Sample records for solution phase deposition

  1. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGES

    An, Zhinan; Jia, Haoling; Wu, Yueying; ...

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  2. Effect of Co2+ concentration on the crystal structure of electrodeposited Co nanowires

    NASA Astrophysics Data System (ADS)

    Mukhtar, Aiman; Mehmood, Tahir; Khan, Babar Shahzad; Tan, Ming

    2016-05-01

    The structure of Co nanowires deposited at the same potential depends on Co2+ concentration in solution. When depositing at -1.6 V, the formed Co nanowire are hcp phase in 0.356 M solution, a mixture of hcp and fcc phases in 0.53 M solution, almost fcc phase in 0.71 M solution and pure fcc phase in 1.06 M solution. The transient curves show two interesting observations. First, the imax increases with increasing concentration of Co2+ ions while the tm decreases with increasing concentration. Second, the imax and tm observed in depositing Co nanowires at -1.6 V in the 0.71 M solution are close to those in depositing Co nanowires at -3.0 V in the 0.356 M solution. A higher imax and shorter tm can represent a larger Ns (saturation nucleus density). Therefore we believe that the deposition at -1.6 V in higher concentrations such as 0.71 and 1.067 M can lead to a larger Ns, indicating the formation of smaller critical nuclei. The structure of Co can be determined by the critical nucleus size and smaller critical nuclei favor the formation of fcc Co. Therefore the fcc Co nanowires were observed when depositing in the high concentration solution such as 0.71 and 1.067 M.

  3. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    DOEpatents

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  4. Comparative Study of Solution Phase and Vapor Phase Deposition of Aminosilanes on Silicon Dioxide Surfaces

    PubMed Central

    Yadav, Amrita R.; Sriram, Rashmi; Carter, Jared A.; Miller, Benjamin L.

    2014-01-01

    The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. PMID:24411379

  5. Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces.

    PubMed

    Yadav, Amrita R; Sriram, Rashmi; Carter, Jared A; Miller, Benjamin L

    2014-02-01

    The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Phase Evolution of YBa2Cu3O7-x films by all-chemical solution deposition route for coated conductors

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Tang, Xiao; Wu, Wei; Grivel, Jean-Claude

    2014-05-01

    In order to understand the all-chemical-solution-deposition (CSD) processes for manufacturing coated conductors, we investigated the phase evolution of YBa2Cu3O7 (YBCO) films deposited by a low-fluorine metal-organic solution deposition (LF-MOD) method on CSD derived Ce0.9La0.1O2/Gd2Zr2O7/NiW. It is shown that the phase transition from the pyrolyzed film to fully converted YBCO film in the LF-MOD process is similar to that in typical trifluoroacetates-metal organic deposition (TFA-MOD) processes even though the amount of TFA in the solution is reduced by almost one half compared with typical TFA-MOD cases. Moreover, we found that the formation of impurities (mainly BaCeO3, NiWO4 and NiO) is strongly related to the annealing temperature, i.e., the diffusion controlled reactions become intensive from 760 oC, which might be connected with the poor structural and superconducting properties of the films deposited at high sintering temperatures. Based on these results, the optimized growth conditions of YBCO films were established, and a high critical current density (Jc) of about 2 MA/cm2 (77 K, self field) is achieved in a 200 nm thick YBCO film in the architecture made by our all CSD route.

  7. Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.

    2018-01-01

    Electrochemical deposition of vertically aligned zinc oxide (ZnO) nanorods were prepared on ZnO seeded fluorine doped tin oxide (FTO) substrate in the solutions consisting of different concentrations of hexamethylenetetramine (HMTA). The electrochemical, structural, morphological, vibrational and optical properties were characterized by cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. CV curves confirm that metallic zinc phase is not deposited as the HMTA concentration is about 9 mM in a deposition solution. XRD patterns of the as-prepared films show that the increasing HMTA concentrations from 0 mM to 9 mM not only increase the formation of zinc hydrate chloride (Zn5(OH)8Cl2·H2O) but also decrease and finally disappear the metallic Zn deposition. After the as-prepared films annealed at 450 ° C, the crystalline phases of Zn and Zn5(OH)8Cl2·H2O are completely converted to ZnO hexagonal wurtzite phase with high intense growth (002) plane orientation. SEM images support that the vertical growth of ZnO nanostructures (nanorods and petals) with a few flowers is found to be in the cordillera structure as the films are deposited in the solutions consisting of 3 mM, 6 mM and 9 mM HMTA respectively. Raman and PL spectra confirm that the ZnO film deposited in the solution consisting of 9 mM HMTA has a higher crystalline nature with lesser atomic defects and is also higher c-axis growth than that of other films deposited in the solutions consisting of 0 mM, 3 mM and 6 mM, respectively. UV-vis absorbance spectra corroborate that the ZnO film deposited in the solution consisting of 9 mM HMTA shows a high dye absorbance as compared with other films. The efficiency of DSSCs based on ZnO photoanodes deposited in the solutions consisting of 0 mM and 9 mM HMTA was 1.79 and 3.75%, respectively. Electrochemical impedance spectra revealed that DSSC based on ZnO photoanode deposited in the solution consisting of 9 mM HMTA has a higher charge recombination resistance (Rrec) than that of another DSSC.

  8. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    PubMed Central

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  9. Liquid-phase deposition of thin Si films by ballistic electro-reduction

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Gelloz, B.; Kojima, A.; Koshida, N.

    2013-01-01

    It is shown that the nanocryatalline silicon ballistic electron emitter operates in a SiCl4 solution without using any counter electrodes and that thin amorphous Si films are efficiently deposited on the emitting surface with no contaminations and by-products. Despite the large electrochemical window of the SiCl4 solution, electrons injected with sufficiently high energies preferentially reduce Si4+ ions at the interface. Using an emitter with patterned line emission windows, a Si-wires array can be formed in parallel. This low-temperature liquid-phase deposition technique provides an alternative clean process for power-effective fabrication of advanced thin Si film structures and devices.

  10. Processing of CuInSe{sub 2}-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. Phase 2 Annual Report, 6 May 1996--5 May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, T.

    This report describes research performed by the University of Florida during Phase 2 of this subcontract. First, to study CIGS, researchers adapted a contactless, nondestructive technique previously developed for measuring photogenerated excess carrier lifetimes in SOI wafers. This dual-beam optical modulation (DBOM) technique was used to investigate the differences between three alternative methods of depositing CdS (conventional chemical-bath deposition [CBD], metal-organic chemical vapor deposition [MOCVD], and sputtering). Second, a critical assessment of the Cu-In-Se thermochemical and phase diagram data using standard CALPHAD procedures is being performed. The outcome of this research will produce useful information on equilibrium vapor compositions (requiredmore » annealing ambients, Sex fluxes from effusion cells), phase diagrams (conditions for melt-assisted growth), chemical potentials (driving forces for diffusion and chemical reactions), and consistent solution models (extents of solid solutions and extending phase diagrams). Third, an integrated facility to fabricate CIS PV devices was established that includes migration-enhanced epitaxy (MEE) for deposition of CIS, a rapid thermal processing furnace for absorber film formation, sputtering of ZnO, CBD or MOCVD of CdS, metallization, and pattern definition.« less

  11. Role of magnesium on the biomimetic deposition of calcium phosphate

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  12. SnS2 Thin Film Deposition by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Jaber, Abdallah Yahia; Alamri, Saleh Noaiman; Aida, Mohammed Salah

    2012-06-01

    Tin disulfide (SnS2) thin films have been synthesized using a simplified spray pyrolysis technique using a perfume atomizer. The films were deposited using two different solutions prepared by the dilution of SnCl2 and thiourea in distilled water and in methanol. The obtained films have a microcrystalline structure. The film deposited using methanol as the solvent is nearly stochiometric SnS2 with a spinel phase having a (001) preferential orientation. The film prepared with an aqueous solution is Sn-rich. Scanning electronic microscopy (SEM) images reveal that the film deposited with the aqueous solution is rough and is formed with large wires. However, the film deposited with methanol is dense and smooth. Conductivity measurements indicate that the aqueous solution leads to an n-type semiconductor, while methanol leads to a p-type semiconductor.

  13. Titanium Dioxide Coating Prepared by Use of a Suspension-Solution Plasma-Spray Process

    NASA Astrophysics Data System (ADS)

    Du, Lingzhong; Coyle, Thomas W.; Chien, Ken; Pershin, Larry; Li, Tiegang; Golozar, Mehdi

    2015-08-01

    Titanium dioxide coatings were prepared from titanium isopropoxide solution containing nano TiO2 particles by use of a plasma-spray process. The effects of stand-off distance on coating composition and microstructure were investigated and compared with those for pure solution precursor and a water-based suspension of TiO2. The results showed that the anatase content of the coating increased with increasing stand-off distance and the rate of deposition decreased with increasing spray distance. Anatase nanoparticles in solution were incorporated into the coatings without phase transformation whereas most of the TiO2 in the precursor solution was transformed into rutile. The microstructure of preserved anatase particles bound by rutile improved the efficiency of deposition of the coating. The amount of anatase phase can be adjusted by variation of the ratio of solution to added anatase TiO2 nanoparticles.

  14. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl; Rodríguez, C.A.; Porcile-Saavedra, P.F.

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of themore » crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.« less

  16. Fluid inclusion study of some Sarrabus fluorite deposits, Sardinia, Italy.

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.; Valera, R.

    1984-01-01

    Fluid inclusions in six deposits of fluorite fracture fillings associated with Hercynian (Carboniferous) cycle magmatism were studied by microthermometric techniques. All the inclusions were liquid dominated, aqueous, and homogenized in the liquid phase. One-phase (liquid), two-phase (liquid + vapour) and three-phase (liquid, vapour, and solid NaCl daughter mineral) fluid inclusions were noted. This study indicates that five of the fluorite deposits formed from 95o-125oC fluids with approx 15 wt.% NaCl. One other deposit appears to have been formed by very dilute solutions at approx 125oC. It is suggested that the local fluorite-forming process was the formation of fracture-localized hydrothermal systems in which magmatic water interaction with some other fluid-connate, meteoric, or marine.-G.J.N.

  17. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    PubMed Central

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-01-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal. PMID:28211898

  18. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    NASA Astrophysics Data System (ADS)

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla

    2017-02-01

    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  19. Field, model, and computer simulation study of some aspects of the origin and distribution of Colorado Plateau-type uranium deposits

    USGS Publications Warehouse

    Ethridge, F.G.; Sunada, D.K.; Tyler, Noel; Andrews, Sarah

    1982-01-01

    Numerous hypotheses have been proposed to account for the nature and distribution of tabular uranium and vanadium-uranium deposits of the Colorado Plateau. In one of these hypotheses it is suggested that the deposits resulted from geochemical reactions at the interface between a relatively stagnant groundwater solution and a dynamic, ore-carrying groundwater solution which permeated the host sandstones (Shawe, 1956; Granger, et al., 1961; Granger, 1968, 1976; and Granger and Warren, 1979). The study described here was designed to investigate some aspects of this hypothesis, particularly the nature of fluid flow in sands and sandstones, the nature and distribution of deposits, and the relations between the deposits and the host sandstones. The investigation, which was divided into three phases, involved physical model, field, and computer simulation studies. During the initial phase of the investigation, physical model studies were conducted in porous-media flumes. These studies verified the fact that humic acid precipitates could form at the interface between a humic acid solution and a potassium aluminum sulfate solution and that the nature and distribution of these precipitates were related to flow phenomena and to the nature and distribution of the host porous-media. During the second phase of the investigation field studies of permeability and porosity patterns in Holocene stream deposits were investigated and the data obtained were used to design more realistic porous media models. These model studies, which simulated actual stream deposits, demonstrated that precipitates possess many characteristics, in terms of their nature and relation to host sandstones, that are similar to ore deposits of the Colorado Plateau. The final phase of the investigation involved field studies of actual deposits, additional model studies in a large indoor flume, and computer simulation studies. The field investigations provided an up-to-date interpretation of the depositional environments of the host sandstones in the Slick Rock District and data on the nature and distribution of the ore deposits which are found to be directly related to the architecture of the host sandstones which acted as conduits for the transport of mineralized groundwaters. Large-scale model studies, designed to simulate Grants Mineral Belt deposits, demonstrated that precipitates had characteristics similar to those of actual uranium deposits and data obtained from these studies strongly supported the hypothesis that the ores formed soon after deposition of the host sandstones and that their distribution was largely controlled by permeability and porosity patterns established at the time of deposition of the host sandstones. A numerical model was developed during the second and third stages of the investigation that can predict favorable locations for mineralization given sufficient data on porosity, hydraulic conductivity, the distribution and thickness of sandstone hosts, and an estimate of the initial hydrologic conditions. The model was successfully tested using data from the Slick Rock District.

  20. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  1. Epitaxial BiFeO3 thin films fabricated by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Kim, Y. K.; Funakubo, H.; Ishiwara, H.

    2006-04-01

    Epitaxial BiFeO3 (BFO) thin films were fabricated on (001)-, (110)-, and (111)-oriented single-crystal SrRuO3(SRO )/SrTiO3(STO) structures by chemical solution deposition. X-ray diffraction indicates the formation of an epitaxial single-phase perovskite structure and pole figure measurement confirms the cube-on-cube epitaxial relationship of BFO ‖SRO‖STO. Chemical-solution-deposited BFO films have a rhombohedral structure with lattice parameter of 0.395nm, which is the same structure as that of a bulk single crystal. The remanent polarization of approximately 50μC/cm2 was observed in BFO (001) thin films at 80K.

  2. Numerical modeling of an alloy droplet deposition with non-equilibrium solidification

    NASA Astrophysics Data System (ADS)

    Ramanuj, Vimal

    Droplet deposition is a process of extensive relevance to the microfabrication industry. Various bonding and film deposition methods utilize single or multiple droplet impingements on a substrate with subsequent splat formation through simultaneous spreading and solidification. Splat morphology and solidification characteristics play vital roles in determining the final outcome. Experimental methods have limited reach in studying such phenomena owing to the extremely small time and length scales involved. Fundamental understanding of the governing principles of fluid flow, heat transfer and phase change provide effective means of studying such processes through computational techniques. The present study aims at numerically modeling and analyzing the phenomenon of splat formation and phase change in an alloy droplet deposition process. Phase change in alloys occurs non-isothermally and its formulation poses mathematical challenges. A highly non-linear flow field in conjunction with multiple interfaces and convection-diffusion governed phase transition are some of the highlighting features involved in the numerical formulation. Moreover, the non-equilibrium solidification behavior in eutectic systems is of prime concern. The peculiar phenomenon requires special treatments in terms of modeling solid phase species diffusion, liquid phase enrichment during solute partitioning and isothermal eutectic transformation. The flow field is solved using a two-step projection algorithm coupled with enhanced interface modeling schemes. The free surface tracking and reconstruction is achieved through two approaches: VOF-PLIC and CLSVOF to achieve optimum interface accuracy with minimal computational resources. The energy equation is written in terms of enthalpy with an additional source term to account for the phase change. The solidification phenomenon is modeled using a coupled temperature-solute scheme that reflects the microscopic effects arising due to dendritic growth taking place in rapidly solidifying domains. Solid phase diffusion theories proposed in the literature are incorporated in the solute conservation equation through a back diffusion parameter till the eutectic composition; beyond which a special treatment is proposed. A simplified homogeneous mushy region model has also been outline. Both models are employed to reproduce analytical results under limiting conditions and also experimentally verified. The primary objective of the present work is to examine the splat morphology, solidification behavior and microstructural characteristics under varying operational parameters. A simplified homogeneous mushy region model is first applied to study the role of convection in an SS304 droplet deposition with substrate remelting. The results are compared with experimental findings reported in the literature and a good agreement is observed. Furthermore, a hypoeutectic Sn-Pb alloy droplet deposition is studied using a comprehensive coupled temperature solute model that accounts for the non-equilibrium solidification occurring in eutectic type of alloys. Particular focus is laid on the limitations of a homogeneous mushy region assumption, role of species composition in governing solidification, estimation of the microstructural properties and eutectic formation.

  3. Biocompatibility of Mg Ion Doped Hydroxyapatite Films on Ti-6Al-4V Surface by Electrochemical Deposition.

    PubMed

    Lee, Kang; Choe, Han-Cheol

    2016-02-01

    In this study, we prepared magnesium (Mg) doped nano-phase hydroxyapatite (HAp) films on the TiO2 nano-network surface using electrochemical deposition method. Ti-6Al-4V ELI surface was anodized in 5 M NaOH solution at 0.3 A for 10 min. Nano-network TiO2 surface were formed by these anodization steps which acted as templates and anchorage for growth of the Mg doped HAp during subsequent pulsed electrochemical deposition process at 85 degrees C. The phase and morphologies of HAp deposits were influenced by the Mg ion concentration.

  4. The modelling routes for the chemical vapour deposition process: application to Si 1- xGe x deposition

    NASA Astrophysics Data System (ADS)

    Pons, M.; Bernard, C.; Rouch, H.; Madar, R.

    1995-10-01

    The purpose of this article is to present the modelling routes for the chemical vapour deposition process with a special emphasis on mass transport models with near local thermochemical equilibrium imposed in the gas-phase and at the deposition surface. The theoretical problems arising from the linking of the two selected approaches, thermodynamics and mass transport, are shown and a solution procedure is proposed. As an illustration, selected results of thermodynamic and mass transport analysis and of the coupled approach showed that, for the deposition of Si 1- xGe x solid solution at 1300 K (system SiGeClHAr), the thermodynamic heterogeneous stability of the reactive gases and the thermal diffusion led to the germanium depletion of the deposit.

  5. Growth of SiO 2 on InP substrate by liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Lei, Po Hsun; Yang, Chyi Da

    2010-04-01

    We have grown silicon dioxide (SiO 2) on indium phosphorous (InP) substrate by liquid phase deposition (LPD) method. With inserting InP wafer in the treatment solution composed of SiO 2 saturated hydrofluorosilicic acid (H 2SiF 6), 0.1 M boric acid (H 3BO 3) and 1.74 M diluted hydrochloric acid (HCl), the maximum deposition rate and refractive index for the as-grown LPD-SiO 2 film were about 187.5 Å/h and 1.495 under the constant growth temperature of 40 °C. The secondary ion mass spectroscope (SIMS) and energy dispersive X-ray (EDX) confirmed that the elements of silicon, oxygen, and chloride were found in the as-grown LPD-SiO 2 film. On the other hand, the effects of treatment solution incorporated with the hydrogen peroxide (H 2O 2) that can regulate the concentration of OH - ion were also shown in this article. The experimental results represented that the deposition rate decreases with increasing the concentration of hydrogen peroxide due to the reduced concentration of SiO 2 saturated H 2SiF 6 in treatment solution.

  6. Cathodic Deposition of Mg(OH)2 Coatings on Pure mg in Three mg Salts Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Yongjun, Zhang; Xiaomeng, Pei; Shugong, Jia

    Film-forming effects of cathodic deposition on pure Mg substrate at constant DC in aqueous solutions of magnesium nitrate (Mg(NO3)2ṡ6H2O), magnesium chloride (MgCl2ṡ6H2O) and magnesium sulfate (MgSO4ṡ7H2O) respectively were investigated systematically. Typical processes were studied by potentiodynamic cathodic polarization and galvanostatic polarization and typical samples were analyzed by SEM and XRD. The results indicate that the depositing efficiency is not only the highest but stablest, and deposited coatings show the best uniformity with Mg(NO3)2ṡ6H2O solution employed as depositing medium and applied current density ≥1.0mA cm-2. Cathodic deposition leads to regular mass loss of Mg substrate. The cathodic polarization curve of pure Mg in magnesium nitrate solution shows more obvious pseudo-passivation, several Tafel regions with different slopes appearing before diffusion-limited current density region, and oxygen consumption is the major cathodic reduction reaction under specified current density. However, hydrogen evolution reaction is dominant in both Mg chloride and Mg sulfate solutions. The deposition coatings are all composed of continuous and uniform mesh-like “basic layer” adjacent to substrate and discrete distributed snowball-like particles on the microscopic scale. The phase compositions are all crystal Mg(OH)2, and the coatings deposited in Mg chloride solution have (011) preferred orientation.

  7. Two phase microstructure for Ag-Ni nanowires

    NASA Astrophysics Data System (ADS)

    Srivastava, Chandan; Rai, Rajesh Kumar

    2013-03-01

    In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.

  8. Colloidal and physical transport textures exhibited by electrum and naumannite in bonanza epithermal veins from western USA, and their significance

    USGS Publications Warehouse

    Saunders, James A.; Vikre, Peter G.; Unger, Derick L.; Beasley, Lee

    2010-01-01

    It is reasonably clear that disequilibrium or “far-from equilibrium” conditions lead to the formation of silica colloids and their deposition in many epithermal deposits. This implies ore-forming solutions had elevated concentrations of dissolved silica, well in excess of amorphous silica saturation. We have previously demonstrated that such colloidal silica particles were deposited in epithermal veins as silica gels and opal, which may later progress along a path to crystallize into more thermodynamically favored (less-soluble) silica phases such as quartz and chalcedony. Also, in some deposits, amorphous silica is co-deposited with precious-metal minerals, such as electrum in the banded super-bonanza ores of the Sleeper deposit (NV). Ore-mineral textures from some western USA bonanza epithermal ores indicate that two precious-metal phases (electrum and naumannite, Ag2Se) form colloidal particles that are transported by ore-forming fluids and are deposited either by aggregation (by sticking to other precious metal-particles) to make dendrites, or are deposited on the “lee” side of protrusion along vein walls (or perhaps by both processes). We can infer by analogy to silica that this also implies that ore-forming solutions contained elevated (supersaturated) dissolved concentrations of both gold and silver that formed colloidal particles under disequilibrium (often chaotic) conditions. Thus physical transport and deposition textures seem to indicate the presence of strongly precious-metal-enriched ore forming fluids, which led to (not surprisingly) the bonanza grades of these remarkable ores. What causes such a precious-metal-rich solution is debatable, but that is the subject of our continued investigations.

  9. Fabrication of ultrathin film capacitors by chemical solution deposition

    DOE PAGES

    Brennecka, Geoff L.; Tuttle, Bruce A.

    2007-10-01

    We present that a facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ≥1 mm 2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Furthermore, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nmmore » but are still macroscopically addressable with specific capacitance values >160 nF/mm 2.« less

  10. Transient phases during crystallization of solution-processed organic thin films

    NASA Astrophysics Data System (ADS)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffery; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam; Headrick, Randall

    We report an in-situ study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition from solution via hollow pen writing, which exhibits multiple transient phases during crystallization. Under high writing speed (25 mm/s) the films have an isotropic morphology, although the mobilities range up to 3.0 cm2/V.s. To understand the crystallization in this highly non-equilibrium regime, we employ in-situ microbeam grazing incidence wide-angle X-ray scattering combined with optical video microscopy at different deposition temperatures. A sequence of crystallization was observed in which a layered liquid-crystalline (LC) phase of C8-BTBT precedes inter-layer ordering. For films deposited above 80ºC, a transition from LC phase to a transient crystalline state that we denote as Cr1 occurs after a temperature-dependent incubation time, which is consistent with classical nucleation theory. After an additional ~ 0.5s, Cr1 transforms to the final stable structure Cr2. Based on these results, we demonstrate a method to produce large crystalline grain size and high carrier mobility during high-speed processing by controlling the nucleation rate during the transformation from the LC phase. Nsf DMR-1307017, NSF DMR-1332208.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Zhu; Jack A. Walker; J. Liang

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phasemore » behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF/STB. The bubblepoint pressure for live oil samples varied between 1600 psi and 2100 psi. Wax precipitation is one of the most important phenomena in wax deposition and, hence, needs to be modeled. There are various models present in the literature. Won's model, which considers the wax phase as a non-ideal solution, and Pedersen's model, which considers the wax phase as an ideal solution, were compared. Comparison indicated that Pedersen's model gives better results, but the assumption of wax phase as an ideal solution is not realistic. Hence, Won's model was modified to consider different precipitation characteristics of the various constituents in the hydrocarbon fraction. The results obtained from the modified Won's model were compared with existing models, and it was found that predictions from the modified model are encouraging.« less

  12. Aragonite coating solutions (ACS) based on artificial seawater

    NASA Astrophysics Data System (ADS)

    Tas, A. Cuneyt

    2015-03-01

    Aragonite (CaCO3, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca10(PO4)6(OH)2), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  13. Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides

    NASA Astrophysics Data System (ADS)

    Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan

    2014-03-01

    The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.

  14. Characterization of zinc oxide thin film for pH detector

    NASA Astrophysics Data System (ADS)

    Hashim, Uda; Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Uda, M. N. A.

    2017-03-01

    This paper presents the fabrication process of the zinc oxide thin films for using to act as pH detection by using different PH solution. Sol-gel solution technique is used for preparing zinc oxide seed solution, followed by metal oxide deposition process by using spin coater on the silicon dioxide. Silicon dioxide layer is grown on the silicon wafer, then, ZnO seed solution is deposited on the silicon layer, baked, and annealing process carried on to undergo the characterization of its surface morphology, structural and crystalline phase. Electrical characterization is showed by using PH 4, 7, and 10 is dropped on the surface of the die, in addition, APTES solution is used as linker and also as a references of the electrical characterization.

  15. Method and device for electroextraction of heavy metals from technological solutions and wastewater

    DOEpatents

    Khalemsky, Aron Mikhailov; Payusov, Sergei Abramovic; Kelner, Leonid; Jo, Jae

    2005-05-03

    The basic principles of the method for heavy metals electroextraction from technological solutions and wastewater includes pretreating to remove Chromium-6 and high concentrations of heavy metals and periodically treating in a six-electrode bipolar cylindrical electroreactor made of non-conducting material to achieve lower accepted levels of impurities. Six cylindrical steel electrodes form two triode stacks and are fed with three-phase alternating current of commercial frequency (50-60 Hz), which can be pulsed. Each phase of the three-phase current is connected to three electrodes of one triode stack or in parallel to two triode stacks. The parallel connection of three-phase current to two triode stacks is performed so that the same phase of the three phase current is connected in parallel with each two opposite electrodes of six electrodes located along the periphery, or with two adjacent electrodes. A bipolar stationary aluminum electrode is situated in the inter-electrode space. In one of the embodiments, the bipolar electrode is made of a perforated heat-resistant plastic container filled with secondary aluminum and duralumin scrap. In another embodiment, the bipolar electrode of aluminum or duralumin scrap may be made without a perforated container and is placed in the inter-electrode space as a bulk scrap. In this case, to prevent shorts, each of six steel electrodes is placed in isolated perforated plastic shell with holes of 5 mm in diameter. Non-ferrous metals are extracted in a form of ferrite-chromites, and aluminates as well as hydroxyl salts deposited in the inter-electrode space without electrolysis deposits on electrodes. Deposits are separated from solution by known methods of filtration.

  16. Nickel-Aluminum Layered Double Hydroxide Coating on the Surface of Conductive Substrates by Liquid Phase Deposition.

    PubMed

    Maki, Hideshi; Takigawa, Masashi; Mizuhata, Minoru

    2015-08-12

    The direct synthesis of the adhered Ni-Al LDH thin film onto the surface of electrically conductive substrates by the liquid phase deposition (LPD) reaction is carried out for the development of the positive electrode. The complexation and solution equilibria of the dissolved species in the LPD reaction have been clarified by a theoretical approach, and the LPD reaction conditions for the Ni-Al LDH depositions are shown to be optimized by controlling the fluoride ion concentration and the pH of the LPD reaction solutions. The yields of metal oxides and hydroxides by the LPD method are very sensitive to the supersaturation state of the hydroxide in the reaction solution. The surfaces of conductive substrates are completely covered by the minute mesh-like Ni-Al LDH thin film; furthermore, there is no gap between the surfaces of conductive substrates and the deposited Ni-Al LDH thin film. The active material layer thickness was able to be controlled within the range from 100 nm to 1 μm by the LPD reaction time. The high-crystallinity and the arbitrary-thickness thin films on the conductive substrate surface will be beneficial for the interface control of charge transfer reaction fields and the internal resistance reduction of various secondary batteries.

  17. Growth of tungsten oxide nanostructures by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Jin, L. H.; Bai, Y.; Li, C. S.; Wang, Y.; Feng, J. Q.; Lei, L.; Zhao, G. Y.; Zhang, P. X.

    2018-05-01

    Tungsten oxide nanostructures were fabricated on LaAlO3 (00l) substrates by a simple chemical solution deposition. The decomposition behavior and phase formation of ammonium tungstate precursor were characterized by thermal analysis and X-ray diffraction. Moreover, the morphology and chemical state of nanostructures were analyzed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectra. The effects of crystallization temperature on the formation of nanodots and nanowires were investigated. The results indicated that the change of nanostructures had close relationship with the crystallization temperature during the chemical solution deposition process. Under higher crystallization temperature, the square-like dots transformed into the dome-like nanodots and nanowires. Moreover high density well-ordered nanodots could be obtained on the substrate with the further increase of crystallization temperature. It also suggested that this simple chemical solution process could be used to adjust the nanostructures of tungsten oxide compounds on substrate.

  18. Effect of growth parameters on the optical properties of ZnO nanostructures grown by simple solution methods

    NASA Astrophysics Data System (ADS)

    Kothari, Anjana

    2017-05-01

    ZnO, a wide band gap semiconductor is of significant interest for a range of practical applications. One of the highly attractive features of ZnO is to grow variety of nanostructures by using low-cost techniques. In this paper, we report deposition of ZnO nanostructure rod-arrays (NRA) via low-temperature, solution-based deposition techniques such as chemical bath deposition (CBD) and microwave-assisted chemical bath deposition (MACBD). A detailed study of film deposition parameters such as variation in concentration of precursors and deposition temperature has been carried out. Compositional and structural study of the films has been done by X-ray Diffractometer to know the phase and purity of the final product. Morphological study of these structures has been carried out by Scanning Electron Microscopy. Optical study such as transmittance and diffuse reflectance of the films has been carried out as a function of growth parameters.

  19. Operation condition for continuous anti-solvent crystallization of CBZ-SAC cocrystal considering deposition risk of undesired crystals

    NASA Astrophysics Data System (ADS)

    Nishimaru, Momoko; Nakasa, Miku; Kudo, Shoji; Takiyama, Hiroshi

    2017-07-01

    Crystallization operation of cocrystal production has deposition risk of undesired crystals. Simultaneously, continuous manufacturing processes are focused on. In this study, conditions for continuous cocrystallization considering risk reduction of undesired crystals deposition were investigated on the view point of thermodynamics and kinetics. The anti-solvent cocrystallization was carried out in four-component system of carbamazepine, saccharin, methanol and water. From the preliminary batch experiment, the relationships among undesired crystal deposition, solution composition decided by mixing ratio of solutions, and residence time for the crystals were considered, and then the conditions of continuous experiment were decided. Under these conditions, the continuous experiment was carried out. The XRD patterns of obtained crystals in the continuous experiment showed that desired cocrystals were obtained without undesired crystals. This experimental result was evaluated by using multi-component phase diagrams from the view point of the operation point's movement. From the evaluation, it was found that there is a certain operation condition which the operation point is fixed with time in the specific domain without the deposition risk of undesired single component crystals. It means the possibility of continuous production of cocrystals without deposition risk of undesired crystals was confirmed by using multi-component phase diagrams.

  20. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  1. Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems

    NASA Astrophysics Data System (ADS)

    Dilip, J. J. S.; Janaki Ram, G. D.

    2014-01-01

    Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.

  2. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.

    2014-02-01

    Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.

  3. Hybridized boron-carbon nitride fibrous nanostructures on Ni substrates

    NASA Astrophysics Data System (ADS)

    Yap, Yoke Khin; Yoshimura, Masashi; Mori, Yusuke; Sasaki, Takatomo

    2002-04-01

    Stoichiometric BC2N films can be deposited on Si (100) at 800 °C, however, they are phase separated as pure carbon and BN phases. Likewise, hybridized boron-carbon nitride (BCN) films can be synthesized on Ni substrates. On Ni, the carbon and BN phases are hybridized through carbon nitride and boron carbide bonds. These films appeared as fibrous nanostructures. Evidence indicates that the Ni substrate acts as a sink for the carbon and forces the carbon composites to grow on top of the B and N atoms. However, as these films are grown thicker, phase separation occurs again. These results indicate that hybridized BCN phases should now be regarded as semiconducting or superhard nanostructures. High-temperature deposition on Ni substrates might be a solution to the obstacle of preparing hybridized BCN phases.

  4. Expanding the molecular-ruler process through vapor deposition of hexadecanethiol

    PubMed Central

    Patron, Alexandra M; Hooker, Timothy S; Santavicca, Daniel F

    2017-01-01

    The development of methods to produce nanoscale features with tailored chemical functionalities is fundamental for applications such as nanoelectronics and sensor fabrication. The molecular-ruler process shows great utility for this purpose as it combines top-down lithography for the creation of complex architectures over large areas in conjunction with molecular self-assembly, which enables precise control over the physical and chemical properties of small local features. The molecular-ruler process, which most commonly uses mercaptoalkanoic acids and metal ions to generate metal-ligated multilayers, can be employed to produce registered nanogaps between metal features. Expansion of this methodology to include molecules with other chemical functionalities could greatly expand the overall versatility, and thus the utility, of this process. Herein, we explore the use of alkanethiol molecules as the terminating layer of metal-ligated multilayers. During this study, it was discovered that the solution deposition of alkanethiol molecules resulted in low overall surface coverage with features that varied in height. Because features with varied heights are not conducive to the production of uniform nanogaps via the molecular-ruler process, the vapor-phase deposition of alkanethiol molecules was explored. Unlike the solution-phase deposition, alkanethiol islands produced by vapor-phase deposition exhibited markedly higher surface coverages of uniform heights. To illustrate the applicability of this method, metal-ligated multilayers, both with and without an alkanethiol capping layer, were utilized to create nanogaps between Au features using the molecular-ruler process. PMID:29181290

  5. Influence of γ-phase on corrosion resistance of Zn–Ni alloy electrodeposition from acetate electrolytic bath

    NASA Astrophysics Data System (ADS)

    Selvaraju, V.; Thangaraj, V.

    2018-05-01

    The electrodeposition of Zn–Ni alloy containing 10% to 15% nickel was deposited from acetate electrolytic bath. The effect of current density, pH, temperature, cathodic current efficiency on the deposition of Zn–Ni alloy and the throwing power ability of the solution was investigated. The composition of the deposits and the morphology were strongly influenced by the temperature and applied current density. Corrosion resistance of a Zn–Ni alloy deposit was increases with the increase of current density. Zn–Ni alloy deposits shows higher corrosion resistance at optimum current density of 3.0 A dm‑2. X-Ray diffraction measurement confirms the presence of γ –phase Zn–Ni alloy deposition. The XRD reflection of Zn–Ni (831) was found to be increased with increase in current density. SEM studies reveal that the nanovial structure of Zn–Ni alloy deposited at 3.0 A dm‑2 gives high protection against corrosion.

  6. UV laser deposition of metal films by photogenerated free radicals

    NASA Technical Reports Server (NTRS)

    Montgomery, R. K.; Mantei, T. D.

    1986-01-01

    A novel photochemical method for liquid-phase deposition of metal films is described. In the liquid phase deposition scheme, a metal containing compound and a metal-metal bonded carbonyl complex are dissolved together in a polar solvent and the mixture is irradiated using a UV laser. The optical arrangement consists of a HeCd laser which provides 7 mW of power at a wavelength of 325 nm in the TEM(OO) mode. The beam is attenuated and may be expanded to a diameter of 5-20 mm. Experiments with photochemical deposition of silver films onto glass and quartz substrates are described in detail. Mass spectrometric analysis of deposited silver films indicated a deposition rate of about 1 A/s at incident power levels of 0.01 W/sq cm. UV laser-induced copper and palladium films have also been obtained. A black and white photograph showing the silver Van Der Pauw pattern of a solution-deposited film is provided.

  7. Nanoporous films: From conventional to the conformal

    DOE PAGES

    Allendorf, Mark D.; Stavila, Vitalie

    2015-12-14

    Here, thin and continuous films of porous metal-organic frameworks can now be conformally deposited on various substrates using a vapor-phase synthesis approach that departs from conventional solution-based routes.

  8. Oxidant effect of La(NO3)3·6H2O solution on the crystalline characteristics of nanocrystalline ZrO2 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Nam Khen; Kim, Jin-Tae; Kang, Goru; An, Jong-Ki; Nam, Minwoo; Kim, So Yeon; Park, In-Sung; Yun, Ju-Young

    2017-02-01

    Nanocrystalline ZrO2 films were synthesized by atomic layer deposition method using CpZr[N(CH3)2]3 (Cp = C5H5) as the metal precursor and La(NO3)3·6H2O solution as the oxygen source. La element in the deposited ZrO2 films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO3)3·6H2O solution to conventionally used H2O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO2 films. Specifically, the crystalline structure of the ZrO2 film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO2 films prepared from La(NO3)3·6H2O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H2O oxidant was 142 nm. However, the concentration of La(NO3)3·6H2O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO2 films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  9. Effect of titanium oxide compact layer in dye-sensitized solar cell prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Huang, Jung-Jie; Chiu, Shih-Ping; Wu, Menq-Jion; Hsu, Chun-Fa

    2016-11-01

    In this study, titanium dioxide films were deposited on indium tin oxide glass substrates by liquid-phase deposition (LPD) for application as the compact layer in dye-sensitized solar cells (DSSCs). A deposition solution of ammonium hexafluorotitanate and boric acid was used for TiO2 deposition. Compact layer passivation can improve DSSC performance by decreasing carrier losses from recombination at the ITO/electrolyte interface and improving the electrical contact between the ITO and the TiO2 photo-electrode. The optimum thickness of the compact layer was found to be 48 nm, which resulted in a 50 % increase in the conversion efficiency compared with cells without compact layers. The conversion efficiency can be increased from 3.55 to 5.26 %. Therefore, the LPD-TiO2 compact layer inhibits the dark current and increases the short-circuit current density effectively.

  10. Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung

    2013-06-13

    Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C,more » with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.« less

  11. Nonequilibrium Phase Chemistry in High Temperature Structure Alloys

    NASA Technical Reports Server (NTRS)

    Wang, R.

    1991-01-01

    Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.

  12. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, R. E.

    1987-10-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. IC provides results on ions not expected in the production solutions. Thus, solution contamination and breakdown products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet blasting to roughen up the surface, 20 mu in. of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 in. of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for total fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  13. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, Robert E.

    1990-01-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. Unlike other chemical quantification techniques, IC provides results on ions not expected in the production solutions. Thus, solution contamination and break-down products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet-blasting to roughen up the surface, 20 microinches of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 inches of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  14. Investigation of diamond deposition by chemical vapor transport with hydrogen

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Wladyslaw; Messier, Russell F.; Roy, Rustum; Engdahl, Chris

    1990-12-01

    The carbon-hydrogen chemical vapor transport system was examined in accordance with a four-stage transport model. A result of this examination is that graphite co-deposition could be avoided when diamond is deposited from gas solutions under-saturated with respect to diamond. Actual deposition experiments showed that this unusual requirement can be fulfilled but only for the condition that the transport distance between the carbon source and the substrate surface is short. In such a case diamond can be deposited equally from super-saturated as well as from under-saturated gas solutions. On the basis of thermodynamic considerations a possible explanation of this unusual phenomenon is given. It is shown that there is a possibility of deposition of diamond from both super-saturated as well as under-saturated gas solutions but only on the condition that they are in a non-equilibrium state generally called the activated state. A model of the diamond deposition process consisting of two steps is proposed. In the first step diamond and graphite are deposited simultaneously. The most important carbon deposition reaction is C2H2(g) + 2 H(g) C(diamond graphite) + CH(g). The amount of co-deposited graphite is not a direct function of the saturation state of the gas phase. In the second step graphite is etched according to the most probable reaction C(graphite) + 4 H(g) CH4(g). Atomic hydrogen in a super-equilibrium concentration is necessary not only to etch graphite but also to precipitate and graphite. 1.

  15. Diamond deposition by chemical vapor transport with hydrogen in a closed system

    NASA Astrophysics Data System (ADS)

    Piekarczyk, W.; Messier, R.; Roy, R.; Engdahl, C.

    1990-11-01

    The carbon-hydrogen chemical vapor transport system was examined in accordance with a four-stage transport model. A result of this examination is that graphite co-deposition could be avoided when diamond is deposited from gas solutions undersaturated with regard to diamond. Actual deposition experiments showed that this unusual requirement can be fulfilled but only for the condition that the transport distance between the carbon source and the substrate surface is short. In such a case diamond can be deposited equally from supersaturated as well as from undersaturated gas solutions. On the basis of thermodynamic considerations, a possible explanation of this unusual phenomenon is given. It is shown that there is a possibility of deposition of diamond from both supersaturated and undersaturated gas solutions but only on the condition that they are in a non-equilibrium state generally called the activated state. A model of the diamond deposition process consisting of two steps is proposed. In the first step diamond and graphite are deposited simultaneously. The most important carbon deposition reaction is C 2H 2(g)+2H(g) = C(diamond+graphite) +CH 4(g). The amount of co-deposited graphite is not a direct function of the saturation state of the gas phase. In the second step graphite is etched according to the most probable reaction C(graphite)+4H(g) = CH 4(g). Atomic hydrogen in a concentration exceeding equilibrium is necessary not only to etch graphite, but also to precipitate diamond and graphite.

  16. Y2O3-MgO Nano-Composite Synthesized by Plasma Spraying and Thermal Decomposition of Solution Precursors

    NASA Astrophysics Data System (ADS)

    Muoto, Chigozie Kenechukwu

    This research aims to identify the key feedstock characteristics and processing conditions to produce Y2O3-MgO composite coatings with high density and hardness using solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes, and also, to explore the phenomena involved in the production of homogenized nano-composite powders of this material system by thermal decomposition of solution precursor mixtures. The material system would find potential application in the fabrication of components for optical applications such as transparent windows. It was shown that a lack of major endothermic events during precursor decomposition and the resultant formation of highly dense particles upon pyrolysis are critical precursor characteristics for the deposition of dense and hard Y2O3-MgO coatings by SPPS. Using these principles, a new Y2O3-MgO precursor solution was developed, which yielded a coating with Vickers hardness of 560 Hv. This was a considerable improvement over the hardness of the coatings obtained using conventional solution precursors, which was as low as 110 Hv. In the thermal decomposition synthesis process, binary solution precursor mixtures of: yttrium nitrate (Y[n]) or yttrium acetate (Y[a]), with magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were used in order to study the effects of precursor chemistry on the structural characteristics of the resultant Y2O3-MgO powders. The phase domains were coarse and distributed rather inhomogeneously in the materials obtained from the Y[n]Mg[n] and Y[a]Mg[a] mixtures; finer and more homogeneously-distributed phase domains were obtained for ceramics produced from the Y[a]Mg[n] and Y[n]Mg[a] mixtures. It was established that these phenomena were related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization. Addition of ammonium acetate to the Y[n[Mg[n] mixture changed the endothermic process to exothermic and improved the dispersion of the component phases. Two suspension types, made with powders synthesized from the Y[n]Mg[n] and Y[n]Mg[a] precursor mixtures were sprayed by SPS. The densities and hardnesses of the coatings deposited using the two powder types were similar. However, the microstructure of coatings deposited using the Y[n]Mg[a]-synthesized powder exhibited some eutectic configuration which was not observed in the coatings deposited using the Y[n]Mg[n]-synthesized powder.

  17. Effect of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Pulsed Plasma Arc Deposition

    NASA Astrophysics Data System (ADS)

    Xu, Fujia; Lv, Yaohui; Liu, Yuxin; Xu, Binshi; He, Peng

    Pulsed plasma arc deposition (PPAD) was successfully used to fabricate the Ni-based superalloy Inconel 625 samples. The effects of three heat treatment technologies on microstructure and mechanical properties of the as-deposited material were investigated. It was found that the as-deposited structure exhibited homogenous cellular dendrite structure, which grew epitaxially along the deposition direction. Moreover, some intermetallic phases including Laves phase and MC carbides were precipitated in the interdendritic region as a result of Nb segregation. Compared with the as-deposited microstructure, the direct aged (DA) microstructure changed little except the precipitation of hardening phases γ' and γ" (Ni3Nb), which enhanced the hardness and tensile strength. But the plastic property was inferior due to the existence of brittle Laves phase. After solution and aging heat treatment (STA), a large amount of Laves particles in the interdendritic regions were dissolved, resulting in the reduction of Nb segregation and the precipitation of needle-like δ (Ni3Nb) in the interdendritic regions and grain boundaries. The hardness and tensile strength were improved without sacrificing the ductility. By homogenization and STA heat treatment (HSTA), Laves particles were dissolved into the matrix completely and resulted in recrystallized large grains with bands of annealing twins. The primary MC particles and remaining phase still appeared in the matrix and grain boundaries. Compared with the as-deposited sample, the mechanical properties decreased severely as a result of the grain growth coarsening. The failure modes of all the tensile specimens were analyzed with fractography.

  18. Tailored Assembly of 2D Heterostructures beyond Graphene

    DTIC Science & Technology

    2017-05-11

    liquid crystal and catalyst application. Another important approach we have explored during this project is the solution phase assembly of two...graphene oxide, and its potential functionalities in liquid crystal and catalyst application. Another important approach we have explored during...exfoliation, liquid phase exfoliation, and chemical vapor deposition, and opened up new opportunities to graphene based platform for novel

  19. Influence of polymer coating morphology on microsensor response

    NASA Astrophysics Data System (ADS)

    Levit, Natalia; Pestov, Dmitry; Tepper, Gary C.

    2004-03-01

    Nanoscale polymeric coatings are used in a variety of sensor systems. The influence of polymer coating morphology on sensor response was investigated and it was determined that coating morphology plays a particularly important role in transducers based on optical or acoustic resonance such as surface acoustic wave (SAW) or surface plasmon resonance (SPR) devices. Nanoscale polymeric coatings were deposited onto a number of miniature devices using a "solvent-free" deposition technique known as Rapid Expansion of Supercritical Solutions (RESS). In RESS, the supercritical solvent goes into the vapor phase upon fast depressurization and separates from the polymer. Therefore, dry polymer particles are deposited from the gas phase. The average diameter of RESS precipitates is about two orders of magnitude smaller than the minimum droplet size achievable by the air-brush method. For rubbery polymers, such as PIB and PDMS, the nanoscale solute droplets produced by RESS agglomerate on the surface forming a highly-uniform continuous nanoscale film. For glassy and crstalline polymers, the RESS droplets produce uniform particulate coatings exhibiting high surface-to-volume ratio. The coating morphology can be changed by controlling the RESS processing conditions.

  20. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry.

    PubMed

    Pan, Chensong; Xu, Songyun; Zou, Hanfa; Guo, Zhong; Zhang, Yu; Guo, Baochuan

    2005-02-01

    A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.

  1. Pseudo-Capacitors: SPPS Deposition and Electrochemical Analysis of α-MoO3 and Mo2N Coatings

    NASA Astrophysics Data System (ADS)

    Golozar, Mehdi; Chien, Ken; Lian, Keryn; Coyle, Thomas W.

    2013-06-01

    Solution precursor plasma spraying (SPPS) is a novel thermal spray process in which a solution precursor is injected into the high-temperature zone of a DC-arc plasma jet to allow solvent evaporation from the precursor droplets, solute precipitation, and precipitate pyrolysis prior to substrate impact. This investigation explored the potential of SPPS to fabricate α-MoO3 coatings with fine grain sizes, high porosity levels, and high surface area: characteristics needed for application as pseudo-capacitor electrodes. Since molybdenum nitride has shown a larger electrochemical stability window and higher specific area capacitance, the α-MoO3 deposits were subsequently converted into molybdenum nitride. A multistep heat-treatment procedure resulted in a topotactic phase-transformation mechanism, which retained the high surface area lath-shaped features of the original α-MoO3. The electrochemical behaviors of molybdenum oxide and molybdenum nitride deposits formed under different deposition conditions were studied using cyclic voltammetry to assess the influence of the resulting microstructure on the charge storage behavior and potential for use in pseudo-capacitors.

  2. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    NASA Astrophysics Data System (ADS)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  3. Critical Zone Weathering and Your Smartphone: Understanding How Mineral Decomposition and Colloid Redistribution Can Generate Rare Earth Element Deposits

    NASA Astrophysics Data System (ADS)

    Bern, C.; Foley, N.

    2014-12-01

    Rare earth elements (REE's) are crucial in the manufacture of smartphones and many other high tech devices. Increasing global demand and relatively narrow geographic sourcing have promoted interest in understanding REE deposit genesis and distribution. Highly weathered, clay-hosted, ion-exchange type deposits in southern China are the source of much of the world's production of the more valuable heavy REEs. Such deposits form as REE-bearing minerals weather and REEs released to solution in ionic form are retained by negatively charged exchange sites on clay minerals. We are investigating the potential for ion-exchange REE deposits in the Piedmont of the southeastern United States, where slow erosion rates have preserved thick (up to 20 m) regolith, as required for such deposits. The Liberty Hill pluton outcrops as coarse-grained biotite-amphibole granite and quartz monzonite over nearly 400 km2 in South Carolina, and has an age of 305 Ma (new SHRIMP ion microprobe zircon age). In weathered profiles over the pluton, ion-exchangeable REE content ranges from 8 to 580 ppm and accounts for 2 to 80% of bulk REE content. Elemental and heavy mineral distributions suggest the wide ranging differences in leachability may be attributable to the amount and distribution of resistant REE-bearing phases (e.g., monazite) relative to more easily weathered phases (e.g., allanite) in the parent granite. The REEs show little mobility within the regolith, indicating the effectiveness of the ion-exchange retention mechanism. In contrast, vertical redistribution of colloidal material shows maximum accumulations at ~1 m depth, as traced by the newly developed dual-phase (colloids vs. solution) mass balance model. The contrast suggests redistributed colloidal material has minimal influence on REE mobilization or retention. Conditions and processes necessary for ion-exchange REE deposit development exist in the Piedmont, but their presence will depend upon favorable parent rock mineralogy.

  4. The effect of solution concentration on the physical and electrochemical properties of vanadium oxide films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M. M.

    2013-10-01

    Vanadium oxide thin films were prepared on glass substrates by using the spray pyrolysis technique. The effect of solution concentration (0.1 M, 0.2 M and 0.3 M) on the nanostructural, electrical, optical, and electrochromic properties of deposited films were investigated using X-ray diffraction, scanning electron microscopy, UV—vis spectroscopy, and cyclic volta-metrics. The X-ray diffraction shows that only the sample at 0.1 M has a single β-V2O5 phase and the others have mixed phases of vanadium oxide. The lowest sheet resistance was obtained for the samples prepared at 0.3 M solution. It was also found that the optical transparency of the samples changes from 70% to 35% and the optical band gap of the samples was in the range of 2.20 to 2.41 eV, depending on the morality of solution. The cycle voltammogram shows that the sample prepared at 0.3 M has one-step electerochoromic but the other samples have two-step electerochoromic. The results show a correlation between the cycle voltammogram and the physical properties of the films.

  5. Synthesis of non-hydrazine solution processed Cu2(ZnSn)S4 thin films for solar cells applications

    NASA Astrophysics Data System (ADS)

    Gupta, Indu; Gupta, Preeti; Mohanty, Bhaskar Chandra

    2017-05-01

    Solution processing provides a versatile and inexpensive means to prepare Cu2ZnSnS4 (CZTS) thin films for photovoltaic applications. Differently with the reported growth of CZTS films from hydrazine based toxic solutions, we demonstrate a simple non-toxic ethanol based solution approach to synthesize the films. Using the chemical bath deposition (CBD) method, the CZTS thin films were grown from metal salts (copper chloride, zinc chloride, and tin chloride) in ethanol and monoethanol amine (MEA) and thioacetamide in ethanol as sulfur source in a single dip followed by sulfurization. The structure, composition, morphology and optical properties of the CZTS film were studied by X-ray diffraction, scanning electron microscopy and UV-vis spectroscopy. The results revealed that a post-deposition sulfurization is necessary to the phase formation and among all, sulfurization at 450°C for 60 min yielded phase pure CZTS films having kesterite structure, relatively compact morphology and an optical band gap of ˜1.52 eV indicating its suitability for solar cell applications. The results clearly validate the CBD method as a potential scalable route of preparation of CZTS thin films.

  6. Sulfur-Bearing Phases Detected by Evolved Gas Analysis of the Rocknest Aeolian Deposit, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Mcadam, Amy Catherine; Franz, Heather Bryant

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from approx.450 to 800 C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2(approx. 3-22 micro-mol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (approx.41-109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (approx.1-5 nmol) and CS2(approx.0.2-1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.

  7. Brown seaweed (Saccharina japonica) as an edible natural delivery matrix for allyl isothiocyanate inhibiting food-borne bacteria.

    PubMed

    Siahaan, Evi Amelia; Pendleton, Phillip; Woo, Hee-Chul; Chun, Byung-Soo

    2014-01-01

    The edible, brown seaweed Saccharina japonica was prepared as powder in the size range 500-900 μm for the desorption release of allyl isothiocyanate (AITC). Powders were used as raw (containing lipids) and as de-oiled, where the lipid was removed. In general, de-oiled powders adsorbed larger masses of AITC after vapour or solution contact. Mass adsorbed due to solution contact exceeded vapour contact. Larger particles adsorbed more than smaller particles. No chemical bonding between AITC and the powder surface occurred. Release from vapour deposited particles reached 70-85% available within 72 h; solution deposited reached 70-90% available at 192 h. The larger amounts of AITC adsorbed via solution deposition resulted in greater vapour-phase concentrations at 72 h for antimicrobial activity studies. No loss of activity was detected against Escherichia coli, Salmonella Typhimurium or Bacillus cereus. Only a nominal activity against Staphylococcus aureus was demonstrated. S. japonica powder could be used as an edible, natural vehicle for AITC delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Dewetting-mediated pattern formation in nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Stannard, Andrew

    2011-03-01

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  9. Dewetting-mediated pattern formation in nanoparticle assemblies.

    PubMed

    Stannard, Andrew

    2011-03-02

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  10. Control of the Structure of Diffusion Layer in Carbon Steels Under Nitriding with Preliminary Deposition of Copper Oxide Catalytic Films

    NASA Astrophysics Data System (ADS)

    Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.

    2017-07-01

    The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.

  11. Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram.

    PubMed

    Bhardwaj, Rajneesh; Fang, Xiaohua; Somasundaran, Ponisseril; Attinger, Daniel

    2010-06-01

    The shape of deposits obtained from drying drops containing colloidal particles matters for technologies such as inkjet printing, microelectronics, and bioassay manufacturing. In this work, the formation of deposits during the drying of nanoliter drops containing colloidal particles is investigated experimentally with microscopy and profilometry, and theoretically with an in-house finite-element code. The system studied involves aqueous drops containing titania nanoparticles evaporating on a glass substrate. Deposit shapes from spotted drops at different pH values are measured using a laser profilometer. Our results show that the pH of the solution influences the dried deposit pattern, which can be ring-like or more uniform. The transition between these patterns is explained by considering how DLVO interactions such as the electrostatic and van der Waals forces modify the particle deposition process. Also, a phase diagram is proposed to describe how the shape of a colloidal deposit results from the competition among three flow patterns: a radial flow driven by evaporation at the wetting line, a Marangoni recirculating flow driven by surface tension gradients, and the transport of particles toward the substrate driven by DLVO interactions. This phase diagram explains three types of deposits commonly observed experimentally, such as a peripheral ring, a small central bump, or a uniform layer. Simulations and experiments are found in very good agreement.

  12. Carbon tolerance of Ni-Cu and Ni-Cu/YSZ sub-μm sized SOFC thin film model systems

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Schachinger, Thomas; Stöger-Pollach, Michael; Kaindl, Reinhard; Penner, Simon

    2017-04-01

    Thin films of YSZ, unsupported Ni-Cu 1:1 alloy phases and YSZ-supported Ni-Cu 1:1 alloy solutions have been reproducibly prepared by magnetron sputter deposition on Si wafers and NaCl(001) single crystal facets at two selected substrate temperatures of 298 K and 873 K. Subsequently, the layer properties of the resulting sub-μm thick thin films as well as the tendency towards carbon deposition following treatment in pure methane at 1073 K has been tested comparatively. Well-crystallized structures of cubic YSZ, cubic NiCu and cubic NiCu/YSZ have been obtained following deposition at 873 K on both substrates. Carbon is deposited on all samples following the trend Ni-Cu (1:1) = Ni-Cu (1:1)/YSZ > pure YSZ, indicating that at least the 1:1 composition of layered Ni-Cu alloy phases is not able to suppress the carbon deposition completely, rendering it unfavorable for usage as anode component in sub-μm sized fuel cells. It is shown that surfaces with a high Cu/Ni ratio nevertheless prohibit any carbon deposition.

  13. Microstructure Evolution and Rapid Solidification Behavior of Blended Nickel-Based Superalloy Powders Fabricated by Laser Powder Deposition

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Gauvin, R.; Brochu, M.

    2016-07-01

    Laser powder deposition was performed on a substrate of Inconel 738 using blended powders of Mar M247 and Amdry DF3 with a ratio of 4:1 for repairing purposes. In the as-deposited condition, continuous secondary phases composed of γ-Ni3B eutectics and discrete (Cr, W)B borides were observed in inter-dendritic regions, and time-dependent nucleation simulation results confirmed that (Cr, W)B was the primary secondary phase formed during rapid solidification. Supersaturated solid solution of B was detected in the γ solid solution dendritic cores. The Kurz-Giovanola-Trivedi model was performed to predict the interfacial morphology and correlate the solidification front velocity (SFV) with dendrite tip radius. It was observed from high-resolution scanning electron microscopy that the dendrite tip radius of the upper region was in the range of 15 to 30 nm, which yielded a SFV of approx 30 cm/s. The continuous growth model for solute trapping behavior developed by Aziz and Kaplan was used to determine that the effective partition coefficient of B was approximately 0.025. Finally, the feasibility of the modeling results were rationalized with the Clyne-Kurz segregation simulation of B, where Clyne-Kurz prediction using a partition coefficient of 0.025 was in good agreement with the electron probe microanalysis results.

  14. Fabrication of electrically bistable organic semiconducting/ferroelectric blend films by temperature controlled spin coating.

    PubMed

    Hu, Jinghang; Zhang, Jianchi; Fu, Zongyuan; Weng, Junhui; Chen, Weibo; Ding, Shijin; Jiang, Yulong; Zhu, Guodong

    2015-03-25

    Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. During film deposition from the blend solution, spinodal decomposition induced phase separation, resulting in discrete semiconducting phase whose electrical property could be modulated by the continuous ferroelectric phase. However, blend films processed by common spin coating method showed extremely rough surfaces, even comparable to the film thickness, which caused large electrical leakage and thus compromised the resistive switching performance. To improve film roughness and thus increase the productivity of these resistive devices, we developed temperature controlled spin coating technique to carefully adjust the phase separation process. Here we reported our experimental results from the blend films of ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and semiconducting poly(3-hexylthiophene) (P3HT). We conducted a series of experiments at various deposition temperatures ranging from 20 to 90 °C. The resulting films were characterized by AFM, SEM, and VPFM to determine their structure and roughness. Film roughness first decreased and then increased with the increase of deposition temperature. Electrical performance was also characterized and obviously improved insulating property was obtained from the films deposited between 50 and 70 °C. By temperature control during film deposition, it is convenient to efficiently fabricate ferroelectric/semiconducting blend films with good electrical bistability.

  15. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Aoi, Y.; Tominaga, T.

    2013-03-01

    Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  16. Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Juma, A.; Oja Acik, I.; Oluwabi, A. T.; Mere, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2016-11-01

    Chemical spray pyrolysis (CSP) is a flexible deposition technique that allows for mixing of the precursor solutions in different proportions suitable for doping thin films. The CSP method was used to dope TiO2 thin films with Zr by adding zirconium(IV) acetylacetonate into a solution of titanium(IV) isopropoxide in ethanol stabilized by acetylacetone at [Zr]/[Ti] of 0, 5, 10 and 20 at%. The Zr-doped TiO2 thin films were uniform and homogeneous showing much smaller grains than the undoped TiO2 films. Zr stabilized the anatase phase to temperatures above 800 °C depending on Zr concentration in the spray solution. The concentration of Zr determined by XPS was 6.4 at% for the thin film deposited from the 20 at% solution. According to AFM studies, Zr doping decreased the root mean square roughness of TiO2 film from 5.9 to 1.1 nm. An XRD study of samples with the highest Zr amount showed the ZrTiO4 phase started forming after annealing at 800 °C. The optical band gap for TiO2 decreased from 3.3 eV to 3.0 eV after annealing at 800 °C but for the TiO2:Zr(20) film it remained at 3.4 eV. The dielectric constant increased by more than four times with Zr-doping and this was associated with the change in the bond formations caused by substitution of Ti by Zr in the lattice.

  17. Facile and Rapid Growth of Nanostructured Ln-BTC Metal-Organic Framework Films by Electrophoretic Deposition for Explosives sensing in Gas and Cr 3+ Detection in Solution.

    PubMed

    Feng, Ji-Fei; Yang, Xue; Gao, Shui-Ying; Shi, Jianlin; Cao, Rong

    2017-12-19

    Until now, it has been a challenge to prepare lanthanide metal-organic framework films on traditional substrates, like zinc plate, indium oxide (ITO), and fluorine-doped tin oxide (FTO) glasses in a rapid and facile method. In this paper, continuous and dense Ln-BTC MOFs films on unmodified low-cost substrates have been rapidly and easily fabricated though the newly developed electrophoretic deposition (EPD) method in 5 min. Moreover, the as-prepared luminescent films were successfully used for the detection of nitrobenzene (NB), trinitrotoluene (TNT) in gas phases, as well as NB, Cr 3+ ions for detection in solution.

  18. Nucleation and growth of hydroxyapatite on arc-deposited TiO2 surfaces studied by quartz crystal microbalance with dissipation

    NASA Astrophysics Data System (ADS)

    Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota

    2013-11-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  19. Supercritical fluid molecular spray thin films and fine powders

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  20. Electrodeposition in capillaries: bottom-up micro- and nanopatterning of functional materials on conductive substrates.

    PubMed

    George, Antony; Maijenburg, A Wouter; Maas, Michiel G; Blank, Dave H A; Ten Elshof, Johan E

    2011-09-01

    A cost-effective and versatile methodology for bottom-up patterned growth of inorganic and metallic materials on the micro- and nanoscale is presented. Pulsed electrodeposition was employed to deposit arbitrary patterns of Ni, ZnO, and FeO(OH) of high quality, with lateral feature sizes down to 200-290 nm. The pattern was defined by an oxygen plasma-treated patterned PDMS mold in conformal contact with a conducting substrate and immersed in an electrolyte solution, so that the solid phases were deposited from the solution in the channels of the patterned mold. It is important that the distance between the entrance of the channels, and the location where deposition is needed, is kept limited. The as-formed patterns were characterized by high resolution scanning electron microscope, energy-dispersive X-ray analysis, atomic force microscopy, and X-ray diffraction.

  1. Aqueous Solution-Phase Selenized CuIn(S,Se)2 Thin Film Solar Cells Annealed under Inert Atmosphere.

    PubMed

    Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Woo, Kyoohee; Moon, Jooho

    2015-10-14

    A nonvacuum solution-based approach can potentially be used to realize low cost, roll-to-roll fabrication of chalcopyrite CuIn(S,Se)2 (CISSe) thin film solar cells. However, most solution-based fabrication methods involve highly toxic solvents and inevitably require sulfurization and/or postselenization with hazardous H2S/H2Se gases. Herein, we introduce novel aqueous-based Cu-In-S and Se inks that contain an amine additive for producing a high-quality absorber layer. CISSe films were fabricated by simple deposition of Cu-In-S ink and Se ink followed by annealing under an inert atmosphere. Compositional and phase analyses confirmed that our simple aqueous ink-based method facilitated in-site selenization of the CIS layer. In addition, we investigated the molecular structures of our aqueous inks to determine how crystalline chalcopyrite absorber layers developed without sulfurization and/or postselenization. CISSe thin film solar cells annealed at 550 °C exhibited an efficiency of 4.55% under AM 1.5 illumination. The low-cost, nonvacuum method to deposit chalcopyrite absorber layers described here allows for safe and simple processing of thin film solar cells.

  2. Mimicking electrodeposition in the gas phase: a programmable concept for selected-area fabrication of multimaterial nanostructures.

    PubMed

    Cole, Jesse J; Lin, En-Chiang; Barry, Chad R; Jacobs, Heiko O

    2010-05-21

    An in situ gas-phase process that produces charged streams of Au, Si, TiO(2), ZnO, and Ge nanoparticles/clusters is reported together with a programmable concept for selected-area assembly/printing of more than one material type. The gas-phase process mimics solution electrodeposition whereby ions in the liquid phase are replaced with charged clusters in the gas phase. The pressure range in which the analogy applies is discussed and it is demonstrated that particles can be plated into pores vertically (minimum resolution 60 nm) or laterally to form low-resistivity (48 microOmega cm) interconnects. The process is applied to the formation of multimaterial nanoparticle films and sensors. The system works at atmospheric pressure and deposits material at room temperature onto electrically biased substrate regions. The combination of pumpless operation and parallel nozzle-free deposition provides a scalable tool for printable flexible electronics and the capability to mix and match materials.

  3. Synergistic hydrate inhibition of monoethylene glycol with poly(vinylcaprolactam) in thermodynamically underinhibited system.

    PubMed

    Kim, Jakyung; Shin, Kyuchul; Seo, Yutaek; Cho, Seong Jun; Lee, Ju Dong

    2014-07-31

    This study investigates the hydrate inhibition performance of monoethylene glycol (MEG) with poly(vinylcaprolactam) (PVCap) for retarding the hydrate onset as well as preventing the agglomeration of hydrate particles. A high-pressure autoclave was used to determine the hydrate onset time, subcooling temperature, hydrate fraction in the liquid phase, and torque changes during hydrate formation in pure water, 0.2 wt % PVCap solution, and 20 and 30 wt % MEG solutions. In comparison to water with no inhibitors, the addition of PVCap delays the hydrate onset time but cannot reduce the hydrate fraction, leading to a sharp increase in torque. The 20 and 30 wt % MEG solutions also delay the hydrate onset time slightly and reduce the hydrate fraction to 0.15. The addition of 0.2 wt % PVCap to the 20 wt % MEG solution, however, delays the hydrate onset time substantially, and the hydrate fraction was less than 0.19. The torque changes were negligible during the hydrate formation, suggesting the homogeneous dispersion of hydrate particles in the liquid phase. The well-dispersed hydrate particles do not agglomerate or deposit under stirring. Moreover, when 0.2 wt % PVCap was added to the 30 wt % MEG solution, no hydrate formation was observed for at least 24 h. These results suggest that mixing of MEG with a small amount of PVCap in underinhibited conditions will induce the synergistic inhibition of hydrate by delaying the hydrate onset time as well as preventing the agglomeration and deposition of hydrate particles. Decreasing the hydrate fraction in the liquid phase might be the reason for negligible torque changes during the hydrate formation in the 0.2 wt % PVCap and 20 wt % MEG solution. Simple structure II was confirmed by in situ Raman spectroscopy for the synergistic inhibition system, while coexisting structures I and II are observed in 0.2 wt % PVCap solution.

  4. Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits

    USGS Publications Warehouse

    Hemingway, B.S.

    1982-01-01

    Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.

  5. Growth of calcium hydroxyapatite (Ca-HAp) on cholesterol and cholestanol crystals from a simulated body fluid: A possible insight into the pathological calcifications associated with atherosclerosis.

    PubMed

    Laird, Dougal F; Mucalo, Michael R; Yokogawa, Yoshiyuki

    2006-03-15

    An experimental study into calcium phosphate (CP) nucleation and growth on cholesterol and cholestanol surfaces from a supersaturated simulated body fluid (SBF) is presented with the overall aim of gaining some fundamental insights into the pathological calcifications associated with atherosclerosis. Soaking of pressed cholesterol disks at physiological temperature in SBF solutions was found to lead to CP nucleation and growth if the disks were surface roughened and if an SBF with concentrations of the calcium and hydrogen phosphate ions at 2.25x physiological concentrations was used. The CP phase deposited was shown via SEM micrographs to possess a florette type morphology akin to that observed in earlier reported studies. The use of recrystallised cholesterol and cholestanol microcrystals as substrates for soaking in SBF facilitated the observation of CP deposition. In general, cholesterol recrystallised from polar solvents like 95% ethanol as a cholesterol monohydrate phase which was a better substrate for CP growth than cholesterol recrystallised from more non-polar solvents (e.g., benzene) which produced anhydrous cholesterol phases. CP was also observed to form on recrystallised cholestanol microcrystals, a molecule closely related to cholesterol. Inductively coupled plasma optical emission spectrometry (ICP-OES) data gave confirmation that Ca:P mole ratios of the grown CP were 1.3-1.5 suggesting a mixed phase of octacalcium phosphate (OCP) and Ca-deficient HAp and that the CP coating grows (with time of soaking) on the substrates after nucleation in the SBF growth medium. Infrared (IR) spectra of the extracted coatings from the cholesterol substrates confirmed that the CP phase deposited is a semi crystalline HAp with either carbonate substituted into its structure or else co-deposited as calcium carbonate. Soaking experiments involving modified cholesterol substrates in which the OH group in the molecule was replaced with the oleiyl or phosphonate group showed no CP nucleation and growth. This observation illustrates the importance of the known epitaxial relationship between cholesterol and HAp (which theoretically predicts favourable deposition of one phase upon the other) and the consequences of its destruction (by chemical modification of the cholesterol). In the case of the phosphorylated cholesterol, failure of this substrate to nucleate CP phases may have also been caused by the reduction in concentration of free solution Ca2+ in the SBF medium by complexation with the phosphonate groups on the phosphorylated cholesterol. This would have reduced the ion product of Ca2+ and inorganic phosphate and lowered the degree of supersaturation in the SBF medium.

  6. Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off.

    PubMed

    She, Zhe; Difalco, Andrea; Hähner, Georg; Buck, Manfred

    2012-01-01

    Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around -0.7 V versus Cu(2+)/Cu and a growth phase at around -0.35 V versus Cu(2+)/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off.

  7. Electrodeposition of nickel-iridium alloy films from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Jiang, Jinjin; Jiang, Peng; Wang, Zhizhi; Yuan, Ningyi; Ding, Jianning

    2018-03-01

    Nickel-iridium (Ni-Ir) alloy films were electrodeposited from aqueous solutions on copper substrates under galvanostatic conditions. The effects of bath composition and deposition time on the faradaic efficiency (FE), partial current densities, chemical composition, morphology and crystallographic structure of the films were studied. The results show that the Ni-Ir alloys with Ir content as high as 37 at% and FE as high as 44% were obtained. Increase in concentration of citric acid had little or no effect on the composition of the alloys, but resulted in a significant decrease in FE and partial current densities of Ni and Ir. The FE and the partial current density of Ni slightly decreased with increasing Ir3+ concentration, however, Ir content increased while partial current density of Ir remained stable. The increase of Ni2+ concentration could result in the increase of the FE and the rate of Ni-Ir deposition, and even no cracks formed on the surface. The surface average roughness and root mean square roughness of the film were 6.8 ± 0.3 nm and 5.4 ± 0.3 nm, respectively. The mixture phases contained significant amounts of Ni oxides and a small amount of metallic Ni, Ir and Ir oxides on the surface. After argon ion sputter cleaning, the film was mainly composed of metallic Ni and Ir. The film consisted of the amorphous and nanocrystalline phases. The Ni content in the deposits was higher than that in the electrolyte, the co-deposition of Ni-Ir alloy was a normal deposition.

  8. Characterization and Electrochromic Properties of Vanadium Oxide Thin Films Prepared via Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Kompany, A.; Shahtahmasebi, N.; Bagheri-Mohagheghi, M.-M.

    2013-08-01

    Vanadium oxide thin films were grown on glass substrates using spray pyrolysis technique. The effects of substrate temperature, vanadium concentration in the initial solution and the solution spray rate on the nanostructural and the electrochromic properties of deposited films are investigated. Characterization and the electrochromic measurements were carried out using X-ray diffraction, scanning electron microscopy and cyclic voltammogram. XRD patterns showed that the prepared films have polycrystalline structure and are mostly mixed phases of orthorhombic α-V2O5 along with minor β-V2O5 and V4O9 tetragonal structures. The preferred orientation of the deposited films was found to be along [101] plane. The cyclic voltammogram results obtained for different samples showed that only the films with 0.2 M solution concentration, 5 ml/min solution spray rate and 450°C substrate temperature exhibit two-step electrochromic properties. The results show a correlation between cycle voltammogram, morphology and resistance of the films.

  9. High rate reactive sputtering of MoN(x) coatings

    NASA Technical Reports Server (NTRS)

    Rudnik, Paul J.; Graham, Michael E.; Sproul, William D.

    1991-01-01

    High rate reactive sputtering of MoN(x) films was performed using feedback control of the nitorgen partial pressure. Coatings were made at four different target powers: 2.5, 5.0, 7.5 and 10 kW. No hysteresis was observed in the nitrogen partial pressure vs. flow plot, as is typically seen for the Ti-N system. Four phases were determined by X-ray diffraction: molybdenum, Mo-N solid solution, Beta-Mo2N and gamma-Mo2N. The hardness of the coatings depended upon composition, substrate bias, and target power. The phases present in the hardest films differed depending upon deposition parameters. For example, the Beta-Mo2N phase was hardest (load 25 gf) at 5.0 kW with a value of 3200 kgf/sq mm, whereas the hardest coatings at 10 kW were the gamma-Mo2N phase (3000 kgf/sq mm). The deposition rate generally decreased with increasing nitrogen partial pressure, but there was a range of partial pressures where the rate was relatively constant. At a target power of 5.0 kW, for example, the deposition rates were 3300 A/min for a N2 partial pressure of 0.05 - 1.0 mTorr.

  10. Fabrication, characterization and applications of iron selenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less

  11. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized using a Direct Electrochemical Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas

    In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less

  12. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized using a Direct Electrochemical Method

    DOE PAGES

    Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas; ...

    2018-06-01

    In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less

  13. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized Using a Direct Electrochemical Method.

    PubMed

    Lapp, Aliya S; Duan, Zhiyao; Marcella, Nicholas; Luo, Long; Genc, Arda; Ringnalda, Jan; Frenkel, Anatoly I; Henkelman, Graeme; Crooks, Richard M

    2018-05-11

    In this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2- , a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H atom capping layer prevents deposition of Pt multilayers. We applied this method to ∼1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to the well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).

  14. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    PubMed Central

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’

    2015-01-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117

  15. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response

    NASA Astrophysics Data System (ADS)

    Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter

    2014-12-01

    We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES.

  16. Accumulation of fossil fuels and metallic minerals in active and ancient rift lakes

    USGS Publications Warehouse

    Robbins, E.I.

    1983-01-01

    A study of active and ancient rift systems around the world suggests that accumulations of fossil fuels and metallic minerals are related to the interactions of processes that form rift valleys with those that take place in and around rift lakes. The deposition of the precursors of petroleum, gas, oil shale, coal, phosphate, barite, Cu-Pb-Zn sulfides, and uranium begins with erosion of uplifted areas, and the consequent input of abundant nutrients and solute loads into swamps and tectonic lakes. Hot springs and volcanism add other nutrients and solutes. The resulting high biological productivity creates oxidized/reduced interfaces, and anoxic and H2S-rich bottom waters which preserves metal-bearing organic tissues and horizons. In the depositional phases, the fine-grained lake deposits are in contact with coarse-grained beach, delta, river, talus, and alluvial fan deposits. Earthquake-induced turbidites also are common coarse-grained deposits of rift lakes. Postdepositional processes in rifts include high heat flow and a resulting concentration of the organic and metallic components that were dispersed throughout the lakebeds. Postdepositional faulting brings organic- and metal-rich sourcebeds in contact with coarse-grained host and reservoir rocks. A suite of potentially economic deposits is therefore a characteristic of rift valleys. ?? 1983.

  17. Accumulation of fossil fuels and metallic minerals in active and ancient rift lakes

    NASA Astrophysics Data System (ADS)

    Robbins, Eleanora Iberall

    1983-05-01

    A study of active and ancient rift systems around the world suggests that accumulations of fossil fuels and metallic minerals are related to the interactions of processes that form rift valleys with those that take place in and around rift lakes. The deposition of the precursors of petroleum, gas, oil shale, coal, phosphate, barite, Cu-Pb-Zn sulfides, and uranium begins with erosion of uplifted areas, and the consequent input of abundant nutrients and solute loads into swamps and tectonic lakes. Hot springs and volcanism add other nutrients and solutes. The resulting high biological productivity creates oxidized/reduced interfaces, and anoxic and H 2S-rich bottom waters which preserves metal-bearing organic tissues and horizons. In the depositional phases, the fine-grained lake deposits are in contact with coarse-grained beach, delta, river, talus, and alluvial fan deposits. Earthquake-induced turbidites also are common coarse-grained deposits of rift lakes. Postdepositional processes in rifts include high heat flow and a resulting concentration of the organic and metallic components that were dispersed throughout the lakebeds. Postdepositional faulting brings organic- and metal-rich sourcebeds in contact with coarse-grained host and reservoir rocks. A suite of potentially economic deposits is therefore a characteristic of rift valleys.

  18. Advanced repair solution of clear defects on HTPSM by using nanomachining tool

    NASA Astrophysics Data System (ADS)

    Lee, Hyemi; Kim, Munsik; Jung, Hoyong; Kim, Sangpyo; Yim, Donggyu

    2015-10-01

    As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects. Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process. In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.

  19. Photochemical solution processing of films of metastable phases for flexible devices: the β-Bi2O3 polymorph

    PubMed Central

    Pérez-Mezcua, Dulce; Bretos, Iñigo; Jiménez, Ricardo; Ricote, Jesús; Jiménez-Rioboó, Rafael J.; da Silva, Cosmelina Gonçalves; Chateigner, Daniel; Fuentes-Cobas, Luis; Sirera, Rafael; Calzada, M. Lourdes

    2016-01-01

    The potential of UV-light for the photochemical synthesis and stabilization of non-equilibrium crystalline phases in thin films is demonstrated for the β-Bi2O3 polymorph. The pure β-Bi2O3 phase is thermodynamically stable at high temperature (450–667 °C), which limits its applications in devices. Here, a tailored UV-absorbing bismuth(III)-N-methyldiethanolamine complex is selected as an ideal precursor for this phase, in order to induce under UV-light the formation of a –Bi–O–Bi– continuous network in the deposited layers and the further conversion into the β-Bi2O3 polymorph at a temperature as low as 250 °C. The stabilization of the β-Bi2O3 films is confirmed by their conductivity behavior and a thorough characterization of their crystal structure. This is also supported by their remarkable photocatalytic activity. Besides, this processing method has allowed us for the first time the preparation of β-Bi2O3 films on flexible plastic substrates, which opens new opportunities for using these materials in potential applications not available until now (e.g., flexible photocatalytic reactors, self-cleaning surfaces or wearable antimicrobial fabrics). Therefore, photochemical solution deposition (PCSD) demonstrates to be not only an efficient approach for the low temperature processing of oxide films, but also an excellent alternative for the stabilization of metastable phases. PMID:27996042

  20. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. <100> single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  1. Synthesis and tribological properties of diamond-like carbon films by electrochemical anode deposition

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, GuiFeng; Hou, XiaoDuo; Deng, DeWei

    2012-06-01

    Diamond-like carbon films (DLC) are deposited on Ti substrate by electrochemical anodic deposition at room temperature in pure methanol solution using a pulsed DC voltage at a range from 200 V to 2000 V. Raman spectroscopy analysis of the films reveals two broaden characteristic absorption peaks centred at ˜1350 cm-1 and 1580 cm-1, relating to D- and G-band of typical DLC films, respectively. A broad peak centred at 1325-1330 cm-1 is observed when an applied potential is 1200 V, which can confirm that the deposited films contained diamond structure phase. Tribological properties of the coated Ti substrates have been measured by means of a ball-on-plate wear test machine. A related growth mechanism of DLC films by the anodic deposition mode has also been discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, C.A.; Sandoval-Paz, M.G.; Cabello, G.

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however,more » precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.« less

  3. Controlling the metal to semiconductor transition of MoS 2 and WS 2 in solution

    DOE PAGES

    Chou, Stanley Shihyao; Yi-Kai Huang; Kim, Jaemyung; ...

    2015-01-22

    Lithiation-exfoliation produces single to few-layered MoS 2 and WS 2 sheets dispersible in water. However, the process transforms them from the pristine semiconducting 2H phase to a distorted metallic phase. Recovery of the semiconducting properties typically involves heating of the chemically exfoliated sheets at elevated temperatures. Therefore, it has been largely limited to sheets deposited on solid substrates. We report the dispersion of chemically exfoliated MoS 2 sheets in high boiling point organic solvents enabled by surface functionalization and the controllable recovery of their semiconducting properties directly in solution. Ultimately, this process connects the scalability of chemical exfoliation with themore » simplicity of solution processing, enabling a facile method for tuning the metal to semiconductor transitions of MoS 2 and WS 2 within a liquid medium.« less

  4. Pseudomorphic Semiconducting Heterostructures from Combinations of AlN, GaN and Selected SiC Polytypes: Theoretical Advancement and its Coordination with Experimental Studies of Nucleation, Growth, Characterization and Device Development

    DTIC Science & Technology

    1994-06-01

    simultaneously expluiting the favorable characteristics of these materials include the thin film deposition of both pseudomorphic beterostructure and alloys ...diagram proposed by Zangvil and Ruh [10] shows a flat miscibility gap at =1900*C between -20 and 80 wt % AIN. Above this temperature, a 2H solid solution...was reported from >20 wt % AIN. For .20 wt % AIN, 8 I I solutions and two phase mixtures of 6H, 4H, and 2H were observed. Thin film solid solutions

  5. Synthesis and characterization of bulk metallic glasses prepared by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang

    Fe-based and Zr-based metallic glasses have attracted extensive interest for structural applications due to their excellent glass forming ability, superior mechanical properties, unique thermal and corrosion properties. In this study, the feasibility of synthesizing metallic glasses with good ductility by laser direct deposition is explored. Both in-situ synthesis with elemental powder mixture and ex-situ synthesis with prealloyed powder are discussed. Microstructure and properties of laser direct deposited metallic glass composites are analyzed. Synthesis of Fe-Cr-Mo-W-Mn-C-Si-B metallic glass composite with a large fraction of amorphous phase was accomplished using laser direct deposition. X-ray diffraction (XRD) and transmission electron microscopy investigations revealed the existence of amorphous structure. Microstructure analyses by optical microscopy and scanning electron microscopy (SEM) indicated the periodically repeated microstructures of amorphous and crystalline phases. Partially crystallized structure brought by laser reheating and remelting during subsequent laser scans aggregated in the overlapping area between each scan. XRD analysis showed that the crystalline particle embedded in the amorphous matrix was Cr 1.07Fe18.93 phase. No significant microstructural differences were found from the first to the last layer. Microhardness of the amorphous phase (HV0.2 1591) showed a much higher value than that of the crystalline phase (HV0.2 947). Macrohardness of the top layer had a value close to the microhardness of the amorphous region. Wear resistance property of deposited layers showed a significant improvement with the increased fraction of amorphous phase. Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in-situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35% higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature Tg was observed to be around 655K. In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully-crystallized samples.

  6. In Vitro Spoilation of Silicone-Hydrogel Soft Contact Lenses in a Model-Blink Cell.

    PubMed

    Peng, Cheng-Chun; Fajardo, Neil P; Razunguzwa, Trust; Radke, Clayton J

    2015-07-01

    We developed an in vitro model-blink cell that reproduces the mechanism of in vivo fouling of soft contact lenses. In the model-blink cell, model tear lipid directly contacts the lens surface after forced aqueous rupture, mirroring the pre-lens tear-film breakup during interblink. Soft contact lenses are attached to a Teflon holder and immersed in artificial tear solution with protein, salts, and mucins. Artificial tear-lipid solution is spread over the air/tear interface as a duplex lipid layer. The aqueous tear film is periodically ruptured and reformed by withdrawing and reinjecting tear solution into the cell, mimicking the blink-rupture process. Fouled deposits appear on the lenses after cycling, and their compositions and spatial distributions are subsequently analyzed by optical microscopy, laser ablation electrospray ionization mass spectrometry, and two-photon fluorescence confocal scanning laser microscopy. Discrete deposit (white) spots with an average size of 20 to 300 μm are observed on the studied lenses, confirming what is seen in vivo and validating the in vitro model-blink cell. Targeted lipids (cholesterol) and proteins (albumin from bovine serum) are identified in the discrete surface deposits. Both lipid and protein occur simultaneously in the surface deposits and overlap with the white spots observed by optical microscopy. Additionally, lipid and protein penetrate into the bulk of tested silicone-hydrogel lenses, likely attributed to the bicontinuous microstructure of oleophilic silicone and hydrophilic polymer phases of the lens. In vitro spoilation of soft contact lenses is successfully achieved by the model-blink cell confirming the tear rupture/deposition mechanism of lens fouling. The model-blink cell provides a reliable laboratory tool for screening new antifouling lens materials, surface coatings, and care solutions.

  7. Germanium geochemistry and mineralogy

    USGS Publications Warehouse

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly enriched in some iron- and manganese-bearing oxides and hydroxides, including goethite (up to 5300 ppm) and hematite (up to 7000 ppm). ?? 1985.

  8. Combinatorial Study of Gradient Ag-Al Thin Films: Microstructure, Phase Formation, Mechanical and Electrical Properties.

    PubMed

    Mao, Fang; Taher, Mamoun; Kryshtal, Oleksandr; Kruk, Adam; Czyrska-Filemonowicz, Aleksandra; Ottosson, Mikael; Andersson, Anna M; Wiklund, Urban; Jansson, Ulf

    2016-11-09

    A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way. For low Al contents (<13 atom %), a highly (111)-textured fcc phase was formed. At higher Al contents, a (002)-textured hcp solid solution phase was formed followed by a fcc phase in the most Al-rich regions. No indication of a μ phase was observed. The Ag-Al films with fcc-Ag matrix is prone to adhesive material transfer leading to a high friction coefficient (>1) and adhesive wear, similar to the behavior of pure Ag. In contrast, the hexagonal solid solution phase (from ca. 15 atom %Al) exhibited dramatically reduced friction coefficients (about 15% of that of the fcc phase) and dramatically reduced adhesive wear when tested against the pure Ag counter surface. The increase in contact resistance of the Ag-Al films is limited to only 50% higher than a pure Ag reference sample at the low friction and low wear region (19-27 atom %). This suggests that a hcp Ag-Al alloy can have a potential use in sliding electrical contact applications and in the future will replace pure Ag in specific electromechanical applications.

  9. Phase control of Mn-based spinel films via pulsed laser deposition

    DOE PAGES

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; ...

    2016-07-06

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less

  10. Phase control of Mn-based spinel films via pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less

  11. Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory

    USGS Publications Warehouse

    Iverson, R.M.; Denlinger, R.P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.

  12. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.; Denlinger, Roger P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.

  13. Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

    PubMed Central

    She, Zhe; DiFalco, Andrea; Hähner, Georg

    2012-01-01

    Summary Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around −0.7 V versus Cu2+/Cu and a growth phase at around −0.35 V versus Cu2+/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off. PMID:22428101

  14. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  15. Amorphous Metal Oxide Thin Films from Aqueous Precursors: New Routes to High-kappa Dielectrics, Impact of Annealing Atmosphere Humidity, and Elucidation of Non-Uniform Composition Profiles

    NASA Astrophysics Data System (ADS)

    Woods, Keenan N.

    Metal oxide thin films serve as critical components in many modern technologies, including microelectronic devices. Industrial state-of-the-art production utilizes vapor-phase techniques to make high-quality (dense, smooth, uniform) thin film materials. However, vapor-phase techniques require large energy inputs and expensive equipment and precursors. Solution-phase routes to metal oxides have attracted great interest as cost-effective alternatives to vapor-phase methods and also offer the potential of large-area coverage, facile control of metal composition, and low-temperature processing. Solution deposition has previously been dominated by sol-gel routes, which utilize organic ligands, additives, and/or solvents. However, sol-gel films are often porous and contain residual carbon impurities, which can negatively impact device properties. All-inorganic aqueous routes produce dense, ultrasmooth films without carbon impurities, but the mechanisms involved in converting aqueous precursors to metal oxides are virtually unexplored. Understanding these mechanisms and the parameters that influence them is critical for widespread use of aqueous approaches to prepare microelectronic components. Additionally, understanding (and controlling) density and composition inhomogeneities is important for optimizing electronic properties. An overview of deposition approaches and the challenges facing aqueous routes are presented in Chapter I. A summary of thin film characterization techniques central to this work is given in Chapter II. This dissertation contributes to the field of solution-phase deposition by focusing on three areas. First, an all-inorganic aqueous route to high-kappa metal oxide dielectrics is developed for two ternary systems. Chapters III and IV detail the film formation chemistry and film properties of lanthanum zirconium oxide (LZO) and zirconium aluminum oxide (ZAO), respectively. The functionality of these dielectrics as device components is also demonstrated. Second, the impact of steam annealing on the evolution of aqueous-derived films is reported. Chapter V demonstrates that steam annealing lowers processing temperatures by effectively reducing residual counterion content, improving film stability with respect to water absorption, and enhancing dielectric properties of LZO films. Third, density and composition inhomogeneities in aqueous-derived films are investigated. Chapters VI and VII examine density inhomogeneities in single- and multi-metal component thin films, respectively, and show that these density inhomogeneities are related to inhomogeneous metal component distributions. This dissertation includes previously published coauthored material.

  16. Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Joseph P.; Parent, Lucas R.; Cantlon, Joshua

    2016-05-03

    Abstract Liquid cell transmission electron microscopy (LCTEM) provides a unique insight into the dynamics of nanomaterials in solution. Controlling the addition of multiple solutions to the liquid cell remains a key hurdle in our ability to increase throughput and to study processes dependent on solution mixing including chemical reactions. Here, we report that a piezo dispensing technique allows for mixing of multiple solutions directly within the viewing area. This technique permits deposition of 50 pL droplets of various aqueous solutions onto the liquid cell window, before assembly of the cell in a fully controlled manner. This proof-of-concept study highlights themore » great potential of picoliter dispensing in combination with LCTEM for observing nanoparticle mixing in the solution phase and the creation of chemical gradients.« less

  17. Bioactive and Porous Metal Coatings for Improved Tissue Regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, A. A.

    Our first objective was to develop the SIM process for the deposition of calcium phosphate films. This process is based on the observation that, in nature, living organisms use macromolecules to control the nucleation and growth of mineral phases. These macromolecules act as templates where various charged functional groups, contained within the molecule, can interact with the ions in the surrounding media, thus stimulating crystal nucleation and growth. Rather than using complex proteins or biopolymers, surface modification schemes were developed to place simple functional groups on the underlying substrate using self-assembling monolayers. Once the substrate was chemically modified, it wasmore » then placed into an aqueous solution containing soluble precursors of the desired mineral coating. Solution pH, ionic concentration and temperature is maintained in a regime where the solution is supersaturated with respect to the desired mineral phase, thereby creating the driving force for nucleation and growth.« less

  18. Aqueous solution epitaxy of CdS layers on CuInSe 2

    NASA Astrophysics Data System (ADS)

    Furlong, M. J.; Froment, M.; Bernard, M. C.; Cortès, R.; Tiwari, A. N.; Krejci, M.; Zogg, H.; Lincot, D.

    1998-09-01

    Epitaxial CdS thin films have been deposited from an aqueous ammonia solution containing cadmium ions and thiourea as precursors on single crystalline CuInSe 2 films prepared by MBE on Si(1 1 1) and GaAs(1 0 0) substrates. The structure and quality of the films were investigated by RHEED, glancing angle XRD and HRTEM in cross-section. The films are cubic on (1 0 0) substrates, and mixed cubic and hexagonal on (1 1 1) substrates due to the presence of stacking faults parallel to the substrate. The growth is under surface kinetic control with an activation energy of 85 kJ mol -1. Epitaxy improves with increasing temperature and an epitaxial transition temperature at approx. 60°C is demonstrated in the selected experimental conditions. The epitaxy is very sensitive to the preparation of the surface. Beneficial effects of in situ or ex situ chemical etching are found. Similarities between aqueous solution and vapor-phase chemical depositions are pointed out.

  19. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    NASA Astrophysics Data System (ADS)

    Gadea, C.; Marani, D.; Esposito, V.

    2017-02-01

    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolamine (MDEA) used as nucleophilic ligand. The function of the ligand is to control the fast hydrolysis/condensation reactions in water for the metal alkoxide before deposition, leading to formation of the TiO2 only after the jet process. The evolution of the titanium-ligand interactions at increasing amount of MDEA is here elucidated in terms of long term stability. The ink printability parameter (Z) is optimized, resulting in a reactive solution with printability, Z, >1, and chemical stability up to 600 h. Thin titanium oxide films (<500 nm) are proved on different substrates. Pure anatase phase is obtained after annealing at low temperature (ca. 400 °C).

  20. Coated electroactive materials

    DOEpatents

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  1. Deposition of tungsten metal by an immersion process

    DOE PAGES

    Small, Leo J.; Brumbach, Michael T.; Clem, Paul G.; ...

    2017-03-23

    A new multi-step, solution-phase method for the spontaneous deposition of tungsten from a room temperature ethereal solution is reported. This immersion process relies on the deposition of a sacrificial zinc coating which is galvanically displaced by the ether-mediated reduction of oxophilic WCl 6. Subsequent thermal treatment renders a crystalline, metallic tungsten film. The chemical evolution of the surface and formation of a complex intermediate tungsten species is characterized by X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Efficient metallic tungsten deposition is first characterized on a graphite substrate and then demonstrated on a functional carbon foam electrode. The resulting electrochemicalmore » performance of the modified electrode is interrogated with the canonical aqueous ferricyanide system. A tungsten-coated carbon foam electrode showed that both electrode resistance and overall electrochemical cell resistance were reduced by 50%, resulting in a concomitant decrease in redox peak separation from 1.902 V to 0.783 V. Furthermore, this process promises voltage efficiency gains in electrodes for energy storage technologies and demonstrates the viability of a new route to tungsten coating for technologies and industries where high conductivity and chemical stability are paramount.« less

  2. Isolation of high quality graphene from Ru by solution phase intercalation

    NASA Astrophysics Data System (ADS)

    Koren, E.; Sutter, E.; Bliznakov, S.; Ivars-Barcelo, F.; Sutter, P.

    2013-09-01

    We introduce a method for isolating graphene grown on epitaxial Ru(0001)/α-Al2O3. The strong graphene/Ru(0001) coupling is weakened by electrochemically driven intercalation of hydrogen underpotentially deposited in aqueous KOH solution, which allows the penetration of water molecules at the graphene/Ru(0001) interface. Following these electrochemically driven processes, the graphene can be isolated by electrochemical hydrogen evolution and transferred to arbitrary supports. Raman and transport measurements demonstrate the high quality of the transferred graphene. Our results show that intercalation, typically carried out in vacuum, can be extended to solution environments for graphene processing under ambient conditions.

  3. Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment

    NASA Astrophysics Data System (ADS)

    Feng, Q. L.; Cui, F. Z.; Wang, H.; Kim, T. N.; Kim, J. O.

    2000-03-01

    The present paper demonstrated a biomimetic method to coat calcium phosphate (Ca-P) on the surface of titanium induced by NaOH-treatment from a simple supersaturated hydroxyapatite solution (SHS). The influence of pH value and calcium ions concentration on the precipitation process was investigated. It is necessary for the solution to be supersaturated than the critical concentration of octacalcium phosphate (OCP) to get Ca-P coatings on titanium surface. In the precipitating process, it seems that amorphous calcium phosphate (ACP) precipitated first, then OCP, and finally hydroxyapatite (HA). The system was in continuous evolution and the phase transitions occurred in sequence.

  4. Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces

    PubMed Central

    Williams, Sophie E.; Davies, Philip R.; Bowen, Jenna L.; Allender, Chris J.

    2013-01-01

    This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES) on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs) deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm2) however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to study these affects. PMID:28348330

  5. Strain-induced nanostructure of Pb(Mg1/3Nb2/3)O3-PbTiO3 on SrTiO3 epitaxial thin films with low PbTiO3 concentration

    NASA Astrophysics Data System (ADS)

    Kiguchi, Takanori; Fan, Cangyu; Shiraishi, Takahisa; Konno, Toyohiko J.

    2017-10-01

    The singularity of the structure in (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) (x = 0-50 mol %) epitaxial thin films of 100 nm thickness was investigated from the viewpoint of the localized residual strain in the nanoscale. The films were deposited on SrTiO3 (STO) (001) single-crystal substrates by chemical solution deposition (CSD) using metallo-organic decomposition (MOD) solutions. X-ray and electron diffraction patterns revealed that PMN-xPT thin films included a single phase of the perovskite-type structure with the cube-on-cube orientation relationship between PMN-xPT and STO: (001)Film ∥ (001)Sub, [100]Film ∥ [100]Sub. X-ray reciprocal space maps showed an in-plane tensile strain in all the compositional ranges considered. Unit cells in the films were strained from the rhombohedral (pseudocubic) (R) phase to a lower symmetry crystal system, the monoclinic (MB) phase. The morphotropic phase boundary (MPB) that split the R and tetragonal (T) phases was observed at x = 30-35 for bulk crystals of PMN-xPT, whereas the strain suppressed the transformation from the R phase to the T phase in the films up to x = 50. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis and its related local strain analysis revealed that all of the films have a bilayer morphology. The nanoscale strained layer formed only above the film/substrate semi-coherent interface. The misfit dislocations generated the localized and periodic strain fields deformed the unit cells between the dislocation cores from the R to an another type of the monoclinic (MA) phase. Thus, the singular and localized residual strains in the PMN-xPT/STO (001) epitaxial thin films affect the phase stability around the MPB composition and result in the MPB shift phenomena.

  6. Electrodeposition of near stoichiometric CuInSe2 thin films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Chandran, Ramkumar; Mallik, Archana

    2018-03-01

    This work investigates on the single step electrodeposition of quality CuInSe2 (CIS) thin film absorber layer for photovoltaics applications. The electrodeposition was carried using an aqueous acidic solution with a pH of 2.25. The deposition was carried using a three electrode system in potentiostatic conditions for 50 minutes. The as-deposited and nitrogen (N2) annealed films were characterized using XRD, FE-SEM and Raman spectroscopy. It has been observed that the SDS has the tendency to suppress the copper selenide (CuxSe) secondary phase which is detrimental to the device performance.

  7. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    Laser-assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are examined. Two basic techniques for metal deposition are investigated; (1) photochemical decomposition of liquid or gas phase organometallic compounds utilizing either a focused, CW ultraviolet laser (System 1) or a mask and ultraviolet flood illumination, such as that provided by a repetitively pulsed, defocused excimer laser (System 2), for pattern definition, and (2) thermal deposition of metals from organometallic solutions or vapors utilizing a focused, CW laser beam as a local heat source to draw the metallization pattern.

  8. Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators.

    PubMed

    Yoo, Youngmin; Kim, Byung Gon; Pak, Kwanyong; Han, Sung Jae; Song, Heon-Sik; Choi, Jang Wook; Im, Sung Gap

    2015-08-26

    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting.

  9. Solution deposition assembly

    DOEpatents

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  10. Composition and Morphology Control of Metal Dichalcogenides via Chemical Vapor Deposition for Photovoltaic and Nanoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Samad, Leith L. J.

    The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.

  11. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca

    2013-12-15

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less

  12. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    NASA Astrophysics Data System (ADS)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hao-Min; Wang, Huan-Chun; Shen, Yang

    Single phase polycrystalline BiFeO{sub 3} thin films were grown on three different substrates via chemical solution deposition. Our results indicate that the band gap of as-prepared BiFeO{sub 3} films can be tuned (2.02–2.67 eV) by the grain size effects caused by the substrates. These BiFeO{sub 3} films show good photocatalytic properties by the degradation of Congo red solution under visible-light irradiation (λ{sub  }> 400 nm). Additionally, weak ferromagnetic behaviors can be observed at room temperature in all the films, which should be correlated to the destruction of the incommensurate cycloid spin structure of BiFeO{sub 3} phase and the coexistence of Fe{sup 3+} andmore » Fe{sup 2+} as confirmed by X-ray photoelectron spectroscopy.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Leo J.; Brumbach, Michael T.; Clem, Paul G.

    A new multi-step, solution-phase method for the spontaneous deposition of tungsten from a room temperature ethereal solution is reported. This immersion process relies on the deposition of a sacrificial zinc coating which is galvanically displaced by the ether-mediated reduction of oxophilic WCl 6. Subsequent thermal treatment renders a crystalline, metallic tungsten film. The chemical evolution of the surface and formation of a complex intermediate tungsten species is characterized by X-ray diffraction, infrared spectroscopy, and X-ray photoelectron spectroscopy. Efficient metallic tungsten deposition is first characterized on a graphite substrate and then demonstrated on a functional carbon foam electrode. The resulting electrochemicalmore » performance of the modified electrode is interrogated with the canonical aqueous ferricyanide system. A tungsten-coated carbon foam electrode showed that both electrode resistance and overall electrochemical cell resistance were reduced by 50%, resulting in a concomitant decrease in redox peak separation from 1.902 V to 0.783 V. Furthermore, this process promises voltage efficiency gains in electrodes for energy storage technologies and demonstrates the viability of a new route to tungsten coating for technologies and industries where high conductivity and chemical stability are paramount.« less

  15. Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions

    NASA Astrophysics Data System (ADS)

    Majewska, N.; Gazda, M.; Jendrzejewski, R.; Majumdar, S.; Sawczak, M.; Śliwiński, G.

    2017-08-01

    Organic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic solvents toluene, xylene, dichloromethane and 1,1-dichloroethane (0.23-1% wt) were cooled to temperatures in the range of 16.5-163 K and served as targets. The target ablation was provided by a pulsed 1064 nm or 266 nm laser. For films of thickness up to 100 nm deposited on Si, glass and ITO glass substrates, the Raman and AFM data show presence of the mixed crystalline and amorphous rubrene phases. Agglomerates of rubrene crystals are revealed by SEM observation too, and presence of oxide/peroxide (C42H28O2) in the films is concluded from matrix-assisted laser desorption/ionization time-of-flight spectroscopic analysis.

  16. Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite.

    PubMed

    Guo, Xin; McCleese, Christopher; Kolodziej, Charles; Samia, Anna C S; Zhao, Yixin; Burda, Clemens

    2016-03-07

    Perovskite films were prepared using single step solution deposition at different annealing temperatures and annealing times. The crystal structure, phases and grain size were investigated with XRD, XPS and SEM/EDX. The prepared films show a typical orientation of tetragonal perovskite phase and a gradual transition at room temperature from the yellow intermediate phase to the black perovskite phase. Films with high purity were obtained by sintering at 100 °C. In addition, the chemical composition and crystal structure of intermediate phase were investigated in detail. FTIR, UV-vis and NMR spectra revealed the occurance of DMF complexes. Interestingly, the intermediate phase could be transformed to the black perovskite phase upon X-ray irradiation. In addition, the recovery of the aged perovskite films from a yellow intermediate phase back to the black perovskite was shown to be viable via heating and X-ray irradiation.

  17. Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the Nitinol superelastic alloy.

    PubMed

    Marashi-Najafi, F; Khalil-Allafi, J; Etminanfar, M R

    2017-07-01

    The present study deals with pulse electrochemical deposition of HA on NiTi alloy and in vitro evaluation of coatings. At first step, a thermo-chemical surface modification process was applied to control the Ni release of the alloy. The electrochemical deposition of CaP coatings was examined at both dilute and concentrated solutions. The morphology and the composition of coatings were studied using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Plate like and needle like morphologies were formed for dilute and concentrated solution respectively and HA phase was formed by increasing the pulse current density for both electrolyte. The thickness of the samples was measured using cross sectioning technique. Fibroblast cell culture test on the coated samples revealed that the HA coating obtained by dilute solution shows the best biocompatibility. Also, MTT assay showed the highest cell density and cell proliferation after 5days for the HA coating of dilute solution. The contact angle of samples was measured and the coated samples showed a hydrophilic surface. Soaking the sample in SBF revealed that the crystallization rate of calcium-phosphate compounds is higher on the plate like HA coating as compared to the needle like morphology. The P release of the HA coated samples was measured in a physiological saline solution and the results show that the ions releasing in the plate like coating are less than the needle like coating. It seems that the stability of the plate like coating in biological environments is responsible for the better biocompatibility of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ceramic membranes: The effects of deposition and drying conditions on membrane morphology and performance

    NASA Astrophysics Data System (ADS)

    Webster, Elizabeth T.

    Sol-gel methods for fabricating ceramic membranes on porous supports include dip coating, evaporative drying, and sintering. The ceramic membranes of interest in the present research were prepared from aqueous sols of silica, titania, or iron oxide nano-particles which were deposited on porous alumina supports. Physisorption measurements indicate that the diameters of the pores in the resulting membranes are 20 A or smaller. Defect formation during fabrication is particularly problematic for ceramic membranes with pore diameters in the nanometer range. Solutions to these problems would greatly enhance the commercial potential of nano-filtration membranes for gas-phase separations. Cracks are debilitating defects which originate during the drying and firing phases of fabrication. As water evaporates during drying, the sol-gel film is subjected to large capillary forces. Unchecked, these tensile forces result in catastrophic cracking across the membrane. A novel technique called internal deposition can be employed to deposit the sol particles within the pores of the support rather than on its surface. Internal deposition obstructs the propagation of cracks, thereby reducing the impact of crack-type defects. A patent for demonstration of proof of concept of the internal deposition technique has been received. Experimental difficulties associated with the nonuniform morphology of the tubular alumina support hindered further development of the internal deposition protocol. The final phase of the research incorporated a support containing uniform capillaries (Anotec(TM) disks). Two-level factorial experiments were conducted to determine the effects of various deposition and drying conditions (viz., speed and method of deposition, surface charge, humidity, and drying rate) on membrane performance. Membrane performance was characterized in terms of the permeabilities of nitrogen and helium in the resulting membranes. The permeability and pressure data were incorporated in a transport model to characterize the mechanisms of fluid flow and the morphologies of the membranes. Electron microscopy was employed to evaluate membrane coverage and to identify defects in the membranes. The results of the factorial experiments indicate that membrane performance is strongly affected by humidity during deposition and drying. These results underscore the importance of controlling process humidity during fabrication of ceramic membranes.

  19. Substitution effects on the ferroelectric properties of BiFeO3 thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kuk; Kim, Sang Su; Kim, Won-Jeong; Bhalla, Amar S.

    2007-01-01

    Ferroelectric properties of Cr-substituted BiFeO3 (BFCr) and Pb-cosubstituted BFCr films prepared by a chemical solution deposition method and annealed at 550°C in nitrogen have been studied. X-ray diffraction measurements revealed that the thin films were composed of a rhombohedrally distorted perovskite structure without secondary phases. The 5mol% Pb-cosubstituted BFCr films appeared to have superior ferroelectric properties to those of other BFCr films prepared by the same conditions. The remanent polarization (Pr) and the coercive field (Ec) of the 5mol% Pb-cosubstituted BFCr film were 62μC /cm2 and 235kV/cm, respectively, with a maximum applied field of 712kV/cm. In addition, the film exhibited a fatigue-free behavior up to 1.45×1010 read/write cycles.

  20. The one-step electroposition of superhydrophobic surface on AZ31 magnesium alloy and its time-dependence corrosion resistance in NaCl solution

    NASA Astrophysics Data System (ADS)

    Zhong, Yuxing; Hu, Jin; Zhang, Yufen; Tang, Shawei

    2018-01-01

    A calcium myristic superhydrophobicity coating with a hierarchical micro-nanostructure was fabricated on AZ31 magnesium alloy by one-step electroposition. The effects of deposition time on the coating structure, such as morphology, thickness, wettability and phase composition of the coating were studied. The corrosion behavior of the coated samples in 3.5% NaCl solution was also investigated and the corrosion mechanism was discussed. It was found that the deposition time has a visible effect on the morphology, thickness and wettability, which distinctly affects the corrosion resistance of coatings. The corrosion resistance of the coating gradually decreases with the increase in the immersion time due to the disappearance of the air layer which exists on the coating surface. The superhydrophobic surfaces present the temporal limitations to the corrosion resistance of AZ31 magnesium alloy.

  1. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method

    PubMed Central

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-01-01

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533

  2. Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Ge, Wangyao

    Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern emulsion-based RIR-MAPLE is still missing, which increases the difficulty of using rational design to improve the performance of initial RIR-MAPLE devices that have been demonstrated. As a result, it is important to study the fundamentals of emulsion-based RIR-MAPLE in order to provide insight into the long-term prospects for this thin film deposition technique. This dissertation explores the fundamental deposition mechanisms of emulsion-based RIR-MAPLE by considering the effects of the emulsion target composition (namely, the primary solvent, secondary solvent, and surfactant) on the properties of deposited polymer films. The study of primary solvent effects on hydrophobic polymer deposition helps identify the unique method of film formation for emulsion-based RIR-MAPLE, which can be described as cluster-by-cluster deposition of emulsified particles that yields two levels of ordering (i.e., within the clusters and among the clusters). The generality of this film formation mechanism is tested by applying the lessons learned to hydrophilic polymer deposition. Based on these studies, the deposition design rules to achieve smooth polymer films, which are important for different device applications, are identified according to the properties of the polymer. After discussion of the fundamental deposition mechanisms, three applications of emulsion-based RIR-MAPLE, namely thin film deposition of organic solar cells, polymer/nanoparticle hybrid solar cells, and antimicrobial/fouling-release multifunctional films, are studied. The work on organic solar cells identifies the ideal deposition mode for blended films with nanoscale domain sizes, as well as demonstrates the relationships among emulsion target composition, film properties, and corresponding device performance. The studies of polymer/nanoparticle hybrid solar cells demonstrate precise control of colloidal nanoparticle deposition, in which the integrity of nanoparticles is maintained and a distinct film morphology is achieved when co-deposited with polymers. Finally, the application of antimicrobial and fouling-release multifunctional films demonstrates the importance of blended film deposition with nanoscale phase separation, a key feature to achieving reusable bio-films that can kill bacteria when illuminated with ultraviolet light. Thus, this dissertation provides great insight to the fundamentals of emulsion-based RIR-MAPLE, serves as a valuable reference for future development, and paves the pathway for wider adoption of this unique thin film deposition technique, especially for organic solar cells.

  3. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example,more » this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.« less

  4. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.

    PubMed

    Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J

    2016-08-24

    We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive delivery of functional materials.

  5. Do trehalose and dimethyl sulfoxide affect intermembrane forces?

    PubMed

    Pincet, F; Perez, E; Wolfe, J

    1994-12-01

    The sugar trehalose is produced in some organisms that survive dehydration and desiccation, and it preserves the integrity of membranes in model systems exposed to dehydration and freezing. Dimethyl sulfoxide, a solute which permeates membranes, is added to cell suspensions in many protocols for cryopreservation. Using a surface forces apparatus, we measured the very large, short-range repulsion between phosphatidylcholine bilayers in water and in solutions of trehalose, sorbitol, and dimethyl-sulfoxide. To the resolution of the technique, the force-distance curves between bilayers are unchanged by the addition of trehalose or sorbitol in concentrations exceeding 1 kmol.m-3. A relatively small increase in adhesion in the presence of trehalose and sorbitol solutions may be explained by their osmotic effects. The partitioning of trehalose between aqueous solutions and lamellar phases of dioleylphosphatidylcholine was measured gravimetrically. The amount of trehalose that preferentially adsorbs near membrane surfaces is at most small. The presence of dimethyl sulfoxide in water (1:2 by volume) makes very little difference to the short-range interaction between deposited bilayers, but it sometimes perturbs them in ways that vary among experiments: free bilayers and/or fusion of the deposited bilayers were each observed in about one-third of the experiments.

  6. Phase separation in NiCrN coatings induced by N2 addition in the gas phase: A way to generate magnetic thin films by reactive sputtering of a non-magnetic NiCr target

    NASA Astrophysics Data System (ADS)

    Luciu, I.; Duday, D.; Choquet, P.; Perigo, E. A.; Michels, A.; Wirtz, T.

    2016-12-01

    Magnetic coatings are used for a lot of applications from data storage in hard discs, spintronics and sensors. Meanwhile, magnetron sputtering is a process largely used in industry for the deposition of thin films. Unfortunately, deposition of magnetic coatings by magnetron sputtering is a difficult task due to the screening effect of the magnetic target lowering the magnetic field strength of the magnet positioned below the target, which is used to generate and trap ions in the vicinity of the target surface to be sputtered. In this work we present an efficient method to obtain soft magnetic thin films by reactive sputtering of a non-magnetic target. The aim is to recover the magnetic properties of Ni after dealloying of Ni and Cr due to the selective reactivity of Cr with the reactive nitrogen species generated during the deposition process. The effects of nitrogen content on the dealloying and DC magnetron sputtering (DCMS) deposition processes are studied here. The different chemical compositions, microstructures and magnetic properties of DCMS thin films obtained by sputtering in reactive gas mixtures with different ratios of Ar/N2 from a non-magnetic Ni-20Cr target have been determined. XPS data indicate that the increase of nitrogen content in the films has a strong influence on the NiCr phase decomposition into Ni and CrN, leading to ferromagnetic coatings due to the Ni phase. XRD results show that the obtained Ni-CrN films consist of a metallic fcc cubic Ni phase mixed with fcc cubic CrN. The lattice parameter decreases with the N2 content and reaches the theoretical value of the pure fcc-Ni, when Cr is mostly removed from the Ni-Cr phase. Dealloying of Cr from a Ni80-Cr20 solid solution is achieved in our experimental conditions and the deposition of Ni ferromagnetic coatings embedding CrN from a non-magnetic target is possible with reactive DC magnetron sputtering.

  7. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    NASA Technical Reports Server (NTRS)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was likely less saline. The division of marine cyanobacterium P. subcapitatum is associated with periodic deposition and dissolution of CaCO3, the rhythms and intensity of which are dependent on concentrations of both OH(-) and Na(+). Thus, the role of present-day marine cyanobacteria in the global carbonate cycle might be reduced to aggregation and recrystallization of available CaCO3 particles in marine water rather than long-term precipitation and accumulation of CaCO3 deposits. For lower Na(+) concentrations, precipitation of carbonates by cyanobacteria would be even less significant. These results suggest that the lack of calcified cyanobacteria in stromatalite-bearing Precambrian sequences can be explained not only by high dissolved inorganic carbon concentrations but also by lower salinity, as well as possible lower pH compared to present-day oceans.

  8. Improved synthesis of carbon-clad silica stationary phases.

    PubMed

    Haidar Ahmad, Imad A; Carr, Peter W

    2013-12-17

    Previously, we described a novel method for cladding elemental carbon onto the surface of catalytically activated silica by a chemical vapor deposition (CVD) method using hexane as the carbon source and its use as a substitute for carbon-clad zirconia.1,2 In that method, we showed that very close to exactly one uniform monolayer of Al (III) was deposited on the silica by a process analogous to precipitation from homogeneous solution in order to preclude pore blockage. The purpose of the Al(III) monolayer is to activate the surface for subsequent CVD of carbon. In this work, we present an improved procedure for preparing the carbon-clad silica (denoted CCSi) phases along with a new column packing process. The new method yields CCSi phases having better efficiency, peak symmetry, and higher retentivity compared to carbon-clad zirconia. The enhancements were achieved by modifying the original procedure in three ways: First, the kinetics of the deposition of Al(III) were more stringently controlled. Second, the CVD chamber was flushed with a mixture of hydrogen and nitrogen gas during the carbon cladding process to minimize generation of polar sites by oxygen incorporation. Third, the fine particles generated during the CVD process were exhaustively removed by flotation in an appropriate solvent.

  9. Transient phases during fast crystallization of organic thin films from solution

    NASA Astrophysics Data System (ADS)

    Wan, Jing; Li, Yang; Ulbrandt, Jeffrey G.; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam C.; Headrick, Randall L.

    2016-01-01

    We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm2/V-s has been observed.

  10. Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD

    NASA Technical Reports Server (NTRS)

    Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  11. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    PubMed

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  12. Photoelectrochemical performance of W-doped BiVO4 thin-films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Holland, Stephen K.; Dutter, Melissa R.; Lawrence, David J.; Reisner, Barbara A.; DeVore, Thomas C.

    2013-09-01

    The effect of tungsten doping and hydrogen annealing treatments on the photoelectrochemical (PEC) performance of bismuth vanadate (BiVO4) photoanodes for solar water splitting was studied. Thin films of BiVO4 were deposited on ITO-coated glass slides by ultrasonic spray pyrolysis of an aqueous solution containing bismuth nitrate and vanadium oxysulfate. Tungsten doping was achieved by adding either silicotungstic acid (STA) or ammonium metatungstate (AMT) in the aqueous precursor. The 1.7 μm - 2.2 μm thick films exhibited a highly porous microstructure. Undoped films that were reduced at 375 ºC in 3% H2 exhibited the largest photocurrent densities under 0.1 W cm-2 AM1.5 illumination. This performance enhancement was believed to be due to the formation of oxygen vacancies, which are shallow electron donors, in the films. Films doped with 1% or 5% tungsten from either STA or AMT exhibited reduced photoelectrochemical performance and greater sample-to-sample performance variations. Powder X-ray diffraction data of the undoped films indicated that they were comprised primarily of the monoclinic scheelite phase while unidentified phases were also present. Scanning electron microscopy showed slightly different morphology characteristics for the Wdoped films. It is surmised that the addition of W in the deposition process promoted the morphology differences and the formation of different phases, thus reducing the PEC performance of the photoanode samples. Significant PEC performance variability was also observed among films deposited using the described process.

  13. Nanostructured multielement (TiHfZrNbVTa)N coatings before and after implantation of N+ ions (1018 cm-2): Their structure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Bondar, O. V.; Borba, S. O.; Abadias, G.; Konarski, P.; Plotnikov, S. V.; Beresnev, V. M.; Kassenova, L. G.; Drodziel, P.

    2016-10-01

    Multielement high entropy alloy (HEA) nitride (TiHfZrNbVTa)N coatings were deposited by vacuum arc and their structural and mechanical stability after implantation of high doses of N+ ions, 1018 cm-2, were investigated. The crystal structure and phase composition were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy, while depth-resolved nanoindentation tests were used to determine the evolution of hardness and elastic modulus along the implantation depth. XRD patterns show that coatings exhibit a main phase with fcc structure, which preferred orientation varies from (1 1 1) to (2 0 0), depending on the deposition conditions. First-principles calculations reveal that the presence of Nb atoms could favor the formation of solid solution with fcc structure in multielement HEA nitride. TEM results showed that amorphous and nanostructured phases were formed in the implanted coating sub-surface layer (∼100 nm depth). Concentration of nitrogen reached 90 at% in the near-surface layer after implantation, and decreased at higher depth. Nanohardness of the as-deposited coatings varied from 27 to 38 GPa depending on the deposition conditions. Ion implantation led to a significant decrease of the nanohardness to 12 GPa in the implanted region, while it reaches 24 GPa at larger depths. However, the H/E ratio is ⩾0.1 in the sub-surface layer due to N+ implantation, which is expected to have beneficial effect on the wear properties.

  14. Some limitations on the possible composition of the ore-forming fluid

    USGS Publications Warehouse

    Barton, Paul B.

    1956-01-01

    The activity rations of various important anions (S, CO3, SO4, OH, F, and Cl) in hydrothermal solutions at the time of deposition are evaluated using a simple thermodynamic technique. The rations are interpreted in the light of the mineralogy of ore deposits and limites are placed on the variability of each ratio in hydrothermal solutions. All of the calculations are made for 25°C and cautious extrapolation to higher temperatures seems justified; however, additional data for elevated temperatures and pressures are needed before more than approximate values may be assigned to these ratios in the ore-forming fluid. The calculated partial pressure of CO2 in the ore fluid is generally less than one atmosphere, which suggests that a dense CO2 phase cannot be considered an importatn ore fluid for most deposits. The partial pressure of H2S is usually less than 10-4 atmospheres which makes it extremely difficult to defend the heory that metals (other than the easily complexible mercury, arsenic, antimony, and perhaps fols and silver) are transported in quantity as complex sulfide and hydrosulfides. The sulfate to sulfide ration is such that the oxidation potential at the time of deposition is defined by the following equation: Eh (in volts) = 0.22 ± 0.04 - 0.059 pH.

  15. Activation of electrocatalytic properties of a-C films by doping with MoSe x clusters

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. N.; Fominski, V. Y.; Romanov, R. I.; Volosova, M. A.; Fominski, D. V.

    2017-12-01

    Nanocomposite a-C(Mo/MoSe x ) thin films containing amorphous carbon matrix a-C, nano-Mo and MoSe x ≥2 clusters were obtained by pulsed laser co-deposition of carbon and MoSe2. The deposition was carried out at room temperature onto a graphite substrate. Atomic content of the MoSe x≥2 phase did not exceed 25%. The use of a buffer gas at a pressure of 10 Pa allowed to obtain the maximum Se/Mo ratio in the films and to increase the concentration of sp2-hybridized C atoms for high conductivity realization. The formation of MoSe x≥2 cluster inclusions was the essential factor for activation of hydrogen evolution reaction (HER) in 0.5 M H2SO4 aqueous solution. These clusters also promoted cathodic deposition of Pt nanoparticles on the surface of a-C(Mo/MoSe x ) in a H2SO4/KCl solution when a Pt anode was used as a source of Pt. Hybrid Pt/a-C(Mo/MoSe x ) thin-film coatings with a low Pt loading (~6 μg/cm2) exhibit excellent HER property, which noticeably exceeds that of relatively thick Pt coating prepared on a graphite substrate by pulsed laser deposition.

  16. Low temperature processed complementary metal oxide semiconductor (CMOS) device by oxidation effect from capping layer.

    PubMed

    Wang, Zhenwei; Al-Jawhari, Hala A; Nayak, Pradipta K; Caraveo-Frescas, J A; Wei, Nini; Hedhili, M N; Alshareef, H N

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  17. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  18. Metastable phase equilibria in co-deposited Ni(1-x)Zr(x) thin films

    NASA Astrophysics Data System (ADS)

    Rubin, J. B.; Schwarz, R. B.

    We determine the glass forming range (GFR) of co-deposited Ni(1-x)Zr(x) (0 less than x less than 1) thin films by measuring their electrical resistance during in situ constant-heating-rate anneals. The measured GFR is continuous for 0.10 less than x less than 0.87. We calculate the GFR of Ni-Zr melts as a function of composition and cooling rate using homogeneous nucleation theory and a published CALPHAD-type thermodynamic modeling of the equilibrium phase diagram. Assuming that the main competition to the retention of the amorphous structure during the cooling of the liquid comes from the partitionless crystallization of the terminal solid solutions, we calculate that for dT/dt = 10(exp 12) K/s, the GFR extends to x = 0.05 and x = 0.96. Better agreement with the measured values is obtained assuming a lower effective cooling rate during the condensation of the films.

  19. Thermoinduced laser-assisted deposition of molybdenum from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kochemirovsky, Vladimir V.; Logunov, Lev S.; Zhigley, Elvira S.; Baranauskaite, Valeriia

    2015-05-01

    Local molybdenum deposit obtainment is promising for micro thermocouples creation on dielectric surfaces. This paper is dedicated to development of method of laser-induced molybdenum deposition from water-based solution of inorganic salt on Sitall st-50 and glass dielectric substrates, as well as research of solution composition, pH and substrate optical properties influence on result of laser-induced molybdenum deposition from solution. It was shown that depending on dielectric substrate type, as a result of laser-induced deposition metallic molybdenum or molybdenum dioxide deposit forms: molybdenum dioxide deposits in case of optically clear substrate and metallic molybdenum deposits in case of opaque glass-ceramics. While modelling interim case via using clouded glass, mixture of molybdenum and its oxide was successfully obtained.

  20. Spectroscopic characterization of Greek dolomitic marble surface interacted with uranium and thorium in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Godelitsas, A.; Kokkoris, M.; Chatzitheodoridis, E.; Misaelides, P.

    2008-05-01

    The surface of a typical Greek (Thassian) dolomitic marble was studied after interaction with U- and Th-containing aqueous solutions (1000 mg/L, free-drift experiments for 1 week at atmospheric PCO2), using 12C-RBS and Laser μ-Raman spectroscopy. Powder-XRD and SEM-EDS were also applied to investigate the phases deposited on the surface of the interacted samples. The obtained results indicated a considerable removal of U from the aqueous medium mainly due to massive surface precipitation of amorphous UO2-hydroxide phases forming a relatively thick (μm-sized) coating on the carbonate substrate. The interaction of Th with dolomitic marble surface is also intense leading to a formation of an amorphous Th-hydroxide layer of similar thickness but of significantly lower elemental atomic proportion.

  1. Crystalline phase transformation of colloidal cadmium sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Ghali, M.; Eissa, A. M.; Mosaad, M. M.

    2017-03-01

    In this paper, we give a microscopic view concerning influence of the growth conditions on the physical properties of nanocrystals (NCs) thin films made of CdS, prepared using chemical bath deposition CBD technique. We show a crystalline phase transformation of CdS NCs from hexagonal wurtzite (W) structure to cubic zincblende (ZB) when the growth conditions change, particularly the solution pH values. This effect was confirmed using X-ray diffraction (XRD), transmission electron microscopy (TEM), optical absorption and photoluminescence (PL) measurements. The optical absorption spectra allow calculation of the bandgap value, Eg, where significant increase ˜200 meV in the CdS bandgap when transforming from Hexagonal to Cubic phase was found.

  2. Analysis of Ag(I) Biocide in Water Samples Using Anodic Stripping Voltammetry with a Boron-Doped Diamond Disk Electrode.

    PubMed

    Maldonado, Vanessa Y; Espinoza-Montero, Patricio J; Rusinek, Cory A; Swain, Greg M

    2018-06-05

    The electroanalytical performance of a new commercial boron-doped diamond disk and a traditional nanocrystalline thin-film electrode were compared for the anodic stripping voltammetric determination of Ag(I). The diamond disk electrode is more flexible than the planar film as the former is compatible with most electrochemical cell designs including those incorporating magnetic stirring. Additionally, mechanical polishing and surface cleaning are simpler to execute. Differential pulse anodic stripping voltammetry (DPASV) was used to detect Ag(I) in standard solutions after optimization of the deposition potential, deposition time and scan rate. The optimized conditions were used to determine the concentration of Ag(I) in a NASA simulated potable water sample and a NIST standard reference solution. The electrochemical results were validated by ICP-OES measurements of the same solutions. The detection figures of merit for the disk electrode were as good or superior to those for the thin-film electrode. Detection limits were ≤5 μg L -1 (S/N = 3) for a 120 s deposition period, and response variabilities were <5% RSD. The polished disk electrode presented a more limited linear dynamic range presumably because of the reduced surface area available for metal phase formation. The concentrations of Ag(I) in the two water samples, as determined by DPASV, were in good agreement with the concentrations determined by ICP-OES.

  3. Influence of collector surface composition and water chemistry on the deposition of cerium dioxide nanoparticles: QCM-D and column experiment approaches.

    PubMed

    Liu, Xuyang; Chen, Gexin; Su, Chunming

    2012-06-19

    The deposition behavior of cerium dioxide (CeO(2)) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied in quartz crystal microbalance with dissipation (QCM-D) to examine the effect of these mineral phases on CeO(2) deposition in NaCl solution (1-200 mM). Frequency and dissipation shift followed the order: silica > iron oxide > alumina in 10 mM NaCl at pH 4.0. No significant deposition was observed at pH 6.0 and 8.5 on any of the tested sensors. However, ≥ 94.3% of CeO(2) NPs deposited onto Ottawa sand in columns in 10 mM NaCl at pH 6.0 and 8.5. The inconsistency in the different experimental approaches can be mainly attributed to NP aggregation, surface heterogeneity of Ottawa sand, and flow geometry. In QCM-D experiments, the deposition kinetics was found to be qualitatively consistent with the predictions based on the classical colloidal stability theory. The presence of low levels (1-6 mg/L) of Suwannee River humic acid, fulvic acid, alginate, citric acid, and carboxymethyl cellulose greatly enhanced the stability and mobility of CeO(2) NPs in 1 mM NaCl at pH 6.5. The poor correlation between the transport behavior and electrophoretic mobility of CeO(2) NPs implies that the electrosteric effect of OM was involved.

  4. Chemical vapor deposition of yttria-stabilized zirconia as a thermal barrier coating for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Varanasi, Venu Gopal

    The gas turbine engine uses an yttria-stabilized zirconia (YSZ) coating to provide thermal insulation for its turbine blades. This YSZ coating must be tetragonal in crystal structure, columnar in microstructure, and be 100--250 mum thick to provide for adequate protection for the turbine blades in the severe engine environment. Currently, YSZ coatings are fabricated by electron-beam physical vapor deposition (EB-PVD), but this fabrication method is cost intensive. Chemical vapor deposition (CVD) is a more commercially viable processing method and a possible alternative to EB-PVD. The deposition of tetragonal YSZ from gaseous metal and oxidation sources were studied. A chemical equilibrium analysis modeled the feasibility of depositing tetragonal YSZ for both chloride CVD (Zr-Y-C-O-Cl-H-Inert system) and metal-organic CVD (MOCVD) (Zr-Y-C-O-H system). Pure thermochemical properties and the assessed YSZ phase diagram were used in this analysis. Using the molar input of metals ((nY + nZr) and ( nY/(nY + nZr ) = 0.08)) as bases, equilibrium calculations showed that tetragonal YSZ formation was feasible. Tetragonal YSZ formation was feasible with high oxygen content (nO/(nY + nZr) > 8) and high temperature (T > 100°C) in the case of chloride CVD (Zr-Y-C-O-Cl-H-Inert). Tetragonal YSZ formation was feasible with high oxygen content (nO/( nY + nZr) > 5) and high temperature (T > 950°C) in the case of MOCVD (Zr-Y-C-O-H). Although solid carbon formation did not appear in chloride CVD, additional oxygen (nO/( nY + nZr) > 32) and low hydrogen content relative to carbon (nH/nC < 2) were required to avoid solid carbon formation in MOCVD. Coatings were deposited using a set of base conditions derived from the chemical equilibrium analysis. In chloride CVD, YCl3 was not included because of its low vapor pressure, thus, ZrCl4 was oxidized with the H2-CO2 gas mixture. Monoclinic ZrO2 coatings were deposited at the thermochemically optimized conditions (n O/(nY + nZr) > 8, T > 1004°C) with approximately 5.5 mum h-1 growth rate. In metal-organic CVD (MOCVD), liquid precursor solutions of Y- and Zr-beta-diketonate and Y- and Zr-n-butoxide precursors were used as the metal sources and O2 gas was used as the oxidation source. Using the Y- and Zr-beta-diketonate liquid precursor solution, tetragonal YSZ was deposited with a layered microstructure apparent and a maximum growth rate of approximately 14 mum h-1 (activation energy (E a) of 50.9 +/- 4.3 kJ mol-1). The growth rate (approximately 43 mum h-1 with Ea = 53.8 +/- 7.9 kJ mol-1) was improved using Y- and Zr- n-butoxide liquid precursor solutions, and the microstructure was columnar. Yet, two-phase deposition of monoclinic ZrO2 and tetragonal YSZ occurred. Results of electron-probe micro-analysis showed that the nY/(nY + nZr ) ratio was less than 45% of the nY/( nY + nZr) ratio in the liquid precursor solution.

  5. Composition of incubation solution impacts in vitro protein uptake to silicone hydrogel contact lenses

    PubMed Central

    Heynen, Miriam; Luensmann, Doerte; Jones, Lyndon

    2012-01-01

    Purpose To determine the impact of incubation solution composition on protein deposition to silicone hydrogel (SH) contact lenses using a simplistic and a complex model of the tear film. Methods Three SH materials – senofilcon A (SA), lotrafilcon B (LB), and balafilcon A (BA) – were incubated in two different solutions; Solution A was a simplistic augmented buffered saline solution containing a single protein, whereas Solution B was a complex artificial tear solution (ATS), containing the augmented buffered saline solution in addition to proteins, lipids, and mucins (pH=7.4). The proteins of interest (lysozyme, lactoferrin, albumin) were radiolabeled with Iodine-125 (2% protein of interest) and the accumulation of the conjugated protein to the lens materials was determined after 1, 7, 14, and 28 days of incubation. Protein deposition was measured using a gamma counter and the raw data were translated into absolute amounts (µg/lens) via extrapolation from standards. Results After 28 days, lysozyme uptake was significantly lower on BA lenses when incubated in Solution A (33.7 μg) compared to Solution B (56.2 μg), p<0.001. SA lenses deposited similar amounts of lysozyme when incubated in either Solution A (2.6 μg) or Solution B (4.1 μg), p>0.05. LB lenses also deposited similar amounts of lysozyme for both solutions (Solution A: 5.0 μg, Solution B: 4.7 μg, p>0.05). After 28 days, BA lenses accumulated approximately twice the amount of lactoferrin than the other lens materials, with 30.3 μg depositing when exposed to Solution A and 22.0 μg with Solution B. The difference between the two solutions was statistically significant (p<0.001). LB materials deposited significantly greater amounts of lactoferrin when incubated in Solution A (16.6 μg) compared to Solution B (10.3 μg), p<0.001. Similar amounts of lactoferrin were accumulated onto SA lenses regardless of incubation solution composition (Solution A: 8.2 μg, Solution B: 11.2 μg, p>0.05). After 28 days, albumin deposition onto BA lenses was significantly greater when lenses were incubated in Solution B (1.7 μg) compared to Solution A (0.9 μg), p<0.001. Similar amounts of albumin were deposited on SA lenses when incubated in either solution (0.6 μg versus 0.7 μg, p>0.05). LB lenses incubated in Solution A deposited more albumin compared to Solution B (0.9 μg versus 0.6 μg), p=0.003. Discussion Protein deposition onto SH materials varied when contact lenses were incubated in either a complex ATS compared to a single protein solution. More lysozyme accumulated onto BA lenses incubated in a complex analog of the human tear film, whereas lactoferrin deposited onto SA lenses independent of incubation solution composition. To better mimic the ex vivo environment, future studies should use more appropriate analogs of the tear film. PMID:22355245

  6. The solvation structure of Mg ions in dichloro complex solutions from first-principles molecular dynamics and simulated X-ray absorption spectra.

    PubMed

    Wan, Liwen F; Prendergast, David

    2014-10-15

    The knowledge of Mg solvation structure in the electrolyte is requisite to understand the transport behavior of Mg ions and their dissolution/deposition mechanism at electrolyte/electrode interfaces. In the first established rechargeable Mg-ion battery system [D. Aurbach et al. Nature 2000, 407, 724], the electrolyte is of the dichloro complex (DCC) solution family, Mg(AlCl2BuEt)2/THF, resulting from the reaction of Bu2Mg and EtAlCl2 with a molar ratio of 1:2. There is disagreement in the literature regarding the exact solvation structure of Mg ions in such solutions, i.e., whether Mg(2+) is tetra- or hexacoordinated by a combination of Cl(-) and THF. In this work, theoretical insight into the solvation complexes present is provided based on first-principles molecular dynamics simulations (FPMD). Both Mg monomer and dimer structures are considered in both neutral and positively charged states. We found that, at room temperature, the Mg(2+) ion tends to be tetracoordinated in the THF solution phase instead of hexacoordinated, which is the predominant solid-phase coordination. Simulating the X-ray absorption spectra (XAS) at the Mg K-edge by sampling our FPMD trajectories, our predicted solvation structure can be readily compared with experimental measurements. It is found that when changing from tetra- to hexacoordination, the onset of X-ray absorption should exhibit at least a 1 eV blue shift. We propose that this energy shift can be used to monitor changes in the Mg solvation sphere as it migrates through the electrolyte to electrolyte/electrode interfaces and to elucidate the mechanism of Mg dissolution/deposition.

  7. Electrical properties and x-ray photoelectron spectroscopy studies of Bi(Zn0.5Ti0.5)O3 doped Pb(Zr0.4Ti0.6)O3 thin films

    NASA Astrophysics Data System (ADS)

    Tang, M. H.; Zhang, J.; Xu, X. L.; Funakubo, H.; Sugiyama, Y.; Ishiwara, H.; Li, J.

    2010-10-01

    (1-x)Pb(Zr0.4,Ti0.6)O3-(x)Bi(Zn0.5,Ti0.5)O3 (PZT-BZT) (x =0, 0.03, 0.05, 0.08, and 0.1) films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by chemical solution deposition using spin-coating. All samples showed highly (111) oriented perovskite phase and no other phase was observed. The ferroelectric properties of PZT-BZT films were systematically investigated as a function of the content x of the BZT solution. It is found that BZT doping in PZT films could greatly enhance the remnant polarization (Pr), as well as improve the fatigue property. In a 3 wt % BZT-doped PZT film, the 2Pr and the coercive field (Ec) are 90 μC/cm2 and 95 kV/cm at 10 kHz, respectively, at an electric field of 500 kV/cm, and the leakage current density is less than 1×10-7 A/cm2. The impact of BZT doping on the structure of PZT has been investigated by x-ray photoelectron spectroscopy.

  8. Synthesis and Characterization of Graphene/ITO Nanoparticle Hybrid Transparent Conducting Electrode

    NASA Astrophysics Data System (ADS)

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2018-03-01

    The combination of graphene with conductive nanoparticles, forming graphene-nanoparticle hybrid materials, offers a number of excellent properties for advanced engineering applications. A novel and simple method was developed to deposit 10 wt% tin-doped indium tin oxide (ITO) nanoparticles on graphene. The method involved a combination of a solution-based environmentally friendly electroless deposition approach and subsequent vacuum annealing. A stable organic-free solution of ITO was prepared from economical salts of In(NO3) 3 · H2O and SnCl4. The obtained ITO nanostructure exhibited a unique architecture, with uniformly dispersed 25-35 nm size ITO nanoparticles, containing only the crystallized In2O3 phase. The synthesized ITO nanoparticles-graphene hybrid exhibited very good and reproducible optical transparency in the visible range (more than 85%) and a 28.2% improvement in electrical conductivity relative to graphene synthesized by chemical vapor deposition. It was observed that the ITO nanoparticles affect the position of the Raman signal of graphene, in which the D, G, and 2D peaks were redshifted by 5.65, 5.69, and 9.74 cm-1, respectively, and the annealing conditions had no significant effect on the Raman signatures of graphene. [Figure not available: see fulltext.

  9. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production.

    PubMed

    Jaramillo, Thomas F; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Choi, Kyoung-Shin; Stucky, Galen D; McFarland, Eric W

    2005-01-01

    High-throughput electrochemical methods have been developed for the investigation of Zn1-xCo(x)O films for photoelectrochemical hydrogen production from water. A library of 120 samples containing 27 different compositions (0

  10. Crystalline desiccation patterns and film break up from evaporating drops on hydrophobic oxide surfaces

    NASA Astrophysics Data System (ADS)

    McBride, Samantha; Dash, Susmita; Khan, Sami; Varanasi, Kripa

    2017-11-01

    Solute-laden sessile drops evaporating on a substrate will often force crystallization of the solute at the triple phase contact line between the drop, substrate, and air in an effect similar to the ``coffee-ring'' deposition of particles from a particle-laden drop. We report new observations of ring-shaped desiccation patterns of gypsum crystals on hydrophobic oxide substrates; ceria, erbia, and silica. These surfaces have similar contact angles ( 105 degrees), and evaporation of sessile drops proceeds at the same rate and without contact angle hysteresis on all three substrates. However, despite the apparent similarity, the patterns of crystal deposits exhibit large differences across the substrates. The supersaturation and elapsed time at the onset of crystallization also varied across substrates, despite overall evaporation rates being identical. The differences in patterns can be explained in light of the position and morphology of the crystals just prior to completion of evaporation when the sessile drop has transitioned to a thin film spread over the deposit area. Break-up of this film occurs very differently on the different surfaces, and is simultaneously influenced by existing crystals while also influencing final crystalline patterns. This work was supported by the NSF GRFP.

  11. Sb-Te Phase-change Materials under Nanoscale Confinement

    NASA Astrophysics Data System (ADS)

    Ihalawela, Chandrasiri A.

    Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with multilevel cells could be promising to achieve high data densities. However the size reduction may result in changes in material properties. If phase transition properties of the materials are also tunable with respect to the size, then more attractive solutions could be realized. So we have reported the size effect on crystallization temperature of prototypical Sb2Te3 nanowires synthesized in AAO templates. Moreover, we have found that the reduction of nanowire size can elevate the crystallization temperature, which is crucial for data retention in PCM technology. Energy dispersive X-ray spectroscopy, X-ray diffraction, electron microscopy and electrical resistivity measurements were used to characterize the composition, structure, morphology, and phase transition properties of the materials. We believe that this dissertation will provide new insights into the size effect of PC materials in addition to the controllable synthesis of PC thin films and nanowires through the novel electrochemical method.

  12. Microstructural Evolution in Solution Heat Treatment of Gas-Atomized Al Alloy (7075) Powder for Cold Spray

    NASA Astrophysics Data System (ADS)

    Sabard, A.; de Villiers Lovelock, H. L.; Hussain, T.

    2018-01-01

    Cold gas dynamic spray is being explored as a repair technique for high-value metallic components, given its potential to produce pore and oxide-free deposits of between several micrometers and several millimeters thick with good levels of adhesion and mechanical strength. However, feedstock powders for cold spray experience rapid solidification if manufactured by gas atomization and hence can exhibit non-equilibrium microstructures and localized segregation of alloying elements. Here, we used sealed quartz tube solution heat treatment of a precipitation hardenable 7075 aluminum alloy feedstock to yield a consistent and homogeneous powder phase composition and microstructure prior to cold spraying, aiming for a more controllable heat treatment response of the cold spray deposits. It was shown that the dendritic microstructure and solute segregation in the gas-atomized powders were altered, such that the heat-treated powder exhibits a homogeneous distribution of solute atoms. Micro-indentation testing revealed that the heat-treated powder exhibited a mean hardness decrease of nearly 25% compared to the as-received powder. Deformation of the powder particles was enhanced by heat treatment, resulting in an improved coating with higher thickness ( 300 μm compared to 40 μm for untreated feedstock). Improved particle-substrate bonding was evidenced by formation of jets at the particle boundaries.

  13. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se; Grehl, Thomas; Brongersma, Hidde H.

    2016-03-15

    A broad and expanding range of materials can be produced by atomic layer deposition at relatively low temperatures, including both oxides and metals. For many applications of interest, however, it is desirable to grow more tailored and complex materials such as semiconductors with a certain doping, mixed oxides, and metallic alloys. How well such mixed materials can be accomplished with atomic layer deposition requires knowledge of the conditions under which the resulting films will be mixed, solid solutions, or laminated. The growth and lamination of zinc oxide and tin oxide is studied here by means of the extremely surface sensitivemore » technique of low energy ion scattering, combined with bulk composition and thickness determination, and x-ray diffraction. At the low temperatures used for deposition (150 °C), there is little evidence for atomic scale mixing even with the smallest possible bilayer period, and instead a morphology with small ZnO inclusions in a SnO{sub x} matrix is deduced. Postannealing of such laminates above 400 °C however produces a stable surface phase with a 30% increased density. From the surface stoichiometry, this is likely the inverted spinel of zinc stannate, Zn{sub 2}SnO{sub 4}. Annealing to 800 °C results in films containing crystalline Zn{sub 2}SnO{sub 4}, or multilayered films of crystalline ZnO, Zn{sub 2}SnO{sub 4}, and SnO{sub 2} phases, depending on the bilayer period.« less

  14. Sol-gel derived ceramic electrolyte films on porous substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueper, T.W.

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied tomore » porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.« less

  15. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2015-03-01

    In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.

  16. Asymmetric, compressive, SiGe epilayers on Si grown by lateral liquid-phase epitaxy utilizing a distinction between dislocation nucleation and glide critical thicknesses

    NASA Astrophysics Data System (ADS)

    O'Reilly, Andrew J.; Quitoriano, Nathaniel

    2018-01-01

    Uniaxially strained Si1-xGex channels have been proposed as a solution for high mobility channels in next-generation MOSFETS to ensure continued device improvement as the benefits from further miniaturisation are diminishing. Previously proposed techniques to deposit uniaxially strained Si1-xGex epilayers on Si (0 0 1) substrates require multiple deposition steps and only yielded thin strips of uniaxially strained films. A lateral liquid-phase epitaxy (LLPE) technique was developed to deposit a blanket epilayer of asymmetrically strained Si97.4Ge2.6 on Si in a single step, where the epilayer was fully strained in the growth direction and 31% strain-relaxed in the orthogonal direction. The LLPE technique promoted the glide of misfit dislocations, which nucleated in a region with an orthogonal misfit dislocation network, into a region where the dislocation nucleation was inhibited. This created an array of parallel misfit dislocations which were the source of the asymmetric strain. By observing the thicknesses at which the dislocation network transitions from orthogonal to parallel and at which point dislocation glide is exhausted, the separate critical thicknesses for dislocation nucleation and dislocation glide can be determined.

  17. Structural and optical properties of Na-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  18. Microstructure characterization of hypereutectoid aluminium bronze composite coating

    NASA Astrophysics Data System (ADS)

    Kucita, P.; Wang, S. C.; Li, W. S.; Cook, R. B.; Starink, M. J.

    2015-10-01

    Hypereutectoid aluminium bronze coating was deposited onto an E.N. 10503 steel substrate using plasma transferred arc welding (PTA). Microstructure characterisation of the coating and a section near the steel substrate joint was carried out using SEM, EBSD, EDS in conjunction with XRD and depth-sensing nano-indentation. The constituent phases in the coating were identified as: martensitic Cu3Al β1' phase, solid solution of Al in Cu α phase and the intermetallic Fe3Al κ1 phase. The region near the steel substrate was characterised by high hardness, large grains and presence of Cu precipitates. No cracks were observed in this region. The coating has high hardness of 4.9GPa and Young's modulus of 121.7GPa. This is attributed to homogeneous distribution of sub microns size Fe3Al intermetallic phase. The implications of the coating to the engineering application of sheet metal forming are discussed.

  19. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John P. Selegue

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitoredmore » the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.« less

  20. Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals.

    PubMed

    Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B

    2014-01-28

    We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.

  1. Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface

    NASA Astrophysics Data System (ADS)

    Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung

    2018-04-01

    We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.

  2. Overview of the amorphous precursor phase strategy in biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Mahamid, Julia; Politi, Yael; Ma, Yurong; Addadi, Lia

    2009-06-01

    It was assumed for a long time that organisms produce minerals directly from a saturated solution. A few exceptions were known, including the well documented mineralized teeth of the chiton. In 1997 it was demon-strated that sea urchin larvae form their calcitic spicules by first depositing a highly unstable mineral phase called amorphous calcium carbonate. This strategy has since been shown to be used by animals from other phyla and for both aragonite and calcite. Recent evidence shows that vertebrate bone mineral may also be formed via a precursor phase of amorphous calcium carbonate. This strategy thus appears to be widespread. The challenge now is to understand the mechanisms by which these unstable phases are initially formed, how they are temporarily stabilized and how they are destabilized and transform into a crystalline mature product.

  3. Surface mediated assembly of small, metastable gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities. Electronic supplementary information (ESI) available: Further details on stored plating solution preparation, film characterization, solution processing, MOF crystal FIB reconstruction and stability are available. See DOI: 10.1039/c3nr01708g

  4. Nanoparticle motion on the surface of drying droplets

    NASA Astrophysics Data System (ADS)

    Zhao, Mingfei; Yong, Xin

    2018-03-01

    Advances in solution-based printing and surface patterning techniques for additive manufacturing demand a clear understanding of particle dynamics in drying colloidal droplets and its relationship with deposit structure. Although the evaporation-driven deposition has been studied thoroughly for the particles dispersed in the bulk of the droplet, few investigations have focused on the particles strongly adsorbed to the droplet surface. We modeled the assembly and deposition of the surface-active particles in a drying sessile droplet with a pinned contact line by the multiphase lattice Boltzmann-Brownian dynamics method. The particle trajectory and its area density profile characterize the assembly dynamics and deposition pattern development during evaporation. While the bulk-dispersed particles continuously move to the contact line, forming the typical "coffee-ring" deposit, the interface-bound particles migrate first toward the apex and then to the contact line as the droplet dries out. To understand this unexpected behavior, we resolve the droplet velocity field both in the bulk and within the interfacial region. The simulation results agree well with the analytical solution for the Stokes flow inside an evaporating droplet. At different stages of evaporation, our study reveals that the competition between the tangential surface flow and the downward motion of the evaporating liquid-vapor interface governs the dynamics of the interface-bound particles. In particular, the interface displacement contributes to the particle motion toward the droplet apex in a short phase, while the outward advective flow prevails at the late stage of drying and carries the particles to the contact line. The final deposit of the surface-adsorbed particles exhibits a density enhancement at the center, in addition to a coffee ring. Despite its small influence on the final deposit in the present study, the distinct dynamics of surface-active particles due to the interfacial confinement could offer a new route to deposition control when combined with Marangoni effects.

  5. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    NASA Astrophysics Data System (ADS)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  6. Effect of pH of spray solution on the electrical properties of cadmium oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodlur, R. M.; Gunnagol, Raghu M.; Rabinal, M. K., E-mail: mkrabinal@yahoo.com

    2015-06-24

    Highly conducting transparent cadmium oxide thin films were prepared by conventional spray pyrolysis technique on glass at 375 °C substrate temperature. The pH of the spray solution was varied by adding ammonia/hydrochloric acid in the spray solution. The XRD pattern showed cubic phase. A lowest resistivity of 9.9 × 10{sup −4} Ω cm (with carrier concentration (n) = 5.1 × 10{sup 20} cm{sup −3}, mobility (µ)=12.4 cm{sup 2}/Vs) is observed for pH ∼12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70 %. Thus, without any doping, the electricalmore » conductivity of CdO films could be easily tuned by simply varying the pH of spray solution without compromising the transparency and keeping the other deposition parameters fixed.« less

  7. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  8. The Effects of Postprocessing on Physical and Solution Deposition of Complex Oxide Thin Films for Tunable Applications

    DTIC Science & Technology

    2016-02-01

    BST barium strontium titanate εr dielectric constant MIM metal /insulator/ metal MOSD metal organic spin deposition PtSi platinum silicide RF...improvement. In addition, BST films processed via solution metal organic spin deposition, which yield a lower dielectric range of 150–335, also...layers. This report details how we used solution and physical deposition to fabricate thin films via radio frequency (RF) sputtering and metal

  9. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    USGS Publications Warehouse

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  10. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  11. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1984-01-01

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  12. GaN High Power Electronics

    DTIC Science & Technology

    2011-02-01

    ARL) does not yet match the best work being done in Japan, the reasons for this have been identified as the relatively large carbon background...hand, SiC is a compound with a fixed composition. Second phases are formed, as opposed to solid solutions, when the group IV elements, carbon (C...Si, or germanium (Ge), are added to it. In order to form a 2DEG, a dielectric, usually silicon dioxide (SiO2), has to be grown or deposited on the

  13. CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge S.; Garces, Hector F.; Ortiz, Angel L.; Dwivedi, Gopal; Sampath, Sanjay; Padture, Nitin P.

    2014-04-01

    The higher operating temperatures in gas-turbine engines made possible by thermal barrier coatings (TBCs) are engendering a new problem: environmentally ingested airborne silicate particles (sand, ash) melt on the hot TBC surfaces and form calcium-magnesium-alumino-silicate (CMAS) glass deposits. The molten CMAS glass degrades the TBCs, leading to their premature failure. Here, we demonstrate the use of a commercially manufactured feedstock powder, in conjunction with air plasma spray process, to deposit CMAS-resistant yttria-stabilized zirconia-based TBCs containing Al3+ and Ti4+ in solid solution. Results from the characterization of these new TBCs and CMAS/TBCs interaction experiments are presented. The CMAS mitigation mechanisms in these new TBCs involve the crystallization of the anorthite phase. Raman microscopy is used to generate large area maps of the anorthite phase in the CMAS-interacted TBCs demonstrating the potential usefulness of this method for studying CMAS/TBCs interactions. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context, the versatility, ease of processing, and low cost offered by the process demonstrated here could benefit the development of these new CMAS-resistant TBCs.

  14. Charge patterns as templates for the assembly of layered biomolecular structures.

    PubMed

    Naujoks, Nicola; Stemmer, Andreas

    2006-08-01

    Electric fields are used to guide the assembly of biomolecules in predefined geometric patterns on solid substrates. Local surface charges serve as templates to selectively position proteins on thin-film polymeric electret layers, thereby creating a basis for site-directed layered assembly of biomolecular structures. Charge patterns are created using the lithographic capabilities of an atomic force microscope, namely by applying voltage pulses between a conductive tip and the sample. Samples consist of a poly(methyl methacrylate) layer on a p-doped silicon support. Subsequently, the sample is developed in a water-in-oil emulsion, consisting of a dispersed aqueous phase containing biotin-modified immunoglobulinG molecules, and a continuous nonpolar, insulating oil phase. The electrostatic fields cause a net force of (di)electrophoretic nature on the droplet, thereby guiding the proteins to the predefined locations. Due to the functionalization of the immunoglobulinG molecules with biotin-groups, these patterns can now be used to initiate the localized layer-by-layer assembly of biomolecules based on the avidin-biotin mechanism. By binding 40 nm sized biotin-labelled beads to the predefined locations via a streptavidin linker, we verify the functionality of the previously deposited immunoglobulinG-biotin. All assembly steps following the initial deposition of the immunoglobulinG from emulsion can conveniently be conducted in aqueous solutions. Results show that pattern definition is maintained after immersion into aqueous solution.

  15. Role of red cells and plasma composition on blood sessile droplet evaporation

    NASA Astrophysics Data System (ADS)

    Lanotte, Luca; Laux, Didier; Charlot, Benoît; Abkarian, Manouk

    2017-11-01

    The morphology of dried blood droplets derives from the deposition of red cells, the main components of their solute phase. Up to now, evaporation-induced convective flows were supposed to be at the base of red cell distribution in blood samples. Here, we present a direct visualization by videomicroscopy of the internal dynamics in desiccating blood droplets, focusing on the role of cell concentration and plasma composition. We show that in diluted suspensions, the convection is promoted by the rich molecular composition of plasma, whereas it is replaced by an outward red blood cell displacement front at higher hematocrits. We also evaluate by ultrasounds the effect of red cell deposition on the temporal evolution of sample rigidity and adhesiveness.

  16. Synthesis of BiFeO3 thin films by chemical solution deposition - Structural and magnetic studies

    NASA Astrophysics Data System (ADS)

    Angappane, S.; Kambhala, Nagaiah

    2012-06-01

    BiFeO3 thin films were deposited on Si (100) substrates by chemical solution deposition. A precursor solution of bismuth acetate and iron acetylacetonate dissolved in distilled water and acetic acid was spin coated on to silicon substrates at ambient conditions, followed by drying and annealing at 650 °C. The films were characterized by XRD and FESEM to study structural properties and morphology. The magnetic properties studied by SQUID magnetometer shows the ferromagnetic nature of the chemical solution deposited BiFeO3 films which are crucial for low cost device applications.

  17. Fractionation of silver isotopes in native silver explained by redox reactions

    NASA Astrophysics Data System (ADS)

    Mathur, Ryan; Arribas, Antonio; Megaw, Peter; Wilson, Marc; Stroup, Steven; Meyer-Arrivillaga, Danilo; Arribas, Isabel

    2018-03-01

    Scant data exist on the silver isotope composition of native silver specimens because of the relative newness of the technique. This study increases the published dataset by an order of magnitude and presents 80 silver new isotope analyses from native silver originating from a diverse set of worldwide deposits (8 deposit types, 33 mining districts in five continents). The measured isotopic range (defined as δ109Ag/107Ag in per mil units compared to NIST 978 Ag isotope standard) is +2.1 to -0.86‰ (2σ errors less than 0.015); with no apparent systematic correlations to date with deposit type or even within districts. Importantly, the data centering on 0‰ all come from high temperature hypogene/primary deposits whereas flanking and overlapping data represent secondary supergene deposits. To investigate the causes for the more fractionated values, several laboratory experiments involving oxidation of silver from natural specimens of Ag-rich sulfides and precipitation and adsorption of silver onto reagent grade MnO2 and FeOOH were conducted. Simple leach experiments demonstrate little Ag isotope fractionation occurred through oxidation of Ag from native Ag (Δsolution-native109Ag = 0.12‰). In contrast, significant fractionation occurred through precipitation of native Ag onto MnO2 (up to Δsolution-MnO2109Ag = 0.68‰, or 0.3amu). Adsorption of silver onto the MnO2 and FeOOH did not produce as large fractionation as precipitation (mean value of Δsolution-MnO2109Ag = 0.10‰). The most likely cause for the isotopic variations seen relates to redox effects such as the reduction of silver from Ag (I) to Ag° that occurs during precipitation onto the mineral surface. Since many Ag deposits have halos dominated by MnO2 and FeOOH phases, potential may exist for the silver isotope composition of ores and surrounding geochemical haloes to be used to better understand ore genesis and potential exploration applications. Aside from the Mn oxides, surface fluid silver isotope compositions might provide information about geochemical reactions relevant to both environmental and hydrometallurgical applications.

  18. Do Vertical Gradients in Soil Environmental Conditions Regulate Exudation Rates from Peatland Vegetation?

    NASA Astrophysics Data System (ADS)

    Proctor, C.; He, Y.

    2017-12-01

    Deposition of carbon belowground via the root exudation pathway is the net of root-borne efflux and influx processes. For select exudates, root have a remarkable ability to actively recapture lost compounds, suggesting that influx mechanisms regulate exudation. However, roots are not the sole sink for root effluxed carbon. Roots compete with solute sorption and microbial uptake, whom are regulated by a unique set of soil environmental conditions. Peatland soil features stark vertical gradients in their physical, chemical, biological, and hydrological properties, which has downstream implications for the relative competitive ability of each actor in root-soil-microbial interactions. This study developed a single root exudate model using the Barber-Cushman approach to examine the radial accumulation of exudates in simulated peatland soil with vertical gradients. The model simulated efflux, influx, solute diffusion, solute mineralization and solid phase sorption mechanisms as depth dependent on bulk density, porosity, tortuosity, buffer power, temperature, and microbial biomass. Deeper peat soil reduced the porosity that permits solute transport, increased tortuosity which lowered the effective diffusion rate, increased solute-solid sorption, and reduced microbial mineralization of effluxed compounds. Slower mineralization rates were partially juxtaposed by increases in sorption, albeit the net removal of effluxed compounds was lower, leading to a larger amount of exudates to remain in the rhizosphere around deeper roots. Increase in the solid phase, and its subsequent constriction of solute migration, lead to a higher accumulation of effluxed compounds on the rhizoplane, up to 1.23x higher than shallow soil. Subsequently, influx mechanisms captured a larger fraction of effluxed compounds (69.06% at -10cm versus 84.8% at -80 cm), reducing net exudation rates from 0.641 to 0.315 nmol cm-1 hr-1 between -10 and -80cm depths. These results suggest that localized environmental conditions around roots can be a considerable influence on root influx and competition for root exudates. The insights provided by this model help provide a better understanding of exudate regulation in peatlands and the quantity and quality of carbon deposited to the methanogen community.

  19. Capturing Cd(ii) and Pb(ii) from contaminated water sources by electro-deposition on hydrotalcite-like compounds.

    PubMed

    González, M A; Trócoli, R; Pavlovic, I; Barriga, C; La Mantia, F

    2016-01-21

    Two different hydrotalcite-like compounds were prepared and used as substrates for the electrochemical removal of extremely toxic pollutant cations, such as Cd(ii) and Pb(ii), from aqueous solutions, and their subsequent recovery for further potential applications. By deposition on the hydrotalcite electrode, it was possible to remove 75% of Cd(ii) contained in a starting 5.2 mM solution of CdCl2, which was subsequently recovered and concentrated up to 14.3 mM in a single step. A removal of almost 100% was obtained in the case of Pb(ii). Its recovery was largely hindered by the formation of several inert phases, among which is some stable formation of hydroxycarbonate. Our results suggest that the removal of these contaminants by hydrotalcite-like compounds occurs by the combination of two parallel processes: electro-deposition and adsorption. It was possible to achieve a removal capacity for Cd(ii) and Pb(ii) equal to 763 mg ga.m.(-1) and 1039 mg ga.m.(-1), respectively. These removal capacities, accompanied by an excellent posterior eluent-free recovery of Cd(ii), suggest that this new method could be an environmentally friendly alternative to the conventional adsorption wastewater treatment.

  20. Effect of Nano-Y2O3 on Microstructure and Crack Formation in Laser Direct-Deposited In Situ Particle-Reinforced Fe-Based Coatings

    NASA Astrophysics Data System (ADS)

    Yin, Guili; Chen, Suiyuan; Liu, Yuanyuan; Liang, Jing; Liu, Changsheng; Kuang, Zheng

    2018-03-01

    In situ hard-particle-reinforced Fe-based composite coatings were prepared on Q235 steel substrates by direct laser deposition using Fe-based alloy powders containing 2 wt.% B, 3 wt.% Si and 1-3 wt.% nano-Y2O3. The microstructures, phase compositions, hardnesses and wear resistances of the deposited coatings with different nano-Y2O3 contents were studied using metallographic microscopy, scanning electron microscopy, x-ray diffraction, transmission electron microscopy, microhardness tests and pin-on-disk abrasion tests (MMW-1A), respectively. The results showed that the appropriate addition of Y2O3 played a role in grain refinement and in decreasing the number of brittle phases and impurity elements in the grain boundaries. Consequently, the number of cracks in the laser-deposited coating also decreased. The Fe-based composite coatings were mainly composed of α-Fe, γ-Fe and in situ-produced reinforced particle phases, such as Cr23C6, Cr7C3, (Cr, Fe)7C3, Fe2B, and CrFeB. When the content of nano-Y2O3 was 2 wt.%, a Fe-based composite coating with a thickness of 4 mm that was free of cracks was obtained, and its surface hardness reached 650HV. Moreover, the wear resistance of the coating with 2 wt.% nano-Y2O3 was the best among the samples studied. The presence of nano-Y2O3 increased the solubility of Cr and Si in the solid solution, which eliminated the residual austenite region, and as a result, the phase transformation from γ-Fe to α-Fe was restrained and the transformation stress was also limited, thereby decreasing the probability of cracks in the coatings.

  1. The Kongsberg silver deposits, Norway: Ag-Hg-Sb mineralization and constraints for the formation of the deposits

    NASA Astrophysics Data System (ADS)

    Kotková, Jana; Kullerud, Kåre; Šrein, Vladimír; Drábek, Milan; Škoda, Radek

    2018-04-01

    The Kongsberg silver district has been investigated by microscopy and electron microprobe analysis, focusing primarily on the Ag-Hg-Sb mineralization within the context of the updated mineral paragenesis. The earliest mineralization stage is represented by sulfides, including acanthite, and sulfosalts. Native silver formed initially through breakdown of early Ag-bearing phases and later through influx of additional Ag-bearing fluids and silver remobilization. The first two generations of native silver were separated in time by the formation of Ni-Co-Fe sulfarsenides and the monoarsenide niccolite along rims of silver crystals. The presence of As-free sulfosalts and the absence of di- and tri-arsenides suggest a lower arsenic/sulfur activity ratio for the Kongsberg deposits compared to other five-element deposits. Native silver shows binary Ag-Hg and Ag-Sb solid solutions, in contrast to the ternary Ag-Hg-Sb compositions typical for other deposits of similar type. Antimonial silver together with allargentum, dyscrasite, and pyrargyrite was documented exclusively from the northern area of the district. Elsewhere, the only Sb-bearing minerals are polybasite and tetrahedrite/freibergite. Hg-rich silver (up to 21 wt% Hg) has been documented only in the central-western area. Myrmekite of freibergite and chalcopyrite reflects exsolution from an original Ag-poor tetrahedrite upon cooling, while myrmekite of pyrite and silver, forming through breakdown of low-temperature phases (argentopyrite or lenaite) upon heating, characterizes the Kongsberg silver district. Based on the stabilities of minerals and mineral assemblages, the formation of the silver mineralization can be constrained to temperatures between 180 and 250 °C.

  2. Mineralogy and fluid inclusions study of carbonate-hosted Mississippi valley-type Ain Allega Pb-Zn-Sr-Ba ore deposit, Northern Tunisia

    NASA Astrophysics Data System (ADS)

    Abidi, R.; Slim-Shimi, N.; Somarin, A.; Henchiri, M.

    2010-05-01

    The Ain Allega Pb-Zn-Sr-Ba ore deposit is located in the flysch zone on the Eastern edge of the Triassic diapir of Jebel Hamra. It is part of the extrusive Triassic evaporate formation along the Ghardimaou-Cape Serrat faults. The ore body consists of argilic-dolomite breccias surrounded by argilo-gypsum Triassic formation, which forms the hanging wall of the deposit, and rimmed by the Paleocene marls. The ore minerals show a cap-rock type mineralization with different styles particularly impregnation in dolomite, cement of breccias, replacement ore and open space filling in the dissolution cavities and fractures. Ore minerals include sphalerite, galena, marcasite and pyrite. Principal gangue minerals are composed of barite, celestite, calcite, dolomite and quartz. The ore minerals are hosted by the Triassic carbonate rocks which show hydrothermal alteration, dissolution and brecciation. X-ray - crystallographic study of barite-celestite mineral series shows that pure barite and celestite are the abundant species, whereas strontianiferous barite (85-96.5% BaSO 4) and barian-celestite (95% SrSO 4) are minor. Primary and secondary mono-phase (liquid only) fluid inclusions are common in celestite. Microthermometric analyses in two-phases (liquid and vapour) fluid inclusions suggest that gangue and ore minerals were precipitated by a low-temperature (180 °C) saline (16.37 wt.% NaCl equivalent) solution originated possibly from a basinal brine with some input from magmatic or metamorphic fluid. Based on geology, mineralogy, texture and fluid characteristics, the Ain Allega deposit is classified as a carbonate-hosted Mississippi valley-type deposit.

  3. Influence of the applied potentials difference on structural and conductive properties of CoZnO nanotubes

    NASA Astrophysics Data System (ADS)

    Ibragimova, M. A.; Kozlovskiy, A. L.; Kenzhina, I. E.; Zdorovets, M. V.

    2018-04-01

    A series of CoZnO nanotubes was obtained by electrochemical deposition, with different atomic metal coefficients, due to a change in the applied potential difference. A systematic study of the morphology, structural and conductive properties of nanotubes was also carried out. It is established that the samples synthesized at the applied potentials difference of 1.5 and 1.75 V are three-component systems consisting of two oxide phases of ZnO and CoO1.92 cubic system and a phase of a solid solution of substitution Co0.65Zn0.35 of hexagonal type. The samples synthesized at a potential difference of 2.0 V represent an alloy of two oxide phases, ZnO and CoO1.92.

  4. The Scale Formation of Barite (BaSO4) from Laminar Flowing Water in The Presence of Tartaric Acid and Ba2+ Concentration Variation of Solution

    NASA Astrophysics Data System (ADS)

    Fatra, F.; Ivanto, G.; Dera, N. S.; Muryanto, S.; Bayuseno, A. P.

    2017-05-01

    The barite (BaSO4) scale is a mineral deposit that can be precipitated during the process of drilling oil and gas in the offshore. Deposite scale in pipes can cause a narrowing of the diameter of pipes, and can reduce water flowing in the pipe. The aim of this study is to investigation the effect of the tartaric acid additive and Ba2+ concentration on the growth o the scale formation of barite in the laminar flow of the piping system. Solution forming barite crystal was prepared by mixing equimolar solutions of barium chloride (BaCl2) and sodium sulfate (Na2SO4) with concentration variations of Ba2+ of 3000, 3500, 4000, 4500, and 5000 ppm. The flow rate of solution is 40 ml/min at temperature of 50 °C. Various concentrations of tartaric acid (C4H6O6) of 0 ppm, 5 ppm and 10 ppm were added to the solutions. The formation of barite from the solution was observed by ion conductivity measurement. The obtained barite crystals before and after adding tartaric acid were dried and characterized by using SEM/EDX for morphology and elemental analysis, and XRD for phase identification. The SEM results show that the morphology of the crystals are star-like particles, while XRD analysis confirmed that the barite crystals were produced during the experiments are high purity. Moreover, the tartaric acid can inhibit the crystal growth of barite.

  5. Quantifying the Interplay of Natural Organic Matter with Environmental Factors on Nanoparticle Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Yang, X.; von der Kammer, F.; Wiesner, M.; Yang, Y.; Hofmann, T.

    2016-12-01

    Humic acid (HA) is widespread in environment and may interfere with nanoparticle transport in porous media. Quantification of the HA's influence is challenging due to the heterogeneous natural of the organic compounds. Through a series of laboratory and modeling studies, we explored (1) the differential mechanisms operated by the sediment - and solution-phase HA in controlling particle transport; (2) the interplay of the HA with several important environmental factors including solution pH, ionic strength (IS), flow rate, organic & particle concentration, and particle size; (3) modeling tools to quantify the above identified influential mechanisms. Study results suggest that site blocking is the main effect imposed by sediment-phase HA on nanoparticle transport while competitive deposition (with nanoparticles) and continuous site blocking occur simultaneously for the solution-phase HA. Solution pH and IS jointly control the HA's blocking efficiency by varying the adsorbed organic conformation. Conversely, the effect of the adsorbed organic concentration appeared to be insignificant. In addition to the chemical parameters, physical parameters like particle size and flow rate also impact on the organic blockage: the blocking efficiency was stronger on larger particles than on smaller ones; increasing flow rate magnifies the HA's blocking efficiency on larger particles but had insignificant impact on smaller ones. Those mechanistic investigations were supported by a quantification approach and a mathematical model developed in those studies. These results can improve the understanding on particle mobility in heterogeneous natural porous media.

  6. Determining metal origins and availability in fluvial deposits by analysis of geochemical baselines and solid-solution partitioning measurements and modelling.

    PubMed

    Vijver, Martina G; Spijker, Job; Vink, Jos P M; Posthuma, Leo

    2008-12-01

    Metals in floodplain soils and sediments (deposits) can originate from lithogenic and anthropogenic sources, and their availability for uptake in biota is hypothesized to depend on both origin and local sediment conditions. In criteria-based environmental risk assessments, these issues are often neglected, implying local risks to be often over-estimated. Current problem definitions in river basin management tend to require a refined, site-specific focus, resulting in a need to address both aspects. This paper focuses on the determination of local environmental availabilities of metals in fluvial deposits by addressing both the origins of the metals and their partitioning over the solid and solution phases. The environmental availability of metals is assumed to be a key force influencing exposure levels in field soils and sediments. Anthropogenic enrichments of Cu, Zn and Pb in top layers could be distinguished from lithogenic background concentrations and described using an aluminium-proxy. Cd in top layers was attributed to anthropogenic enrichment almost fully. Anthropogenic enrichments for Cu and Zn appeared further to be also represented by cold 2M HNO3 extraction of site samples. For Pb the extractions over-estimated the enrichments. Metal partitioning was measured, and measurements were compared to predictions generated by an empirical regression model and by a mechanistic-kinetic model. The partitioning models predicted metal partitioning in floodplain deposits within about one order of magnitude, though a large inter-sample variability was found for Pb.

  7. Organic-inorganic nano-composite films for photonic applications made by multi-beam multi-target pulsed laser deposition with remote control of the plume directions

    NASA Astrophysics Data System (ADS)

    Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent

    2016-09-01

    There has been an explosive interest in the technique of laser assisted deposition of polymer nano-composite films exploiting the matrix assisted pulsed laser evaporation (MAPLE) with regard to the polymer host as can be judged form recent publications.1-4 In MAPLE, a frozen solution of a polymer in a relatively volatile solvent is used as a laser target. The solvent and concentration are selected so that first, the polymer of interest can dissolve to form a dilute, particulate free solution, second, the majority of the laser energy is initially absorbed by the solvent molecules and not by the solute molecules, and third, there is no photochemical reaction between the solvent and the solute. The light-material interaction in MAPLE can be described as a photothermal process. The photon energy absorbed by the solvent is converted to thermal energy that causes the polymer to be heated but the solvent to vaporize. As the surface solvent molecules are evaporated into the gas phase, polymer molecules are exposed at the gas-target matrix interface. The polymer molecules attain sufficient kinetic energy through collective collisions with the evaporating solvent molecules, to be transferred into the gas phase. By careful optimization of the MAPLE deposition conditions (laser wavelength, repetition rate, solvent type, concentration, temperature, and background gas and gas pressure), this process can occur without any significant polymer decomposition. The MAPLE process proceeds layer-by-layer, depleting the target of solvent and polymer in the same concentration as the starting matrix. When a substrate is positioned directly in the path of the plume, a coating starts to form from the evaporated polymer molecules, while the volatile solvent molecules are evacuated by the pump from the deposition chamber. In case of fabrication of polymer nanocomposites, MAPLE targets are usually prepared as nano-colloids of the additives of interest in the initial polymer solutions. Mixing the components of different nature, organic polymers and inorganic dopants, in the same target at a certain proportion and exposing them to the same laser beam not necessarily brings good quality nano-composite films. The laser pulse energy and wavelength cannot be optimized for each component individually. Also, the mixing proportion in the composite film is dictated by the initial proportion of the target and thus cannot be changed in the process. These limitations were removed in the recently proposed method of multi-beam and multi-target deposition (in its doublebeam/ dual-target variation) using a MAPLE polymer target and one inorganic target, each being concurrently exposed to laser beams of different wavelengths.5-14 Using the method, nano-composite films of polymer poly(methyl methacrylate) known as PMMA doped with a rare earth (RE) inorganic upconversion phosphor compounds were prepared. Also, a nano-composite film of thermoelectric film of inorganic aluminum-doped ZnO known as AZO was impregnated with PMMA nano-fillers with the purpose of improving electrical conductivity and thermoelectric performance.10, 14 The polymer target was a frozen (to a temperature of liquid nitrogen) PMMA solution in chlorobenzene exposed to a 1064- nm laser beam from a Q-switched Nd:YAG pulsed laser. The inorganic targets were the pellets made of the compressed micro-powders of highly efficient RE-doped NaYF4 or the sintered powder of AZO concurrently ablated with the

  8. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    NASA Astrophysics Data System (ADS)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  9. Electrochemical Deposition of Niobium onto the Surface of Copper Using a Novel Choline Chloride-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less

  10. Hygroscopic salts and the potential for life on Mars.

    PubMed

    Davila, Alfonso F; Duport, Luis Gago; Melchiorri, Riccardo; Jänchen, Jochen; Valea, Sergio; de Los Rios, Asunción; Fairén, Alberto G; Möhlmann, Diedrich; McKay, Christopher P; Ascaso, Carmen; Wierzchos, Jacek

    2010-01-01

    Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at temperatures between 253 and 233 K.

  11. Nanostructured Photocatalytic TiO2 Coating Deposited by Suspension Plasma Spraying with Different Injection Positions

    NASA Astrophysics Data System (ADS)

    Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong

    2018-02-01

    High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.

  12. Nucleation and strain-stabilization during organic semiconductor thin film deposition.

    PubMed

    Li, Yang; Wan, Jing; Smilgies, Detlef-M; Bouffard, Nicole; Sun, Richard; Headrick, Randall L

    2016-09-07

    The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C.

  13. Phase separation within NiSiN coatings during reactive HiPIMS discharges: A new pathway to grow NixSi nanocrystals composites at low temperature

    NASA Astrophysics Data System (ADS)

    Keraudy, J.; Boyd, R. D.; Shimizu, T.; Helmersson, U.; Jouan, P.-Y.

    2018-10-01

    The precise control of the growth nanostructured thin films at low temperature is critical for the continued development of microelectronic enabled devices. In this study, nanocomposite Ni-Si-N thin films were deposited at low temperature by reactive high-power impulse magnetron sputtering. A composite Ni-Si target (15 at.% Si) in combination with a Ar/N2 plasma were used to deposit films onto Si(0 0 1) substrates, without any additional substrate heating or any post-annealing. The films microstructure changes from a polycrystalline to nanocomposite structure when the nitrogen content exceeds 16 at.%. X-ray diffraction and (scanning) transmission electron microscopy analyses reveal that the microstructure consists of nanocrystals, NixSi (x > 1) 7-8 nm in size, embedded in an amorphous SiNx matrix. It is proposed that this nanostructure is formed at low temperatures due to the repeated-nucleation of NixSi nanocrystals, the growth of which is restricted by the formation of the SiNx phase. X-ray photoelectron spectroscopy revealed the trace presence of a ternary solid solution mainly induced by the diffusion of Ni into the SiNx matrix. Four-probe electrical measurements reveal all the deposited films are electrically conducting.

  14. Surface chemical properties of eutectic and frozen NaCl solutions probed by XPS and NEXAFS.

    PubMed

    Křepelová, Adéla; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus

    2010-12-17

    We study the surface of sodium chloride-water mixtures above, at, and below the eutectic temperature using X-ray photoelectron spectroscopy (XPS) and electron-yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NaCl frozen solutions are mimicking sea-salt deposits in ice or snow. Sea-salt particles emitted from the oceans are a major contributor to the global aerosol burden and can act as a catalyst for heterogeneous chemistry or as cloud condensation nuclei. The nature of halogen ions at ice surfaces and their influence on surface melting of ice are of significant current interest. We found that the surface of the frozen solution, depending on the temperature, consists of ice and different NaCl phases, that is, NaCl, NaCl·2H(2)O, and surface-adsorbed water.

  15. Supercritical fluid molecular spray film deposition and powder formation

    DOEpatents

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  16. Unraveling the Structure of Mn-Promoted Co/TiO2 Fischer-Tropsch Catalysts by In Situ X-Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandjean, Didier; Morales, Fernando; Mens, Ad

    2007-02-02

    Combination of in situ X-ray absorption spectroscopy (XAFS) at the Co and Mn K-edges with electron microscopy (STEM-EELS) has allowed to unravel the complex structure of a series of unpromoted and Mn promoted TiO2-supported cobalt Fischer-Tropsch catalysts prepared by homogeneous deposition precipitation (HDP), both in their calcined and reduced states. After calcination the catalysts are generally composed of large Co3O4 aggregates (13-20 nm) and a MnO2-type phase that is either dispersed on the TiO2 surface or, for the major part, covering the Co3O4 particles. Additionally Mn is also forming a spinel-type Co3-xMnxO4 solid solution at the surface of the Co3O4more » particles. In pure Co or when small amount of this spinel-type phase are formed during calcination, reduction in H2 at 350 deg. C produces Co0 particles of variable sizes (3.5-15 nm) otherwise Co reduction is limited to the Co2+ state. Manganese that exists entirely in a Mn2+ state in the reduced catalysts is forming (1) a highly dispersed Ti2MnO4-type phase at the TiO2 surface, (2) a less dispersed MnO phase close to the cobalt particles that coexists with (3) a rock salt-type Mn1-xCoxO solid solution. Similarly, large amount of spinel solid solution in the calcined state favors the formation of Mn1-xCoxO-type solid solution during reduction showing that one of the main roles of the Mn promoter is to limit Co reducibility.« less

  17. Factors controlling the geochemical evolution of fumarolic encrustations, Valley of Ten Thousand Smokes, Alaska

    USGS Publications Warehouse

    Kodosky, L.G.; Keith, T.E.C.

    1993-01-01

    Factor and canonical correlation analysis of geochemical data from eight fossil fumaroles suggest that six major factors controlled the formation and evolution of fumarolic encrustations on the 1912 ash-flow sheet in the Valley of Ten Thousand Smokes (VTTS). The six-factor solution model explains a large proportion (low of 74% for Ni to high of 99% for Si) of the individual element data variance. Although the primary fumarolic deposits have been degraded by secondary alteration reactions and up to 75 years of weathering, the relict encrustations still preserve a signature of vapor-phase element transport. This vapor-phase transport probably occurred as halide or oxyhalide species and was significant for As, Sb and Br. At least three, and possibly four, varied temperature leaching events affected the fumarolic deposits. High-temperature gases/liquids heavily altered the ejecta glass and mineral phases adjacent to the fumarolic conduit. As the fumaroles cooled. Fe-rich acidic condensate leached the ejecta and primary fumarolic deposits and resulted in the subsequent precipitation of Fe-hydroxides and/or Fe-oxides. Low- to ambient-temperature leaching and hydration reactions generated abundant hydrated amorphous phases. Up to 87% of the individual element data variance is apparently controlled by the chemistry of the ejecta on which the relict encrustations are found. This matrix chemistry factor illustrates that the primary fumarolic minerals surrounding the active VTTS vents observed by earlier workers have been effectively removed by the dissolution reactions. Element enrichment factors calculated for the VTTS relict encrustations support the statistical factor interpretations. On the average, the relict encrustations are enriched, relative to visibly unaltered matrix protolith, in As, Br, Cr, Sb, Cu, Ni, Pb, Fe, and LOI (an indirect measure of sample H2O content). ?? 1993.

  18. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    PubMed Central

    Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2013-01-01

    In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm−2 measured at 5 mV s−1), best rate capability and excellent stability at potentials below −0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process. PMID:27877625

  19. MoO x thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors.

    PubMed

    Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2013-12-01

    In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoO x films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li 2 SO 4 . The MoO x ( x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm -2 measured at 5 mV s -1 ), best rate capability and excellent stability at potentials below -0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO 2 nanocrystals and amorphous MoO x (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO 2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  20. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2013-12-01

    In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm-2 measured at 5 mV s-1), best rate capability and excellent stability at potentials below -0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  1. Electroless Nickel Deposition for Front Side Metallization of Silicon Solar Cells

    PubMed Central

    Hsieh, Shu Huei; Hsieh, Jhong Min; Chen, Wen Jauh; Chuang, Chia Chih

    2017-01-01

    In this work, nickel thin films were deposited on texture silicon by electroless plated deposition. The electroless-deposited Ni layers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and sheet resistance measurement. The results indicate that the dominant phase was Ni2Si and NiSi in samples annealed at 300–800 °C. Sheet resistance values were found to correlate well with the surface morphology obtained by SEM and the results of XRD diffraction. The Cu/Ni contact system was used to fabricate solar cells by using two different activating baths. The open circuit voltage (Voc) of the Cu/Ni samples, before and after annealing, was measured under air mass (AM) 1.5 conditions to determine solar cell properties. The results show that open circuit voltage of a solar cell can be enhanced when the activation solution incorporated hydrofluoric acid (HF). This is mainly attributed to the native silicon oxide layer that can be decreased and/or removed by HF with the corresponding reduction of series resistance. PMID:28805724

  2. Fabrication of Cu2O/TiO2 Nanotubes Heterojunction Arrays and Investigation of Their Photoelectrochemical Behaviour

    DTIC Science & Technology

    2012-11-05

    investigate phase transformations in TiO2 NTs after annealing and as a consequence of the functionalization. Electrodeposition was performed in a...deposition Cu2O electrodeposition was performed by polarizing the Ti/TiO2 NTs electrodes at UE = - 0.4 V in the CuSO4 containing bath described in...polarization (UE = - 0.4 V) in the electrodeposition solution (see experimental section). As shown in Fig. 6, in spite of the constant polarizing voltage (i.e

  3. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  4. Improved ferroelectric polarization of V-doped Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films prepared by a chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, D. P.; University of Science and Technology of China, Hefei 230026; Yang, J., E-mail: jyang@issp.ac.cn

    We prepared V-doped Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films on Pt/Ti/SiO{sub 2}/Si (100) substrates by using a chemical solution deposition route and investigated the doping effect on the microstructure, dielectric, leakage, and ferroelectric properties of Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films. The Bi{sub 5.97}Fe{sub 2}Ti{sub 2.91}V{sub 0.09}O{sub 18} thin film exhibits improved dielectric properties, leakage current, and ferroelectric properties. The incorporation of vanadium resulted in a substantially enhanced remnant polarization (2P{sub r}) over 30 μC/cm{sup 2} in Bi{sub 5.97}Fe{sub 2}Ti{sub 2.91}V{sub 0.09}O{sub 18} thin film compared with 10 μC/cm{sup 2} in Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin film. It ismore » demonstrated that the improved properties may stem from the improvement of crystallinity of the films with the contribution of suppressed oxygen vacancies and decreased mobility of oxygen vacancies caused by the V-doping. The results will provide a guidance to optimize the ferroelectric properties in Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films by chemical solution deposition, which is important to further explore single-phase multiferroics in the n = 5 Aurivillius thin films.« less

  5. Quality of wet deposition in the Grand Calumet River watershed, northwestern Indiana, October 17, 1995-November 12, 1996

    USGS Publications Warehouse

    Willoughby, Timothy C.

    2000-01-01

    In June 1992, a wet-deposition collection site was established at the Gary (Indiana) Regional Airport to monitor the quantity and chemical quality of wet deposition. During the first phase of sampling, 48 wet-deposition samples were collected between June 30, 1992, and August 31, 1993. A second phase of sampling began in October 1995. During the second phase of sampling, 40 wet-deposition samples were collected between October 17, 1995, and November 12, 1996. This report presents the findings for the second phase of sampling and compares those results to the first phase of sampling. Northwestern Indiana is a heavily industrialized area. Steel production and petroleum refining are two of the area?s predominant industries. High-temperature processes, such as fossil-fuel combustion and steel production, release contaminants to the atmosphere that may result in wet deposition being a major contributor to major-ion and trace-metal loadings in northwestern Indiana and Lake Michigan. Wet-deposition samples collected during the first and second phases of sampling were analyzed for pH, specific conductance, and selected major ions and trace metals. Forty weekly wet-deposition samples were collected at the Gary (Indiana) Regional Airport during the second phase of sampling. Approximately 1.2 times as much wet deposition was collected during the second phase of sampling compared to the first phase. Statistically significant increases (at the 5-percent significance level) in concentrations of potassium, iron, lead, and zinc were determined for samples collected during the second phase of sampling when compared to the first. No statistically significant differences were determined in constituent concentrations between samples collected during warm weather (April 1 through October 31) and during cold weather (November 1 through March 31). Annual loadings for the second phase of sampling were greater than 2 times the loadings determined during the first phase of sampling for silica, iron, potassium, lead, and zinc.

  6. Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor

    NASA Astrophysics Data System (ADS)

    Fugare, B. Y.; Thakur, A. V.; Kore, R. M.; Lokhande, B. J.

    2018-04-01

    Ru doped TiO2 thin films are prepared by using 0.06 M aqueous solution of potassium titanium oxalate (pto), and 0.005 M aqueous solution of ruthenium tri chloride (RuCl3) precursors. The deposition was carried on stainless steel (SS) by using well known ultrasonic spray pyrolysis technique (USPT) at 723° K by maintaining the spray rate 12 cc/min and compressed air flow rate 10 Lmin-1. Prepared Ru:TiO2 thin films were characterized by structurally, morphologically and electrochemically. Deposited RuO2 shows amorphous structure and TiO2 shows tetragonal crystal structure with rutile as prominent phase at very low decomposition temperature. SEM micrographs of RuO2 exhibits porous, interconnected, spherical grains type morphology and TiO2 shows porous, nanorods and nanoplates like morphology and also Ru doped TiO2 shows porous, spherical, granular and nanorods type morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The achieved highest value of specific capacitance 2692 F/g was Ru doped TiO2 electrode in 0.5 M H2SO4.

  7. Organic electronic devices with multiple solution-processed layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2016-07-05

    A method for fabricating an organic light emitting device stack involves depositing a first conductive electrode layer over a substrate; depositing a first set of one or more organic layers, wherein at least one of the first set of organic layers is a first emissive layer and one of the first set of organic layers is deposited by a solution-based process that utilizes a first solvent; depositing a first conductive interlayer by a dry deposition process; and depositing a second set of one or more organic layers, wherein at least one of the second set of organic layers is amore » second emissive layer and one of the second set of organic layers is deposited by a solution-based process that utilizes a second solvent, wherein all layers that precede the layer deposited using the second solvent are insoluble in the second solvent.« less

  8. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  9. Periodic protein adsorption at the gold/biotin aqueous solution interface: evidence of kinetics with time delay

    NASA Astrophysics Data System (ADS)

    Neff, H.; Laborde, H. M.; Lima, A. M. N.

    2016-11-01

    An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.

  10. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  11. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-05-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  12. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-06-22

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  13. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2005-01-25

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  14. The Unusual Colour of Copper Deposited on a Graphite Electrode in an Aqueous Solution of CuSO[subscript 4

    ERIC Educational Resources Information Center

    Petrusevski, Vladimir M.; Stojanovska, Marina

    2010-01-01

    The colour of the copper layer deposited on a graphite electrode during electrolysis of an aqueous solution of copper(II) sulfate looks whitish-grey when inspected in situ. Taking the electrode out of the solution reveals the familiar orange-red colour of deposited copper. The explanation is found in terms of the almost ideal complementary colours…

  15. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.

    2013-07-15

    Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less

  16. Tsunami inundation, sediment transport, and subsequent deposits on topography with a dune

    NASA Astrophysics Data System (ADS)

    Yoshii, T.; Tanaka, S.; Matsuyama, M.

    2017-12-01

    The processes of tsunami inundation, sediment transport, and subsequent deposits on topography with a dune were investigated as part of Tsunami Sediment Transport Large-scale experiments (TSTLE) project. The inundation process on topography with a dune was categorized into first and second phase flows. The first phase flow was governed by the wave speed at the shoreline and the land slope, whereas the second phase flow was governed by the difference in water level at the dune. The deposits caused by the first phase flow (near the inundation limit) were constant regardless of the presence of the dune. Thus, there was no direct relationship between the substantial erosion and deposition near the dune caused by the second phase flow and the inundation limit determined by the initial phase flow. It is impossible to measure hydraulic parameters beyond these governing parameters from the deposits without assumption of waveform. Therefore, if the inundation limit is determined by the initial phase flow, the only way to reconstruct the inundation limit (height) is to investigate the deposits near the limit. The nearshore deposit, which could be sufficiently thick to observe sedimentary structures, would enable us to estimate the wave level in front of the dune.

  17. Production method of carbamazepine/saccharin cocrystal particles by using two solution mixing based on the ternary phase diagram

    NASA Astrophysics Data System (ADS)

    Kudo, Shoji; Takiyama, Hiroshi

    2014-04-01

    In the pharmaceutical field, improvement of drug solubility is required, and an interest in cocrystals is growing. Crystallization methods for industrial production of cocrystals have not been developed enough whereas many cocrystals have been prepared in order to find a new crystal form by screening in the laboratory. The objective of this study was the development of the crystallization method which is useful for the industrial production of cocrystal particles based on the phase diagram. A cocrystal of carbamazepine and saccharin was selected as a model substance. The ternary phase diagram of carbamazepine and saccharin in methanol at 303 K was measured. A cocrystallization method of mixing two kinds of different eutectic solutions was designed based on the ternary phase diagram. In order to adjust the cocrystallization conditions, the determination method of the driving force for cocrystal deposition such as supersaturation based on mass balance was proposed. The cocrystal particles were obtained under all the conditions of the five mixing ratios. From these experimental results, the relationship between the supersaturation and the induction time for nucleation was confirmed as well as conventional crystallization. In conclusion, the crystallization method for industrial production of cocrystal particles including the determination of the supersaturation was suggested.

  18. Analysis of microstructure in electro-spark deposited IN718 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisimov, E.; Khan, A.K.; Ojo, O.A., E-mail: olanr

    2016-09-15

    The microstructure of electro-spark deposited (ESD) superalloy IN718 was studied by the use of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. In converse to general assumption, the extremely high cooling rate involved in the ESD process did not produce partitionless solidification that is devoid of second phase microconstituents in the material, nano-sized Laves phase and MC carbide particles were observed within the deposited layer. Notwithstanding the several thermal cycles involved in the process, the extremely low heat input of the process produced a deposited region that is free ofmore » the main strengthening phase of the alloy, γ″ phase precipitates, which is in contrast to what have been reported on laser deposition. Nevertheless, application of the standard full heat treatment of the alloy resulted in extensive formation of the γ″ phase precipitates and δ phase precipitates, the most stable secondary phase of the alloy, with nearly, if not complete, dissolution of the Laves phase particles. Furthermore, the XPS analysis done in the study revealed the formation of nano-oxides within the deposited layer, which increased the microhardness of the superalloy in the as-deposited condition and inhibited its grain growth during post-process heat treatment. The microstructure analysis done in this work is crucial to the understanding of properties of the superalloy processed by the ESD technique. - Highlights: •Electron microscopy analyses of electro-spark deposited IN 718 superalloy were performed. •Nano-sized secondary phase particles were observed within the deposited layer. •The study shows that the ESD did not produce partitionless solidification of the alloy.« less

  19. Gallium-rich Pd-Ga phases as supported liquid metal catalysts

    NASA Astrophysics Data System (ADS)

    Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.

    2017-09-01

    A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.

  20. THE PHYSICAL AND CHEMICAL MICROSTRUCTURE OF THE ACHATINA FULICA EPIPHRAGM.

    PubMed

    Struthers, M.; Rosair, G.; Buckman, J.; Viney, C.

    2002-05-01

    Microstructural characterization of Achatina fulica Bowdich, 1822 epiphragms and mucus secretions was performed to address two questions: what are the structure and composition of the reinforcing inorganic phase in the epiphragms, and what enables a durable epiphragm to form quickly in comparison to other biomineralized materials? Characterization was performed by a combination of light microscopy (relying on a variety of contrast modes), wet chemical tests, environmental scanning electron microscopy (including the use of energy dispersive X-ray analysis to obtain compositional data), and X-ray diffraction. The morphology of the inorganic phase promotes mechanical interlocking and presents a large surface for binding to the organic matrix. Strong binding occurs between the organic and inorganic phases. The inorganic phase adopts the calcite structure; its composition is Ca(0.912) Mg(0.088) CO(3). Epiphragms can form quickly because pre-grown crystals of the inorganic reinforcing phase are co-deposited with the mucus matrix. Unlike other biomineralized material, the crystals are not solution-grown in situ on an organic template in the final product.

  1. Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells.

    PubMed

    Ciro, John; Ramírez, Daniel; Mejía Escobar, Mario Alejandro; Montoya, Juan Felipe; Mesa, Santiago; Betancur, Rafael; Jaramillo, Franklin

    2017-04-12

    Fabrication of solution-processed perovskite solar cells (PSCs) requires the deposition of high quality films from precursor inks. Frequently, buffer layers of PSCs are formed from dispersions of metal oxide nanoparticles (NPs). Therefore, the development of trustable methods for the preparation of stable colloidal NPs dispersions is crucial. In this work, a novel approach to form very compact semiconducting buffer layers with suitable optoelectronic properties is presented through a self-functionalization process of the nanocrystalline particles by their own amorphous phase and without adding any other inorganic or organic functionalization component or surfactant. Such interconnecting amorphous phase composed by residual nitrate, hydroxide, and sodium ions, proved to be fundamental to reach stable colloidal dispersions and contribute to assemble the separate crystalline nickel oxide NPs in the final film, resulting in a very homogeneous and compact layer. A proposed mechanism behind the great stabilization of the nanoparticles is exposed. At the end, the self-functionalized nickel oxide layer exhibited high optoelectronic properties enabling perovskite p-i-n solar cells as efficient as 16.6% demonstrating the pertinence of the presented strategy to obtain high quality buffer layers processed in solution at room temperature.

  2. Particle-Laden Liquid Jet Impingement on a Moving Substrate

    NASA Astrophysics Data System (ADS)

    Rahmani, Hatef; Green, Sheldon

    2017-11-01

    The impingement of high-speed jets on a moving substrate is salient to a number of industrial processes such as surface coating in the railroad industry. The particular jet fluids studied were dilute suspensions of neutrally buoyant particles in water-glycerin solutions. At these low particle concentrations, the suspensions have Newtonian fluid viscosity. A variety of jet and surface velocities, solution properties, nozzle diameters, mean particle sizes, and volume fractions were studied. It was observed that for jets with very small particles, addition of solids to the jet enhances deposition and postpones splash relative to a particle-free water-glycerin solution with the same viscosity. In contrast, jets with larger particles in suspension were more prone to splash than single phase jets of the same viscosity. It is speculated that the particle diameter, relative to the lamella thickness, is the key parameter to determine whether splash is suppressed or enhanced. An existing splash model for single phase liquid jets was found to be in good agreement with the experimental results, provided that the single fitting parameter in that model is a function of the particle size, volume fraction, and surface roughness.

  3. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    PubMed

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  4. Optical Properties and Microstructure of Silver-Copper Nanoparticles Synthesized by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Hirai, Makoto; Kumar, Ashok

    2007-12-01

    Utilizing a pulsed laser deposition (PLD) method, silver-copper (Ag-Cu) nanoparticles have been synthesized by changing the surface area ratio of the target ( S R = S Cu/( S Ag + S Cu)) from 0 to 30%. The peak absorption attributed to surface plasmon resonance (SPR) increased when increasing S R up to 15%, above which it decreased. The peak shifts seem to be induced by the changes in the conductivity and morphology of the Ag-Cu nanoparticles. Additionally, the interplanar spacings of the Ag-Cu nanoparticles prepared at S R = 15% corresponded to the Ag {111}, {200}, {220}, and Cu {111} planes. However, since the interplanar spacings attributed to the Cu {200} and {220} planes were not detected, the Ag-Cu nanoparticles were believed to possess a lattice constant ( a) close not to the Cu phase ( a = 3.615 Å) but to the Ag phase ( a = 4.086 Å). Moreover, confirming the presence of Cu atoms in the nanoparticles using energy dispersive X-ray (EDX) spectra, Ag-Cu nanoparticles may be a solid solution in which Cu atoms partially replace Ag atoms in the fcc structure.

  5. Influence of Water on Chemical Vapor Deposition of Ni and Co thin films from ethanol solutions of acetylacetonate precursors

    PubMed Central

    Weiss, Theodor; Zielasek, Volkmar; Bäumer, Marcus

    2015-01-01

    In chemical vapor deposition experiments with pulsed spray evaporation (PSE-CVD) of liquid solutions of Ni and Co acetylacetonate in ethanol as precursors, the influence of water in the feedstock on the composition and growth kinetics of deposited Ni and Co metal films was systematically studied. Varying the water concentration in the precursor solutions, beneficial as well as detrimental effects of water on the metal film growth, strongly depending on the concentration of water and the β-diketonate in the precursor, were identified. For 2.5 mM Ni(acac)2 precursor solutions, addition of 0.5 vol% water improves growth of a metallic Ni film and reduces carbon contamination, while addition of 1.0 vol% water and more leads to significant oxidation of deposited Ni. By tuning the concentration of both, Ni(acac)2 and water in the precursor solution, the fraction of Ni metal and Ni oxide in the film or the film morphology can be adjusted. In the case of Co(acac)2, even smallest amounts of water promote complete oxidation of the deposited film. All deposited films were analyzed with respect to chemical composition quasi in situ by XPS, their morphology was evaluated after deposition by SEM. PMID:26658547

  6. Single liquid source plasma-enhanced metalorganic chemical vapor deposition of high-quality YBa2Cu3O(7-x) thin films

    NASA Technical Reports Server (NTRS)

    Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John

    1992-01-01

    High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.

  7. Ti{sub 2}AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabioch, Thierry, E-mail: Thierry.cabioch@univ-poitiers.fr; Alkazaz, Malaz; Beaufort, Marie-France

    2016-08-15

    Highlights: • Epitaxial thin films of the MAX phase Ti{sub 2}AlN are obtained by thermal annealing. • A new metastable (Ti,Al,N) solid solution with the structure of α-T is evidenced. • The formation of the MAX phase occurs at low temperature (600 °C). - Abstract: Single-phase Ti{sub 2}AlN thin films were obtained by annealing in vacuum of (Ti + Al)/AlN multilayers deposited at room temperature by magnetron sputtering onto single-crystalline (0001) 4H-SiC and (0001) Al{sub 2}O{sub 3} substrates. In-situ X-ray diffraction experiments combined with ex-situ cross-sectional transmission electron microscopy observations reveal that interdiffusion processes occur in the multilayer at amore » temperature of ∼400 °C leading to the formation of a (Ti, Al, N) solid solution, having the hexagonal structure of α-Ti, whereas the formation of Ti{sub 2}AlN occurs at 550–600 °C. Highly oriented (0002) Ti{sub 2}AlN thin films can be obtained after an annealing at 750 °C.« less

  8. Photodegradation of perfluorooctanoic acid by graphene oxide-deposited TiO2 nanotube arrays in aqueous phase.

    PubMed

    Park, Kyungmin; Ali, Imran; Kim, Jong-Oh

    2018-07-15

    Perfluorooctanoic acid (PFOA) is a persistent organic pollutant in the environment with serious health risks including endocrine-disrupting characteristics, immunotoxicity, and causing developmental defects. The photocatalytic deposition has proven to be an inexpensive, effective, and sustainable technology for the removal of PFOA in the aqueous phase. Most investigations are conducted in ultrapure water at concentrations higher than those detected in actual water systems. A few studies deal with the toxicity of treated water. In this research, the photocatalytic degradation of PFOA, including photo-oxidative and photo-reductive degradation, is reviewed comprehensively. Compared to photo-oxidation, photo-reduction is more suitable for PFOA removal since it favors defluorination of PFOA and complete mineralization. We used graphene oxide/TiO 2 nanotubes array for photocatalytic degradation of PFOA. The effects of key parameters on the photocatalytic degradation and defluorination processes of PFOA, such as initial PFOA concentration, initial pH of the solution, an initial temperature of the solution, and external bias constant potential, are addressed. We observed that at pH 3 the PFOA degradation was around 83% in 4 h, and at 75 °C almost complete PFOA degradation was observed in 2.5 h. In photoelectrocatalytic process at 2.0 V external bias 97% of PFOA was degraded in 4 h. The mechanisms of the PFOA photodegradation process are also discussed in detail. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Boron doped bcc-W films: Achieving excellent mechanical properties and tribological performance by regulating substrate bias voltage

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Zhang, Kan; Zeng, Yi; Wang, Xin; Du, Suxuan; Tao, Chuanying; Ren, Ping; Cui, Xiaoqiang; Wen, Mao

    2017-11-01

    Boron doped bcc-W (WBx, x = B/W) films were deposited on Si(100) substrates by magnetron co-sputtering pure W and B targets. Our results reveal that when the absolute value of substrate bias voltage (Vb) increases from floating to 240 V, the value of x monotonously decreases from 0.18 to 0.04, accompanied by a phase transition from a mixture of tetragonal γ-W2B and body-centered cubic α-W(B) phase (-Vb ≤ 60 V) to α-W(B) single phase (-Vb > 60 V). Hardness, depending on Vb, increases first and then drops, where the maximum hardness of 30.8 GPa was obtained at -Vb = 60 V and far higher than pure W and W2B theoretical value. In the mixed phase structure, the grain boundaries strengthening, Hall-Petch effect and solid-solution strengthening induced by B dominate the strengthening mechanism. Astonishingly, the film grown at -Vb = 120 V still possesses twice higher hardness than pure W, wherein unexpectedly low (6.7 at.%) B concentration and only the single α-W(B) phase can be identified. In this case, both Hall-Petch effect and solid-solution strengthening work. Besides, low friction coefficient of ∼0.18 can be obtained for the films with α-W(B) phase, which is competitive to that of reported B-rich transition-metal borides, such as TiB2, CrB and CrB2.

  10. Formation of a vitreous phase at the surface of some commercial diatomaceous earth prevents the onset of oxidative stress effects.

    PubMed

    Ghiazza, Mara; Gazzano, Elena; Bonelli, Barbara; Fenoglio, Ivana; Polimeni, Manuela; Ghigo, Dario; Garrone, Edoardo; Fubini, Bice

    2009-01-01

    To understand the effect of the commercial processing of diatomaceous earths (DEs) on their ultimate surface structure and potential toxicity, we investigated the influence of the industrial processing and the nature of the deposit. Two flux calcined specimens from different deposits, DE/1-FC and DE/2-FC, and the simply calcined sample DE/1-C, from the same deposit as DE/1-FC, were compared in both their bulk and their surface properties. X-ray diffraction (XRD) analysis in a heating chamber revealed the presence of cristobalite in all samples, more abundant on the flux calcined ones. The crystal lattice is probably imperfect, as the alpha-beta transition, visible by XRD in DE/1-FC and DE/2-FC, is not detected by differential scanning calorimetry. Progressive etching with HF solutions suggests that most of the crystalline phase is at the core and not at the outer region of the samples. The combined use of spectroscopic (UV-vis and IR) and calorimetric techniques (heat of adsorption of water as a measure of hydrophilicity) reveals that DE/1-FC and DE/2-FC particles have an external layer of glass, absent in DE/1-C, where iron impurities act as network-forming and sodium ions as modifier species, with few patches of a hydrophobic phase, the latter relatable to a heated pure silica phase. When tested on a macrophage cell line (MH-S) in comparison with appropriate positive and negative controls (an active and an inactive quartz dust, respectively), only DE/1-C exhibited a cell damage and activation similar to that of active quartz (measured by lactate dehydrogenase release, peroxidation of membrane lipids and synthesis of NO). It is likely that the presence of a vitreous phase mitigates or even eliminates the cellular responses of silica in DE.

  11. Phase transition studies in bismuth ferrite thin films synthesized via spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Goyal, Ankit; Lakhotia, Harish

    2013-06-01

    Multiferroic are the materials, which combine two or more "ferroic" properties, ferromagnetism, ferroelectricity or ferroelasticity. BiFeO3 is the only single phase multiferroic material which possesses a high Curie temperature (TC ˜ 1103 K), and a high Neel temperature (TN ˜ 643 K) at room temperature. Normally sophisticated methods are being used to deposit thin films but here we have tried a different method Low cost Spray Pyrolysis Method to deposit BiFeO3 thin film of Glass Substrate with rhombohedral crystal structure and R3c space group. Bismuth Ferrite thin films are synthesized using Bismuth Nitrate and Iron Nitrate as precursor solutions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to study structural analysis of prepared thin films. XRD pattern shows phase formation of BiFeO3 and SEM analysis shows formation of nanocrystals of 200 nm. High Temperature Resistivity measurements were done by using Keithley Electrometer (Two Probe system). Abrupt behavior in temperature range (313 K - 400K) has been observed in resistance studies which more likely suggests that in this transition the structure is tetragonal rather than rhombohedral. BiFeO3 is the potential active material in the next generation of ferroelectric memory devices.

  12. Properties of alginate fiber spun-dyed with fluorescent pigment dispersion.

    PubMed

    Wang, Ping; Tawiah, Benjamin; Tian, Anli; Wang, Chunxia; Zhang, Liping; Fu, Shaohai

    2015-03-15

    Spun-dyed alginate fiber was prepared by the spun-dyeing method with the mixture of fluorescent pigment dispersion and sodium alginate fiber spinning solution, and its properties were characterized by SEM, TGA, DSC, and XRD. The results indicate that fluorescent pigment dispersion prepared with esterified poly (styrene-alt maleic acid) had excellent compatibility with sodium alginate fiber spinning solution, and small amount of fluorescent pigment could reduce the viscosity of spun-dyed spinning solutions. SEM photo of spun-dyed alginate fiber indicated that fewer pigment particles deposited on its surface. TGA, DSC, and XRD results suggested that thermal properties and crystal phase of spun-dyed alginate fibers had slight changes compared to the original alginate fibers. The fluorescence intensity of spun-dyed alginate fiber reached its maximum when the content of fluorescent pigment was 4%. The spun-dyed alginate fiber showed excellent rubbing and washing fastness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Structurally bound sulfide and sulfate in apatite from the Philips Mine iron oxide - apatite deposit, New York, USA: A tracer of redox changes

    NASA Astrophysics Data System (ADS)

    Sadove, G.; Konecke, B.; Fiege, A.; Simon, A. C.

    2017-12-01

    Multiple competing hypotheses attempt to explain the genesis of iron oxide-apatite (IOA) ore deposits. Many studies have investigated the chemistry of apatite because the abundances of F and Cl can distinguish magmatic vs. hydrothermal processes. Recent experiments demonstrate that apatite incorporates S6+, S4+, and S2-, and that total sulfur (∑S) as well as the S6+/∑S ratio in apatite vary systematically as a function of oxygen fugacity [1], providing information about sulfur budget and redox. Here, we present results from X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge, electron microprobe analyses, cathodoluminescence (CL) imaging, and element mapping of apatite from the Philip's Mine IOA deposit, southern Adirondack Mountains, USA. The Philip's Mine apatite contains inclusions of pyrite and pyrrhotite, where the latter includes iron oxide and Ni-rich domains. The apatite also contains inclusions of monazite, and exhibits complex CL zonation coincident with variations in the abundances of REE and S. The presence of monazite fingerprints fluid-mediated dissolution-reprecipitation of originally REE-enriched apatite [2]. The S XANES spectra reveal varying proportions of structurally bound S6+ and S2-, as the S6+/∑S ratio ranges from sulfide-only to sulfate-only. Notably, sulfide-dominated domains contain higher S contents than sulfate-dominated regions. These observations are consistent with co-crystallization of apatite and monosulfide solid solution (MSS) at reducing conditions, followed by decomposition of MSS to pyrrhotite, pyrite and intermediate solid solution (ISS, which is not preserved; [3]). Metasomatism of that assemblage by an oxidized fluid resulted in formation of monazite in apatite and iron oxide domains in pyrrhotite. We conclude that the deposit formed by a H2S-Fe-rich volatile phase, possibly evolved from a rather primitive magmatic source, which is consistent with the low Ti content of magnetite. The deposit was subsequently altered by a rather oxidized SO2-poor volatile phase more typical of evolved felsic source regions. [1] Konecke et al. (2017) American Mineralogist 102-3, 548-557; [2] Harlov (2015) Elements 11-3, 171-176; [3] Edmonds & Mather (2017) Elements 13-2, 105-110.

  14. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.

  15. Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance

    NASA Astrophysics Data System (ADS)

    Castroviejo, Ricardo; Quesada, Cecilio; Soler, Miguel

    2011-07-01

    The original stratigraphic relationships and structure of VMS deposits are commonly obscured by deformation. This can also affect their economic significance, as shown by several Iberian Pyrite Belt (IPB, SW Iberia) examples. The contrasting rheologic properties of the different lithologies present in an orebody (massive sulphide, feeder stockwork, alteration envelope, volcanic and sedimentary rocks) play a major role in determining its overall behaviour. Variscan thin-skinned tectonics led to stacking of the massive pyrite and stockwork bodies in duplex structures, resulting in local thickening and increased tonnage of minable mineralization. Furthermore, differential mechanical behaviour of the different sulphide minerals localised the detachments along relatively ductile sulphide-rich bands. The result was a geochemical and mineralogical reorganisation of most deposits, which now consist of barren, massive pyrite horses, bounded by base metal-rich ductile shear zones. Metal redistribution was enhanced by mobilisation of the base metal sulphides from the initially impoverished massive pyrite, through pressure-solution processes, to tensional fissures within the already ductile shear zones. In NW Iberia, VMS deposits were also strongly overprinted by the Variscan deformation during emplacement of the Cabo Ortegal and Órdenes allochthonous nappe complexes, but no stacking of the orebodies was produced. Original contacts were transposed, and the orebodies, their feeder zones and the country rock acquired pronounced laminar geometry. In lower-grade rocks (greenschist facies, Cabo Ortegal Complex), solution transfer mechanisms are common in pyrite, which remains in the brittle domain, while chalcopyrite shows ductile behaviour. In higher-grade rocks (amphibolite facies, Órdenes Complex), metamorphic recrystallisation overprints earlier deformation textures. The contrasting behaviour of the IPB and NW Iberian deposits is explained by key factors that affect their final geometry, composition and economics, such as pre-deformation structure, size and mineralogical composition of the orebody and associated lithologies, temperature, crustal level, deviatoric stress and availability of a fluid phase during deformation and the style and rate of deformation.

  16. Elaboration and Characterization of TiO2 and Study of the Influence of The Number of Thin Films on the Methylene Blue Adsorption Rate

    NASA Astrophysics Data System (ADS)

    Madoui, Karima; Medjahed, Aicha; Hamici, Melia; Djamila, Abdi; Boudissa, Mokhtar

    2018-05-01

    Thin films of titanium oxide (TiO2) deposited on glass substrates were fabricated by using the sol-gel route. The realization of these thin layers was made using the dip-coating technique with a solution of titanium isopropoxyde as a precursor. The samples prepared with different numbers of deposited layers were annealed at 400 ° C for 2 hours. The main purposes of this work were investigations of both the effect of the number of thin TiO2 layers on the crystal structure of the anatase form first and, their ability to adsorb the solution of methylene blue in order to make colored filters from a photocatalytic process. The deposited titanium-oxide layers were characterized by using various techniques: namely, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and UV-Visible spectrometry. The result obtained by using the XRD technique showed the appearance of an anatase phase, as was confirmed by using Raman spectroscopy. The AFM surface analysis allowed the surface topography to be characterized and the surface roughness to be measured, which increased with increasing number of layers. The UV-Visible spectra showed that the TiO2 films had a good transmittance varying from 65% to 95% according to the number of layers. The gap energy varied as a function of the number of deposited layers. The as deposited TiO2 layers were tested as a photocatalyst towards the adsorption of methylene blue dye. The results obtained during this study showed that the adsorption capacity varied according to the number of deposited thin layers and the exposing duration to ultraviolet (UV) light. The maximum absorption rate of the dye was obtained for the two-layer sample. Seventy-two hours of irradiation allowed the adsorption intensity of the dye to be maximized for two-layer films.

  17. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  18. High electric breakdown strength and energy density in vinylidene fluoride oligomer/poly(vinylidene fluoride) blend thin films

    NASA Astrophysics Data System (ADS)

    Rahimabady, Mojtaba; Chen, Shuting; Yao, Kui; Eng Hock Tay, Francis; Lu, Li

    2011-10-01

    Dense α-phase blend films of vinylidene fluoride (VDF) oligomer and poly(vinylidene fluoride) (PVDF) of various compositions were prepared from chemical solution deposition. The dielectric constant of the films was unexpectedly lower, and the mechanical strength was higher than either of the two components, leading to high electromechanical dielectric breakdown strength (>850 MV/m vs. 300˜500 MV/m for typical PVDF-based films). The properties were attributed to the unique blend structure with high crystallinity and densely packed rigid amorphous phase incorporating long and short chains. A maximum polarization of 162 mC/m2 and a large electric energy density up to 27.3 J/cm3 were obtained.

  19. A facile synthesis of α-MnO2 used as a supercapacitor electrode material: The influence of the Mn-based precursor solutions on the electrochemical performance

    NASA Astrophysics Data System (ADS)

    Li, Wenyao; Xu, Jiani; Pan, Yishuang; An, Lei; Xu, Kaibing; Wang, Guangjin; Yu, Zhishui; Yu, Li; Hu, Junqing

    2015-12-01

    Three types of α-MnO2 nanomaterials are synthesized in different Mn-based precursor solutions by using a facile electrochemical deposition at the same depositional condition. The relationships between the precursor solutions and corresponding MnO2 nanomaterials' morphology as well as the electrochemical performance have been studied. As an electrode, electrochemical measurements show that the MnO2 deposited in MnCl2 precursor solution (MnO2-P3) exhibits an enhanced specific capacitance (318.9 F g-1 at 2 mV s-1). Moreover, this electrode demonstrates a good rate capability with 44% retention, which is higher than the MnO2-P1 deposited with Mn(CH3COOH)2 solution and the MnO2-P2 deposited with Mn(NO3)2 precursor solution. Besides, the specific capacitance of the MnO2-P3 electrode nearly has 98.2% retention after 2000 cycles, showing good long-term cycle stability. These findings show that the MnO2-P3 is a promising electrode material for supercapacitors.

  20. Mercury from mineral deposits and potential environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2003-01-01

    Mercury deposits are globally distributed in 26 mercury mineral belts. Three types of mercury deposits occur in these belts: silica-carbonate, hot-spring, and Almaden. Mercury is also produced as a by-product from several types of gold-silver and massive sulfide deposits, which account for 5% of the world's production. Other types of mineral deposits can be enriched in mercury and mercury phases present are dependent on deposit type. During processing of mercury ores, secondary mercury phases form and accumulate in mine wastes. These phases are more soluble than cinnabar, the primary ore mineral, and cause mercury deposits to impact the environment more so than other types of ore deposits enriched in mercury. Release and transport of mercury from mine wastes occur primarily as mercury-enriched particles and colloids. Production from mercury deposits has decreased because of environmental concerns, but by-product production from other mercury-enriched mineral deposits remains important.

  1. Titania Deposition on PMR-15

    NASA Technical Reports Server (NTRS)

    Meador, Mary B.; Sutter, James K.; Pizem, Hillel; Gershevitz, Olga; Goffer, Yossi; Frimer, Aryeh A.; Sukenik, Chaim N.; Sampathkumaran, Uma; Milhet, Xavier; McIlwain, Alan

    2005-01-01

    The formation, degree of crystallinity and adherence of dense titania (TiO2) thin film coatings on a high-temperature polyimide resin (PMR-15) can be influenced by the chemical composition of the polymer surface. Furthermore, solution deposition conditions can be adjusted to provide additional control over the morphology and crystallinity of the titania films. Recipes for solution-based titania deposition that used a slowly-hydrolyzing titanium fluoride salt in the presence of boric acid as a fluoride scavenger allowed growth of films up to 750 nm thick in 22 h. By adjusting solution pH and temperature, either amorphous titania or oriented crystalline anatase films could be formed. Surface sulfonate groups enhance the adhesion of solution-deposited oxide thin film coatings. While most sulfonation procedures severely damaged the PMR-15 surface, the use of chlorosulfonic acid followed by hydrolysis of the installed chlorosulfonyl groups provided effective surface sulfonation without significant surface damage. In some cases, the oxide deposition solution caused partial hydrolysis of the polymer surface, which itself was sufficient to allow adhesion of the titania film through chelation of titanium ions by exposed benzoic acid groups on the polymer surface.

  2. Paleographic and sedimentologic significance of Mississippian sequence at Mt. Darby, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dejarnett, J.

    1985-05-01

    Mississippian strata at Mt. Darby comprise the Madison Group and the overlying Humbug Formation. This sequence, although initially transgressive, exhibits an overall regressive character produced by progradation of platform carbonates in response to sea level fluctuations related to Antler orogenic events. The Paine Member of the Lodgepole Limestone, the basal formation of the Madison Group, consists of relatively deep-water carbonates including a possible Waulsortian-type carbonate bank that accumulated on a Kinderhookian foreslope. At least five shoaling-upward grainstone cycles are recognizable in the Woodhurst Member of the Lodgepole Limestone. These cycles record Osagean deposition in shallow agitated environments that developed highmore » on a clinoform ramp. Shelf-margin and platform carbonates dominate the Mission Canyon Limestone, the upper formation of the Madison Group. this unit consists of two asymmetric deposition cycles, each with a thick regressive phase, capped by an evaporite solution breccia and an overlying thin transgressive phase. The Humbug Formation, a sequence of fine-grained carbonates and sandstones, represents part of a deltaic complex that developed offshore from the Meramecian karst plain. Humbug sediments were transported northward to the Mt. Darby area from the area of the present Uinta Mountains, or another deltaic system formed there. Deposition in the study area was apparently continuous upward from the Madison carbonates into the Humbug. The middle Meramecian shoreline trended northwest between the present locations of Mt. Darby and Haystack Peak.« less

  3. Microstructural and mechanical characterization of laser deposited advanced materials

    NASA Astrophysics Data System (ADS)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  4. Hydrazine-Free Solution-Deposited CuIn(S,Se)2 Solar Cells by Spray Deposition of Metal Chalcogenides.

    PubMed

    Arnou, Panagiota; van Hest, Maikel F A M; Cooper, Carl S; Malkov, Andrei V; Walls, John M; Bowers, Jake W

    2016-05-18

    Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.

  5. Deposition and dielectric characterization of strontium and tantalum-based oxide and oxynitride perovskite thin films

    NASA Astrophysics Data System (ADS)

    Jacq, S.; Le Paven, C.; Le Gendre, L.; Benzerga, R.; Cheviré, F.; Tessier, F.; Sharaiha, A.

    2016-04-01

    We have synthesized the composition x = 0.01 of the (Sr1-xLax)2(Ta1-xTix)2O7 solid solution, mixing the ferroelectric perovskite phases Sr2Ta2O7 and La2Ti2O7. Related oxide and oxynitride materials have been produced as thin films by magnetron radio frequency sputtering. Reactive sputter deposition was conducted at 750 °C under a 75 vol.% (Ar) + 25 vol.% (N2,O2) mixture. An oxygen-free plasma leads to the deposition of an oxynitride film (Sr0.99La0.01) (Ta0.99Ti0.01)O2N, characterized by a band gap Eg = 2.30 eV and a preferential (001) epitaxial growth on (001) SrTiO3 substrate. Its dielectric constant and loss tangent are respectively Epsilon' = 60 (at 1 kHz) and tanDelta = 62.5 × 10-3. In oxygen-rich conditions (vol.%N2 ≤ 15%), (110) epitaxial (Sr0.99La0.01)2(Ta0.99Ti0.01)2O7 oxides films are deposited, associated to a larger band gap value (Eg = 4.55 eV). The oxide films permittivity varies from 45 to 25 (at 1 kHz) in correlation with the decrease in crystalline orientation; measured losses are lower than 5.10-3. For 20 ≤ vol.% N2 ≤ 24.55, the films are poorly crystallized, leading to very low permittivities (minimum Epsilon' = 3). A correlation between the dielectric losses and the presence of an oxynitride phase in the samples is highlighted.

  6. Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyekyoung; Lee, Jong-Gun; Mai, Xuan Dung

    Controlling the thickness of quantum dot (QD) films is difficult using existing film formation techniques, which employ pre-ligand-exchanged PbS QD inks, because of several issues: 1) poor colloidal stability, 2) use of high-boiling-point solvents for QD dispersion, and 3) limitations associated with one-step deposition. Here in this paper, we suggest a new protocol for QD film deposition using electrical double-layered PbS QD inks, prepared by solution-phase ligand exchange using methyl ammonium lead iodide (MAPbI 3). The films are deposited by the supersonic spraying technique, which facilitates the rapid evaporation of the solvent and the subsequent deposition of the PbS QDmore » ink without requiring a post-deposition annealing treatment for solvent removal. The film thickness could be readily controlled by varying the number of spraying sweeps made across the substrate. This spray deposition process yields high-quality n-type QD films quickly (within 1 min) while minimizing the amount of the PbS QD ink used to less than 5 mg for one device (300-nm-thick absorbing layer, 2.5 x 2.5 cm 2). Further, the formation of an additional p-layer by treatment with mercaptopropionic acid allows for facile hole extraction from the QD films, resulting in a power conversion efficiency of 3.7% under 1.5 AM illumination.« less

  7. Experimental and theoretical deposition rates from salt-seeded combustion gases of a Mach 0.3 burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    Deposition rates on platinum-rhodium cylindrical collectors rotating in the cross streams of the combustion gases of a salt-seeded Mach 0.3 burner rig were determined. The collectors were internally air cooled so that their surface temperatures could be widely varied while they were exposed to constant combustion gas temperatures. The deposition rates were compared with those predicted by the chemically frozen boundary layer (CFBL) computer program, which is based on multicomponent vapor transport through the boundary layer. Excellent agreement was obtained between theory and experiment for the NaCl-seeded case, but the agreement lessened as the seed was changed to synthetic sea salt, NaNO3, and K2SO4, respectively, and was particularly poor in the case of Na2SO4. However, when inertial impaction was assumed to be the deposition mechanism for the Na2SO4 case, the predicted rates agreed well with the experimental rates. The former were calculated from a mean particle diameter that was derived from the measured intial droplet size distribution of the solution spray. Critical experiments showed that liquid phase deposits were blown off the smooth surface of the platinum-rhodium collectors by the aerodynamic shear forces of the high-velocity combustion gases but that rough or porous surfaces retained their liquid deposits.

  8. Supersonically Spray-Coated Colloidal Quantum Dot Ink Solar Cells

    DOE PAGES

    Choi, Hyekyoung; Lee, Jong-Gun; Mai, Xuan Dung; ...

    2017-04-04

    Controlling the thickness of quantum dot (QD) films is difficult using existing film formation techniques, which employ pre-ligand-exchanged PbS QD inks, because of several issues: 1) poor colloidal stability, 2) use of high-boiling-point solvents for QD dispersion, and 3) limitations associated with one-step deposition. Here in this paper, we suggest a new protocol for QD film deposition using electrical double-layered PbS QD inks, prepared by solution-phase ligand exchange using methyl ammonium lead iodide (MAPbI 3). The films are deposited by the supersonic spraying technique, which facilitates the rapid evaporation of the solvent and the subsequent deposition of the PbS QDmore » ink without requiring a post-deposition annealing treatment for solvent removal. The film thickness could be readily controlled by varying the number of spraying sweeps made across the substrate. This spray deposition process yields high-quality n-type QD films quickly (within 1 min) while minimizing the amount of the PbS QD ink used to less than 5 mg for one device (300-nm-thick absorbing layer, 2.5 x 2.5 cm 2). Further, the formation of an additional p-layer by treatment with mercaptopropionic acid allows for facile hole extraction from the QD films, resulting in a power conversion efficiency of 3.7% under 1.5 AM illumination.« less

  9. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  10. Optimization of low cost, non toxic, earth abundant p-type Cu2SnS3 thin film for Photovoltaic application

    NASA Astrophysics Data System (ADS)

    Chaudhari, J. J.; Patel, S.; Joshi, U. S.

    2016-09-01

    Cu2SnS3 (CTS) is one of promising candidate as an absorber material for thin film solar cell. Because of relatively higher prize of Indium and hazardous environmental impact of processing of Gallium, CTS is suitable alternative candidate to Cu2SnS3 (CIGS) based solar cell as its constituent elements such as copper, tin and sulphur are abundantly available in earth's crust. CTS is ternary semiconductor and its energy band gap is 1.5eV, which is perfectly matched with solar energy spectrum for maximum transfer of solar energy into electrical energy through photovoltaic action. The primary methods for the synthesis of CTS are Thermal evaporation, electrochemical, sputtering and wet chemical methods. Here in this paper we have optimized a low cost non-vacuum solution process method for the synthesis of CTS without any external sulfurization. The X-ray diffraction studies showed the formation of phase with the peaks corresponding to (112), (220) and (312) planes. Chemical Solution Deposition (CSD) for the synthesis of CTS is suitable for large area deposition and it includes several routes like solvothermal methods, direct liquid coating and nano ink based technique. The metal Chloride salts and thiourea is used as a source of sulphur to synthesize CTS solution and homogeneous thin films of CTS deposited on glass substrate using spin coating method. Use of abrasive solvent like hydrazine and hydrogen sulphide gas which are used to synthesize CTS thin film have detrimental effect on environment, we report eco friendly solvent based approach to synthesize CTS at low temperature 200 °C.

  11. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.

  12. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

  13. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    NASA Astrophysics Data System (ADS)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  14. Fe3O4/γ-Fe2O3 nanoparticle multilayers deposited by the Langmuir-Blodgett technique for gas sensors application.

    PubMed

    Capone, S; Manera, M G; Taurino, A; Siciliano, P; Rella, R; Luby, S; Benkovicova, M; Siffalovic, P; Majkova, E

    2014-02-04

    Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.

  15. Simple Determination of Gaseous and Particulate Compounds Generated from Heated Tobacco Products.

    PubMed

    Uchiyama, Shigehisa; Noguchi, Mayumi; Takagi, Nao; Hayashida, Hideki; Inaba, Yohei; Ogura, Hironao; Kunugita, Naoki

    2018-06-19

    As a new form of cigarettes, heated tobacco products (HTPs) have been rapidly distributed worldwide. In this study, an improved method for analyzing gaseous and particulate compounds generated from HTPs is described. Smoke is collected using a GF-CX572 sorbent cartridge with 300 mg of carbon molecular sieves, that is, Carboxen 572 (CX572), and a 9 mm glass-fiber filter (GF). After collection, the CX572 particles from the cartridge are transferred along with the GF and deposited into a vial containing two phases of carbon disulfide and methanol. The CX572 particles settle into the lower carbon disulfide phase, while nonpolar compounds are desorbed. After the sample is allowed to stand, the solution is slowly stirred. The two-phase mixture of carbon disulfide and methanol is combined into a homogeneous solution. Polar compounds are then desorbed, while the desorbed nonpolar compounds remain in solution. For the analysis of carbonyl compounds, an enriched 2,4-dinitrophenylhydrazine solution is added to a portion of the combined solution for derivatization and subsequent high-performance liquid chromatography analysis. For the analysis of volatile organic compounds and water, a portion of the combined solution is analyzed by gas chromatography-mass spectrometry or equipped with a thermal conductivity detector. By applying the proposed GF-CX572 one-cartridge method to the analysis of the mainstream smoke generated from HTPs and traditional cigarettes, several chemical compounds are detected, and the chemical composition of smoke is revealed. The GF-CX572 one-cartridge method can analyze gaseous and particulate chemical compounds from the HTP smoke by utilizing not only the entire puff volume but also one puff volume because the GF-CX-572 cartridge can be replaced with a new cartridge within 3 s. An overview of the chemicals generated from HTPs is obtained in detail by one-puff volume sampling. In addition, the generated chemical compounds strongly depend on the temperature of tobacco leaves in HTPs.

  16. Self-Ordering and Complexity in Epizonal Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Henley, Richard W.; Berger, Byron R.

    Epizonal base and precious metal deposits makeup a range of familiar deposit styles including porphyry copper-gold, epithermal veins and stockworks, carbonate-replacement deposits, and polymetallic volcanic rock-hosted (VHMS) deposits. They occur along convergent plate margins and are invariably associated directly with active faults and volcanism. They are complex in form, variable in their characteristics at all scales, and highly localized in the earth's crust. More than a century of detailed research has provided an extensive base of observational data characterizing these deposits, from their regional setting to the fluid and isotope chemistry of mineral deposition. This has led to a broad understanding of the large-scale hydrothermal systems within which they form. Low salinity vapor, released by magma crystallization and dispersed into vigorously convecting groundwater systems, is recognized as a principal source of metals and the gases that control redox conditions within systems. The temperature and pressure of the ambient fluid anywhere within these systems is close to its vapor-liquid phase boundary, and mineral deposition is a consequence of short timescale perturbations generated by localized release of crustal stress. However, a review of occurrence data raises questions about ore formation that are not addressed by traditional genetic models. For example, what are the origins of banding in epithermal veins, and what controls the frequency of oscillatory lamination? What controls where the phenomenon of mineralization occurs, and why are some porphyry deposits, for example, so much larger than others? The distinctive, self-organized characteristics of epizonal deposits are shown to be the result of repetitive coupling of fracture dilation consequent on brittle failure, phase separation ("boiling"), and heat transfer between fluid and host rock. Process coupling substantially increases solute concentrations and triggers fast, far-from-equilibrium depositional processes. Since these coupled processes lead to localized transient changes in fluid characteristics, paragenetic, isotope, and fluid inclusion data relate to conditions at the site of deposition and only indirectly to the characteristics of the larger-scale hydrothermal system and its longer-term behavior. The metal concentrations (i.e. grade) of deposits and their internal variation is directly related to the geometry of the fracture array at the deposit scale, whereas finer-scale oscillatory fabrics in ores may be a result of molecular scale processes. Giant deposits are relatively rare and develop where efficient metal deposition is spatially focused by repetitive brittle failure in active fault arrays. Some brief case histories are provided for epithermal, replacement, and porphyry mineralization. These highlight how rock competency contrasts and feedback between processes, rather than any single component of a hydrothermal system, govern the size of individual deposits. In turn, the recognition of the probabilistic nature of mineralization provides a firmer foundation through which exploration investment and risk management decisions can be made.

  17. The impact of multiphase behaviour on coke deposition in heavy oil hydroprocessing catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohui

    Coke deposition in heavy oil catalytic hydroprocessing remains a serious problem. The influence of multiphase behaviour on coke deposition is an important but unresolved question. A model heavy oil system (Athabasca vacuum bottoms (ABVB) + decane) and a commercial heavy oil hydrotreating catalyst (NiMo/gamma-Al 2O3) were employed to study the impact of multiphase behaviour on coke deposition. The model heavy oil mixture exhibits low-density liquid + vapour (L1V), high-density liquid + vapour (L2V), as well as low-density liquid + high-density liquid + vapour (L1L2V) phase behaviour at a typical hydroprocessing temperature (380°C). The L2 phase only arises for the ABVB composition range from 10 to 50 wt %. The phase behaviour undergoes transitions from V to L2V, to L1L2V, to L1V with increasing ABVB compositions at the pressure examined. The addition of hydrogen into the model heavy oil mixtures at a fixed mass ratio (0.0057:1) does not change the phase behaviour significantly, but shifts the phase regions and boundaries vertically from low pressure to high pressure. In the absence of hydrogen, the carbon content, surface area and pore volume losses for catalyst exposed to the L1 phase are greater than for the corresponding L2 phase despite a higher coke precursor concentration in L2 than in L1. By contrast, in the presence of hydrogen, the carbon content, surface area and pore volume losses for the catalyst exposed to the L2 phase are greater than for the corresponding L1 phase. The higher hydrogen concentration in L1 appears to reverse the observed results. In the presence of hydrogen, L2 was most closely associated with coke deposition, L1 less associated with coke deposition, and V least associated with coke deposition. Coke deposition is maximized in the phase regions where the L2 phase arises. This key result is inconsistent with expectation and coke deposition models where the extent of coke deposition, at otherwise fixed reaction conditions, is asserted to be proportional to the nominal concentration of coke precursor present in the feed. These new findings are very significant both with respect to providing guidance concerning possible operation improvement for existing processes and for the development of new upgrading processes.

  18. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    DOEpatents

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  19. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.

    PubMed

    Bazant, Martin Z

    2013-05-21

    Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations. In condensed matter, strong interactions alter chemical activities and create variations that can dramatically affect the reaction rate. The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend not only on the order parameter but also on its gradients at phase boundaries. Reaction-driven phase transformations are common in electrochemistry, when charge transfer is accompanied by ion intercalation or deposition in a solid phase. Examples abound in Li-ion, metal-air, and lead-acid batteries, as well as metal electrodeposition-dissolution. Despite complex thermodynamics, however, the standard kinetic model is the Butler-Volmer equation, based on a dilute solution approximation. The Marcus theory of charge transfer likewise considers isolated reactants and neglects elastic stress, configurational entropy, and other nonidealities in condensed phases. The limitations of existing theories recently became apparent for the Li-ion battery material LixFePO4 (LFP). It has a strong tendency to separate into Li-rich and Li-poor solid phases, which scientists believe limits its performance. Chemists first modeled phase separation in LFP as an isotropic "shrinking core" within each particle, but experiments later revealed striped phase boundaries on the active crystal facet. This raised the question: What is the reaction rate at a surface undergoing a phase transformation? Meanwhile, dramatic rate enhancement was attained with LFP nanoparticles, and classical battery models could not predict the roles of phase separation and surface modification. In this Account, I present a general theory of chemical kinetics, developed over the past 7 years, which is capable of answering these questions. The reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed in terms of variational chemical potentials. The theory unifies and extends the Cahn-Hilliard and Allen-Cahn equations through a master equation for nonequilibrium chemical thermodynamics. For electrochemistry, I have also generalized both Marcus and Butler-Volmer kinetics for concentrated solutions and ionic solids. This new theory provides a quantitative description of LFP phase behavior. Concentration gradients and elastic coherency strain enhance the intercalation rate. At low currents, the charge-transfer rate is focused on exposed phase boundaries, which propagate as "intercalation waves", nucleated by surface wetting. Unexpectedly, homogeneous reactions are favored above a critical current and below a critical size, which helps to explain the rate capability of LFP nanoparticles. Contrary to other mechanisms, elevated temperatures and currents may enhance battery performance and lifetime by suppressing phase separation. The theory has also been extended to porous electrodes and could be used for battery engineering with multiphase active materials. More broadly, the theory describes nonequilibrium chemical systems at mesoscopic length and time scales, beyond the reach of molecular simulations and bulk continuum models. The reaction rate is consistently defined for inhomogeneous, nonequilibrium states, for example, with phase separation, large electric fields, or mechanical stresses. This research is also potentially applicable to fluid extraction from nanoporous solids, pattern formation in electrophoretic deposition, and electrochemical dynamics in biological cells.

  20. Growing Oxide Nanowires and Nanowire Networks by Solid State Contact Diffusion into Solution-Processed Thin Films.

    PubMed

    Glynn, Colm; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2016-11-01

    New techniques to directly grow metal oxide nanowire networks without the need for initial nanoparticle seed deposition or postsynthesis nanowire casting will bridge the gap between bottom-up formation and top-down processing for many electronic, photonic, energy storage, and conversion technologies. Whether etched top-down, or grown from catalyst nanoparticles bottom-up, nanowire growth relies on heterogeneous material seeds. Converting surface oxide films, ubiquitous in the microelectronics industry, to nanowires and nanowire networks by the incorporation of extra species through interdiffusion can provide an alternative deposition method. It is shown that solution-processed thin films of oxides can be converted and recrystallized into nanowires and networks of nanowires by solid-state interdiffusion of ionic species from a mechanically contacted donor substrate. NaVO 3 nanowire networks on smooth Si/SiO 2 and granular fluorine-doped tin oxide surfaces can be formed by low-temperature annealing of a Na diffusion species-containing donor glass to a solution-processed V 2 O 5 thin film, where recrystallization drives nanowire growth according to the crystal habit of the new oxide phase. This technique illustrates a new method for the direct formation of complex metal oxide nanowires on technologically relevant substrates, from smooth semiconductors, to transparent conducting materials and interdigitated device structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands.

    PubMed

    Boxman, Andries W; Peters, Roy C J H; Roelofs, Jan G M

    2008-12-01

    In a Scots pine forest the throughfall deposition and the chemical composition of the soil solution was monitored since 1984. (Inter)national legislation measures led to a reduction of the deposition of nitrogen and sulphur. The deposition of sulphur has decreased by approximately 65%. The total mineral-nitrogen deposition has decreased by ca. 25%, which is mainly due to a reduction in ammonium-N deposition (-40%), since nitrate-N deposition has increased (+50%). The nitrogen concentration in the upper mineral soil solution at 10 cm depth has decreased, leading to an improved nutritional balance, which may result in improved tree vitality. In the drainage water at 90 cm depth the fluxes of NO3(-) and SO4(2-) have decreased, resulting in a reduced leeching of accompanying base cations, thus preserving nutrients in the ecosystem. It may take still several years, however, before this will meet the prerequisite of a sustainable ecosystem.

  2. Method of monitoring photoactive organic molecules in-situ during gas-phase deposition of the photoactive organic molecules

    DOEpatents

    Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric

    2015-06-23

    A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.

  3. Direct printing of microstructures by femtosecond laser excitation of nanocrystals in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shou, Wan; Pan, Heng, E-mail: hp5c7@mst.edu

    2016-05-23

    We report direct printing of micro/sub-micron structures by femtosecond laser excitation of semiconductor nanocrystals (NCs) in solution. Laser excitation with moderate intensity (10{sup 11}–10{sup 12} W/cm{sup 2}) induces 2D and 3D deposition of CdTe nanocrystals in aqueous solution, which can be applied for direct printing of microstructures. It is believed that laser irradiation induces charge formation on nanocrystals leading to deposition. Furthermore, it is demonstrated that the charged nanocrystals can respond to external electrical bias, enabling a printing approach based on selective laser induced electrophoretic deposition. Finally, energy dispersive X-ray analysis of deposited structures shows oxidation occurs and deposited structure mainlymore » consists of Cd{sub x}O.« less

  4. Synthesis of silicon containing materials using liquid hydrosilane compositions through direct injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasan, Guruvenket; Sailer, Robert A.; Hoey, Justin

    An apparatus and a non-vapor-pressure dependent method of chemical vapor deposition of Si based materials using direct injection of liquid hydrosilane(s) are presented. Liquid silane precursor solutions may also include metal, non-metal or metalloid dopants, nanomaterials and solvents. An illustrative apparatus has a precursor solution and carrier gas system, atomizer and deposit head with interior chamber and a hot plate supporting the substrate. Atomized liquid silane precursor solutions and carrier gas moves through a confined reaction zone that may be heated and the aerosol and vapor are deposited on a substrate to form a thin film. The substrate may bemore » heated prior to deposition. The deposited film may be processed further with thermal or laser processing.« less

  5. Quality of wet deposition in the Grand Calumet River watershed, northwestern Indiana, April 29, 1997-April 28, 1998

    USGS Publications Warehouse

    Willoughby, Timothy C.

    2000-01-01

    The Grand Calumet River, in northwestern Indiana, drains a heavily industrialized area along the southern shore of Lake Michigan. Steel production and petroleum refining are two of the area?s predominant industries. High-temperature processes, such as fossilfuel combustion and steel production, release contaminants to the atmosphere that may result in wet deposition being a major contributor to major-ion and trace-metal loadings in northwestern Indiana and Lake Michigan. A wet-deposition collection site was established at the Gary (Indiana) Regional Airport to monitor the quantity and chemical quality of wet deposition. During a first phase of sampling, 48 wet-deposition samples were collected weekly between June 30, 1992, and August 31, 1993. During a second phase of sampling, 40 wet-deposition samples were collected between October 17, 1995, and November 12, 1996. Forty-two wet-deposition samples were collected during a third phase of sampling, which began April 29, 1997, and was completed April 28, 1998. Wetdeposition samples were analyzed for pH, specific conductance, and selected major ions and trace metals. This report describes the quantity and quality of wet-deposition samples collected during the third sampling phase and compares these findings to the results of the first and second sampling phases. All of the samples collected during the third phase of sampling were of sufficient volumes for at least some of the analyses to be performed. Constituent concentrations from the third sampling phase were not significantly different (at the 5-percent significance level) from those for the second sampling phase. Significant increases, however, were observed in the concentrations of potassium, iron, lead, and zinc when compared to the concentrations observed in the first sampling phase. Weekly loadings were estimated for each constituent measured during the third sampling phase. If constituent concentrations were reported less than the method reporting limit, a range for the weekly loading was computed. The estimated annual loadings of chloride, silica, bromide, copper, and zinc during the third sampling phase were greater than those estimated for the first two sampling phases. The only estimated annual loading in the third sampling phase that was less than the estimated annual loadings observed during the first two sampling phases was sulfate. The estimated annual loadings of calcium, magnesium, nitrate, potassium, barium, lead, iron, and manganese observed during the third sampling phase were greater than the loadings observed during the first sampling phase but less than those observed during the second sampling phase. No significant differences were observed between the quantity of wet deposition collected during the three sampling phases.

  6. Synthesis of High Symmetry Phase of Hafnium Dioxide Thin Films and Nickel Ferrite's Effect on Microstructure in Composite Heterostructure

    NASA Astrophysics Data System (ADS)

    Straka, Weston J.

    Hafnium dioxide has attracted a great deal of attention recently due to its potential use in two different electronic applications: CMOS and FeRAM. In CMOS, the usefulness of hafnia comes in due to its high dielectric constant and compatibility with current IC processing parameters. For FeRAM, hafnia's recent discovery to exhibit ferroelectricity in an orthorhombic phase makes this material attractive for replacement of the ferroelectric material in FeRAM. This study shows the feasibility of depositing thin films of hafnium oxide via chemical solution deposition for integration into these devices. The processing parameters necessary to produce this phase show how non-equilibrium processing plays a role in its synthesis. The temperature necessary to achieve the high symmetry phase was at 725 °C for 3 minutes on sapphire, silicon, and coated silicon substrates. The thermal conductivity of each was viewed as the property that allowed the hafnia formation. The dielectric constant of the hafnia films were between 30 and 32 with low dissipation factors and up to 47 with a poor dissipation factor all at 1 kHz. The formation of this phase was shown to be thickness independent with the high symmetry phase existing up to 300 nm film thickness. Interfacing the hafnia film with nickel ferrite was also studied to identify the possibility of using this composite for non-destructive reading of FeRAM. The magnetic properties showed an unchanged nickel ferrite film but the interface between the two was poor leading to the conclusion that more work must be done to successfully integrate these two films.

  7. Aerosol tests conducted at Aberdeen Proving Grounds MD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockmann, John E.; Lucero, Daniel A.; Servantes, Brandon Lee

    Test data are reported that demonstrate the deposition from a spray dispersion system (Illinois Tool Works inductively charging rotary atomization nozzle) for application of decontamination solution to various surfaces in the passenger cabin of a Boeing 737 aircraft. The decontamination solution (EnviroTru) was tagged with a known concentration of fluorescein permitting determination of both airborne decontaminant concentration and surface deposited decontaminant solution so that the effective deposition rates and surface coverage could be determined and correlated with the amount of material sprayed. Six aerosol dispersion tests were conducted. In each test, aluminum foil deposition coupons were set out throughout themore » passenger area and the aerosol was dispersed. The aerosol concentration was measured with filter samplers as well as with optical techniques Average aerosol deposition ranged from 3 to 15 grams of decontamination solution per square meter. Some disagreement was observed between various instruments utilizing different measurement principles. These results demonstrate a potentially effective method to disperse decontaminant to interior surfaces of a passenger aircraft.« less

  8. Electroplating of nanostructured polyaniline-polypyrrole composite coating in a stainless-steel tube for on-line in-tube solid phase microextraction.

    PubMed

    Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Esrafili, Ali; Rezaei, Fatemeh

    2015-06-05

    In this work, a novel and efficient on-line in-tube solid phase microextraction method followed by high performance liquid chromatography was developed for preconcentration and determination of trace amounts of parabens. A nanostructured polyaniline-polypyrrole composite was electrochemically deposited on the inner surface of a stainless steel tube and used as the extraction phase. Several important factors that influence the extraction efficiency, including type of solid-phase coating, extraction and desorption times, flow rates of the sample solution and eluent, pH, and ionic strength of the sample solution were investigated and optimized. Under the optimal conditions, the limits of detection were in the range of 0.02-0.04 μg L(-1). This method showed good linearity for parabens in the range of 0.07-50 μg L(-1), with coefficients of determination better than 0.998. The intra- and inter-assay precisions (RSD%, n=3) were in the range of 5.9-7.0% and 4.4-5.7% at three concentration levels of 2, 10, and 20 μg L(-1), respectively. The extraction recovery values for the spiked samples were in the acceptable range of 80.3-90.2%. The validated method was successfully applied for analysis of methyl-, ethyl-, and propyl parabens in some water, milk, and juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Anion-Dependent Potential Precycling Effects on Lithium Deposition/Dissolution Reaction Studied by an Electrochemical Quartz Crystal Microbalance.

    PubMed

    Smaran, Kumar Sai; Shibata, Sae; Omachi, Asami; Ohama, Ayano; Tomizawa, Eika; Kondo, Toshihiro

    2017-10-19

    The electrochemical quartz crystal microbalance technique was employed to study the initial stage of the electrodeposition and dissolution of lithium utilizing three kinds of electrolyte solutions such as LiPF 6 , LiTFSI, or LiFSI in tetraglyme. The native-SEI (solid-electrolyte interphase) formed by a potential prescan before lithium deposition/dissolution in all three solutions. Simultaneous additional SEI (add-SEI) deposition and its dissolution with lithium deposition and dissolution, respectively, were observed in LiPF 6 and LiTFSI. Conversely, the add-SEI dissolution with lithium deposition and its deposition with lithium dissolution were observed in LiFSI. Additional potential precycling resulted in the accumulation of a "pre-SEI" layer over the native-SEI layer in all of the solutions. With the pre-SEI, only lithium deposition/dissolution were significantly observed in LiTFSI and LiFSI. On the basis of the potential dependences of the mass and resistance changes, the anion-dependent effects of such a pre-SEI layer presence/absence on the lithium deposition/dissolution processes were discussed.

  10. EFFECTS OF PRECURSOR SOLUTION MODIFICATION ON THE CRYSTALLINITY AND ELECTRICAL PROPERTIES OF Na0.5Bi0.5TiO3-BiFeO3 BASED THIN FILM

    NASA Astrophysics Data System (ADS)

    Sui, Huiting; Yang, Changhong; Wang, Gaoyun; Feng, Chao

    2014-07-01

    For chemical solution decomposition process, the precursor solution is a basic factor affecting the quality of the deposited-film. In this paper, we choose (l00)-oriented 0.7[(Bi0.95Ce0.05)0.5Na0.5(Ti0.99Fe0.01)O3]-0.3BiFe0.97Mn0.03O3(0.7NBTCeFe-0.3BFOMn) thin films prepared by various precursor solutions for investigation. The roles of precursor solution modification on crystallinity, ferroelectric and dielectric properties are characterized. With the addition of polyethylene glycol into the solution, phase-pure perovskite structure can be obtained. Furthermore, when the volume ratio for the solvents (ethylene glycol to acetic acid) is modified as 2:1, enhanced ferroelectricity can be achieved with a remanent polarization (Pr) of 27.5 μC/cm2, which coincides well with the capacitance-voltage curve with relatively sharp feature. Also, the 0.7NBTCeFe-0.3BFOMn film exhibits a dielectric constant (ɛr) of 576 and dielectric loss (tan δ) of 0.123 at 100 kHz.

  11. Synthesis and characterization of amorphous yttrium oxide layers by metal organic chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Martynova, I.; Tsymbarenko, D.; Kamenev, A.; Kuzmina, N.; Kaul, A.

    2014-02-01

    The Solution Deposition Planarization method was successfully used for smoothing Ni-alloy tapes with initial surface roughness of 26.7 nm (on 40×40 μm2 area) and 12.6 nm (on 5×5 μm2 area). New precursor solutions were prepared from yttrium acetate and diethylenetriamine or ethylenediamine in MeOH and i-PrOH-alcohols with different viscosities. Using those solutions yttria films with the residual roughness Sa=0.4 nm (on 5×5 μm2 area) and Sa=7.6 nm (on 40×40 μm2 area) were deposited on the Ni-alloy tapes.

  12. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  13. Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition.

    PubMed

    Carretero-Genevrier, Adrián; Gich, Martí

    2015-12-21

    This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr(2+) act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth.

  14. The use of trivalent chromium bath to obtain a solar selective black chromium coating

    NASA Astrophysics Data System (ADS)

    Survilienė, S.; Češūnienė, A.; Juškėnas, R.; Selskienė, A.; Bučinskienė, D.; Kalinauskas, P.; Juškevičius, K.; Jurevičiūtė, I.

    2014-06-01

    Black chromium coatings were electrodeposited from a trivalent chromium bath using a ZnO additive as a second main component. Black chromium was electrodeposited on steel and copper plates and substrates plated with bright nickel prior to black chromium electrodeposition. The black chromium coatings were characterized by XRD and SEM. The XRD data suggest that the phase structure of black chromium may be defined as a zinc solid solution in chromium or a chromium solid solution in zinc depending on the chromium/zinc ratio in the deposit. The role of substrate finish was evaluated through the corrosion resistance and reflectance of black chromium. According to corrosion tests the samples plated with bright nickel prior to black chromium deposition have shown the highest corrosion resistance. The electrodeposited black chromium possesses good optical properties for the absorption of solar energy. The absorption coefficient of black chromium was found to be over 0.99 for the samples obtained without the Ni undercoat and below 0.99 for those obtained with the use of Ni undercoat. However, the use of nickel undercoat before black chromium plating is recommended because it remarkably improves the corrosion resistance of samples.

  15. Characterization of mechanical properties and electrochemical behaviour in a Hank´s solution of 316L/Cr1- xAlxN system

    NASA Astrophysics Data System (ADS)

    Osorio, D. M.; Caicedo, J. C.; Aperador, W.; Benitez-Castro, A. M.; Giraldo-Betancur, A. L.; Muñoz-Saldaña, J.; Yañez-Limón, J. M.; Sanchez, O.; Zambrano, G.

    2017-01-01

    Cr1-xAlxN hard coatings were successfully deposited by R.F. reactive magnetron co-sputtering in an Ar/N2 gas mixture using chromium and aluminium targets on 316L stainless steel substrates. Crystallographic orientations associated to the Cr1-xAlxN FCC based in the conjugate complex of CrN and w-AlN phases, with ao=4.18Å lattice parameter for the ternary Cr1-xAlxN compound were identified by X-Ray diffraction. The thickness and roughness of the deposited coatings are 1.00±0.05nm and 2.65±0.6nm, respectively. The mechanical properties were determined by nanoindentation leading to a hardness of 27.8±2.6GPa and elastic modulus of 346GPa. The corrosion resistance of the coated 316L/Cr1-xAlxN system under simulated body fluid (SBF, Hank’s solution) was determined via electrochemical impedance spectroscopy. A reduction in the corrosion rate of 99% in relation to uncoated 316L stainless steel substrate was found by Tafel. Thus, these coatings seem to be excellent candidates to be used in biomedical applications.

  16. Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition

    PubMed Central

    Carretero-Genevrier, Adrián; Gich, Martí

    2015-01-01

    This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr2+ act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth. PMID:26710210

  17. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

    PubMed

    Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping

    2015-12-01

    Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The Underpotential Deposition of Copper on Pt(311): Site Selective Deposition and Anion Effects

    DTIC Science & Technology

    1994-03-14

    water (18 MOhms Millipore Milli-Q water). Aqueous acid solutions were prepared from high-purity (ULTREX) sulfuric acid . Copper ion solutions were...prepared by dissolution of CuSO 4 .5H 2 0 (Aldrich Gold Label 5N5) in sulfuric acid solutions. Chloride and bromide containing solutions were prepared by...Voltammetric characteristics of a Pt(311) electrode in acidic solutions containing chloride and bromide. Fig. 1 shows cyclic voltammograxns for the

  19. Investigation of the Factors Influencing Volatile Chemical Fate During Steady-state Accretion on Wet-growing Hail

    NASA Astrophysics Data System (ADS)

    Michael, R. A.; Stuart, A. L.

    2007-12-01

    Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.

  20. Deposition of thin Si and Ge films by ballistic hot electron reduction in a solution-dripping mode and its application to the growth of thin SiGe films

    NASA Astrophysics Data System (ADS)

    Suda, Ryutaro; Yagi, Mamiko; Kojima, Akira; Mentek, Romain; Mori, Nobuya; Shirakashi, Jun-ichi; Koshida, Nobuyoshi

    2015-04-01

    To enhance the usefulness of ballistic hot electron injection into solutions for depositing thin group-IV films, a dripping scheme is proposed. A very small amount of SiCl4 or GeCl4 solution was dripped onto the surface of a nanocrystalline Si (nc-Si) electron emitter, and then the emitter is driven without using any counter electrodes. It is shown that thin Si and Ge films are deposited onto the emitting surface. Spectroscopic surface and compositional analyses showed no extrinsic carbon contaminations in deposited thin films, in contrast to the results of a previous study using the dipping scheme. The availability of this technique for depositing thin SiGe films is also demonstrated using a mixture SiCl4+GeCl4 solution. Ballistic hot electrons injected into solutions with appropriate kinetic energies promote preferential reduction of target ions with no by-products leading to nuclei formation for the thin film growth. Specific advantageous features of this clean, room-temperature, and power-effective process is discussed in comparison with the conventional dry and wet processes.

  1. Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu2Zn1-xSnxS4 thin films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Thiruvenkadam, S.; Prabhakaran, S.; Sujay Chakravarty; Ganesan, V.; Vasant Sathe; Santhosh Kumar, M. C.; Leo Rajesh, A.

    2018-03-01

    Quaternary kesterite Cu2ZnSnS4 (CZTS) compound is one of the most promising semiconductor materials consisting of abundant and eco-friendly elements for absorption layer in thin film solar cells. The effect of Zn/Sn ratio on Cu2Zn1-xSnxS4 (0 ≤ x ≤ 1) thin films were studied by deposited by varying molar volumes in the precursor solution of zinc and tin was carried out in proportion of (1-x) and x respectively onto soda lime glass substrates kept at 573 K by using chemical spray pyrolysis technique. The GIXRD pattern revealed that the films having composites of Cu2ZnSnS4, Cu2SnS3, Sn2S3, CuS and ZnS phases. The crystallinity and grain size were found to increase by increasing the x value and the preferential orientation along (103), (112), (108) and (111) direction corresponding to CZTS, Cu2SnS3, CuS, and ZnS phases respectively. Micro-Raman spectra exposed a prominent peak at 332 cm-1 corresponding to the CZTS phase. Atomic force microscopy was employed to study the grain size and roughness of the deposited thin films. The optical band gap was found to lie between 1.45 and 2.25 eV and average optical absorption coefficient was found to be greater than 105 cm-1. Hall measurements exhibited that all the deposited Cu2Zn1-xSnxS4 films were p type and the resistivity lies between 10.9 ×10-2Ωcm and 149.6 × 10-2Ωcm .

  2. Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1-x ,Ga x )Se2 Film Fabricated by Three-Stage Process

    NASA Astrophysics Data System (ADS)

    Wang, Shenghao; Nazuka, Takehiro; Hagiya, Hideki; Takabayashi, Yutaro; Ishizuka, Shogo; Shibata, Hajime; Niki, Shigeru; Islam, Muhammad M.; Akimoto, Katsuhiro; Sakurai, Takeaki

    2018-02-01

    For copper indium gallium selenide [Cu(In1-x ,Ga x )Se2, CIGS]-based solar cells, defect states or impurity phase always form due to both the multinary compositions of CIGS film and the difficulty of controlling the growth process, especially for high Ga concentration. To further improve device performance, it is important to understand such formation of impurity phase or defect states during fabrication. In the work presented herein, the formation mechanism of impurity phase Cu2-δ Se and its depth profile in CIGS film with high Ga content, in particular CuGaSe2 (i.e., CGS), were investigated by applying different growth conditions (i.e., normal three-stage process and two-cycle three-stage process). The results suggest that impurity phase Cu2-δ Se is distributed nonuniformly in the film because of lack of Ga diffusion. The formed Cu2-δ Se can be removed by etching the as-deposited CGS film with bromine-methanol solution, resulting in improved device performance.

  3. Electrochemically Induced Insulator-Metal-Insulator Transformations of Vanadium Dioxide Nanocrystal Films

    NASA Astrophysics Data System (ADS)

    Milliron, Delia; Dahlman, Clayton; Leblanc, Gabriel; Bergerud, Amy

    Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. The low-temperature state is insulating and transparent, while the high-temperature state is metallic and IR blocking. Alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, VO2 nanocrystal films have been prepared by solution deposition of V2O3 nanocrystals followed by oxidative annealing. Nanocrystalline VO2 films are electrochemically reduced, inducing changes in their electronic and optical properties. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. Reduction causes an initial transformation to a metallic, IR-colored distorted monoclinic phase. However, an unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase is observed upon further reduction.

  4. Synthesis and Physical Properties Characterization of CdSe1-ySy Nanolayers Deposited by Chemical Bath Deposition at Low-Temperature Treatment

    NASA Astrophysics Data System (ADS)

    Flores-Mena, J. E.; Contreras-Rascón, J. I.; Diaz-Reyes, J.; Castillo-Ojeda, R. S.

    In this work, we present the synthesis and structural and optical characterizations of CdSe1-y S y deposited by chemical bath deposition (CBD) technique on corning glass at a temperature of 20 ± 2 °C. The sulfur molar fraction was varied from 0 to 42.13 %, which was realized by varying the thiourea volume added to the growth solution in the range from 0 to 30 mL. The chemical stoichiometry was estimated by energy dispersive spectrometry (EDS). The CdSe1-y S y showed hexagonal wurtzite crystalline phase that was found by X-ray diffraction (XRD) analysis and Raman spectroscopy. The average grain size range of the films was 1.48-1.68 nm that was determined using the Debye-Scherrer equation W(002) direction and was confirmed by high-resolution transmission electron microscopy (HRTEM). Raman scattering shows that the lattice dynamics is characteristic of bimodal behavior and the multipeaks adjust to the first optical longitudinal mode for the CdSeS, in all cases, Raman spectra show two dominant vibrational bands about 208 and 415 cm-1 associated at CdSe-1LO-like and CdSe-2LO-like. CdSe1-y S y band gap energy can be varied from 1.86 to 2.16 eV by varying the thiourea volume added in growth solution in the investigated range obtained by transmittance measurements at room temperature. The room temperature photoluminescence shows a dominant radiation band at about 3.0 eV that can be associated with exciton bonded to donor impurity and the quantum confinement because of the grain size is less than the Bohr radius.

  5. Multicomponent Oxide Systems for Corrosion Protection.

    DTIC Science & Technology

    1980-11-15

    hydroxides on film growth. New types of mixed oxide coatings deposited from nonaqueous solutions of organometallic compounds were developed. Titanium -aluminum...mixed oxide coatings, deposited from solutions of titanium alkoxides in isopropanol, served as a prototype system for much of this work. It was found...45 13. Coating Steps and Analysis... ...................... 50 14. Auger Depth Profiles of Titanium -Aluminum Mixed Oxide *Coatings Deposited

  6. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. This paper describes and demonstrates a numerical solution scheme for ternary hydrate systems that seeks a balance between accuracy and computational efficiency. This scheme uses a generalize cubic equation of state, functional forms for the hydrate equilibria and cage occupancies, variable switching scheme for phase transitions, and kinetic exchange of hydrate formers (i.e., CH4, CO2, and N2) between the mobile phases (i.e., aqueous, liquid CO2, and gas) and hydrate phase. Accuracy of the scheme will be evaluated by comparing property values and phase equilibria against experimental data. Computational efficiency of the scheme will be evaluated by comparing the base scheme against variants. The application of interest will the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.

  7. Use of multivariate analysis for determining sources of solutes found in wet atmospheric deposition in the United States

    USGS Publications Warehouse

    Hooper, R.P.; Peters, N.E.

    1989-01-01

    A principal-components analysis was performed on the major solutes in wet deposition collected from 194 stations in the United States and its territories. Approximately 90% of the components derived could be interpreted as falling into one of three categories - acid, salt, or an agricultural/soil association. The total mass, or the mass of any one solute, was apportioned among these components by multiple linear regression techniques. The use of multisolute components for determining trends or spatial distribution represents a substantial improvement over single-solute analysis in that these components are more directly related to the sources of the deposition. The geographic patterns displayed by the components in this analysis indicate a far more important role for acid deposition in the Southeast and intermountain regions of the United States than would be indicated by maps of sulfate or nitrate deposition alone. In the Northeast and Midwest, the acid component is not declining at most stations, as would be expected from trends in sulfate deposition, but is holding constant or increasing. This is due, in part, to a decline in the agriculture/soil factor throughout this region, which would help to neutralize the acidity.

  8. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition.

    PubMed

    Zhang, Jie; Wen, Zhaohui; Zhao, Meng; Li, Guozhong; Dai, Changsong

    2016-01-01

    CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Petrography and chemistry of SiO 2 filling phases in the amethyst geodes from the Serra Geral Formation deposit, Rio Grande do Sul, Brazil

    NASA Astrophysics Data System (ADS)

    Commin-Fischer, Adriane; Berger, Gilles; Polvé, Mireille; Dubois, Michel; Sardini, Paul; Beaufort, Daniel; Formoso, Milton

    2010-04-01

    The filling process of amethyst-bearing geodes from Serra Geral Formation basalts, Brazil, is investigated by different methods performed on the SiO 2 filling phases. Image analysis of quartz-amethyst deposits suggests a single growing mechanism ruled by geometric selection of randomly oriented crystals. Microthermometry of fluid inclusions reveals formation temperature lower than 100 °C, probably lower than 50 °C, and fluid salinity as high as 3 mass% NaCl eq. Composition in REE and trace-elements measured by ICP-MS on acid-digested or laser-ablated samples indicates a common genesis for amethyst, quartz and chalcedony, as well as the absence of significant variations from one geode to another. 87Sr/ 86Sr data on chalcedony shows that both the host basalt or the Botucatu sandstone are possible silica sources. These data, combined with thermo-kinetic considerations, permit us to discuss the filling process. We argue in favor of the contribution of a mineralized fluid of hydrothermal origin producing a regional silica source which decreased with time. The observed mineral sequence is related to the depletion of silica in the solution.

  10. Characterization of Nanocrystalline Nickel-Cobalt Alloys Synthesized by Direct and Pulse Electrodeposition

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Saidi, A.; Ahmadian, M.; Raeissi, K.

    2014-01-01

    Nanocrystalline Ni-Co alloys are electrodeposited by direct (DC) and pulse current (PC) in an electrolyte solution which consisted of nickel sulfate, cobalt sulfate and boric acid. Electrodeposition parameters including current density, electrolyte pH and pulse times in a single electrolyte bath were changed. XRD pattern showed that the structure of the alloys depends on Co content and the synthesis parameter and changed from single phase structure (fcc) to dual phase structure (fcc + hcp). The Co content in the deposited alloys declined from 70 at.% to 50 at.% by increasing in direct current from 70 mA/cm2 to 115 mA/cm2 and also decreased from 75 at.% to 33 at.% with decrease in pH values from 4 to 2. By applying PC the Co content changed from 76 at.% to 41 at.%. Magnetic properties measurements showed the saturation magnetization (Ms) increased with increasing the Co content. There was no significant effect on coercivity values (Hc) with change in Co content and about 40 Oe was obtained for all samples. The grain size of deposited alloys obtained between 24-58 nm and 15-21 nm by applying DC and PC, respectively.

  11. High Quality of Liquid Phase-Deposited SiON on GaAs MOS Capacitor with Multiple Treatments

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Yen, Chih-Feng; Yeh, Min-Yen

    2016-08-01

    Silicon oxynitride (SiON) film on a p-type (100) GaAs substrate by liquid phase deposition has been characterized. Aqueous solutions of hydrofluosilicic acid, ammonia and boric acid were used as growth precursors. The electrical characteristics of SiON film are much improved on GaAs with (NH4)2S treatment. With post-metallization annealing (PMA), hydrogen ions further passivate traps in the SiON/GaAs film and interface. Both PMA and (NH4)2S treatments on a SiON/GaAs MOS capacitor produce better interface quality and lower interface state density (Dit) compared with ones without hydrogen and sulfur passivations. The leakage current densities are improved to 7.1 × 10-8 A/cm2 and 1.8 × 10-7 A/cm2 at ±2 V. The dielectric constant of 5.6 and the effective oxide charges of -5.3 × 1010 C/cm2 are obtained. The hysteresis offset of the hysteresis loop is only 0.09 V. The lowest Dit is 2.7 × 1011 cm-2/eV at an energy of about 0.66 eV from the edge of the valence band.

  12. Studies of mist deposition for the formation of quantum dot CdSe films

    NASA Astrophysics Data System (ADS)

    Price, S. C.; Shanmugasundaram, K.; Ramani, S.; Zhu, T.; Zhang, F.; Xu, J.; Mohney, S. E.; Zhang, Q.; Kshirsagar, A.; Ruzyllo, J.

    2009-10-01

    Films of CdSe(ZnS) colloidal nanocrystalline quantum dots (NQDs) were deposited on bare silicon, glass and polymer coated silicon using mist deposition. This effort is a part of an exploratory investigation in which this deposition technique is studied for the first time as a method to form semiconductor NQD films. The process parameters, including deposition time, solution concentration and electric field, were varied to change the thickness of the deposited film. Blanket films and films deposited through a shadow mask were created to investigate the method's ability to pattern films during the deposition process. The differences between these deposition modes in terms of film morphology were observed. Overall, the results show that mist deposition of quantum dots is a viable method for creating thin, patterned quantum dot films using colloidal solution as the precursor. It is concluded that this technique shows very good promise for quantum dot (light emitting diode, LED) fabrication.

  13. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less

  14. Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy.

    PubMed

    Zhang, Yaohong; Wu, Guohua; Ding, Chao; Liu, Feng; Yao, Yingfang; Zhou, Yong; Wu, Congping; Nakazawa, Naoki; Huang, Qingxun; Toyoda, Taro; Wang, Ruixiang; Hayase, Shuzi; Zou, Zhigang; Shen, Qing

    2018-06-18

    Lead selenide (PbSe) colloidal quantum dots (CQDs) are considered to be a strong candidate for high-efficiency colloidal quantum dot solar cells (CQDSCs) due to its efficient multiple exciton generation. However, currently, even the best PbSe CQDSCs can only display open-circuit voltage ( V oc ) about 0.530 V. Here, we introduce a solution-phase ligand exchange method to prepare PbI 2 -capped PbSe (PbSe-PbI 2 ) CQD inks, and for the first time, the absorber layer of PbSe CQDSCs was deposited in one step by using this PbSe-PbI 2 CQD inks. One-step-deposited PbSe CQDs absorber layer exhibits fast charge transfer rate, reduced energy funneling, and low trap assisted recombination. The champion large-area (active area is 0.35 cm 2 ) PbSe CQDSCs fabricated with one-step PbSe CQDs achieve a power conversion efficiency (PCE) of 6.0% and a V oc of 0.616 V, which is the highest V oc among PbSe CQDSCs reported to date.

  15. Genetic types of oils in the petroliferous basins of Cuba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksimov, S.P.; Botneva, T.A.; Pankina, R.G.

    Two oil- and gas basins, the North Cuban and the Central Cuban, have been discovered in Cuba and the nearby offshore areas. The North Cuban basin developed as a result of a complete cycle of inter-plate geodynamic evolution (divergence-convergence-isostatic adjustment of the plates), and the South Cuban basin formed during the phase of convergence and isostatic adjustment of the plates. The hydrocarbon deposits discovered in the North Cuban basin are marked by their exceptional variety, and include deposits of light and heavy oils, and even asphalt. The geological conditions of their occurrence are also varied. In this paper the authorsmore » present the results of a study of the oils and a discussion of their association with the source beds. For Cuba the solution of these problems is of special importance owing to the complexity of its geological structure and, in particular, the presence of oil deposits of varied composition in the overthrust complexes of the eugeosynclinal and miogeosynclinal allochthon and para-autochthon, as well as in the sediments of the autochthonous complex. 4 references.« less

  16. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    NASA Technical Reports Server (NTRS)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  17. Surface enhanced Raman spectroscopy of fullerene C60 drop-deposited on the silvered porous silicon

    NASA Astrophysics Data System (ADS)

    Khinevich, N.; Girel, K.; Bandarenka, H.; Salo, V.; Mosunov, A.

    2017-11-01

    Surface enhanced Raman spectroscopy (SERS) of fullerene C60 drop-deposited from the 1.4·10-4 M aqueous solutions on the silvered porous silicon (Ag/PS) is reported for the first time. The used concentration is found to be not detected by the ordinary Raman spectroscopy. It is shown that SERS-spectrum of the fullerene deposited from the air-aged solution are characterized by less intensity than that of the fullerene solution kept out of the air. This indicates degradation of the fullerene solution due to oxidation. The results are prospective for the fast qualitative and quantitative analysis of the fullerene-based materials.

  18. Process for electroless deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1978-01-01

    A process for the electroless deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electroless plating solution containing the metal to be deposited on the article upon sufficient contact with the article.

  19. Process for electrolytic deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  20. Effects of complexing agents on electrochemical deposition of FeS x O y in ZnO/FeS x O y heterostructures

    NASA Astrophysics Data System (ADS)

    Supee, A.; Ichimura, M.

    2017-12-01

    Heterostructures which consist of ZnO and FeS x O y were deposited via electrochemical deposition (ECD) for application to solar cells. Galvanostatic ECD was used in FeS x O y deposition with a solution containing 100 mM Na2S2O3 and 30 mM FeSO4. To alter the film properties, L(+)-tartaric acid (C4H6O6) and lactic acid [CH3CH(OH)COOH] were introduced as the complexing agents into the FeS x O y deposition solution. Larger film thickness and smaller oxygen content were obtained for the films deposited with the complexing agents. ZnO was deposited on FeS x O y by two-step pulse ECD from a solution containing Zn(NO3)2. For the ZnO/FeS x O y heterostructures fabricated with/without complexing agents, rectifying properties were confirmed in the current density-voltage ( J- V) characteristics. However, photovoltaic properties were not improved with addition of both complexing agents.

  1. Corrosion and protection of NdFeB type magnets

    NASA Astrophysics Data System (ADS)

    Cavalloti, P.; Bozzini, B.; Cecchini, R.; Bava, G. F.; Davies, H. A.; Hoggarth, C.

    1992-02-01

    A general mechanism for the corrosion behaviour of NdFeB magnets is presented, related to the magnet heterogeneity with the presence of different phases. Cathodic control is outlined. An electrochemical method to assess the corrosion resistance of magnets, with and without coatings, is proposed; it is based on the study of the transient voltage at the magnet surface after a second cathodic current pulse in a suitable aggressive solution and its dependence on the amount of cathodic current circulating. Suitable pretreatments have been tried and interesting results obtained with passivation pretreatments, giving phosphorous Nd at grain boundaries. Coatings if sintered and plastic magnets have been tried using several methods. Good results are obtained with Zn-Co layers on sintered magnets and a sol-gel glass on powders for plastic magnets. Improved ACS (Autocatalytic Chemical Deposition) Ni=P coatings have been realized, with an alkaline brass flash plating to start ACD deposition.

  2. Determination of Hg concentration in gases by PIXE

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, E.; van Kuijen, W. J. P.; Munnik, F.; Mutsaers, P. H. A.; Rokita, E.; de Voigt, M. J. A.

    1992-05-01

    A method for determination of the concentration of mercury in the gaseous phase is described. In the first step of the method a stable sulphur-mercury complex is formed. For this purpose sulphur is deposited on a filter and the investigated gas flows through the filter. Millipore filters and the deposition of sulphur from Na2S2O3 * 5H2O solution were found to be most suitable. The amount of Hg absorbed on the filter was determined by PIXE or by NAA in the second step of the method. An optimization of proton energy was performed in the PIXE analysis to obtain the maximal signal-to-background ratio. The detection limit of the method, expressed as the minimal amount of Hg which has to flow through the filter equals to 30 and 2 ng for PIXE and NAA techniques, respectively. Applications of the method are also described.

  3. Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palo, Daniel R.

    2011-04-26

    Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The highmore » level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.« less

  4. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin.

    PubMed

    Polanams, Jup; Ray, Alisha D; Watt, Richard K

    2005-05-02

    Nanoparticles of iron phosphate, iron arsenate, iron molybdate, and iron vanadate were synthesized within the 8 nm interior of ferritin. The synthesis involved reacting Fe(II) with ferritin in a buffered solution at pH 7.4 in the presence of phosphate, arsenate, vanadate, or molybdate. O2 was used as the oxidant to deposit the Fe(III) mineral inside ferritin. The rate of iron incorporation into ferritin was stimulated when oxo-anions were present. The simultaneous deposition of both iron and the oxo-anion was confirmed by elemental analysis and energy-dispersive X-ray analysis. The ferritin samples containing iron and one of the oxo-anions possessed different UV/vis spectra depending on the anion used during mineral formation. TEM analysis showed mineral cores with approximately 8 nm mineral particles consistent with the formation of mineral phases inside ferritin.

  5. Room temperature electrodeposition of actinides from ionic solutions

    DOEpatents

    Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John

    2017-04-25

    Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.

  6. CdTe1-x S x (x  ⩽  0.05) thin films synthesized by aqueous solution deposition and annealing

    NASA Astrophysics Data System (ADS)

    Pruzan, Dennis S.; Hahn, Carina E.; Misra, Sudhajit; Scarpulla, Michael A.

    2017-11-01

    While CdS thin films are commonly deposited from aqueous solutions, CdTe thin films are extremely difficult to deposit directly from aqueous solution. In this work, we report on polycrystalline CdTe1-x S x thin films synthesized via deposition from aqueous precursor solutions followed by annealing treatments and on their physical properties. The deposition method uses spin-coating of alternating Cd2+ and Te2- aqueous solutions and rinse steps to allow formation of the films but to shear off excess reactants and poorly-bonded solids. Films are then annealed in the presence of CdCl2 as is commonly done for CdTe photovoltaic absorber layers deposited by any means. Scanning electron microscopy (SEM) reveals low void fractions and grain sizes up to 4 µm and x-ray diffraction (XRD) shows that the films are primarily cubic CdTe1-x S x (x  ⩽  0.05) with random crystallographic orientation. Optical transmission yields bandgap absorption consistent with a CdTe1-x S x dilute alloy and low-temperature photoluminescence (PL) consists of an emission band centered at 1.35 eV consistent with donor-acceptor pair (DAP) transitions in CdTe1-x S x . Together, the crystalline quality and PL yield from films produced by this method represent an important step towards electroless, ligand-free solution processed CdTe and related alloy thin films suitable for optoelectronic device applications such as thin film heterojunction or nanodipole-based photovoltaics.

  7. Numerical analysis of deposition frequency for successive droplets coalescence dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoding; Zhu, Yunlong; Zhang, Lei; Zhang, Dingyi; Ku, Tao

    2018-04-01

    A pseudopotential based multi-relaxation-time lattice Boltzmann model is employed to investigate the dynamic behaviors of successive droplets' impact and coalescence on a solid surface. The effects of deposition frequency on the morphology of the formed line are investigated with a zero receding contact angle by analyzing the droplet-to-droplet coalescence dynamics. Two collision modes (in-phase mode and out-of-phase mode) between the pre-deposited bead and the subsequent droplet are identified depending on the deposition frequency. A uniform line can be obtained at the optimal droplet spacing in the in-phase mode (Δt* < 1.875). However, a scalloped line pattern is formed in the out-of-phase mode (Δt* > 1.875). It is found that decreasing the droplet spacing or advancing contact angle can improve the smoothness of line in the out-of-phase mode. Furthermore, the effects of deposition frequency on the morphology of the formed lines are validated to be applicable to cases with a finite receding contact angle.

  8. Characterization of molecular disorder in vapor-deposited thin films of aluminum tris(quinoline-8-olate) by one-dimensional 27Al NMR under magic angle spinning.

    PubMed

    Utz, Marcel; Nandagopal, Magesh; Mathai, Mathew; Papadimitrakopoulos, Fotios

    2006-01-21

    Aluminum tris (quinoline-8-olate) (Alq3) is used as an electron-transport layer in organic light-emitting diodes. The material can be obtained in a wide range of different solid phases, both crystalline and amorphous, by deposition from the vapor phase or from solution under controlled conditions. While the structure of the crystalline polymorphs of Alq3 has been investigated thoroughly by x-ray diffraction as well as solid-state NMR, very little information is currently available on the amount of structural disorder in the amorphous forms of Alq3. In the present contribution, we report the use of 27Al NMR spectroscopy in the solid state under magic angle spinning to extract such information from amorphous vapor deposits of Alq3. The NMR spectra obtained from these samples exhibit different degrees of broadening, reflecting distributions of the electric-field gradient tensor at the site of the aluminum ion. These distributions can be obtained from the NMR spectra by solving the corresponding inverse problem. From these results, the magnitude of structural disorder in terms of molecular geometry has been estimated by density-functional theory calculations. It was found that the electric-field gradient anisotropy delta follows a bimodal distribution. Its majority component is centered around delta values comparable to the meridianal alpha crystal polymorph and has a width of about 10%, corresponding to distortions of the molecular geometry of a few degrees in the orientation of the ligands. Alq3 samples obtained at higher deposition rates exhibit higher degrees of disorder. The minor component, present at about 7%, has a much smaller anisotropy, suggesting that it may be due to the facial isomer of Alq3.

  9. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-01

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition of gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (-40 vs. -8% for anthropogenics, and -52 vs. -11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm-1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems (H* = H* (CH3COOH); H* = 105 M atm-1; H* = H* (HNO3)) still lead to an overestimation of 35%/25%/10% compared to our best estimate.

  10. Microscopic mechanism of nanocrystal formation from solution by cluster aggregation and coalescence

    PubMed Central

    Hassan, Sergio A.

    2011-01-01

    Solute-cluster aggregation and particle fusion have recently been suggested as alternative routes to the classical mechanism of nucleation from solution. The role of both processes in the crystallization of an aqueous electrolyte under controlled salt addition is here elucidated by molecular dynamics simulation. The time scale of the simulation allows direct observation of the entire crystallization pathway, from early events in the prenucleation stage to the formation of a nanocrystal in equilibrium with concentrated solution. The precursor originates in a small amorphous aggregate stabilized by hydration forces. The core of the nucleus becomes crystalline over time and grows by coalescence of the amorphous phase deposited at the surface. Imperfections of ion packing during coalescence promote growth of two conjoint crystallites. A parameter of order and calculated cohesive energies reflect the increasing crystalline order and stress relief at the grain boundary. Cluster aggregation plays a major role both in the formation of the nucleus and in the early stages of postnucleation growth. The mechanism identified shares common features with nucleation of solids from the melt and of liquid droplets from the vapor. PMID:21428633

  11. Solution-based single molecule imaging of surface-immobilized conjugated polymers.

    PubMed

    Dalgarno, Paul A; Traina, Christopher A; Penedo, J Carlos; Bazan, Guillermo C; Samuel, Ifor D W

    2013-05-15

    The photophysical behavior of conjugated polymers used in modern optoelectronic devices is strongly influenced by their structural dynamics and conformational heterogeneity, both of which are dependent on solvent properties. Single molecule studies of these polymer systems embedded in a host matrix have proven to be very powerful to investigate the fundamental fluorescent properties. However, such studies lack the possibility of examining the relationship between conformational dynamics and photophysical response in solution, which is the phase from which films for devices are deposited. By developing a synthetic strategy to incorporate a biotin moiety as a surface attachment point at one end of a polyalkylthiophene, we immobilize it, enabling us to make the first single molecule fluorescence measurements of conjugated polymers for long periods of time in solution. We identify fluctuation patterns in the fluorescence signal that can be rationalized in terms of photobleaching and stochastic transitions to reversible dark states. Moreover, by using the advantages of solution-based imaging, we demonstrate that the addition of oxygen scavengers improves optical stability by significantly decreasing the photobleaching rates.

  12. Extending atomistic simulation timescale in solid/liquid systems: crystal growth from solution by a parallel-replica dynamics and continuum hybrid method.

    PubMed

    Lu, Chun-Yaung; Voter, Arthur F; Perez, Danny

    2014-01-28

    Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.

  13. Study of palladium plating components

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Palladium deposits were prepared by electrolysis for evaluation as catalytic materials. Electrolysis was carried out in acidic solutions consisting of either 1.0 M in NaCl and 0.01 M PdCl2 or 1.0 M NaCl and 0.04 M PdCl2. It was during the preparation of the palladium deposits that unexpected observations were made that led to the request for analytical services. The analyses did not, nor were they intended to, answer all of the questions. They did, however, shed light on the nature and magnitude of some of the contaminants in the solutions and in the palladium electrodes, as well as characterize the forms of the palladium deposits. Results of analyses are grouped into solution, deposit, and electrode categories for comparison purposes.

  14. V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase.

    PubMed

    Peys, Nick; Ling, Yun; Dewulf, Daan; Gielis, Sven; De Dobbelaere, Christopher; Cuypers, Daniel; Adriaensens, Peter; Van Doorslaer, Sabine; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K

    2013-01-28

    An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.

  15. Effect of Time and Deposition Method on Quality of Phosphonic Acid Modifier Self-Assembled Monolayers on Indium Zinc Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Lingzi; Knesting, Kristina M.; Bulusu, Anuradha

    Phosphonic acid (PA) self-assembled monolayers (SAMs) are utilized at critical interfaces between transparent conductive oxides (TCO) and organic active layers in organic photovoltaic devices (OPVs). The effects of PA deposition method and time on the formation of close-packed, high-quality monolayers is investigated here for SAMs fabricated by solution deposition, micro-contact printing, and spray coating. The solution deposition isotherm for pentafluorinated benzylphosphonic acid (F5BnPA) on indium-doped zinc oxide (IZO) is studied using polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) at room temperature as a model PA/IZO system. Fast surface adsorption occurs within the first min; however, well-oriented high-quality SAMs are reached only aftermore » -48 h, presumably through a continual process of molecular adsorption/desorption and monolayer filling accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, micro-contact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F13-octylphosphonic acid (F13OPA), and pentafluorinated benzyl phosphonic acid (F5BnPA) by solution deposition, micro-contact printing and spray coating using PM-IRRAS. In contrast to micro-contact printing and spray coating techniques, 48-168 h solution deposition at both room temperature and 70 degrees C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by micro-contact printing and spray coating are much less well ordered.« less

  16. Structural features and properties of the laser-deposited nickel alloy layer on a KhV4F tool steel after heat treatment

    NASA Astrophysics Data System (ADS)

    Shcherbakov, V. S.; Dikova, Ts. D.; Stavrev, D. S.

    2017-07-01

    The study and application of the materials that are stable in the temperature range up to 1000°C are necessary to repair forming dies operating in this range. Nickel-based alloys can be used for this purpose. The structural state of a nickel alloy layer deposited onto a KhV4F tool steel and then heat treated is investigated. KhV4F tool steel (RF GOST) samples are subjected to laser deposition using a pulsed Nd:YAG laser. A nickel-based material (0.02C-73.8Ni-2.5Nb-19.5Cr-1.9Fe-2.8Mn) is employed for laser deposition. After laser deposition, the samples are subjected to heat treatment at 400°C for 5 h, 600°C for 1 h, 800°C for 1 h, and 1000°C for 1 h. The microstructure, the phase composition, and the microhardness of the deposited layer are studied. The structure of the initial deposited layer has relatively large grains (20-40 μm in size). The morphology is characterized by a cellular-dendritic structure in the transition zone. The following two structural constituents with a characteristic dendritic structure are revealed: a supersaturated nickel-based γ solid solution and a chromium-based bcc α solid solution. In the initial state and after heat treatment, the hardness of the deposited material (210-240 HV 0.1) is lower than the hardness of the base material (400-440 HV 0.1). Only after heat treatment at 600°C for 1 h, the hardness increases to 240-250 HV0.1. Structure heredity in the form of a dendritic morphology is observed at temperatures of 400, 600, and 800°C. The following sharp change in the structural state is detected upon heat treatment at 1000°C for 1 h: the dendritic morphology changes into a typical α + γ crystalline structure. The hardness of the base material decreases significantly to 160-180 HV 0.1. The low hardness of the deposited layer implies the use of the layer material in limited volume to repair the forming surfaces of dies and molds for die casting. However, the high ductility of the deposited layer of the nickel-based material is a prerequisite for a high stability under thermocycling loading conditions.

  17. Mineralogic sources of metals in leachates from the weathering of sedex, massive sulfide, and vein deposit mining wastes

    USGS Publications Warehouse

    Diehl, S.F.; Hageman, P.L.; Seal, R.R.; Piatak, N.M.; Lowers, H.

    2011-01-01

    Weathered mine waste consists of oxidized primary minerals and chemically unstable secondary phases that can be sources of readily soluble metals and acid rock drainage. Elevated concentrations of metals such as Cd, Cu, Fe, Mn, Ni, Pb, and Zn are observed in deionized water-based leachate solutions derived from complex sedex and Cu-Pb-Zn mine wastes. Leachate (USGS FLT) from the Elizabeth mine, a massive sulfide deposit, has a pH of 3.4 and high concentrations of Al (16700 ug/L), Cu (440 ug/L), and Zn (8620 ug/L). Leachate from the sedex Faro mine has a pH of 3.5 and high concentrations of Al (2040 ug/L), Cu (1930 ug/L), Pb (2080 ug/L), and Zn (52900 ug/L). In contrast, higher-pH leachates produced from tailings of polymetallic vein deposits have order of magnitude lower metal concentrations. These data indicate that highly soluble secondary mineral phases exist at the surface of waste material where the samples were collected. Sulfide minerals from all sites exhibit differential degrees of weathering, from dissolution etched grain rims, to rinds of secondary minerals, to skeletal remnants. These microscale mineral-dissolution textures enhance weathering and metal teachability of waste material. Besides the formation of secondary minerals, sulfide grains from dried tailings samples may be coated by amorphous Fe-Al-Si minerals that also adsorb metals such as Cu, Ni, and Zn.

  18. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    NASA Astrophysics Data System (ADS)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  19. Natural occurrence and significance of fluids indicating high pressure and temperature

    USGS Publications Warehouse

    Roedder, E.

    1981-01-01

    Most natural minerals have formed from a fluid phase such as a silicate melt or a saline aqueous solution. Fluid inclusions are tiny volumes of such fluids that were trapped within the growing crystals. These inclusions can provide valuable but sometimes ambiguous data on the temperature, pressure, and composition of these fluids, many of which are not available from any other source. They also provide "visual autoclaves" in which it is possible to watch, through the microscope, the actual phase changes take place as the inclusions are heated. This paper reviews the methods of study and the results obtained, mainly on inclusions formed from highly concentrated solutions, at temperatures ???500??C. Many such fluids have formed as a result of immiscibility with silicate melt in igneous or high-temperature metamorphic rocks. These include fluids consisting of CO2, H2O, or hydrosaline melts that were <50% H2O. From the fluid inclusion evidence it is clear that a boiling, very hot, very saline fluid was present during the formation of most of the porphyry copper deposits in the world. Similarly, from the inclusion evidence it is clear that early (common) pegmatites formed from essentially silicate melts and that the late, rare-element-bearing and chamber-type pegmatites formed from a hydrosaline melt or a more dilute water solution. The evidence on whether this change in composition from early to late solutions was generally continuous or involved immiscibility is not as clear. ?? 1981.

  20. Research of vacuum polymer film on three-dimension surface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bau, Yung-Han

    2016-09-01

    This study focused on UV-curable acrylic hybrid of solute in vacuum-deposited on the surface and make it smooth. On the surface coating of the entire process, including the pre-treatment of organic solutes, vacuum, nozzle pressure, airflow, frequency ratio, the surface of the rotation rate, nozzle angle, UV light irradiation time, waste solute recycling.Organic solutes through a flow meter and precise measured,by high pressure or vibration of a piezoelectric material, spray our organic solute in a certain degree of vacuum,leaving nozzle of tiny micro-mist volatiles in a vacuum to form secondary atomization,deposited our surface,Since no UV light irradiation, the surface is a liquid having fluidity, so the non-planar substrates can have good performance, finally it is irradiated by UV light of sufficient energy solidify to form a solid film.The advantage of this approach is that a smooth surface,Strong adhesion, low-cost equipment, low temperature, a wide range of high deposition rate can be combined with other deposition method,Under vacuum have not waste because excess paint can be recycled.Avoid solute direct contact with human, relative to the environment-friendly.

  1. Inorganic-polymer-derived dielectric films

    DOEpatents

    Brinker, C. Jeffrey; Keefer, Keith D.; Lenahan, Patrick M.

    1987-01-01

    A method of coating a substrate with a thin film of a polymer of predetermined porosity comprises depositing the thin film on the substrate from a non-gelled solution comprising at least one hydrolyzable metal alkoxide of a polymeric network forming cation, water, an alcohol compatible with the hydrolysis and the polymerization of the metal alkoxide, and an acid or a base, prior to depositing the film, controlling the structure of the polymer for a given composition of the solution exclusive of the acid or base component and the water component, (a) by adjusting each of the water content, the pH, and the temperature to obtain the desired concentration of alkoxide, and then adjusting the time of standing of the solution prior to lowering the temperature of the solution, and (b) lowering the temperature of the solution after the time of standing to about 15 degrees C. or lower to trap the solution in a state in which, after the depositing step, a coating of the desired porosity will be obtained, and curing the deposited film at a temperature effective for curing whereby there is obtained a thin film of a polymer of a predetermined porosity and corresponding pore size on the substrate.

  2. High Tc superconducting films from metallo-organic precursors

    NASA Astrophysics Data System (ADS)

    Davison, W. W.; Shyu, S. G.; Buchanan, R. C.

    High Tc superconducting films of heavy metal soaps (derived from carboxylic acid precursors) have been prepared on Si and other substrates. The precursors were synthesized and mixed in appropriate molar ratios to form the high Tc compound YBa2Cu3O(7-x), using a high boiling point common solvent base. The precursor solution was deposited by a spin casting technique on the substrates. Film thicknesses of 0.1-1.0 micron were achieved after heat treatment at 550-850 C at not longer than 4 hours. Films were analyzed as to orientation, appropriate phase, interfacial reaction, and superconducting properties.

  3. Heterogeneous Two-Phase Pillars in Epitaxial NiFe 2 O 4 -LaFeO 3 Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comes, Ryan B.; Perea, Daniel E.; Spurgeon, Steven R.

    2017-07-10

    Self-assembled epitaxial oxide nanocomposites have been explored for a wide range of applications, including multiferroic and magnetoelectric properties, plasmonics, and catalysis. These so-called “vertically aligned nanocomposites” form spontaneously during the deposition process when segregation into two phases is energetically favorable as compared to a solid solution. However, there has been surprisingly little work understanding the driving forces that govern the synthesis of these materials, which can include point defect energetics, surface diffusion, and interfacial energies. To explore these factors, La-Ni-Fe-O films have been synthesized by molecular beam epitaxy and it is shown that these phase segregate into spinel-perovskite nanocomposites. Usingmore » complementary scanning transmission electron microscopy and atom-probe tomography, the elemental composition of each phase is examined and found that Ni ions are exclusively found in the spinel phase. From correlative analysis, a model for the relative favorability of the Ni2+ and Ni3+ valences under the growth conditions is developed. It is shown that multidimensional characterization techniques provide previously unobserved insight into the growth process and complex driving forces for phase segregation.« less

  4. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria

    NASA Astrophysics Data System (ADS)

    Marinova, Irina; Ganev, Valentin; Titorenkova, Rositsa

    2014-01-01

    We studied both colloform-banded macro- and micro-textures as well as the composition of electrum from the epithermal Khan Krum (or Ada Tepe) gold deposit, Bulgaria (5 Mt at 5.1 g/t Au + 2.7 g/t Ag) using optical and electron scanning microscopy, vibration spectroscopy, electron micro-probe analysis, and LA-ICP-MS. The individual textural bands differ in grain size, porosity, quartz-to-adularia ratio, and abundance of electrum, pyrite, and scattered dusty opaque micro-inclusions. The individual macro-bands have formed successively via intermittent fault dilation from episodic hydrothermal pulses, as a result of regional extension and most likely originated from colloidal solutions formed by vigorous boiling during rapid pressure drop and supersaturation with respect to amorphous silica in a closed or quasi-closed hydrothermal system. Electrum is highly concentrated in the finest quartz-adularia colloform micro-bands, which fill joints with widths up to 1-2 mm. We presume that the joints have filled in with more concentrated colloidal solutions than those in the macro-bands, most likely due to extreme boiling of fluids in open or quasi-open hydrothermal system. Electrum in the micro-bands forms transverse dendrite- and chain-like aggregates as well as oval clots along the banding, all of globular morphology. We explain these locations of electrum with reorientation of aggregated electrum globules during plastic deformation of a mixed electrum-silicate gel and in result from the consequent crystallization of silicates. At the same time, electrum is not present in pores and cracks of syneresis, which indicates that it had not been a soluble phase at the time of syneresis, rather colloidal particles. Electrum also forms dense sprinkles of globular morphology deposited in open space on the surfaces of some quartz-adularia bands, due to a condensation of gaseous phase, separated during the boiling of fluids. We found that the electrum-rich quartz-adularia micro-banding is enriched (in descending order) in Bi, Te, Cu, Fe, Pb, Au, As, U, Ba, Zn, Mg, Cr, Al, Tl, Na, K, and Th, and is slightly depleted in Si, Ti, Se, Ag, and Sb in comparison with the electrum-poor macro-bands. Ca displayed equal abundances in both macro- and micro-bands. The highest grades of electrum correspond to the highest abundances of Fe, As, Cu, Pb, Zn, Bi, and Te, which have deposited as sulfides and tellurides, thus revealing the voluminous electrum deposition in response to a significant decrease of sulfur and tellurium activities, and transport of gold and silver in the paleofluids in the form of sulfuric and telluric complexes. The epithermal Khan Krum deposit is Au dominant, Bi and Te rich, thus indicating its relationship to an igneous source.

  5. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  6. Palladium/kieselguhr composition and method

    DOEpatents

    Mosley, W.C. Jr.

    1993-09-28

    A hydrogen-absorbing composition and method for making such a composition are described. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.

  7. Palladium/kieselguhr composition and method

    DOEpatents

    Mosley, Jr., Wilbur C.

    1993-01-01

    A hydrogen-absorbing composition and method for making such a composition. The composition comprises a metal hydride, preferably palladium, deposited onto a porous substrate such as kieselguhr, for use in hydrogen-absorbing processes. The composition is made by immersing a substrate in a concentrated solution containing palladium, such as tetra-amine palladium nitrate. Palladium from the solution is deposited onto the porous substrate, which is preferably in the form of kieselguhr particles. The substrate is then removed from the solution, calcined, and heat treated. This process is repeated until the desired amount of palladium has been deposited onto the substrate.

  8. Effect of catalyst on deposition of vanadium oxide in plasma ambient

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Kumar, Prabhat; Saini, Sujit K.; Reddy, G. B.

    2018-05-01

    In this paper, we have studied effect of catalyst (buffer layer) on structure, morphology, crystallinity, uniformity of nanostructured thin films deposited in nitrogen plasma ambient keeping all other process parameters constant. The process used for deposition is novel known as Plasma Assisted Sublimation Process (PASP). Samples were then studied using SEM, TEM, HRTEM, Raman spectroscopy. By structural analysis it was found out that samples deposited on Ni layer composed chiefly of α-V2O5 but minor amount of other phases were present in the sample. Samples deposited on Al catalyst layer revealed different phase of V2O5, where sample deposited on Ag was composed chiefly of VO2±x phase. Further analysis revealed that morphology of samples is also affected by catalyst. While samples deposited in Al and Ag layer tend to have reasonably defined geometry, sample deposited on Ni layer were irregular in shape and size. All the results well corroborate with each other.

  9. Characterization of solids deposited on the modular caustic-side solvent extraction unit (MCU) coalescer media removed in May and October 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.

    During routine maintenance, the coalescers utilized in the Modular Caustic-Side Solvent Extraction Unit (MCU) processing of Salt Batch 6 and a portion of Salt Batch 7 were sampled and submitted to the Savannah River National Laboratory (SRNL) for characterization, for the purpose of identifying solid phase constituents that may be accumulating in these coalescers. Specifically, two samples were received and characterized: A decontaminated salt solution (DSS) coalescer sample and a strip effluent (SE) coalescer sample. Aliquots of the samples were analyzed by XRD, Fourier Transform Infrared (FTIR) Spectroscopy, SEM, and EDS. Other aliquots of the samples were leached in acidmore » solution, and the leachates were analyzed by ICP-AES. In addition, modeling was performed to provide a basis for comparison of the analytical results.« less

  10. An overview on tritium permeation barrier development for WCLL blanket concept

    NASA Astrophysics Data System (ADS)

    Aiello, A.; Ciampichetti, A.; Benamati, G.

    2004-08-01

    The reduction of tritium permeation through blanket structural materials and cooling tubes has to be carefully evaluated to minimise radiological hazards. A strong effort has been made in the past to select the best technological solution for the realisation of tritium permeation barriers (TPB) on complex structures not directly accessible after the completion of the manufacturing process. The best solution was identified in aluminium rich coatings, which form Al 2O 3 at their surface. Two technologies were selected as reference for the realisation of coating in the WCLL blanket concept: the chemical vapour deposition (CVD) process developed on laboratory scale by CEA, and the hot dipping (HD) process developed by FZK. The results obtained during three years of tests on CVD and HD coated specimens in gas and liquid metal phase are summarised and discussed.

  11. The formation of ore mineral deposits on the Moon: A feasibility study

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Lu, Fengxiang

    1992-01-01

    Most of the ore deposits on Earth are the direct result of formation by hydrothermal solutions. Analogous mineral concentrations do not occur on the Moon, however, because of the absence of water. Stratified ore deposits form in layered instrusives on Earth due to fractional crystallization of magma and crystal settling of high-density minerals, particularly chromium in the mineral chromite. We have evaluated the possibility of such mineral deposition on the Moon, based upon considerations of 'particle settling velocities' in lunar vs. terrestrial magmas. A first approximation of Stoke's Law would seem to indicate that the lower lunar gravity (1/6 terrestrial) would result in slower crystal settling on the Moon. However, the viscosity of the silicate melt is the most important factor affecting the settling velocity. The viscosities of typical lunar basaltic melts are 10-100 times less than their terrestrial analogs. These lower viscosities result from two factors: (1) lunar basaltic melts are typically higher in FeO and lower in Al2O3, Na2O, and K2O than terrestrial melts; and (2) lunar igneous melts and phase equilibria tend to be 100-150 C higher than terrestrial, largely because of the general paucity of water and other volatile phases on the Moon. Therefore, particle settling velocities on the Moon are 5-10 times greater than those on Earth. It is highly probable that stratiform ore deposits similar to those on Earth exist on the Moon. The most likely ore minerals involved are chromite, ilmenite, and native FeNi metal. In addition, the greater settling velocities of periodotite in lunar magmas indicate that the buoyancy effects of the melt are less than on Earth. Consequently, the possibility is considerably less than on Earth of deep-seated volcanism transporting upper mantle/lower crustal xenoliths to the surface of the Moon, such as occurs in kimberlites on Earth.

  12. Nanoparticle standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havrilla, George Joseph

    2016-12-08

    We will purchase a COTS materials printer and adapt it for solution printing of known elemental concentration solutions. A methodology will be developed to create deposits of known mass in known locations on selected substrates. The deposits will be characterized for deposited mass, physical morphology, thickness and uniformity. Once an acceptable methodology has been developed and validated, we will create round robin samples to be characterized by LGSIMS instruments at LANL, PNNL and NIST. We will demonstrate the feasibility of depositing nanoparticles in known masses with the goal of creating separated nanoparticles in known locations.

  13. Examination of the Behavior of Bismuth in Shallow-Level Hydrothermal Ore Systems: Constraints Based on Hydrothermal Experiments at 800°C and 100 MPa

    NASA Astrophysics Data System (ADS)

    Wilmot, M. S.; Candela, P. A.; Piccoli, P. M.; Simon, A. C.; McDonough, W. F.

    2006-05-01

    The partitioning of ore metals between melt and crystals affects the concentrations of these metals in an evolving ore fluid, and therefore the efficiency of their removal from the magma by hydrothermal processes. Some porphyry-type W-Mo deposits contain recoverable amounts of Bi, whereas others contain only trace amounts. In order to determine the magmatic controls on the ratio of Bi to other commodities in these and other deposits, we examined the partitioning behavior of bismuth between melt, minerals and aqueous phases. Hydrothermal experiments were performed by using externally heated cold seal vessels and employing a double capsule technique. Experiments contained 40 mg of Bishop Tuff glass (SiO2 = 74% ) and 40 mg of either magnetite or pyrrhotite. Bi was added as elemental Bi (< 1 mg). Two different aqueous solutions were used. Initially, the added aqueous phase comprised the solutes HCl, KCl and NaCl in a molar1:1:1 ratio, with a bulk salinity of 10 wt % NaCl eq. The aqueous phase for later experiments contained only the solutes KCl and NaCl in a 1:1 molar ratio. Pre-fractured quartz was added to the experiments to trap fluid inclusions at run PTX conditions. Experiments were performed in Au or Pt capsules held inside Rene 41 cold-seal vessels at 800°C and 100 MPa for durations of up to 36 hours. Analytical data have been collected from the run product solids by using an electron probe microanalyzer (major and trace elements) and laser ablation inductively coupled plasma mass spectrometry (trace elements). Bi in Mt is found in concentrations up to 100 ppm, with higher concentrations in runs where Po decomposed to form magnetite. The Bi concentration in the glass ranges up to 100 ppm. In the Po-bearing runs, data were only collected from Po grains in the experiments containing the HCl-free aqueous solution (the Po grains in the other experiments were too small to analyze). Pyrrhotite contained 10-20 ppm Bi, whereas the glass contained 5-10 ppm. Preliminary Nernst- type partition coefficients for Bi between Mt and melt and Po and melt are approximately 5 and 2, respectively. These data reveal that Bi is only slightly compatible in Mt and Po, and that the Po/melt partition coefficient for Bi is much lower than for Cu, Ag and Au, and is comparable to Mn and Zn. Additional experiments are in progress to more compare the partitioning of Bi with that of W and Mo.

  14. Deposit heterogeneity and the dynamics of the organic semiconductors P3HT and PCBM solution under evaporation

    NASA Astrophysics Data System (ADS)

    Yu, H. P.; Luo, H.; Liu, T. T.; Jing, G. Y.

    2015-04-01

    The formation of organic semiconductor layer is the key procedure in the manufacture of organic photovoltaic solar cell, in which the natural evaporation of the solvent from the polymer solution plays the essential role for the conversion efficiency. Here, poly(3-hexylthiophene) (P3HT) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), as two types of semiconductor polymers, were selected as the active layer to form the deposit by drying the blend solution drops on the substrate. We explored the influences of droplet size and solute concentration on the homogeneity of the deposit. Additionally, the spatial distribution of molecular chains and grains and the instability of the droplet morphology during the drying were investigated. The results showed that the "coffee-ring" phenomenon occurred forming an annular deposit at the outermost edge and the width of the annular ring increased linearly with the concentration of the P3HT solution, until a saturation plateau is approached. On the other hand, the PCBM deposition presented a circular disk at low concentration, but displayed a sudden instability for an irregular perimeter at a critical concentration and there existed a second critical concentration above which the deposit exhibited the return of the stable circular shape. The results have an instructive impact on the performance of the device and the formation of fine structures during the process of printing, film preparation and painting.

  15. Jet fuel instability mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.

    1985-01-01

    The mechanisms of the formation of fuel-insoluble deposits were studied in several real fuels and in a model fuel consisting of tetralin in dodecane solution. The influence of addition to the fuels of small concentrations of various compounds on the quantities of deposits formed and on the formation and disappearance of oxygenated species in solution was assessed. The effect of temperature on deposit formation was also investigated over the range of 308-453 K.

  16. The effect of graphene oxide on surface features, biological performance and bio-stability of calcium phosphate coating applied by pulse electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Fathyunes, Leila; Khalil-Allafi, Jafar

    2018-04-01

    In the current study, the effect of second phase of graphene oxide (GO) on the surface features and biological behavior of calcium phosphate (CaP) coating was evaluated. To do so, the GO-CaP composite coating was applied on TiO2 nanotubular arrays using pulse electrochemical deposition. The SEM and AFM images showed that, the CaP-based coating with uniform and refined microstructure could be formed through its compositing with GO sheets. The biological assessment of the coatings was also conducted by cell culture test and MTT assay. Based on findings, the GO-CaP coating showed the better biocompatibility compared to the CaP coating. This could be owing to the fact that the composite coating provided the lower roughness, moderately wettable surface with a contact angle of 23.5° ± 2.6° and the higher stability in the biological environments because of being involved with only the stable phase of CHA. However, in the CaP coating, spreading of cells could be limited by the plate-like crystals with larger size. The higher solubility of the CaP coating in the cell culture medium possibly owing to the existence of some metastable CaP phases like OCP in addition to the dominant phase of CHA in this coating could be another reason for its less biocompatibility. At last, the CaP coating showed the higher apatite-forming ability in SBF solution after its compositing with GO.

  17. CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Zhihao; Wang, Ruofan; Nikiforov, Alexey Y.; Gopalan, Srikanth; Pal, Uday B.; Basu, Soumendra N.

    2018-02-01

    Cr-poisoning of the cathodes due to the presence of metallic interconnects is detrimental to the performance of intermediate temperature solid oxide fuel cell stacks. Applying a protective coating on the interconnect is an effective solution to preventing Cr-poisoning. In this study, the application of a protective CuMn1.8O4 spinel coating is explored. Dense coatings are deposited on both metallic flat plates and meshes by electrophoretic deposition followed by thermal densification steps. The coating is found to be a mixture of Mn3O4 and cubic spinel phases at room temperature but is a pure cubic spinel phase between 750 °C and 850 °C. A reaction layer between the Cr2O3 scale at the coating/interconnect interface and CuMn1.8O4 coating is found to be a mixture of (Cu,Mn,Cr)3-xO4 cubic spinel phases with Cr-rich precipitates believed to be Cr2O3, indicating that the coating layer acts as a Cr getter. Solubility experiments show that 1 mol of the CuMn1.8O4 phase can getter at least 1.83 mol of Cr2O3 at 800 °C. Electrochemical testing of cells in the presence of coated interconnects show that the CuMn1.8O4 coating getters Cr effectively for 12 days at 800 °C, leading to no performance loss of the cell due to Cr-poisoning.

  18. Particle deposition in human respiratory system: deposition of concentrated hygroscopic aerosols.

    PubMed

    Varghese, Suresh K; Gangamma, S

    2009-06-01

    In the nearly saturated human respiratory tract, the presence of water-soluble substances in the inhaled aerosols can cause change in the size distribution of the particles. This consequently alters the lung deposition profiles of the inhaled airborne particles. Similarly, the presence of high concentration of hygroscopic aerosols also affects the water vapor and temperature profiles in the respiratory tract. A model is presented to analyze these effects in human respiratory system. The model solves simultaneously the heat and mass transfer equations to determine the size evolution of respirable particles and gas-phase properties within human respiratory tract. First, the model predictions for nonhygroscopic aerosols are compared with experimental results. The model results are compared with experimental results of sodium chloride particles. The model reproduces the major features of the experimental data. The water vapor profile is significantly modified only when a high concentration of particles is present. The model is used to study the effect of equilibrium assumptions on particle deposition. Simulations show that an infinite dilution solution assumption to calculate the saturation equilibrium over droplet could induce errors in estimating particle growth. This error is significant in the case of particles of size greater than 1 mum and at number concentrations higher than 10(5)/cm(3).

  19. Exact simulation of polarized light reflectance by particle deposits

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D. W.

    2015-12-01

    The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.

  20. Structure of a bimetallic strip produced by plasma spraying of a TiAl powder on a niobium sheet

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Antonova, A. V.; Burmistrov, V. I.; Safronov, B. V.; Perfilov, L. S.; Chukanov, A. P.

    2007-10-01

    Ti-48 at % Al alloy granules produced by centrifugal spraying are milled into a powder with a particle size of 40 100 μm, and are applied onto a niobium foil using plasma spraying in an argon atmosphere. The fabricated TiAl/Nb bimetallic strip consists of a 100-μm-thick niobium layer and a porous 300-to 400-μm-thick TiAl layer formed by flattened particles. Directly after the preparation of the bimetallic strip, the surface of the TiAl porous layer is rough. Vacuum annealing at 1000, 1100, and 1200°C for 0.5 1.5 h leads to intense pore healing. After deposition and annealing, the interlayer adhesion is strong. The preparation of TiAl granules and spraying of the powder is accompanied by aluminum depletion of the Ti-48 at % Al alloy to 42 45 at % and an increase in the fraction of the α2-Ti3Al phase in the deposited layer. The prepared material has a duplex structure. An intermediate diffuse layer characterized by a variable composition and thickness is formed at the interface. This layer consists of two solid solutions; one of them, which is formed at the TiAl layer, is an α2-Ti3Al-based solid solution of niobium and the other, which is formed at the niobium foil, is a niobium-based solid solution of titanium and aluminum.

  1. PZT piezoelectric films on glass for Gen-X imaging

    NASA Astrophysics Data System (ADS)

    Wilke, Rudeger H. T.; Trolier-McKinstry, Susan; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The proposed adaptive optics system for the Gen-X telescope uses piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. The low softening transition of the glass substrates imposes several processing challenges that require the development of new approaches to deposit high quality PZT thin films. Synthesis and optimization of chemical solution deposited 1 μm thick films of PbZr0.52Ti0.48O3 on small area (1 in2) and large area (16 in2) Pt/Ti/glass substrates has been performed. In order to avoid warping of the glass at temperatures typically used to crystallize PZT films ({700°C), a lower temperature, two-step crystallization process was employed. An {80 nm thick seed layer of PbZr0.30Ti0.70O3 was deposited to promote the growth of the perovskite phase. After the deposition of the seed layer, the films were annealed in a rapid thermal annealing (RTA) furnace at 550°C for 3 minutes to nucleate the perovskite phase. This was followed by isothermal annealing at 550°C for 1 hour to complete crystallization. For the subsequent PbZr0.52Ti0.48O3 layers, the same RTA protocol was performed, with the isothermal crystallization implemented following the deposition of three PbZr0.52Ti0.48O3 spin-coated layers. Over the frequency range of 1 kHz to 100 kHz, films exhibit relative permittivity values near 800 with loss tangents below 0.07. Hysteresis loops show low levels of imprint with coercive fields of 40-50 kV/cm in the forward direction and 50-70 kV/cm in the reverse direction. The remanent polarization varied from 25-35 μC/cm2 and e31,f values were approximately -5.0 C/m2. In scaling up the growth procedure to large area films, where warping becomes more pronounced due to the increased size of the substrate, the pyrolysis and crystallization conditions were performed in a box furnace to improve the temperature uniformity. By depositing films on both sides of the glass substrate, the tensile stresses are balanced, providing a sufficiently flat surface to continue PZT deposition. The properties of the large area film are comparable to those obtained on small substrates. While sol-gel processing is a viable approach to the deposition of high quality PZT thin films on glass substrates, preliminary results using RF magnetron sputter deposition demonstrate comparable properties with a significantly simpler process that offers a superior route for large scale production.

  2. Three-Phase Morphology Evolution in Sequentially Solution-Processed Polymer Photodetector: Toward Low Dark Current and High Photodetectivity.

    PubMed

    Wang, Hanyu; Xing, Shen; Zheng, Yifan; Kong, Jaemin; Yu, Junsheng; Taylor, André D

    2018-01-31

    Sequentially solution-processed polymer photodetectors (SSP PPDs) based on poly(3-hexylthiophene-2,5-diyl) (P3HT)/[6,6]-phenyl C 71 -butyric acid methyl ester (PC 71 BM) are fabricated by depositing the top layers of PC 71 BM from an appropriate cosolvent of 2-chlorophenol (2-CP)/o-dichlorobenzene (ODCB) onto the predeposited bottom layers of P3HT. By adjusting the ratio of 2-CP/ODCB in the top PC 71 BM layers, the resulting SSP PPD shows a decreased dark current and an increased photocurrent, leading to a maximum detectivity of 1.23 × 10 12 Jones at a wavelength of 550 nm. This value is 5.3-fold higher than that of the conventional bulk heterojunction PPD. Morphology studies reveal that the PC 71 BM partially penetrates the predeposited P3HT layer during the spin-coating process, resulting in an optimal three-phase morphology with one well-mixed interdiffusion P3HT/PC 71 BM phase in the middle of the bulk and two pure phases of P3HT and PC 71 BM at the two electrode sides. We show that the pure phases form high Schottky barriers (>2.0 eV) at the active layer/electrodes interface and efficiently block unfavorable reverse charge carrier injection by significantly decreasing the dark current. The interdiffussion phase enlarges the donor-acceptor interfacial area leading to a large photocurrent. We also reveal that the improved performance of SSP PPDs is also due to the enhanced optical absorption, improved P3HT crystallinity, increased charge carrier mobilities, and suppressed bimolecular recombination.

  3. Studies of Physicochemical Processes in Atmospheric Particles and Acid Deposition.

    NASA Astrophysics Data System (ADS)

    Pandis, Spyros N.

    A comprehensive chemical mechanism for aqueous -phase atmospheric chemistry was developed and its detailed sensitivity analysis was performed. The main aqueous-phase reaction pathways for the system are the oxidation of S(IV) to S(VI) by H_2O_2 , OH, O_2 (catalysed by Fe ^{3+} and Mn^ {2+}), O_3 and HSO_sp{5}{-}. The gas-phase concentrations of SO_2, H_2O_2, HO _2, OH, O_3 HCHO, NH_3, HNO_3 and HCl and the liquid water content of the cloud are of primary importance. The Lagrangian model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO_2 , HNO_3, and NH_3 , pH, aqueous-phase concentrations of SO _sp{4}{2-}, NH _sp{4}{+} and NO _sp{3}{-}, and finally deposition rates of the above ions match well the observed values. A third model was developed to study the distribution of acidity and solute concentration among the various droplet sizes in a fog or a cloud. Significant solute concentration differences can occur in aqueous droplets inside a fog or a cloud. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations, but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium as well as in the total aerosol mass concentration. The sulfate producd during fog episodes favors the aerosol particles that have access to most of the fog liquid water. Aerosol scavenging efficiencies of around 80% were calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition. Isoprene and beta-pinene, at concentration levels ranging from a few ppb to a few ppm were reacted photochemically with NO_ {x} in the Caltech outdoor smog chamber facility. Aerosol formation from the isoprene photooxidation was found to be negligible even under extreme ambient conditions due to the relatively high vapor pressure of its condensable products. Aerosol carbon yield from the beta -pinene photooxidation is as high as 8% and depends strongly on the initial HC/NO_{x} ratio. Monoterpene photooxidation can be a significant source of secondary aerosol in rural environments and in urban areas with extended natural vegetation. (Abstract shortened with permission of author.).

  4. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    PubMed

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  5. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  6. Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Bradford, Scott A.

    2017-04-01

    Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air-water interface disappears during imbibition, particles residing on this interface are released into the liquid phase. Similarly, during drainage, particles residing at the solid-water interface may be detached from this interface by capillary forces and released into the liquid phase or become attached to the air-water interface. The solute transport module uses the concept of two-site sorption to describe nonequilibrium adsorption-desorption reactions to the solid phase. The module further assumes that the contaminant can be sorbed onto surfaces of both deposited and mobile colloids, fully accounting for the dynamics of colloids movement between different phases. We will demonstrate the use of the module using selected datasets and numerical examples.

  7. Regional Air Quality Model Application of the Aqueous-Phase ...

    EPA Pesticide Factsheets

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry models use a parameterization of the aqueous-phase reduction of Hg2+ that has been shown to be unlikely under normal ambient conditions or use a non mechanistic value derived to optimize wet deposition results. Recent laboratory experiments have shown that Hg2+ can be photochemically reduced to elemental mercury (Hg) in the aqueous-phase by dissolved organic matter and a mechanism and the rate for Hg2+ photochemical reduction by dicarboxylic acids (DCA) has been proposed. For the first time in a regional scale model, the DCA mechanism has been applied. The HO2-Hg2+ reduction mechanism, the proposed DCA reduction mechanism, and no aqueous-phase reduction (NAR) of Hg2+ are evaluated against weekly wet deposition totals, concentrations and precipitation observations from the Mercury Deposition Network (MDN) using the Community Multiscale Air Quality (CMAQ) model version 4.7.1. Regional scale simulations of mercury wet deposition using a DCA reduction mechanism evaluated well against observations, and reduced the bias in model evaluation by at least 13% over the other schemes evaluated, although summertime deposition estimates were still biased by −31.4% against observations. The use of t

  8. Environmental influences on the occurrences of sepiolite and palygorskite: a brief review

    USGS Publications Warehouse

    Jones, Blair F.; Conko, Kathryn M.

    2011-01-01

    Sepiolite is a hydrous magnesium silicate formed by precipitation of near-surface brackish or saline waters, under semi-arid climatic conditions. Four major influences on the distribution of sepiolite are source materials, climate, physical parameters and associated phase relations. Two major pathways governing the occurrence of sepiolite and palygorskite are direct precipitation from solution, and the transformation of precursor phases by dissolution–precipitation. Sepiolite is most commonly found as a result of the former process, whereas palygorskite is often characterized as a product of the latter. Thus, sepiolite typically occurs in lacustrine, often saline, strata, while palygorskite is commonly found in conjunction with soils, alluvium, or most abundantly, calcretes. Here, we review briefly some examples of sepiolite deposits in Spain, Turkey, Argentina, USA, and the African countries of Kenya, Morocco, Tunisia, Senegal, Somalia and South Africa.

  9. On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Ofori-Opoku, Nana; Guyer, Jonathan E.

    2017-09-01

    In this study, an alloy phase-field model is used to simulate solidification microstructures at different locations within a solidified molten pool. The temperature gradient G and the solidification velocity V are obtained from a macroscopic heat transfer finite element simulation and provided as input to the phase-field model. The effects of laser beam speed and the location within the melt pool on the primary arm spacing and on the extent of Nb partitioning at the cell tips are investigated. Simulated steady-state primary spacings are compared with power law and geometrical models. Cell tip compositions are compared to a dendrite growth model. The extent of non-equilibrium interface partitioning of the phase-field model is investigated. Although the phase-field model has an anti-trapping solute flux term meant to maintain local interface equilibrium, we have found that during simulations it was insufficient at maintaining equilibrium. This is due to the fact that the additive manufacturing solidification conditions fall well outside the allowed limits of this flux term.

  10. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.

    PubMed

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A

    2012-09-11

    There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.

  11. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations.

    PubMed

    Yu, Yang; Wen, Wei; Qian, Xin-Yue; Liu, Jia-Bin; Wu, Jin-Ming

    2017-01-24

    To magnify anatase/rutile phase junction effects through appropriate Au decorations, a facile solution-based approach was developed to synthesize Au/TiO 2 nanoforests with controlled Au locations. The nanoforests cons®isted of anatase nanowires surrounded by radially grown rutile branches, on which Au nanoparticles were deposited with preferred locations controlled by simply altering the order of the fabrication step. The Au-decoration increased the photocatalytic activity under the illumination of either UV or visible light, because of the beneficial effects of either electron trapping or localized surface plasmon resonance (LSPR). Gold nanoparticles located preferably at the interface of anatase/rutile led to a further enhanced photocatalytic activity. The appropriate distributions of Au nanoparticles magnify the beneficial effects arising from the anatase/rutile phase junctions when illuminated by UV light. Under the visible light illumination, the LSPR effect followed by the consecutive electron transfer explains the enhanced photocatalysis. This study provides a facile route to control locations of gold nanoparticles in one-dimensional nanostructured arrays of multiple-phases semiconductors for achieving a further increased photocatalytic activity.

  12. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems

    PubMed Central

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.

    2012-01-01

    There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239

  13. Lyotropic chromonic liquid crystals as materials for optical and biosensing applications

    NASA Astrophysics Data System (ADS)

    Tortora, L.; Park, H.-S.; Antion, K.; Finotello, D.; Lavrentovich, O. D.

    2007-02-01

    Lyotropic chromonic liquid crystals (LCLCs) are formed by molecules with rigid polyaromatic cores and ionic groups at the periphery that form aggregates while in water. Most of the LCLCs are not toxic to the biological cells and can be used as an amplifying medium in real-time biosensors. The detector is based on the principle that the immune aggregates growing in the LCLC bulk trigger the director distortions. Self-assembly of LCLC molecules into oriented structures allows one to use them in various structured films. For example, layer-by-layer electrostatic deposition produces monomolecular layers and stacks of layers of LCLC with long-range in-plane orientational order which sets them apart from the standard Langmuir-Blodgett films. We demonstrate that divalent and multivalent salts as well as acidic and basic materials that alter pH of the LCLC water solutions, are drastically modifying the phase diagrams of LCLC, from shifting the phase transition temperatures by tens of degrees, to causing condensation of the LCLC aggregates into more compact structures, such as birefringent bundles or formation of a columnar hexagonal phase from the nematic phase.

  14. Surface characterizations of oxides synthesized by successive ionic layer deposition

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas I.

    Successive ionic layer deposition (SILD) is an aqueous technique for depositing thin oxide films on a surface in a layer-by-layer fashion through a series of chemical reactions. This dissertation examines empirical aspects of the SILD technique by characterizing thin oxide films synthesized on model planar supports and then extends the SILD technique to synthesize supported oxide nanostructures on three dimensional supports of interest to catalysis. Atomic force microscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy provided insight into the SILD of zirconia, alumina, and barium oxide thin films on silicon wafers. The SILD conditions that most affected the surface morphology of the thin oxide films were the selection of aqueous metal salt precursors comprising the SILD solutions and the total number of SILD cycles. Recent studies suggest that a highly dispersed phase of barium oxide supported on alumina interacts differently with NO2 than a bulk-like phase of barium oxide SILD was used to synthesize disperse nanoislands or rafts of barium oxide on larger rafts of alumina supported on a silicon wafer. The SILD method was then extended to deposit barium oxide on an alumina powder support comprised of dense 150 nm spherical crystallites fused together into 1-2 pm particles. Equally weight loaded samples of barium oxide on the fused alumina powder were prepared by SILD and wet impregnation. The NO2 storage behavior of the barium oxide, evaluated by thermogravimetric analysis during NO2 temperature programmed desorption (TPD) experiments, provided insight into the dispersion of barium oxide that resulted from each of the loading techniques. The highly dispersed barium oxide rafts synthesized by SILD on fused alumina released NO2 at temperatures below 500°C during TPD. By comparison, the barium oxide loaded by wet impregnation showed a higher temperature desorption feature above 500°C indicative of bulk-like barium oxide nanoparticles. The NO2 weight loss curves were also used to calculate the relative percentages of BaO in the dispersed phase and bulk-like phase for each loading technique. The ability of SILD to synthesize highly disperse and uniform, conformal oxide coatings on three dimensional supports provides fundamental insight into the interactions between catalysts and supports.

  15. Layer-by-layer epitaxial growth of defect-engineered strontium cobaltites

    DOE PAGES

    Andersen, Tassie K.; Cook, Seyoung; Wan, Gang; ...

    2018-01-18

    Here, control over structure and composition of (ABO 3) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cation’s stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentrationmore » as a function of film thickness. Experimental results are compared to kinetically-limited thermodynamic predictions, in particular, solute trapping, with semi-quantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.« less

  16. Layer-by-layer epitaxial growth of defect-engineered strontium cobaltites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Cook, Seyoung; Wan, Gang

    Here, control over structure and composition of (ABO 3) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cation’s stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentrationmore » as a function of film thickness. Experimental results are compared to kinetically-limited thermodynamic predictions, in particular, solute trapping, with semi-quantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.« less

  17. Layer-by-Layer Epitaxial Growth of Defect-Engineered Strontium Cobaltites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Cook, Seyoung; Wan, Gang

    Control over structure and composition of (ABO(3)) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cations stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentration as amore » function of film thickness. Experimental results are compared to kinetically limited thermodynamic predictions, in particular, solute trapping, with semiquantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.« less

  18. Emergence of the bifurcation structure of a Langmuir-Blodgett transfer model

    NASA Astrophysics Data System (ADS)

    Köpf, Michael H.; Thiele, Uwe

    2014-11-01

    We explore the bifurcation structure of a modified Cahn-Hilliard equation that describes a system that may undergo a first-order phase transition and is kept permanently out of equilibrium by a lateral driving. This forms a simple model, e.g., for the deposition of stripe patterns of different phases of surfactant molecules through Langmuir-Blodgett transfer. Employing continuation techniques the bifurcation structure is numerically investigated using the non-dimensional transfer velocity as the main control parameter. It is found that the snaking structure of steady front states is intertwined with a large number of branches of time-periodic solutions that emerge from Hopf or period-doubling bifurcations and end in global bifurcations (sniper and homoclinic). Overall the bifurcation diagram has a harp-like appearance. This is complemented by a two-parameter study in non-dimensional transfer velocity and domain size (as a measure of the distance to the phase transition threshold) that elucidates through which local and global codimension 2 bifurcations the entire harp-like structure emerges.

  19. Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Shi, C.; Zhitomirsky, I.

    2010-03-01

    Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).

  20. Electrodeposition and capacitive behavior of films for electrodes of electrochemical supercapacitors.

    PubMed

    Shi, C; Zhitomirsky, I

    2010-01-08

    Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).

  1. Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors

    PubMed Central

    2010-01-01

    Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0–3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g−1 was observed for the sample with a specific mass of 89 μg cm−2 at a scan rate of 2 mV s−1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES). PMID:20672082

  2. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    DOE PAGES

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-06

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition ofmore » gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (−40 vs. −8% for anthropogenics, and −52 vs. −11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 10 8 M atm −1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems ( H * = H * (CH 3COOH); H * = 10 5 M atm −1; H * = H * (HNO 3)) still lead to an overestimation of 35%/25%/10% compared to our best estimate.« less

  3. Unique surface adsorption behaviors of serum proteins on chemically uniform and alternating surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sheng

    With increasing interests of studying proteins adsorption on the surfaces with nanoscale features in biomedical field, it is crucial to have fundamental understandings on how the proteins are adsorbed on such a surface and what factors contribute to the driving forces of adsorption. Besides, exploring more available nanoscale templates would greatly offer more possibilities one could design surface bio-detection methods with favorable protein-surface interactions. Thus, to fulfill the purpose, the work in this dissertation has been made into three major sections. First, to probe the intermediate states which possibly exist between stable and unstable phases described in mean-field theory diagram, a solvent vapor annealing method is chosen to slowly induce the copolymer polystyrene-block-polyvinylpyridine (PS-b-PVP)'s both blocks undergoing micro-phase separations from initial spherical nanodomains into terminal cylindrical nanodomains. During this process, real time atomic force microscopy (AFM) has been conducted to capture other six intermediate states with different morphologies on the polymeric film surfaces. Secondly, upon recognizing each intermediate state, the solution of immunoglobulin gamma (IgG) proteins has been deposited on the surface and been rinsed off with buffer solution before the protein-bounded surface is imaged by AFM. It has been found IgG showing a strong adsorption preference on PS over P4VP block. Among all the six intermediate states, the proteins are almost exclusively adsorbed on PS nanodomains regardless the concentration and deposition time. Thirdly, a trinodular shape protein fibrinogen (Fg) is selected for investigating how geometry and surface charge of proteins would interplay with cylindrical nanodomains on a surface developed from Polystyrene -block-Poly-(methyl methacrylate) PS-b-PMMA. Also, Fg adsorptions on chemically homogeneous surfaces are included here to have a better contrast of showing how much difference it can make by using it on a nanoscale surface. Interestingly, higher concentration of protein solution promotes the occurrences of single phase packed Fg on the PS domain. The densely packed network has formed where each Fg keeps its main body in PS domain and leaves its two alpha C chains on nearby PMMA domain. We believe this conformation and orientation would maximize both the hydrophobic and electrostatic interactions between Fg and the underlying surface.

  4. Synthesis of BiFeO{sub 3} thin films on single-terminated Nb : SrTiO{sub 3} (111) substrates by intermittent microwave assisted hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali

    We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thinmore » films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.« less

  5. Interfacing Capillary-Based Separations to Mass Spectrometry Using Desorption Electrospray Ionization

    PubMed Central

    Barbula, Griffin K.; Safi, Samir; Chingin, Konstantin; Perry, Richard H.; Zare, Richard N.

    2014-01-01

    The powerful hybrid analysis method of capillary-based separations followed by mass spectrometric analysis gives substantial chemical identity and structural information. It is usually carried out using electrospray ionization. However, the salts and detergents used in the mobile phase for electrokinetic separations suppress ionization efficiencies and contaminate the inlet of the mass spectrometer. This report describes a new method that uses desorption electrospray ionization (DESI) to overcome these limitations. Effluent from capillary columns is deposited on a rotating Teflon disk that is covered with paper. As the surface rotates, the temporal separation of the eluting analytes (i.e., the electropherogram) is spatially encoded on the surface. Then, using DESI, surface-deposited analytes are preferentially ionized, reducing the effects of ion suppression and inlet contamination on signal. With the use of this novel approach, two capillary-based separations were performed: a mixture of the rhodamine dyes at milligram/milliliter levels in a 10 mM sodium borate solution was separated by capillary electrophoresis, and a mixture of three cardiac drugs at milligram/milliliter levels in a 12.5 mM sodium borate and 12.5 mM sodium dodecyl sulfate solution was separated by micellar electrokinetic chromatography. In both experiments, the negative effects of detergents and salts on the MS analyses were minimized. PMID:21319740

  6. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOEpatents

    Yu, Conrad M.

    2000-01-01

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  7. Effect of annealing temperature on structural, morphological and electrical properties of nanoparticles TiO{sub 2} thin films by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muaz, A. K. M.; Hashim, U., E-mail: uda@unimap.edu.my; Arshad, M. K. Md.

    2016-07-06

    In this paper, the sol-gel method is used to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films at different annealing temperature. The prepared sol was deposited on the p-SiO{sub 2} substrates by spin coating technique under room temperature. The nanoparticles TiO{sub 2} solution was synthesized using Ti{OCH(CH_3)_2}{sub 4} as a precursor with an methanol solution at a molar ratio 1:10. The prepared TiO{sub 2} sols will further validate through structural, morphological and electrical properties. From the X-ray diffraction (XRD) analysis, as-deposited films was found to be amorphous in nature and tend to transform into tetragonal anatase and rutile phase asmore » the films annealed at 573 and 773 K, respectively. The diversification of the surface roughness was characterized by atomic force microscopy (AFM) indicated the roughness and thickness very dependent on the annealing temperature. The two-point probe electrical resistance and conductance of nanoparticles TiO{sub 2} thin films were determined by the DC current-voltage (IV) analysis. From the I-V measurement, the electrical conductance increased as the films annealed at higher temperature.« less

  8. Room temperature magnetization in Co-doped anatase phase of TiO2

    NASA Astrophysics Data System (ADS)

    Karimipour, Masoud; Mageto, Maxwel Joel; Etefagh, Reyhaneh; Azhir, Elahe; Mwamburi, Mghendi; Topalian, Zareh

    2013-01-01

    CoxTi1-xO2 films were deposited by spray pyrolysis technique on Si(1 0 0) substrates at 475 °C. A hydro-alcoholic solution containing titanium (iv) isopropoxide and Co(NO3)2 with various Co doping levels from x = 0-0.015 in solution was used as spray solution. Grazing incident angle of X-ray diffraction illustrates that the CoxTi1-xO2 films are single phase and polycrystal with mixed orientations. Study of surface morphology of the films by atomic force microscope reveals that the annealing atmosphere does not significantly affect the grain size and the microstructure of the films. This study provides further insight into the importance of annealing atmosphere on magnetization of the films. Room temperature magneto-optical Kerr measurement was employed in polar mode. A hysteresis loop and a paramagnetic behavior have been recorded for samples annealed in H2 ambient gas and air, respectively. Chemical composition analysis by X-ray photo-electron spectroscopy showed that Co atoms are bounded to oxygen and no metallic clusters are present. Moreover, it indicates the formation of high spin Co2+ for the sample x = 0.008 annealed in H2 ambient gas. The origin of magnetization can be attributed to the contribution of oxygen vacancies in the spin polarization of the structure.

  9. Synthesis and characterization of micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers by electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Furlan, R.; Ramos, I.; Santiago-Aviles, J. J.

    Micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers were synthesized from commercially available zirconium n-pro-poxide, titanium isopropoxide, and lead 2-ethylhexanoate. Using xylene as a solvent, they were mixed to form a precursor solution with a suitable viscosity for electrospinning. The solution was analyzed using thermo-gravimetric and differential thermal methods. Ultra-fine fibers and mats were electrostatically drawn from the precursor solution. The as-deposited materials were sintered for 2 h at 400, 500, 600, 700 and 800 °C, respectively. Sintered mats or fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Raman micro-spectrometry and scanning-probe microscopy (SPM). The SEM results revealed that the fibers had diameters varying from hundreds of nanometers to 10 μm. Using AES, the elements Pb, Zr, Ti and O, as well as residual C, were detected on the surface of the fibers. Raman and XRD spectra indicated that the precursors began to transform into the intermediate pyrochlore phase at 400 °C, followed by the perovskite Pb(Zr0.52Ti0.48)O3 phase above 600 °C. Scanning-probe microscopy (SPM), operated in the piezo-response imaging mode, revealed spontaneous polarization domains in the fibers, with diameters ranging from 100 to 500 nm.

  10. Advanced transition metal phosphide materials from single-source molecular precursors

    NASA Astrophysics Data System (ADS)

    Colson, Adam Caleb

    In this thesis, the feasibility of employing organometallic single-source precursors in the preparation of advanced transition metal pnictide materials such as colloidal nanoparticles and films has been investigated. In particular, the ternary FeMnP phase was targeted as a model for preparing advanced heterobimetallic phosphide materials, and the iron-rich Fe3P phase was targeted due to its favorable ferromagnetic properties as well as the fact that the preparation of advanced Fe3P materials has been elusive by commonly used methods. Progress towards the synthesis of advanced Fe2--xMn xP nanomaterials and films was facilitated by the synthesis of the novel heterobimetallic complexes FeMn(CO)8(mu-PR1R 2) (R1 = H, R2 = H or R1 = H, R2 = Ph), which contain the relatively rare mu-PH2 and mu-PPhH functionalities. Iron rich Fe2--xMnxP nanoparticles were obtained by thermal decomposition of FeMn(CO)8(mu-PH 2) using solution-based synthetic methods, and empirical evidence suggested that oleic acid was responsible for manganese depletion. Films containing Fe, Mn, and P with the desired stoichiometric ratio of 1:1:1 were prepared using FeMn(CO)8(mu-PH2) in a simple low-pressure metal-organic chemical vapor deposition (MOCVD) apparatus. Although the elemental composition of the precursor was conserved in the deposited film material, spectroscopic evidence indicated that the films were not composed of pure-phase FeMnP, but were actually mixtures of crystalline FeMnP and amorphous FeP and Mn xOy. A new method for the preparation of phase-pure ferromagnetic Fe 3P films on quartz substrates has also been developed. This approach involved the thermal decomposition of the single-source precursors H 2Fe3(CO)9PR (R = tBu or Ph) at 400 °C. The films were deposited using a simple home-built MOCVD apparatus and were characterized using a variety of analytical methods. The films exhibited excellent phase purity, as evidenced by X-ray diffraction, X-ray photoelectron spectroscopy, and field-dependent magnetization measurements, the results of which were all in good agreement with measurements obtained from bulk Fe3P. As-deposited Fe3P films were found to be amorphous, and little or no magnetic hysteresis was observed in plots of magnetization versus applied field. Annealing the Fe3P films at 550 °C resulted in improved crystallinity as well as the observation of magnetic hysteresis.

  11. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the presence of soluble cerium cations showed that of anodic and cathodic activity was not as strongly inhibited as was observed for chromate ions. Overall cerium conversion coating showed good performance on Al-Si (356) ally, but poor performance on Fe- and Cu-rich alloy (380).

  12. Cadmium zinc sulfide by solution growth

    DOEpatents

    Chen, Wen S.

    1992-05-12

    A process for depositing thin layers of a II-VI compound cadmium zinc sulfide (CdZnS) by an aqueous solution growth technique with quality suitable for high efficiency photovoltaic or other devices which can benefit from the band edge shift resulting from the inclusion of Zn in the sulfide. A first solution comprising CdCl.sub.2 2.5H.sub.2 O, NH.sub.4 Cl, NH.sub.4 OH and ZnCl.sub.2, and a second solution comprising thiourea ((NH.sub.2).sub.2 CS) are combined and placed in a deposition cell, along with a substrate to form a thin i.e. 10 nm film of CdZnS on the substrate. This process can be sequentially repeated with to achieve deposition of independent multiple layers having different Zn concentrations.

  13. Novel approach to investigation of semiconductor MOCVD by microreactor technology

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2017-11-01

    Metal-Organic Chemical Vapour Deposition is a very complex technology that requires further investigation and optimization. We propose to apply microreactors to (1) replace multiple expensive time-consuming macroscale experiments by just one microreactor deposition with many points on one substrate; (2) to derive chemical reaction rates from individual deposition profiles using theoretical analytical solution. In this paper we also present the analytical solution of a simplified equation describing the deposition rate dependency on temperature. It allows to solve an inverse problem and to obtain detailed information about chemical reaction mechanism of MOCVD process.

  14. Atomic Layer Deposition of MnS: Phase Control and Electrochemical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riha, Shannon C.; Koegel, Alexandra A.; Meng, Xiangbo

    Manganese sulfide (MnS) thin films were synthesized via atomic layer deposition (ALD) using gaseous manganese bis(ethylcyclopentadienyl) and hydrogen sulfide as precursors. At deposition temperatures ≤150 °C phase-pure r-MnS thin films were deposited, while at temperatures >150 °C, a mixed phase, consisting of both r- and a-MnS resulted. In situ quartz crystal microbalance (QCM) studies validate the self-limiting behavior of both ALD half-reactions and, combined with quadrupole mass spectrometry (QMS) allow the derivation of a self-consistent reaction mechanism. Lastly, MnS thin films were deposited on copper foil and tested as a Li-ion battery anode. The MnS coin cells showed exceptional cyclemore » stability and near-theoretical capacity.« less

  15. Atomic Layer Deposition of MnS: Phase Control and Electrochemical Applications

    DOE PAGES

    Riha, Shannon C.; Koegel, Alexandra A.; Meng, Xiangbo; ...

    2016-01-19

    Manganese sulfide (MnS) thin films were synthesized via atomic layer deposition (ALD) using gaseous manganese bis(ethylcyclopentadienyl) and hydrogen sulfide as precursors. At deposition temperatures ≤150 °C phase-pure r-MnS thin films were deposited, while at temperatures >150 °C, a mixed phase, consisting of both r- and a-MnS resulted. In situ quartz crystal microbalance (QCM) studies validate the self-limiting behavior of both ALD half-reactions and, combined with quadrupole mass spectrometry (QMS) allow the derivation of a self-consistent reaction mechanism. Lastly, MnS thin films were deposited on copper foil and tested as a Li-ion battery anode. The MnS coin cells showed exceptional cyclemore » stability and near-theoretical capacity.« less

  16. Microstructure, thickness and sheet resistivity of Cu/Ni thin film produced by electroplating technique on the variation of electrolyte temperature

    NASA Astrophysics Data System (ADS)

    Toifur, M.; Yuningsih, Y.; Khusnani, A.

    2018-03-01

    In this research, it has been made Cu/Ni thin film produced with electroplating technique. The deposition process was done in the plating bath using Cu and Ni as cathode and anode respectively. The electrolyte solution was made from the mixture of HBrO3 (7.5g), NiSO4 (100g), NiCl2 (15g), and aquadest (250 ml). Electrolyte temperature was varied from 40°C up to 80°C, to make the Ni ions in the solution easy to move to Cu cathode. The deposition was done during 2 minutes on the potential of 1.5 volt. Many characterizations were done including the thickness of Ni film, microstructure, and sheet resistivity. The results showed that at all samples Ni had attacked on the Cu substrate to form Cu/Ni. The raising of electrolyte temperature affected the increasing of Ni thickness that is the Ni thickness increase with the increasing electrolyte temperature. From the EDS spectrum, it can be informed that samples already contain Ni and Cu elements and NiO and CuO compounds. Addition element and compound are found for sample Cu/Ni resulted from 70° electrolyte temperature of Ni deposition, that are Pt and PtO2. From XRD pattern, there are several phases which have crystal structure i.e. Cu, Ni, and NiO, while CuO and PtO2 have amorphous structure. The sheet resistivity linearly decreases with the increasing electrolyte temperature.

  17. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    NASA Astrophysics Data System (ADS)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M.

    2016-11-01

    Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH4) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm2 catalytic surface with aqueous NaBH4 solutions generated rate constants (K) = equal to 4.9 × 10-3 min-1, 4.6 × 10-3 min-1, and 3.3 × 10-3 min-1 for ACoF, NCoF, and copper substrate respectively.

  18. Investigation of hydrophobic substrates for solution residue analysis utilizing an ambient desorption liquid sampling-atmospheric pressure glow discharge microplasma.

    PubMed

    Paing, Htoo W; Marcus, R Kenneth

    2018-03-12

    A practical method for preparation of solution residue samples for analysis utilizing the ambient desorption liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy (AD-LS-APGD-OES) microplasma is described. Initial efforts involving placement of solution aliquots in wells drilled into copper substrates, proved unsuccessful. A design-of-experiment (DOE) approach was carried out to determine influential factors during sample deposition including solution volume, solute concentration, number of droplets deposited, and the solution matrix. These various aspects are manifested in the mass of analyte deposited as well as the size/shape of the product residue. Statistical analysis demonstrated that only those initial attributes were significant factors towards the emission response of the analyte. Various approaches were investigated to better control the location/uniformity of the deposited sample. Three alternative substrates, a glass slide, a poly(tetrafluoro)ethylene (PTFE) sheet, and a polydimethylsiloxane (PDMS)-coated glass slide, were evaluated towards the microplasma analytical performance. Co-deposition with simple organic dyes provided an accurate means of determining the location of the analyte with only minor influence on emission responses. The PDMS-coated glass provided the best performance by virtue of its providing a uniform spatial distribution of the residue material. This uniformity yielded an improved limits of detection by approximately 22× for 20 μL and 4 x for 2 μL over the other two substrates. While they operate by fundamentally different processes, this choice of substrate is not restricted to the LS-APGD, but may also be applicable to other AD methods such as DESI, DART, or LIBS. Further developments will be directed towards a field-deployable ambient desorption OES source for quantitative analysis of microvolume solution residues of nuclear forensics importance.

  19. Effect of Ni content on stainless steel fabricated by laser melting deposition

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, C. H.; Wang, Q.; Wu, C. L.; Zhang, S.; Chen, J.; Abdullah, Adil O.

    2018-05-01

    The novel stainless steel + x wt.% Ni (x = 0, 3.05, 6.10, 9.15) specimens were successfully fabricated by laser melting deposition, aiming at investigating the influence of Ni content on stainless steel structure and property. The effects of Ni content on phase compositions, microstructure, microhardness, wear and electrochemical corrosion resistance of as-deposited stainless steel were studied systematically using XRD, OM, SEM, microhardness tester, friction-wear tester and potentiodynamic polarization measurement, respectively. Experimental results showed that with the increase of Ni content, the constituent phase of the as-deposited specimen changed from ferrite phase (specimen for x = 0) to austenite phase (specimen for x = 9.15). The microstructure growth followed the principle of dendrite growth. However, the dominant microstructure varied from equiaxed dendrite to columnar dendrite with increasing Ni content. Phase transition from ferrite phase to austenite phase with the addition of Ni content resulted in the decrease of microhardness value from 643HV to 289HV. Meanwhile, the wear resistance of as-deposited specimens decreased gradually with the increasing of Ni content, which might be attributed to the fact that the wear resistance is proportional to microhardness according to Archard's law. It was noted that corrosion resistance of as-deposited stainless steel was extremely improved with the increase of Ni content. The higher Ni content specimen (specimen for x = 9.15) exhibited the best corrosion resistance among the tested specimens based on corrosion rate, which was one order of magnitude lower than that of the lower Ni content specimens (specimens for x = 0, 3.05).

  20. Studies of Plasma-Sprayed Alumina

    NASA Astrophysics Data System (ADS)

    Ilavsky, Jan

    1994-05-01

    Phase transformations and porosity of the plasma sprayed alumina deposits were examined. The dependence of the phase transformations on deposit chemistry was established. Porosity changes during heat treatment were studied and a model for the porosity is proposed. A novel technique in the field of plasma sprayed deposits--small-angle neutron scattering (SANS)--was successfully applied. Deposits were manufactured using the water-stabilized plasma spray system, PAL160, with an input of 160 kW. Phase transformations of the plasma sprayed alumina deposits were studied using XRD and DTA. The deposits were manufactured from 99.9% alumina, alumina-chromia (1.5% Cr_2O_3), gray alumina (3.7% TiO_2) and alumina -titania (17% TiO_2). The addition of chromia increases the temperature of the alpha phase formation by about 40^circ C and the addition of TiO_2 reduces this temperature by about 150^circ C for gray alumina and by about 175^ circC for alumina-titania. The amount of metastable theta phase was found to depend on the chemistry of the feedstock. Porosities of the deposits, made from alumina and gray alumina, were studied using mercury intrusion porosimetry, weighing method (Archimedean porosimetry), image analysis and SANS. Samples were studied in the as -sprayed condition and after heat treatment for 2 hours at 1300^circC and 1500 ^circC. Porosity depends on the deposit chemistry and on the heat treatment and varies from 5% to about 11%. Different porosity measurement techniques yield different results. Surface areas of 1.5 to 7.5 times 10^4 cm^2 /cm^3 (times 10^6 m^{ -1}) were measured using SANS and depend on heat treatment and on the deposit chemistry. The phase transformations can be associated with an increase in pore surface area and decrease in surface area at 1500 ^circC can be associated with sintering. The effective pore radius, R_{ rm eff}, as measured by SANS is a measure of the pore sizes in the 0.08 to 10 μm size range. The R_{rm eff} depends on deposit chemistry and is about 0.7 to 0.9 μm for all deposits, but the gray alumina deposit, heat treated at 1500^ circC for 2h, exhibits an R_ {rm eff} of 2.2 mu m. This increase can be associated with sintering.

  1. Morphological Evolution and Weak Interface Development within CVD-Zirconia Coating Deposited on Hi-Nicalon Fiber

    NASA Technical Reports Server (NTRS)

    Li, Hao; Lee, Jinil; Libera, Matthew R.; Lee, Woo Y.; Kebbede, Anteneh; Lance, Michael J.; Wang, Hongyu; Morscher, Gregory N.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The phase contents and morphology of a ZrO2 fiber coating deposited at 1050 C on Hi-Nicalon(Tm) by chemical vapor deposition were examined as a function of deposition time from 5 to 120 min. The morphological evolution in the ZrO2 coating was correlated to the development of delamination within the ZrO2 coating. The delamination appears to occur as a result of: (1) continuous formation of tetragonal ZrO2 nuclei on the deposition surface; (2) martensitic transformation of the tetragonal phase to a monoclinic phase upon reaching a critical grain size; and (3) development of significant compressive hoop stresses due to the volume dilation associated with the transformation. Our observations suggest that it will be of critical importance to further understand and eventually control the nucleation and grain growth behavior of CVD ZrO2 and its phase transformation behavior for its potential applications for composites.

  2. Evaporite Caprock Integrity. An experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO 2 exposure

    DOE PAGES

    Smith, Megan M.; Sholokhova, Yelena; Hao, Yue; ...

    2012-07-25

    Characterization and geochemical data are presented from a core-flooding experiment on a sample from the Three Fingers evaporite unit forming the lower extent of caprock at the Weyburn-Midale reservoir, Canada. This low-permeability sample was characterized in detail using X-ray computed microtomography before and after exposure to CO 2-acidified brine, allowing mineral phase and voidspace distributions to be quantified in three dimensions. Solution chemistry indicated that CO 2-acidified brine preferentially dissolved dolomite until saturation was attained, while anhydrite remained unreactive. Dolomite dissolution contributed to increases in bulk permeability through the formation of a localized channel, guided by microfractures as well asmore » porosity and reactive phase distributions aligned with depositional bedding. An indirect effect of carbonate mineral reactivity with CO 2-acidified solution is voidspace generation through physical transport of anhydrite freed from the rock matrix following dissolution of dolomite. The development of high permeability fast pathways in this experiment highlights the role of carbonate content and potential fracture orientations in evaporite caprock formations considered for both geologic carbon sequestration and CO 2-enhanced oil recovery operations.« less

  3. Chalcogen Polymers for Completely Solution-Processed Inorganic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Martin, Trevor R.

    Chalcopyrite materials such as CuInSxSe2-x (CISSe), the gallium alloy variant CuInxGa1-xSySe2-y (CIGSSe), and the earth-abundant kesterite material Cu2ZnSnS xSe4-x (CZTSSe) possess a range of properties that are ideally suited for thin-film photovoltaics (PV) applications. Although these materials are beginning to see some commercial success, they are manufactured using complicated and expensive techniques such as high temperature processing, vacuum deposition methods, and vapor-phase reactions. These production methods require an exorbitantly large capital investment to create new manufacturing facilities, which severely hampers the widespread and rapid deployment of these emerging solar energy technologies. This work has focused on developing novel chalcogen polymers to synthesize nanoparticles and produce thin-films for printed photovoltaics applications. This new method provides a pathway towards using chalcogen copolymers to produce these materials via a completely solution-processed, low-temperature fabrication procedure. This technique constitutes one of the first viable means to produce low-bandgap chalcogenides without additional vapor-phase or high-temperature reactions. Therefore, this process can potentially be implemented to rapidly and cheaply manufacture printed chalcopyrite and kesterite photovoltaics.

  4. Effect of Mg incorporation on solution-processed kesterite solar cells

    NASA Astrophysics Data System (ADS)

    Caballero, Raquel; Haass, Stefan G.; Andres, Christian; Arques, Laia; Oliva, Florian; Izquierdo-Roca, Victor; Romanyuk, Yaroslav E.

    2018-01-01

    The introduction of the alkaline-earth element Mg into Cu2ZnSn(S,Se)4 (CTZSSe) is explored in view of potential photovoltaic applications. Cu2Zn1-xMgxSn(S,Se)4 absorber layers with variable Mg content x=0…1 are deposited using the solution approach with dimethyl sulfoxide solvent followed by annealing in selenium atmosphere. For heavy Mg alloying with x = 0.55…1 the phase separation into Cu2SnSe3, MgSe2, MgSe and SnSe2 occurs in agreement with literature predictions. A lower Mg content of x=0.04 results in the kesterite phase as confirmed by XRD and Raman spectroscopy. A photoluminescence maximum is red-shifted by 0.02 eV as compared to the band-gap and a carrier concentration NCV of 1 x 1016 cm-3 is measured for a Mg-containing kesterite solar cell device. Raman spectroscopy indicates that structural defects can be reduced in Mg-containing absorbers as compared to the Mg-free reference samples, however the best device efficiency of 7.2% for a Mg-containing cell measured in this study is lower than those frequently reported for the conventional Na doping.

  5. Development and characterization of laser surface cladding (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper

    NASA Astrophysics Data System (ADS)

    Yan, Hua; Zhang, Peilei; Yu, Zhishui; Li, Chonggui; Li, Ruidi

    2012-07-01

    To improve the wear resistance of copper components, laser surface cladding (LSC) was applied to deposit (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper using a cladding interlayer of Ni-30Cu alloy by Nd:YAG laser. The microstructure and phases of the composite coating were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive microanalysis (EDX). Microhardness tester and pin-on-disc wear tester were employed to evaluate the hardness and dry-sliding wear resistance. The results show that crack-free composite coating with metallurgical bonding to the copper substrate is obtained. Phases identified in the (Ti,W)C-reinforced Ni-30Cu alloy composite layer are composed of TiWC2 reinforcements and (Ni,Cu) solid solution. TiWC2 reinforcements are distributed uniformly in the (Ni,Cu) solid solution matrix with dendritic morphology in the upper region and with particles in the mid-lower region. The microhardness and wear properties of the composite coating are improved significantly in comparison to the as-received copper substrate due to the addition of 50 wt% (Ti,W)C multicarbides.

  6. Direct-write liquid phase transformations with a scanning transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.

    The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less

  7. Direct-write liquid phase transformations with a scanning transmission electron microscope

    DOE PAGES

    Unocic, Raymond R.; Lupini, Andrew R.; Borisevich, Albina Y.; ...

    2016-08-03

    The highly energetic electron beam from a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from local knock-out and atomic movement, to amorphization/crystallization, and chemical/electrochemical reactions occuring at localized liquid-solid and gas-solid interfaces. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional e-beam rastering modes that allow only for uniform e-beam exposures. Here we develop an automated liquid phase nanolithography method that is capable of directly writing nanometer scaled features within silicon nitride encapsulated liquid cells. An external beam control system, connected to the scan coilsmore » of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan velocity of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H 2PdCl 4 are irradiated to controllably deposit palladium onto silicon nitride membranes. We determine the threshold electron dose required for the radiolytic deposition of metallic palladium, explore the influence of electron dose on the feature size and morphology of nanolithographically patterned nanostructures, and propose a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring. As a result, this approach enables both fundamental studies of electron beam induced interactions with matter, as well as opens a pathway to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid phase precursors.« less

  8. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3more » km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.« less

  9. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    NASA Astrophysics Data System (ADS)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  10. Three-Phase Fuel Deposition in a Long-Distance Migrant, the Red Knot (Calidris canutus piersmai), before the Flight to High Arctic Breeding Grounds

    PubMed Central

    Hua, Ning; Piersma, Theunis; Ma, Zhijun

    2013-01-01

    Refuelling by migratory birds before take-off on long flights is generally considered a two-phase process, with protein accumulation preceding rapid fat deposition. The first phase expresses the demands for a large digestive system for nutrient storage after shrinkage during previous flights, the second phase the demands for fat stores to fuel the subsequent flight. At the last staging site in northward migration, this process may include expression of selection pressures both en route to and after arrival at the breeding grounds, which remains unascertained. Here we investigated changes in body composition during refuelling of High Arctic breeding red knots (Calidris canutus piersmai) in the northern Yellow Sea, before their flight to the tundra. These red knots followed a three-phase fuel deposition pattern, with protein being stored in the first and last phases, and fat being deposited mainly in the second phase. Thus, they did not shrink nutritional organs before take-off, and even showed hypertrophy of the nutritional organs. These suggest the build up of strategic protein stores before departure to cope with a protein shortage upon arrival on the breeding grounds. Further comparative studies are warranted to examine the degree to which the deposition of stores by migrant birds generally reflects a balance between concurrent and upcoming environmental selection pressures. PMID:23638114

  11. Self-organization of a wedge-shaped surfactant in monolayers and multilayers.

    PubMed

    Cain, Nicholas; Van Bogaert, Josh; Gin, Douglas L; Hammond, Scott R; Schwartz, Daniel K

    2007-01-16

    The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.

  12. Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Mishra, N. C.; Choudhary, R. J.; Banerjee, A.; Shripathi, T.; Lalla, N. P.; Annapoorni, S.; Rath, Chandana

    2012-08-01

    TiO2 and Co-doped TiO2 (CTO) thin films deposited at various oxygen partial pressures by pulsed laser deposition exhibit room temperature ferromagnetism (RTFM) independent of their phase. Films deposited at 0.1 mTorr oxygen partial pressure show a complete rutile phase confirmed from glancing angle x-ray diffraction and Raman spectroscopy. At the highest oxygen partial pressure, i.e. 300 mTorr, although the TiO2 film shows a complete anatase phase, a small peak corresponding to the rutile phase along with the anatase phase is identified in the case of CTO film. An increase in O to Ti/(Ti+Co) ratio with increase in oxygen partial pressure is observed from Rutherford backscattering spectroscopy. It is revealed from x-ray photoelectron spectroscopy (XPS) that oxygen vacancies are found to be higher in the CTO film than TiO2, while the valency of cobalt remains in the +2 state. Therefore, the CTO film deposited at 300 mTorr does not show a complete anatase phase unlike the TiO2 film deposited at the same partial pressure. We conclude that RTFM in both films is not due to impurities/contaminants, as confirmed from XPS depth profiling and cross-sectional transmission electron microscopy (TEM), but due to oxygen vacancies. The magnitude of moment, however, depends not only on the phase of TiO2 but also on the crystallinity of the films.

  13. Chemical composition of an aqueous oxalato-/citrato-VO(2+) solution as determinant for vanadium oxide phase formation.

    PubMed

    Peys, Nick; Maurelli, Sara; Reekmans, Gunter; Adriaensens, Peter; De Gendt, Stefan; Hardy, An; Van Doorslaer, Sabine; Van Bael, Marlies K

    2015-01-05

    Aqueous solutions of oxalato- and citrato-VO(2+) complexes are prepared, and their ligand exchange reaction is investigated as a function of the amount of citrate present in the aqueous solution via continuous-wave electron paramagnetic resonance (CW EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopy. With a low amount of citrate, monomeric cis-oxalato-VO(2+) complexes occur with a distorted square-pyramidal geometry. As the amount of citrate increases, oxalate is gradually exchanged for citrate. This leads to (i) an intermediate situation of monomeric VO(2+) complexes with a mix of oxalate/citrate ligands and (ii) a final situation of both monomeric and dimeric complexes with exclusively citrato ligands. The monomeric citrato-VO(2+) complexes dominate (abundance > 80%) and are characterized by a 6-fold chelation of the vanadium(IV) ion by 4 RCO2(-) ligands at the equatorial positions and a H2O/R-OH ligand at the axial position. The different redox stabilities of these complexes, relative to that of dissolved O2 in the aqueous solution, is analyzed via (51)V NMR. It is shown that the oxidation rate is the highest for the oxalato-VO(2+) complexes. In addition, the stability of the VO(2+) complexes can be drastically improved by evacuation of the dissolved O2 from the solution and subsequent storage in a N2 ambient atmosphere. The vanadium oxide phase formation process, starting with the chemical solution deposition of the aqueous solutions and continuing with subsequent processing in an ambient 0.1% O2 atmosphere, differs for the two complexes. The oxalato-VO(2+) complexes turn into the oxygen-deficient crystalline VO2 B at 400 °C, which then turns into crystalline V6O13 at 500 °C. In contrast, the citrato-VO(2+) complexes form an amorphous film at 400 °C that crystallizes into VO2 M1 and V6O13 at 500 °C.

  14. Evolution of orientation degree, lattice dynamics and electronic band structure properties in nanocrystalline lanthanum-doped bismuth titanate ferroelectric films by chemical solution deposition.

    PubMed

    Zhang, Jinzhong; Chen, Xiangui; Jiang, Kai; Shen, Yude; Li, Yawei; Hu, Zhigao; Chu, Junhao

    2011-08-21

    Ferroelectric lanthanum (La)-substituted bismuth titanate (Bi(4-x)La(x)Ti(3)O(12), BLT) nanocrystalline films with the composition range of 0 ≤x≤ 1 have been directly deposited on n-type Si (100) substrates by chemical solution deposition. The La substitution effects on the preferred orientation, surface morphology, phonon modes, emission bands and electronic band structures of the BLT films have been investigated by microscopy, Raman scattering, photoluminescence and spectroscopic ellipsometry at room temperature. X-Ray diffraction analysis shows that the films are polycrystalline and exhibit the pure perovskite phase structure. With increasing La composition, the (100)-orientation degree can be enhanced and the root-mean-square roughnesses slightly increase from 6.5 to 8.3 nm. It was found that the Raman-active mode A(1g)[Bi] at about 59 cm(-1) is unchanged while the B(1g) and A(1g)[Ti] phonon modes at about 648 and 853 cm(-1) are shifted towards higher frequency by about 36.6 and 8.4 cm(-1), respectively. Photoluminescence spectra show that the intensity of the peak located at about 2.3 eV increases with the La composition, except for the Bi(3)LaTi(3)O(12) film, due to the smallest grain size and oxygen vacancy defects. The optical constants of the BLT films have been uniquely extracted by fitting the measured ellipsometric spectra with a four-phase layered model (air/surface rough layer/BLT/Si) in the photon energy range of 0.73-4.77 eV. The Adachi dielectric function model has been successfully applied and reasonably describes the optical response behavior of the ferroelectric BLT films. Moreover, the film packing density decreases while the optical band gap linearly increases from 3.610 ± 0.066 to 3.758 ± 0.068 eV with increasing La composition. It is surmised that the phenomena are mainly ascribed to the variations of the electronic structure, especially for the conduction band, which is perturbed by the La doping. This journal is © The Royal Society of Chemistry 2011

  15. Synthesis and Characterization of Three Dimensional Nanostructures Based on Interconnected Carbon Nanomaterials

    NASA Astrophysics Data System (ADS)

    Koizumi, Ryota

    This thesis addresses various types of synthetic methods for novel three dimensional nanomaterials and nanostructures based on interconnected carbon nanomaterials using solution chemistry and chemical vapor deposition (CVD) methods. Carbon nanotube (CNT) spheres with porous and scaffold structures consisting of interconnected CNTs were synthesized by solution chemistry followed by freeze-drying, which have high elasticity under nano-indentation tests. This allows the CNT spheres to be potentially applied to mechanical dampers. CNTs were also grown on two dimensional materials--such as reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN)--by CVD methods, which are chemically interconnected. CNTs on rGO and h-BN interconnected structures performed well as electrodes for supercapacitors. Furthermore, unique interconnected flake structures of alpha-phase molybdenum carbide were developed by a CVD method. The molybdenum carbide can be used for a catalyst of hydrogen evolution reaction activity as well as an electrode for supercapacitors.

  16. Electrical properties of polycrystalline GaN films functionalized with cysteine and stabilization of GaN nanoparticles in aqueous media.

    PubMed

    Arízaga, Gregorio Guadalupe Carbajal; Oviedo, Mariana J; López, Oscar Edel Contreras

    2012-10-01

    GaN was synthesized onto sapphire substrates by chemical vapor deposition, reacting gallium, ammonium chloride and ammonia. The polycrystalline films were immersed in glycine, aspartic acid and cysteine solutions. Cysteine chemisorbed onto GaN films produced detectable changes in conductivity, mobility and Hall coefficient indicating that GaN is capable of detecting and reacting with thiolate groups, which was confirmed by X-ray photoelectron spectroscopy. The Cys-GaN film solution was adjusted to pH 10, upon which the GaN nanoparticles were transferred to the aqueous phase forming a suspension stable for seven days. The alkaline colloid was then further adjusted down to pH 3 retaining stability for three days. The GaN colloid obtained represents a suitable medium to study GaN properties for biological applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    PubMed

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction.

    PubMed

    Koutsospyros, Agamemnon; Pavlov, Julius; Fawcett, Jacqueline; Strickland, David; Smolinski, Benjamin; Braida, Washington

    2012-06-15

    A reductive technology based on a completely mixed two-phase reactor (bimetallic particles and aqueous stream) was developed for the treatment of aqueous effluents contaminated with nitramines and nitro-substituted energetic materials. Experimental degradation studies were performed using solutions of three high energetics (RDX, HMX, TNT) and three insensitive-munitions components (NTO, NQ, DNAN). The study shows that, on laboratory scale, these energetic compounds are easily degraded in solution by suspensions of bimetallic particles (Fe/Ni and Fe/Cu) prepared by electro-less deposition. The type of bimetal pair (Fe/Cu or Fe/Ni) does not appear to affect the degradation kinetics of RDX, HMX, and TNT. The degradation of all components followed apparent first-order kinetics. The half-lives of all compounds except NTO were under 10 min. Additional parameters affecting the degradation processes were solids loading and initial pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    NASA Astrophysics Data System (ADS)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  20. Synthesis of LiCoO 2 thin films by sol/gel process

    NASA Astrophysics Data System (ADS)

    Porthault, H.; Le Cras, F.; Franger, S.

    LiCoO 2 thin films were synthesized by sol/gel process using acrylic acid (AA) as chelating agent. The gel formulation was optimized by varying solvent (ethylene glycol or water) and precursors molar ratios (Li, Co, AA) in order to obtain a dense film for positive electrode of lithium batteries. The gel was deposited by spin-coating technique on an Au/TiO 2/SiN/SiO 2/Si substrate. Thin films were deposited by either single or multistep process to enhance the density of the thin film and then calcined during 5 h at 800 °C to obtain the R-3m phase (HT-LiCoO 2). A chemical characterization of the solution was realized by Fourier Transform Infrared (FTIR) spectroscopy. Thermal decomposition of precursors and gel was studied by Thermo Gravimetric Analyses (TGA). Further investigations were done to characterize rheologic behaviour of the gel and solvents affinity with the substrate. Crystallinity and morphology were analyzed respectively by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The formation of R-3m phase was confirmed by the electrochemical behaviour of the gel derived LiCoO 2. Cyclic voltammograms and galvanostatic cycling show typical curve shape of the HT-LiCoO 2.

  1. Ultrasonic Spray Pyrolysis Deposited Copper Sulphide Thin Films for Solar Cell Applications

    PubMed Central

    Firat, Y. E.; Yildirim, H.; Erturk, K.

    2017-01-01

    Polycrystalline copper sulphide (CuxS) thin films were grown by ultrasonic spray pyrolysis method using aqueous solutions of copper chloride and thiourea without any complexing agent at various substrate temperatures of 240, 280, and 320°C. The films were characterized for their structural, optical, and electrical properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), atomic force microscopy (AFM), contact angle (CA), optical absorption, and current-voltage (I-V) measurements. The XRD analysis showed that the films had single or mixed phase polycrystalline nature with a hexagonal covellite and cubic digenite structure. The crystalline phase of the films changed depending on the substrate temperature. The optical band gaps (Eg) of thin films were 2.07 eV (CuS), 2.50 eV (Cu1.765S), and 2.28 eV (Cu1.765S–Cu2S). AFM results indicated that the films had spherical nanosized particles well adhered to the substrate. Contact angle measurements showed that the thin films had hydrophobic nature. Hall effect measurements of all the deposited CuxS thin films demonstrated them to be of p-type conductivity, and the current-voltage (I-V) dark curves exhibited linear variation. PMID:29109807

  2. Simultaneous absorption of vitamins C and E from topical microemulsions using reconstructed human epidermis as a skin model.

    PubMed

    Rozman, Branka; Gasperlin, Mirjana; Tinois-Tessoneaud, Estelle; Pirot, Fabrice; Falson, Francoise

    2009-05-01

    Antioxidants provide the mainstay for skin protection against free radical damage. The structure of microemulsions (ME), colloidal thermodynamically stable dispersions of water, oil and surfactant, allows the incorporation of both lipophilic (vitamin E) and hydrophilic (vitamin C) antioxidants in the same system. The objective of this work was to investigate the potential of non-thickened (o/w, w/o and gel-like) and thickened (with colloidal silica) ME as carriers for the two vitamins using reconstructed human epidermis (RHE). The amounts of these vitamins accumulated in and permeated across the RHE were determined, together with factors affecting skin deposition and permeation. Notable differences were observed between formulations. The absorption of vitamins C and E in RHE layers was in general enhanced by ME compared to solutions. The incorporation of vitamins in the outer phase of ME resulted in greater absorption than that when vitamins were in the inner phase. The location of the antioxidants in the ME and affinity for the vehicle appear to be crucial in the case of non-thickened ME. Addition of thickener enhanced the deposition of vitamins E and C in the RHE. By varying the composition of ME, RHE absorption of the two vitamins can be significantly modulated.

  3. Storm phase-partitioned rates and budgets of global Alfvénic energy deposition, electron precipitation, and ion outflow

    NASA Astrophysics Data System (ADS)

    Hatch, Spencer M.; LaBelle, James; Chaston, Christopher C.

    2018-01-01

    We review the role of Alfvén waves in magnetosphere-ionosphere coupling during geomagnetically active periods, and use three years of high-latitude FAST satellite observations of inertial Alfvén waves (IAWs) together with 55 years of tabulated measurements of the Dst index to answer the following questions: 1) How do global rates of IAW-related energy deposition, electron precipitation, and ion outflow during storm main phase and storm recovery phase compare with global rates during geomagnetically quiet periods? 2) What fraction of net IAW-related energy deposition, electron precipitation, and ion outflow is associated with storm main phase and storm recovery phase; that is, how are these budgets partitioned by storm phase? We find that during the period between October 1996 and November 1999, rates of IAW-related energy deposition, electron precipitation, and ion outflow during geomagnetically quiet periods are increased by factors of 4-5 during storm phases. We also find that ∼62-68% of the net Alfvénic energy deposition, electron precipitation, and ion outflow in the auroral ionosphere occurred during storm main and recovery phases, despite storm phases comprising only 31% of this period. In particular storm main phase, which comprised less than 14% of the three-year period, was associated with roughly a third of the total Alfvénic energy input and ion outflow in the auroral ionosphere. Measures of geomagnetic activity during the IAW study period fall near corresponding 55-year median values, from which we conclude that each storm phase is associated with a fraction of total Alfvénic energy, precipitation, and outflow budgets in the auroral ionosphere that is, in the long term, probably as great or greater than the fraction associated with geomagnetic quiescence for all times except possibly those when geomagnetic activity is protractedly weak, such as solar minimum. These results suggest that the budgets of IAW-related energy deposition, electron precipitation, and ion outflow are roughly equally partitioned by geomagnetic storm phase.

  4. Chemical vapor deposition reactor. [providing uniform film thickness

    NASA Technical Reports Server (NTRS)

    Chern, S. S.; Maserjian, J. (Inventor)

    1977-01-01

    An improved chemical vapor deposition reactor is characterized by a vapor deposition chamber configured to substantially eliminate non-uniformities in films deposited on substrates by control of gas flow and removing gas phase reaction materials from the chamber. Uniformity in the thickness of films is produced by having reactive gases injected through multiple jets which are placed at uniformally distributed locations. Gas phase reaction materials are removed through an exhaust chimney which is positioned above the centrally located, heated pad or platform on which substrates are placed. A baffle is situated above the heated platform below the mouth of the chimney to prevent downdraft dispersion and scattering of gas phase reactant materials.

  5. A Review of Single Source Precursors for the Deposition of Ternary Chalcopyrite Materials

    NASA Technical Reports Server (NTRS)

    Banger, K. K.; Cowen, J.; Harris, J.; McClarnon, R.; Hehemann, D. G.; Duraj, S. A.; Scheiman, D.; Hepp, A. F.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified durable substrates (i.e. Kapton) provides an attractive solution to fabricating solar arrays with high specific power, (W/kg). The syntheses and thermal modulation of ternary single source precursors, based on the [{LR}2Cu(SR')2In(SR')2] architecture in good yields are described. Thermogravimetric analyses (TGA) and Low temperature Differential Scanning Caloriometry, (DSC) demonstrate that controlled manipulation of the steric and electronic properties of either the group five-donor and/or chalcogenide moiety permits directed adjustment of the thermal stability and physical properties of the precursors. TGA-Evolved Gas Analysis, confirms that single precursors decompose by the initial extrusion of the sulphide moiety, followed by the loss of the neutral donor group, (L) to release the ternary chalcopyrite matrix. X-ray diffraction studies, EDS and SEM on the non-volatile pyrolized material demonstrate that these derivatives afford single-phase CuInS2/CuInSe2 materials at low temperature. Thin-film fabrication studies demonstrate that these single source precursors can be used in a spray chemical vapor deposition process, for depositing CuInS2 onto flexible polymer substrates at temperatures less than 400 C.

  6. Electrodeposited Ni-Based Magnetic Mesoporous Films as Smart Surfaces for Atomic Layer Deposition: An "All-Chemical" Deposition Approach toward 3D Nanoengineered Composite Layers.

    PubMed

    Zhang, Jin; Quintana, Alberto; Menéndez, Enric; Coll, Mariona; Pellicer, Eva; Sort, Jordi

    2018-05-02

    Mesoporous Ni and Cu-Ni (Cu 20 Ni 80 and Cu 45 Ni 55 in at. %) films, showing a three-dimensional (3D) porous structure and tunable magnetic properties, are prepared by electrodeposition from aqueous surfactant solutions using micelles of P-123 triblock copolymer as structure-directing entities. Pores between 5 and 30 nm and dissimilar space arrangements (continuous interconnected networks, circular pores, corrugated mesophases) are obtained depending on the synthetic conditions. X-ray diffraction studies reveal that the Cu-Ni films have crystallized in the face-centered cubic structure, are textured, and exhibit certain degree of phase separation, particularly those with a higher Cu content. Atomic layer deposition (ALD) is used to conformally coat the mesopores of Cu 20 Ni 80 film with amorphous Al 2 O 3 , rendering multiphase "nano-in-meso" metal-ceramic composites without compromising the ferromagnetic response of the metallic scaffold. From a technological viewpoint, these 3D nanoengineered composite films could be appealing for applications like magnetically actuated micro/nanoelectromechanical systems (MEMS/NEMS), voltage-driven magneto-electric devices, capacitors, or as protective coatings with superior strength and tribological performance.

  7. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting.

    PubMed

    Lim, Yee-Fun; Chua, Chin Sheng; Lee, Coryl Jing Jun; Chi, Dongzhi

    2014-12-21

    Cu2O and CuO are attractive photocatalytic materials for water splitting due to their earth abundance and low cost. In this paper, we report the deposition of Cu2O and CuO thin films by a sol-gel spin-coating process. Sol-gel deposition has distinctive advantages such as low-cost solution processing and uniform film formation over large areas with a precise stoichiometry and thickness control. Pure-phase Cu2O and CuO films were obtained by thermal annealing at 500 °C in nitrogen and ambient air, respectively. The films were successfully incorporated as photocathodes in a photoelectrochemical (PEC) cell, achieving photocurrents of -0.28 mA cm(-2) and -0.35 mA cm(-2) (for Cu2O and CuO, respectively) at 0.05 V vs. a reversible hydrogen electrode (RHE). The Cu2O photocurrent was enhanced to -0.47 mA cm(-2) upon incorporation of a thin layer of a NiOx co-catalyst. Preliminary stability studies indicate that CuO may be more stable than Cu2O as a photocathode for PEC water-splitting.

  8. Preparation and characterization of RuO2/polypyrrole electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wu, Yujiao; Zheng, Feng; Ling, Min; Lu, Fanghai

    2014-11-01

    Polypyrrole (PPy) embedded RuO2 electrodes were prepared by the composite method. Precursor solution of RuO2 was coated on tantalum sheet and annealed at 260 °C for 2.5 h to develop a thin film. PPy particles were deposited on RuO2 films and dried at 80 °C for 12 h to form composite electrode. Microstructure and morphology of RuO2/PPy electrode were characterized using Fourier transform infrared spectrometer, X-ray diffraction and scanning electron microscopy, respectively. Our results confirmed that counter ions are incorporated into RuO2 matrix. Structure of the composite with amorphous phase was verified by X-ray diffraction. Analysis by scanning electron microscopy reveals that during grain growth of RuO2/PPy, PPy particle size sharply increases as deposition time is over 20 min. Electrochemical properties of RuO2/PPy electrode were calculated using cyclic voltammetry. As deposition times of PPy are 10, 20, 25 and 30 min, specific capacitances of composite electrodes reach 657, 553, 471 and 396 F g-1, respectively. Cyclic behaviors of RuO2/PPy composite electrodes are stable.

  9. Geochemical characterization of slags, other mines wastes, and their leachates from the Elizabeth and Ely mines (Vermont), the Ducktown mining district (Tennessee), and the Clayton smelter site (Idaho)

    USGS Publications Warehouse

    Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Meier, Allen L.; Briggs, Paul H.

    2003-01-01

    Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements. Two types of mine waste were examined in this study: sintered waste rock and slag. The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits), from the Copper Basin mining district near Ducktown, Tennessee (Besshi-type massive sulfide deposits), and from the Clayton silver mine in the Bayhorse mining district, Idaho (polymetallic vein and replacement deposits). The data in this report are presented as a compilation with minimal interpretation or discussion. A detailed discussion and interpretation of the slag data are presented in a companion paper. Data collected from sintered waste rock and slag include: (1) bulk rock chemistry, (2) mineralogy, (3) and the distribution of trace elements among phases for the slag samples. In addition, the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States.

  10. Modeling of InP metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Black, Linda R.; Clark, Ivan O.; Kui, J.; Jesser, William A.

    1991-01-01

    The growth of InP by metalorganic chemical vapor deposition (MOCVD) in a horizontal reactor is being modeled with a commercially available computational fluid dynamics modeling code. The mathematical treatment of the MOCVD process has four primary areas of concern: 1) transport phenomena, 2) chemistry, 3) boundary conditions, and 4) numerical solution methods. The transport processes involved in CVD are described by conservation of total mass, momentum, energy, and atomic species. Momentum conservation is described by a generalized form of the Navier-Stokes equation for a Newtonian fluid and laminar flow. The effect of Soret diffusion on the transport of particular chemical species and on the predicted deposition rate is examined. Both gas-phase and surface chemical reactions are employed in the model. Boundary conditions are specified at the inlet and walls of the reactor for temperature, fluid flow and chemical species. The coupled set of equations described above is solved by a finite difference method over a nonuniform rectilinear grid in both two and three dimensions. The results of the 2-D computational model is presented for gravity levels of zero- and one-g. The predicted growth rates at one-g are compared to measured growth rates on fused silica substrates.

  11. Air-stable solution-processed n-channel organic thin film transistors with polymerenhanced morphology

    DOE PAGES

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; ...

    2015-05-04

    N,N 0-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN 2) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN 2 film is much lower than the value of PDIF-CN 2 single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PaMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN 2 thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PaMSmore » or PMMA polymers, the morphology of the PDIF-CN 2 polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm 2/V s has been achieved from OTFTs based on the PDIF-CN 2 film with the pre-deposition of PaMS polymer.« less

  12. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    PubMed

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  13. Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics.

    PubMed

    Wilke, Rudeger H T; Johnson-Wilke, Raegan L; Cotroneo, Vincenzo; Davis, William N; Reid, Paul B; Schwartz, Daniel A; Trolier-McKinstry, Susan

    2013-05-10

    Piezoelectric PbZr(0.52)Ti(0.48)O(3) (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1 cm(2) electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26 μC/cm(2) with coercive fields of 33 kV/cm. The transverse piezoelectric coefficient was as high as -6.1±0.6 C/m(2). To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.

  14. Porous Organic Nanolayers for Coating of Solid-state Devices

    PubMed Central

    2011-01-01

    Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices. PMID:21569579

  15. A numerical method for shock driven multiphase flow with evaporating particles

    NASA Astrophysics Data System (ADS)

    Dahal, Jeevan; McFarland, Jacob A.

    2017-09-01

    A numerical method for predicting the interaction of active, phase changing particles in a shock driven flow is presented in this paper. The Particle-in-Cell (PIC) technique was used to couple particles in a Lagrangian coordinate system with a fluid in an Eulerian coordinate system. The Piecewise Parabolic Method (PPM) hydrodynamics solver was used for solving the conservation equations and was modified with mass, momentum, and energy source terms from the particle phase. The method was implemented in the open source hydrodynamics software FLASH, developed at the University of Chicago. A simple validation of the methods is accomplished by comparing velocity and temperature histories from a single particle simulation with the analytical solution. Furthermore, simple single particle parcel simulations were run at two different sizes to study the effect of particle size on vorticity deposition in a shock-driven multiphase instability. Large particles were found to have lower enstrophy production at early times and higher enstrophy dissipation at late times due to the advection of the particle vorticity source term through the carrier gas. A 2D shock-driven instability of a circular perturbation is studied in simulations and compared to previous experimental data as further validation of the numerical methods. The effect of the particle size distribution and particle evaporation is examined further for this case. The results show that larger particles reduce the vorticity deposition, while particle evaporation increases it. It is also shown that for a distribution of particles sizes the vorticity deposition is decreased compared to single particle size case at the mean diameter.

  16. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.

  17. Insights into electrodeposition of an inhibitor film and its inhibitive effects on calcium carbonate deposition.

    PubMed

    Morizot, Arnaud P; Neville, Anne

    2002-01-01

    Polycarboxylic acid (PAA), a common scale inhibitor has demonstrated adsorption properties on stainless steel surfaces. An electrochemically based technique has been used to assess the extent of film formation. The presence of calcium and magnesium ions in the solution and the cathodic electrochemical activity at the metal surface have been shown to enhance the inhibitor film formation by promoting the transport of the inhibitor from the solution to the metal surface. The effect of the inhibitor film in retarding scale deposition is assessed using measurement of the deposition onto metal electrodes immersed in a supersaturated solution of CaCO(3). The practical implications of these findings are discussed.

  18. Analysis of Direct Samples of Extraterrestrial, Organic-Bearing, Aqueous Fluids

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael

    2016-01-01

    I will describe water we have found in 4.5 billion year old extraterrestrial salt, and the organics that are also present. We hypothesize that organics being carried through the parent body of the halite have been deposited adjacent to the fluid inclusions, where they have been preserved against any thermal metamorphism. We are making bulk compositional, carbon and hydrogen isotopic measurements of solid organic phases associated with the aqueous fluid inclusions in the meteorites. We will compare these organics with those found in chondrites and Wild-2 comet coma particles to determine whether these classes of organics had an origin within aqueous solutions.

  19. Effect of Si content on microstructure and thermo-physical properties of the joint of Sip/6063Al composite by laser melting deposition

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Tian, Ze; Li, Peng; Chen, Yanbin; Zhang, Hengquan; Gu, Jingyan; Su, Xuan

    2017-12-01

    Laser melting deposition (LMD), an additive manufacturing-based technology, was utilized to join Sip/6063Al composite creatively with different Si weight contents (Al-Si 5%, 12%, 20% and 30%). Influence of the Si content on the constitutional phases, microstructural characteristics, and thermo-physical properties of the layer by layer built-up weld beads was investigated. Experimental results showed that the increasing of deposited Si content could lead to a marked increment of both size and volume of precipitated Si phase, and the circled α-Al phase decreased as a whole. The Si/Al interface began to decrease for the sample Al-Si30 wt.% due to the connection of Si phases. The α-Al phase within the (Al, Si) eutectic were observed to exhibit two sub-micron solidification morphologies, columnar grains and equiaxed grains, respectively. In general, by increasing the content of the deposited Si, the thermal conductivity decreased owing to the decreasing of α-Al phase with high conductivity, and the coefficient of thermal expansion (CTE) had the same varying trend which was attributed to the increasing volume fraction of stiff precipitated Si phase and Si-Si contiguity.

  20. Effect of the nozzle tip’s geometrical shape on electrospray deposition of organic thin films

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2017-04-01

    Electrospray deposition (ESD) is a favorable wet fabrication technique for organic thin films. We investigated the effects of the nozzle tip’s geometrical shape on the spraying properties of an organic solution used for ESD. Five types of cylindrical metal nozzles with zero (flat end) to four protrusions at the tips were prepared for depositing a solution of a small-molecule compound, tris(8-hydroxyquinolinato)aluminum (Alq3) solution. We confirmed that the diameter of the deposited droplets and their size dispersion decreased with an increase in the number of protrusions. The area occupation ratio of small droplets with a diameter smaller than 2 µm increased from 21 to 83% as the number of protrusions was increased from zero to four. The surface roughness root mean square of 60-nm-thick Alq3 films substantially improved from 32.5 to 6.8 nm with increasing number of protrusions.

  1. Local electrophoretic deposition using a nanopipette for micropillar fabrication

    NASA Astrophysics Data System (ADS)

    Iwata, Futoshi; Metoki, Junya

    2017-12-01

    A novel and simple technique was developed for the fabrication of micropillars using a nanopipette that is a tapered glass capillary with a micrometer-sized aperture at the tip. The nanopipette was filled with a colloidal solution that included metal nanoparticles. Its tip was put in contact with a substrate, and the substrate was moved downward for continuous deposition of the metal colloidal solution to form micropillars. To improve fabrication reproducibility, the amount of Au colloidal solution deposited was controlled by a feedback loop that maintained a predefined constant current during electrophoretic deposition. The stiffness of the fabricated micropillars was evaluated by applying a loading force using a microcantilever under scanning electron microscopy. The Young’s modulus of the fabricated pillars was measured to be in the range of 7.7-14.8 GPa, depending on the fabrication parameters of the predefined current and fabrication speed.

  2. Process-structure-property relationships of micron thick gadolinium oxide films deposited by reactive electron beam-physical vapor deposition (EB-PVD)

    NASA Astrophysics Data System (ADS)

    Grave, Daniel A.

    Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while keeping a large adatom diffusion length on the film surface. Crystallographic texture evolution in the Gd2O3 films was investigated for different substrate types. At high rates, it was shown that films deposited on different substrates (quartz, silicon, sapphire, and GaN) all had similar theta-2theta diffraction patterns, suggesting that films grew similarly on different substrates due to the low adatom mobility. However, significant differences in texture were observed for films deposited at low rates (< 1 A/s) and high temperature (650°C) on different substrates. For evaluation of in-plane texture in the Gd2O 3 films, pole figure analysis was performed. Mixed phase films deposited at high rates and low temperature showed weak out-of-plane texture and random in-plane texture. Mixed phase films deposited at high temperatures possessed a fiber texture (strong out-of-plane texture), but lacked the necessary adatom mobility to develop in-plane texture. For single phase cubic films grown under low rates of deposition, out-of-plane texture was observed on quartz substrates. However, weak and strong in-plane textures were observed for sapphire and GaN substrates, respectively. The use of ion bombardment resulted in the formation of moderate biaxial texture for films grown on quartz. For films grown on sapphire, a very strong biaxial texture was achieved with ion bombardment which adds additional energy to the system. The effects of processing on the structure, composition, and interfacial chemistry of the Gd2O3 films were investigated. The results showed that films primarily adhered to the Structure-Zone models with a few exceptions. The deviation from the Structure-Zone model was explained by the combined effects of columnar growth, shadowing, and adatom mobility. At low deposition temperatures, decreasing oxygen flow resulted in increased film density due to higher adatom mobility. Films deposited at this temperature were characterized by small (10-15 nm) nanocrystalline grains with some porous disordered regions. The dielectric properties of Si(111)/Gd2O3/Ti/Au MOS capacitors were investigated. Moisture absorption in Gd2O 3 films was found to result in both increased dielectric loss (10x) and inflated dielectric constant values ( 40 %). Heat treatment of the films at 100 °C resulted in outgassing of moisture, reduction in dielectric constant, and excellent frequency dispersion of the dielectric constant over a range of 10 kHz-1 MHz. The effect of film processing on the dielectric constant was systematically investigated. Tuning of the dielectric constant from a value of 11 to a value of 24 was possible by manipulating the structure and crystallographic phase of the material via the processing conditions. Capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics of GaN/AlGaN/Gd2O3/Ti/Au MOS capacitors were investigated. The effects of processing on fixed oxide charge, trapped oxide charge, and density of interface states were evaluated. Single phase cubic films deposited at low rates with near heteroepitaxial growth were shown to have the lowest density of trapped charge. (Abstract shortened by ProQuest.).

  3. Synthesis of 2D Metal Chalcogenide Thin Films through the Process Involving Solution-Phase Deposition.

    PubMed

    Giri, Anupam; Park, Gyeongbae; Yang, Heeseung; Pal, Monalisa; Kwak, Junghyeok; Jeong, Unyong

    2018-04-24

    2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large-area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution-based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum-based synthesis because it is relatively simple and easy to scale up for high-throughput production. In addition, solution-based thin films open new opportunities that cannot be achieved from vacuum-based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution-based synthesis of 2D metal chalcogenides are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping.

    PubMed

    Hu, Yuh-Chung; Hsu, Wei-Li; Wang, Yi-Ta; Ho, Cheng-Tao; Chang, Pei-Zen

    2014-04-16

    The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  5. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  6. Aligned Carbon Nanotubes for Highly Efficient Energy Generation and Storage Devices

    DTIC Science & Technology

    2012-01-24

    solution processing methods, including filtration, solution-casting, electrophoretic deposition, and Langmuir - Blodgett deposition. However, most...supercapacitors with environmentally friendly ionic liquid electrolytes. These new nanocomposite electrodes consist of the high-surface-area activated...carbons, carbon nanotubes, and ionic liquids as the integrated constituent components. The resultant composites show significantly improved charge

  7. Effect of Liquid Feed-Stock Composition on the Morphology of Titanium Dioxide Films Deposited by Thermal Plasma Spray.

    PubMed

    Adán, C; Marugán, J; van Grieken, R; Chien, K; Pershin, L; Coyle, T; Mostaghimi, J

    2015-09-01

    Titanium dioxide coatings were deposited on the surface of titanium foils by Thermal Plasma Spray (TPS) process. Three different TiO2 coatings were prepared using the commercial TiO2-P25 nanopowder and titanium isopropoxide precursor solution as feed-stocks. Structure and morphology of the TiO2-P25 powder and the plasma sprayed coatings were analyzed by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption-desorption isotherms, UV-visible spectroscopy and Scanning Electron Microscopy (SEM). XRD and Raman results indicate that the TiO2 coatings were composed of an anatase/rutile mixture that is conditioned by the suspension composition used to be sprayed. Coatings prepared from TiO2-P25 nanoparticles in water suspension (NW-P25) and titanium isopropoxide solution suspension (NSP-P25) are incorporated into the coatings without phase transformation and their anatase/rutile ratio percentage remains very similar to the starting TiO2-P25 powder. On the contrary, when titanium isopropoxide solution is used for spraying (SP), the amount of rutile increases in the final TiO2 coating. SEM analysis also reveals different microstructure morphology, coating thickness, density and porosity of the three TiO2 films that depend significantly on the type of feed-stock employed. Interestingly, we have observed the role of titanium isopropoxide in the formation of more porous and cohesive layers of TiO2. The NSP-P25 coating, prepared with a mix of titanium isopropoxide solution based on TiO2 nanoparticles, presents higher deposition efficiencies and higher coating thickness than the film prepared with nanoparticles suspended in water (NW-P25) or with titanium isopropoxide solutions (SP). This is due to the precursor solution is acting as the cement between TiO2 nanoparticles, improving the cohesive strength of the coating. In sum, NSP-P25 and NW-P25 coatings display a good photocatalytic potential, based on their light absorption properties and mechanical stability. Band gap of the nanoparticulated coatings displays a light absorption at wavelengths below 379 and 399 nm for NW-P25 and NSP-P25 respectively. On the contrary, the SP coating, despite to present lower band-gap value, has bad cohesive properties with surface crackings that makes it mechanically unstable. Therefore, mixtures of P25 nanoparticles with titanium isopropoxide as feed-stock materials can produce promising photocatalytic coatings.

  8. The Ottaviano eruption of Somma-Vesuvio (8000 y B.P.): a magmatic alternating fall and flow-forming eruption

    NASA Astrophysics Data System (ADS)

    Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L.

    1993-11-01

    The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km 3 of phonolitic pyroclastic material (0.61 km 3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 10 7 and 2.81 × 10 7 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.

  9. 3D Micro-tomography on Aggregates from the 2014- 2015 Eruption of Hunga Tonga-Hunga Ha'apai Volcano

    NASA Astrophysics Data System (ADS)

    Colombier, M.; Scheu, B.; Cronin, S. J.; Tost, M.; Dobson, K. J.; Dingwell, D. B.

    2016-12-01

    In December 2014- January 2015, a surtseyan eruption at Hunga Tonga-Hunga Ha'apai volcano (Tonga) formed a new island. Three main eruptive phases were distinguished by observation and deposits: (i) mound and cone construction, involving collapse of 300-600 m-high wet tephra jets, grain flows, slope-remobilisation and energetic surges, with little or no convective plume (ii) The upper cone-building phase with lower jets (mainly <300 m) but greater ash production (weak, steam-rich plumes to 6 km) and weak surges, and (iii) final phase with weak surge, fall and ballistic deposits with more vesicular pyroclasts producing proximal capping deposits. Most sampled deposits contain ash, lapilli and bombs, and lapilli-sized aggregates are ubiquitous. We used high-resolution 3D X-ray microcomputed tomography (XCT) to quantify the grain size distribution (GSD) and porosity by sampling multiple stratigraphic units within the main eruptive sequences. We visualized and quantified the internal structure of the aggregates to understand the evolution of this surtseyan eruption. We present here an overview of the textural information: porosity, vesicle size distribution and morphology as well as the variability of the aggregation features. Aggregates from the fall deposits of the early wet phase are mostly loosely packed, poorly-structured ash clusters. Aggregates from the early surge sequence and the main cone building phase dominantly exhibit a central particle coated by ash cluster material. Vesicles in the particles from the early fall deposits tend to be smaller and more isolated than in the particles from the surge sequence and the main cone building phase. The GSD of aggregates obtained by XCT is highly valuable to correct the total GSD of volcaniclastic deposits. The strong variations in the aggregation features across the eruption suggest a range of different formation and deposition mechanisms related to varying degrees of magma-water-interaction, which changed the morphology and textural properties of the individual particles.

  10. Preparation of Platinum (Pt) Counter Electrode Coated by Electrochemical Technique at High Temperature for Dye-sensitized Solar Cell (DSSC) Application

    NASA Astrophysics Data System (ADS)

    Ponken, Tanachai; Tagsin, Kamonlapron; Suwannakhun, Chuleerat; Luecha, Jakkrit; Choawunklang, Wijit

    2017-09-01

    Pt counter electrode was coated by electrochemical method. Electrolyte solution was synthesized by platinum (IV) choloride (PtCl4) powder dissolved in hydrochloric acid solution. Pt films were deposited on the FTO substrate. Deposition time of 10, 30 and 60 minutes, the coating current of 5, 10, 15 and 20 mA and electrolyte solution temperatures for Pt layer synthesis of 25, 30 and 40°C were varied. Surface morphology and optical properties was analyzed by digital microscopic and UV-vis spectrophotometer. Pt films exhibit uniform surface area highly for all the conditions of coating current in the deposition time of 30 and 40 minutes at 40°C. Transmittance values of Pt films deposited on FTO substrate has approximately of 5 to 50 % show that occur high reflection corresponding to dye molecule absorption increases. DSSC device was fabricated from the TiO2 standard and immersed in dye N719 for 24 hours. Efficiency was measured by solar simulator. Efficiency value obtains as high as 5.91 % for the coating current, deposition time and solution temperature of 15 mA, 30 minutes and 40°C. Summary, influence of temperature effects efficiency increasing. Pt counter electrode can be prepared easily and the suitable usefully for DSSC.

  11. Microstructure et proprietes electriques de l'oxyde de vanadium pour les microbolometres

    NASA Astrophysics Data System (ADS)

    Cadieux, Catherine

    Recent technological breakthroughs in the fabrication of microsystems will soon allow the mass production of infrared cameras. Subsequent price cut will open many new sectors of application. Because of its electrical properties, sputtered vanadium oxide has already been identified as the leading candidate for the active material of microbolometers. However, the large number of different crystallographic phases, as well as the instable nature of reactive sputtering, haveled to numerous contradictions in the existing literature. With the objective of understanding the impact of the deposition parameters on the microstructure, and of the microstructure on the electrical properties, vanadium oxide thin films have been deposited and characterised. In order to study their impact on the microstructure, oxidation state and pulse at the target, substrate bias and temperature, power, and film thickness were varied independently. The resulting thin films have been characterised by X-ray diffraction, Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, spectral reflectometry, optical interferometry as well as four-point probe and Van Der Pauw electrical measurements. Because of the instability of the poisoning regime, the actual system configuration forbids the deposition of phases with composition between V 3O7 and V7O3. Films deposited under a strong bias in the poisoned regime having the best properties, their growth mechanism has been thoroughly investigated. Under those conditions, the bombarding ions are energetic enough to modify the structure of the underlying thin film without resputtering it. A complex relation linking temperature, thickness and microstructure is observed. As the thickness is increased, the structure changes from amorphous, to almost monocristalline V2O5 (001) oriented, to polycristalline. For higher deposition power, the polycristalline section contains V3O7 in addition to the multiple orientations of V2O5. Those germinations which have already been observed but not explained in literature can be attributed to the accumulation of germination centers, a stress buildup for the crystalline sections, and a substrate heating caused by the ions bombardment. This last effect is also suggested to be the cause of the amorphous phase crystallisation for the films with longer deposition times. Films deposited at different temperatures show the same microstructure transitions. Two different behavior regimes can be proposed as function of the adatoms' energy. For low temperature, increasing the adatom energy increases the diffusion which promotes the formation of the lowest surface energy stoichiometry and orientation, V2O 5(001). At higher temperature, energy is sufficient to form more energetically expensive orientation and phases. Resistivity is strongly dependant on grain boundaries density as seen by its relationship with lateral grain size. The thin film resistivity is also increased with the number of different crystallographic orientation present in it. To circumvent the high sheet resistance of the deposited single layer films, a multilayer stacking of alternating oxides and metal layers has been deposited. This approach has permitted this project's industrial collaborator to obtain a sheet resistance of 250 kO/□and a TCR of -1.59 %/K. The microstructure of the multilayer is however very heterogeneous. Not only can the metal layers be identified, it is also possible to observe the amorphous to polycrystalline transition described higher for every oxide layer. This multilayer, as well as the best single layer film produced have been annealed for 2 hours at 400°C in high vacuum. The annealed multilayer doesn't show any diffraction peaks, has very low resistance, and an almost null TCR generally attributed to metallic compounds We suggest that the diffusion of the vanadium layers into the stack created a polycrystalline structure with grains that are too small to be seen by XRD. The single layer underwent thermal reduction to form the VO2(B)phase and also became very conductive. Its TCR was afterward measured at the interesting value of -1.74 %/K. Is it suggested that the low resistivity is caused by the presence of small grains of the metallic phase of VO2, which happens to be the next step in the reduction process. Single layer annealing seems to be a promising avenue for the development of films adequate for microbolometer integration with the present deposition system. It is nonetheless recommended to pursue this avenue using films that are homogenous on their thickness in order to decouple the thickness dependence of deposition and thermal reduction. Multilayers using already homogenous amorphous oxides can also be a solution. Finally, non-reactive deposition of tungsten doped thin films followed by an oxidizing anneal may be an option that would bypass the uniformity and stability problems of the present project.

  12. Single crystal structure analyses of scheelite-powellite CaW1-xMoxO4 solidsolutions and unique occurrence in Jisyakuyama skarn deposits

    NASA Astrophysics Data System (ADS)

    Yamashita, K.; Yoshiasa, A.; Miyazaki, H.; Tokuda, M.; Tobase, T.; Isobe, H.; Nishiyama, T.; Sugiyama, K.; Miyawaki, R.

    2017-12-01

    Jisyakuyama skarn deposit, Fukuchi, Fukuoka, Japan, shows a simple occurrenceformed by penetration of hot water into limestone cracks. A unique occurrence of scheelite-powellite CaW1-xMoxO4 minerals is observed in the skarn deposit. Many syntheticexperiments for scheelite-powellite solid solutions have been reported as research onfluorescent materials. In this system it is known that a complete continuous solid solution isformed even at room temperature. In this study, we have carried out the chemical analyses,crystal structural refinements and detail description of occurrence on scheelite-powelliteminerals. We have also attempted synthesis of single crystal of solid solution in a widecomposition range. The chemical compositions were determined by JEOL scanningelectron microscope and EDS, INCA system. We have performed the crystal structurerefinements of the scheelite-powellite CaW1-xMoxO4 solid solutions (x=0.0-1.0) byRIGAKU single-crystal structure analysis system RAPID. The R and S values are around0.0s and 1.03. As the result of structural refinements of natural products and many solidsolutions, we confirm that most large natural single crystals have compositions at bothendmembers, and large solid solution crystals are rare. The lattice constants, interatomicdistances and other crystallographic parameters for the solid solution change uniquely withcomposition and it was confirmed as a continuous solid solution. Single crystals of scheeliteendmember + powellite endmember + solid solution with various compositions form anaggregate in the deposit (Figure 1). Crystal shapes of powellite and scheelite arehypidiomorphic and allotriomorphic, respectively. Many solid solution crystals areaccompanied by scheelite endmember and a compositional gap is observed betweenpowellite and solid-solution crystals. The presence of several penetration solutions withsignificantly different W and Mo contents may be assumed. This research can be expectedto lead to giving restrictive conditions to elucidate the mineralization process. Figure1. Scheelite + Powellite + solid solution aggregate

  13. Near-infrared–driven decomposition of metal precursors yields amorphous electrocatalytic films

    PubMed Central

    Salvatore, Danielle A.; Dettelbach, Kevan E.; Hudkins, Jesse R.; Berlinguette, Curtis P.

    2015-01-01

    Amorphous metal-based films lacking long-range atomic order have found utility in applications ranging from electronics applications to heterogeneous catalysis. Notwithstanding, there is a limited set of fabrication methods available for making amorphous films, particularly in the absence of a conducting substrate. We introduce herein a scalable preparative method for accessing oxidized and reduced phases of amorphous films that involves the efficient decomposition of molecular precursors, including simple metal salts, by exposure to near-infrared (NIR) radiation. The NIR-driven decomposition process provides sufficient localized heating to trigger the liberation of the ligand from solution-deposited precursors on substrates, but insufficient thermal energy to form crystalline phases. This method provides access to state-of-the-art electrocatalyst films, as demonstrated herein for the electrolysis of water, and extends the scope of usable substrates to include nonconducting and temperature-sensitive platforms. PMID:26601148

  14. Elevated transition temperature in Ge doped VO2 thin films

    NASA Astrophysics Data System (ADS)

    Krammer, Anna; Magrez, Arnaud; Vitale, Wolfgang A.; Mocny, Piotr; Jeanneret, Patrick; Guibert, Edouard; Whitlow, Harry J.; Ionescu, Adrian M.; Schüler, Andreas

    2017-07-01

    Thermochromic GexV1-xO2+y thin films have been deposited on Si (100) substrates by means of reactive magnetron sputtering. The films were then characterized by Rutherford backscattering spectrometry (RBS), four-point probe electrical resistivity measurements, X-ray diffraction, and atomic force microscopy. From the temperature dependent resistivity measurements, the effect of Ge doping on the semiconductor-to-metal phase transition in vanadium oxide thin films was investigated. The transition temperature was shown to increase significantly upon Ge doping (˜95 °C), while the hysteresis width and resistivity contrast gradually decreased. The precise Ge concentration and the film thickness have been determined by RBS. The crystallinity of phase-pure VO2 monoclinic films was confirmed by XRD. These findings make the use of vanadium dioxide thin films in solar and electronic device applications—where higher critical temperatures than 68 °C of pristine VO2 are needed—a viable and promising solution.

  15. Electrochemical Liquid Phase Epitaxy (ec-LPE): A New Methodology for the Synthesis of Crystalline Group IV Semiconductor Epifilms.

    PubMed

    Demuth, Joshua; Fahrenkrug, Eli; Ma, Luyao; Shodiya, Titilayo; Deitz, Julia I; Grassman, Tyler J; Maldonado, Stephen

    2017-05-24

    Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.

  16. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template.

    PubMed

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-10-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi 2 Se 3 epitaxial heterostructures by using two-dimensional (2D) Bi 2 Se 3 nanoplates as soft templates. The dangling bond-free surface of 2D Bi 2 Se 3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi 2 Se 3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi 2 Se 3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi 2 Se 3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi 2 Se 3 nanoplates. We further show that the resulted PbSe/Bi 2 Se 3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi 2 Se 3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.

  17. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template

    PubMed Central

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi2Se3 epitaxial heterostructures by using two-dimensional (2D) Bi2Se3 nanoplates as soft templates. The dangling bond–free surface of 2D Bi2Se3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi2Se3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi2Se3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi2Se3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi2Se3 nanoplates. We further show that the resulted PbSe/Bi2Se3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi2Se3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions. PMID:27730211

  18. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    PubMed

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  19. Microreactor-Assisted Nanomaterial Deposition for Photovoltaic Thin-Film Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-03-01

    This factsheet describes a research project whose goal is to develop and demonstrate a scalable microreactor-assisted nanomaterial deposition pilot platform for the production, purification, functionalization, and solution deposition of nanomaterials for PV applications.

  20. Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) at the air-water interface of micron-size water droplets.

    PubMed

    Raja, Suresh; Valsaraj, Kalliat T

    2004-12-01

    Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenanthrene vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 microm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, alpha = (1.4 +/- 0.4) x 10(-2) was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small alpha = (9.7 +/- 1.8) x 10(-5) was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.

  1. Austenite-martensite transformation in electrodeposited Fe70Pd30 NWs: a step towards making bio-nano-actuators tested on in vivo systems

    NASA Astrophysics Data System (ADS)

    Zuzek Rozman, K.; Pecko, D.; Trafela, S.; Samardzija, Z.; Spreitzer, M.; Jaglicic, Z.; Nadrah, P.; Zorko, M.; Bele, M.; Tisler, T.; Pintar, A.; Sturm, S.; Kostevsek, N.

    2018-03-01

    Fe69±3Pd31±3 nanowires (NWs) with lengths of a few microns and diameters of 200 nm were synthesized via template-assisted pulsed electrodeposition into alumina-based templates. The as-deposited Fe69±3Pd31±3 NWs exhibited α-Fe (bcc-solid solution of Fe, Pd) nanocrystalline structure as seen from the x-ray diffraction (XRD), that got confirmed by transmission electron microscopy (TEM) with some larger grains up 50 nm observed. Annealing of the as-deposited Fe69±3Pd31±3 NWs at 1173 K/45 min was followed by quenching in ice water and resulted in a transformation to the fcc crystal structure (XRD) with grain sizes up to 200 nm (TEM). To induce the austenite-to-martensite, i.e., fcc-to-fct phase transformation the fcc Fe69±3Pd31±3 NWs were cooled to 73 K. The XRD showed the disappearance of the (200) fcc reflection (at room temperature) and the appearance of the (200) fct reflection (at 73 K), confirming the fcc-to-fct transformation took place. The magnetic measurements revealed that the fcc Fe69±3Pd31±3 NWs measured at low temperatures (50 K) had a larger coercivity than at room temperature, which suggests the fct phase was present in the undercooled state, exhibiting a larger magnetocrystalline anisotropy than the fcc phase present at room temperature. As part of our interest in magnetic-shape-memory actuators, the as-deposited Fe69±3Pd31±3 NWs were tested for toxicity on zebrafish. In vivo tests showed no acute lethal or sub-lethal effects, which implies that the Fe69±3Pd31±3 NWs have the potential to be used as nano-actuators in biomedical applications.

  2. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, D.C.; Sealock, J.L.

    1998-09-29

    A method of hydrogenation is described using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions. 2 figs.

  3. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Sealock, John L.

    1998-01-01

    A method of hydrogenation using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions.

  4. Catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.

    1999-01-01

    The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  5. Effect of non-vacuum thermal annealing on high indium content InGaN films deposited by pulsed laser deposition.

    PubMed

    Wang, Tzu-Yu; Ou, Sin-Liang; Shen, Kun-Ching; Wuu, Dong-Sing

    2013-03-25

    InGaN films with 33% and 60% indium contents were deposited by pulsed laser deposition (PLD) at a low growth temperature of 300 °C. The films were then annealed at 500-800 °C in the non-vacuum furnace for 15 min with an addition of N(2) atmosphere. X-ray diffraction results indicate that the indium contents in these two films were raised to 41% and 63%, respectively, after annealing in furnace. In(2)O(3) phase was formed on InGaN surface during the annealing process, which can be clearly observed by the measurements of auger electron spectroscopy, transmission electron microscopy and x-ray photoelectron spectroscopy. Due to the obstruction of indium out-diffusion by forming In(2)O(3) on surface, it leads to the efficient increment in indium content of InGaN layer. In addition, the surface roughness was greatly improved by removing In(2)O(3) with the etching treatment in HCl solution. Micro-photoluminescence measurement was performed to analyze the emission property of InGaN layer. For the as-grown InGaN with 33% indium content, the emission wavelength was gradually shifted from 552 to 618 nm with increasing the annealing temperature to 800 °C. It reveals the InGaN films have high potential in optoelectronic applications.

  6. Hydrothermal barite mineralization at Chenarvardeh deposit, Markazi Province, Iran: Evidences from REE geochemistry and fluid inclusions

    NASA Astrophysics Data System (ADS)

    Ehya, Farhad; Mazraei, Shaghayegh Moalaye

    2017-10-01

    Barite mineralization occurs at Chenarvardeh deposit as layers and lenses in Upper Eocene volcanic and pyroclastic rocks. The host rocks are intensely saussuritized in most places. Barite is accompanied by calcite, Mn-oxides, galena and malachite as subordinate minerals. The amount of Sr in barites is low and varies between 0.11 and 0.30 wt%. The concentration of Rb, Zr, Y, Ta and Hf is also low (<5 ppm) in barite samples. The amount of total REEs (∑REE) is low in barites, ranging from 7.51 to 30.50 ppm. Chondrite-normalized REE patterns reveal LREE enrichment with respect to HREE, and positive Ce anomalies. Fluid inclusions are common in barite samples, being dominantly from liquid-rich two phase (L + V) type. Salinity values in fluid inclusions range from 9.41 to 18.69 wt% NaCl equivalent with most frequent salinities falling in the range of 10-15 wt% NaCl equivalent. Homogenization temperatures (Th) range between 160 and 220 °C, being the 180-200 °C range as the most common Th interval. A combination of factors, including geologic setting, host rock, mineral assemblages, REE geochemistry and fluid inclusion data are consistent with a submarine volcanic hydrothermal model for barite formation at the Chenarvardeh deposit. Mineral-forming fluids originated from solutions related to submarine hydrothermal activities deposited barite on seafloor as they encountered sulfate-bearing seawater.

  7. Improving yield of PZT piezoelectric devices on glass substrates

    NASA Astrophysics Data System (ADS)

    Johnson-Wilke, Raegan L.; Wilke, Rudeger H. T.; Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan

    2012-10-01

    The proposed SMART-X telescope includes adaptive optics systems that use piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. Several processing constraints are imposed by current designs: the crystallization temperature must be kept below 550 °C, the total stress in the film must be minimized, and the yield on 1 cm2 actuator elements should be < 90%. For this work, RF magnetron sputtering was used to deposit films since chemical solution deposition (CSD) led to warping of large area flexible glass substrates. A PZT 52/48 film that wasdeposited at 4 mTorr and annealed at 550 °C for 24 hours showed no detectable levels of either PbO or pyrochlore second phases. Large area electrodes (1cm x 1 cm) were deposited on 4" glass substrates. Initially, the yield of the devices was low, however, two methods were employed to increase the yield to near 100 %. The first method included a more rigorous cleaning to improve the continuity of the Pt bottom electrode. The second method was to apply 3 V DC across the capacitor structure to burn out regions of defective PZT. The result of this latter method essentially removed conducting filaments in the PZT but left the bulk of the material undamaged. By combining these two methods, the yield on the large area electrodes improved from < 10% to nearly 100%.

  8. Characterization of the Micro-Abrasive Wear in Coatings of TaC-HfC/Au for Biomedical Implants

    PubMed Central

    Guzmán, Pablo; Yate, Luis; Sandoval, Mercy; Caballero, Jose

    2017-01-01

    The object of this work was the deposition of a Ta-Hf-C thin film with a gold interlayer on stainless steel, via the physical vapor deposition (PVD) technique, in order to evaluate the properties of different systems subjected to micro-abrasive wear phenomena generated by alumina particles in Ringer's solution. The surface characterization was performed using a scanning electron microscope (SEM) and atomic force microscope (AFM). The crystallographic phases exhibited for each coating were obtained by X-ray diffraction (XRD). As a consequence of modifying the composition of Ta-Hf there was evidence of an improvement in the micro-abrasive wear resistance and, for each system, the wear constants that confirm the enhancement of the surface were calculated. Likewise, these surfaces can be bioactive, generating an alternative to improve the biological fixation of the implants, therefore, the coatings of TaC-HfC/Au contribute in the development of the new generation of orthopedic implants. PMID:28773207

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong

    In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less

  10. Electrical properties of undoped zinc oxide nanostructures at different annealing temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. F., E-mail: babaibaik2002@yahoo.com; Zainol, M. N., E-mail: nizarzainol@yahoo.com; Hannas, M., E-mail: mhannas@gmail.com

    This project has been focused on the electrical and optical properties respectively on the effect of Undoped zinc oxide (ZnO) thin films at different annealing temperature which is varied 400 °C, 450 °C, 500 °C, and 550 °C.Undoped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 500 °C which itsmore » resistivity is 5.36 × 10{sup 4} Ωcm{sup −1}. The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.« less

  11. Stable metal–organic framework-supported niobium catalysts

    DOE PAGES

    Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong; ...

    2016-10-31

    In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less

  12. High temperature reaction between sea salt deposit and (U,Zr)O2 simulated corium debris

    NASA Astrophysics Data System (ADS)

    Takano, Masahide; Nishi, Tsuyoshi

    2013-11-01

    In order to clarify the possible impacts of seawater injection on the chemical and physical state of the corium debris formed in the severe accident at Fukushima Daiichi Nuclear Power Plants, the high temperature reaction between sea salt deposit and (U,Zr)O2 simulated corium debris (sim-debris) was examined in the temperature range from 1088 to 1668 K. A dense layer of calcium and sodium uranate formed on the surface of a sim-debris pellet at 1275 K under airflow, with the thickness of over 50 μm. When the oxygen partial pressure is low, calcium is likely to dissolve into the cubic sim-debris phase to form solid solution (Ca,U,Zr)O2+x. The diffusion depth was 5-6 μm from the surface, subjected to 1275 K for 12 h. The crystalline MgO remains affixed on the surface as the main residue of salt components. A part of it can also dissolve into the sim-debris.

  13. Mathematical and field analysis of longitudinal reservoir infill

    NASA Astrophysics Data System (ADS)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  14. Hunting liquid micro-pockets in snow and ice: Phase transition in salt solutions at the bulk and interface with X-ray photoelectron spectroscopy.

    NASA Astrophysics Data System (ADS)

    Bartels-Rausch, Thorsten; Orlando, Fabrizio; Kong, Xiangrui; Waldner, Astrid; Artiglia, Luca; Ammann, Markus; Huthwelker, Thomas

    2016-04-01

    Sea salt, and in particular chloride, is an important reactant in the atmosphere. Chloride in air-borne sea salt aerosol is - once chemically converted to a molecular halogen (Cl2, BrCl) and released to the atmosphere - well known as important atmospheric reactant, driving large-scale changes to the atmospheric composition and in particular to ozone levels in remote areas, but also in coastal mega cities. Similar chemistry has been proposed for sea salt deposits in polar snow covers. A crucial factor determining the overall reactivity is the local physical environment of the chloride ion. For example, the reactivity of liquid aerosols decreases significantly upon crystallization. Surprisingly, the phases of NaCl-containing systems are still under debate, partially due to the limited availability of in situ measurements directly probing the local environment at the surface of frozen NaCl-water binary systems. Using core electron spectroscopy of the oxygen atoms in water, we previously showed that these systems follow the phase rules at the air-ice interface. This finding contrasts some earlier observations, where the presence of liquid below the eutectic point of bulk solutions was postulated. In the present study, we present new electron yield near-edge X-ray absorption fine structure spectroscopy (NEXAFS) data obtained at near-ambient pressures up to 20 mbar of NaCl frozen solutions. The method is sensitive to small changes in the local environment of the chlorine atom. The measurements were performed at the PHOENIX beamline at SLS. The study indicates frapant differences in the phases of NaCl - water mixtures at temperatures blow the freezing point for the surface of the ice vs. the bulk. This has significant impact on modelling chemical reactions in snow or ice and it's environmental consequences.

  15. In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds.

    PubMed

    Yang, Dongzhi; Jin, Yu; Zhou, Yingshan; Ma, Guiping; Chen, Xiangmei; Lu, Fengmin; Nie, Jun

    2008-03-10

    A biocomposite of hydroxyapatite (HAp) with electrospun nanofibrous scaffolds was prepared by using chitosan/polyvinyl alcohol (CS/PVA) and N-carboxyethyl chitosan/PVA (CECS/PVA) electrospun membranes as organic matrix, and HAp was formed in supersaturated CaCl2 and KH2PO4 solution. The influences of carboxylic acid groups in CECS/PVA fibrous scaffold and polyanionic additive poly(acrylic acid) (PAA) in the incubation solution on the crystal distribution of the HAp were investigated. Field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared (FTIR) were used to characterize the morphology and structure of the deposited mineral phase on the scaffolds. It was found that addition of PAA to the mineral solution and use of matrix with carboxylic acid groups promoted mineral growth and distribution of HAp. MTT testing and SEM imaging from mouse fibroblast (L929) cell culture revealed the attachment and growth of mouse fibroblast on the surface of biocomposite scaffold, and that the cell morphology and viability were satisfactory for the composite to be used in bioapplications.

  16. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    NASA Astrophysics Data System (ADS)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  17. Stratigraphy, depositional environments, and carbonate petrology of the Toroweap and Kaibab Formations (lower Permian), Grand Canyon region, Arizona

    NASA Astrophysics Data System (ADS)

    Clark, R. A.

    Sediments deposited in northwestern Arizona during Late Leonardian and Early Guadalupian (Permian) were controlled chiefly by an arid climate and the tectonic setting. Eastward thrusting of eugeosynclinal rocks onto miogeosynclinal deposits during Middle Devonian to Early Mississippian had a major influence on shelf sedimentation. The Toroweap and Kaibab formations represent two such platform sequences of northwestern Arizona and southern Utah deposited during this phase of sedimentation. The Toroweap Formation is subdivided into three members and represents sediments deposited during initial transgression, maximum extent of the sea, and regression (Seligman, Brady Canyon, and Woods Ranch members respectively). The Fossil Mountain Member of the Kaibab Formation documents the most extensive phase of sedimentation for all members of the Toroweap and Kaibab formations. The Harrisburg Member documents the final phase of sedimentation at the close of the Paleozoic Era.

  18. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  19. Solution-processing of chalcogenide materials for device applications

    NASA Astrophysics Data System (ADS)

    Zha, Yunlai

    Chalcogenide glasses are well-known for their desirable optical properties, which have enabled many infrared applications in the fields of photonics, medicine, environmental sensing and security. Conventional deposition methods such as thermal evaporation, chemical vapor deposition, sputtering or pulse laser deposition are efficient for fabricating structures on flat surfaces. However, they have limitations in deposition on curved surfaces, deposition of thick layers and component integration. In these cases, solution-based methods, which involve the dissolution of chalcogenide glasses and processing as a liquid, become a better choice for their flexibility. After proper treatment, the associated structures can have similar optical, chemical and physical properties to the bulk. This thesis presents an in-depth study of solution-processing chalcogenide glasses, starting from the "solution state" to the "film state" and the "structure state". Firstly, chalcogenide dissolution is studied to reveal the mechanisms at molecular level and build a foundation for material processing. Dissolution processes for various chalcogenide solvent pairs are reviewed and compared. Secondly, thermal processing, in the context of high temperature annealing, is explained along with the chemical and physical properties of the annealed films. Another focus is on nanopore formation in propylamine-processed arsenic sulfide films. Pore density changes with respect to annealing temperatures and durations are characterized. Base on a proposed vacancy coalescence theory, we have identified new dissolution strategies and achieved the breakthrough of pore-free film deposition. Thirdly, several solution methods developed along with the associated photonic structures are demonstrated. The first example is "spin-coating and lamination", which produces thick (over 10 mum) chalcogenide structures. Both homogeneous thick chalcogenide structures and heterogeneous layers of different chalcogenide glasses or metals can be fabricated. Second, "micro-molding in capillaries" (MIMIC) and "micro-transfer molding" (muTM) methods are introduced for fabricating waveguides on flat and curved surfaces. The flexibility of the solution process allows waveguides to be patterned, for the first time, on a curved surface. Third, "micro channel filling" is demonstrated to produce the lowest loss among solution-processed chalcogenide waveguides. These results contribute to the advancement of chalcogenide processing technologies and help move closer towards the ultimate goal of fabricating reliable IR sensors.

  20. Studies of Quaternary saline lakes-III. Mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969-1971

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; McLaughlin, R.J.

    1987-01-01

    As a consequence of the 1969-1970 flooding of normally dry Owens Lake, a 2.4-m-deep lake formed and 20% of the 2-m-thick salt bed dissolved in it. Its desiccation began August 1969, and salts started crystallizing September 1970, ending August 1971. Mineralogic, brine-composition, and stable-isotope data plus field observations showed that while the evolving brine composition established the general crystallization timetable and range of primary and secondary mineral assemblages, it was the daily, monthly, and seasonal temperature changes that controlled the details of timing and mineralogy during this depositional process. Deuterium analyses of lake brine, interstitial brine, and hydrated saline phases helped confirm the sequence of mineral crystallizations and transformations, and they documented the sources and temperatures of waters involved in the reactions. Salts first crystallized as floating rafts on the lake surface. Natron and mirabilite, salts whose solubilities decrease greatly with lowering temperatures, crystallized late at night in winter, when surface-water temperatures reached their minima; trona, nahcolite, burkeite, and halite, salts with solubilities less sensitive to temperature, crystallized during the afternoon in summer, when surface salinities reached their maxima. However, different temperatures were generally associated with crystallization (at the surface) and accumulation (on the lake floor) because short-term temperature changes were transmitted to surface and bottom waters at different rates. Consequently, even when solubilities were exceeded at the surface, salts were preserved or not as a function of bottom-water temperatures. Halite, a nearly temperature-insensitive salt, was always preserved. Monitoring the lake-brine chemistry and mineralogy of the accumulating salts shows: (1) An estimated 0.9 ?? 106 tons of CO2 was released to the atmosphere or consumed by the lake's biomass prior to most salt crystallization. (2) After deposition, some salts reacted in situ to form other minerals in less than one month, and all salts (except halite) decomposed or recrystallized at least once in response to seasons. (3) Warming in early 1971 caused solution of all the mirabilite and some of the natron deposited a few months earlier, a deepening of the lake (though the lake-surface lowered), and an increase in dissolved solids. (4) Phase and solubility-index data suggest that at the close of desiccation, Na2CO3??7H2O, never reported as a mineral, could have been the next phase to crystallize. ?? 1987.

  1. Thermal Barrier Coatings Resistant to Glassy Deposits

    NASA Astrophysics Data System (ADS)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or anorthite phases. In fact, it will be shown that if the industrial standard 7YSZ coatings contained more Y2O3 they would be very effective in stopping CMAS penetration. Lastly, thermal cyclic testing of 7YSZ and YSZ+20Al+5Ti TBCs reveals that partially CMAS-impregnated TBCs can survive mechanically if cycled in thermal gradient while in most isothermal tests they would fail. Since parts in a jet engine are in a thermal gradient, this type of testing should be performed on future CMAS resistant TBCs.

  2. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Astrophysics Data System (ADS)

    Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.

    The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.

  3. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.

    1984-01-01

    The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.

  4. MetClass: A software for the visualization and exploitation of Dill's (2010) "chessboard" classification of mineral deposits

    NASA Astrophysics Data System (ADS)

    Kaabeche, Hamza; Chabou, Moulley Charaf; Bendaoud, Abderrahmane; Bodinier, Jean-Louis; Lobry, Olivier; Retif, Fabien

    2016-06-01

    Rising economic value of a large number of metals as a result of their importance for new technologies and industrial development has renewed worldwide interest for mineral exploration and detailed studies of ore deposits. The Dill's (2010) "chessboard" classification of mineral deposits is the most recent attempt to provide an exhaustive overview of all mineral deposits known to date. However, the voluminous Dills review paper is accessible only in print or as PDF file. In this article, we present MetClass, software that provides advanced solutions to perform efficient research and statistics using Dill's classification and the related database. MetClass allows to assemble all results relevant to a given ore deposit on a user-friendly interface. This software is therefore a valuable tool for mineral exploration and research on ore deposits, as well as an educational solution for students in metallogeny.

  5. Stationary phase deposition based on onium salts

    DOEpatents

    Wheeler, David R [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM; Dirk, Shawn M [Albuquerque, NM; Trudell, Daniel E [Albuquerque, NM

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  6. Aqueous origins of bright salt deposits on Ceres

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.

    2017-11-01

    Bright materials have been reported in association with impact craters on Ceres. The abundant Na2CO3 and some ammonium salts, NH4HCO3 and/or NH4Cl, were detected in bright deposits within Occator crater with Dawn near infrared spectroscopy. The composition and appearance of the salts suggest their aqueous mobilization and emplacement after formation of the crater. Here we consider origins of the bright deposits through calculation of speciation in the H-C-N-O-Na-Cl water-salt type system constrained by the mass balance of observed salts. Calculations of chemical equilibria show that initial solutions had the pH of ∼10. The temperature and salinity of solutions could have not exceeded ∼273 K and ∼100 g per kg H2O, respectively. Freezing models reveal an early precipitation of Na2CO3·10H2O followed by minor NaHCO3. Ammonium salts precipitate near eutectic from brines enriched in NH4+, Cl- and Na+. A late-stage precipitation of NaCl·2H2O is modeled for solution compositions with added NaCl. Calculated eutectics are above 247 K. The apparently unabundant ammonium and chloride salts in Occator's deposits imply a rapid emplacement without a compositional evolution of solution. Salty ice grains could have deposited from post-impact ballistic plumes formed through low-pressure boiling of subsurface solutions. Hydrated and ammonium salts are unstable at maximum temperatures of Ceres' surface and could decompose through space weathering. Occator's ice-free salt deposits formed through a post-depositional sublimation of ice followed by dehydration of Na2CO3·10H2O and NaHCO3 to Na2CO3. In other regions, excavated and exposed bright materials could be salts initially deposited from plumes and accumulated at depth via post-impact boiling. The lack of detection of sulfates and an elevated carbonate/chloride ratio in Ceres' materials suggest an involvement of compounds abundant in the outer solar system.

  7. Formation of Cr-modified silicide coatings on a Ti-Nb-Si based ultrahigh-temperature alloy by pack cementation process

    NASA Astrophysics Data System (ADS)

    Qiao, Yanqiang; Guo, Xiping

    2010-10-01

    Cr-modified silicide coatings were prepared on a Ti-Nb-Si based ultrahigh temperature alloy by Si-Cr co-deposition at 1250 °C, 1350 °C and 1400 °C for 5-20 h respectively. It was found that both coating structure and phase constituents changed significantly with increase in the co-deposition temperature and holding time. The outer layers in all coatings prepared at 1250 °C for 5-20 h consisted of (Ti,X) 5Si 3 (X represents Nb, Cr and Hf elements). (Ti,X) 5Si 4 was found as the only phase constituent in the intermediate layers in both coatings prepared at 1250 °C for 5 and 10 h, but the intermediate layers in the coatings prepared at 1250 °C for 15 and 20 h were mainly composed of (Ti,X) 5Si 3 phase that was derived from the decomposition of (Ti,X) 5Si 4 phase. In the coating prepared at 1350 °C for 5 h, single (Ti,X) 5Si 3 phase was found in its outmost layer, the same as that in the outer layers in the coatings prepared at 1250 °C; but in the coatings prepared at 1350 °C for 10-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was found in the outmost layers besides (Ti,X) 5Si 3 phase. In the coatings prepared at 1400 °C for 5-20 h, (Nb 1.95Cr 1.05)Cr 2Si 3 ternary phase was the single phase constituent in their outmost layers. The phase transformation (Ti,X) 5Si 4 → (Ti,X) 5Si 3 + Si occurred in the intermediate layers of the coatings prepared at 1350 and 1400 °C with prolonging co-deposition time, similar to the situation in the coatings prepared at 1250 °C for 15 and 20 h, but this transformation has been speeded up by increase in the co-deposition temperature. The transitional layers were mainly composed of (Ti,X) 5Si 3 phase in all coatings. The influence of co-deposition temperature on the diffusion ability of Cr atoms was greater than that of Si atoms in the Si-Cr co-deposition processes investigated. The growth of coatings obeyed inverse logarithmic laws at all three co-deposition temperatures. The Si-Cr co-deposition coating prepared at 1350 °C for 10 h showed a good oxidation resistance due to the formation of SiO 2 and Nb, Cr-doped TiO 2 scale after oxidation at 1250 °C for 10 h.

  8. Simulated effects of reduced sulfur, nitrogen, and base cation deposition on soils and solutions in Southern Appalachian forests

    Treesearch

    D.W. Johnson; R.B. Susfalk; P.F. Brewer; W.T. Swank

    1999-01-01

    Effects of reduced deposition of N, S, and CB on nutrient pools, fluxes, soil, and soil solution chemistry were simulated for two Appalachian forest ecosystems using the nutrient cycling model. In the extremely acidic, N- and S-saturated red spruce (Picea rubens (Sarg.)) forest (Nolan Divide), reducing

  9. Hydrodynamic and Chemical Modeling of a Chemical Vapor Deposition Reactor for Zirconia Deposition

    NASA Astrophysics Data System (ADS)

    Belmonte, T.; Gavillet, J.; Czerwiec, T.; Ablitzer, D.; Michel, H.

    1997-09-01

    Zirconia is deposited on cylindrical substrates by flowing post-discharge enhanced chemical vapor deposition. In this paper, a two dimensional hydrodynamic and chemical modeling of the reactor is described for given plasma characteristics. It helps in determining rate constants of the synthesis reaction of zirconia in gas phase and on the substrate which is ZrCl4 hydrolysis. Calculated deposition rate profiles are obtained by modeling under various conditions and fits with a satisfying accuracy the experimental results. The role of transport processes and the mixing conditions of excited gases with remaining ones are studied. Gas phase reaction influence on the growth rate is also discussed.

  10. Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.

  11. Investigating Weathering of Basaltic Materials in Gale Crater, Mars: A Combined Laboratory, Modeling and Terrestrial Field Approach

    NASA Technical Reports Server (NTRS)

    Hausrath, Elisabeth; Ralston, Stephanie J.; Bamisile, Toluwalope; Ming, Douglas; Peretyazhko, Tanya; Rampe, Elizabeth; Gainey, Seth

    2017-01-01

    Recent observations from Gale Crater, Mars document past aqueous alteration both in the formation of the Stimson sandstone unit, as well as in the formation of altered fractures within that unit. Geochemical and mineralogical data from Curiosity also suggest Fe-rich amorphous weathering products are present in most samples measured to date. Here we interpret conditions of possible past weathering in Gale Crater using a combination of field, laboratory, and modeling work. In order to better understand secondary Fe-rich phases on Mars, we are examining formation of weathering products in high Fe and Mg and low Al serpentine soils in the Klamath Mountains, CA. We have isolated potential weathering products from these soils, and are analyzing them using synchrotron µXRF and µXRD as well as FullPat for a direct comparison to analyses from Gale Crater. In order to interpret the implications of the persistence of potential secondary Fe-containing phases on Mars, we are also measuring the dissolution rates of the secondary weathering products allophane, Fe-rich allophane, and hisingerite. Ongoing dissolution experiments of these materials suggest that they dissolve significantly more rapidly than more crystalline secondary minerals with similar chemical compositions. Finally, to quantify the specific conditions of past aqueous alteration in Gale Crater we are performing reactive transport modeling of a range of possible past environmental conditions. Specifically, we are testing the conditions under which a Stimson unit-like material forms from a parent material similar to Rocknest or Bagnold eolian deposits, and the conditions under which observed altered fracture zones form from a Stimson unit-like parent material. Our modeling results indicate that the formation of the Stimson unit is consistent with leaching of an eolian deposit with a solution of pH = 6-8, and that formation of the altered fracture zones is consistent with leaching with a very acidic (pH = 2-3) high sulfate solution containing Ca. These results suggest circumneutral pH conditions during authigenesis or early diagenesis in the Stimson formation sediments followed by diagenetic alteration by very acidic solutions along fracture zones.

  12. Effect of Pb content and solution concentration of Pb{sub x}TiO{sub 3} seed layer on (100)-texture and ferroelectric/dielectric behavior of PZT (52/48) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jian; Batra, Vaishali; Han, Hui

    The effect of Pb content and solution concentration of lead titanate (Pb{sub x}TiO{sub 3}) seed layer on the texture and electric properties of Pb{sub 1.1}(Zr{sub 0.52},Ti{sub 0.48})O{sub 3} (PZT) thin films was investigated. A variety of seed layers (y Pb{sub x}TiO{sub 3}) with varying solution concentration (y = 0.02, 0.05, 0.1, and 0.2 M) and Pb content (x = 1.0, 1.05, 1.1, and 1.2) was deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates using chemical-solution deposition method. PZT films were then deposited on these seed layers using the same process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy investigations of the seed layers confirm change in crystal structuremore » with variation in the solution properties. XRD studies of PZT films deposited on seed layers demonstrate that the seed layer helps in enhancing (100)-texture and suppressing (111)-texture. It was observed that PZT films prepared on seed layers with lower solution concentrations results in highly (100)-textured films, which further helps to improve the electric properties. The polarization and dielectric constant of the PZT films were seen to increase while the coercive field decreased with increase in (100)-texture. Irrespective of the seed layer solution concentration, higher Pb content in the seed layer deteriorates the PZT film properties. Ninety-five percent to ninety-six percent (100)-texture was obtained from thin PZT films deposited on seed layers of 0.02 M solution concentration with 1.05 and 1.10 Pb contents, which is higher than the values reported for thick PZT films. Optimization of both Pb content and solution concentration of the seed layer is a promising route to achieve highly (100)-textured PZT films with improved electric properties.« less

  13. Chemical vapor deposition modeling: An assessment of current status

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1991-01-01

    The shortcomings of earlier approaches that assumed thermochemical equilibrium and used chemical vapor deposition (CVD) phase diagrams are pointed out. Significant advancements in predictive capabilities due to recent computational developments, especially those for deposition rates controlled by gas phase mass transport, are demonstrated. The importance of using the proper boundary conditions is stressed, and the availability and reliability of gas phase and surface chemical kinetic information are emphasized as the most limiting factors. Future directions for CVD are proposed on the basis of current needs for efficient and effective progress in CVD process design and optimization.

  14. Thermodynamic Analysis and Growth of Zirconium Carbide by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Sun; Hua, Hao Zheng; Xiang, Xiong

    Equilibrium calculations were used to optimize conditions for the chemical vapor deposition of zirconium carbide from zirconium halide + CxHy+H2+Ar system. The results show the CVD-ZrC phase diagram is divided into ZrC+C, ZrC and ZrC+Zr zones by C, Zr generating lines. For the same mole of ZrCl4 reactant, it needs higher concentration of CH4 to generate single ZrC phase than that of C3H6. Using these calculations as a guide, single-phase cubic zirconium carbide coatings were deposited onto graphite substrate.

  15. Preparation of stationary phases for reversed-phase high-performance liquid chromatography using thermal treatments at high temperature.

    PubMed

    Vigna, Camila R M; Bottoli, Carla B G; Collins, Kenneth E; Collins, Carol H

    2007-07-13

    Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by deposition from a solution of PMOS into the pores of HPLC silica. Portions of PMOS-loaded silica were subjected to a thermal treatment at 100 degrees C for 24h (condition 1) in a tube furnace under a nitrogen atmosphere. After that, the material was heated for 4h at higher temperatures (150-400 degrees C) (condition 2). Heating at higher temperatures produces polymer bilayers. Non-immobilized and thermally treated stationary phases were characterized by percent carbon, (29)Si cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy and reversed-phase chromatographic performance. The results show that thermal treatment between 150 and 300 degrees C accelerates the immobilization process, possibly due to some bond breaking of the polysiloxane, with formation of strong linkages to the surface of the support, resulting in more complete coverage of the silica. The chromatographic results show an improvement of efficiency with the increase of the temperature of condition 2 up to 300 degrees C and an increase in the resolution of the components, mainly for the phase heated at 300 degrees C. Such results demonstrate that a two-step thermal treatment (100 degrees C then 150-300 degrees C) produces stationary phases with good properties for use in reversed-phase high-performance liquid chromatography.

  16. Seeking more Opportunities of Check Dams' harmony with nearby Circumstances via Design Thinking Process

    NASA Astrophysics Data System (ADS)

    Lin, Huan-Chun; Chen, Su-Chin; Tsai, Chen-Chen

    2014-05-01

    The contents of engineering design should indeed contain both science and art fields. However, the art aspect is too less discussed to cause an inharmonic impact with natural surroundings, and so are check dams. This study would like to seek more opportunities of check dams' harmony with nearby circumstances. According to literatures review of philosophy and cognition science fields, we suggest a thinking process of three phases to do check dams design work for reference. The first phase, conceptualization, is to list critical problems, such as the characteristics of erosion or deposition, and translate them into some goal situations. The second phase, transformation, is to use cognition methods such as analogy, association and metaphors to shape an image and prototypes. The third phase, formation, is to decide the details of the construction, such as stable safety analysis of shapes or materials. According to the previous descriptions, Taiwan's technological codes or papers about check dam design mostly emphasize the first and third phases, still quite a few lacks of the second phase. We emphases designers shouldn't ignore any phase of the framework especially the second one, or they may miss some chances to find more suitable solutions. Otherwise, this conceptual framework is simple to apply and we suppose it's a useful tool to design a more harmonic check dam with nearby natural landscape. Key Words: check dams, design thinking process, conceptualization, transformation, formation.

  17. Modification of TiO(2) nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites.

    PubMed

    Lee, Jung-Hwan; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2013-01-01

    To fabricate the antibiotic-releasing coatings on TiO(2) nanotube surfaces for wide applications of implant and bone plate in medical and dental surgery, the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures was found. FE-SEM, ESD and FT-IR were used for confirming deposition of amoxicillin/PLGA on the TiO(2) surface. Also, the elution of amoxicillin/PLGA in a TiO(2) nanotube surface was measured by a UV-VIS spectrophotometer. The bactericidal effect of amoxicillin on the TiO(2) nanotube surface was evaluated by using Staphylococcus aureus (S. aureus). The cytotoxicity and cell proliferation were observed by WST assay using MC3T3-E1 osteoblast cells. The results indicated that the TiO(2) nanotube surface controlled by electro-spray deposition time with amoxicillin/PLGA solution could provide a high bactericidal effect against S. aureus by the bactericidal effect of amoxicillin, as well as good osteoblast cell proliferation at the TiO(2) nanotube surface without toxicity. This study used electro-spray deposition (ESD) methodology to obtain amoxicillin deposition in nanotube structures of TiO(2) and found the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures.

  18. Structure and Properties of Azobenzene Thin-Films

    NASA Astrophysics Data System (ADS)

    Allen, R. A.

    1987-09-01

    Available from UMI in association with The British Library. A number of monomer and polymer materials, all containing the azobenzene group, have been deposited as Langmuir-Blodgett (LB) multilayers and their structures and physical properties studied. LB films of two monomeric materials exhibited liquid crystal phase changes that were investigated by optical microscopy and X-ray diffraction. Multilayers built up from one of the materials exhibited a phase change upon aging and this demonstrated that the LB technique had produced a structure that was not the equilibrium state. A monomer material possessing a fluorocarbon chain was found to initially deposit as an LB film in a Z-type manner, but changed to Y-type deposition with increasing multilayer thickness. A correlation was observed between this behaviour and the surface potential changes that were brought about when deposition took place on an aluminium substrate. The feasibility of building up alternating multilayers of monomer and polymer materials was demonstrated. Combining these two classes of material in the same LB film may confer on it the mechanical durability of the polymers and the highly ordered structure and potentially interesting physical properties of the monomer. The structures developed here may prove to have high second harmonic generation capabilities. Polymer materials were built up into relatively thick Y-type LB multilayers and studied by X-ray diffraction. Only poorly defined layered structures were found. Polymer materials were also cast into thin films from the melt and from solution. One of the compounds developed a high degree of anisotropy in its structure after exposure to linearly polarised white light. A birefringence of up to Deltan = 0.21 was measured. In contrast, LB films formed from the same material could not be ordered in the same manner and this appeared to result from the very close packing that takes place in such structures.

  19. Electrodeposition Process and Performance of CuIn(Se x S1- x )2 Film for Absorption Layer of Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Li, Libo; Yang, Xueying; Gao, Guanxiong; Wang, Wentao; You, Jun

    2017-11-01

    CuIn(Se x S1- x )2 thin film is prepared by the electrodeposition method for the absorption layer of the solar cell. The CuIn(Se x S1- x )2 films are characterized by cyclic voltammetry measurement for the reduction of copper, indium, selenium and sulfur in selenium and sulfur in aqueous solutions with sodium citrate and without sodium citrate. In the four cases, the defined reduction process for every single element is obtained and it is observed that sodium citrate changes the reduction potentials. A linear relationship between the current density of the reduction peak and (scan rate v)1/2 for copper and indium is achieved, indicating that the process is diffusion controlled. The diffusion coefficients of copper and indium ions are calculated. The diffusional coefficient D value of copper is higher than that of indium, and this is the reason why the deposition rate of copper is higher. When four elements are co-deposited in the aqueous solution with sodium citrate, the quaternary compound of CuIn(Se x S1- x )2 is deposited together with Cu3Se2 impure phases after annealing, as found by XRD spectra. Morphology is observed by SEM and AFM. The chemical state of the films components is analyzed by XPS. The UV-Visible spectrophotometer and electrochemistry workstation are employed to measure the photoelectric properties. The results show that the smooth, uniform and compact CuIn(Se x S1- x )2 film is a semiconductor with a band gap of 1.49 eV and a photovoltaic conversion efficiency of 0.45%.

  20. Controlled in situ boron doping of diamond thin films using solution phase

    NASA Astrophysics Data System (ADS)

    Roy, M.; Dua, A. K.; Nuwad, J.; Girija, K. G.; Tyagi, A. K.; Kulshreshtha, S. K.

    2006-12-01

    Controlled boron doping of diamond film using nontoxic reagents is a challenge in itself. During the present study, attempts have been made to dope diamond films in situ with boron from a solution of boric acid (H3BO3) in methanol (CH3OH) using a specially designed bubbler that ensured continuous and controlled flow of vapors of boron precursors during deposition. The samples are thoroughly characterized using a host of techniques comprising of x-ray photoelectron spectroscopy, Raman, x-ray diffraction, and current-voltage measurements (I-V). Cross-sectional micro-Raman spectroscopy has been used to obtain depth profile of boron in diamond films. Boron concentration ([B]) in the films is found to vary linearly on a semilog scale with molarity (M) of H3BO3 in CH3OH. Lattice constant of our samples is smaller than the reported American society for testing and materials (ASTM) values due to oxygen incorporation and it increases with [B] in the diamond samples. Heavily boron doped samples exhibit Fano deformation of the Raman line shape and negative and/zero activation barrier in temperature dependent I-V measurements that indicate the formation of metallic phase in the samples. The present study illustrates the feasibility of safe and controlled boron doping of diamond films using a solution of H3BO3 in CH3OH over a significant range of [B] from semiconductor to metallic regime but with a little adverse effect due to unintentional but unavoidable incorporation of oxygen.

Top