks. In this article, we compare the computational performance of both models.
Towards a theory of automated elliptic mesh generation
NASA Technical Reports Server (NTRS)
Cordova, J. Q.
1992-01-01
The theory of elliptic mesh generation is reviewed and the fundamental problem of constructing computational space is discussed. It is argued that the construction of computational space is an NP-Complete problem and therefore requires a nonstandard approach for its solution. This leads to the development of graph-theoretic, combinatorial optimization and integer programming algorithms. Methods for the construction of two dimensional computational space are presented.
Hamper, Bruce C; Kesselring, Allen S; Chott, Robert C; Yang, Shengtian
2009-01-01
A solid-phase organic synthesis method has been developed for the preparation of trisubstituted pyrimidin-6-one carboxylic acids 12, which allows elaboration to a 3-dimensional combinatorial library. Three substituents are introduced by initial Knoevenagel condensation of an aldehyde and malonate ester resin 7 to give resin bound 1. Cyclization of 1 with an N-substituted amidine 10, oxidation, and cleavage afforded pyrimidinone 12. The initial solid-phase reaction sequence was followed by gel-phase (19)FNMR and direct-cleavage (1)H NMR of intermediate resins to determine the optimal conditions. The scope of the method for library production was determined by investigation of a 3 x 4 pilot library of twelve compounds. Cyclocondensation of N-methylamidines and 7 followed by CAN oxidation gave mixtures of the resin bound pyrimidin-6-one 11 and the regioisomeric pyrimidin-4-one 15, which after cleavage from the resin afforded a nearly 1:1 mixture of pyrimidin-6-one and pyrimidin-4-one carboxylic acids 12 and 16, respectively. The regiochemical assignment was confirmed by ROESY1D and gHMBC NMR experiments. A library was prepared using 8 aldehydes, 3 nitriles, and 4 amines to give a full combinatorial set of 96 pyrimidinones 12. Confirmation of structural identity and purity was carried out by LCMS using coupled ELS detection and by high-throughput flow (1)H NMR.
Han, Yanbing; Siol, Sebastian; Zhang, Qun; ...
2017-09-27
Optically transparent materials with p-type electrical conductivity can facilitate the development of transparent electronics and improve the efficiency of photovoltaic solar cells. Sulfide materials represent an interesting alternative to oxides for these applications due to better hole transport properties. We prepare transparent and conductive Ba-Cu-S thin films by combinatorial cosputtering and characterized for their composition, structure, and optoelectronic properties. The conductivity and transparency of these films are found to be strongly dependent on their chemical composition and the substrate temperature during growth. The conductivity of BaCu 2S 2 and BaCu 4S 3 can reach 53 S/cm (at 250 °C) andmore » 74 S/cm (at 200 degrees C), respectively, which is higher than their solution processed/bulk counterparts. The 90% reflectance corrected transmittance is achieved in the wavelength range 600-1000 nm for BaCu 2S 2 and 650-1000 nm for BaCu 4S 3 (at 250 °C). These electrical and optical properties are comparable with other recently presented transparent p-type conductors, while the 200-350 degrees C processing temperature is low enough to be used in semiconductor devices with limited thermal budgets. Some attempts have been made to synthesize the related Sr-Cu-S materials, following the theoretical suggestion of their potential as transparent p-type conductors, but these attempts resulted only in phase-separated SrS and CuxS phases. Alloying BaCu 2S 2 with Sr on the Ba site on the other hand increases the conductivity to >100 S/cm while only slightly compromising the transparency of the material. To explain the difference between the Ba and the Sr containing copper sulfides, the lower bounds on the SrCu 2S 2 and SrCu 4S 3 formation enthalpies are estimated. While the doping of the Ba-Cu-S materials presented here is too large for application in transparent electronics, it is promising for potential use as p-type contact layers in thin film solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yanbing; Siol, Sebastian; Zhang, Qun
Optically transparent materials with p-type electrical conductivity can facilitate the development of transparent electronics and improve the efficiency of photovoltaic solar cells. Sulfide materials represent an interesting alternative to oxides for these applications due to better hole transport properties. We prepare transparent and conductive Ba-Cu-S thin films by combinatorial cosputtering and characterized for their composition, structure, and optoelectronic properties. The conductivity and transparency of these films are found to be strongly dependent on their chemical composition and the substrate temperature during growth. The conductivity of BaCu 2S 2 and BaCu 4S 3 can reach 53 S/cm (at 250 °C) andmore » 74 S/cm (at 200 degrees C), respectively, which is higher than their solution processed/bulk counterparts. The 90% reflectance corrected transmittance is achieved in the wavelength range 600-1000 nm for BaCu 2S 2 and 650-1000 nm for BaCu 4S 3 (at 250 °C). These electrical and optical properties are comparable with other recently presented transparent p-type conductors, while the 200-350 degrees C processing temperature is low enough to be used in semiconductor devices with limited thermal budgets. Some attempts have been made to synthesize the related Sr-Cu-S materials, following the theoretical suggestion of their potential as transparent p-type conductors, but these attempts resulted only in phase-separated SrS and CuxS phases. Alloying BaCu 2S 2 with Sr on the Ba site on the other hand increases the conductivity to >100 S/cm while only slightly compromising the transparency of the material. To explain the difference between the Ba and the Sr containing copper sulfides, the lower bounds on the SrCu 2S 2 and SrCu 4S 3 formation enthalpies are estimated. While the doping of the Ba-Cu-S materials presented here is too large for application in transparent electronics, it is promising for potential use as p-type contact layers in thin film solar cells.« less
ERIC Educational Resources Information Center
Duarte, Robert; Nielson, Janne T.; Dragojlovic, Veljko
2004-01-01
A group of techniques aimed at synthesizing a large number of structurally diverse compounds is called combinatorial synthesis. Synthesis of chemiluminescence esters using parallel combinatorial synthesis and mix-and-split combinatorial synthesis is experimented.
Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis
NASA Astrophysics Data System (ADS)
Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro
2018-04-01
The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.
Asessing for Structural Understanding in Childrens' Combinatorial Problem Solving.
ERIC Educational Resources Information Center
English, Lyn
1999-01-01
Assesses children's structural understanding of combinatorial problems when presented in a variety of task situations. Provides an explanatory model of students' combinatorial understandings that informs teaching and assessment. Addresses several components of children's structural understanding of elementary combinatorial problems. (Contains 50…
Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs
2014-01-01
interac- tive image segmentation using the solution to a combinatorial Dirichlet problem. Elmoataz et al . have developed general- izations of the graph...Laplacian [25] for image denoising and manifold smoothing. Couprie et al . in [18] define a conve- niently parameterized graph-based energy function that...over to the discrete graph representation. For general data segmentation, Bresson et al . in [8], present rigorous convergence results for two algorithms
Solving Connected Subgraph Problems in Wildlife Conservation
NASA Astrophysics Data System (ADS)
Dilkina, Bistra; Gomes, Carla P.
We investigate mathematical formulations and solution techniques for a variant of the Connected Subgraph Problem. Given a connected graph with costs and profits associated with the nodes, the goal is to find a connected subgraph that contains a subset of distinguished vertices. In this work we focus on the budget-constrained version, where we maximize the total profit of the nodes in the subgraph subject to a budget constraint on the total cost. We propose several mixed-integer formulations for enforcing the subgraph connectivity requirement, which plays a key role in the combinatorial structure of the problem. We show that a new formulation based on subtour elimination constraints is more effective at capturing the combinatorial structure of the problem, providing significant advantages over the previously considered encoding which was based on a single commodity flow. We test our formulations on synthetic instances as well as on real-world instances of an important problem in environmental conservation concerning the design of wildlife corridors. Our encoding results in a much tighter LP relaxation, and more importantly, it results in finding better integer feasible solutions as well as much better upper bounds on the objective (often proving optimality or within less than 1% of optimality), both when considering the synthetic instances as well as the real-world wildlife corridor instances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.
Here, the controlled decomposition of metastable alloys is an attractive route to form nanostructured thermoelectric materials with reduced thermal conductivity. The ternary SnTe–MnTe and SnTe–SnSe heterostructural alloys have been demonstrated as promising materials for thermoelectric applications. In this work, the quaternary Sn 1–yMnyTe 1–xSe x phase space serves as a relevant model system to explore how a combination of computational and combinatorial-growth methods can be used to study equilibrium and non-equilibrium solubility limits. Results from first principle calculations indicate low equilibrium solubility for x,y < 0.05 that are in good agreement with results obtained from bulk equilibrium synthesis experiments andmore » predict significantly higher spinodal limits. An experimental screening using sputtered combinatorial thin film sample libraries showed a remarkable increase in non-equilibrium solubility for x,y > 0.2. These theoretical and experimental results were used to guide the bulk synthesis of metastable alloys. The ability to reproduce the non-equilibrium solubility levels in bulk materials indicates that such theoretical calculations and combinatorial growth can inform bulk synthetic routes. Further, the large difference between equilibrium and non-equilibrium solubility limits in Sn 1–yMn yTe 1–xSe x indicates these metastable alloys are attractive in terms of nano-precipitate formation for potential thermoelectric applications.« less
Molecular computation: RNA solutions to chess problems.
Faulhammer, D; Cukras, A R; Lipton, R J; Landweber, L F
2000-02-15
We have expanded the field of "DNA computers" to RNA and present a general approach for the solution of satisfiability problems. As an example, we consider a variant of the "Knight problem," which asks generally what configurations of knights can one place on an n x n chess board such that no knight is attacking any other knight on the board. Using specific ribonuclease digestion to manipulate strands of a 10-bit binary RNA library, we developed a molecular algorithm and applied it to a 3 x 3 chessboard as a 9-bit instance of this problem. Here, the nine spaces on the board correspond to nine "bits" or placeholders in a combinatorial RNA library. We recovered a set of "winning" molecules that describe solutions to this problem.
Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication
ERIC Educational Resources Information Center
Wolf, Michael Maclean
2009-01-01
Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…
Solving optimization problems by the public goods game
NASA Astrophysics Data System (ADS)
Javarone, Marco Alberto
2017-09-01
We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.
Perspective: Memcomputing: Leveraging memory and physics to compute efficiently
NASA Astrophysics Data System (ADS)
Di Ventra, Massimiliano; Traversa, Fabio L.
2018-05-01
It is well known that physical phenomena may be of great help in computing some difficult problems efficiently. A typical example is prime factorization that may be solved in polynomial time by exploiting quantum entanglement on a quantum computer. There are, however, other types of (non-quantum) physical properties that one may leverage to compute efficiently a wide range of hard problems. In this perspective, we discuss how to employ one such property, memory (time non-locality), in a novel physics-based approach to computation: Memcomputing. In particular, we focus on digital memcomputing machines (DMMs) that are scalable. DMMs can be realized with non-linear dynamical systems with memory. The latter property allows the realization of a new type of Boolean logic, one that is self-organizing. Self-organizing logic gates are "terminal-agnostic," namely, they do not distinguish between the input and output terminals. When appropriately assembled to represent a given combinatorial/optimization problem, the corresponding self-organizing circuit converges to the equilibrium points that express the solutions of the problem at hand. In doing so, DMMs take advantage of the long-range order that develops during the transient dynamics. This collective dynamical behavior, reminiscent of a phase transition, or even the "edge of chaos," is mediated by families of classical trajectories (instantons) that connect critical points of increasing stability in the system's phase space. The topological character of the solution search renders DMMs robust against noise and structural disorder. Since DMMs are non-quantum systems described by ordinary differential equations, not only can they be built in hardware with the available technology, they can also be simulated efficiently on modern classical computers. As an example, we will show the polynomial-time solution of the subset-sum problem for the worst cases, and point to other types of hard problems where simulations of DMMs' equations of motion on classical computers have already demonstrated substantial advantages over traditional approaches. We conclude this article by outlining further directions of study.
Combinatorial structures to modeling simple games and applications
NASA Astrophysics Data System (ADS)
Molinero, Xavier
2017-09-01
We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-)heuristics algorithms and parallel programming, among others.
NASA Astrophysics Data System (ADS)
Alemany, Kristina
Electric propulsion has recently become a viable technology for spacecraft, enabling shorter flight times, fewer required planetary gravity assists, larger payloads, and/or smaller launch vehicles. With the maturation of this technology, however, comes a new set of challenges in the area of trajectory design. Because low-thrust trajectory optimization has historically required long run-times and significant user-manipulation, mission design has relied on expert-based knowledge for selecting departure and arrival dates, times of flight, and/or target bodies and gravitational swing-bys. These choices are generally based on known configurations that have worked well in previous analyses or simply on trial and error. At the conceptual design level, however, the ability to explore the full extent of the design space is imperative to locating the best solutions in terms of mass and/or flight times. Beginning in 2005, the Global Trajectory Optimization Competition posed a series of difficult mission design problems, all requiring low-thrust propulsion and visiting one or more asteroids. These problems all had large ranges on the continuous variables---launch date, time of flight, and asteroid stay times (when applicable)---as well as being characterized by millions or even billions of possible asteroid sequences. Even with recent advances in low-thrust trajectory optimization, full enumeration of these problems was not possible within the stringent time limits of the competition. This investigation develops a systematic methodology for determining a broad suite of good solutions to the combinatorial, low-thrust, asteroid tour problem. The target application is for conceptual design, where broad exploration of the design space is critical, with the goal being to rapidly identify a reasonable number of promising solutions for future analysis. The proposed methodology has two steps. The first step applies a three-level heuristic sequence developed from the physics of the problem, which allows for efficient pruning of the design space. The second phase applies a global optimization scheme to locate a broad suite of good solutions to the reduced problem. The global optimization scheme developed combines a novel branch-and-bound algorithm with a genetic algorithm and an industry-standard low-thrust trajectory optimization program to solve for the following design variables: asteroid sequence, launch date, times of flight, and asteroid stay times. The methodology is developed based on a small sample problem, which is enumerated and solved so that all possible discretized solutions are known. The methodology is then validated by applying it to a larger intermediate sample problem, which also has a known solution. Next, the methodology is applied to several larger combinatorial asteroid rendezvous problems, using previously identified good solutions as validation benchmarks. These problems include the 2nd and 3rd Global Trajectory Optimization Competition problems. The methodology is shown to be capable of achieving a reduction in the number of asteroid sequences of 6-7 orders of magnitude, in terms of the number of sequences that require low-thrust optimization as compared to the number of sequences in the original problem. More than 70% of the previously known good solutions are identified, along with several new solutions that were not previously reported by any of the competitors. Overall, the methodology developed in this investigation provides an organized search technique for the low-thrust mission design of asteroid rendezvous problems.
Combinatorial microfluidic droplet engineering for biomimetic material synthesis
Bawazer, Lukmaan A.; McNally, Ciara S.; Empson, Christopher J.; Marchant, William J.; Comyn, Tim P.; Niu, Xize; Cho, Soongwon; McPherson, Michael J.; Binks, Bernard P.; deMello, Andrew; Meldrum, Fiona C.
2016-01-01
Although droplet-based systems are used in a wide range of technologies, opportunities for systematically customizing their interface chemistries remain relatively unexplored. This article describes a new microfluidic strategy for rapidly tailoring emulsion droplet compositions and properties. The approach uses a simple platform for screening arrays of droplet-based microfluidic devices and couples this with combinatorial selection of the droplet compositions. Through the application of genetic algorithms over multiple screening rounds, droplets with target properties can be rapidly generated. The potential of this method is demonstrated by creating droplets with enhanced stability, where this is achieved by selecting carrier fluid chemistries that promote titanium dioxide formation at the droplet interfaces. The interface is a mixture of amorphous and crystalline phases, and the resulting composite droplets are biocompatible, supporting in vitro protein expression in their interiors. This general strategy will find widespread application in advancing emulsion properties for use in chemistry, biology, materials, and medicine. PMID:27730209
Combinatorial therapy discovery using mixed integer linear programming.
Pang, Kaifang; Wan, Ying-Wooi; Choi, William T; Donehower, Lawrence A; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong
2014-05-15
Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. zhandong.liu@bcm.edu Supplementary data are available at Bioinformatics online.
Modeling of metastable phase formation diagrams for sputtered thin films.
Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M
2016-01-01
A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.
NASA Astrophysics Data System (ADS)
Guo, Sangang
2017-09-01
There are two stages in solving security-constrained unit commitment problems (SCUC) within Lagrangian framework: one is to obtain feasible units’ states (UC), the other is power economic dispatch (ED) for each unit. The accurate solution of ED is more important for enhancing the efficiency of the solution to SCUC for the fixed feasible units’ statues. Two novel methods named after Convex Combinatorial Coefficient Method and Power Increment Method respectively based on linear programming problem for solving ED are proposed by the piecewise linear approximation to the nonlinear convex fuel cost functions. Numerical testing results show that the methods are effective and efficient.
A New Approach for Proving or Generating Combinatorial Identities
ERIC Educational Resources Information Center
Gonzalez, Luis
2010-01-01
A new method for proving, in an immediate way, many combinatorial identities is presented. The method is based on a simple recursive combinatorial formula involving n + 1 arbitrary real parameters. Moreover, this formula enables one not only to prove, but also generate many different combinatorial identities (not being required to know them "a…
Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner
2013-04-08
In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
Dynamic combinatorial libraries: new opportunities in systems chemistry.
Hunt, Rosemary A R; Otto, Sijbren
2011-01-21
Combinatorial chemistry is a tool for selecting molecules with special properties. Dynamic combinatorial chemistry started off aiming to be just that. However, unlike ordinary combinatorial chemistry, the interconnectedness of dynamic libraries gives them an extra dimension. An understanding of these molecular networks at systems level is essential for their use as a selection tool and creates exciting new opportunities in systems chemistry. In this feature article we discuss selected examples and considerations related to the advanced exploitation of dynamic combinatorial libraries for their originally conceived purpose of identifying strong binding interactions. Also reviewed are examples illustrating a trend towards increasing complexity in terms of network behaviour and reversible chemistry. Finally, new applications of dynamic combinatorial chemistry in self-assembly, transport and self-replication are discussed.
Manipulating Tabu List to Handle Machine Breakdowns in Job Shop Scheduling Problems
NASA Astrophysics Data System (ADS)
Nababan, Erna Budhiarti; SalimSitompul, Opim
2011-06-01
Machine breakdowns in a production schedule may occur on a random basis that make the well-known hard combinatorial problem of Job Shop Scheduling Problems (JSSP) becomes more complex. One of popular techniques used to solve the combinatorial problems is Tabu Search. In this technique, moves that will be not allowed to be revisited are retained in a tabu list in order to avoid in gaining solutions that have been obtained previously. In this paper, we propose an algorithm to employ a second tabu list to keep broken machines, in addition to the tabu list that keeps the moves. The period of how long the broken machines will be kept on the list is categorized using fuzzy membership function. Our technique are tested to the benchmark data of JSSP available on the OR library. From the experiment, we found that our algorithm is promising to help a decision maker to face the event of machine breakdowns.
Exact combinatorial approach to finite coagulating systems
NASA Astrophysics Data System (ADS)
Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr
2018-02-01
This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.
Kashyap, Arun K; Steel, John; Oner, Ahmet F; Dillon, Michael A; Swale, Ryann E; Wall, Katherine M; Perry, Kimberly J; Faynboym, Aleksandr; Ilhan, Mahmut; Horowitz, Michael; Horowitz, Lawrence; Palese, Peter; Bhatt, Ramesh R; Lerner, Richard A
2008-04-22
The widespread incidence of H5N1 influenza viruses in bird populations poses risks to human health. Although the virus has not yet adapted for facile transmission between humans, it can cause severe disease and often death. Here we report the generation of combinatorial antibody libraries from the bone marrow of five survivors of the recent H5N1 avian influenza outbreak in Turkey. To date, these libraries have yielded >300 unique antibodies against H5N1 viral antigens. Among these antibodies, we have identified several broadly reactive neutralizing antibodies that could be used for passive immunization against H5N1 virus or as guides for vaccine design. The large number of antibodies obtained from these survivors provide a detailed immunochemical analysis of individual human solutions to virus neutralization in the setting of an actual virulent influenza outbreak. Remarkably, three of these antibodies neutralized both H1 and H5 subtype influenza viruses.
Perspective: Stochastic magnetic devices for cognitive computing
NASA Astrophysics Data System (ADS)
Roy, Kaushik; Sengupta, Abhronil; Shim, Yong
2018-06-01
Stochastic switching of nanomagnets can potentially enable probabilistic cognitive hardware consisting of noisy neural and synaptic components. Furthermore, computational paradigms inspired from the Ising computing model require stochasticity for achieving near-optimality in solutions to various types of combinatorial optimization problems such as the Graph Coloring Problem or the Travelling Salesman Problem. Achieving optimal solutions in such problems are computationally exhaustive and requires natural annealing to arrive at the near-optimal solutions. Stochastic switching of devices also finds use in applications involving Deep Belief Networks and Bayesian Inference. In this article, we provide a multi-disciplinary perspective across the stack of devices, circuits, and algorithms to illustrate how the stochastic switching dynamics of spintronic devices in the presence of thermal noise can provide a direct mapping to the computational units of such probabilistic intelligent systems.
Molecular computation: RNA solutions to chess problems
Faulhammer, Dirk; Cukras, Anthony R.; Lipton, Richard J.; Landweber, Laura F.
2000-01-01
We have expanded the field of “DNA computers” to RNA and present a general approach for the solution of satisfiability problems. As an example, we consider a variant of the “Knight problem,” which asks generally what configurations of knights can one place on an n × n chess board such that no knight is attacking any other knight on the board. Using specific ribonuclease digestion to manipulate strands of a 10-bit binary RNA library, we developed a molecular algorithm and applied it to a 3 × 3 chessboard as a 9-bit instance of this problem. Here, the nine spaces on the board correspond to nine “bits” or placeholders in a combinatorial RNA library. We recovered a set of “winning” molecules that describe solutions to this problem. PMID:10677471
cDREM: inferring dynamic combinatorial gene regulation.
Wise, Aaron; Bar-Joseph, Ziv
2015-04-01
Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.
Lee, M L; Schneider, G
2001-01-01
Natural products were analyzed to determine whether they contain appealing novel scaffold architectures for potential use in combinatorial chemistry. Ring systems were extracted and clustered on the basis of structural similarity. Several such potential scaffolds for combinatorial chemistry were identified that are not present in current trade drugs. For one of these scaffolds a virtual combinatorial library was generated. Pharmacophoric properties of natural products, trade drugs, and the virtual combinatorial library were assessed using a self-organizing map. Obviously, current trade drugs and natural products have several topological pharmacophore patterns in common. These features can be systematically explored with selected combinatorial libraries based on a combination of natural product-derived and synthetic molecular building blocks.
Use of combinatorial chemistry to speed drug discovery.
Rádl, S
1998-10-01
IBC's International Conference on Integrating Combinatorial Chemistry into the Discovery Pipeline was held September 14-15, 1998. The program started with a pre-conference workshop on High-Throughput Compound Characterization and Purification. The agenda of the main conference was divided into sessions of Synthesis, Automation and Unique Chemistries; Integrating Combinatorial Chemistry, Medicinal Chemistry and Screening; Combinatorial Chemistry Applications for Drug Discovery; and Information and Data Management. This meeting was an excellent opportunity to see how big pharma, biotech and service companies are addressing the current bottlenecks in combinatorial chemistry to speed drug discovery. (c) 1998 Prous Science. All rights reserved.
Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses.
Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C; Altman, Sidney; Schwarz, Udo D; Kyriakides, Themis R; Schroers, Jan
2016-05-27
Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.
Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses
NASA Astrophysics Data System (ADS)
Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan
2016-05-01
Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.
Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses
Liu, Yanhui; Padmanabhan, Jagannath; Cheung, Bettina; Liu, Jingbei; Chen, Zheng; Scanley, B. Ellen; Wesolowski, Donna; Pressley, Mariyah; Broadbridge, Christine C.; Altman, Sidney; Schwarz, Udo D.; Kyriakides, Themis R.; Schroers, Jan
2016-01-01
Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design. PMID:27230692
Caracciolo, Sergio; Sicuro, Gabriele
2014-10-01
We discuss the equivalence relation between the Euclidean bipartite matching problem on the line and on the circumference and the Brownian bridge process on the same domains. The equivalence allows us to compute the correlation function and the optimal cost of the original combinatorial problem in the thermodynamic limit; moreover, we solve also the minimax problem on the line and on the circumference. The properties of the average cost and correlation functions are discussed.
An efficient annealing in Boltzmann machine in Hopfield neural network
NASA Astrophysics Data System (ADS)
Kin, Teoh Yeong; Hasan, Suzanawati Abu; Bulot, Norhisam; Ismail, Mohammad Hafiz
2012-09-01
This paper proposes and implements Boltzmann machine in Hopfield neural network doing logic programming based on the energy minimization system. The temperature scheduling in Boltzmann machine enhancing the performance of doing logic programming in Hopfield neural network. The finest temperature is determined by observing the ratio of global solution and final hamming distance using computer simulations. The study shows that Boltzmann Machine model is more stable and competent in term of representing and solving difficult combinatory problems.
Puthiyedth, Nisha; Riveros, Carlos; Berretta, Regina; Moscato, Pablo
2015-01-01
Background The joint study of multiple datasets has become a common technique for increasing statistical power in detecting biomarkers obtained from smaller studies. The approach generally followed is based on the fact that as the total number of samples increases, we expect to have greater power to detect associations of interest. This methodology has been applied to genome-wide association and transcriptomic studies due to the availability of datasets in the public domain. While this approach is well established in biostatistics, the introduction of new combinatorial optimization models to address this issue has not been explored in depth. In this study, we introduce a new model for the integration of multiple datasets and we show its application in transcriptomics. Methods We propose a new combinatorial optimization problem that addresses the core issue of biomarker detection in integrated datasets. Optimal solutions for this model deliver a feature selection from a panel of prospective biomarkers. The model we propose is a generalised version of the (α,β)-k-Feature Set problem. We illustrate the performance of this new methodology via a challenging meta-analysis task involving six prostate cancer microarray datasets. The results are then compared to the popular RankProd meta-analysis tool and to what can be obtained by analysing the individual datasets by statistical and combinatorial methods alone. Results Application of the integrated method resulted in a more informative signature than the rank-based meta-analysis or individual dataset results, and overcomes problems arising from real world datasets. The set of genes identified is highly significant in the context of prostate cancer. The method used does not rely on homogenisation or transformation of values to a common scale, and at the same time is able to capture markers associated with subgroups of the disease. PMID:26106884
Microbatteries for Combinatorial Studies of Conventional Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
West, William; Whitacre, Jay; Bugga, Ratnakumar
2003-01-01
Integrated arrays of microscopic solid-state batteries have been demonstrated in a continuing effort to develop microscopic sources of power and of voltage reference circuits to be incorporated into low-power integrated circuits. Perhaps even more importantly, arrays of microscopic batteries can be fabricated and tested in combinatorial experiments directed toward optimization and discovery of battery materials. The value of the combinatorial approach to optimization and discovery has been proven in the optoelectronic, pharmaceutical, and bioengineering industries. Depending on the specific application, the combinatorial approach can involve the investigation of hundreds or even thousands of different combinations; hence, it is time-consuming and expensive to attempt to implement the combinatorial approach by building and testing full-size, discrete cells and batteries. The conception of microbattery arrays makes it practical to bring the advantages of the combinatorial approach to the development of batteries.
MIFT: GIFT Combinatorial Geometry Input to VCS Code
1977-03-01
r-w w-^ H ^ß0318is CQ BRL °RCUMr REPORT NO. 1967 —-S: ... MIFT: GIFT COMBINATORIAL GEOMETRY INPUT TO VCS CODE Albert E...TITLE (and Subtitle) MIFT: GIFT Combinatorial Geometry Input to VCS Code S. TYPE OF REPORT & PERIOD COVERED FINAL 6. PERFORMING ORG. REPORT NUMBER...Vehicle Code System (VCS) called MORSE was modified to accept the GIFT combinatorial geometry package. GIFT , as opposed to the geometry package
Neural Meta-Memes Framework for Combinatorial Optimization
NASA Astrophysics Data System (ADS)
Song, Li Qin; Lim, Meng Hiot; Ong, Yew Soon
In this paper, we present a Neural Meta-Memes Framework (NMMF) for combinatorial optimization. NMMF is a framework which models basic optimization algorithms as memes and manages them dynamically when solving combinatorial problems. NMMF encompasses neural networks which serve as the overall planner/coordinator to balance the workload between memes. We show the efficacy of the proposed NMMF through empirical study on a class of combinatorial problem, the quadratic assignment problem (QAP).
Exact solutions for mass-dependent irreversible aggregations.
Son, Seung-Woo; Christensen, Claire; Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya
2011-10-01
We consider the mass-dependent aggregation process (k+1)X→X, given a fixed number of unit mass particles in the initial state. One cluster is chosen proportional to its mass and is merged into one, either with k neighbors in one dimension, or--in the well-mixed case--with k other clusters picked randomly. We find the same combinatorial exact solutions for the probability to find any given configuration of particles on a ring or line, and in the well-mixed case. The mass distribution of a single cluster exhibits scaling laws and the finite-size scaling form is given. The relation to the classical sum kernel of irreversible aggregation is discussed.
FOREWORD: Focus on Combinatorial Materials Science Focus on Combinatorial Materials Science
NASA Astrophysics Data System (ADS)
Chikyo, Toyohiro
2011-10-01
About 15 years have passed since the introduction of modern combinatorial synthesis and high-throughput techniques for the development of novel inorganic materials; however, similar methods existed before. The most famous was reported in 1970 by Hanak who prepared composition-spread films of metal alloys by sputtering mixed-material targets. Although this method was innovative, it was rarely used because of the large amount of data to be processed. This problem is solved in the modern combinatorial material research, which is strongly related to computer data analysis and robotics. This field is still at the developing stage and may be enriched by new methods. Nevertheless, given the progress in measurement equipment and procedures, we believe the combinatorial approach will become a major and standard tool of materials screening and development. The first article of this journal, published in 2000, was titled 'Combinatorial solid state materials science and technology', and this focus issue aims to reintroduce this topic to the Science and Technology of Advanced Materials audience. It covers recent progress in combinatorial materials research describing new results in catalysis, phosphors, polymers and metal alloys for shape memory materials. Sophisticated high-throughput characterization schemes and innovative synthesis tools are also presented, such as spray deposition using nanoparticles or ion plating. On a technical note, data handling systems are introduced to familiarize researchers with the combinatorial methodology. We hope that through this focus issue a wide audience of materials scientists can learn about recent and future trends in combinatorial materials science and high-throughput experimentation.
Effects of American Ginseng on Preimplantation Development and Pregnancy in Mice.
Belanger, Danyka; Calder, Michele D; Gianetto-Berruti, Alessandra; Lui, Edmund M; Watson, Andrew J; Feyles, Valter
2016-01-01
In North America, a high proportion of pregnant women use herbal medications including North American ginseng. This medicinal plant contains high amounts of triterpene saponins (ginsenosides), which are the main bioactive compounds. It is important to assess ginseng's impact on all reproductive functions to ensure the safety of pregnant women and fetuses. In this study, we defined the concentration-responsive effects of North American alcoholic and aqueous ginseng extracts on preimplantation development in vitro and on pregnancy and post-partum development in the mouse. Two-cell mouse embryos were cultured with 5 different concentrations of whole ginseng root extracts, or ginsenosides Rb1, Rg1 and Re alone, a combinatorial ginsenoside solution and a crude polysaccharide fraction solution. Embryonic development and recovery from each treatment was assessed. To investigate the in vivo effects of ginseng extracts, female mice were gavaged with 50[Formula: see text]mg/kg/day, 500[Formula: see text]mg/kg/day or 2000[Formula: see text]mg/kg/day of either extract (treatment) or water (sham) for 2 weeks prior to mating and throughout gestation. Gestation period, litter size, pup growth and pup sex ratio were evaluated. Oral ginseng consumption did not significantly affect fertility or pregnancy in the mouse. High doses of ginseng (2000[Formula: see text]mg/kg/day) decreased maternal weight gain. Direct treatment of preimplantation embryos in vitro demonstrated that ALC and AQ extract treatment reduced development in a concentration responsive manner, while only ALC extract effects were largely reversible. Treatments with individual or combinatorial ginsenosides, or the polysaccharide fraction solution alone did not impair preimplantation development, in vitro. In conclusion, maternal oral consumption of ginseng has little negative impact on pregnancy in the mouse, however, direct exposure to ginseng extract during mouse preimplantation development in vitro is detrimental.
Candiano, Giovanni; Santucci, Laura; Petretto, Andrea; Lavarello, Chiara; Inglese, Elvira; Bruschi, Maurizio; Ghiggeri, Gian Marco; Boschetti, Egisto; Righetti, Pier Giorgio
2015-01-01
Combinatorial peptide ligand libraries (CPLLs) tend to bind complex molecules such as dyes due to their aromatic, heterocyclic, hydrophobic, and ionic nature that may affect the protein capture specificity. In this experimental work Alcian Blue 8GX, a positively charged phthalocyanine dye well-known to bind to glycoproteins and to glucosaminoglycans, was adsorbed on a chemically modified CPLL solid phase, and the behavior of the resulting conjugate was then investigated. The control and dye-adsorbed beads were used to harvest the human urinary proteome at physiological pH, this resulting in a grand total of 1151 gene products identified after the capture. Although the Alcian Blue-modified CPLL incremented the total protein capture by 115 species, it particularly enriched some families among the harvested proteins, such as glycoproteins and nucleotide-binding proteins. This study teaches that it is possible, via the two combined harvest mechanisms, to drive the CPLL capture toward the enrichment of specific protein categories.
Combinatorial investigation of Fe–B thin-film nanocomposites
Brunken, Hayo; Grochla, Dario; Savan, Alan; Kieschnick, Michael; Meijer, Jan D; Ludwig, Alfred
2011-01-01
Combinatorial magnetron sputter deposition from elemental targets was used to create Fe–B composition spread type thin film materials libraries on thermally oxidized 4-in. Si wafers. The materials libraries consisting of wedge-type multilayer thin films were annealed at 500 or 700 °C to transform the multilayers into multiphase alloys. The libraries were characterized by nuclear reaction analysis, Rutherford backscattering, nanoindentation, vibrating sample magnetometry, x-ray diffraction (XRD) and transmission electron microscopy (TEM). Young's modulus and hardness values were related to the annealing parameters, structure and composition of the films. The magnetic properties of the films were improved by annealing in a H2 atmosphere, showing a more than tenfold decrease in the coercive field values in comparison to those of the vacuum-annealed films. The hardness values increased from 8 to 18 GPa when the annealing temperature was increased from 500 to 700 °C. The appearance of Fe2B phases, as revealed by XRD and TEM, had a significant effect on the mechanical properties of the films. PMID:27877435
Combinatorial ligand libraries as a two-dimensional method for proteome analysis.
Santucci, Laura; Candiano, Giovanni; Petretto, Andrea; Lavarello, Chiara; Bruschi, Maurizio; Ghiggeri, Gian Marco; Citterio, Attilio; Righetti, Pier Giorgio
2013-07-05
The present report tries to assess the possibility of performing capture of proteomes via combinatorial peptide ligand libraries (CPLL) in a two-dimensional (2D) mode, i.e. via orthogonal complementarity in the capture phase. To that aim, serum proteins are captured at physiological pH either at low ionic strength (25mM NaCl) or at high concentrations of lyotropic salts of the Hofmeister series (1M ammonium sulphate) favouring hydrophobic interaction. Indeed such 2D mechanisms seems to be operative, since 52% of the captured proteins are common to the two capture modes, 20% are specific only of the "ionic" interaction mode and 28% are found only in the "hydrophobically" driven interaction. As an additional bonus, losses of protein species from the initial sample, one of the major drawbacks of CPLLs, are diminished to about 5% and are found only in the ionic capture, whereas the hydrophobically engendered capture is loss-free. Copyright © 2013 Elsevier B.V. All rights reserved.
Iera, Jaclyn A; Jenkins, Lisa M Miller; Kajiyama, Hiroshi; Kopp, Jeffrey B; Appella, Daniel H
2010-11-15
Inhibitors for protein-protein interactions are challenging to design, in part due to the unique and complex architectures of each protein's interaction domain. Most approaches to develop inhibitors for these interactions rely on rational design, which requires prior structural knowledge of the target and its ligands. In the absence of structural information, a combinatorial approach may be the best alternative to finding inhibitors of a protein-protein interaction. Current chemical libraries, however, consist mostly of molecules designed to inhibit enzymes. In this manuscript, we report the synthesis and screening of a library based on an N-acylated polyamine (NAPA) scaffold that we designed to have specific molecular features necessary to inhibit protein-protein interactions. Screens of the library identified a member with favorable binding properties to the HIV viral protein R (Vpr), a regulatory protein from HIV, that is involved in numerous interactions with other proteins critical for viral replication. Published by Elsevier Ltd.
UNC Center for Dynamic Combinatorial Chemistry
2014-04-09
Thioester Exchange, Organic Letters (04 2010) Chung, Schiltz, Lee, and Gagne. The Effect of Gas-Phase Reactions on the Quantitation of Cyclic...Figure 6.1c) These monomers have L-tryptophan, L-leucine, L- phenylalanine , and the sequential L-proline and D-proline functions. These functions...are known as the parts of three hydrophobic side chains in the tumor suppressor protein p53 and make direct contacts deep in the MDM2 cleft (Figure
Antolini, Ermete
2017-02-13
Combinatorial chemistry and high-throughput screening represent an innovative and rapid tool to prepare and evaluate a large number of new materials, saving time and expense for research and development. Considering that the activity and selectivity of catalysts depend on complex kinetic phenomena, making their development largely empirical in practice, they are prime candidates for combinatorial discovery and optimization. This review presents an overview of recent results of combinatorial screening of low-temperature fuel cell electrocatalysts for methanol oxidation. Optimum catalyst compositions obtained by combinatorial screening were compared with those of bulk catalysts, and the effect of the library geometry on the screening of catalyst composition is highlighted.
Combinatorial Nano-Bio Interfaces.
Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong
2018-06-08
Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.
Koyama, Michihisa; Tsuboi, Hideyuki; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A; Miyamoto, Akira
2007-02-01
Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry. This combinatorial computational chemistry approach enables theoretical high-throughput screening for materials design. In this manuscript, we review the successful applications of combinatorial computational chemistry to deNO(x) catalysts, Fischer-Tropsch catalysts, lanthanoid complex catalysts, and cathodes of the lithium ion secondary battery.
2009-03-27
ones like the Lennard - Jones potential with established parameters for each gas (e.g. N2 and 02), and for inelastic collisions DSMC method employs...solution of the collision integral. Lennard - Jones potential with two free parameters is used to obtain the elastic cross-section of the gas molecules...and the so called "combinatory relations" are used to obtain parameters of Lennard - Jones potential for an interaction of molecule A with molecule B
Chess games: a model for RNA based computation.
Cukras, A R; Faulhammer, D; Lipton, R J; Landweber, L F
1999-10-01
Here we develop the theory of RNA computing and a method for solving the 'knight problem' as an instance of a satisfiability (SAT) problem. Using only biological molecules and enzymes as tools, we developed an algorithm for solving the knight problem (3 x 3 chess board) using a 10-bit combinatorial pool and sequential RNase H digestions. The results of preliminary experiments presented here reveal that the protocol recovers far more correct solutions than expected at random, but the persistence of errors still presents the greatest challenge.
Black hole state counting in loop quantum gravity: a number-theoretical approach.
Agulló, Iván; Barbero G, J Fernando; Díaz-Polo, Jacobo; Fernández-Borja, Enrique; Villaseñor, Eduardo J S
2008-05-30
We give an efficient method, combining number-theoretic and combinatorial ideas, to exactly compute black hole entropy in the framework of loop quantum gravity. Along the way we provide a complete characterization of the relevant sector of the spectrum of the area operator, including degeneracies, and explicitly determine the number of solutions to the projection constraint. We use a computer implementation of the proposed algorithm to confirm and extend previous results on the detailed structure of the black hole degeneracy spectrum.
Probabilistic Analysis of Combinatorial Optimization Problems on Hypergraph Matchings
2012-02-01
per dimension” ( recall that d is equal to the number of independent subsets of vertices Vk in the hypergraph Hd jn, and n denotes the number of...disjoint solutions whose costs are iid random variables. First, recalling the interpretation of feasible MAP solu- tions as paths in the index graph G, we...elements. On the other hand, recall that a (feasible) path G can be described as a set of n vectors D f.i .1/ 1 ; : : : ; i .1/ d /; : : : ; .i .n
Melonic Phase Transition in Group Field Theory
NASA Astrophysics Data System (ADS)
Baratin, Aristide; Carrozza, Sylvain; Oriti, Daniele; Ryan, James; Smerlak, Matteo
2014-08-01
Group field theories have recently been shown to admit a 1/N expansion dominated by so-called `melonic graphs', dual to triangulated spheres. In this note, we deepen the analysis of this melonic sector. We obtain a combinatorial formula for the melonic amplitudes in terms of a graph polynomial related to a higher-dimensional generalization of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the existence of a phase transition driven by melonic interaction processes. We restrict our study to the Boulatov-Ooguri models, which describe topological BF theories and are the basis for the construction of 4-dimensional models of quantum gravity.
Singh, Narender; Guha, Rajarshi; Giulianotti, Marc; Pinilla, Clemencia; Houghten, Richard; Medina-Franco, Jose L.
2009-01-01
A multiple criteria approach is presented, that is used to perform a comparative analysis of four recently developed combinatorial libraries to drugs, Molecular Libraries Small Molecule Repository (MLSMR) and natural products. The compound databases were assessed in terms of physicochemical properties, scaffolds and fingerprints. The approach enables the analysis of property space coverage, degree of overlap between collections, scaffold and structural diversity and overall structural novelty. The degree of overlap between combinatorial libraries and drugs was assessed using the R-NN curve methodology, which measures the density of chemical space around a query molecule embedded in the chemical space of a target collection. The combinatorial libraries studied in this work exhibit scaffolds that were not observed in the drug, MLSMR and natural products collections. The fingerprint-based comparisons indicate that these combinatorial libraries are structurally different to current drugs. The R-NN curve methodology revealed that a proportion of molecules in the combinatorial libraries are located within the property space of the drugs. However, the R-NN analysis also showed that there are a significant number of molecules in several combinatorial libraries that are located in sparse regions of the drug space. PMID:19301827
Smooth Constrained Heuristic Optimization of a Combinatorial Chemical Space
2015-05-01
ARL-TR-7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...7294•MAY 2015 US Army Research Laboratory Smooth ConstrainedHeuristic Optimization of a Combinatorial Chemical Space by Berend Christopher...
Preparation of cherry-picked combinatorial libraries by string synthesis.
Furka, Arpád; Dibó, Gábor; Gombosuren, Naran
2005-03-01
String synthesis [1-3] is an efficient and cheap manual method for preparation of combinatorial libraries by using macroscopic solid support units. Sorting the units between two synthetic steps is an important operation of the procedure. The software developed to guide sorting can be used only when complete combinatorial libraries are prepared. Since very often only selected components of the full libraries are needed, new software was constructed that guides sorting in preparation of non-complete combinatorial libraries. Application of the software is described in details.
NASA Astrophysics Data System (ADS)
Iwasaki, Yuma; Kusne, A. Gilad; Takeuchi, Ichiro
2017-12-01
Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition-phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure's performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe-Co-Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen-Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.
Validation of an Instrument and Testing Protocol for Measuring the Combinatorial Analysis Schema.
ERIC Educational Resources Information Center
Staver, John R.; Harty, Harold
1979-01-01
Designs a testing situation to examine the presence of combinatorial analysis, to establish construct validity in the use of an instrument, Combinatorial Analysis Behavior Observation Scheme (CABOS), and to investigate the presence of the schema in young adolescents. (Author/GA)
Bifurcation-based approach reveals synergism and optimal combinatorial perturbation.
Liu, Yanwei; Li, Shanshan; Liu, Zengrong; Wang, Ruiqi
2016-06-01
Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.
A quantum annealing approach for fault detection and diagnosis of graph-based systems
NASA Astrophysics Data System (ADS)
Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.
2015-02-01
Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.
Programmable synaptic devices for electronic neural nets
NASA Technical Reports Server (NTRS)
Moopenn, A.; Thakoor, A. P.
1990-01-01
The architecture, design, and operational characteristics of custom VLSI and thin film synaptic devices are described. The devices include CMOS-based synaptic chips containing 1024 reprogrammable synapses with a 6-bit dynamic range, and nonvolatile, write-once, binary synaptic arrays based on memory switching in hydrogenated amorphous silicon films. Their suitability for embodiment of fully parallel and analog neural hardware is discussed. Specifically, a neural network solution to an assignment problem of combinatorial global optimization, implemented in fully parallel hardware using the synaptic chips, is described. The network's ability to provide optimal and near optimal solutions over a time scale of few neuron time constants has been demonstrated and suggests a speedup improvement of several orders of magnitude over conventional search methods.
Introduction of statistical information in a syntactic analyzer for document image recognition
NASA Astrophysics Data System (ADS)
Maroneze, André O.; Coüasnon, Bertrand; Lemaitre, Aurélie
2011-01-01
This paper presents an improvement to document layout analysis systems, offering a possible solution to Sayre's paradox (which states that an element "must be recognized before it can be segmented; and it must be segmented before it can be recognized"). This improvement, based on stochastic parsing, allows integration of statistical information, obtained from recognizers, during syntactic layout analysis. We present how this fusion of numeric and symbolic information in a feedback loop can be applied to syntactic methods to improve document description expressiveness. To limit combinatorial explosion during exploration of solutions, we devised an operator that allows optional activation of the stochastic parsing mechanism. Our evaluation on 1250 handwritten business letters shows this method allows the improvement of global recognition scores.
Giovannoli, Cristina; Spano, Giulia; Di Nardo, Fabio; Anfossi, Laura; Baggiani, Claudio
2017-01-01
Patulin is a water-soluble mycotoxin produced by several species of fungi. Governmental bodies have placed it under scrutiny for its potential negative health effects, and maximum residue limits are fixed in specific food matrices to protect consumers’ health. Confirmatory analysis of patulin in complex food matrices can be a difficult task, and sample clean-up treatments are frequently necessary before instrumental analyses. With the aim of simplifying the clean-up step, we prepared a 256-member combinatorial polymeric library based on 16 functional monomers, four cross-linkers and four different porogenic solvents. The library was screened for the binding towards patulin in different media (acetonitrile and citrate buffer at pH 3.2), with the goal of identifying polymer formulations with good binding properties towards the target compound. As a proof of concept, a methacrylic acid-co-pentaerithrytole tetraacrylate polymer prepared in chloroform was successfully used as a solid-phase extraction material for the clean-up and extraction of patulin from apple juice. Clean chromatographic patterns and acceptable recoveries were obtained for juice spiked with patulin at concentration levels of 25 (64 ± 12%), 50 (83 ± 5.6%) and 100 μg L−1 (76 ± 4.5%). The within-day and between-day reproducibility evaluated at a concentration level of 25 μg L−1 were 5.6 and 7.6%, respectively. PMID:28531103
Combinatorial enzyme technology for the conversion of agricultural fibers to functional properties
USDA-ARS?s Scientific Manuscript database
The concept of combinatorial chemistry has received little attention in agriculture and food research, although its applications in this area were described more than fifteen years ago (1, 2). More recently, interest in the use of combinatorial chemistry in agrochemical discovery has been revitalize...
An Investigation into Post-Secondary Students' Understanding of Combinatorial Questions
ERIC Educational Resources Information Center
Bulone, Vincent William
2017-01-01
The purpose of this dissertation was to study aspects of how post-secondary students understand combinatorial problems. Within this dissertation, I considered understanding through two different lenses: i) student connections to previous problems; and ii) common combinatorial distinctions such as ordered versus unordered and repetitive versus…
Comparative genomics meets topology: a novel view on genome median and halving problems.
Alexeev, Nikita; Avdeyev, Pavel; Alekseyev, Max A
2016-11-11
Genome median and genome halving are combinatorial optimization problems that aim at reconstruction of ancestral genomes by minimizing the number of evolutionary events between them and genomes of the extant species. While these problems have been widely studied in past decades, their solutions are often either not efficient or not biologically adequate. These shortcomings have been recently addressed by restricting the problems solution space. We show that the restricted variants of genome median and halving problems are, in fact, closely related. We demonstrate that these problems have a neat topological interpretation in terms of embedded graphs and polygon gluings. We illustrate how such interpretation can lead to solutions to these problems in particular cases. This study provides an unexpected link between comparative genomics and topology, and demonstrates advantages of solving genome median and halving problems within the topological framework.
A New Model for a Carpool Matching Service.
Xia, Jizhe; Curtin, Kevin M; Li, Weihong; Zhao, Yonglong
2015-01-01
Carpooling is an effective means of reducing traffic. A carpool team shares a vehicle for their commute, which reduces the number of vehicles on the road during rush hour periods. Carpooling is officially sanctioned by most governments, and is supported by the construction of high-occupancy vehicle lanes. A number of carpooling services have been designed in order to match commuters into carpool teams, but it known that the determination of optimal carpool teams is a combinatorially complex problem, and therefore technological solutions are difficult to achieve. In this paper, a model for carpool matching services is proposed, and both optimal and heuristic approaches are tested to find solutions for that model. The results show that different solution approaches are preferred over different ranges of problem instances. Most importantly, it is demonstrated that a new formulation and associated solution procedures can permit the determination of optimal carpool teams and routes. An instantiation of the model is presented (using the street network of Guangzhou city, China) to demonstrate how carpool teams can be determined.
A New Model for a Carpool Matching Service
Xia, Jizhe; Curtin, Kevin M.; Li, Weihong; Zhao, Yonglong
2015-01-01
Carpooling is an effective means of reducing traffic. A carpool team shares a vehicle for their commute, which reduces the number of vehicles on the road during rush hour periods. Carpooling is officially sanctioned by most governments, and is supported by the construction of high-occupancy vehicle lanes. A number of carpooling services have been designed in order to match commuters into carpool teams, but it known that the determination of optimal carpool teams is a combinatorially complex problem, and therefore technological solutions are difficult to achieve. In this paper, a model for carpool matching services is proposed, and both optimal and heuristic approaches are tested to find solutions for that model. The results show that different solution approaches are preferred over different ranges of problem instances. Most importantly, it is demonstrated that a new formulation and associated solution procedures can permit the determination of optimal carpool teams and routes. An instantiation of the model is presented (using the street network of Guangzhou city, China) to demonstrate how carpool teams can be determined. PMID:26125552
COMDECOM: predicting the lifetime of screening compounds in DMSO solution.
Zitha-Bovens, Emrin; Maas, Peter; Wife, Dick; Tijhuis, Johan; Hu, Qian-Nan; Kleinöder, Thomas; Gasteiger, Johann
2009-06-01
The technological evolution of the 1990s in both combinatorial chemistry and high-throughput screening created the demand for rapid access to the compound deck to support the screening process. The common strategy within the pharmaceutical industry is to store the screening library in DMSO solution. Several studies have shown that a percentage of these compounds decompose in solution, varying from a few percent of the total to a substantial part of the library. In the COMDECOM (COMpound DECOMposition) project, the compound stability of screening compounds in DMSO solution is monitored in an accelerated thermal, hydrolytic, and oxidative decomposition program. A large database with stability data is collected, and from this database, a predictive model is being developed. The aim of this program is to build an algorithm that can flag compounds that are likely to decompose-information that is considered to be of utmost importance (e.g., in the compound acquisition process and when evaluation screening results of library compounds, as well as in the determination of optimal storage conditions).
Quantum Walks on the Line with Phase Parameters
NASA Astrophysics Data System (ADS)
Villagra, Marcos; Nakanishi, Masaki; Yamashita, Shigeru; Nakashima, Yasuhiko
In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.
Xu, Huayong; Yu, Hui; Tu, Kang; Shi, Qianqian; Wei, Chaochun; Li, Yuan-Yuan; Li, Yi-Xue
2013-01-01
We are witnessing rapid progress in the development of methodologies for building the combinatorial gene regulatory networks involving both TFs (Transcription Factors) and miRNAs (microRNAs). There are a few tools available to do these jobs but most of them are not easy to use and not accessible online. A web server is especially needed in order to allow users to upload experimental expression datasets and build combinatorial regulatory networks corresponding to their particular contexts. In this work, we compiled putative TF-gene, miRNA-gene and TF-miRNA regulatory relationships from forward-engineering pipelines and curated them as built-in data libraries. We streamlined the R codes of our two separate forward-and-reverse engineering algorithms for combinatorial gene regulatory network construction and formalized them as two major functional modules. As a result, we released the cGRNB (combinatorial Gene Regulatory Networks Builder): a web server for constructing combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. The cGRNB enables two major network-building modules, one for MPGE (miRNA-perturbed gene expression) datasets and the other for parallel miRNA/mRNA expression datasets. A miRNA-centered two-layer combinatorial regulatory cascade is the output of the first module and a comprehensive genome-wide network involving all three types of combinatorial regulations (TF-gene, TF-miRNA, and miRNA-gene) are the output of the second module. In this article we propose cGRNB, a web server for building combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets. Since parallel miRNA/mRNA expression datasets are rapidly accumulated by the advance of next-generation sequencing techniques, cGRNB will be very useful tool for researchers to build combinatorial gene regulatory networks based on expression datasets. The cGRNB web-server is free and available online at http://www.scbit.org/cgrnb.
Combinatorial effects on clumped isotopes and their significance in biogeochemistry
NASA Astrophysics Data System (ADS)
Yeung, Laurence Y.
2016-01-01
The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial clumped-isotope effects. These isotopic signatures, manifest as either directly bound isotope ;clumps; or as features of a molecule's isotopic anatomy, are linked to molecular mechanisms and may eventually provide additional information about biogeochemical cycling on environmentally relevant spatial scales.
Topological Classification of Crystalline Insulators through Band Structure Combinatorics
NASA Astrophysics Data System (ADS)
Kruthoff, Jorrit; de Boer, Jan; van Wezel, Jasper; Kane, Charles L.; Slager, Robert-Jan
2017-10-01
We present a method for efficiently enumerating all allowed, topologically distinct, electronic band structures within a given crystal structure in all physically relevant dimensions. The algorithm applies to crystals without time-reversal, particle-hole, chiral, or any other anticommuting or anti-unitary symmetries. The results presented match the mathematical structure underlying the topological classification of these crystals in terms of K -theory and therefore elucidate this abstract mathematical framework from a simple combinatorial perspective. Using a straightforward counting procedure, we classify all allowed topological phases of spinless particles in crystals in class A . Employing this classification, we study transitions between topological phases within class A that are driven by band inversions at high-symmetry points in the first Brillouin zone. This enables us to list all possible types of phase transitions within a given crystal structure and to identify whether or not they give rise to intermediate Weyl semimetallic phases.
The construction of combinatorial manifolds with prescribed sets of links of vertices
NASA Astrophysics Data System (ADS)
Gaifullin, A. A.
2008-10-01
To every oriented closed combinatorial manifold we assign the set (with repetitions) of isomorphism classes of links of its vertices. The resulting transformation \\mathcal{L} is the main object of study in this paper. We pose an inversion problem for \\mathcal{L} and show that this problem is closely related to Steenrod's problem on the realization of cycles and to the Rokhlin-Schwartz-Thom construction of combinatorial Pontryagin classes. We obtain a necessary condition for a set of isomorphism classes of combinatorial spheres to belong to the image of \\mathcal{L}. (Sets satisfying this condition are said to be balanced.) We give an explicit construction showing that every balanced set of isomorphism classes of combinatorial spheres falls into the image of \\mathcal{L} after passing to a multiple set and adding several pairs of the form (Z,-Z), where -Z is the sphere Z with the orientation reversed. Given any singular simplicial cycle \\xi of a space X, this construction enables us to find explicitly a combinatorial manifold M and a map \\varphi\\colon M\\to X such that \\varphi_* \\lbrack M \\rbrack =r[\\xi] for some positive integer r. The construction is based on resolving singularities of \\xi. We give applications of the main construction to cobordisms of manifolds with singularities and cobordisms of simple cells. In particular, we prove that every rational additive invariant of cobordisms of manifolds with singularities admits a local formula. Another application is the construction of explicit (though inefficient) local combinatorial formulae for polynomials in the rational Pontryagin classes of combinatorial manifolds.
Combinatorial investigation of rare-earth free permanent magnets
NASA Astrophysics Data System (ADS)
Fackler, Sean Wu
The combinatorial high throughput method allows one to rapidly study a large number of samples with systematically changing parameters. We apply this method to study Fe-Co-V alloys as alternatives to rare-earth permanent magnets. Rare-earth permanent magnets derive their unmatched magnetic properties from the hybridization of Fe and Co with the f-orbitals of rare-earth elements, which have strong spin-orbit coupling. It is predicted that Fe and Co may also have strong hybridization with 4d and 5d refractory transition metals with strong spin-orbit coupling. Refractory transition metals like V also have the desirable property of high temperature stability, which is important for permanent magnet applications in traction motors. In this work, we focus on the role of crystal structure, composition, and secondary phases in the origin of competitive permanent magnetic properties of a particular Fe-Co-V alloy. Fe38Co52V10, compositions are known as Vicalloys. Fe-CoV composition spreads were sputtered onto three-inch silicon wafers and patterned into discrete sample pads forming a combinatorial library. We employed highthroughput screening methods using synchrotron X-rays, wavelength dispersive spectroscopy, and magneto-optical Kerr effect (MOKE) to rapidly screen crystal structure, composition, and magnetic properties, respectively. We found that in-plane magnetic coercive fields of our Vicalloy thin films agree with known bulk values (300 G), but found a remarkable eight times increase of the out-of-plane coercive fields (˜2,500 G). To explain this, we measured the switching fields between in-plane and out-of-plane thin film directions which revealed that the Kondorsky model of 180° domain wall reversal was responsible for Vicalloy's enhanced out-of-plane coercive field and possibly its permanent magnetic properties. The Kondorsky model suggests that domain-wall pinning is the origin of Vicalloy's permanent magnetic properties, in contrast to strain, shape, or crystalline anisotropy mechanisms suggested in the literature. We also studied the thickness dependence of an Fe70Co30- V thin film library to consider the unique effects of our thin film libraries which are not found in bulk samples. We present results of data mining of synchrotron X-ray diffraction data using non-negative matrix factorization (NMF). NMF can automatically identify pure crystal phases that make up an unknown phase mixture. We found a strong correlation between magnetic properties and crystal phase quantity using this valuable visualization. In addition to the combinatorial study, this dissertation includes a study of strain controlled properties of magnetic thin films for future applications in random access memories. We investigated the local coupling between dense magnetic stripe domains in transcritical Permalloy (tPy) thin films and ferroelectric domains of BaTiO3 single crystals in a tPy/BaTiO3 heterostructure. Two distinct changes in the magnetic stripe domains of tPy were observed from the magnetic force microscopy images after cooling the heterostructure from above the ferroelectric Curie temperature of BaTiO3 (120°C) to room temperature. First, an abrupt break in the magnetic stripe domain direction was found at the ferroelectric a-c-domain boundaries due to an induced change in in-plane magnetic anisotropy. Second, the magnetic stripe domain period increased when coupled to a ferroelectric a-domain due to a change in out-of-plane magnetic anisotropy. Micromagnetic simulations reveal that local magnetic anisotropy energy from inverse magnetostriction is conserved between in-plane and out-of-plane components.
ERIC Educational Resources Information Center
Barratt, Barnaby B.
1975-01-01
This study investigated the emergence of combinatorial competence in early adolescence and the effectiveness of a programmed discovery training procedure. Significant increases in combinatorial skill with age were shown; it was found that the expression of this skill was significantly facilitated if problems involved concrete material of low…
Invention as a combinatorial process: evidence from US patents
Youn, Hyejin; Strumsky, Deborah; Bettencourt, Luis M. A.; Lobo, José
2015-01-01
Invention has been commonly conceptualized as a search over a space of combinatorial possibilities. Despite the existence of a rich literature, spanning a variety of disciplines, elaborating on the recombinant nature of invention, we lack a formal and quantitative characterization of the combinatorial process underpinning inventive activity. Here, we use US patent records dating from 1790 to 2010 to formally characterize invention as a combinatorial process. To do this, we treat patented inventions as carriers of technologies and avail ourselves of the elaborate system of technology codes used by the United States Patent and Trademark Office to classify the technologies responsible for an invention's novelty. We find that the combinatorial inventive process exhibits an invariant rate of ‘exploitation’ (refinements of existing combinations of technologies) and ‘exploration’ (the development of new technological combinations). This combinatorial dynamic contrasts sharply with the creation of new technological capabilities—the building blocks to be combined—that has significantly slowed down. We also find that, notwithstanding the very reduced rate at which new technologies are introduced, the generation of novel technological combinations engenders a practically infinite space of technological configurations. PMID:25904530
Seo, Hyung-Min; Jeon, Jong-Min; Lee, Ju Hee; Song, Hun-Suk; Joo, Han-Byul; Park, Sung-Hee; Choi, Kwon-Young; Kim, Yong Hyun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun
2016-01-01
Furfural is a toxic by-product formulated from pretreatment processes of lignocellulosic biomass. In order to utilize the lignocellulosic biomass on isobutanol production, inhibitory effect of the furfural on isobutanol production was investigated and combinatorial application of two oxidoreductases, FucO and YqhD, was suggested as an alternative strategy. Furfural decreased cell growth and isobutanol production when only YqhD or FucO was employed as an isobutyraldehyde oxidoreductase. However, combinatorial overexpression of FucO and YqhD could overcome the inhibitory effect of furfural giving higher isobutanol production by 110% compared with overexpression of YqhD. The combinatorial oxidoreductases increased furfural detoxification rate 2.1-fold and also accelerated glucose consumption 1.4-fold. When it compares to another known system increasing furfural tolerance, membrane-bound transhydrogenase (pntAB), the combinatorial aldehyde oxidoreductases were better on cell growth and production. Thus, to control oxidoreductases is important to produce isobutanol using furfural-containing biomass and the combinatorial overexpression of FucO and YqhD can be an alternative strategy.
Combinatorial Methods for Exploring Complex Materials
NASA Astrophysics Data System (ADS)
Amis, Eric J.
2004-03-01
Combinatorial and high-throughput methods have changed the paradigm of pharmaceutical synthesis and have begun to have a similar impact on materials science research. Already there are examples of combinatorial methods used for inorganic materials, catalysts, and polymer synthesis. For many investigations the primary goal has been discovery of new material compositions that optimize properties such as phosphorescence or catalytic activity. In the midst of the excitement generated to "make things", another opportunity arises for materials science to "understand things" by using the efficiency of combinatorial methods. We have shown that combinatorial methods hold potential for rapid and systematic generation of experimental data over the multi-parameter space typical of investigations in polymer physics. We have applied the combinatorial approach to studies of polymer thin films, biomaterials, polymer blends, filled polymers, and semicrystalline polymers. By combining library fabrication, high-throughput measurements, informatics, and modeling we can demonstrate validation of the methodology, new observations, and developments toward predictive models. This talk will present some of our latest work with applications to coating stability, multi-component formulations, and nanostructure assembly.
Tumor-targeting peptides from combinatorial libraries*
Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S.
2018-01-01
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges infighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. PMID:27210583
Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila
NASA Astrophysics Data System (ADS)
Agrawal, Namita; Pallos, Judit; Slepko, Natalia; Apostol, Barbara L.; Bodai, Laszlo; Chang, Ling-Wen; Chiang, Ann-Shyn; Michels Thompson, Leslie; Marsh, J. Lawrence
2005-03-01
We explore the hypothesis that pathology of Huntington's disease involves multiple cellular mechanisms whose contributions to disease are incrementally additive or synergistic. We provide evidence that the photoreceptor neuron degeneration seen in flies expressing mutant human huntingtin correlates with widespread degenerative events in the Drosophila CNS. We use a Drosophila Huntington's disease model to establish dose regimens and protocols to assess the effectiveness of drug combinations used at low threshold concentrations. These proof of principle studies identify at least two potential combinatorial treatment options and illustrate a rapid and cost-effective paradigm for testing and optimizing combinatorial drug therapies while reducing side effects for patients with neurodegenerative disease. The potential for using prescreening in Drosophila to inform combinatorial therapies that are most likely to be effective for testing in mammals is discussed. combinatorial treatments | neurodegeneration
Nonparametric Combinatorial Sequence Models
NASA Astrophysics Data System (ADS)
Wauthier, Fabian L.; Jordan, Michael I.; Jojic, Nebojsa
This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This paper presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three sequence datasets which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution induced by the prior. By integrating out the posterior our method compares favorably to leading binding predictors.
Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.
Li, Jianwei; Nowak, Piotr; Otto, Sijbren
2013-06-26
Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.
Statistical mechanics of budget-constrained auctions
NASA Astrophysics Data System (ADS)
Altarelli, F.; Braunstein, A.; Realpe-Gomez, J.; Zecchina, R.
2009-07-01
Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being in the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). On the basis of the cavity method of statistical mechanics, we introduce a message-passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution, and we derive from its properties the phase diagram of the problem. As the control parameter (average value of the budgets) is varied, we find two phase transitions delimiting a region in which long-range correlations arise.
Zhou, Qian-Mei; Chen, Qi-Long; Du, Jia; Wang, Xiu-Feng; Lu, Yi-Yu; Zhang, Hui; Su, Shi-Bing
2014-01-01
In order to explore the synergistic mechanisms of combinatorial treatment using curcumin and mitomycin C (MMC) for breast cancer, MCF-7 breast cancer xenografts were conducted to observe the synergistic effect of combinatorial treatment using curcumin and MMC at various dosages. The synergistic mechanisms of combinatorial treatment using curcumin and MMC on the inhibition of tumor growth were explored by differential gene expression profile, gene ontology (GO), ingenuity pathway analysis (IPA) and Signal–Net network analysis. The expression levels of selected genes identified by cDNA microarray expression profiling were validated by quantitative RT-PCR (qRT-PCR) and Western blot analysis. Effect of combinatorial treatment on the inhibition of cell growth was observed by MTT assay. Apoptosis was detected by flow cytometric analysis and Hoechst 33258 staining. The combinatorial treatment of 100 mg/kg curcumin and 1.5 mg/kg MMC revealed synergistic inhibition on tumor growth. Among 1501 differentially expressed genes, the expression of 25 genes exhibited an obvious change and a significant difference in 27 signal pathways was observed (p < 0.05). In addition, Mapk1 (ERK) and Mapk14 (MAPK p38) had more cross-interactions with other genes and revealed an increase in expression by 8.14- and 11.84-fold, respectively during the combinatorial treatment by curcumin and MMC when compared with the control. Moreover, curcumin can synergistically improve tumoricidal effect of MMC in another human breast cancer MDA-MB-231 cells. Apoptosis was significantly induced by the combinatorial treatment (p < 0.05) and significantly inhibited by ERK inhibitor (PD98059) in MCF-7 cells (p < 0.05). The synergistic effect of combinatorial treatment by curcumin and MMC on the induction of apoptosis in breast cancer cells may be via the ERK pathway. PMID:25226537
Combinatorial theory of Macdonald polynomials I: proof of Haglund's formula.
Haglund, J; Haiman, M; Loehr, N
2005-02-22
Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization of this result to the integral Macdonald polynomials J(mu), a formula for H(mu) in terms of Lascoux-Leclerc-Thibon polynomials, and combinatorial expressions for the Kostka-Macdonald coefficients K(lambda,mu) when mu is a two-column shape.
Optimal placement of tuning masses on truss structures by genetic algorithms
NASA Technical Reports Server (NTRS)
Ponslet, Eric; Haftka, Raphael T.; Cudney, Harley H.
1993-01-01
Optimal placement of tuning masses, actuators and other peripherals on large space structures is a combinatorial optimization problem. This paper surveys several techniques for solving this problem. The genetic algorithm approach to the solution of the placement problem is described in detail. An example of minimizing the difference between the two lowest frequencies of a laboratory truss by adding tuning masses is used for demonstrating some of the advantages of genetic algorithms. The relative efficiencies of different codings are compared using the results of a large number of optimization runs.
NASA Astrophysics Data System (ADS)
1981-04-01
The main topics discussed were related to nonparametric statistics, plane and antiplane states in finite elasticity, free-boundary-variational inequalities, the numerical solution of free boundary-value problems, discrete and combinatorial optimization, mathematical modelling in fluid mechanics, a survey and comparison regarding thermodynamic theories, invariant and almost invariant subspaces in linear systems with applications to disturbance isolation, nonlinear acoustics, and methods of function theory in the case of partial differential equations, giving particular attention to elliptic problems in the plane.
Landscape Encodings Enhance Optimization
Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.
2012-01-01
Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860
Boundary qKZ equation and generalized Razumov Stroganov sum rules for open IRF models
NASA Astrophysics Data System (ADS)
Di Francesco, P.
2005-11-01
We find higher-rank generalizations of the Razumov-Stroganov sum rules at q = -ei π/(k+1) for Ak-1 models with open boundaries, by constructing polynomial solutions of level-1 boundary quantum Knizhnik-Zamolodchikov equations for U_q(\\frak {sl}(k)) . The result takes the form of a character of the symplectic group, that leads to a generalization of the number of vertically symmetric alternating sign matrices. We also investigate the other combinatorial point q = -1, presumably related to the geometry of nilpotent matrix varieties.
Optimal placement of excitations and sensors for verification of large dynamical systems
NASA Technical Reports Server (NTRS)
Salama, M.; Rose, T.; Garba, J.
1987-01-01
The computationally difficult problem of the optimal placement of excitations and sensors to maximize the observed measurements is studied within the framework of combinatorial optimization, and is solved numerically using a variation of the simulated annealing heuristic algorithm. Results of numerical experiments including a square plate and a 960 degrees-of-freedom Control of Flexible Structure (COFS) truss structure, are presented. Though the algorithm produces suboptimal solutions, its generality and simplicity allow the treatment of complex dynamical systems which would otherwise be difficult to handle.
Integrated Artificial Intelligence Approaches for Disease Diagnostics.
Vashistha, Rajat; Chhabra, Deepak; Shukla, Pratyoosh
2018-06-01
Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.
Signal dimensionality and the emergence of combinatorial structure.
Little, Hannah; Eryılmaz, Kerem; de Boer, Bart
2017-11-01
In language, a small number of meaningless building blocks can be combined into an unlimited set of meaningful utterances. This is known as combinatorial structure. One hypothesis for the initial emergence of combinatorial structure in language is that recombining elements of signals solves the problem of overcrowding in a signal space. Another hypothesis is that iconicity may impede the emergence of combinatorial structure. However, how these two hypotheses relate to each other is not often discussed. In this paper, we explore how signal space dimensionality relates to both overcrowding in the signal space and iconicity. We use an artificial signalling experiment to test whether a signal space and a meaning space having similar topologies will generate an iconic system and whether, when the topologies differ, the emergence of combinatorially structured signals is facilitated. In our experiments, signals are created from participants' hand movements, which are measured using an infrared sensor. We found that participants take advantage of iconic signal-meaning mappings where possible. Further, we use trajectory predictability, measures of variance, and Hidden Markov Models to measure the use of structure within the signals produced and found that when topologies do not match, then there is more evidence of combinatorial structure. The results from these experiments are interpreted in the context of the differences between the emergence of combinatorial structure in different linguistic modalities (speech and sign). Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Qian; Huang, Hanyang; Wei, Kang; Zhao, Yi
2016-10-01
Mechanical stretching and topographical cues are both effective mechanical stimulations for regulating cell morphology, orientation, and behaviors. The competition of these two mechanical stimulations remains largely underexplored. Previous studies have suggested that a small cyclic mechanical strain is not able to reorient cells that have been pre-aligned by relatively large linear microstructures, but can reorient those pre-aligned by small linear micro/nanostructures if the characteristic dimension of these structures is below a certain threshold. Likewise, for micro/nanostructures with a given characteristic dimension, the strain must exceed a certain magnitude to overrule the topographic cues. There are however no in-depth investigations of such "thresholds" due to the lack of close examination of dynamic cell orientation during and shortly after the mechanical loading. In this study, the time-dependent combinatory effects of active and passive mechanical stimulations on cell orientation are investigated by developing a micromechanical stimulator. The results show that the cells pre-aligned by linear micro/nanostructures can be altered by cyclic in-plane strain, regardless of the structure size. During the loading, the micro/nanostructures can resist the reorientation effects by cyclic in-plane strain while the resistive capability (measured by the mean orientation angle change and the reorientation speed) increases with the increasing characteristic dimension. The micro/nanostructures also can recover the cell orientation after the cessation of cyclic in-plane strain, while the recovering capability increases with the characteristic dimension. The previously observed thresholds are largely dependent on the observation time points. In order to accurately evaluate the combinatory effects of the two mechanical stimulations, observations during the active loading with a short time interval or endpoint observations shortly after the loading are preferred. This study provides a microengineering solution to investigate the time-dependent combinatory effects of the active and passive mechanical stimulations and is expected to enhance our understanding of cell responses to complex mechanical environments. Biotechnol. Bioeng. 2016;113: 2191-2201. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Stevens, Victoria
2014-01-01
The author considers combinatory play as an intersection between creativity, play, and neuroaesthetics. She discusses combinatory play as vital to the creative process in art and science, particularly with regard to the incubation of new ideas. She reviews findings from current neurobiological research and outlines the way that the brain activates…
DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.
MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M
2015-09-14
The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries.
Kim, Hyo Jin; Turner, Timothy Lee; Jin, Yong-Su
2013-11-01
Recent advances in metabolic engineering have enabled microbial factories to compete with conventional processes for producing fuels and chemicals. Both rational and combinatorial approaches coupled with synthetic and systematic tools play central roles in metabolic engineering to create and improve a selected microbial phenotype. Compared to knowledge-based rational approaches, combinatorial approaches exploiting biological diversity and high-throughput screening have been demonstrated as more effective tools for improving various phenotypes of interest. In particular, identification of unprecedented targets to rewire metabolic circuits for maximizing yield and productivity of a target chemical has been made possible. This review highlights general principles and the features of the combinatorial approaches using various libraries to implement desired phenotypes for strain improvement. In addition, recent applications that harnessed the combinatorial approaches to produce biofuels and biochemicals will be discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Tumor-targeting peptides from combinatorial libraries.
Liu, Ruiwu; Li, Xiaocen; Xiao, Wenwu; Lam, Kit S
2017-02-01
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors. Copyright © 2017. Published by Elsevier B.V.
Corrosion Behavior of Plasma-Passivated Cu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbour, J.C.; Braithwaite, J.W.; Son, K.A.
1999-07-09
A new approach is being pursued to study corrosion in Cu alloy systems by using combinatorial analysis combined with microscopic experimentation (the Combinatorial Microlab) to determine mechanisms for copper corrosion in air. Corrosion studies are inherently difficult because of complex interactions between materials and environment, forming a multidimensional phase space of corrosion variables. The Combinatorial Microlab was specifically developed to address the mechanism of Cu sulfidation, which is an important reliability issue for electronic components. This approach differs from convention by focusing on microscopic length scales, the relevant scale for corrosion. During accelerated aging, copper is exposed to a varietymore » of corrosive environments containing sulfidizing species that cause corrosion. A matrix experiment was done to determine independent and synergistic effects of initial Cu oxide thickness and point defect density. The CuO{sub x} was controlled by oxidizing Cu in an electron cyclotron resonance (ECR) O{sub 2} plasma, and the point defect density was modified by Cu ion irradiation. The matrix was exposed to 600 ppb H{sub 2}S in 65% relative humidity air atmosphere. This combination revealed the importance of oxide quality in passivating Cu and prevention of the sulfidizing reaction. A native oxide and a defect-laden ECR oxide both react at 20 C to form a thick Cu{sub 2}S layer after exposure to H{sub 2}S, while different thicknesses of as-grown ECR oxide stop the formation of Cu{sub 2}S. The species present in the ECR oxide will be compared to that of an air oxide, and the sulfide layer growth rate will be presented.« less
Phase transition in the countdown problem
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Luque, Bartolo
2012-07-01
We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Moghadasi, Mohammad; Kozakov, Dima; Mamonov, Artem B.; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.
2013-01-01
We introduce a message-passing algorithm to solve the Side Chain Positioning (SCP) problem. SCP is a crucial component of protein docking refinement, which is a key step of an important class of problems in computational structural biology called protein docking. We model SCP as a combinatorial optimization problem and formulate it as a Maximum Weighted Independent Set (MWIS) problem. We then employ a modified and convergent belief-propagation algorithm to solve a relaxation of MWIS and develop randomized estimation heuristics that use the relaxed solution to obtain an effective MWIS feasible solution. Using a benchmark set of protein complexes we demonstrate that our approach leads to more accurate docking predictions compared to a baseline algorithm that does not solve the SCP. PMID:23515575
Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model
NASA Astrophysics Data System (ADS)
Deng, Guang-Feng; Lin, Woo-Tsong
This work presents Ant Colony Optimization (ACO), which was initially developed to be a meta-heuristic for combinatorial optimization, for solving the cardinality constraints Markowitz mean-variance portfolio model (nonlinear mixed quadratic programming problem). To our knowledge, an efficient algorithmic solution for this problem has not been proposed until now. Using heuristic algorithms in this case is imperative. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the ACO is much more robust and effective than Particle swarm optimization (PSO), especially for low-risk investment portfolios.
Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.
Gilmer, Jesse I; Person, Abigail L
2017-12-13
Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing. SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs. Despite the centrality of these theories to cerebellar physiology, the degree of expansion supported by anatomically realistic patterns of inputs is unknown. Using modeling and anatomy, we show that realistic input patterns constrain combinatorial diversity by producing redundant combinations, which nevertheless could support temporal diversification of like combinations, suitable for learned timing. Our study suggests a neural substrate for producing high levels of both combinatorial and temporal diversity in the granule cell layer. Copyright © 2017 the authors 0270-6474/17/3712153-14$15.00/0.
NASA Astrophysics Data System (ADS)
Burello, E.; Bologa, C.; Frecer, V.; Miertus, S.
Combinatorial chemistry and technologies have been developed to a stage where synthetic schemes are available for generation of a large variety of organic molecules. The innovative concept of combinatorial design assumes that screening of a large and diverse library of compounds will increase the probability of finding an active analogue among the compounds tested. Since the rate at which libraries are screened for activity currently constitutes a limitation to the use of combinatorial technologies, it is important to be selective about the number of compounds to be synthesized. Early experience with combinatorial chemistry indicated that chemical diversity alone did not result in a significant increase in the number of generated lead compounds. Emphasis has therefore been increasingly put on the use of computer assisted combinatorial chemical techniques. Computational methods are valuable in the design of virtual libraries of molecular models. Selection strategies based on computed physicochemical properties of the models or of a target compound are introduced to reduce the time and costs of library synthesis and screening. In addition, computational structure-based library focusing methods can be used to perform in silico screening of the activity of compounds against a target receptor by docking the ligands into the receptor model. Three case studies are discussed dealing with the design of targeted combinatorial libraries of inhibitors of HIV-1 protease, P. falciparum plasmepsin and human urokinase as potential antivirial, antimalarial and anticancer drugs. These illustrate library focusing strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J
UOP LLC, a Honeywell Company, Ford Motor Company, and Striatus, Inc., collaborated with Professor Craig Jensen of the University of Hawaii and Professor Vidvuds Ozolins of University of California, Los Angeles on a multi-year cost-shared program to discover novel complex metal hydrides for hydrogen storage. This innovative program combined sophisticated molecular modeling with high throughput combinatorial experiments to maximize the probability of identifying commercially relevant, economical hydrogen storage materials with broad application. A set of tools was developed to pursue the medium throughput (MT) and high throughput (HT) combinatorial exploratory investigation of novel complex metal hydrides for hydrogen storage. Themore » assay programs consisted of monitoring hydrogen evolution as a function of temperature. This project also incorporated theoretical methods to help select candidate materials families for testing. The Virtual High Throughput Screening served as a virtual laboratory, calculating structures and their properties. First Principles calculations were applied to various systems to examine hydrogen storage reaction pathways and the associated thermodynamics. The experimental program began with the validation of the MT assay tool with NaAlH4/0.02 mole Ti, the state of the art hydrogen storage system given by decomposition of sodium alanate to sodium hydride, aluminum metal, and hydrogen. Once certified, a combinatorial 21-point study of the NaAlH4 LiAlH4Mg(AlH4)2 phase diagram was investigated with the MT assay. Stability proved to be a problem as many of the materials decomposed during synthesis, altering the expected assay results. This resulted in repeating the entire experiment with a mild milling approach, which only temporarily increased capacity. NaAlH4 was the best performer in both studies and no new mixed alanates were observed, a result consistent with the VHTS. Powder XRD suggested that the reverse reaction, the regeneration of the alanate from alkali hydride, Al and hydrogen, was hampering reversibility. The reverse reaction was then studied for the same phase diagram, starting with LiH, NaH, and MgH2, and Al. The study was extended to phase diagrams including KH and CaH2 as well. The observed hydrogen storage capacity in the Al hexahydrides was less than 4 wt. %, well short of DOE targets. The HT assay came on line and after certification with studies on NaAlH4, was first applied to the LiNH2 - LiBH4 - MgH2 phase diagram. The 60-point study elucidated trends within the system locating an optimum material of 0.6 LiNH2 0.3 MgH2 0.1 LiBH4 that stored about 4 wt. % H2 reversibly and operated below 220 °C. Also present was the phase Li4(NH2)3BH4, which had been discovered in the LiNH2 -LiBH4 system. This new ternary formulation performed much better than the well-known 2 LiNH2MgH2 system by 50 °C in the HT assay. The Li4(NH2)3BH4 is a low melting ionic liquid under our test conditions and facilitates the phase transformations required in the hydrogen storage reaction, which no longer relies on a higher energy solid state reaction pathway. Further study showed that the 0.6 LiNH2 0.3 MgH2 0.1 LiBH4 formulation was very stable with respect to ammonia and diborane desorption, the observed desorption was from hydrogen. This result could not have been anticipated and was made possible by the efficiency of HT combinatorial methods. Investigation of the analogous LiNH2 LiBH4 CaH2 phase diagram revealed new reversible hydrogen storage materials 0.625 LiBH4 + 0.375 CaH2 and 0.375 LiNH2 + 0.25 LiBH4 + 0.375 CaH2 operating at 1 wt. % reversible hydrogen below 175 °C. Powder x-ray diffraction revealed a new structure for the spent materials which had not been previously observed. While the storage capacity was not impressive, an important aspect is that it boron appears to participate in a low temperature reversible reaction. The last major area of study also focused on activating boron-based materials in order to exploit the tremendous gravimetric capacity of LiBH4. A number of LiNH2 LiBH4 transition metal (TM) systems were investigated for the following reasons. No additional leads were discovered in this system. Another major project activity was the assembly of a high throughput synthesis system. The automated synthesizer was set up in a glovebox and was capable of handling liquids and powders and carrying out sealed block syntheses up to 250 °C. Unfortunately, the synthesizer could not handle the delivery of the fine powders required fro hydrogen storage applications. Although the powder delivery system was overhauled and redesigned several times, this problem was never remedied.« less
Surface-confined assemblies and polymers for molecular logic.
de Ruiter, Graham; van der Boom, Milko E
2011-08-16
Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support. Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H(2)O, Fe(2+/3+), Cr(6+), NO(+)) and in the gas phase (NO(x) in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits. MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the output of one gate is used as the input for another gate. Using the same setup, we were able to display both combinatorial and sequential logic. We have demonstrated MBLC by coupling electrochemical inputs with optical readout, which resulted in various logic architectures built on a redox-active, functionalized surface. Electrochemically operated sequential logic systems such as flip-flops, multivalued logic, and multistate memory could enhance computational power without increasing spatial requirements. Applying multivalued digits in data storage could exponentially increase memory capacity. Furthermore, we evaluate the pros and cons of MBLC and identify targets for future research in this Account. © 2011 American Chemical Society
2D photonic crystal complete band gap search using a cyclic cellular automaton refination
NASA Astrophysics Data System (ADS)
González-García, R.; Castañón, G.; Hernández-Figueroa, H. E.
2014-11-01
We present a refination method based on a cyclic cellular automaton (CCA) that simulates a crystallization-like process, aided with a heuristic evolutionary method called differential evolution (DE) used to perform an ordered search of full photonic band gaps (FPBGs) in a 2D photonic crystal (PC). The solution is proposed as a combinatorial optimization of the elements in a binary array. These elements represent the existence or absence of a dielectric material surrounded by air, thus representing a general geometry whose search space is defined by the number of elements in such array. A block-iterative frequency-domain method was used to compute the FPBGs on a PC, when present. DE has proved to be useful in combinatorial problems and we also present an implementation feature that takes advantage of the periodic nature of PCs to enhance the convergence of this algorithm. Finally, we used this methodology to find a PC structure with a 19% bandgap-to-midgap ratio without requiring previous information of suboptimal configurations and we made a statistical study of how it is affected by disorder in the borders of the structure compared with a previous work that uses a genetic algorithm.
Liu, Chun; Kroll, Andreas
2016-01-01
Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.
Solving multi-objective optimization problems in conservation with the reference point method
Dujardin, Yann; Chadès, Iadine
2018-01-01
Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650
A combinatorial approach to protein docking with flexible side chains.
Althaus, Ernst; Kohlbacher, Oliver; Lenhof, Hans-Peter; Müller, Peter
2002-01-01
Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.
A ripple-spreading genetic algorithm for the aircraft sequencing problem.
Hu, Xiao-Bing; Di Paolo, Ezequiel A
2011-01-01
When genetic algorithms (GAs) are applied to combinatorial problems, permutation representations are usually adopted. As a result, such GAs are often confronted with feasibility and memory-efficiency problems. With the aircraft sequencing problem (ASP) as a study case, this paper reports on a novel binary-representation-based GA scheme for combinatorial problems. Unlike existing GAs for the ASP, which typically use permutation representations based on aircraft landing order, the new GA introduces a novel ripple-spreading model which transforms the original landing-order-based ASP solutions into value-based ones. In the new scheme, arriving aircraft are projected as points into an artificial space. A deterministic method inspired by the natural phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few parameters as input to connect points on this space to form a landing sequence. A traditional GA, free of feasibility and memory-efficiency problems, can then be used to evolve the ripple-spreading related parameters in order to find an optimal sequence. Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by extensive comparative studies for the case of the ASP.
Muhammad, Turghun; Cui, Liu; Jide, Wang; Piletska, Elena V; Guerreiro, Antonio R; Piletsky, Sergey A
2012-01-04
Novel water-compatible molecularly imprinted polymers (MIPs) selective for amiodarone (AD) were designed via a new methodology which relies on screening library of non-imprinted polymers (NIPs). The NIP library consisted of eighteen cross-linked co-polymers synthesized from monomers commonly used in molecular imprinting. The binding capacity of each polymer in the library was analyzed in two different solvents. Binding in water was used to assess non-specific (hydrophobic) interactions and binding in an appropriate organic solvent was used to assess specific interactions. A good correlation was found between the screening tests and modeling of monomer-template interactions performed using computational approach. Additionally, analysis of template-monomer interactions was performed using UV-vis spectroscopy. As the result, 4-vinylpyridine (4-VP) was selected as the best monomer for developing MIP for AD. The 4-VP-based polymers demonstrated imprinting factor equal 3.9. The polymers performance in SPE was evaluated using AD and its structural analogues. The recovery of AD was as high as 96% when extracted from spiked phosphate buffer (pH 4.5) solution and 82.1% from spiked serum samples. The developed MIP shown as a material with specific binding to AD, comparing to its structural analogues, 1-(2-diethylaminoethoxy)-2,6-diiodo-4-nitrobenzene and lidocaine, which shown 9.9% and 25.4% of recovery from the buffer solution, correspondingly. We believe that the screening of NIP library could be proposed as an alternative to commonly used computational and combinatorial approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
Dibó, Gábor
2012-02-01
Combinatorial chemistry was introduced in the 1980s. It provided the possibility to produce new compounds in practically unlimited number. New strategies and technologies have also been developed that made it possible to screen very large number of compounds and to identify useful components in mixtures containing millions of different substances. This dramatically changed the drug discovery process and the way of thinking of synthetic chemists. In addition, combinatorial strategies became useful in areas such as pharmaceutical research, agrochemistry, catalyst design, and materials research. Prof. Árpád Furka is one of the pioneers of combinatorial chemistry.
Liao, Chenzhong; Liu, Bing; Shi, Leming; Zhou, Jiaju; Lu, Xian-Ping
2005-07-01
Based on the structural characters of PPAR modulators, a virtual combinatorial library containing 1226,625 compounds was constructed using SMILES strings. Selected ADME filters were employed to compel compounds having poor drug-like properties from this library. This library was converted to sdf and mol2 files by CONCORD 4.0, and was then docked to PPARgamma by DOCK 4.0 to identify new chemical entities that may be potential drug leads against type 2 diabetes and other metabolic diseases. The method to construct virtual combinatorial library using SMILES strings was further visualized by Visual Basic.net that can facilitate the needs of generating other type virtual combinatorial libraries.
On the Critical Behaviour, Crossover Point and Complexity of the Exact Cover Problem
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Shumow, Daniel; Koga, Dennis (Technical Monitor)
2003-01-01
Research into quantum algorithms for NP-complete problems has rekindled interest in the detailed study a broad class of combinatorial problems. A recent paper applied the quantum adiabatic evolution algorithm to the Exact Cover problem for 3-sets (EC3), and provided an empirical evidence that the algorithm was polynomial. In this paper we provide a detailed study of the characteristics of the exact cover problem. We present the annealing approximation applied to EC3, which gives an over-estimate of the phase transition point. We also identify empirically the phase transition point. We also study the complexity of two classical algorithms on this problem: Davis-Putnam and Simulated Annealing. For these algorithms, EC3 is significantly easier than 3-SAT.
Systematic Identification of Combinatorial Drivers and Targets in Cancer Cell Lines
Tabchy, Adel; Eltonsy, Nevine; Housman, David E.; Mills, Gordon B.
2013-01-01
There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance. PMID:23577104
Systematic identification of combinatorial drivers and targets in cancer cell lines.
Tabchy, Adel; Eltonsy, Nevine; Housman, David E; Mills, Gordon B
2013-01-01
There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance.
Discovery of the leinamycin family of natural products by mining actinobacterial genomes
Xu, Zhengren; Guo, Zhikai; Hindra; Ma, Ming; Zhou, Hao; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Cheng, Jinhua; Van Nieuwerburgh, Filip; Suh, Joo-Won; Duan, Yanwen
2017-01-01
Nature’s ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF–SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF–SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm-type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature’s rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature’s biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity. PMID:29229819
Discovery of the leinamycin family of natural products by mining actinobacterial genomes.
Pan, Guohui; Xu, Zhengren; Guo, Zhikai; Hindra; Ma, Ming; Yang, Dong; Zhou, Hao; Gansemans, Yannick; Zhu, Xiangcheng; Huang, Yong; Zhao, Li-Xing; Jiang, Yi; Cheng, Jinhua; Van Nieuwerburgh, Filip; Suh, Joo-Won; Duan, Yanwen; Shen, Ben
2017-12-26
Nature's ability to generate diverse natural products from simple building blocks has inspired combinatorial biosynthesis. The knowledge-based approach to combinatorial biosynthesis has allowed the production of designer analogs by rational metabolic pathway engineering. While successful, structural alterations are limited, with designer analogs often produced in compromised titers. The discovery-based approach to combinatorial biosynthesis complements the knowledge-based approach by exploring the vast combinatorial biosynthesis repertoire found in Nature. Here we showcase the discovery-based approach to combinatorial biosynthesis by targeting the domain of unknown function and cysteine lyase domain (DUF-SH) didomain, specific for sulfur incorporation from the leinamycin (LNM) biosynthetic machinery, to discover the LNM family of natural products. By mining bacterial genomes from public databases and the actinomycetes strain collection at The Scripps Research Institute, we discovered 49 potential producers that could be grouped into 18 distinct clades based on phylogenetic analysis of the DUF-SH didomains. Further analysis of the representative genomes from each of the clades identified 28 lnm -type gene clusters. Structural diversities encoded by the LNM-type biosynthetic machineries were predicted based on bioinformatics and confirmed by in vitro characterization of selected adenylation proteins and isolation and structural elucidation of the guangnanmycins and weishanmycins. These findings demonstrate the power of the discovery-based approach to combinatorial biosynthesis for natural product discovery and structural diversity and highlight Nature's rich biosynthetic repertoire. Comparative analysis of the LNM-type biosynthetic machineries provides outstanding opportunities to dissect Nature's biosynthetic strategies and apply these findings to combinatorial biosynthesis for natural product discovery and structural diversity.
Liu, Zhi-Hua; Xie, Shangxian; Lin, Furong; Jin, Mingjie; Yuan, Joshua S
2018-01-01
Lignin valorization has recently been considered to be an essential process for sustainable and cost-effective biorefineries. Lignin represents a potential new feedstock for value-added products. Oleaginous bacteria such as Rhodococcus opacus can produce intracellular lipids from biodegradation of aromatic substrates. These lipids can be used for biofuel production, which can potentially replace petroleum-derived chemicals. However, the low reactivity of lignin produced from pretreatment and the underdeveloped fermentation technology hindered lignin bioconversion to lipids. In this study, combinatorial pretreatment with an optimized fermentation strategy was evaluated to improve lignin valorization into lipids using R. opacus PD630. As opposed to single pretreatment, combinatorial pretreatment produced a 12.8-75.6% higher lipid concentration in fermentation using lignin as the carbon source. Gas chromatography-mass spectrometry analysis showed that combinatorial pretreatment released more aromatic monomers, which could be more readily utilized by lignin-degrading strains. Three detoxification strategies were used to remove potential inhibitors produced from pretreatment. After heating detoxification of the lignin stream, the lipid concentration further increased by 2.9-9.7%. Different fermentation strategies were evaluated in scale-up lipid fermentation using a 2.0-l fermenter. With laccase treatment of the lignin stream produced from combinatorial pretreatment, the highest cell dry weight and lipid concentration were 10.1 and 1.83 g/l, respectively, in fed-batch fermentation, with a total soluble substrate concentration of 40 g/l. The improvement of the lipid fermentation performance may have resulted from lignin depolymerization by the combinatorial pretreatment and laccase treatment, reduced inhibition effects by fed-batch fermentation, adequate oxygen supply, and an accurate pH control in the fermenter. Overall, these results demonstrate that combinatorial pretreatment, together with fermentation optimization, favorably improves lipid production using lignin as the carbon source. Combinatorial pretreatment integrated with fed-batch fermentation was an effective strategy to improve the bioconversion of lignin into lipids, thus facilitating lignin valorization in biorefineries.
NASA Astrophysics Data System (ADS)
Li, Yuzhong
Using GA solve the winner determination problem (WDP) with large bids and items, run under different distribution, because the search space is large, constraint complex and it may easy to produce infeasible solution, would affect the efficiency and quality of algorithm. This paper present improved MKGA, including three operator: preprocessing, insert bid and exchange recombination, and use Monkey-king elite preservation strategy. Experimental results show that improved MKGA is better than SGA in population size and computation. The problem that traditional branch and bound algorithm hard to solve, improved MKGA can solve and achieve better effect.
Nash Social Welfare in Multiagent Resource Allocation
NASA Astrophysics Data System (ADS)
Ramezani, Sara; Endriss, Ulle
We study different aspects of the multiagent resource allocation problem when the objective is to find an allocation that maximizes Nash social welfare, the product of the utilities of the individual agents. The Nash solution is an important welfare criterion that combines efficiency and fairness considerations. We show that the problem of finding an optimal outcome is NP-hard for a number of different languages for representing agent preferences; we establish new results regarding convergence to Nash-optimal outcomes in a distributed negotiation framework; and we design and test algorithms similar to those applied in combinatorial auctions for computing such an outcome directly.
Monkey search algorithm for ECE components partitioning
NASA Astrophysics Data System (ADS)
Kuliev, Elmar; Kureichik, Vladimir; Kureichik, Vladimir, Jr.
2018-05-01
The paper considers one of the important design problems – a partitioning of electronic computer equipment (ECE) components (blocks). It belongs to the NP-hard class of problems and has a combinatorial and logic nature. In the paper, a partitioning problem formulation can be found as a partition of graph into parts. To solve the given problem, the authors suggest using a bioinspired approach based on a monkey search algorithm. Based on the developed software, computational experiments were carried out that show the algorithm efficiency, as well as its recommended settings for obtaining more effective solutions in comparison with a genetic algorithm.
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585
AI techniques for a space application scheduling problem
NASA Technical Reports Server (NTRS)
Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.
1991-01-01
Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.
Coordinated Platoon Routing in a Metropolitan Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Jeffrey; Munson, Todd; Sokolov, Vadim
2016-10-10
Platooning vehicles—connected and automated vehicles traveling with small intervehicle distances—use less fuel because of reduced aerodynamic drag. Given a network de- fined by vertex and edge sets and a set of vehicles with origin/destination nodes/times, we model and solve the combinatorial optimization problem of coordinated routing of vehicles in a manner that routes them to their destination on time while using the least amount of fuel. Common approaches decompose the platoon coordination and vehicle routing into separate problems. Our model addresses both problems simultaneously to obtain the best solution. We use modern modeling techniques and constraints implied from analyzing themore » platoon routing problem to address larger numbers of vehicles and larger networks than previously considered. While the numerical method used is unable to certify optimality for candidate solutions to all networks and parameters considered, we obtain excellent solutions in approximately one minute for much larger networks and vehicle sets than previously considered in the literature.« less
An Indexed Combinatorial Library: The Synthesis and Testing of Insect Repellents
NASA Astrophysics Data System (ADS)
Miles, William H.; Gelato, Kathy A.; Pompizzi, Kristen M.; Scarbinsky, Aislinn M.; Albrecht, Brian K.; Reynolds, Elaine R.
2001-04-01
An indexed combinatorial library of amides was prepared by the reaction of amines and acid chlorides. A simple test for insect repellency using fruit flies (Drosophila melanogaster) allowed the determination of the most repellent sublibraries. The student-generated data were collected and analyzed to determine the most active amide(s) in the library. This experiment illustrates the fundamentals of combinatorial chemistry, a field that has undergone explosive growth in the last decade.
The quest for solvable multistate Landau-Zener models
Sinitsyn, Nikolai A.; Chernyak, Vladimir Y.
2017-05-24
Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. Additionally, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.
High-throughput determination of structural phase diagram and constituent phases using GRENDEL
NASA Astrophysics Data System (ADS)
Kusne, A. G.; Keller, D.; Anderson, A.; Zaban, A.; Takeuchi, I.
2015-11-01
Advances in high-throughput materials fabrication and characterization techniques have resulted in faster rates of data collection and rapidly growing volumes of experimental data. To convert this mass of information into actionable knowledge of material process-structure-property relationships requires high-throughput data analysis techniques. This work explores the use of the Graph-based endmember extraction and labeling (GRENDEL) algorithm as a high-throughput method for analyzing structural data from combinatorial libraries, specifically, to determine phase diagrams and constituent phases from both x-ray diffraction and Raman spectral data. The GRENDEL algorithm utilizes a set of physical constraints to optimize results and provides a framework by which additional physics-based constraints can be easily incorporated. GRENDEL also permits the integration of database data as shown by the use of critically evaluated data from the Inorganic Crystal Structure Database in the x-ray diffraction data analysis. Also the Sunburst radial tree map is demonstrated as a tool to visualize material structure-property relationships found through graph based analysis.
Second quantization in bit-string physics
NASA Technical Reports Server (NTRS)
Noyes, H. Pierre
1993-01-01
Using a new fundamental theory based on bit-strings, a finite and discrete version of the solutions of the free one particle Dirac equation as segmented trajectories with steps of length h/mc along the forward and backward light cones executed at velocity +/- c are derived. Interpreting the statistical fluctuations which cause the bends in these segmented trajectories as emission and absorption of radiation, these solutions are analogous to a fermion propagator in a second quantized theory. This allows us to interpret the mass parameter in the step length as the physical mass of the free particle. The radiation in interaction with it has the usual harmonic oscillator structure of a second quantized theory. How these free particle masses can be generated gravitationally using the combinatorial hierarchy sequence (3,10,137,2(sup 127) + 136), and some of the predictive consequences are sketched.
Solution for a bipartite Euclidean traveling-salesman problem in one dimension
NASA Astrophysics Data System (ADS)
Caracciolo, Sergio; Di Gioacchino, Andrea; Gherardi, Marco; Malatesta, Enrico M.
2018-05-01
The traveling-salesman problem is one of the most studied combinatorial optimization problems, because of the simplicity in its statement and the difficulty in its solution. We characterize the optimal cycle for every convex and increasing cost function when the points are thrown independently and with an identical probability distribution in a compact interval. We compute the average optimal cost for every number of points when the distance function is the square of the Euclidean distance. We also show that the average optimal cost is not a self-averaging quantity by explicitly computing the variance of its distribution in the thermodynamic limit. Moreover, we prove that the cost of the optimal cycle is not smaller than twice the cost of the optimal assignment of the same set of points. Interestingly, this bound is saturated in the thermodynamic limit.
Solution for a bipartite Euclidean traveling-salesman problem in one dimension.
Caracciolo, Sergio; Di Gioacchino, Andrea; Gherardi, Marco; Malatesta, Enrico M
2018-05-01
The traveling-salesman problem is one of the most studied combinatorial optimization problems, because of the simplicity in its statement and the difficulty in its solution. We characterize the optimal cycle for every convex and increasing cost function when the points are thrown independently and with an identical probability distribution in a compact interval. We compute the average optimal cost for every number of points when the distance function is the square of the Euclidean distance. We also show that the average optimal cost is not a self-averaging quantity by explicitly computing the variance of its distribution in the thermodynamic limit. Moreover, we prove that the cost of the optimal cycle is not smaller than twice the cost of the optimal assignment of the same set of points. Interestingly, this bound is saturated in the thermodynamic limit.
Combinatorial fabrication and screening of organic light-emitting device arrays
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun
2007-11-01
The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Förster energy transfer in guest-host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.
Combinatorial Dyson-Schwinger equations and inductive data types
NASA Astrophysics Data System (ADS)
Kock, Joachim
2016-06-01
The goal of this contribution is to explain the analogy between combinatorial Dyson-Schwinger equations and inductive data types to a readership of mathematical physicists. The connection relies on an interpretation of combinatorial Dyson-Schwinger equations as fixpoint equations for polynomial functors (established elsewhere by the author, and summarised here), combined with the now-classical fact that polynomial functors provide semantics for inductive types. The paper is expository, and comprises also a brief introduction to type theory.
Combinatorial stresses kill pathogenic Candida species
Kaloriti, Despoina; Tillmann, Anna; Cook, Emily; Jacobsen, Mette; You, Tao; Lenardon, Megan; Ames, Lauren; Barahona, Mauricio; Chandrasekaran, Komelapriya; Coghill, George; Goodman, Daniel; Gow, Neil A. R.; Grebogi, Celso; Ho, Hsueh-Lui; Ingram, Piers; McDonagh, Andrew; De Moura, Alessandro P. S.; Pang, Wei; Puttnam, Melanie; Radmaneshfar, Elahe; Romano, Maria Carmen; Silk, Daniel; Stark, Jaroslav; Stumpf, Michael; Thiel, Marco; Thorne, Thomas; Usher, Jane; Yin, Zhikang; Haynes, Ken; Brown, Alistair J. P.
2012-01-01
Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H 2O2) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly signif cant in host defences against these pathogenic yeasts. PMID:22463109
Chen, Hong-Zhang; Liu, Zhi-Hua
2015-06-01
Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.
Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki
2005-01-01
We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.
Recent Approaches Toward Solid Phase Synthesis of β-Lactams
NASA Astrophysics Data System (ADS)
Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb
Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.
NASA Astrophysics Data System (ADS)
Lu, Hai-Bo; Liu, Wei-Qiang
2014-04-01
Validated by the correlated experiments, a nose-tip with forward-facing cavity/opposing jet/the combinatorial configuration of forward-facing cavity and opposing jet thermal protection system (TPS) are investigated numerically. The physical mechanism of these TPS is discussed, and the cooling efficiency of them is compared. The combinatorial system is more suitable to be the TPS for the high speed vehicles which need fly under various flow conditions with long-range and long time.
NASA Astrophysics Data System (ADS)
Jakubczyk, Dorota; Jakubczyk, Paweł
2018-02-01
We propose combinatorial approach to the representation of Schur-Weyl duality in physical systems on the example of one-dimensional spin chains. Exploiting the Robinson-Schensted-Knuth algorithm, we perform decomposition of the dual group representations into irreducible representations in a fully combinatorial way. As representation space, we choose the Hilbert space of the spin chains, but this approach can be easily generalized to an arbitrary physical system where the Schur-Weyl duality works.
Massively multiplex single-cell Hi-C
Ramani, Vijay; Deng, Xinxian; Qiu, Ruolan; Gunderson, Kevin L; Steemers, Frank J; Disteche, Christine M; Noble, William S; Duan, Zhijun; Shendure, Jay
2016-01-01
We present single-cell combinatorial indexed Hi-C (sciHi-C), which applies the concept of combinatorial cellular indexing to chromosome conformation capture. In this proof-of-concept, we generate and sequence six sciHi-C libraries comprising a total of 10,696 single cells. We use sciHi-C data to separate cells by karytoypic and cell-cycle state differences and identify cell-to-cell heterogeneity in mammalian chromosomal conformation. Our results demonstrate that combinatorial indexing is a generalizable strategy for single-cell genomics. PMID:28135255
Approaches to the origin of life on Earth.
Kauffman, Stuart A
2011-11-18
I discuss briefly the history of the origin of life field, focusing on the "Miller" era of prebiotic synthesis, through the "Orgel" era seeking enzyme free template replication of single stranded RNA or similar polynucleotides, to the RNA world era with one of its foci on a ribozyme with the capacity to act as a polymerase able to copy itself. I give the history of the independent invention in 1971 by T. Ganti, M. Eigen and myself of three alternative theories of the origin of molecular replication: the Chemotron, the Hypercycle, and Collectively Autocatalytic Sets, CAS, respectively. To date, only collectively autocatalytic DNA, RNA, and peptide sets have achieved molecular reproduction of polymers. Theoretical work and experimental work on CAS both support their plausibility as models of openly evolvable protocells, if housed in dividing compartments such as dividing liposomes. My own further hypothesis beyond that of CAS in themselves, of their formation as a phase transition in complex chemical reaction systems of substrates, reactions and products, where the molecules in the system are candidates to catalyze the very same reactions, now firmly established as theorems, awaits experimental proof using combinatorial chemistry to make libraries of stochastic DNA, RNA and/or polypeptides, or other classes of molecules to test the hypothesis that molecular polymer reproduction has emerged as a true phase transition in complex chemical reaction systems. I remark that my colleague Marc Ballivet of the University of Geneva and I, may have issued the first publications discussing what became combinatorial chemistry, in published issued patents in 1987, 1989 and later, in this field.
Combinatorial Interdependence in Lottery
ERIC Educational Resources Information Center
Helman, Danny
2005-01-01
This paper examines a real life question of gamble facing lottery players. Combinatorial dependence plays a central role in shaping the game probabilistic structure, but might not carry the merited weight in punters' considerations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, William David
2001-01-01
The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m 2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO 3/(MoO 3 + V 2O 5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V +4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of watermore » to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V 2O 5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V 2O 5, solid solutions of Mo in V 2O 5, V 9Mo 6O 40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO 3/(V 2O 5 + MoO 3), determined by EDS analysis.« less
A Systematic Study of Simple Combinatorial Configurations.
ERIC Educational Resources Information Center
Dubois, Jean-Guy
1984-01-01
A classification of the simple combinatorial configurations which correspond to various cases of distribution and ordering of objects into boxes is given (in French). Concrete descriptions, structured relations, translations, and formalizations are discussed. (MNS)
Combinatorial Mathematics: Research into Practice
ERIC Educational Resources Information Center
Sriraman, Bharath; English, Lyn D.
2004-01-01
Implications and suggestions for using combinatorial mathematics in the classroom through a survey and synthesis of numerous research studies are presented. The implications revolve around five major themes that emerge from analysis of these studies.
Park, Je Won; Nam, Sang-Jip; Yoon, Yeo Joon
2017-06-15
Nature has a talent for inventing a vast number of natural products, including hybrids generated by blending different scaffolds, resulting in a myriad of bioactive chemical entities. Herein, we review the highlights and recent trends (2010-2016) in the combinatorial biosynthesis of sugar-containing antibiotics where nature's structural diversification capabilities are exploited to enable the creation of new anti-infective and anti-proliferative drugs. In this review, we describe the modern combinatorial biosynthetic approaches for polyketide synthase-derived complex and aromatic polyketides, non-ribosomal peptide synthetase-directed lipo-/glycopeptides, aminoglycosides, nucleoside antibiotics, and alkaloids, along with their therapeutic potential. Finally, we present the feasible nexus between combinatorial biosynthesis, systems biology, and synthetic biology as a toolbox to provide new antibiotics that will be indispensable in the post-antibiotic era. Copyright © 2016 Elsevier Inc. All rights reserved.
Combinatorial vector fields and the valley structure of fitness landscapes.
Stadler, Bärbel M R; Stadler, Peter F
2010-12-01
Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.
Measuring and Specifying Combinatorial Coverage of Test Input Configurations
Kuhn, D. Richard; Kacker, Raghu N.; Lei, Yu
2015-01-01
A key issue in testing is how many tests are needed for a required level of coverage or fault detection. Estimates are often based on error rates in initial testing, or on code coverage. For example, tests may be run until a desired level of statement or branch coverage is achieved. Combinatorial methods present an opportunity for a different approach to estimating required test set size, using characteristics of the test set. This paper describes methods for estimating the coverage of, and ability to detect, t-way interaction faults of a test set based on a covering array. We also develop a connection between (static) combinatorial coverage and (dynamic) code coverage, such that if a specific condition is satisfied, 100% branch coverage is assured. Using these results, we propose practical recommendations for using combinatorial coverage in specifying test requirements. PMID:28133442
Combinatorial chemical bath deposition of CdS contacts for chalcogenide photovoltaics
Mokurala, Krishnaiah; Baranowski, Lauryn L.; de Souza Lucas, Francisco W.; ...
2016-08-01
Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se 2 (CIGSe) and Cu 2ZnSnSe 4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps ofmore » CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. Finally, the results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers.« less
Zhang, H H; Gao, S; Chen, W; Shi, L; D'Souza, W D; Meyer, R R
2013-03-21
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equallyspaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality.
Zhang, H H; Gao, S; Chen, W; Shi, L; D’Souza, W D; Meyer, R R
2013-01-01
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the Nested Partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are superior quality. PMID:23459411
NASA Astrophysics Data System (ADS)
Youl Jung, Kyeong
2010-08-01
Conventional solution-based combinatorial chemistry was combined with spray pyrolysis and applied to optimize the luminescence properties of (Y x, Gd y, Al z)BO 3:Eu 3+ red phosphor under vacuum ultraviolet (VUV) excitation. For the Y-Gd-Al ternary system, a compositional library was established to seek the optimal composition at which the highest luminescence under VUV (147 nm) excitation could be achieved. The Al content was found to mainly control the relative peak ratio (R/O) of red and orange colors due to the 5D 0→ 7F 2 to 5D 0→ 7F 1 transitions of Eu 3+. The substitution of Gd atoms in the place of Y sites did not contribute to change the R/O ratio, but was helpful to enhance the emission intensity. As a result, the 613 nm emission peak due to the 5D 0→ 7F 2 transitions of Eu 3+ was intensified by increasing the Al/Gd ratio at a fixed Y content, resulting in the improvement of the color coordinate. Finally, the optimized host composition was (Y 0.11, Gd 0.10, Al 0.79)BO 3 in terms of the emission intensity at 613 nm and the color coordinate.
Legrand, Yves-Marie; van der Lee, Arie; Barboiu, Mihail
2007-11-12
In this paper we report an extended series of 2,6-(iminoarene)pyridine-type ZnII complexes [(Lii)2Zn]II, which were surveyed for their ability to self-exchange both their ligands and their aromatic arms and to form different homoduplex and heteroduplex complexes in solution. The self-sorting of heteroduplex complexes is likely to be the result of geometric constraints. Whereas the imine-exchange process occurs quantitatively in 1:1 mixtures of [(Lii)2Zn]II complexes, the octahedral coordination process around the metal ion defines spatial-frustrated exchanges that involve the selective formation of heterocomplexes of two, by two different substituents; the bulkiest ones (pyrene in principle) specifically interact with the pseudoterpyridine core, sterically hindering the least bulky ones, which are intermolecularly stacked with similar ligands of neighboring molecules. Such a self-sorting process defined by the specific self-constitution of the ligands exchanging their aromatic substituents is self-optimized by a specific control over their spatial orientation around a metal center within the complex. They ultimately show an improved charge-transfer energy function by virtue of the dynamic amplification of self-optimized heteroduplex architectures. These systems therefore illustrate the convergence of the combinatorial self-sorting of the dynamic combinatorial libraries (DCLs) strategy and the constitutional self-optimized function.
Electro-Microfluidic Packaging
NASA Astrophysics Data System (ADS)
Benavides, G. L.; Galambos, P. C.
2002-06-01
There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.
Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.
2015-01-01
Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulaev, Alexander; Guo, Hongxuan; Strelcov, Evgheni
Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here in this paper, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studyingmore » a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.« less
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
2016-02-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Using Grid Cells for Navigation
Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil
2015-01-01
Summary Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this “vector navigation” relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. PMID:26247860
Replicator equations, maximal cliques, and graph isomorphism.
Pelillo, M
1999-11-15
We present a new energy-minimization framework for the graph isomorphism problem that is based on an equivalent maximum clique formulation. The approach is centered around a fundamental result proved by Motzkin and Straus in the mid-1960s, and recently expanded in various ways, which allows us to formulate the maximum clique problem in terms of a standard quadratic program. The attractive feature of this formulation is that a clear one-to-one correspondence exists between the solutions of the quadratic program and those in the original, combinatorial problem. To solve the program we use the so-called replicator equations--a class of straightforward continuous- and discrete-time dynamical systems developed in various branches of theoretical biology. We show how, despite their inherent inability to escape from local solutions, they nevertheless provide experimental results that are competitive with those obtained using more elaborate mean-field annealing heuristics.
Space pruning monotonic search for the non-unique probe selection problem.
Pappalardo, Elisa; Ozkok, Beyza Ahlatcioglu; Pardalos, Panos M
2014-01-01
Identification of targets, generally viruses or bacteria, in a biological sample is a relevant problem in medicine. Biologists can use hybridisation experiments to determine whether a specific DNA fragment, that represents the virus, is presented in a DNA solution. A probe is a segment of DNA or RNA, labelled with a radioactive isotope, dye or enzyme, used to find a specific target sequence on a DNA molecule by hybridisation. Selecting unique probes through hybridisation experiments is a difficult task, especially when targets have a high degree of similarity, for instance in a case of closely related viruses. After preliminary experiments, performed by a canonical Monte Carlo method with Heuristic Reduction (MCHR), a new combinatorial optimisation approach, the Space Pruning Monotonic Search (SPMS) method, is introduced. The experiments show that SPMS provides high quality solutions and outperforms the current state-of-the-art algorithms.
The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition
NASA Astrophysics Data System (ADS)
Markopoulos, Panos P.; Chachlakis, Dimitris G.; Papalexakis, Evangelos E.
2018-04-01
We study rank-1 {L1-norm-based TUCKER2} (L1-TUCKER2) decomposition of 3-way tensors, treated as a collection of $N$ $D \\times M$ matrices that are to be jointly decomposed. Our contributions are as follows. i) We prove that the problem is equivalent to combinatorial optimization over $N$ antipodal-binary variables. ii) We derive the first two algorithms in the literature for its exact solution. The first algorithm has cost exponential in $N$; the second one has cost polynomial in $N$ (under a mild assumption). Our algorithms are accompanied by formal complexity analysis. iii) We conduct numerical studies to compare the performance of exact L1-TUCKER2 (proposed) with standard HOSVD, HOOI, GLRAM, PCA, L1-PCA, and TPCA-L1. Our studies show that L1-TUCKER2 outperforms (in tensor approximation) all the above counterparts when the processed data are outlier corrupted.
NASA Astrophysics Data System (ADS)
Di Francesco, P.; Zinn-Justin, P.
2005-12-01
We prove higher rank analogues of the Razumov Stroganov sum rule for the ground state of the O(1) loop model on a semi-infinite cylinder: we show that a weighted sum of components of the ground state of the Ak-1 IRF model yields integers that generalize the numbers of alternating sign matrices. This is done by constructing minimal polynomial solutions of the level 1 U_q(\\widehat{\\frak{sl}(k)}) quantum Knizhnik Zamolodchikov equations, which may also be interpreted as quantum incompressible q-deformations of quantum Hall effect wavefunctions at filling fraction ν = k. In addition to the generalized Razumov Stroganov point q = -eiπ/k+1, another combinatorially interesting point is reached in the rational limit q → -1, where we identify the solution with extended Joseph polynomials associated with the geometry of upper triangular matrices with vanishing kth power.
Gobin, Oliver C; Schüth, Ferdi
2008-01-01
Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.
Kim, Kyung Lock; Park, Kyeng Min; Murray, James; Kim, Kimoon; Ryu, Sung Ho
2018-05-23
Combinatorial post-translational modifications (PTMs), which can serve as dynamic "molecular barcodes", have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
2018-01-01
Combinatorial post-translational modifications (PTMs), which can serve as dynamic “molecular barcodes”, have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshemkov, Andrey A
2010-10-06
A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.
System and method for bullet tracking and shooter localization
Roberts, Randy S [Livermore, CA; Breitfeller, Eric F [Dublin, CA
2011-06-21
A system and method of processing infrared imagery to determine projectile trajectories and the locations of shooters with a high degree of accuracy. The method includes image processing infrared image data to reduce noise and identify streak-shaped image features, using a Kalman filter to estimate optimal projectile trajectories, updating the Kalman filter with new image data, determining projectile source locations by solving a combinatorial least-squares solution for all optimal projectile trajectories, and displaying all of the projectile source locations. Such a shooter-localization system is of great interest for military and law enforcement applications to determine sniper locations, especially in urban combat scenarios.
Integrated Structural/Control Design via Multiobjective Optimization
1990-05-10
motivation is to yield a tractable 0 problem whose solution is readily synthesized and easily implemented. Likewise, the combinatorial approaches to...stations PsI, Ps2, Ps3, Ps4 on arms 3 and 4 and stations Ps5, Ps6, Ps7, Ps8 on arms I and 2. The sensor influence matrix H is 1 oT 0T 0 UoT (psi) T H= 0...t, Ps4 ), v (t,psS) ..... v (t,Ps8) ] T (4-30a) -V = Yp (4-30b) The locations Pul and Pu2 of the torque actuators and Psi, Ps2 .... Ps8 of the sensors
An application of different dioids in public key cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durcheva, Mariana I., E-mail: mdurcheva66@gmail.com
2014-11-18
Dioids provide a natural framework for analyzing a broad class of discrete event dynamical systems such as the design and analysis of bus and railway timetables, scheduling of high-throughput industrial processes, solution of combinatorial optimization problems, the analysis and improvement of flow systems in communication networks. They have appeared in several branches of mathematics such as functional analysis, optimization, stochastic systems and dynamic programming, tropical geometry, fuzzy logic. In this paper we show how to involve dioids in public key cryptography. The main goal is to create key – exchange protocols based on dioids. Additionally the digital signature scheme ismore » presented.« less
SETS. Set Equation Transformation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrell, R.B.
1992-01-13
SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access throughmore » nullification of sensors in its protection system.« less
Combinatorics of Generalized Bethe Equations
NASA Astrophysics Data System (ADS)
Kozlowski, Karol K.; Sklyanin, Evgeny K.
2013-10-01
A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.
Stochastic methods for analysis of power flow in electric networks
NASA Astrophysics Data System (ADS)
1982-09-01
The modeling and effects of probabilistic behavior on steady state power system operation were analyzed. A solution to the steady state network flow equations which adhere both to Kirchoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques was obtained. The development of sound techniques for producing meaningful data to serve as input is examined. Electric demand modeling, equipment failure analysis, and algorithm development are investigated. Two major development areas are described: a decomposition of stochastic processes which gives stationarity, ergodicity, and even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.
Hydroxyapatite-binding peptides for bone growth and inhibition
Bertozzi, Carolyn R [Berkeley, CA; Song, Jie [Shrewsbury, MA; Lee, Seung-Wuk [Walnut Creek, CA
2011-09-20
Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.
Solid-Phase Synthesis of Diverse Peptide Tertiary Amides By Reductive Amination
Pels, Kevin; Kodadek, Thomas
2015-01-01
The synthesis of libraries of conformationally-constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as peptide tertiary amide (PTA). PTAs are strongly biased conformationally due to allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers. PMID:25695359
Solid-phase synthesis of diverse peptide tertiary amides by reductive amination.
Pels, Kevin; Kodadek, Thomas
2015-03-09
The synthesis of libraries of conformationally constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as a peptide tertiary amide (PTA). PTAs are conformationally constrained because of allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers.
Constellation Coverage Analysis
NASA Technical Reports Server (NTRS)
Lo, Martin W. (Compiler)
1997-01-01
The design of satellite constellations requires an understanding of the dynamic global coverage provided by the constellations. Even for a small constellation with a simple circular orbit propagator, the combinatorial nature of the analysis frequently renders the problem intractable. Particularly for the initial design phase where the orbital parameters are still fluid and undetermined, the coverage information is crucial to evaluate the performance of the constellation design. We have developed a fast and simple algorithm for determining the global constellation coverage dynamically using image processing techniques. This approach provides a fast, powerful and simple method for the analysis of global constellation coverage.
NASA Astrophysics Data System (ADS)
Yeung, L.
2015-12-01
I present a mode of isotopic ordering that has purely combinatorial origins. It can be important when identical rare isotopes are paired by coincidence (e.g., they are neighbors on the same molecule), or when extrinsic factors govern the isotopic composition of the two atoms that share a chemical bond. By itself, combinatorial isotope pairing yields products with isotopes either randomly distributed or with a deficit relative to a random distribution of isotopes. These systematics arise because of an unconventional coupling between the formation of singly- and multiply-substituted isotopic moieties. In a random distribution, rare isotopes are symmetrically distributed: Single isotopic substitutions (e.g., H‒D and D‒H in H2) occur with equal probability, and double isotopic substitutions (e.g., D2) occur according to random chance. The absence of symmetry in a bond-making complex can yield unequal numbers of singly-substituted molecules (e.g., more H‒D than D‒H in H2), which is recorded in the product molecule as a deficit in doubly-substituted moieties and an "anticlumped" isotope distribution (i.e., Δn < 0). Enzymatic isotope pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect. Chemical-kinetic isotope effects, which are related to the bond-forming transition state, arise independently and express second-order combinatorial effects. In general, both combinatorial and chemical factors are important for calculating and interpreting clumped-isotope signatures of individual reactions. In many reactions relevant to geochemical oxygen, carbon, and nitrogen cycling, combinatorial isotope pairing likely plays a strong role in the clumped isotope distribution of the products. These isotopic signatures, manifest as either directly bound isotope clumps or as features of a molecule's isotopic anatomy, could be exploited as tracers of biogeochemistry that can relate molecular mechanisms to signals observable at environmentally relevant spatial scales.
Adham, Manal T; Bentley, Peter J
2016-08-01
This paper proposes and evaluates a solution to the truck redistribution problem prominent in London's Santander Cycle scheme. Due to the complexity of this NP-hard combinatorial optimisation problem, no efficient optimisation techniques are known to solve the problem exactly. This motivates our use of the heuristic Artificial Ecosystem Algorithm (AEA) to find good solutions in a reasonable amount of time. The AEA is designed to take advantage of highly distributed computer architectures and adapt to changing problems. In the AEA a problem is first decomposed into its relative sub-components; they then evolve solution building blocks that fit together to form a single optimal solution. Three variants of the AEA centred on evaluating clustering methods are presented: the baseline AEA, the community-based AEA which groups stations according to journey flows, and the Adaptive AEA which actively modifies clusters to cater for changes in demand. We applied these AEA variants to the redistribution problem prominent in bike share schemes (BSS). The AEA variants are empirically evaluated using historical data from Santander Cycles to validate the proposed approach and prove its potential effectiveness. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.
Li, Bin-Bin; Wang, Ling
2007-06-01
This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.
Balancing focused combinatorial libraries based on multiple GPCR ligands
NASA Astrophysics Data System (ADS)
Soltanshahi, Farhad; Mansley, Tamsin E.; Choi, Sun; Clark, Robert D.
2006-08-01
G-Protein coupled receptors (GPCRs) are important targets for drug discovery, and combinatorial chemistry is an important tool for pharmaceutical development. The absence of detailed structural information, however, limits the kinds of combinatorial design techniques that can be applied to GPCR targets. This is particularly problematic given the current emphasis on focused combinatorial libraries. By linking an incremental construction method (OptDesign) to the very fast shape-matching capability of ChemSpace, we have created an efficient method for designing targeted sublibraries that are topomerically similar to known actives. Multi-objective scoring allows consideration of multiple queries (actives) simultaneously. This can lead to a distribution of products skewed towards one particular query structure, however, particularly when the ligands of interest are quite dissimilar to one another. A novel pivoting technique is described which makes it possible to generate promising designs even under those circumstances. The approach is illustrated by application to some serotonergic agonists and chemokine antagonists.
NASA Astrophysics Data System (ADS)
Simonton, Dean Keith
2010-06-01
Campbell (1960) proposed that creative thought should be conceived as a blind-variation and selective-retention process (BVSR). This article reviews the developments that have taken place in the half century that has elapsed since his proposal, with special focus on the use of combinatorial models as formal representations of the general theory. After defining the key concepts of blind variants, creative thought, and disciplinary context, the combinatorial models are specified in terms of individual domain samples, variable field size, ideational combination, and disciplinary communication. Empirical implications are then derived with respect to individual, domain, and field systems. These abstract combinatorial models are next provided substantive reinforcement with respect to findings concerning the cognitive processes, personality traits, developmental factors, and social contexts that contribute to creativity. The review concludes with some suggestions regarding future efforts to explicate creativity according to BVSR theory.
Combinatorial Color Space Models for Skin Detection in Sub-continental Human Images
NASA Astrophysics Data System (ADS)
Khaled, Shah Mostafa; Saiful Islam, Md.; Rabbani, Md. Golam; Tabassum, Mirza Rehenuma; Gias, Alim Ul; Kamal, Md. Mostafa; Muctadir, Hossain Muhammad; Shakir, Asif Khan; Imran, Asif; Islam, Saiful
Among different color models HSV, HLS, YIQ, YCbCr, YUV, etc. have been most popular for skin detection. Most of the research done in the field of skin detection has been trained and tested on human images of African, Mongolian and Anglo-Saxon ethnic origins, skin colors of Indian sub-continentals have not been focused separately. Combinatorial algorithms, without affecting asymptotic complexity can be developed using the skin detection concepts of these color models for boosting detection performance. In this paper a comparative study of different combinatorial skin detection algorithms have been made. For training and testing 200 images (skin and non skin) containing pictures of sub-continental male and females have been used to measure the performance of the combinatorial approaches, and considerable development in success rate with True Positive of 99.5% and True Negative of 93.3% have been observed.
Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.
Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario
2016-08-08
DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.
Combinatorial games with a pass: a dynamical systems approach.
Morrison, Rebecca E; Friedman, Eric J; Landsberg, Adam S
2011-12-01
By treating combinatorial games as dynamical systems, we are able to address a longstanding open question in combinatorial game theory, namely, how the introduction of a "pass" move into a game affects its behavior. We consider two well known combinatorial games, 3-pile Nim and 3-row Chomp. In the case of Nim, we observe that the introduction of the pass dramatically alters the game's underlying structure, rendering it considerably more complex, while for Chomp, the pass move is found to have relatively minimal impact. We show how these results can be understood by recasting these games as dynamical systems describable by dynamical recursion relations. From these recursion relations, we are able to identify underlying structural connections between these "games with passes" and a recently introduced class of "generic (perturbed) games." This connection, together with a (non-rigorous) numerical stability analysis, allows one to understand and predict the effect of a pass on a game.
Generating subtour elimination constraints for the TSP from pure integer solutions.
Pferschy, Ulrich; Staněk, Rostislav
2017-01-01
The traveling salesman problem ( TSP ) is one of the most prominent combinatorial optimization problems. Given a complete graph [Formula: see text] and non-negative distances d for every edge, the TSP asks for a shortest tour through all vertices with respect to the distances d. The method of choice for solving the TSP to optimality is a branch and cut approach . Usually the integrality constraints are relaxed first and all separation processes to identify violated inequalities are done on fractional solutions . In our approach we try to exploit the impressive performance of current ILP-solvers and work only with integer solutions without ever interfering with fractional solutions. We stick to a very simple ILP-model and relax the subtour elimination constraints only. The resulting problem is solved to integer optimality, violated constraints (which are trivial to find) are added and the process is repeated until a feasible solution is found. In order to speed up the algorithm we pursue several attempts to find as many relevant subtours as possible. These attempts are based on the clustering of vertices with additional insights gained from empirical observations and random graph theory. Computational results are performed on test instances taken from the TSPLIB95 and on random Euclidean graphs .
Structure-based design of combinatorial mutagenesis libraries
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-01-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189
Structure-based design of combinatorial mutagenesis libraries.
Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris
2015-05-01
The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. © 2015 The Protein Society.
Transport of calcium ions through a bulk membrane by use of a dynamic combinatorial library.
Saggiomo, Vittorio; Lüning, Ulrich
2009-07-07
In a bulk membrane transport experiment, a dynamic combinatorial library (DCL) has been used to transport calcium ions; the calcium ions amplify the formation of a macrocyclic carrier which results in transport.
Counting Pizza Pieces and Other Combinatorial Problems.
ERIC Educational Resources Information Center
Maier, Eugene
1988-01-01
The general combinatorial problem of counting the number of regions into which the interior of a circle is divided by a family of lines is considered. A general formula is developed and its use is illustrated in two situations. (PK)
On the existence of binary simplex codes. [using combinatorial construction
NASA Technical Reports Server (NTRS)
Taylor, H.
1977-01-01
Using a simple combinatorial construction, the existence of a binary simplex code with m codewords for all m is greater than or equal to 1 is proved. The problem of the shortest possible length is left open.
Application of combinatorial biocatalysis for a unique ring expansion of dihydroxymethylzearalenone
USDA-ARS?s Scientific Manuscript database
Combinatorial biocatalysis was applied to generate a diverse set of dihydroxymethylzearalenone derivatives with modified ring structure. In one chemoenzymatic reaction sequence, dihydroxymethylzearalenone was first subjected to a unique enzyme-catalyzed oxidative ring opening reaction that creates ...
Colorimetric monitoring of solid-phase aldehydes using 2,4-dinitrophenylhydrazine.
Shannon, Simon K; Barany, George
2004-01-01
A simple and rapid method to achieve colorimetric monitoring of resin-bound aldehydes, based on ambient temperature reaction with 2,4-dinitrophenylhydrazine (DNPH) in the presence of dilute acid, has been developed as an adjunct to solid-phase organic synthesis and combinatorial chemistry. By this test, the presence of aldehydes is indicated by a red to dark-orange appearance, within a minute. Alternatively, resins that are free of aldehydes or in which aldehyde functions have reacted completely retain their original color. The DNPH test was demonstrated for poly(ethylene glycol)-polystyrene (PEG-PS), aminomethyl polystyrene (AMP), cross-linked ethoxylate acrylate resin (CLEAR), and acryloylated O,O'-bis(2-aminopropyl)poly(ethylene glycol) (PEGA) supports and gave results visible to the naked eye at levels as low as 18 micromol of aldehyde per gram of resin.
NASA Astrophysics Data System (ADS)
Moghaddam, Kamran S.; Usher, John S.
2011-07-01
In this article, a new multi-objective optimization model is developed to determine the optimal preventive maintenance and replacement schedules in a repairable and maintainable multi-component system. In this model, the planning horizon is divided into discrete and equally-sized periods in which three possible actions must be planned for each component, namely maintenance, replacement, or do nothing. The objective is to determine a plan of actions for each component in the system while minimizing the total cost and maximizing overall system reliability simultaneously over the planning horizon. Because of the complexity, combinatorial and highly nonlinear structure of the mathematical model, two metaheuristic solution methods, generational genetic algorithm, and a simulated annealing are applied to tackle the problem. The Pareto optimal solutions that provide good tradeoffs between the total cost and the overall reliability of the system can be obtained by the solution approach. Such a modeling approach should be useful for maintenance planners and engineers tasked with the problem of developing recommended maintenance plans for complex systems of components.
Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J.; Long, Christian; Takeuchi, Ichiro
2014-01-01
Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet. PMID:25220062
A phase transition in energy-filtered RNA secondary structures.
Han, Hillary S W; Reidys, Christian M
2012-10-01
In this article we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model that is only dependent on the diagram representation and is not sequence-specific, we prove the following dichotomy result. Mfe structures derived via the Turner energy parameters contain only finitely many complex irreducible substructures, and just minor parameter changes produce a class of mfe structures that contain a large number of small irreducibles. We localize the exact point at which the distribution of irreducibles experiences this phase transition from a discrete limit to a central limit distribution and, subsequently, put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe structures. We show that the sparsification of realistic mfe structures leads to a constant time and space reduction, and that the sparsification of the folding of structures with modified parameters leads to a linear time and space reduction. We, furthermore, identify the limit distribution at the phase transition as a Rayleigh distribution.
Cobb, Zoe; Sellergren, Börje; Andersson, Lars I
2007-12-01
Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.
Criticism of EFSA's scientific opinion on combinatorial effects of 'stacked' GM plants.
Bøhn, Thomas
2018-01-01
Recent genetically modified plants tend to include both insect resistance and herbicide tolerance traits. Some of these 'stacked' GM plants have multiple Cry-toxins expressed as well as tolerance to several herbicides. This means that non-target organisms in the environment (biodiversity) will be co-exposed to multiple stressors simultaneously. A similar co-exposure may happen to consumers through chemical residues in the food chain. EFSA, the responsible unit for minimizing risk of harm in European food chains, has expressed its scientific interest in combinatorial effects. However, when new data showed how two Cry-toxins acted in combination (added toxicity), and that the same Cry-toxins showed combinatorial effects when co-exposed with Roundup (Bøhn et al., 2016), EFSA dismissed these new peer-reviewed results. In effect, EFSA claimed that combinatorial effects are not relevant for itself. EFSA was justifying this by referring to a policy question, and by making invalid assumptions, which could have been checked directly with the lead-author. With such approach, EFSA may miss the opportunity to improve its environmental and health risk assessment of toxins and pesticides in the food chain. Failure to follow its own published requests for combinatorial effects research, may also risk jeopardizing EFSA's scientific and public reputation. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacotte, M.; David, A.; Pravarthana, D.
2014-12-28
The local epitaxial growth of pulsed laser deposited Ca{sub 2}MnO{sub 4} films on polycrystalline spark plasma sintered Sr{sub 2}TiO{sub 4} substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew inmore » a grain-over-grain pattern such that each Ca{sub 2}MnO{sub 4} grain had a single OR with the Sr{sub 2}TiO{sub 4} grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001]{sub film}||[100][001]{sub sub}. The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides.« less
Running Clubs--A Combinatorial Investigation.
ERIC Educational Resources Information Center
Nissen, Phillip; Taylor, John
1991-01-01
Presented is a combinatorial problem based on the Hash House Harriers rule which states that the route of the run should not have previously been traversed by the club. Discovered is how many weeks the club can meet before the rule has to be broken. (KR)
Singh, Jaspal; Rustagi, Vineeta; Zhang, Shanrong; Sherry, A Dean; Udugamasooriya, D Gomika
2017-08-01
The rate of water exchange between the inner sphere of a paramagnetic ion and bulk water is an important parameter in determining the magnitude of the chemical exchange saturation transfer signal from paramagnetic CEST agents (paraCEST). This is governed by various geometric, steric and ligand field factors created by macrocyclic ligands surrounding the paramagnetic metal ion. Our previous on-bead combinatorial studies of di-peptoid-europium(III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-tetraamide complexes revealed that negatively charged groups in the immediate vicinity of the metal center strongly enhances the CEST signal. Here, we report a solid phase synthesis and on-bead imaging of 76 new DOTA derivatives that are developed by coupling with a single residue onto each of the three arms of a DOTA-tetraamide scaffold attached to resin beads. This single residue predominantly carries negatively charged groups blended with various physico-chemical characteristics. We found that non-bulky negatively charged groups are best suited at the immediate vicinity of the metal ion, while positive, bulky and halogen containing moieties suppress the CEST signal. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry
NASA Astrophysics Data System (ADS)
Kuchibhotla, Bhanuramanand; Kola, Sankara Rao; Medicherla, Jagannadham V.; Cherukuvada, Swamy V.; Dhople, Vishnu M.; Nalam, Madhusudhana Rao
2017-06-01
Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. [Figure not available: see fulltext.
Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.
Müller-Molina, Arnoldo J; Schöler, Hans R; Araúzo-Bravo, Marcos J
2012-01-01
To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.
Comprehensive Human Transcription Factor Binding Site Map for Combinatory Binding Motifs Discovery
Müller-Molina, Arnoldo J.; Schöler, Hans R.; Araúzo-Bravo, Marcos J.
2012-01-01
To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%–20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory “DNA words.” From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%—far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of “DNA words,” newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters. PMID:23209563
Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network
NASA Technical Reports Server (NTRS)
Kuhn, D. Richard; Kacker, Raghu; Lei, Yu
2010-01-01
This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.
Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu
2017-07-03
We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.
Formal Operations and Ego Identity in Adolescence.
ERIC Educational Resources Information Center
Wagner, Janis A.
1987-01-01
Investigated the relationship between the development of formal operations and the formation of ego identity in adolescence. Obtained significant positive correlations between combinatorial ability and degree of identity, suggesting that high identity may facilitate the application of combinatorial operations. Found some gender differences in task…
Manipulating Combinatorial Structures.
ERIC Educational Resources Information Center
Labelle, Gilbert
This set of transparencies shows how the manipulation of combinatorial structures in the context of modern combinatorics can easily lead to interesting teaching and learning activities at every level of education from elementary school to university. The transparencies describe: (1) the importance and relations of combinatorics to science and…
Gian-Carlos Rota and Combinatorial Math.
ERIC Educational Resources Information Center
Kolata, Gina Bari
1979-01-01
Presents the first of a series of occasional articles about mathematics as seen through the eyes of its prominent scholars. In an interview with Gian-Carlos Rota of the Massachusetts Institute of Technology he discusses how combinatorial mathematics began as a field and its future. (HM)
A Model of Students' Combinatorial Thinking
ERIC Educational Resources Information Center
Lockwood, Elise
2013-01-01
Combinatorial topics have become increasingly prevalent in K-12 and undergraduate curricula, yet research on combinatorics education indicates that students face difficulties when solving counting problems. The research community has not yet addressed students' ways of thinking at a level that facilitates deeper understanding of how students…
The LATL as locus of composition: MEG evidence from English and Arabic.
Westerlund, Masha; Kastner, Itamar; Al Kaabi, Meera; Pylkkänen, Liina
2015-02-01
Neurolinguistic investigations into the processing of structured sentences as well as simple adjective-noun phrases point to the left anterior temporal lobe (LATL) as a leading candidate for basic linguistic composition. Here, we characterized the combinatory profile of the LATL over a variety of syntactic and semantic environments, and across two languages, English and Arabic. The contribution of the LATL was investigated across two types of composition: the optional modification of a predicate (modification) and the satisfaction of a predicate's argument position (argument saturation). Target words were presented during MEG recordings, either in combinatory contexts (e.g. "eats meat") or in non-combinatory contexts (preceded by an unpronounceable consonant string, e.g. "xqkr meat"). Across both languages, the LATL showed increased responses to words in combinatory contexts, an effect that was robust to composition type and word order. Together with related findings, these results solidify the role of the LATL in basic semantic composition. Copyright © 2014 Elsevier Inc. All rights reserved.
DNA Assembly Techniques for Next Generation Combinatorial Biosynthesis of Natural Products
Cobb, Ryan E.; Ning, Jonathan C.; Zhao, Huimin
2013-01-01
Natural product scaffolds remain important leads for pharmaceutical development. However, transforming a natural product into a drug entity often requires derivatization to enhance the compound’s therapeutic properties. A powerful method by which to perform this derivatization is combinatorial biosynthesis, the manipulation of the genes in the corresponding pathway to divert synthesis towards novel derivatives. While these manipulations have traditionally been carried out via restriction digestion/ligation-based cloning, the shortcomings of such techniques limit their throughput and thus the scope of corresponding combinatorial biosynthesis experiments. In the burgeoning field of synthetic biology, the demand for facile DNA assembly techniques has promoted the development of a host of novel DNA assembly strategies. Here we describe the advantages of these recently-developed tools for rapid, efficient synthesis of large DNA constructs. We also discuss their potential to facilitate the simultaneous assembly of complete libraries of natural product biosynthetic pathways, ushering in the next generation of combinatorial biosynthesis. PMID:24127070
Wang, Yen-Ling
2014-01-01
Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study. PMID:24864236
A methodology to find the elementary landscape decomposition of combinatorial optimization problems.
Chicano, Francisco; Whitley, L Darrell; Alba, Enrique
2011-01-01
A small number of combinatorial optimization problems have search spaces that correspond to elementary landscapes, where the objective function f is an eigenfunction of the Laplacian that describes the neighborhood structure of the search space. Many problems are not elementary; however, the objective function of a combinatorial optimization problem can always be expressed as a superposition of multiple elementary landscapes if the underlying neighborhood used is symmetric. This paper presents theoretical results that provide the foundation for algebraic methods that can be used to decompose the objective function of an arbitrary combinatorial optimization problem into a sum of subfunctions, where each subfunction is an elementary landscape. Many steps of this process can be automated, and indeed a software tool could be developed that assists the researcher in finding a landscape decomposition. This methodology is then used to show that the subset sum problem is a superposition of two elementary landscapes, and to show that the quadratic assignment problem is a superposition of three elementary landscapes.
Rule-based modeling and simulations of the inner kinetochore structure.
Tschernyschkow, Sergej; Herda, Sabine; Gruenert, Gerd; Döring, Volker; Görlich, Dennis; Hofmeister, Antje; Hoischen, Christian; Dittrich, Peter; Diekmann, Stephan; Ibrahim, Bashar
2013-09-01
Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins. Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts. Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores. Copyright © 2013 Elsevier Ltd. All rights reserved.
Houghten, Richard A; Dooley, Colette T; Appel, Jon R
2006-05-26
The use of combinatorial libraries for the identification of novel opiate and related ligands in opioid receptor assays is reviewed. Case studies involving opioid assays used to demonstrate the viability of combinatorial libraries are described. The identification of new opioid peptides composed of L-amino acids, D-amino acids, or L-, D-, and unnatural amino acids is reviewed. New opioid compounds have also been identified from peptidomimetic libraries, such as peptoids and alkylated dipeptides, and those identified from acyclic (eg, polyamine, urea) and heterocyclic (eg, bicyclic guanidine) libraries are reviewed.
Rotem, Or; Pasternak, Zohar; Shimoni, Eyal; Belausov, Eduard; Porat, Ziv; Pietrokovski, Shmuel; Jurkevitch, Edouard
2015-11-03
Predators feed on prey to acquire the nutrients necessary to sustain their survival, growth, and replication. In Bdellovibrio bacteriovorus, an obligate predator of Gram-negative bacteria, cell growth and replication are tied to a shift from a motile, free-living phase of search and attack to a sessile, intracellular phase of growth and replication during which a single prey cell is consumed. Engagement and sustenance of growth are achieved through the sensing of two unidentified prey-derived cues. We developed a novel ex vivo cultivation system for B. bacteriovorus composed of prey ghost cells that are recognized and invaded by the predator. By manipulating their content, we demonstrated that an early cue is located in the prey envelope and a late cue is found within the prey soluble fraction. These spatially and temporally separated cues elicit discrete and combinatory regulatory effects on gene transcription. Together, they delimit a poorly characterized transitory phase between the attack phase and the growth phase, during which the bdelloplast (the invaded prey cell) is constructed. This transitory phase constitutes a checkpoint in which the late cue presumably acts as a determinant of the prey's nutritional value before the predator commits. These regulatory adaptations to a unique bacterial lifestyle have not been reported previously.
Combinatorial algorithms for design of DNA arrays.
Hannenhalli, Sridhar; Hubell, Earl; Lipshutz, Robert; Pevzner, Pavel A
2002-01-01
Optimal design of DNA arrays requires the development of algorithms with two-fold goals: reducing the effects caused by unintended illumination (border length minimization problem) and reducing the complexity of masks (mask decomposition problem). We describe algorithms that reduce the number of rectangles in mask decomposition by 20-30% as compared to a standard array design under the assumption that the arrangement of oligonucleotides on the array is fixed. This algorithm produces provably optimal solution for all studied real instances of array design. We also address the difficult problem of finding an arrangement which minimizes the border length and come up with a new idea of threading that significantly reduces the border length as compared to standard designs.
Sentence Processing in an Artificial Language: Learning and Using Combinatorial Constraints
ERIC Educational Resources Information Center
Amato, Michael S.; MacDonald, Maryellen C.
2010-01-01
A study combining artificial grammar and sentence comprehension methods investigated the learning and online use of probabilistic, nonadjacent combinatorial constraints. Participants learned a small artificial language describing cartoon monsters acting on objects. Self-paced reading of sentences in the artificial language revealed comprehenders'…
Chen, Xin; Wu, Qiong; Sun, Ruimin; Zhang, Louxin
2012-01-01
The discovery of single-nucleotide polymorphisms (SNPs) has important implications in a variety of genetic studies on human diseases and biological functions. One valuable approach proposed for SNP discovery is based on base-specific cleavage and mass spectrometry. However, it is still very challenging to achieve the full potential of this SNP discovery approach. In this study, we formulate two new combinatorial optimization problems. While both problems are aimed at reconstructing the sample sequence that would attain the minimum number of SNPs, they search over different candidate sequence spaces. The first problem, denoted as SNP - MSP, limits its search to sequences whose in silico predicted mass spectra have all their signals contained in the measured mass spectra. In contrast, the second problem, denoted as SNP - MSQ, limits its search to sequences whose in silico predicted mass spectra instead contain all the signals of the measured mass spectra. We present an exact dynamic programming algorithm for solving the SNP - MSP problem and also show that the SNP - MSQ problem is NP-hard by a reduction from a restricted variation of the 3-partition problem. We believe that an efficient solution to either problem above could offer a seamless integration of information in four complementary base-specific cleavage reactions, thereby improving the capability of the underlying biotechnology for sensitive and accurate SNP discovery.
Utilizing pulsed laser deposition lateral inhomogeneity as a tool in combinatorial material science.
Keller, David A; Ginsburg, Adam; Barad, Hannah-Noa; Shimanovich, Klimentiy; Bouhadana, Yaniv; Rosh-Hodesh, Eli; Takeuchi, Ichiro; Aviv, Hagit; Tischler, Yaakov R; Anderson, Assaf Y; Zaban, Arie
2015-04-13
Pulsed laser deposition (PLD) is widely used in combinatorial material science, as it enables rapid fabrication of different composite materials. Nevertheless, this method was usually limited to small substrates, since PLD deposition on large substrate areas results in severe lateral inhomogeneity. A few technical solutions for this problem have been suggested, including the use of different designs of masks, which were meant to prevent inhomogeneity in the thickness, density, and oxidation state of a layer, while only the composition is allowed to be changed. In this study, a possible way to take advantage of the large scale deposition inhomogeneity is demonstrated, choosing an iron oxide PLD-deposited library with continuous compositional spread (CCS) as a model system. An Fe₂O₃-Nb₂O₅ library was fabricated using PLD, without any mask between the targets and the substrate. The library was measured using high-throughput scanners for electrical, structural, and optical properties. A decrease in electrical resistivity that is several orders of magnitude lower than pure α-Fe₂O₃ was achieved at ∼20% Nb-O (measured at 47 and 267 °C) but only at points that are distanced from the center of the PLD plasma plume. Using hierarchical clustering analysis, we show that the PLD inhomogeneity can be used as an additional degree of freedom, helping, in this case, to achieve iron oxide with much lower resistivity.
Yu, Xue; Chen, Wei-Neng; Gu, Tianlong; Zhang, Huaxiang; Yuan, Huaqiang; Kwong, Sam; Zhang, Jun
2018-07-01
This paper studies a specific class of multiobjective combinatorial optimization problems (MOCOPs), namely the permutation-based MOCOPs. Many commonly seen MOCOPs, e.g., multiobjective traveling salesman problem (MOTSP), multiobjective project scheduling problem (MOPSP), belong to this problem class and they can be very different. However, as the permutation-based MOCOPs share the inherent similarity that the structure of their search space is usually in the shape of a permutation tree, this paper proposes a generic multiobjective set-based particle swarm optimization methodology based on decomposition, termed MS-PSO/D. In order to coordinate with the property of permutation-based MOCOPs, MS-PSO/D utilizes an element-based representation and a constructive approach. Through this, feasible solutions under constraints can be generated step by step following the permutation-tree-shaped structure. And problem-related heuristic information is introduced in the constructive approach for efficiency. In order to address the multiobjective optimization issues, the decomposition strategy is employed, in which the problem is converted into multiple single-objective subproblems according to a set of weight vectors. Besides, a flexible mechanism for diversity control is provided in MS-PSO/D. Extensive experiments have been conducted to study MS-PSO/D on two permutation-based MOCOPs, namely the MOTSP and the MOPSP. Experimental results validate that the proposed methodology is promising.
2014-01-01
All-oxide-based photovoltaics (PVs) encompass the potential for extremely low cost solar cells, provided they can obtain an order of magnitude improvement in their power conversion efficiencies. To achieve this goal, we perform a combinatorial materials study of metal oxide based light absorbers, charge transporters, junctions between them, and PV devices. Here we report the development of a combinatorial internal quantum efficiency (IQE) method. IQE measures the efficiency associated with the charge separation and collection processes, and thus is a proxy for PV activity of materials once placed into devices, discarding optical properties that cause uncontrolled light harvesting. The IQE is supported by high-throughput techniques for bandgap fitting, composition analysis, and thickness mapping, which are also crucial parameters for the combinatorial investigation cycle of photovoltaics. As a model system we use a library of 169 solar cells with a varying thickness of sprayed titanium dioxide (TiO2) as the window layer, and covarying thickness and composition of binary compounds of copper oxides (Cu–O) as the light absorber, fabricated by Pulsed Laser Deposition (PLD). The analysis on the combinatorial devices shows the correlation between compositions and bandgap, and their effect on PV activity within several device configurations. The analysis suggests that the presence of Cu4O3 plays a significant role in the PV activity of binary Cu–O compounds. PMID:24410367
Development of new critical fluid-based processing methods for nutraceuticals and natural products
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. W.
2004-01-01
The development of new supercritical fluid processing technology as applied to nutraceuticals and natural products is no longer confined to using just supercritical fluid extraction (SFE) and supercritical carbon dioxide (SC-CO{sub 2}). Recently reported advances have been focused on modifying natural products and improving functionality of an end product using newer experimental techniques and fluid phases. In this presentation four focus areas will be emphasized: (1) control of particle size/morphology and encapsulation of the nutraceutical ingredients, (2) the use of combinatorial methodology to optimize critical fluid processing, (3) application of sub-critical water as a complementary medium for processing natural products,more » and (4) an assessment of the current state of products and processing which use critical fluid to produce nutraceutical and natural products for the food and cosmetic marketplace. Application of the various particle fomiation processes conducted in the presence of critical fluid media, such as: CPF, SAS, DELOS, RESS, PGSS, and GAS, can be used to produce particles of small and uniform distribution, having unique morphologies, that facilitate rapid dissolution or sustained release of many nutraceutical ingredients. These substances have included: therapeutic spices, phystosterols, vitamins, phospholpids, and carotenoids. Accelerating the development of critical fluid processing has been the application of combinatorial methodology to optimize extraction, fractionation, and/or reactions in near-, SC-, or subcritical fluid media. This is frequently accomplished by using sequential or multichannel automated instrumentation that was originally designed for analytical purposes. Several examples will be provided of rapidly assessing the extraction of anthocyanins with sub-critical water and the SFE of natural products. However, differences do exist in conducting experiments on the above instrumentation vs. scaled-up continuous processes, which will be noted. Sub-critical water is finding increase use as an extraction/fractionation or reaction medium. The literature reports applications for the extraction spices, natural antioxidants (rosemary, anthocyanins, etc.), and herbal components (tea and coffee ingredients), Our studies and the literature provide adequate correlations of solute solubility in sub-critical water as well as models for the kinetics of extraction in this medium. Finally, the current state of critical fluid technology as applied to natural products and nutraceuticals will be assessed; noting specific processes, organizations, and products that exist.« less
NASA Astrophysics Data System (ADS)
Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi
2017-04-01
In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.
Geometrical study of phyllotactic patterns by Bernoulli spiral lattices.
Sushida, Takamichi; Yamagishi, Yoshikazu
2017-06-01
Geometrical studies of phyllotactic patterns deal with the centric or cylindrical models produced by ideal lattices. van Iterson (Mathematische und mikroskopisch - anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Verlag von Gustav Fischer, Jena, 1907) suggested a centric model representing ideal phyllotactic patterns as disk packings of Bernoulli spiral lattices and presented a phase diagram now called Van Iterson's diagram explaining the bifurcation processes of their combinatorial structures. Geometrical properties on disk packings were shown by Rothen & Koch (J. Phys France, 50(13), 1603-1621, 1989). In contrast, as another centric model, we organized a mathematical framework of Voronoi tilings of Bernoulli spiral lattices and showed mathematically that the phase diagram of a Voronoi tiling is graph-theoretically dual to Van Iterson's diagram. This paper gives a review of two centric models for disk packings and Voronoi tilings of Bernoulli spiral lattices. © 2017 Japanese Society of Developmental Biologists.
Overview of current immunotherapeutic strategies for glioma
Calinescu, Anda-Alexandra; Kamran, Neha; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro Ricardo; Castro, Maria Graciela
2015-01-01
In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma multiforme) have brought new knowledge and new hope for improving the prognosis of this incurable disease. Some clinical trials have reached Phase III, following positive outcomes in Phase I and II, with respect to safety and immunological end points. Results are encouraging especially when considering the promise of sustained efficacy by inducing antitumor immunological memory. Progress in understanding the mechanisms of tumor-induced immune suppression led to the development of drugs targeting immunosuppressive checkpoints, which are used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of the disease bring new challenges for the management of glioma and underscore a likely cause of therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial, personalized approach, including the standard of care: surgery, radiation, chemotherapy with added active immunotherapy and multiagent targeting of immunosuppressive checkpoints. PMID:26598957
USDA-ARS?s Scientific Manuscript database
Plant cell wall polysaccharides, which consist of polymeric backbones with various types of substitution, were studied using the concept of combinatorial enzyme technology for conversion of agricultural fibers to functional products. Using citrus pectin as the starting substrate, an active oligo spe...
ERIC Educational Resources Information Center
Hubert, Lawrence J.; Baker, Frank B.
1978-01-01
The "Traveling Salesman" and similar combinatorial programming tasks encountered in operations research are discussed as possible data analysis models in psychology, for example, in developmental scaling, Guttman scaling, profile smoothing, and data array clustering. A short overview of various computational approaches from this area of…
Integrated Computational Solution for Predicting Skin Sensitization Potential of Molecules
Desai, Aarti; Singh, Vivek K.; Jere, Abhay
2016-01-01
Introduction Skin sensitization forms a major toxicological endpoint for dermatology and cosmetic products. Recent ban on animal testing for cosmetics demands for alternative methods. We developed an integrated computational solution (SkinSense) that offers a robust solution and addresses the limitations of existing computational tools i.e. high false positive rate and/or limited coverage. Results The key components of our solution include: QSAR models selected from a combinatorial set, similarity information and literature-derived sub-structure patterns of known skin protein reactive groups. Its prediction performance on a challenge set of molecules showed accuracy = 75.32%, CCR = 74.36%, sensitivity = 70.00% and specificity = 78.72%, which is better than several existing tools including VEGA (accuracy = 45.00% and CCR = 54.17% with ‘High’ reliability scoring), DEREK (accuracy = 72.73% and CCR = 71.44%) and TOPKAT (accuracy = 60.00% and CCR = 61.67%). Although, TIMES-SS showed higher predictive power (accuracy = 90.00% and CCR = 92.86%), the coverage was very low (only 10 out of 77 molecules were predicted reliably). Conclusions Owing to improved prediction performance and coverage, our solution can serve as a useful expert system towards Integrated Approaches to Testing and Assessment for skin sensitization. It would be invaluable to cosmetic/ dermatology industry for pre-screening their molecules, and reducing time, cost and animal testing. PMID:27271321
Colored Traveling Salesman Problem.
Li, Jun; Zhou, MengChu; Sun, Qirui; Dai, Xianzhong; Yu, Xiaolong
2015-11-01
The multiple traveling salesman problem (MTSP) is an important combinatorial optimization problem. It has been widely and successfully applied to the practical cases in which multiple traveling individuals (salesmen) share the common workspace (city set). However, it cannot represent some application problems where multiple traveling individuals not only have their own exclusive tasks but also share a group of tasks with each other. This work proposes a new MTSP called colored traveling salesman problem (CTSP) for handling such cases. Two types of city groups are defined, i.e., each group of exclusive cities of a single color for a salesman to visit and a group of shared cities of multiple colors allowing all salesmen to visit. Evidences show that CTSP is NP-hard and a multidepot MTSP and multiple single traveling salesman problems are its special cases. We present a genetic algorithm (GA) with dual-chromosome coding for CTSP and analyze the corresponding solution space. Then, GA is improved by incorporating greedy, hill-climbing (HC), and simulated annealing (SA) operations to achieve better performance. By experiments, the limitation of the exact solution method is revealed and the performance of the presented GAs is compared. The results suggest that SAGA can achieve the best quality of solutions and HCGA should be the choice making good tradeoff between the solution quality and computing time.
Shave, Steven; Auer, Manfred
2013-12-23
Combinatorial chemical libraries produced on solid support offer fast and cost-effective access to a large number of unique compounds. If such libraries are screened directly on-bead, the speed at which chemical space can be explored by chemists is much greater than that addressable using solution based synthesis and screening methods. Solution based screening has a large supporting body of software such as structure-based virtual screening tools which enable the prediction of protein-ligand complexes. Use of these techniques to predict the protein bound complexes of compounds synthesized on solid support neglects to take into account the conjugation site on the small molecule ligand. This may invalidate predicted binding modes, the linker may be clashing with protein atoms. We present CSBB-ConeExclusion, a methodology and computer program which provides a measure of the applicability of solution dockings to solid support. Output is given in the form of statistics for each docking pose, a unique 2D visualization method which can be used to determine applicability at a glance, and automatically generated PyMol scripts allowing visualization of protein atom incursion into a defined exclusion volume. CSBB-ConeExclusion is then exemplarically used to determine the optimum attachment point for a purine library targeting cyclin-dependent kinase 2 CDK2.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
Goto, Hayato
2016-01-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997
Approximation algorithms for a genetic diagnostics problem.
Kosaraju, S R; Schäffer, A A; Biesecker, L G
1998-01-01
We define and study a combinatorial problem called WEIGHTED DIAGNOSTIC COVER (WDC) that models the use of a laboratory technique called genotyping in the diagnosis of an important class of chromosomal aberrations. An optimal solution to WDC would enable us to define a genetic assay that maximizes the diagnostic power for a specified cost of laboratory work. We develop approximation algorithms for WDC by making use of the well-known problem SET COVER for which the greedy heuristic has been extensively studied. We prove worst-case performance bounds on the greedy heuristic for WDC and for another heuristic we call directional greedy. We implemented both heuristics. We also implemented a local search heuristic that takes the solutions obtained by greedy and dir-greedy and applies swaps until they are locally optimal. We report their performance on a real data set that is representative of the options that a clinical geneticist faces for the real diagnostic problem. Many open problems related to WDC remain, both of theoretical interest and practical importance.
Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets.
Aono, M; Kasai, S; Kim, S-J; Wakabayashi, M; Miwa, H; Naruse, M
2015-06-12
In this study, we extracted the essential spatiotemporal dynamics that allow an amoeboid organism to solve a computationally demanding problem and adapt to its environment, thereby proposing a nature-inspired nanoarchitectonic computing system, which we implemented using a network of nanowire devices called 'electrical Brownian ratchets (EBRs)'. By utilizing the fluctuations generated from thermal energy in nanowire devices, we used our system to solve the satisfiability problem, which is a highly complex combinatorial problem related to a wide variety of practical applications. We evaluated the dependency of the solution search speed on its exploration parameter, which characterizes the fluctuation intensity of EBRs, using a simulation model of our system called 'AmoebaSAT-Brownian'. We found that AmoebaSAT-Brownian enhanced the solution searching speed dramatically when we imposed some constraints on the fluctuations in its time series and it outperformed a well-known stochastic local search method. These results suggest a new computing paradigm, which may allow high-speed problem solving to be implemented by interacting nanoscale devices with low power consumption.
Using Grid Cells for Navigation.
Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil
2015-08-05
Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this "vector navigation" relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Sequential bearings-only-tracking initiation with particle filtering method.
Liu, Bin; Hao, Chengpeng
2013-01-01
The tracking initiation problem is examined in the context of autonomous bearings-only-tracking (BOT) of a single appearing/disappearing target in the presence of clutter measurements. In general, this problem suffers from a combinatorial explosion in the number of potential tracks resulted from the uncertainty in the linkage between the target and the measurement (a.k.a the data association problem). In addition, the nonlinear measurements lead to a non-Gaussian posterior probability density function (pdf) in the optimal Bayesian sequential estimation framework. The consequence of this nonlinear/non-Gaussian context is the absence of a closed-form solution. This paper models the linkage uncertainty and the nonlinear/non-Gaussian estimation problem jointly with solid Bayesian formalism. A particle filtering (PF) algorithm is derived for estimating the model's parameters in a sequential manner. Numerical results show that the proposed solution provides a significant benefit over the most commonly used methods, IPDA and IMMPDA. The posterior Cramér-Rao bounds are also involved for performance evaluation.
Paquet-Mercier, F; Parvinzadeh Gashti, M; Bellavance, J; Taghavi, S M; Greener, J
2016-11-29
Continuous, non-intrusive measurements of time-varying viscosity of Pseudomonas sp. biofilms are made using a microfluidic method that combines video tracking with a semi-empirical viscous flow model. The approach uses measured velocity and height of tracked biofilm segments, which move under the constant laminar flow of a nutrient solution. Following a low viscosity growth stage, rapid thickening was observed. During this stage, viscosity increased by over an order of magnitude in less than ten hours. The technique was also demonstrated as a promising platform for parallel experiments by subjecting multiple biofilm-laden microchannels to nutrient solutions containing NaCl in the range of 0 to 34 mM. Preliminary data suggest a strong relationship between ionic strength and biofilm properties, such as average viscosity and rapid thickening onset time. The technique opens the way for a combinatorial approach to study the response of biofilm viscosity under well-controlled physical, chemical and biological growth conditions.
Hybrid water flow-like algorithm with Tabu search for traveling salesman problem
NASA Astrophysics Data System (ADS)
Bostamam, Jasmin M.; Othman, Zulaiha
2016-08-01
This paper presents a hybrid Water Flow-like Algorithm with Tabu Search for solving travelling salesman problem (WFA-TS-TSP).WFA has been proven its outstanding performances in solving TSP meanwhile TS is a conventional algorithm which has been used since decades to solve various combinatorial optimization problem including TSP. Hybridization between WFA with TS provides a better balance of exploration and exploitation criteria which are the key elements in determining the performance of one metaheuristic. TS use two different local search namely, 2opt and 3opt separately. The proposed WFA-TS-TSP is tested on 23 sets on the well-known benchmarked symmetric TSP instances. The result shows that the proposed WFA-TS-TSP has significant better quality solutions compared to WFA. The result also shows that the WFA-TS-TSP with 3-opt obtained the best quality solution. With the result obtained, it could be concluded that WFA has potential to be further improved by using hybrid technique or using better local search technique.
Bifurcation analysis of eight coupled degenerate optical parametric oscillators
NASA Astrophysics Data System (ADS)
Ito, Daisuke; Ueta, Tetsushi; Aihara, Kazuyuki
2018-06-01
A degenerate optical parametric oscillator (DOPO) network realized as a coherent Ising machine can be used to solve combinatorial optimization problems. Both theoretical and experimental investigations into the performance of DOPO networks have been presented previously. However a problem remains, namely that the dynamics of the DOPO network itself can lower the search success rates of globally optimal solutions for Ising problems. This paper shows that the problem is caused by pitchfork bifurcations due to the symmetry structure of coupled DOPOs. Some two-parameter bifurcation diagrams of equilibrium points express the performance deterioration. It is shown that the emergence of non-ground states regarding local minima hampers the system from reaching the ground states corresponding to the global minimum. We then describe a parametric strategy for leading a system to the ground state by actively utilizing the bifurcation phenomena. By adjusting the parameters to break particular symmetry, we find appropriate parameter sets that allow the coherent Ising machine to obtain the globally optimal solution alone.
Reutlinger, Michael; Rodrigues, Tiago; Schneider, Petra; Schneider, Gisbert
2014-01-07
Using the example of the Ugi three-component reaction we report a fast and efficient microfluidic-assisted entry into the imidazopyridine scaffold, where building block prioritization was coupled to a new computational method for predicting ligand-target associations. We identified an innovative GPCR-modulating combinatorial chemotype featuring ligand-efficient adenosine A1/2B and adrenergic α1A/B receptor antagonists. Our results suggest the tight integration of microfluidics-assisted synthesis with computer-based target prediction as a viable approach to rapidly generate bioactivity-focused combinatorial compound libraries with high success rates. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generation of Dynamic Combinatorial Libraries Using Hydrazone‐Functionalized Surface Mimetics
Hewitt, Sarah H.
2018-01-01
Dynamic combinatorial chemistry (DCC) represents an approach, whereby traditional supramolecular scaffolds used for protein surface recognition might be exploited to achieve selective high affinity target recognition. Synthesis, in situ screening and amplification under selection pressure allows the generation of ligands, which bear different moieties capable of making multivalent non‐covalent interactions with target proteins. Generic tetracarboxyphenyl porphyrin scaffolds bearing four hydrazide moieties have been used to form dynamic combinatorial libraries (DCLs) using aniline‐catalyzed reversible hydrazone exchange reactions, in 10 % DMSO, 5 mm NH4OAc, at pH 6.75. High resolution mass spectrometry (HRMS) was used to monitor library composition and establish conditions under which equilibria were established.
MGA trajectory planning with an ACO-inspired algorithm
NASA Astrophysics Data System (ADS)
Ceriotti, Matteo; Vasile, Massimiliano
2010-11-01
Given a set of celestial bodies, the problem of finding an optimal sequence of swing-bys, deep space manoeuvres (DSM) and transfer arcs connecting the elements of the set is combinatorial in nature. The number of possible paths grows exponentially with the number of celestial bodies. Therefore, the design of an optimal multiple gravity assist (MGA) trajectory is a NP-hard mixed combinatorial-continuous problem. Its automated solution would greatly improve the design of future space missions, allowing the assessment of a large number of alternative mission options in a short time. This work proposes to formulate the complete automated design of a multiple gravity assist trajectory as an autonomous planning and scheduling problem. The resulting scheduled plan will provide the optimal planetary sequence and a good estimation of the set of associated optimal trajectories. The trajectory model consists of a sequence of celestial bodies connected by two-dimensional transfer arcs containing one DSM. For each transfer arc, the position of the planet and the spacecraft, at the time of arrival, are matched by varying the pericentre of the preceding swing-by, or the magnitude of the launch excess velocity, for the first arc. For each departure date, this model generates a full tree of possible transfers from the departure to the destination planet. Each leaf of the tree represents a planetary encounter and a possible way to reach that planet. An algorithm inspired by ant colony optimization (ACO) is devised to explore the space of possible plans. The ants explore the tree from departure to destination adding one node at the time: every time an ant is at a node, a probability function is used to select a feasible direction. This approach to automatic trajectory planning is applied to the design of optimal transfers to Saturn and among the Galilean moons of Jupiter. Solutions are compared to those found through more traditional genetic-algorithm techniques.
Automated Combinatorial Chemistry in the Organic Chemistry Majors Laboratory
ERIC Educational Resources Information Center
Nichols, Christopher J.; Hanne, Larry F.
2010-01-01
A multidisciplinary experiment has been developed in which students each synthesize a combinatorial library of 48 hydrazones with the aid of a liquid-handling robot. Each product is then subjected to a Kirby-Bauer disk diffusion assay to assess its antibacterial activity. Students gain experience working with automation and at the…
More Combinatorial Proofs via Flagpole Arrangements
ERIC Educational Resources Information Center
DeTemple, Duane; Reynolds, H. David, II
2006-01-01
Combinatorial identities are proved by counting the number of arrangements of a flagpole and guy wires on a row of blocks that satisfy a set of conditions. An identity is proved by first deriving and then equating two expressions that each count the number of permissible arrangements. Identities for binomial coefficients and recursion relations…
ERIC Educational Resources Information Center
Tsai, Yu-Ling; Chang, Ching-Kuch
2009-01-01
This article reports an alternative approach, called the combinatorial model, to learning multiplicative identities, and investigates the effects of implementing results for this alternative approach. Based on realistic mathematics education theory, the new instructional materials or modules of the new approach were developed by the authors. From…
Children's Strategies for Solving Two- and Three-Dimensional Combinatorial Problems.
ERIC Educational Resources Information Center
English, Lyn D.
1993-01-01
Investigated strategies that 7- to 12-year-old children (n=96) spontaneously applied in solving novel combinatorial problems. With experience in solving two-dimensional problems, children were able to refine their strategies and adapt them to three dimensions. Results on some problems indicated significant effects of age. (Contains 32 references.)…
Identities for Generalized Fibonacci Numbers: A Combinatorial Approach
ERIC Educational Resources Information Center
Plaza, A.; Falcon, S.
2008-01-01
This note shows a combinatorial approach to some identities for generalized Fibonacci numbers. While it is a straightforward task to prove these identities with induction, and also by arithmetical manipulations such as rearrangements, the approach used here is quite simple to follow and eventually reduces the proof to a counting problem. (Contains…
ERIC Educational Resources Information Center
Kittredge, Kevin W.; Marine, Susan S.; Taylor, Richard T.
2004-01-01
A molecule possessing other functional groups that could be hydrogenerated is examined, where a variety of metal catalysts are evaluated under similar reaction conditions. Optimizing organic reactions is both time and labor intensive, and the use of a combinatorial parallel synthesis reactor was great time saving device, as per summary.
Human Performance on the Traveling Salesman and Related Problems: A Review
ERIC Educational Resources Information Center
MacGregor, James N.; Chu, Yun
2011-01-01
The article provides a review of recent research on human performance on the traveling salesman problem (TSP) and related combinatorial optimization problems. We discuss what combinatorial optimization problems are, why they are important, and why they may be of interest to cognitive scientists. We next describe the main characteristics of human…
Iconicity and the Emergence of Combinatorial Structure in Language
ERIC Educational Resources Information Center
Verhoef, Tessa; Kirby, Simon; de Boer, Bart
2016-01-01
In language, recombination of a discrete set of meaningless building blocks forms an unlimited set of possible utterances. How such combinatorial structure emerged in the evolution of human language is increasingly being studied. It has been shown that it can emerge when languages culturally evolve and adapt to human cognitive biases. How the…
Osaba, E; Carballedo, R; Diaz, F; Onieva, E; de la Iglesia, I; Perallos, A
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.
Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731
Lin, Chun-Yuan; Wang, Yen-Ling
2014-01-01
Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the Best(train)Best(test) and Fast(train)Fast(test) prediction results. The potential inhibitors were selected from NCI database by screening according to Best(train)Best(test) + Fast(train)Fast(test) prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study.
A combinatorial filtering method for magnetotelluric time-series based on Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Cai, Jianhua
2014-11-01
Magnetotelluric (MT) time-series are often contaminated with noise from natural or man-made processes. A substantial improvement is possible when the time-series are presented as clean as possible for further processing. A combinatorial method is described for filtering of MT time-series based on the Hilbert-Huang transform that requires a minimum of human intervention and leaves good data sections unchanged. Good data sections are preserved because after empirical mode decomposition the data are analysed through hierarchies, morphological filtering, adaptive threshold and multi-point smoothing, allowing separation of noise from signals. The combinatorial method can be carried out without any assumption about the data distribution. Simulated data and the real measured MT time-series from three different regions, with noise caused by baseline drift, high frequency noise and power-line contribution, are processed to demonstrate the application of the proposed method. Results highlight the ability of the combinatorial method to pick out useful signals, and the noise is suppressed greatly so that their deleterious influence is eliminated for the MT transfer function estimation.
Combinatorial Characterization of TiO2 Chemical Vapor Deposition Utilizing Titanium Isopropoxide.
Reinke, Michael; Ponomarev, Evgeniy; Kuzminykh, Yury; Hoffmann, Patrik
2015-07-13
The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.
Azimi, Sayyed M; Sheridan, Steven D; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih
2018-05-01
Identification of optimal transcription-factor expression patterns to direct cellular differentiation along a desired pathway presents significant challenges. We demonstrate massively combinatorial screening of temporally-varying mRNA transcription factors to direct differentiation of neural progenitor cells using a dynamically-reconfigurable magnetically-guided spotting technology for localizing mRNA, enabling experiments on millimetre size spots. In addition, we present a time-interleaved delivery method that dramatically reduces fluctuations in the delivered transcription-factor copy-numbers per cell. We screened combinatorial and temporal delivery of a pool of midbrain-specific transcription factors to augment the generation of dopaminergic neurons. We show that the combinatorial delivery of LMX1A, FOXA2 and PITX3 is highly effective in generating dopaminergic neurons from midbrain progenitors. We show that LMX1A significantly increases TH -expression levels when delivered to neural progenitor cells either during proliferation or after induction of neural differentiation, while FOXA2 and PITX3 increase expression only when delivered prior to induction, demonstrating temporal dependence of factor addition. © 2018, Azimi et al.
Particle-Based Microarrays of Oligonucleotides and Oligopeptides.
Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F Ralf; Breitling, Frank; Loeffler, Felix F
2014-10-28
In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.
Particle-Based Microarrays of Oligonucleotides and Oligopeptides
Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K.; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F. Ralf; Breitling, Frank; Loeffler, Felix F.
2014-01-01
In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches. PMID:27600347
Minovski, Nikola; Perdih, Andrej; Solmajer, Tom
2012-05-01
The virtual combinatorial chemistry approach as a methodology for generating chemical libraries of structurally-similar analogs in a virtual environment was employed for building a general mixed virtual combinatorial library with a total of 53.871 6-FQ structural analogs, introducing the real synthetic pathways of three well known 6-FQ inhibitors. The druggability properties of the generated combinatorial 6-FQs were assessed using an in-house developed drug-likeness filter integrating the Lipinski/Veber rule-sets. The compounds recognized as drug-like were used as an external set for prediction of the biological activity values using a neural-networks (NN) model based on an experimentally-determined set of active 6-FQs. Furthermore, a subset of compounds was extracted from the pool of drug-like 6-FQs, with predicted biological activity, and subsequently used in virtual screening (VS) campaign combining pharmacophore modeling and molecular docking studies. This complex scheme, a powerful combination of chemometric and molecular modeling approaches provided novel QSAR guidelines that could aid in the further lead development of 6-FQs agents.
SEPARATION OF HAFNIUM FROM ZIRCONIUM
Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.
1960-05-31
The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.
Chuah, Yon Jin; Zhang, Ying; Wu, Yingnan; Menon, Nishanth V; Goh, Ghim Hian; Lee, Ann Charlene; Chan, Vincent; Zhang, Yilei; Kang, Yuejun
2015-09-01
Cell sheet engineering has been exploited as an alternative approach in tissue regeneration and the use of stem cells to generate cell sheets has further showed its potential in stem cell-mediated tissue regeneration. There exist vast interests in developing strategies to enhance the formation of stem cell sheets for downstream applications. It has been proved that stem cells are sensitive to the biophysical cues of the microenvironment. Therefore we hypothesized that the combinatorial substratum properties could be tailored to modulate the development of cell sheet formation and further influence its multipotency. For validation, polydimethylsiloxane (PDMS) of different combinatorial substratum properties (including stiffness, roughness and wettability) were created, on which the human bone marrow derived mesenchymal stem cells (BMSCs) were cultured to form cell sheets with their multipotency evaluated after induced differentiation. The results showed that different combinatorial effects of these substratum properties were able to influence BMSC behavior such as adhesion, spreading and proliferation during cell sheet development. Collagen formation within the cell sheet was enhanced on substrates with lower stiffness, higher hydrophobicity and roughness, which further assisted the induced chondrogenesis and osteogenesis, respectively. These findings suggested that combinatorial substratum properties had profound effects on BMSC cell sheet integrity and multipotency, which had significant implications for future biomaterials and scaffold designs in the field of BMSC-mediated tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Modular techniques for dynamic fault-tree analysis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Dugan, Joanne B.
1992-01-01
It is noted that current approaches used to assess the dependability of complex systems such as Space Station Freedom and the Air Traffic Control System are incapable of handling the size and complexity of these highly integrated designs. A novel technique for modeling such systems which is built upon current techniques in Markov theory and combinatorial analysis is described. It enables the development of a hierarchical representation of system behavior which is more flexible than either technique alone. A solution strategy which is based on an object-oriented approach to model representation and evaluation is discussed. The technique is virtually transparent to the user since the fault tree models can be built graphically and the objects defined automatically. The tree modularization procedure allows the two model types, Markov and combinatoric, to coexist and does not require that the entire fault tree be translated to a Markov chain for evaluation. This effectively reduces the size of the Markov chain required and enables solutions with less truncation, making analysis of longer mission times possible. Using the fault-tolerant parallel processor as an example, a model is built and solved for a specific mission scenario and the solution approach is illustrated in detail.
Effects of lactoferricin B against keratitis-associated fungal biofilms.
Sengupta, Jayangshu; Saha, Suman; Khetan, Archana; Sarkar, Sujoy K; Mandal, Santi M
2012-10-01
Biofilms are considered as the most important developmental characteristics in ocular infections. Biofilm eradication is a major challenge today to overcome the incidence of drug resistance. This report demonstrates the in vitro ability of biofilm formation on contact lens by three common keratitis-associated fungal pathogens, namely, Aspergillus fumigatus, Fusarium solani, and Candida albicans. Antifungal sensitivity testing performed for both planktonic cells and biofilm revealed the sessile phenotype to be resistant at MIC levels for the planktonic cells and also at higher concentrations. A prototype lens care solution was also found to be partially effective in eradication of the mature biofilm from contact lenses. Lactoferricin B (Lacf, 64 μg/ml), an antimicrobial peptide, exhibited almost no effect on the sessile phenotype. However, the combinatory effect of Lacf with antifungals against planktonic cells and biofilms of three fungal strains that were isolated from keratitis patients exhibited a reduction of antifungal dose more than eightfold. Furthermore, the effect of Lacf in lens care solution against biofilms in which those strains formed was eradicated successfully. These results suggest that lactoferricin B could be a promising candidate for clinical use in improving biofilm susceptibility to antifungals and also as an antibiofilm-antifungal additive in lens care solution.
Bemis, Douglas K.; Pylkkänen, Liina
2013-01-01
Debates surrounding the evolution of language often hinge upon its relationship to cognition more generally and many investigations have attempted to demark the boundary between the two. Though results from these studies suggest that language may recruit domain-general mechanisms during certain types of complex processing, the domain-generality of basic combinatorial mechanisms that lie at the core of linguistic processing is still unknown. Our previous work (Bemis and Pylkkänen, 2011, 2012) used magnetoencephalography to isolate neural activity associated with the simple composition of an adjective and a noun (“red boat”) and found increased activity during this processing localized to the left anterior temporal lobe (lATL), ventro-medial prefrontal cortex (vmPFC), and left angular gyrus (lAG). The present study explores the domain-generality of these effects and their associated combinatorial mechanisms through two parallel non-linguistic combinatorial tasks designed to be as minimal and natural as the linguistic paradigm. In the first task, we used pictures of colored shapes to elicit combinatorial conceptual processing similar to that evoked by the linguistic expressions and find increased activity again localized to the vmPFC during combinatorial processing. This result suggests that a domain-general semantic combinatorial mechanism operates during basic linguistic composition, and that activity generated by its processing localizes to the vmPFC. In the second task, we recorded neural activity as subjects performed simple addition between two small numerals. Consistent with a wide array of recent results, we find no effects related to basic addition that coincide with our linguistic effects and instead find increased activity localized to the intraparietal sulcus. This result suggests that the scope of the previously identified linguistic effects is restricted to compositional operations and does not extend generally to all tasks that are merely similar in form. PMID:23293621
NASA Astrophysics Data System (ADS)
Green, Martin L.; Takeuchi, Ichiro; Hattrick-Simpers, Jason R.
2013-06-01
High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a "library" sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same "library" sample, they can be highly uniform with respect to fixed processing parameters. This article critically reviews the literature pertaining to applications of combinatorial materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high throughput methodologies will facilitate commercialization of novel materials for these critically important applications. Despite the overwhelming evidence presented in this paper that high throughput studies can effectively inform commercial practice, in our perception, it remains an underutilized research and development tool. Part of this perception may be due to the inaccessibility of proprietary industrial research and development practices, but clearly the initial cost and availability of high throughput laboratory equipment plays a role. Combinatorial materials science has traditionally been focused on materials discovery, screening, and optimization to combat the extremely high cost and long development times for new materials and their introduction into commerce. Going forward, combinatorial materials science will also be driven by other needs such as materials substitution and experimental verification of materials properties predicted by modeling and simulation, which have recently received much attention with the advent of the Materials Genome Initiative. Thus, the challenge for combinatorial methodology will be the effective coupling of synthesis, characterization and theory, and the ability to rapidly manage large amounts of data in a variety of formats.
Recovery of sugars from ionic liquid biomass liquor by solvent extraction
Brennan, Timothy Charles R.; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.
2015-10-13
The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method of removing a sugar from a solution, comprising: (a) providing a solution comprising (i) an IL or ILA phase and (ii) an organic phase, wherein the solution comprises an IL, a sugar and a boronic acid; (b) contacting the sugar with the boronic acid to form a sugar-boronic acid complex, (c) separating the organic phase and the aqueous phase, wherein the organic phase contains the sugar-boronic acid complex, and optionally (d) separating the sugar from the organic phase.
Li, Chao; Yu, Jiaquan; Schehr, Jennifer; Berry, Scott M; Leal, Ticiana A; Lang, Joshua M; Beebe, David J
2018-05-23
The concept of high liquid repellency in multi-liquid-phase systems (e.g., aqueous droplets in an oil background) has been applied to areas of biomedical research to realize intrinsic advantages not available in single-liquid-phase systems. Such advantages have included minimizing analyte loss, facile manipulation of single-cell samples, elimination of biofouling, and ease of use regarding loading and retrieving of the sample. In this paper, we present generalized design rules for predicting the wettability of solid-liquid-liquid systems (especially for discrimination between exclusive liquid repellency (ELR) and finite liquid repellency) to extend the applications of ELR. We then apply ELR to two model systems with open microfluidic design in cell biology: (1) in situ underoil culture and combinatorial coculture of mammalian cells in order to demonstrate directed single-cell multiencapsulation with minimal waste of samples as compared to stochastic cell seeding and (2) isolation of a pure population of circulating tumor cells, which is required for certain downstream analyses including sequencing and gene expression profiling.
Rodenko, Boris; Detz, Remko J; Pinas, Victorine A; Lambertucci, Catia; Brun, Reto; Wanner, Martin J; Koomen, Gerrit-Jan
2006-03-01
The rapid increase of resistance to drugs commonly used in the treatment of tropical diseases such as malaria and African sleeping sickness calls for the prompt development of new safe and efficacious drugs. The pathogenic protozoan parasites lack the capability of synthesising purines de novo and they take up preformed purines from their host through various transmembrane transporters. Adenosine derivatives constitute a class of potential therapeutics due to their selective internalisation by these transporters. Automated solid-phase synthesis can speed up the process of lead finding and we pursued the solid-phase synthesis of di- and trisubstituted 5'-carboxamidoadenosine derivatives by using a safety-catch approach. While efforts with Kenner's sulfonamide linker remained fruitless, successful application of the hydrazide safety-catch linker allowed the construction of two representative combinatorial libraries. Their antiprotozoal evaluation identified two compounds with promising activity: N(6)-benzyl-5'-N-phenylcarboxamidoadenosine with an IC(50) value of 0.91 microM against Trypanosoma brucei rhodesiense and N(6)-diphenylethyl-5'-phenylcarboxamidoadenosine with an IC(50) value of 1.8 microM against chloroquine resistant Plasmodium falciparum.
NASA Astrophysics Data System (ADS)
Samimi, Peyman
The relatively low oxidation resistance and subsequent surface embrittlement have often limited the use of titanium alloys in elevated temperature structural applications. Although extensive effort is spent to investigate the high temperature oxidation performance of titanium alloys, the studies are often constrained to complex technical titanium alloys and neither the mechanisms associated with evolution of the oxide scale nor the effect of oxygen ingress on the microstructure of the base metal are well-understood. In addition lack of systematic oxidation studies across a wider domain of the alloy composition has complicated the determination of composition-mechanism-property relationships. Clearly, it would be ideal to assess the influence of composition and exposure time on the oxidation resistance, independent of experimental variabilities regarding time, temperature and atmosphere as the potential source of error. Such studies might also provide a series of metrics (e.g., hardness, scale, etc) that could be interpreted together and related to the alloy composition. In this thesis a novel combinatorial approach was adopted whereby a series of compositionally graded specimens, (Ti-xMo, Ti-xCr, Ti-xAl and Ti-xW) were prepared using Laser Engineered Net Shaping (LENS(TM)) technology and exposed to still-air at 650 °C. (Abstract shortened by ProQuest.).
Goyal, Sukriti; Dhanjal, Jaspreet K; Tyagi, Chetna; Goyal, Manisha; Grover, Abhinav
2014-07-01
The CRK3 cyclin-dependent kinase of Leishmania plays an important role in regulating the cell-cycle progression at the G2/M phase checkpoint transition, proliferation, and viability inside the host macrophage. In this study, a novel fragment-based QSAR model has been developed using 22 pyrazole-derived compounds exhibiting inhibitory activity against Leishmanial CRK3. Unlike other QSAR methods, this fragment-based method gives flexibility to study the relationship between molecular fragments of interest and their contribution for the variation in the biological response by evaluating cross-term fragment descriptors. Based on the fragment-based QSAR model, a combinatorial library was generated, and top two compounds were reported after predicting their activity. The QSAR model showed satisfactory statistical parameters for the data set (r(2) = 0.8752, q(2) = 0.6690, F-ratio = 30.37, and pred_r(2) = 0.8632) with four descriptors describing the nature of substituent groups and the environment of the substitution site. Evaluation of the model implied that electron-rich substitution at R1 position improves the inhibitory activity, while decline in inhibitory activity was observed in presence of nitrogen at R2 position. The analysis carried out in this study provides a substantial basis for consideration of the designed pyrazole-based leads as potent antileishmanial drugs. © 2014 John Wiley & Sons A/S.
Subbiah, Ishwaria M.; Tsimberidou, Apostolia; Subbiah, Vivek; Janku, Filip; Roy-Chowdhuri, Sinchita; Hong, David S.
2017-01-01
Background Advanced carcinoma of unknown primary (CUP) has limited effective therapeutic options given the phenotypic and genotypic diversity. To identify future novel therapeutic strategies we conducted an exploratory analysis of next-generation sequencing (NGS) of relapsed, refractory CUP. Methods We identified patients in our phase I clinic where archival tissue was available for a targeted NGS CLIA-certified assay. Results Of 17 patients tested, 15 (88%) demonstrated genomic alterations (median 2 aberrations; range 0–8, total 59 alterations). Nine (53%) patients had altered cell signaling including the PI3K/AKT/MTOR (n=5, 29%) and MAPK pathways (n=3,18%); 7 (41%) patients demonstrated ≥1 alterations in tumor suppressor genes (TP53 in 5 patients), 8 (47%) had impaired epigenetic regulation and DNA methylation, 8 (47%) had aberrant cell cycle regulation, commonly in the cyclin dependent kinases. Ten (59%) patients had alterations in transcriptional regulators. Concurrent mutations affecting cell cycle regulation were noted to occur with aberrant epigenetic regulation (n=6, 35%) and MAPK/PI3K pathway (n=5, 29%). Conclusion Every patient had a unique molecular profile with no two patients demonstrating an identical panel of mutations. We identify two emerging novel combinatorial strategies targeting impaired cell cycle arrest, first with epigenetic modifiers and, second, with MAPK/PI3K pathway inhibition. PMID:28781987
Modelling Assisted Design and Synthesis of Highly Porous Materials for Chemical Adsorbents
2010-10-01
two phases of crystal, a monoclinic phase within the solution, and after removal from solution a trigonal phase is obtained. The single crystal...days. Single crystal X-ray data showed there existed a monoclinic phase within the solution that, upon removal from solution, rapidly converted to a... monoclinic to trigonal upon desolvation, as the new peak which has emerged matches the simulated PXRD of the trigonal phase. Also, as the sample is
2008-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATING MONETARY AND NON-MONETARY REENLISTMENT INCENTIVES UTILIZING THE...Monetary and Non- monetary Reenlistment Incentives Utilizing the Combinatorial Retention Auction Mechanism (CRAM) 6. AUTHOR(S) Brooke Zimmerman 5...iii Approved for public release; distribution is unlimited INTEGRATING MONETARY AND NON-MONETARY REENLISTMENT INCENTIVES UTILIZING THE
Two-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor.
Velagapudi, Sai Pradeep; Disney, Matthew D
2014-03-21
The RNA motifs that bind guanidinylated kanamycin A (G Kan A) and guanidinylated neomycin B (G Neo B) were identified via two-dimensional combinatorial screening (2DCS). The results of these studies enabled the "bottom-up" design of a small molecule inhibitor of oncogenic microRNA-10b.
ERIC Educational Resources Information Center
Prodromou, Theodosia
2012-01-01
This article seeks to address a pedagogical theory of introducing the classicist and the frequentist approach to probability, by investigating important elements in 9th grade students' learning process while working with a "TinkerPlots2" combinatorial problem. Results from this research study indicate that, after the students had seen…
An Onto-Semiotic Analysis of Combinatorial Problems and the Solving Processes by University Students
ERIC Educational Resources Information Center
Godino, Juan D.; Batanero, Carmen; Roa, Rafael
2005-01-01
In this paper we describe an ontological and semiotic model for mathematical knowledge, using elementary combinatorics as an example. We then apply this model to analyze the solving process of some combinatorial problems by students with high mathematical training, and show its utility in providing a semiotic explanation for the difficulty of…
Combinatorial synthesis of ceramic materials
Lauf, Robert J [Oak Ridge, TN; Walls, Claudia A [Oak Ridge, TN; Boatner, Lynn A [Oak Ridge, TN
2010-02-23
A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.
Combinatorial synthesis of ceramic materials
Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.
2006-11-14
A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.
ERIC Educational Resources Information Center
Abrahamson, Dor
2006-01-01
This snapshot introduces a computer-based representation and activity that enables students to simultaneously "see" the combinatorial space of a stochastic device (e.g., dice, spinner, coins) and its outcome distribution. The author argues that the "ambiguous" representation fosters student insight into probability. [Snapshots are subject to peer…
Combinatorial complexity of pathway analysis in metabolic networks.
Klamt, Steffen; Stelling, Jörg
2002-01-01
Elementary flux mode analysis is a promising approach for a pathway-oriented perspective of metabolic networks. However, in larger networks it is hampered by the combinatorial explosion of possible routes. In this work we give some estimations on the combinatorial complexity including theoretical upper bounds for the number of elementary flux modes in a network of a given size. In a case study, we computed the elementary modes in the central metabolism of Escherichia coli while utilizing four different substrates. Interestingly, although the number of modes occurring in this complex network can exceed half a million, it is still far below the upper bound. Hence, to a certain extent, pathway analysis of central catabolism is feasible to assess network properties such as flexibility and functionality.
Building synthetic gene circuits from combinatorial libraries: screening and selection strategies.
Schaerli, Yolanda; Isalan, Mark
2013-07-01
The promise of wide-ranging biotechnology applications inspires synthetic biologists to design novel genetic circuits. However, building such circuits rationally is still not straightforward and often involves painstaking trial-and-error. Mimicking the process of natural selection can help us to bridge the gap between our incomplete understanding of nature's design rules and our desire to build functional networks. By adopting the powerful method of directed evolution, which is usually applied to protein engineering, functional networks can be obtained through screening or selecting from randomised combinatorial libraries. This review first highlights the practical options to introduce combinatorial diversity into gene circuits and then examines strategies for identifying the potentially rare library members with desired functions, either by screening or selection.
Jonke, A.A.
1957-10-01
In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.
Flexible resource management and its effect on project cost and duration
NASA Astrophysics Data System (ADS)
Pinha, Denis C.; Ahluwalia, Rashpal S.
2018-06-01
In practice, most projects result in cost overruns and schedule slippage due to poor resource management. This paper presents an approach that aims at reducing project duration and costs by empowering project managers to assess different scenarios. The proposed approach addresses combinatorial modes for tasks, multi-skilled resources, and multiple calendars for resources. A case study reported in the literature is presented to demonstrate the capabilities of this method. As for practical implications, this approach enhances the decision-making process which results in improved solutions in terms of total project duration and cost. From an academic viewpoint, this paper adds empirical evidence to enrich the existing literature, as it highlights relevant issues to model properly the complexity of real-life projects.
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Solving a four-destination traveling salesman problem using Escherichia coli cells as biocomputers.
Esau, Michael; Rozema, Mark; Zhang, Tuo Huang; Zeng, Dawson; Chiu, Stephanie; Kwan, Rachel; Moorhouse, Cadence; Murray, Cameron; Tseng, Nien-Tsu; Ridgway, Doug; Sauvageau, Dominic; Ellison, Michael
2014-12-19
The Traveling Salesman Problem involves finding the shortest possible route visiting all destinations on a map only once before returning to the point of origin. The present study demonstrates a strategy for solving Traveling Salesman Problems using modified E. coli cells as processors for massively parallel computing. Sequential, combinatorial DNA assembly was used to generate routes, in the form of plasmids made up of marker genes, each representing a path between destinations, and short connecting linkers, each representing a given destination. Upon growth of the population of modified E. coli, phenotypic selection was used to eliminate invalid routes, and statistical analysis was performed to successfully identify the optimal solution. The strategy was successfully employed to solve a four-destination test problem.
Structural alignment of protein descriptors - a combinatorial model.
Antczak, Maciej; Kasprzak, Marta; Lukasiak, Piotr; Blazewicz, Jacek
2016-09-17
Structural alignment of proteins is one of the most challenging problems in molecular biology. The tertiary structure of a protein strictly correlates with its function and computationally predicted structures are nowadays a main premise for understanding the latter. However, computationally derived 3D models often exhibit deviations from the native structure. A way to confirm a model is a comparison with other structures. The structural alignment of a pair of proteins can be defined with the use of a concept of protein descriptors. The protein descriptors are local substructures of protein molecules, which allow us to divide the original problem into a set of subproblems and, consequently, to propose a more efficient algorithmic solution. In the literature, one can find many applications of the descriptors concept that prove its usefulness for insight into protein 3D structures, but the proposed approaches are presented rather from the biological perspective than from the computational or algorithmic point of view. Efficient algorithms for identification and structural comparison of descriptors can become crucial components of methods for structural quality assessment as well as tertiary structure prediction. In this paper, we propose a new combinatorial model and new polynomial-time algorithms for the structural alignment of descriptors. The model is based on the maximum-size assignment problem, which we define here and prove that it can be solved in polynomial time. We demonstrate suitability of this approach by comparison with an exact backtracking algorithm. Besides a simplification coming from the combinatorial modeling, both on the conceptual and complexity level, we gain with this approach high quality of obtained results, in terms of 3D alignment accuracy and processing efficiency. All the proposed algorithms were developed and integrated in a computationally efficient tool descs-standalone, which allows the user to identify and structurally compare descriptors of biological molecules, such as proteins and RNAs. Both PDB (Protein Data Bank) and mmCIF (macromolecular Crystallographic Information File) formats are supported. The proposed tool is available as an open source project stored on GitHub ( https://github.com/mantczak/descs-standalone ).
Absolute quantification of histone PTM marks by MRM-based LC-MS/MS.
Gao, Jun; Liao, Rijing; Yu, Yanyan; Zhai, Huili; Wang, Yingqi; Sack, Ragna; Peters, Antoine H F M; Chen, Jiajia; Wu, Haiping; Huang, Zheng; Hu, Min; Qi, Wei; Lu, Chris; Atadja, Peter; Oyang, Counde; Li, En; Yi, Wei; Zhou, Shaolian
2014-10-07
The N-terminal tails of core histones harbor the sites of numerous post-translational modifications (PTMs) with important roles in the regulation of chromatin structure and function. Profiling histone PTM marks provides data that help understand the epigenetics events in cells and their connections with cancer and other diseases. Our previous study demonstrated that specific derivatization of histone peptides by NHS propionate significantly improved their chromatographic performance on reversed phase columns for LC/MS analysis. As a step forward, we recently developed a multiple reaction monitoring (MRM) based LC-MS/MS method to analyze 42 targeted histone peptides. By using stable isotopic labeled peptides as internal standards that are spiked into the reconstituted solutions, this method allows to measure absolute concentration of the tryptic peptides of H3 histone proteins extracted from cancer cell lines. The method was thoroughly validated for the accuracy and reproducibility through analyzing recombinant histone proteins and cellular samples. The linear dynamic range of the MRM assays was achieved in 3 orders of magnitude from 1 nM to 1 μM for all targeted peptides. Excellent intrabatch and interbatch reproducibility (<15% CV) was obtained. This method has been used to study translocated NSD2 (a histone lysine methyltransferase that catalyzes the histone lysine 36 methylation) function with its overexpression in KMS11 multiple myeloma cells. From the results we have successfully quantitated both individual and combinatorial histone marks in parental and NSD2 selective knockout KMS11 cells.
Li, Xiaopeng; Chan, Yi-Tsu; Casiano-Maldonado, Madalis; Yu, Jing; Carri, Gustavo A; Newkome, George R; Wesdemiotis, Chrys
2011-09-01
The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the
Condenser-free contrast methods for transmitted-light microscopy
WEBB, K F
2015-01-01
Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser-free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the illuminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared. PMID:25226859
Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4
NASA Astrophysics Data System (ADS)
Evensen, Erik; Joseph-McCarthy, Diane; Weiss, Gregory A.; Schreiber, Stuart L.; Karplus, Martin
2007-07-01
Combinatorial synthesis and large scale screening methods are being used increasingly in drug discovery, particularly for finding novel lead compounds. Although these "random" methods sample larger areas of chemical space than traditional synthetic approaches, only a relatively small percentage of all possible compounds are practically accessible. It is therefore helpful to select regions of chemical space that have greater likelihood of yielding useful leads. When three-dimensional structural data are available for the target molecule this can be achieved by applying structure-based computational design methods to focus the combinatorial library. This is advantageous over the standard usage of computational methods to design a small number of specific novel ligands, because here computation is employed as part of the combinatorial design process and so is required only to determine a propensity for binding of certain chemical moieties in regions of the target molecule. This paper describes the application of the Multiple Copy Simultaneous Search (MCSS) method, an active site mapping and de novo structure-based design tool, to design a focused combinatorial library for the class II MHC protein HLA-DR4. Methods for the synthesizing and screening the computationally designed library are presented; evidence is provided to show that binding was achieved. Although the structure of the protein-ligand complex could not be determined, experimental results including cross-exclusion of a known HLA-DR4 peptide ligand (HA) by a compound from the library. Computational model building suggest that at least one of the ligands designed and identified by the methods described binds in a mode similar to that of native peptides.
Zhou, Yikang; Li, Gang; Dong, Junkai; Xing, Xin-Hui; Dai, Junbiao; Zhang, Chong
2018-05-01
Facing boosting ability to construct combinatorial metabolic pathways, how to search the metabolic sweet spot has become the rate-limiting step. We here reported an efficient Machine-learning workflow in conjunction with YeastFab Assembly strategy (MiYA) for combinatorial optimizing the large biosynthetic genotypic space of heterologous metabolic pathways in Saccharomyces cerevisiae. Using β-carotene biosynthetic pathway as example, we first demonstrated that MiYA has the power to search only a small fraction (2-5%) of combinatorial space to precisely tune the expression level of each gene with a machine-learning algorithm of an artificial neural network (ANN) ensemble to avoid over-fitting problem when dealing with a small number of training samples. We then applied MiYA to improve the biosynthesis of violacein. Feed with initial data from a colorimetric plate-based, pre-screened pool of 24 strains producing violacein, MiYA successfully predicted, and verified experimentally, the existence of a strain that showed a 2.42-fold titer improvement in violacein production among 3125 possible designs. Furthermore, MiYA was able to largely avoid the branch pathway of violacein biosynthesis that makes deoxyviolacein, and produces very pure violacein. Together, MiYA combines the advantages of standardized building blocks and machine learning to accelerate the Design-Build-Test-Learn (DBTL) cycle for combinatorial optimization of metabolic pathways, which could significantly accelerate the development of microbial cell factories. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Sahu, Abhishek; Lee, Jong Hyun; Lee, Hye Gyeong; Jeong, Yong Yeon; Tae, Giyoong
2016-08-28
Developing novel nanotheranostic agent using only clinically approved materials is highly desirable and challenging. In this study, we combined three clinically approved materials, Prussian blue (PB), serum albumin (BSA), and indocyanine green (ICG), by a simple and biocompatible method to prepare a multifunctional theranostic PB-BSA-ICG nanoparticle. The multifunctional nanoparticle system could provide dual mode magnetic resonance (MR) and near infrared (NIR) fluorescence imaging as well as combined photothermal and photodynamic (PTT-PDT) therapy in response to a single NIR laser. This nanoparticle showed an excellent stability in physiological solutions and could suppress the photo-instability of ICG. In the absence of light, the nanoparticles showed no cytotoxicity, but significant cell death was induced through combined PTT-PDT effect after irradiation with NIR laser light. A high tumor accumulation and minimal nonspecific uptake by other major organs of PB-BSA-ICG nanoparticle were observed in vivo, analyzed by T1-weighted MR and NIR fluorescence bimodal imaging in tumor xenograft mice after intravenous injection. The nanoparticles efficiently suppressed the tumor growth through combinatorial phototherapy with no tumor recurrence upon a single NIR laser irradiation. These results demonstrated that PB-BSA-ICG is potentially an interesting nanotheranostic agent for imaging guided cancer therapy by overcoming the limitations of each technology and enhancing the therapeutic efficiency as well as reducing side effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Three-state combinatorial switch models as applied to the binding of oxygen by human hemoglobin.
Straume, M; Johnson, M L
1988-02-23
We have generated a series of all 6561 unique, discrete three-state combinatorial switch models to describe the partitioning of the cooperative oxygen-binding free change among the 10 variously ligated forms of human hemoglobin tetramers. These models were inspired by the experimental observation of Smith and Ackers that the cooperative free energy of the intersubunit contact regions of the 10 possible ligated forms of human hemoglobin tetramers can be represented by a particular distribution of three distinct energy levels [Smith, F. R., & Ackers, G. K. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5347-5351]. A statistical thermodynamic formulation accounting for both dimer-tetramer equilibria and ligand binding properties of hemoglobin solutions as a function of oxygen and protein concentrations was utilized to exhaustively test these thermodynamic models. In this series of models each of the 10 ligated forms of the hemoglobin tetramer can exist in one, and only one, of three possible energy levels; i.e., each ligated form was assumed to be associated with a discrete energy state. This series of models includes all possible ways that the 10 ligation states of hemoglobin can be distributed into three distinct cooperative energy levels. The mathematical models, as presented here, do not permit equilibria between energy states to exist for any of the 10 unique ligated forms of hemoglobin tetramers. These models were analyzed by nonlinear least-squares estimation of the free energy parameters characteristic of this statistical thermodynamic development.(ABSTRACT TRUNCATED AT 250 WORDS)
Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov
2015-08-01
Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.
The Combinatorial Trace Method in Action
ERIC Educational Resources Information Center
Krebs, Mike; Martinez, Natalie C.
2013-01-01
On any finite graph, the number of closed walks of length k is equal to the sum of the kth powers of the eigenvalues of any adjacency matrix. This simple observation is the basis for the combinatorial trace method, wherein we attempt to count (or bound) the number of closed walks of a given length so as to obtain information about the graph's…
Application of Multi-Hypothesis Sequential Monte Carlo for Breakup Analysis
NASA Astrophysics Data System (ADS)
Faber, W. R.; Zaidi, W.; Hussein, I. I.; Roscoe, C. W. T.; Wilkins, M. P.; Schumacher, P. W., Jr.
As more objects are launched into space, the potential for breakup events and space object collisions is ever increasing. These events create large clouds of debris that are extremely hazardous to space operations. Providing timely, accurate, and statistically meaningful Space Situational Awareness (SSA) data is crucial in order to protect assets and operations in space. The space object tracking problem, in general, is nonlinear in both state dynamics and observations, making it ill-suited to linear filtering techniques such as the Kalman filter. Additionally, given the multi-object, multi-scenario nature of the problem, space situational awareness requires multi-hypothesis tracking and management that is combinatorially challenging in nature. In practice, it is often seen that assumptions of underlying linearity and/or Gaussianity are used to provide tractable solutions to the multiple space object tracking problem. However, these assumptions are, at times, detrimental to tracking data and provide statistically inconsistent solutions. This paper details a tractable solution to the multiple space object tracking problem applicable to space object breakup events. Within this solution, simplifying assumptions of the underlying probability density function are relaxed and heuristic methods for hypothesis management are avoided. This is done by implementing Sequential Monte Carlo (SMC) methods for both nonlinear filtering as well as hypothesis management. This goal of this paper is to detail the solution and use it as a platform to discuss computational limitations that hinder proper analysis of large breakup events.
NASA Astrophysics Data System (ADS)
Vecherin, Sergey N.; Wilson, D. Keith; Pettit, Chris L.
2010-04-01
Determination of an optimal configuration (numbers, types, and locations) of a sensor network is an important practical problem. In most applications, complex signal propagation effects and inhomogeneous coverage preferences lead to an optimal solution that is highly irregular and nonintuitive. The general optimization problem can be strictly formulated as a binary linear programming problem. Due to the combinatorial nature of this problem, however, its strict solution requires significant computational resources (NP-complete class of complexity) and is unobtainable for large spatial grids of candidate sensor locations. For this reason, a greedy algorithm for approximate solution was recently introduced [S. N. Vecherin, D. K. Wilson, and C. L. Pettit, "Optimal sensor placement with terrain-based constraints and signal propagation effects," Unattended Ground, Sea, and Air Sensor Technologies and Applications XI, SPIE Proc. Vol. 7333, paper 73330S (2009)]. Here further extensions to the developed algorithm are presented to include such practical needs and constraints as sensor availability, coverage by multiple sensors, and wireless communication of the sensor information. Both communication and detection are considered in a probabilistic framework. Communication signal and signature propagation effects are taken into account when calculating probabilities of communication and detection. Comparison of approximate and strict solutions on reduced-size problems suggests that the approximate algorithm yields quick and good solutions, which thus justifies using that algorithm for full-size problems. Examples of three-dimensional outdoor sensor placement are provided using a terrain-based software analysis tool.
Construction of a scFv Library with Synthetic, Non-combinatorial CDR Diversity.
Bai, Xuelian; Shim, Hyunbo
2017-01-01
Many large synthetic antibody libraries have been designed, constructed, and successfully generated high-quality antibodies suitable for various demanding applications. While synthetic antibody libraries have many advantages such as optimized framework sequences and a broader sequence landscape than natural antibodies, their sequence diversities typically are generated by random combinatorial synthetic processes which cause the incorporation of many undesired CDR sequences. Here, we describe the construction of a synthetic scFv library using oligonucleotide mixtures that contain predefined, non-combinatorially synthesized CDR sequences. Each CDR is first inserted to a master scFv framework sequence and the resulting single-CDR libraries are subjected to a round of proofread panning. The proofread CDR sequences are assembled to produce the final scFv library with six diversified CDRs.
Natural products and combinatorial chemistry: back to the future.
Ortholand, Jean-Yves; Ganesan, A
2004-06-01
The introduction of high-throughput synthesis and combinatorial chemistry has precipitated a global decline in the screening of natural products by the pharmaceutical industry. Some companies terminated their natural products program, despite the unproven success of the new technologies. This was a premature decision, as natural products have a long history of providing important medicinal agents. Furthermore, they occupy a complementary region of chemical space compared with the typical synthetic compound library. For these reasons, the interest in natural products has been rekindled. Various approaches have evolved that combine the power of natural products and organic chemistry, ranging from the combinatorial total synthesis of analogues to the exploration of natural product scaffolds and the design of completely unnatural molecules that resemble natural products in their molecular characteristics.
Two is better than one; toward a rational design of combinatorial therapy.
Chen, Sheng-Hong; Lahav, Galit
2016-12-01
Drug combination is an appealing strategy for combating the heterogeneity of tumors and evolution of drug resistance. However, the rationale underlying combinatorial therapy is often not well established due to lack of understandings of the specific pathways responding to the drugs, and their temporal dynamics following each treatment. Here we present several emerging trends in harnessing properties of biological systems for the optimal design of drug combinations, including the type of drugs, specific concentration, sequence of addition and the temporal schedule of treatments. We highlight recent studies showing different approaches for efficient design of drug combinations including single-cell signaling dynamics, adaption and pathway crosstalk. Finally, we discuss novel and feasible approaches that can facilitate the optimal design of combinatorial therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Croll, Lisa M; Dahn, J R
2012-01-09
Ternary libraries of 64 ZnO/CuO/CuCl(2) impregnated activated carbon samples were prepared on untreated or HNO(3)-treated carbon and evaluated for their SO(2) and NH(3) gas adsorption properties gravimetrically using a combinatorial method. CuCl(2) is shown to be a viable substitute for HNO(3) and some compositions of ternary ZnO/CuO/CuCl(2) impregnated carbon samples prepared on untreated carbon provided comparable SO(2) and NH(3) gas removal capacities to the materials prepared on HNO(3)-treated carbon. Through combinatorial methods, it was determined that the use of HNO(3) in this multigas adsorbent formulation can be avoided.
High-throughput screening for combinatorial thin-film library of thermoelectric materials.
Watanabe, Masaki; Kita, Takuji; Fukumura, Tomoteru; Ohtomo, Akira; Ueno, Kazunori; Kawasaki, Masashi
2008-01-01
A high-throughput method has been developed to evaluate the Seebeck coefficient and electrical resistivity of combinatorial thin-film libraries of thermoelectric materials from room temperature to 673 K. Thin-film samples several millimeters in size were deposited on an integrated Al2O3 substrate with embedded lead wires and local heaters for measurement of the thermopower under a controlled temperature gradient. An infrared camera was used for real-time observation of the temperature difference Delta T between two electrical contacts on the sample to obtain the Seebeck coefficient. The Seebeck coefficient and electrical resistivity of constantan thin films were shown to be almost identical to standard data for bulk constantan. High-throughput screening was demonstrated for a thermoelectric Mg-Si-Ge combinatorial library.
Library fingerprints: a novel approach to the screening of virtual libraries.
Klon, Anthony E; Diller, David J
2007-01-01
We propose a novel method to prioritize libraries for combinatorial synthesis and high-throughput screening that assesses the viability of a particular library on the basis of the aggregate physical-chemical properties of the compounds using a naïve Bayesian classifier. This approach prioritizes collections of related compounds according to the aggregate values of their physical-chemical parameters in contrast to single-compound screening. The method is also shown to be useful in screening existing noncombinatorial libraries when the compounds in these libraries have been previously clustered according to their molecular graphs. We show that the method used here is comparable or superior to the single-compound virtual screening of combinatorial libraries and noncombinatorial libraries and is superior to the pairwise Tanimoto similarity searching of a collection of combinatorial libraries.
Daniels, Edward J.; Jody, Bassam J.; Bonsignore, Patrick V.
1994-01-01
A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.
Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.
1994-07-19
A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.
2-D weighted least-squares phase unwrapping
Ghiglia, Dennis C.; Romero, Louis A.
1995-01-01
Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals.
2-D weighted least-squares phase unwrapping
Ghiglia, D.C.; Romero, L.A.
1995-06-13
Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals. 6 figs.
Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan
2014-03-21
Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.
Barad, Hannah-Noa; Keller, David A; Rietwyk, Kevin J; Ginsburg, Adam; Tirosh, Shay; Meir, Simcha; Anderson, Assaf Y; Zaban, Arie
2018-06-11
In this work, we describe the formation of a reduced bandgap CeNiO 3 phase, which, to our knowledge, has not been previously reported, and we show how it is utilized as an absorber layer in a photovoltaic cell. The CeNiO 3 phase is prepared by a combinatorial materials science approach, where a library containing a continuous compositional spread of Ce x Ni 1- x O y is formed by pulsed laser deposition (PLD); a method that has not been used in the past to form Ce-Ni-O materials. The library displays a reduced bandgap throughout, calculated to be 1.48-1.77 eV, compared to the starting materials, CeO 2 and NiO, which each have a bandgap of ∼3.3 eV. The materials library is further analyzed by X-ray diffraction to determine a new crystalline phase. By searching and comparing to the Materials Project database, the reduced bandgap CeNiO 3 phase is realized. The CeNiO 3 reduced bandgap phase is implemented as the absorber layer in a solar cell and photovoltages up to 550 mV are achieved. The solar cells are also measured by surface photovoltage spectroscopy, which shows that the source of the photovoltaic activity is the reduced bandgap CeNiO 3 phase, making it a viable material for solar energy.
Changes in apple liquid phase concentration throughout equilibrium in osmotic dehydration.
Barat, J M; Barrera, C; Frías, J M; Fito, P
2007-03-01
Previous results on apple tissue equilibration during osmotic dehydration showed that, at very long processing times, the solute concentrations of the fruit liquid phase and the osmotic solution were the same. In the present study, changes in apple liquid phase composition throughout equilibrium in osmotic dehydration were analyzed and modeled. Results showed that, by the time osmosed samples reached the maximum weight and volume loss, solute concentration of the fruit liquid phase was higher than that of the osmotic solution. The reported overconcentration could be explained in terms of the apple structure shrinkage that occurred during the osmotic dehydration with highly concentrated osmotic solutions due to the elastic response of the food structure to the loss of water and intake of solutes. The fruit liquid phase overconcentration rate was observed to depend on the concentration of the osmotic solution, the processing temperature, the sample size, and shape of the cellular tissue.
NASA Astrophysics Data System (ADS)
Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne
2014-10-01
Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel approach in cancer therapy to bypass chemoresistance by minimizing the chemotherapeutic dosing.
Solution of a Complex Least Squares Problem with Constrained Phase.
Bydder, Mark
2010-12-30
The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.
2009-03-01
homeport, geographic stability for two tours and compressed work week; homeport, lump sum SRB, and telecommuting ). The Monte Carlo simulation...Geographic stability 2 tours, and compressed work week). The Add 2 combination includes home port choice, lump sum SRB, and telecommuting ...VALUATION OF NON-MONETARY INCENTIVES: MOTIVATING AND IMPLEMENTING THE COMBINATORIAL RETENTION AUCTION MECHANISM by Jason Blake Ellis March 2009
2011-03-01
Carcinoma Cells and Tumor Associated Pericytes with Antibody-Based Immunotherapy and Metronomic Chemotherapy. PRINCIPAL INVESTIGATOR: Soldano...Combinatorial Targeting of Prostate Carcinoma Cells and Tumor Associated Pericytes with Antibody-Based Immunotherapy and Metronomic Chemotherapy. 5b. GRANT...SUPPLEMENTARY NOTES 14. ABSTRACT Seventy seven 10 week old TRAMP mice were enrolled in the study. Administration of metronomic chemotherapy with
Computer Description of Black Hawk Helicopter
1979-06-01
Model Combinatorial Geometry Models Black Hawk Helicopter Helicopter GIFT Computer Code Geometric Description of Targets 20. ABSTRACT...description was made using the technique of combinatorial geometry (COM-GEOM) and will be used as input to the GIFT computer code which generates Tliic...rnHp The data used bv the COVART comtmter code was eenerated bv the Geometric Information for Targets ( GIFT )Z computer code. This report documents
Designed Electroresponsive Biomaterials: Sequence-Controlled Behavior
2010-06-29
protein of the M13 . Traditional phage and yeast display methodologies indicate that peptide sequences with high affinities for electrode materials...drug delivery. The original vision for this work was to employ combinatorial tools such as phage and yeast display under electrical selection pressure...and drug delivery. The original vision for this work was to employ combinatorial tools such as phage and yeast display under electrical selection
Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition
NASA Astrophysics Data System (ADS)
Motemani, Yahya; Khare, Chinmay; Savan, Alan; Hans, Michael; Paulsen, Alexander; Frenzel, Jan; Somsen, Christoph; Mücklich, Frank; Eggeler, Gunther; Ludwig, Alfred
2016-12-01
Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-x Ta x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ˜150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the (20\\bar{4}) and (204) planes of α″ martensite, indicating that the films’ growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre-patterning and a combinatorial materials library fabrication strategy offer a promising technological approach for investigating Ti-Ta thin films for a range of applications. The proposed approaches can be similarly implemented for other materials systems which can benefit from the formation of a nanocolumnar morphology.
Siol, Sebastian; Dhakal, Tara P; Gudavalli, Ganesh S; Rajbhandari, Pravakar P; DeHart, Clay; Baranowski, Lauryn L; Zakutayev, Andriy
2016-06-08
High-throughput computational and experimental techniques have been used in the past to accelerate the discovery of new promising solar cell materials. An important part of the development of novel thin film solar cell technologies, that is still considered a bottleneck for both theory and experiment, is the search for alternative interfacial contact (buffer) layers. The research and development of contact materials is difficult due to the inherent complexity that arises from its interactions at the interface with the absorber. A promising alternative to the commonly used CdS buffer layer in thin film solar cells that contain absorbers with lower electron affinity can be found in β-In2S3. However, the synthesis conditions for the sputter deposition of this material are not well-established. Here, In2S3 is investigated as a solar cell contact material utilizing a high-throughput combinatorial screening of the temperature-flux parameter space, followed by a number of spatially resolved characterization techniques. It is demonstrated that, by tuning the sulfur partial pressure, phase pure β-In2S3 could be deposited using a broad range of substrate temperatures between 500 °C and ambient temperature. Combinatorial photovoltaic device libraries with Al/ZnO/In2S3/Cu2ZnSnS4/Mo/SiO2 structure were built at optimal processing conditions to investigate the feasibility of the sputtered In2S3 buffer layers and of an accelerated optimization of the device structure. The performance of the resulting In2S3/Cu2ZnSnS4 photovoltaic devices is on par with CdS/Cu2ZnSnS4 reference solar cells with similar values for short circuit currents and open circuit voltages, despite the overall quite low efficiency of the devices (∼2%). Overall, these results demonstrate how a high-throughput experimental approach can be used to accelerate the development of contact materials and facilitate the optimization of thin film solar cell devices.
Synthesis and Screening of Phase Change Chalcogenide Thin Film Materials for Data Storage.
Guerin, Samuel; Hayden, Brian; Hewak, Daniel W; Vian, Chris
2017-07-10
A combinatorial synthetic methodology based on evaporation sources under an ultrahigh vacuum has been used to directly synthesize compositional gradient thin film libraries of the amorphous phases of GeSbTe alloys at room temperature over a wide compositional range. An optical screen is described that allows rapid parallel mapping of the amorphous-to-crystalline phase transition temperature and optical contrast associated with the phase change on such libraries. The results are shown to be consistent with the literature for compositions where published data are available along the Sb 2 Te 3 -GeTe tie line. The results reveal a minimum in the crystallization temperature along the Sb 2 Te 3 -Ge 2 Te 3 tie line, and the method is able to resolve subsequent cubic-to-hexagonal phase transitions in the GST crystalline phase. HT-XRD has been used to map the phases at sequentially higher temperatures, and the results are reconciled with the literature and trends in crystallization temperatures. The results clearly delineate compositions that crystallize to pure GST phases and those that cocrystallize Te. High-throughput measurement of the resistivity of the amorphous and crystalline phases has allowed the compositional and structural correlation of the resistivity contrast associated with the amorphous-to-crystalline transition, which range from 5-to-8 orders of magnitude for the compositions investigated. The results are discussed in terms of the compromises in the selection of these materials for phase change memory applications and the potential for further exploration through more detailed secondary screening of doped GST or similar classes of phase change materials designed for the demands of future memory devices.
Gurevich-Messina, Juan M; Giudicessi, Silvana L; Martínez-Ceron, María C; Acosta, Gerardo; Erra-Balsells, Rosa; Cascone, Osvaldo; Albericio, Fernando; Camperi, Silvia A
2015-01-01
Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of 'one-bead-one-peptide' combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4-hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc-Asp[2-phenylisopropyl (OPp)]-OH to Ala-Gly-oxymethylbenzamide-ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N-terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N-Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one-bead-one-cyclic depsipeptide libraries that can be easily open for its sequencing by matrix-assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Anitha, A; Deepa, N; Chennazhi, K P; Lakshmanan, Vinoth-Kumar; Jayakumar, R
2014-09-01
Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model. CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC. The 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4 days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU. To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo. The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases. Copyright © 2014 Elsevier B.V. All rights reserved.
Sahib, Mouayad A.; Gambardella, Luca M.; Afzal, Wasif; Zamli, Kamal Z.
2016-01-01
Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations). Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO), Proportional-Integral-Derivative (PID) parameter design controller, named as FOPID, for an automatic voltage regulator (AVR) system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly. PMID:27829025
Villagra, David; Goethe, John; Schwartz, Harold I; Szarek, Bonnie; Kocherla, Mohan; Gorowski, Krystyna; Windemuth, Andreas; Ruaño, Gualberto
2011-01-01
Aims We aim to demonstrate clinical relevance and utility of four novel drug-metabolism indices derived from a combinatory (multigene) approach to CYP2C9, CYP2C19 and CYP2D6 allele scoring. Each index considers all three genes as complementary components of a liver enzyme drug metabolism system and uniquely benchmarks innate hepatic drug metabolism reserve or alteration through CYP450 combinatory genotype scores. Methods A total of 1199 psychiatric referrals were genotyped for polymorphisms in the CYP2C9, CYP2C19 and CYP2D6 gene loci and were scored on each of the four indices. The data were used to create distributions and rankings of innate drug metabolism capacity to which individuals can be compared. Drug-specific indices are a combination of the drug metabolism indices with substrate-specific coefficients. Results The combinatory drug metabolism indices proved useful in positioning individuals relative to a population with regard to innate drug metabolism capacity prior to pharmacotherapy. Drug-specific indices generate pharmacogenetic guidance of immediate clinical relevance, and can be further modified to incorporate covariates in particular clinical cases. Conclusions We believe that this combinatory approach represents an improvement over the current gene-by-gene reporting by providing greater scope while still allowing for the resolution of a single-gene index when needed. This method will result in novel clinical and research applications, facilitating the translation from pharmacogenomics to personalized medicine, particularly in psychiatry where many drugs are metabolized or activated by multiple CYP450 isoenzymes. PMID:21861665
Zhao, Zheng; Bai, Jing; Wu, Aiwei; Wang, Yuan; Zhang, Jinwen; Wang, Zishan; Li, Yongsheng; Xu, Juan; Li, Xia
2015-01-01
Long non-coding RNAs (lncRNAs) are emerging as key regulators of diverse biological processes and diseases. However, the combinatorial effects of these molecules in a specific biological function are poorly understood. Identifying co-expressed protein-coding genes of lncRNAs would provide ample insight into lncRNA functions. To facilitate such an effort, we have developed Co-LncRNA, which is a web-based computational tool that allows users to identify GO annotations and KEGG pathways that may be affected by co-expressed protein-coding genes of a single or multiple lncRNAs. LncRNA co-expressed protein-coding genes were first identified in publicly available human RNA-Seq datasets, including 241 datasets across 6560 total individuals representing 28 tissue types/cell lines. Then, the lncRNA combinatorial effects in a given GO annotations or KEGG pathways are taken into account by the simultaneous analysis of multiple lncRNAs in user-selected individual or multiple datasets, which is realized by enrichment analysis. In addition, this software provides a graphical overview of pathways that are modulated by lncRNAs, as well as a specific tool to display the relevant networks between lncRNAs and their co-expressed protein-coding genes. Co-LncRNA also supports users in uploading their own lncRNA and protein-coding gene expression profiles to investigate the lncRNA combinatorial effects. It will be continuously updated with more human RNA-Seq datasets on an annual basis. Taken together, Co-LncRNA provides a web-based application for investigating lncRNA combinatorial effects, which could shed light on their biological roles and could be a valuable resource for this community. Database URL: http://www.bio-bigdata.com/Co-LncRNA/ PMID:26363020
Luo, Li; Luo, Le; Zhang, Xinli; He, Xiaoli
2017-07-10
Accurate forecasting of hospital outpatient visits is beneficial for the reasonable planning and allocation of healthcare resource to meet the medical demands. In terms of the multiple attributes of daily outpatient visits, such as randomness, cyclicity and trend, time series methods, ARIMA, can be a good choice for outpatient visits forecasting. On the other hand, the hospital outpatient visits are also affected by the doctors' scheduling and the effects are not pure random. Thinking about the impure specialty, this paper presents a new forecasting model that takes cyclicity and the day of the week effect into consideration. We formulate a seasonal ARIMA (SARIMA) model on a daily time series and then a single exponential smoothing (SES) model on the day of the week time series, and finally establish a combinatorial model by modifying them. The models are applied to 1 year of daily visits data of urban outpatients in two internal medicine departments of a large hospital in Chengdu, for forecasting the daily outpatient visits about 1 week ahead. The proposed model is applied to forecast the cross-sectional data for 7 consecutive days of daily outpatient visits over an 8-weeks period based on 43 weeks of observation data during 1 year. The results show that the two single traditional models and the combinatorial model are simplicity of implementation and low computational intensiveness, whilst being appropriate for short-term forecast horizons. Furthermore, the combinatorial model can capture the comprehensive features of the time series data better. Combinatorial model can achieve better prediction performance than the single model, with lower residuals variance and small mean of residual errors which needs to be optimized deeply on the next research step.
Precipitation in Al–Mg solid solution prepared by solidification under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jie, J.C., E-mail: jiejc@dlut.edu.cn; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001; Wang, H.W.
2014-01-15
The precipitation in Al–Mg solid solution containing 21.6 at.% Mg prepared by solidification under 2 GPa was investigated. The results show that the γ-Al{sub 12}Mg{sub 17} phase is formed and the β′ phase cannot be observed in the solid solution during ageing process. The precipitation of γ and β phases takes place in a non-uniform manner during heating process, i.e. the γ and β phases are first formed in the interdendritic region, which is caused by the inhomogeneous distribution of Mg atoms in the solid solution solidified under high pressure. Peak splitting of X-ray diffraction patterns of Al(Mg) solid solutionmore » appears, and then disappears when the samples are aged at 423 K for different times, due to the non-uniform precipitation in Al–Mg solid solution. The direct transformation from the γ to β phase is observed after ageing at 423 K for 24 h. It is considered that the β phase is formed through a peritectoid reaction of α + γ → β which needs the diffusion of Mg atoms across the interface of α/γ phases. - Highlights: • The γ phase is formed and the β′ phase is be observed in Al(Mg) solid solution. • Peak splitting of XRD pattern of Al(Mg) solid solution appears during aged at 150 °C. • The β phase is formed through a peritectoid reaction of α + γ → β.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Hampshire, Tobias; Soneji, Shamit; Bacon, Joanna; James, Brian W.; Hinds, Jason; Laing, Ken; Stabler, Richard A; Marsh, Philip D.; Butcher, Philip D
2011-01-01
Summary The majority of individuals infected with TB develop a latent infection, in which organisms survive within the body while evading the host immune system. Such persistent bacilli are capable of surviving several months of combinatorial antibiotic treatment. Evidence suggests that stationary phase bacteria adapt to increase their tolerance to environmental stresses. We have developed a unique in vitro model of dormancy based on the characterization of a single, large volume fermenter culture of M. tuberculosis, as it adapts to stationary phase. Cells are maintained in controlled and defined aerobic conditions (50% dissolved oxygen tension), using probes that measure dissolved oxygen tension, temperature, and pH. Microarray analysis has been used in conjunction with viability and nutrient depletion assays to dissect differential gene expression. Following exponential phase growth the gradual depletion of glucose/glycerol resulted in a small population of survivors that were characterized for periods in excess of 100 days. Bacilli adapting to nutrient depletion displayed characteristics associated with persistence in vivo, including entry into a non-replicative state and the up-regulation of genes involved in β-oxidation of fatty acids and virulence. A reduced population of non-replicating bacilli went on to adapt sufficiently to re-initiate cellular division. PMID:15207492
Discovery of Cationic Polymers for Non-viral Gene Delivery using Combinatorial Approaches
Barua, Sutapa; Ramos, James; Potta, Thrimoorthy; Taylor, David; Huang, Huang-Chiao; Montanez, Gabriela; Rege, Kaushal
2015-01-01
Gene therapy is an attractive treatment option for diseases of genetic origin, including several cancers and cardiovascular diseases. While viruses are effective vectors for delivering exogenous genes to cells, concerns related to insertional mutagenesis, immunogenicity, lack of tropism, decay and high production costs necessitate the discovery of non-viral methods. Significant efforts have been focused on cationic polymers as non-viral alternatives for gene delivery. Recent studies have employed combinatorial syntheses and parallel screening methods for enhancing the efficacy of gene delivery, biocompatibility of the delivery vehicle, and overcoming cellular level barriers as they relate to polymer-mediated transgene uptake, transport, transcription, and expression. This review summarizes and discusses recent advances in combinatorial syntheses and parallel screening of cationic polymer libraries for the discovery of efficient and safe gene delivery systems. PMID:21843141
Programming gene expression with combinatorial promoters
Cox, Robert Sidney; Surette, Michael G; Elowitz, Michael B
2007-01-01
Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters. PMID:18004278
Analytical validation of a psychiatric pharmacogenomic test.
Jablonski, Michael R; King, Nina; Wang, Yongbao; Winner, Joel G; Watterson, Lucas R; Gunselman, Sandra; Dechairo, Bryan M
2018-05-01
The aim of this study was to validate the analytical performance of a combinatorial pharmacogenomics test designed to aid in the appropriate medication selection for neuropsychiatric conditions. Genomic DNA was isolated from buccal swabs. Twelve genes (65 variants/alleles) associated with psychotropic medication metabolism, side effects, and mechanisms of actions were evaluated by bead array, MALDI-TOF mass spectrometry, and/or capillary electrophoresis methods (GeneSight Psychotropic, Assurex Health, Inc.). The combinatorial pharmacogenomics test has a dynamic range of 2.5-20 ng/μl of input genomic DNA, with comparable performance for all assays included in the test. Both the precision and accuracy of the test were >99.9%, with individual gene components between 99.4 and 100%. This study demonstrates that the combinatorial pharmacogenomics test is robust and reproducible, making it suitable for clinical use.
Combinatorial Histone Acetylation Patterns Are Generated by Motif-Specific Reactions.
Blasi, Thomas; Feller, Christian; Feigelman, Justin; Hasenauer, Jan; Imhof, Axel; Theis, Fabian J; Becker, Peter B; Marr, Carsten
2016-01-27
Post-translational modifications (PTMs) are pivotal to cellular information processing, but how combinatorial PTM patterns ("motifs") are set remains elusive. We develop a computational framework, which we provide as open source code, to investigate the design principles generating the combinatorial acetylation patterns on histone H4 in Drosophila melanogaster. We find that models assuming purely unspecific or lysine site-specific acetylation rates were insufficient to explain the experimentally determined motif abundances. Rather, these abundances were best described by an ensemble of models with acetylation rates that were specific to motifs. The model ensemble converged upon four acetylation pathways; we validated three of these using independent data from a systematic enzyme depletion study. Our findings suggest that histone acetylation patterns originate through specific pathways involving motif-specific acetylation activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Simulating the component counts of combinatorial structures.
Arratia, Richard; Barbour, A D; Ewens, W J; Tavaré, Simon
2018-02-09
This article describes and compares methods for simulating the component counts of random logarithmic combinatorial structures such as permutations and mappings. We exploit the Feller coupling for simulating permutations to provide a very fast method for simulating logarithmic assemblies more generally. For logarithmic multisets and selections, this approach is replaced by an acceptance/rejection method based on a particular conditioning relationship that represents the distribution of the combinatorial structure as that of independent random variables conditioned on a weighted sum. We show how to improve its acceptance rate. We illustrate the method by estimating the probability that a random mapping has no repeated component sizes, and establish the asymptotic distribution of the difference between the number of components and the number of distinct component sizes for a very general class of logarithmic structures. Copyright © 2018. Published by Elsevier Inc.
Single cell systems biology by super-resolution imaging and combinatorial labeling
Lubeck, Eric; Cai, Long
2012-01-01
Fluorescence microscopy is a powerful quantitative tool for exploring regulatory networks in single cells. However, the number of molecular species that can be measured simultaneously is limited by the spectral separability of fluorophores. Here we demonstrate a simple but general strategy to drastically increase the capacity for multiplex detection of molecules in single cells by using optical super-resolution microscopy (SRM) and combinatorial labeling. As a proof of principle, we labeled mRNAs with unique combinations of fluorophores using Fluorescence in situ Hybridization (FISH), and resolved the sequences and combinations of fluorophores with SRM. We measured the mRNA levels of 32 genes simultaneously in single S. cerevisiae cells. These experiments demonstrate that combinatorial labeling and super-resolution imaging of single cells provides a natural approach to bring systems biology into single cells. PMID:22660740
METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS
Bohlmann, E.G.; Griess, J.C. Jr.
1960-08-23
A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.
Comparison of actual vs synthesized ternary phase diagrams for solutes of cryobiological interest☆
Kleinhans, F.W.; Mazur, Peter
2009-01-01
Phase diagrams are of great utility in cryobiology, especially those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPA's. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA + salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt % concentrations exceeded 30% for DMSO and 55% for glycerol and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue. PMID:17350609
Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest.
Kleinhans, F W; Mazur, Peter
2007-04-01
Phase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA+salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt% concentrations exceeded 30% for DMSO and 55% for glycerol, and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue.
Optimal placement of actuators and sensors in control augmented structural optimization
NASA Technical Reports Server (NTRS)
Sepulveda, A. E.; Schmit, L. A., Jr.
1990-01-01
A control-augmented structural synthesis methodology is presented in which actuator and sensor placement is treated in terms of (0,1) variables. Structural member sizes and control variables are treated simultaneously as design variables. A multiobjective utopian approach is used to obtain a compromise solution for inherently conflicting objective functions such as strucutal mass control effort and number of actuators. Constraints are imposed on transient displacements, natural frequencies, actuator forces and dynamic stability as well as controllability and observability of the system. The combinatorial aspects of the mixed - (0,1) continuous variable design optimization problem are made tractable by combining approximation concepts with branch and bound techniques. Some numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.
On Stable Marriages and Greedy Matchings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manne, Fredrik; Naim, Md; Lerring, Hakon
2016-12-11
Research on stable marriage problems has a long and mathematically rigorous history, while that of exploiting greedy matchings in combinatorial scientific computing is a younger and less developed research field. In this paper we consider the relationships between these two areas. In particular we show that several problems related to computing greedy matchings can be formulated as stable marriage problems and as a consequence several recently proposed algorithms for computing greedy matchings are in fact special cases of well known algorithms for the stable marriage problem. However, in terms of implementations and practical scalable solutions on modern hardware, the greedymore » matching community has made considerable progress. We show that due to the strong relationship between these two fields many of these results are also applicable for solving stable marriage problems.« less
Multiple-variable neighbourhood search for the single-machine total weighted tardiness problem
NASA Astrophysics Data System (ADS)
Chung, Tsui-Ping; Fu, Qunjie; Liao, Ching-Jong; Liu, Yi-Ting
2017-07-01
The single-machine total weighted tardiness (SMTWT) problem is a typical discrete combinatorial optimization problem in the scheduling literature. This problem has been proved to be NP hard and thus provides a challenging area for metaheuristics, especially the variable neighbourhood search algorithm. In this article, a multiple variable neighbourhood search (m-VNS) algorithm with multiple neighbourhood structures is proposed to solve the problem. Special mechanisms named matching and strengthening operations are employed in the algorithm, which has an auto-revising local search procedure to explore the solution space beyond local optimality. Two aspects, searching direction and searching depth, are considered, and neighbourhood structures are systematically exchanged. Experimental results show that the proposed m-VNS algorithm outperforms all the compared algorithms in solving the SMTWT problem.
NASA Astrophysics Data System (ADS)
Lee, Minkyung; Kim, Minho; Jo, Jeong-Wan; Park, Sung Kyu; Kim, Yong-Hoon
2018-01-01
This study offers a combinatorial approach for suppressing the persistent photo-conductance (PPC) characteristic in solution-processed amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) in order to achieve rapid photo-recovery. Various analyses were used to examine the photo-instability of indium-gallium-zinc-oxide (IGZO) TFTs including negative-bias-illumination-stress (NBIS) and transient photo-response behaviors. It was found that the indium ratio in metallic components had a significant impact on their PPC and photo-recovery characteristics. In particular, when the indium ratio was low (51.5%), the PPC characteristic was significantly suppressed and achieving rapid photo-recovery was possible without significantly affecting the electrical performance of AOSs. These results imply that the optimization of the indium composition ratio may allow achieving highly photo-stable and near PPC-free characteristics while maintaining high electrical performance of AOSs. It is considered that the negligible PPC behavior and rapid photo-recovery observed in IGZO TFTs with a lower indium composition are attributed to the less activation energy required for the neutralization of ionized oxygen vacancies.
A path following algorithm for the graph matching problem.
Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe
2009-12-01
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.