Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos
2017-11-09
Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos
Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less
NASA Astrophysics Data System (ADS)
Thieme, Horst R.
The concept of asymptotic proportionality and conditional asymptotic equality which is presented here aims at making global asymptotic stability statements for time-heterogeneous difference and differential equations. For such non-autonomous problems (apart from special cases) no prominent special solutions (equilibra, periodic solutions) exist which are natural candidates for the asymptotic behaviour of arbitrary solutions. One way out of this dilemma consists in looking for conditions under which any two solutions to the problem (with different initial conditions) behave in a similar or even the same way as time tends to infinity. We study a general sublinear difference equation in an ordered Banach space and, for illustration, time-heterogeneous versions of several well-known differential equations modelling the spread of gonorrhea in a heterogeneous population, the spread of a vector-borne infectious disease, and the dynamics of a logistically growing spatially diffusing population.
Space-time mesh adaptation for solute transport in randomly heterogeneous porous media.
Dell'Oca, Aronne; Porta, Giovanni Michele; Guadagnini, Alberto; Riva, Monica
2018-05-01
We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which provides the advective component of transport, is obtained through the numerical solution of Darcy's law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are respectively grounded on the definition of the guiding error estimator through the spatial gradients of: (i) the concentration field only; (ii) both concentration and velocity components. We test the approach for two-dimensional computational scenarios with moderate and high levels of heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference against which we test our results, we consider corresponding solutions associated with uniform space-time grids whose level of refinement is established through a detailed convergence study. We find a satisfactory comparison between results for the adaptive methodologies and such reference solutions, our adaptive technique being associated with a markedly reduced computational cost. Comparison of the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on concentration fields yields some advantages in grasping the key features of solute transport taking place within low velocity regions, where diffusion-dispersion mechanisms are dominant; and (ii) embedding the velocity field in the error estimator guiding strategy yields an improved characterization of the forward fringe of solute fronts which propagate through high velocity regions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Anderson, William; Yang, Jianzhi
2017-11-01
Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce mean secondary flows in the form of counter-rotating streamwise vortices. The secondary flows are a manifestation of Prandtl's secondary flow of the second kind - driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor. The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) streamwise vorticity transport equation, revealing the scaling dependence of circulation upon spanwise spacing. The scaling arguments are supported by simulation data. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term was used to represent the affects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with large-eddy simulation cases, wherein vortex forcing model parameters were altered to capture different values of spanwise spacing.
Debye potentials for heterogeneous media
NASA Astrophysics Data System (ADS)
Panamarev, N. S.; Donchenko, V. A.; Zemlyanov, Al. A.; Samokhvalov, I. V.; Apeksimov, D. V.; Panamaryova, A. N.; Trifonova, A. V.
2017-11-01
The paper presents the results of the Helmholtz equation solution by the method of perturbation theory in the spherical coordinate system for the Debye potentials for weakly heterogeneous media based on metal nanoparticles and the dielectric matrix. In that case, the dielectric function of a composite changes in space in the radial direction.
A first-order k-space model for elastic wave propagation in heterogeneous media.
Firouzi, K; Cox, B T; Treeby, B E; Saffari, N
2012-09-01
A pseudospectral model of linear elastic wave propagation is described based on the first order stress-velocity equations of elastodynamics. k-space adjustments to the spectral gradient calculations are derived from the dyadic Green's function solution to the second-order elastic wave equation and used to (a) ensure the solution is exact for homogeneous wave propagation for timesteps of arbitrarily large size, and (b) also allows larger time steps without loss of accuracy in heterogeneous media. The formulation in k-space allows the wavefield to be split easily into compressional and shear parts. A perfectly matched layer (PML) absorbing boundary condition was developed to effectively impose a radiation condition on the wavefield. The staggered grid, which is essential for accurate simulations, is described, along with other practical details of the implementation. The model is verified through comparison with exact solutions for canonical examples and further examples are given to show the efficiency of the method for practical problems. The efficiency of the model is by virtue of the reduced point-per-wavelength requirement, the use of the fast Fourier transform (FFT) to calculate the gradients in k space, and larger time steps made possible by the k-space adjustments.
Quantum Heterogeneous Computing for Satellite Positioning Optimization
NASA Astrophysics Data System (ADS)
Bass, G.; Kumar, V.; Dulny, J., III
2016-12-01
Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H. L.; Han, Y. F., E-mail: yfhan@sjtu.edu.cn, E-mail: bdsun@sjtu.edu.cn; Zhou, W.
2015-01-26
Atomic ordering in Al melts induced by liquid/substrate interface with Ti solute was investigated by ab initio molecular dynamics simulations and in-situ synchrotron X-ray diffraction. It is predicted that deformed nanoscale ordering Al layers with a rhombohedral-centered hexagonal structure (R3{sup ¯}m space group) instead of the intrinsic fcc structure (Fm3{sup ¯}m space group) form on substrate at temperature above Al liquids. With Al atoms stacking away from the interface, the ordering structure reaches a critical thickness, which inhibits the consecutive stacking of Al atoms on substrates. The locally stacking reconstruction induced by Ti atom relieves the accumulated elastic strain energymore » in ordered Al layers, facilitating fully heterogeneous nucleation on substrate beyond the deformed ordering Al layer around the melting point. The roles of liquid/substrate interface with Ti solute in the physical behavior of heterogeneous nucleation on substrate were discussed.« less
A comparison of solute-transport solution techniques based on inverse modelling results
Mehl, S.; Hill, M.C.
2000-01-01
Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.
NASA Astrophysics Data System (ADS)
Danesh-Yazdi, Mohammad; Botter, Gianluca; Foufoula-Georgiou, Efi
2017-05-01
Lack of hydro-bio-chemical data at subcatchment scales necessitates adopting an aggregated system approach for estimating water and solute transport properties, such as residence and travel time distributions, at the catchment scale. In this work, we show that within-catchment spatial heterogeneity, as expressed in spatially variable discharge-storage relationships, can be appropriately encapsulated within a lumped time-varying stochastic Lagrangian formulation of transport. This time (variability) for space (heterogeneity) substitution yields mean travel times (MTTs) that are not significantly biased to the aggregation of spatial heterogeneity. Despite the significant variability of MTT at small spatial scales, there exists a characteristic scale above which the MTT is not impacted by the aggregation of spatial heterogeneity. Extensive simulations of randomly generated river networks reveal that the ratio between the characteristic scale and the mean incremental area is on average independent of river network topology and the spatial arrangement of incremental areas.
NASA Astrophysics Data System (ADS)
Spannenberg, Jescica; Atangana, Abdon; Vermeulen, P. D.
2017-09-01
Fractional differentiation has adequate use for investigating real world scenarios related to geological formations associated with elasticity, heterogeneity, viscoelasticity, and the memory effect. Since groundwater systems exist in these geological formations, modelling groundwater recharge as a real world scenario is a challenging task to do because existing recharge estimation methods are governed by linear equations which make use of constant field parameters. This is inadequate because in reality these parameters are a function of both space and time. This study therefore concentrates on modifying the recharge equation governing the EARTH model, by application of the Eton approach. Accordingly, this paper presents a modified equation which is non-linear, and accounts for parameters in a way that it is a function of both space and time. To be more specific, herein, recharge and drainage resistance which are parameters within the equation, became a function of both space and time. Additionally, the study entailed solving the non-linear equation using an iterative method as well as numerical solutions by means of the Crank-Nicolson scheme. The numerical solutions were used alongside the Riemann-Liouville, Caputo-Fabrizio, and Atangana-Baleanu derivatives, so that account was taken for elasticity, heterogeneity, viscoelasticity, and the memory effect. In essence, this paper presents a more adequate model for recharge estimation.
A new time domain random walk method for solute transport in 1-D heterogeneous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banton, O.; Delay, F.; Porel, G.
A new method to simulate solute transport in 1-D heterogeneous media is presented. This time domain random walk method (TDRW), similar in concept to the classical random walk method, calculates the arrival time of a particle cloud at a given location (directly providing the solute breakthrough curve). The main advantage of the method is that the restrictions on the space increments and the time steps which exist with the finite differences and random walk methods are avoided. In a homogeneous zone, the breakthrough curve (BTC) can be calculated directly at a given distance using a few hundred particles or directlymore » at the boundary of the zone. Comparisons with analytical solutions and with the classical random walk method show the reliability of this method. The velocity and dispersivity calculated from the simulated results agree within two percent with the values used as input in the model. For contrasted heterogeneous media, the random walk can generate high numerical dispersion, while the time domain approach does not.« less
Statistical Estimation of Heterogeneities: A New Frontier in Well Testing
NASA Astrophysics Data System (ADS)
Neuman, S. P.; Guadagnini, A.; Illman, W. A.; Riva, M.; Vesselinov, V. V.
2001-12-01
Well-testing methods have traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. Geostatistical inverse interpretation of cross-hole tests yields a smoothed but detailed "tomographic" image of how parameters actually vary in three-dimensional space, together with corresponding measures of estimation uncertainty. Moment solutions may soon allow one to interpret well tests in terms of statistical parameters such as the mean and variance of log permeability, its spatial autocorrelation and statistical anisotropy. The idea of geostatistical cross-hole tomography is illustrated through pneumatic injection tests conducted in unsaturated fractured tuff at the Apache Leap Research Site near Superior, Arizona. The idea of using moment equations to interpret well-tests statistically is illustrated through a recently developed three-dimensional solution for steady state flow to a well in a bounded, randomly heterogeneous, statistically anisotropic aquifer.
TSOS and TSOS-FK hybrid methods for modelling the propagation of seismic waves
NASA Astrophysics Data System (ADS)
Ma, Jian; Yang, Dinghui; Tong, Ping; Ma, Xiao
2018-05-01
We develop a new time-space optimized symplectic (TSOS) method for numerically solving elastic wave equations in heterogeneous isotropic media. We use the phase-preserving symplectic partitioned Runge-Kutta method to evaluate the time derivatives and optimized explicit finite-difference (FD) schemes to discretize the space derivatives. We introduce the averaged medium scheme into the TSOS method to further increase its capability of dealing with heterogeneous media and match the boundary-modified scheme for implementing free-surface boundary conditions and the auxiliary differential equation complex frequency-shifted perfectly matched layer (ADE CFS-PML) non-reflecting boundaries with the TSOS method. A comparison of the TSOS method with analytical solutions and standard FD schemes indicates that the waveform generated by the TSOS method is more similar to the analytic solution and has a smaller error than other FD methods, which illustrates the efficiency and accuracy of the TSOS method. Subsequently, we focus on the calculation of synthetic seismograms for teleseismic P- or S-waves entering and propagating in the local heterogeneous region of interest. To improve the computational efficiency, we successfully combine the TSOS method with the frequency-wavenumber (FK) method and apply the ADE CFS-PML to absorb the scattered waves caused by the regional heterogeneity. The TSOS-FK hybrid method is benchmarked against semi-analytical solutions provided by the FK method for a 1-D layered model. Several numerical experiments, including a vertical cross-section of the Chinese capital area crustal model, illustrate that the TSOS-FK hybrid method works well for modelling waves propagating in complex heterogeneous media and remains stable for long-time computation. These numerical examples also show that the TSOS-FK method can tackle the converted and scattered waves of the teleseismic plane waves caused by local heterogeneity. Thus, the TSOS and TSOS-FK methods proposed in this study present an essential tool for the joint inversion of local, regional, and teleseismic waveform data.
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2016-09-01
The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).
The effect of material heterogeneities in long term multiscale seismic cycle simulations
NASA Astrophysics Data System (ADS)
Kyriakopoulos, C.; Richards-Dinger, K. B.; Dieterich, J. H.
2016-12-01
A fundamental part of the simulation of the earthquake cycles in large-scale multicycle earthquake simulators is the pre-computation of elastostatic Greens functions collected into the stiffness matrix (K). The stiffness matrices are typically based on the elastostatic solutions of Okada (1992), Gimbutas et al. (2012), or similar. While these analytic solutions are computationally very fast, they are limited to modeling a homogeneous isotropic half-space. It is thus unknown how such simulations may be affected by material heterogeneity characterizing the earth medium. We are currently working on the estimation of the effects of heterogeneous material properties in the earthquake simulator RSQSim (Richards-Dinger and Dieterich, 2012). In order to do that we are calculating elastostatic solutions in a heterogeneous medium using the Finite Element (FE) method instead of any of the analytical solutions. The investigated region is a 400 x 400 km area centered on the Anza zone in southern California. The fault system geometry is based on that of the UCERF3 deformation models in the area of interest, which we then implement in a finite element mesh using Trelis 15. The heterogeneous elastic structure is based on available tomographic data (seismic wavespeeds and density) for the region (SCEC CVM and Allam et al., 2014). For computation of the Greens functions we are using the open source FE code Defmod (https://bitbucket.org/stali/defmod/wiki/Home) to calculate the elastostatic solutions due to unit slip on each patch. Earthquake slip on the fault plane is implemented through linear constraint equations (Ali et al., 2014, Kyriakopoulos et al., 2013, Aagard et al, 2015) and more specifically with the use of Lagrange multipliers adjunction. The elementary responses are collected into the "heterogeneous" stiffness matrix Khet and used in RSQSim instead of the ones generated with Okada. Finally, we compare the RSQSim results based on the "heterogeneous" Khet with results from Khom (stiffness matrix generated from the same mesh as Khet but using homogeneous material properties). The estimation of the effect of heterogeneous material properties in the seismic cycles simulated by RSQSim is a needed experiment that will allow us to evaluate the impact of heterogeneities in earthquake simulators.
NASA Astrophysics Data System (ADS)
Cusimano, N.; Gerardo-Giorda, L.
2018-06-01
Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.
Pacemakers in large arrays of oscillators with nonlocal coupling
NASA Astrophysics Data System (ADS)
Jaramillo, Gabriela; Scheel, Arnd
2016-02-01
We model pacemaker effects of an algebraically localized heterogeneity in a 1 dimensional array of oscillators with nonlocal coupling. We assume the oscillators obey simple phase dynamics and that the array is large enough so that it can be approximated by a continuous nonlocal evolution equation. We concentrate on the case of heterogeneities with positive average and show that steady solutions to the nonlocal problem exist. In particular, we show that these heterogeneities act as a wave source. This effect is not possible in 3 dimensional systems, such as the complex Ginzburg-Landau equation, where the wavenumber of weak sources decays at infinity. To obtain our results we use a series of isomorphisms to relate the nonlocal problem to the viscous eikonal equation. We then use Fredholm properties of the Laplace operator in Kondratiev spaces to obtain solutions to the eikonal equation, and by extension to the nonlocal problem.
Spatial distribution of solute leaching with snowmelt and irrigation: measurements and simulations
NASA Astrophysics Data System (ADS)
Schotanus, D.; van der Ploeg, M. J.; van der Zee, S. E. A. T. M.
2013-04-01
Transport of a tracer and a degradable solute in a heterogeneous soil was measured in the field, and simulated with several transient and steady state infiltration rates. Leaching surfaces were used to investigate the solute leaching in space and time simultaneously. In the simulations, a random field for the scaling factor in the retention curve was used for the heterogeneous soil, which was based on the spatial distribution of drainage in an experiment with a multi-compartment sampler. As a criterion to compare the results from simulations and observations, the sorted and cumulative total drainage in a cell was used. The effect of the ratio of the infiltration rate over the degradation rate on leaching of degradable solutes was investigated. Furthermore, the spatial distribution of the leaching of degradable and non-degradable solutes was compared. The infiltration rate determines the amount of leaching of the degradable solute. This can be partly explained by a decreasing travel time with an increasing infiltration rate. The spatial distribution of the leaching also depends on the infiltration rate. When the infiltration rate is high compared to the degradation rate, the leaching of the degradable solute is similar as for the tracer. The fraction of the pore space of the soil that contributes to solute leaching increases with an increasing infiltration rate. This fraction is similar for a tracer and a degradable solute. With increasing depth, the leaching becomes more homogeneous, as a result of dispersion. The spatial distribution of the solute leaching is different under different transient infiltration rates, therefore, also the amount of leaching is different. With independent stream tube approaches, this effect would be ignored.
Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S.P.A.
2013-01-01
We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model. PMID:27069423
NASA Astrophysics Data System (ADS)
Wang, Lei; Dai, Cheng; Xue, Liang
2018-04-01
This study presents a Laplace-transform-based boundary element method to model the groundwater flow in a heterogeneous confined finite aquifer with arbitrarily shaped boundaries. The boundary condition can be Dirichlet, Neumann or Robin-type. The derived solution is analytical since it is obtained through the Green's function method within the domain. However, the numerical approximation is required on the boundaries, which essentially renders it a semi-analytical solution. The proposed method can provide a general framework to derive solutions for zoned heterogeneous confined aquifers with arbitrarily shaped boundary. The requirement of the boundary element method presented here is that the Green function must exist for a specific PDE equation. In this study, the linear equations for the two-zone and three-zone confined aquifers with arbitrarily shaped boundary is established in Laplace space, and the solution can be obtained by using any linear solver. Stehfest inversion algorithm can be used to transform it back into time domain to obtain the transient solution. The presented solution is validated in the two-zone cases by reducing the arbitrarily shaped boundaries to circular ones and comparing it with the solution in Lin et al. (2016, https://doi.org/10.1016/j.jhydrol.2016.07.028). The effect of boundary shape and well location on dimensionless drawdown in two-zone aquifers is investigated. Finally the drawdown distribution in three-zone aquifers with arbitrarily shaped boundary for constant-rate tests (CRT) and flow rate distribution for constant-head tests (CHT) are analyzed.
A 1D radiative transfer benchmark with polarization via doubling and adding
NASA Astrophysics Data System (ADS)
Ganapol, B. D.
2017-11-01
Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.
NASA Astrophysics Data System (ADS)
Kartashov, E. M.
1986-10-01
Analytical methods for solving boundary value problems for the heat conduction equation with heterogeneous boundary conditions on lines, on a plane, and in space are briefly reviewed. In particular, the method of dual integral equations and summator series is examined with reference to stationary processes. A table of principal solutions to dual integral equations and pair summator series is proposed which presents the known results in a systematic manner. Newly obtained results are presented in addition to the known ones.
Applying a cloud computing approach to storage architectures for spacecraft
NASA Astrophysics Data System (ADS)
Baldor, Sue A.; Quiroz, Carlos; Wood, Paul
As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.
Principle of Parsimony, Fake Science, and Scales
NASA Astrophysics Data System (ADS)
Yeh, T. C. J.; Wan, L.; Wang, X. S.
2017-12-01
Considering difficulties in predicting exact motions of water molecules, and the scale of our interests (bulk behaviors of many molecules), Fick's law (diffusion concept) has been created to predict solute diffusion process in space and time. G.I. Taylor (1921) demonstrated that random motion of the molecules reach the Fickian regime in less a second if our sampling scale is large enough to reach ergodic condition. Fick's law is widely accepted for describing molecular diffusion as such. This fits the definition of the parsimony principle at the scale of our concern. Similarly, advection-dispersion or convection-dispersion equation (ADE or CDE) has been found quite satisfactory for analysis of concentration breakthroughs of solute transport in uniformly packed soil columns. This is attributed to the solute is often released over the entire cross-section of the column, which has sampled many pore-scale heterogeneities and met the ergodicity assumption. Further, the uniformly packed column contains a large number of stationary pore-size heterogeneity. The solute thus reaches the Fickian regime after traveling a short distance along the column. Moreover, breakthrough curves are concentrations integrated over the column cross-section (the scale of our interest), and they meet the ergodicity assumption embedded in the ADE and CDE. To the contrary, scales of heterogeneity in most groundwater pollution problems evolve as contaminants travel. They are much larger than the scale of our observations and our interests so that the ergodic and the Fickian conditions are difficult. Upscaling the Fick's law for solution dispersion, and deriving universal rules of the dispersion to the field- or basin-scale pollution migrations are merely misuse of the parsimony principle and lead to a fake science ( i.e., the development of theories for predicting processes that can not be observed.) The appropriate principle of parsimony for these situations dictates mapping of large-scale heterogeneities as detailed as possible and adapting the Fick's law for effects of small-scale heterogeneity resulting from our inability to characterize them in detail.
Type-curve estimation of statistical heterogeneity
NASA Astrophysics Data System (ADS)
Neuman, Shlomo P.; Guadagnini, Alberto; Riva, Monica
2004-04-01
The analysis of pumping tests has traditionally relied on analytical solutions of groundwater flow equations in relatively simple domains, consisting of one or at most a few units having uniform hydraulic properties. Recently, attention has been shifting toward methods and solutions that would allow one to characterize subsurface heterogeneities in greater detail. On one hand, geostatistical inverse methods are being used to assess the spatial variability of parameters, such as permeability and porosity, on the basis of multiple cross-hole pressure interference tests. On the other hand, analytical solutions are being developed to describe the mean and variance (first and second statistical moments) of flow to a well in a randomly heterogeneous medium. We explore numerically the feasibility of using a simple graphical approach (without numerical inversion) to estimate the geometric mean, integral scale, and variance of local log transmissivity on the basis of quasi steady state head data when a randomly heterogeneous confined aquifer is pumped at a constant rate. By local log transmissivity we mean a function varying randomly over horizontal distances that are small in comparison with a characteristic spacing between pumping and observation wells during a test. Experimental evidence and hydrogeologic scaling theory suggest that such a function would tend to exhibit an integral scale well below the maximum well spacing. This is in contrast to equivalent transmissivities derived from pumping tests by treating the aquifer as being locally uniform (on the scale of each test), which tend to exhibit regional-scale spatial correlations. We show that whereas the mean and integral scale of local log transmissivity can be estimated reasonably well based on theoretical ensemble mean variations of head and drawdown with radial distance from a pumping well, estimating the log transmissivity variance is more difficult. We obtain reasonable estimates of the latter based on theoretical variation of the standard deviation of circumferentially averaged drawdown about its mean.
Mehl, S.; Hill, M.C.
2001-01-01
Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.
Nanobubbles in confined solution: Generation, contact angle, and stability.
Wei, Jiachen; Zhang, Xianren; Song, Fan; Shao, Yingfeng
2018-02-14
The formation of gas bubbles presents a frequent challenge to microfluidic operations, for which fluids are geometrically confined to a microscale space. Here, to understand the mechanism of nucleating gas bubbles in microfluidic devices, we investigate the formation and stability of nanobubbles in confined solutions. Our molecular dynamics simulations show that while pinning of the contact line is a prerequisite for the stability of surface nanobubbles in open systems that can exchange gas with surrounding environment, in confined solutions, stable nanobubbles can exist even without pinning. In supersaturated condition, stable bubbles can be found in confined solutions with acute or obtuse contact angle, depending on the substrate hydrophobicity. We also demonstrate that when open to the bulk solution, the stable nanobubbles in closed systems would become unstable unless both supersaturation and pinning of the contact line are satisfied. Our results not only shed light on the design of novel heterogeneous surfaces for generating nanobubbles in confined space with controllable shape and stability but also address the crucial effect of gas exchange with the surroundings in determining the stability of nanobubbles.
Nanobubbles in confined solution: Generation, contact angle, and stability
NASA Astrophysics Data System (ADS)
Wei, Jiachen; Zhang, Xianren; Song, Fan; Shao, Yingfeng
2018-02-01
The formation of gas bubbles presents a frequent challenge to microfluidic operations, for which fluids are geometrically confined to a microscale space. Here, to understand the mechanism of nucleating gas bubbles in microfluidic devices, we investigate the formation and stability of nanobubbles in confined solutions. Our molecular dynamics simulations show that while pinning of the contact line is a prerequisite for the stability of surface nanobubbles in open systems that can exchange gas with surrounding environment, in confined solutions, stable nanobubbles can exist even without pinning. In supersaturated condition, stable bubbles can be found in confined solutions with acute or obtuse contact angle, depending on the substrate hydrophobicity. We also demonstrate that when open to the bulk solution, the stable nanobubbles in closed systems would become unstable unless both supersaturation and pinning of the contact line are satisfied. Our results not only shed light on the design of novel heterogeneous surfaces for generating nanobubbles in confined space with controllable shape and stability but also address the crucial effect of gas exchange with the surroundings in determining the stability of nanobubbles.
Enabling private and public sector organizations as agents of homeland security
NASA Astrophysics Data System (ADS)
Glassco, David H. J.; Glassco, Jordan C.
2006-05-01
Homeland security and defense applications seek to reduce the risk of undesirable eventualities across physical space in real-time. With that functional requirement in mind, our work focused on the development of IP based agent telecommunication solutions for heterogeneous sensor / robotic intelligent "Things" that could be deployed across the internet. This paper explains how multi-organization information and device sharing alliances may be formed to enable organizations to act as agents of homeland security (in addition to other uses). Topics include: (i) using location-aware, agent based, real-time information sharing systems to integrate business systems, mobile devices, sensor and actuator based devices and embedded devices used in physical infrastructure assets, equipment and other man-made "Things"; (ii) organization-centric real-time information sharing spaces using on-demand XML schema formatted networks; (iii) object-oriented XML serialization as a methodology for heterogeneous device glue code; (iv) how complex requirements for inter / intra organization information and device ownership and sharing, security and access control, mobility and remote communication service, tailored solution life cycle management, service QoS, service and geographic scalability and the projection of remote physical presence (through sensing and robotics) and remote informational presence (knowledge of what is going elsewhere) can be more easily supported through feature inheritance with a rapid agent system development methodology; (v) how remote object identification and tracking can be supported across large areas; (vi) how agent synergy may be leveraged with analytics to complement heterogeneous device networks.
Computer-assisted engineering data base
NASA Technical Reports Server (NTRS)
Dube, R. P.; Johnson, H. R.
1983-01-01
General capabilities of data base management technology are described. Information requirements posed by the space station life cycle are discussed, and it is asserted that data base management technology supporting engineering/manufacturing in a heterogeneous hardware/data base management system environment should be applied to meeting these requirements. Today's commercial systems do not satisfy all of these requirements. The features of an R&D data base management system being developed to investigate data base management in the engineering/manufacturing environment are discussed. Features of this system represent only a partial solution to space station requirements. Areas where this system should be extended to meet full space station information management requirements are discussed.
NASA Astrophysics Data System (ADS)
Ristau, Henry
Many tasks in smart environments can be implemented using message based communication paradigms that decouple applications in time, space, synchronization and semantics. Current solutions for decoupled message based communication either do not support message processing and thus semantic decoupling or rely on clearly defined network structures. In this paper we present ASP, a novel concept for such communication that can directly operate on neighbor relations between brokers and does not rely on a homogeneous addressing scheme or anymore than simple link layer communication. We show by simulation that ASP performs well in a heterogeneous scenario with mobile nodes and decreases network or processor load significantly compared to message flooding.
Analytical and experimental analysis of solute transport in heterogeneous porous media.
Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael
2014-01-01
Knowledge of solute transport in heterogeneous porous media is crucial to monitor contaminant fate and transport in soil and groundwater systems. In this study, we present new findings from experimental and mathematical analysis to improve current understanding of solute transport in structured heterogeneous porous media. Three saturated columns packed with different sand combinations were used to examine the breakthrough behavior of bromide, a conservative tracer. Experimental results showed that bromide had different breakthrough responses in the three types of sand combinations, indicating that heterogeneity in hydraulic conductivity has a significant effect on the solute transport in structured heterogeneous porous media. Simulations from analytical solutions of a two-domain solute transport model matched experimental breakthrough data well for all the experimental conditions tested. Experimental and model results show that under saturated flow conditions, advection dominates solute transport in both fast-flow and slow-flow domains. The sand with larger hydraulic conductivity provided a preferential flow path for solute transport (fast-flow domain) that dominates the mass transfer in the heterogeneous porous media. Importantly, the transport in the slow-flow domain and mass exchange between the domains also contribute to the flow and solute transport processes and thus must be considered when investigating contaminant transport in heterogeneous porous media.
Synergistic rate boosting of collagen fibrillogenesis in heterogeneous mixtures of crowding agents.
Dewavrin, Jean-Yves; Abdurrahiem, Muhammed; Blocki, Anna; Musib, Mrinal; Piazza, Francesco; Raghunath, Michael
2015-03-26
The competition for access to space that arises between macromolecules is the basis of the macromolecular crowding phenomenon, known to modulate biochemical reactions in subtle ways. Crowding is a highly conserved physiological condition in and around cells in metazoans, and originates from a mixture of heterogeneous biomolecules. Here, using collagen fibrillogenesis as an experimental test platform and ideas from the theory of nonideal solutions, we show that an entropy-based synergy is created by a mixture of two different populations of artificial crowders, providing small crowders with extra volume occupancy when in the vicinity of bigger crowders. We present the physiological mechanism by which synergistic effects maximize volume exclusion with the minimum amount of heterogeneous crowders, demonstrating how the evolutionarily optimized crowded conditions found in vivo can be reproduced effectively in vitro.
T-SDN architecture for space and ground integrated optical transport network
NASA Astrophysics Data System (ADS)
Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu
2015-11-01
Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.
Daniele Tonina; Alberto Bellin
2008-01-01
Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these...
Revisitation of the dipole tracer test for heterogeneous porous formations
NASA Astrophysics Data System (ADS)
Zech, Alraune; D'Angelo, Claudia; Attinger, Sabine; Fiori, Aldo
2018-05-01
In this paper, a new analytical solution for interpreting dipole tests in heterogeneous media is derived by associating the shape of the tracer breakthrough curve with the log-conductivity variance. It is presented how the solution can be used for interpretation of dipole field test in view of geostatistical aquifer characterization on three illustrative examples. The analytical solution for the tracer breakthrough curve at the pumping well in a dipole tracer test is developed by considering a perfectly stratified formation. The analysis is carried out making use of the travel time of a generic solute particle, from the injection to the pumping well. Injection conditions are adapted to different possible field setting. Solutions are presented for resident and flux proportional injection mode as well as for an instantaneous pulse of solute and continuous solute injections. The analytical form of the solution allows a detailed investigation on the impact of heterogeneity, the tracer input conditions and ergodicity conditions at the well. The impact of heterogeneity manifests in a significant spreading of solute particles that increases the natural tendency to spreading induced by the dipole setup. Furthermore, with increasing heterogeneity the number of layers needed to reach ergodic conditions become larger. Thus, dipole test in highly heterogeneous aquifers might take place under non-ergodic conditions giving that the log-conductivity variance is underestimated. The method is a promising geostatistical analyzing tool being the first analytical solution for dipole tracer test analysis taking heterogeneity of hydraulic conductivity into account.
NASA Astrophysics Data System (ADS)
Salinas, P.; Pavlidis, D.; Xie, Z.; Osman, H.; Pain, C. C.; Jackson, M. D.
2018-01-01
We present a new, high-order, control-volume-finite-element (CVFE) method for multiphase porous media flow with discontinuous 1st-order representation for pressure and discontinuous 2nd-order representation for velocity. The method has been implemented using unstructured tetrahedral meshes to discretize space. The method locally and globally conserves mass. However, unlike conventional CVFE formulations, the method presented here does not require the use of control volumes (CVs) that span the boundaries between domains with differing material properties. We demonstrate that the approach accurately preserves discontinuous saturation changes caused by permeability variations across such boundaries, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than using conventional CVFE methods. We resolve a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media.
NASA Astrophysics Data System (ADS)
Lu, H.; Yi, D.
2010-12-01
The Deep Exploration is one of the important approaches to the Geoscience research. Since 1980s we had started it and achieved a lot of data. Researchers usually integrate both data of space exploration and deep exploration to study geological structures and represent the Earth’s subsurface, and analyze and explain on the base of integrated data. Due to the different exploration approach it results the heterogeneity of data, and therefore the data achievement is always of the import issue to make the researchers confused. The problem of data share and interaction has to be solved during the development of the SinoProbe research project. Through the research of domestic and overseas well-known exploration project and geosciences data platform, the subject explores the solution of data share and interaction. Based on SOA we present the deep exploration data share framework which comprises three level: data level is used for the solution of data store and the integration of the heterogeneous data; medial level provides the data service of geophysics, geochemistry, etc. by the means of Web service, and carry out kinds of application combination by the use of GIS middleware and Eclipse RCP; interaction level provides professional and non-professional customer the access to different accuracy data. The framework adopts GeoSciML data interaction approach. GeoSciML is a geosciences information markup language, as an application of the OpenGIS Consortium’s (OGC) Geography Markup Language (GML). It transfers heterogeneous data into one earth frame and implements inter-operation. We dissertate in this article the solution how to integrate the heterogeneous data and share the data in the project of SinoProbe.
Spatial distribution of solute leaching with snowmelt and irrigation: measurements and simulations
NASA Astrophysics Data System (ADS)
Schotanus, D.; van der Ploeg, M. J.; van der Zee, S. E. A. T. M.
2012-12-01
Transport of a tracer and a degradable solute in a heterogeneous soil was measured in the field, and simulated with several transient and steady state infiltration rates. Leaching surfaces were used to investigate the solute leaching in space and time simultaneously. In the simulations, a random field for the scaling factor in the retention curve was used for the heterogeneous soil, which was based on the spatial distribution of drainage in an experiment with a multi-compartment sampler. As a criterion to compare the results from simulations and observations, the sorted and cumulative total drainage in a cell was used. The effect of the ratio of the infiltration rate over the degradation rate on leaching of degradable solutes was investigated. Furthermore, the spatial distribution of the leaching of degradable and non-degradable solutes was compared. The infiltration rate determines the amount of leaching of the degradable solute. This can be partly explained by a decreasing travel time with an increasing infiltration rate. The spatial distribution of the leaching also depends on the infiltration rate. When the infiltration rate is high compared to the degradation rate, the leaching of the degradable solute is similar as for the tracer. The fraction of the soil that contributes to solute leaching increases with an increasing infiltration rate. This fraction is similar for a tracer and a degradable solute. With increasing depth, the leaching becomes more homogeneous, as a result of dispersion. The spatial distribution of the solute leaching is different under different transient infiltration rates, therefore also the amount of leaching is different. With independent stream tube approaches, this effect would be ignored.
Creating targeted initial populations for genetic product searches in heterogeneous markets
NASA Astrophysics Data System (ADS)
Foster, Garrett; Turner, Callaway; Ferguson, Scott; Donndelinger, Joseph
2014-12-01
Genetic searches often use randomly generated initial populations to maximize diversity and enable a thorough sampling of the design space. While many of these initial configurations perform poorly, the trade-off between population diversity and solution quality is typically acceptable for small-scale problems. Navigating complex design spaces, however, often requires computationally intelligent approaches that improve solution quality. This article draws on research advances in market-based product design and heuristic optimization to strategically construct 'targeted' initial populations. Targeted initial designs are created using respondent-level part-worths estimated from discrete choice models. These designs are then integrated into a traditional genetic search. Two case study problems of differing complexity are presented to illustrate the benefits of this approach. In both problems, targeted populations lead to computational savings and product configurations with improved market share of preferences. Future research efforts to tailor this approach and extend it towards multiple objectives are also discussed.
Chemical Continuous Time Random Walks
NASA Astrophysics Data System (ADS)
Aquino, T.; Dentz, M.
2017-12-01
Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissmann, Gary S
2013-12-06
The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether establishedmore » dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-11-01
This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivitymore » values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs.« less
Network Management and FDIR for SpaceWire Networks (N-MaSS)
NASA Astrophysics Data System (ADS)
Montano, Giuseppe; Jameux, David; Cook, Barry; Peel, Rodger; McCormick, Ecaterina; Walker, Paul; Kollias, Vangelis; Pogkas, Nikos
2014-08-01
The SpaceWire network management layer, which manages network topology and routing, is not yet standardised. This paper presents the European Space Agency (ESA) N-MaSS study, which focuses on implementation and standardisation of Fault Detection, Isolation and Recovery (FDIR) functions within the SpaceWire network management layer. N-MaSS provides an autonomous FDIR solution. It is defined at the SpaceWire network layer in order to achieve efficient re-use for heterogeneous missions, allowing for the incorporation of legacy equipment. The N-MaSS FDIR functions identify SpaceWire link and node failures and provide recovery using redundant nodes.This paper provides an overview of the overall N- MaSS study. In particular, the following topics are discussed: (a) how user requirements have been captured from the industry, SpaceWire Working Group and ESA; (b) how the N-MaSS architecture was organically shaped on the basis of the requirements captured; (c) how the N-MaSS concept is currently being implemented in a demonstrator and verified.
Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Krause, Andrew L.; Klika, Václav; Woolley, Thomas E.; Gaffney, Eamonn A.
2018-05-01
We report on an instability arising in activator-inhibitor reaction-diffusion (RD) systems with a simple spatial heterogeneity. This instability gives rise to periodic creation, translation, and destruction of spike solutions that are commonly formed due to Turing instabilities. While this behavior is oscillatory in nature, it occurs purely within the Turing space such that no region of the domain would give rise to a Hopf bifurcation for the homogeneous equilibrium. We use the shadow limit of the Gierer-Meinhardt system to show that the speed of spike movement can be predicted from well-known asymptotic theory, but that this theory is unable to explain the emergence of these spatiotemporal oscillations. Instead, we numerically explore this system and show that the oscillatory behavior is caused by the destabilization of a steady spike pattern due to the creation of a new spike arising from endogeneous activator production. We demonstrate that on the edge of this instability, the period of the oscillations goes to infinity, although it does not fit the profile of any well-known bifurcation of a limit cycle. We show that nearby stationary states are either Turing unstable or undergo saddle-node bifurcations near the onset of the oscillatory instability, suggesting that the periodic motion does not emerge from a local equilibrium. We demonstrate the robustness of this spatiotemporal oscillation by exploring small localized heterogeneity and showing that this behavior also occurs in the Schnakenberg RD model. Our results suggest that this phenomenon is ubiquitous in spatially heterogeneous RD systems, but that current tools, such as stability of spike solutions and shadow-limit asymptotics, do not elucidate understanding. This opens several avenues for further mathematical analysis and highlights difficulties in explaining how robust patterning emerges from Turing's mechanism in the presence of even small spatial heterogeneity.
Wang, Guanbo; de Jong, Rob N; van den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R
2017-05-02
The determination of molecular weights (MWs) of heavily glycosylated proteins is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation impacts protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and size-exclusion chromatography (SEC) analysis. Standard electrospray ionization (ESI)-mass spectrometry does not provide a direct solution as this approach is hindered by extensive interference of ion signals caused by closely spaced charge states of broadly distributed glycoforms. Here, we introduce a native tandem MS-based approach, enabling charge-state resolution and charge assignment of protein ions including those that escape mass analysis under standard MS conditions. Using this method, we determined the MW of two model glycoproteins, the extra-cellular domains of the highly and heterogeneously glycosylated proteins CD38 and epidermal growth factor receptor (EGFR), as well as the overall MW and binding stoichiometries of these proteins in complex with a specific antibody.
Numerical simulation of magmatic hydrothermal systems
Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.
2010-01-01
The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.
Parameter estimation uncertainty: Comparing apples and apples?
NASA Astrophysics Data System (ADS)
Hart, D.; Yoon, H.; McKenna, S. A.
2012-12-01
Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests that M-NSMC can provide a computationally efficient and practical solution for predictive uncertainty analysis in highly nonlinear and complex subsurface flow and transport models. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sege, J.; Li, Y.; Chang, C. F.; Chen, J.; Chen, Z.; Rubin, Y.; Li, X.; Hehua, Z.; Wang, C.; Osorio-Murillo, C. A.
2015-12-01
This study will develop a numerical model to characterize the perturbation of local groundwater systems by underground tunnel construction. Tunnels and other underground spaces act as conduits that remove water from the surrounding aquifer, and may lead to drawdown of the water table. Significant declines in water table elevation can cause environmental impacts by altering root zone soil moisture and changing inflows to surface waters. Currently, it is common to use analytical solutions to estimate groundwater fluxes through tunnel walls. However, these solutions often neglect spatial and temporal heterogeneity in aquifer parameters and system stresses. Some heterogeneous parameters, such as fracture densities, can significantly affect tunnel inflows. This study will focus on numerical approaches that incorporate heterogeneity across a range of scales. Time-dependent simulations will be undertaken to compute drawdown at various stages of excavation, and to model water table recovery after low-conductivity liners are applied to the tunnel walls. This approach will assist planners in anticipating environmental impacts to local surface waters and vegetation, and in computing the amount of tunnel inflow reduction required to meet environmental targets. The authors will also focus on managing uncertainty in model parameters. For greater planning applicability, extremes of a priori parameter ranges will be explored in order to anticipate best- and worst-case scenarios. For calibration and verification purposes, the model will be applied to a completed tunnel project in Mount Mingtang, China, where tunnel inflows were recorded throughout the construction process.
Compatible-strain mixed finite element methods for incompressible nonlinear elasticity
NASA Astrophysics Data System (ADS)
Faghih Shojaei, Mostafa; Yavari, Arash
2018-05-01
We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.
Shock and Rarefaction Waves in a Heterogeneous Mantle
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2012-12-01
We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave has a zero eigenvalue, corresponding to a wave speed of zero, which preserves a residual imprint of the initial condition. Freezing fronts textemdash those that result in a negative change in porositytextemdash feature fast path waves that travel as shocks, whereas the fast path waves of melting fronts travel as spreading, rarefaction waves.
Radial solute transport in highly heterogeneous aquifers: Modeling and experimental comparison
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; Fiori, Aldo; de Barros, Felipe P. J.; Bellin, Alberto
2017-07-01
We analyze solute transport in a radially converging 3-D flow field in a porous medium with spatially heterogeneous hydraulic conductivity (K). The aim of the paper is to analyze the impact of heterogeneity and the mode of injection on BreakThrough Curves (BTCs) detected at a well pumping a contaminated aquifer. The aquifer is conceptualized as an ensemble of blocks of uniform but contrasting K and the analysis makes use of the travel time approach. Despite the approximations introduced, the model reproduces a laboratory experiment without calibration of transport parameters. Our results also show excellent agreement with numerical simulations for different levels of heterogeneity. We focus on the impact on the BTC of both heterogeneity in K and solute release conditions. It is shown that the injection mode matters, and the differences in the BTCs between uniform and flux-proportional injection increase with the heterogeneity of the K-field. Furthermore, we study the effect of heterogeneity and mode of injection on early and late arrivals at the well.
Forward modeling of gravity data using geostatistically generated subsurface density variations
Phelps, Geoffrey
2016-01-01
Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.
NASA Astrophysics Data System (ADS)
Libera, A.; Henri, C.; de Barros, F.
2017-12-01
Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity (K) and, to a lesser degree, the porosity (Φ), largely control subsurface flow and solute transport. The influence of the heterogeneous structure of K on flow and solute transport processes has been widely studied, whereas less attention is dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs computational tools to investigate the joint effect of the spatial variabilities of K and Φ on the transport behavior of a solute plume. We explore multiple scenarios, characterized by different levels of heterogeneity of the geological system, and compare the computational results from the joint K and Φ heterogeneous system with the results originating from the generally adopted constant porosity case. In our work, we assume that the heterogeneous porosity is positively correlated to hydraulic conductivity. We perform numerical Monte Carlo simulations of conservative and reactive contaminant transport in a 3D aquifer. Contaminant mass and plume arrival times at multiple control planes and/or pumping wells operating under different extraction rates are analyzed. We employ different probabilistic metrics to quantify the risk at the monitoring locations, e.g., increased lifetime cancer risk and exceedance of Maximum Contaminant Levels (MCLs), under multiple transport scenarios (i.e., different levels of heterogeneity, conservative or reactive solutes and different contaminant species). Results show that early and late arrival times of the solute mass at the selected sensitive locations (i.e. control planes/pumping wells) as well as risk metrics are strongly influenced by the spatial variability of the Φ field.
Predictive uncertainty analysis of a saltwater intrusion model using null-space Monte Carlo
Herckenrath, Daan; Langevin, Christian D.; Doherty, John
2011-01-01
Because of the extensive computational burden and perhaps a lack of awareness of existing methods, rigorous uncertainty analyses are rarely conducted for variable-density flow and transport models. For this reason, a recently developed null-space Monte Carlo (NSMC) method for quantifying prediction uncertainty was tested for a synthetic saltwater intrusion model patterned after the Henry problem. Saltwater intrusion caused by a reduction in fresh groundwater discharge was simulated for 1000 randomly generated hydraulic conductivity distributions, representing a mildly heterogeneous aquifer. From these 1000 simulations, the hydraulic conductivity distribution giving rise to the most extreme case of saltwater intrusion was selected and was assumed to represent the "true" system. Head and salinity values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. The NSMC method was used to calculate 1000 calibration-constrained parameter fields. If the dimensionality of the solution space was set appropriately, the estimated uncertainty range from the NSMC analysis encompassed the truth. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. Reducing the dimensionality of the null-space for the processing of the random parameter sets did not result in any significant gains in efficiency and compromised the ability of the NSMC method to encompass the true prediction value. The addition of intrapilot point heterogeneity to the NSMC process was also tested. According to a variogram comparison, this provided the same scale of heterogeneity that was used to generate the truth. However, incorporation of intrapilot point variability did not make a noticeable difference to the uncertainty of the prediction. With this higher level of heterogeneity, however, the computational burden of generating calibration-constrained parameter fields approximately doubled. Predictive uncertainty variance computed through the NSMC method was compared with that computed through linear analysis. The results were in good agreement, with the NSMC method estimate showing a slightly smaller range of prediction uncertainty than was calculated by the linear method. Copyright 2011 by the American Geophysical Union.
On the Execution Control of HLA Federations using the SISO Space Reference FOM
NASA Technical Reports Server (NTRS)
Moller, Bjorn; Garro, Alfredo; Falcone, Alberto; Crues, Edwin Z.; Dexter, Daniel E.
2017-01-01
In the Space domain the High Level Architecture (HLA) is one of the reference standard for Distributed Simulation. However, for the different organizations involved in the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA) and their industrial partners, it is difficult to implement HLA simulators (called Federates) able to interact and interoperate in the context of a distributed HLA simulation (called Federation). The lack of a common FOM (Federation Object Model) for the Space domain is one of the main reasons that precludes a-priori interoperability between heterogeneous federates. To fill this lack a Product Development Group (PDG) has been recently activated in the Simulation Interoperability Standards Organization (SISO) with the aim to provide a Space Reference FOM (SRFOM) for international collaboration on Space systems simulations. Members of the PDG come from several countries and contribute experiences from projects within NASA, ESA and other organizations. Participants represent government, academia and industry. The paper presents an overview of the ongoing Space Reference FOM standardization initiative by focusing on the solution provided for managing the execution of an SRFOM-based Federation.
NASA Astrophysics Data System (ADS)
Zhou, Bing; Greenhalgh, S. A.
2011-01-01
We present an extension of the 3-D spectral element method (SEM), called the Gaussian quadrature grid (GQG) approach, to simulate in the frequency-domain seismic waves in 3-D heterogeneous anisotropic media involving a complex free-surface topography and/or sub-surface geometry. It differs from the conventional SEM in two ways. The first is the replacement of the hexahedral element mesh with 3-D Gaussian quadrature abscissae to directly sample the physical properties or model parameters. This gives a point-gridded model which more exactly and easily matches the free-surface topography and/or any sub-surface interfaces. It does not require that the topography be highly smooth, a condition required in the curved finite difference method and the spectral method. The second is the derivation of a complex-valued elastic tensor expression for the perfectly matched layer (PML) model parameters for a general anisotropic medium, whose imaginary parts are determined by the PML formulation rather than having to choose a specific class of viscoelastic material. Furthermore, the new formulation is much simpler than the time-domain-oriented PML implementation. The specified imaginary parts of the density and elastic moduli are valid for arbitrary anisotropic media. We give two numerical solutions in full-space homogeneous, isotropic and anisotropic media, respectively, and compare them with the analytical solutions, as well as show the excellent effectiveness of the PML model parameters. In addition, we perform numerical simulations for 3-D seismic waves in a heterogeneous, anisotropic model incorporating a free-surface ridge topography and validate the results against the 2.5-D modelling solution, and demonstrate the capability of the approach to handle realistic situations.
Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng
2015-03-01
Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Heterogeneous nanofluids: natural convection heat transfer enhancement
NASA Astrophysics Data System (ADS)
Oueslati, Fakhreddine Segni; Bennacer, Rachid
2011-12-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case.
Heterogeneous nanofluids: natural convection heat transfer enhancement
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)
NASA Astrophysics Data System (ADS)
Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.
2013-12-01
We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG-NMR experiments. We then use our preferred multi-phase model to directly calculate flow in pore space images of two different sandstones and observe excellent agreement with experimental relative permeabilities. Also we calculate cluster size distributions in good agreement with experimental studies. Our analysis shows that the simulations are able to predict both multi-phase flow and transport properties directly on large 3D pore space images of real rocks. Pore space images, left and velocity distributions, right (Yang and Boek, 2013)
Seismic waves in heterogeneous material: subcell resolution of the discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Castro, Cristóbal E.; Käser, Martin; Brietzke, Gilbert B.
2010-07-01
We present an important extension of the arbitrary high-order discontinuous Galerkin (DG) finite-element method to model 2-D elastic wave propagation in highly heterogeneous material. In this new approach we include space-variable coefficients to describe smooth or discontinuous material variations inside each element using the same numerical approximation strategy as for the velocity-stress variables in the formulation of the elastic wave equation. The combination of the DG method with a time integration scheme based on the solution of arbitrary accuracy derivatives Riemann problems still provides an explicit, one-step scheme which achieves arbitrary high-order accuracy in space and time. Compared to previous formulations the new scheme contains two additional terms in the form of volume integrals. We show that the increasing computational cost per element can be overcompensated due to the improved material representation inside each element as coarser meshes can be used which reduces the total number of elements and therefore computational time to reach a desired error level. We confirm the accuracy of the proposed scheme performing convergence tests and several numerical experiments considering smooth and highly heterogeneous material. As the approximation of the velocity and stress variables in the wave equation and of the material properties in the model can be chosen independently, we investigate the influence of the polynomial material representation on the accuracy of the synthetic seismograms with respect to computational cost. Moreover, we study the behaviour of the new method on strong material discontinuities, in the case where the mesh is not aligned with such a material interface. In this case second-order linear material approximation seems to be the best choice, with higher-order intra-cell approximation leading to potential instable behaviour. For all test cases we validate our solution against the well-established standard fourth-order finite difference and spectral element method.
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
Flow and Transport in Complex Microporous Carbonates as a Consequence of Separation of Scales
NASA Astrophysics Data System (ADS)
Bijeljic, B.; Raeini, A. Q.; Lin, Q.; Blunt, M. J.
2017-12-01
Some of the most important examples of flow and transport in complex pore structures are found in subsurface applications such as contaminant hydrology, carbon storage and enhanced oil recovery. Carbonate rock structures contain most of the world's oil reserves, considerable amount of water reserves, and potentially hold a storage capacity for carbon dioxide. However, this type of pore space is difficult to represent due to complexities associated with a wide range of pore sizes and variation in connectivity which poses a considerable challenge for quantitative predictions of transport across multiple scales.A new concept unifying X-ray tomography experiment and direct numerical simulation has been developed that relies on full description flow and solute transport at the pore scale. Differential imaging method (Lin et al. 2016) provides rich information in microporous space, while advective and diffusive mass transport are simulated on micro-CT images of pore-space: Navier-Stokes equations are solved for flow in the image voxels comprising the pore space, streamline-based simulation is used to account for advection, and diffusion is superimposed by random walk.Quantitative validation has been done on analytical solutions for diffusion and by comparing the model predictions versus the experimental NMR measurements in the dual porosity beadpack. Furthermore, we discriminate signatures of multi-scale transport behaviour for a range of carbonate rock (Figure 1), dependent on the heterogeneity of the inter- and intra-grain pore space, heterogeneity in the flow field, and the mass transfer characteristics of the porous media. Finally, we demonstrate the predictive capabilities of the model through an analysis that includes a number of probability density functions flow and transport (PDFs) measures of non-Fickian transport on the micro-CT i935mages. In complex porous media separation of scales exists, leading to flow and transport signatures that need to be described by multiple functions with distinct flow field and transport characteristics. Reference: Lin, Q., Al-Khulaifi Y., Blunt, M.J. and Bijeljic B. (2016). Advances in Water Resources, 96, 306-322, doi:10.1016/j.advwatres.2016.08.002.
Upscaling heterogeneity in aquifer reactivity via exposure-time concept: forward model.
Seeboonruang, Uma; Ginn, Timothy R
2006-03-20
Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and transport are limited. Here we describe the use of a structural variable to keep track of solute flux exposure to reactive surfaces. With this approach, we develop a non-reactive tracer model that is useful for determining the signature of multi-scale reactive solid heterogeneity in terms of solute flux distributions at the field scale, given realizations of three-dimensional reactive site density fields. First, a governing Eulerian equation for the non-reactive tracer model is determined by an upscaling technique in which it is found that the exposure time of solution to reactive surface areas evolves via both a macroscopic velocity and a macroscopic dispersion in the artificial dimension of exposure time. Second, we focus on the Lagrangian approach in the context of a streamtube ensemble and demonstrate the use of the distribution of solute flux over the exposure time dimension in modeling two-dimensional transport of a solute undergoing simplified linear reversible reactions, in hypothetical conditions following prior laboratory experiments. The distribution of solute flux over exposure time in a given case is a signature of the impact of heterogeneous aquifer reactivity coupled with a particular physical heterogeneity, boundary conditions, and hydraulic gradient. Rigorous application of this approach in a simulation sense is limited here to linear kinetically controlled reactions.
The role of local heterogeneity in transport through steep hillslopes.
NASA Astrophysics Data System (ADS)
Fiori, A.; Russo, D.
2009-04-01
A stochastic model is developed for the analysis of the travel time distribution in a hillslope. The latter is represented as a system made up from a highly permeable soil underlain by a less permeable subsoil or bedrock. The heterogeneous hydraulic conductivity K is described as a stationary random space function. The travel time distribution is obtained through a stochastic Lagrangian model of transport, after adopting a first order approximation in the logconductivity variance. The results show that the travel time pdf pertaining to the soil is power-law, with exponent variable between -1 and -0.5; the behavior is mainly determined by unsaturated transport. The subsoil is mainly responsible for the tail of the travel time distribution. Analysis of the first and second moments of travel time show that the spreading of solute is controlled by the variations in the flow-paths (geomorphological dispersion), which depend on the hillslope geometry. Conversely, the contribution of the K heterogeneity to spreading appears as less relevant. The model is tested against a detailed three-dimensional numerical simulation with reasonably good agreement.
Modeling individual effects in the Cormack-Jolly-Seber Model: A state-space formulation
Royle, J. Andrew
2008-01-01
In population and evolutionary biology, there exists considerable interest in individual heterogeneity in parameters of demographic models for open populations. However, flexible and practical solutions to the development of such models have proven to be elusive. In this article, I provide a state-space formulation of open population capture-recapture models with individual effects. The state-space formulation provides a generic and flexible framework for modeling and inference in models with individual effects, and it yields a practical means of estimation in these complex problems via contemporary methods of Markov chain Monte Carlo. A straightforward implementation can be achieved in the software package WinBUGS. I provide an analysis of a simple model with constant parameter detection and survival probability parameters. A second example is based on data from a 7-year study of European dippers, in which a model with year and individual effects is fitted.
Non-Invasive Methods to Characterize Soil-Plant Interactions at Different Scales
NASA Astrophysics Data System (ADS)
Javaux, M.; Kemna, A.; Muench, M.; Oberdoerster, C.; Pohlmeier, A.; Vanderborght, J.; Vereecken, H.
2006-05-01
Root water uptake is a dynamic and non-linear process, which interacts with the soil natural variability and boundary conditions to generate heterogeneous spatial distributions of soil water. Soil-root fluxes are spatially variable due to heterogeneous gradients and hydraulic connections between soil and roots. While 1-D effective representation of the root water uptake has been successfully applied to predict transpiration and average water content profiles, finer spatial characterization of the water distribution may be needed when dealing with solute transport. Indeed, root water uptake affects the water velocity field, which has an effect on solute velocity and dispersion. Although this variability originates from small-scale processes, these may still play an important role at larger scales. Therefore, in addition to investigate the variability of the soil hydraulic properties, experimental and numerical tools for characterizing root water uptake (and its effects on soil water distribution) from the pore to the field scales are needed to predict in a proper way the solute transport. Obviously, non-invasive and modeling techniques which are helpful to achieve this objective will evolve with the scale of interest. At the pore scale, soil structure and root-soil interface phenomena have to be investigated to understand the interactions between soil and roots. Magnetic resonance imaging may help to monitor water gradients and water content changes around roots while spectral induced polarization techniques may be used to characterize the structure of the pore space. At the column scale, complete root architecture of small plants and water content depletion around roots can be imaged by magnetic resonance. At that scale, models should explicitly take into account the three-dimensional gradient dependency of the root water uptake, to be able to predict solute transport. At larger scales however, simplified models, which implicitly take into account the heterogeneous root water uptake along roots, should be preferred given the complexity of the system. At such scales, electrical resistance tomography or ground-penetrating radar can be used to map the water content changes and derive effective parameters for predicting solute transport.
Stochastic modeling of macrodispersion in unsaturated heterogeneous porous media. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, T.C.J.
1995-02-01
Spatial heterogeneity of geologic media leads to uncertainty in predicting both flow and transport in the vadose zone. In this work an efficient and flexible, combined analytical-numerical Monte Carlo approach is developed for the analysis of steady-state flow and transient transport processes in highly heterogeneous, variably saturated porous media. The approach is also used for the investigation of the validity of linear, first order analytical stochastic models. With the Monte Carlo analysis accurate estimates of the ensemble conductivity, head, velocity, and concentration mean and covariance are obtained; the statistical moments describing displacement of solute plumes, solute breakthrough at a compliancemore » surface, and time of first exceedance of a given solute flux level are analyzed; and the cumulative probability density functions for solute flux across a compliance surface are investigated. The results of the Monte Carlo analysis show that for very heterogeneous flow fields, and particularly in anisotropic soils, the linearized, analytical predictions of soil water tension and soil moisture flux become erroneous. Analytical, linearized Lagrangian transport models also overestimate both the longitudinal and the transverse spreading of the mean solute plume in very heterogeneous soils and in dry soils. A combined analytical-numerical conditional simulation algorithm is also developed to estimate the impact of in-situ soil hydraulic measurements on reducing the uncertainty of concentration and solute flux predictions.« less
Management of malignant pleural effusion: challenges and solutions
Penz, Erika; Watt, Kristina N; Hergott, Christopher A; Rahman, Najib M; Psallidas, Ioannis
2017-01-01
Malignant pleural effusion (MPE) is a sign of advanced cancer and is associated with significant symptom burden and mortality. To date, management has been palliative in nature with a focus on draining the pleural space, with therapies aimed at preventing recurrence or providing intermittent drainage through indwelling catheters. Given that patients with MPEs are heterogeneous with respect to their cancer type and response to systemic therapy, functional status, and pleural milieu, response to MPE therapy is also heterogeneous and difficult to predict. Furthermore, the impact of therapies on important patient outcomes has only recently been evaluated consistently in clinical trials and cohort studies. In this review, we examine patient outcomes that have been studied to date, address the question of which are most important for managing patients, and review the literature related to the expected value for money (cost-effectiveness) of indwelling pleural catheters relative to traditionally recommended approaches. PMID:28694705
The Necessity of Functional Analysis for Space Exploration Programs
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Breidenthal, Julian C.
2011-01-01
As NASA moves toward expanded commercial spaceflight within its human exploration capability, there is increased emphasis on how to allocate responsibilities between government and commercial organizations to achieve coordinated program objectives. The practice of program-level functional analysis offers an opportunity for improved understanding of collaborative functions among heterogeneous partners. Functional analysis is contrasted with the physical analysis more commonly done at the program level, and is shown to provide theoretical performance, risk, and safety advantages beneficial to a government-commercial partnership. Performance advantages include faster convergence to acceptable system solutions; discovery of superior solutions with higher commonality, greater simplicity and greater parallelism by substituting functional for physical redundancy to achieve robustness and safety goals; and greater organizational cohesion around program objectives. Risk advantages include avoidance of rework by revelation of some kinds of architectural and contractual mismatches before systems are specified, designed, constructed, or integrated; avoidance of cost and schedule growth by more complete and precise specifications of cost and schedule estimates; and higher likelihood of successful integration on the first try. Safety advantages include effective delineation of must-work and must-not-work functions for integrated hazard analysis, the ability to formally demonstrate completeness of safety analyses, and provably correct logic for certification of flight readiness. The key mechanism for realizing these benefits is the development of an inter-functional architecture at the program level, which reveals relationships between top-level system requirements that would otherwise be invisible using only a physical architecture. This paper describes the advantages and pitfalls of functional analysis as a means of coordinating the actions of large heterogeneous organizations for space exploration programs.
Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Meakin, Paul
2013-10-01
An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less
de Barros, F P J; Fiori, A; Boso, F; Bellin, A
2015-01-01
Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. Copyright © 2015 Elsevier B.V. All rights reserved.
Kyriazi, Zacharoula; Lejano, Raul; Maes, Frank; Degraer, Steven
2017-02-01
Marine spatial allocation has become, in recent decades, a political flashpoint, fuelled by political power struggles, as well as the continuously increasing demand for marine space by both traditional and emerging marine uses. To effectively address this issue, we develop a decision-making procedure, that facilitates the distribution of disputed areas of specific size among heterogeneous players in a transparent and ethical way, while considering coalitional formations through coexistence. To do this, we model players' alternative strategies and payoffs within a cooperative game-theoretic framework. Depending on whether transferable utility (TU) or non-transferable utility (NTU) is the more appropriate assumption, we illustrate the use of the TU Shapley value and the Lejano's fixed point NTU Shapley value to solve for the ideal allocations. The applicability and effectiveness of the process has been tested in a case study area, the Dogger Bank Special Area of Conservation in the North Sea, which involves three totally or partially conflicting activities, i.e. fishing, nature conservation and wind farm development. The findings demonstrate that the process is capable of providing a unique, fair and equitable division of space Finally, among the two solution concepts proposed the fixed point NTU Shapley value manages to better address the heterogeneity of the players and thus to provide a more socially acceptable allocation that favours the weaker player, while demonstrating the importance of the monetary valuation attributed by each use to the area. Copyright © 2016 Elsevier Ltd. All rights reserved.
Temporal behavior of a solute cloud in a fractal heterogeneous porous medium at different scales
NASA Astrophysics Data System (ADS)
Ross, Katharina; Attinger, Sabine
2010-05-01
Water pollution is still a very real problem and the need for efficient models for flow and solute transport in heterogeneous porous or fractured media is evident. In our study we focus on solute transport in heterogeneous fractured media. In heterogeneous fractured media the shape of the pores and fractures in the subsurface might be modeled as a fractal network or a heterogeneous structure with infinite correlation length. To derive explicit results for larger scale or effective transport parameters in such structures is the aim of this work. To describe flow and transport we investigate the temporal behavior of transport coefficients of solute movement through a spatially heterogeneous medium. It is necessary to distinguish between two fundamentally different quantities characterizing the solute dispersion: The effective dispersion coefficient Deff(t) represents the physical (observable) dispersion in one given realization of the medium. It is conceptually different from the mathematically simpler ensemble dispersion coefficient Dens(t) which characterizes the (abstract) dispersion with respect to the set of all possible realizations of the medium. In the framework of a stochastic approach DENTZ ET AL. (2000 I[2] & II[3]) derive explicit expressions for the temporal behavior of the center-of-mass velocity and the dispersion of the concentration distribution, using a second order perturbation expansion. In their model the authors assume a finite correlation length of the heterogeneities and use a GAUSSIAN correlation function. In a first step, we model the fractured medium as a heterogeneous porous medium with infinite correlation length and neglect single fractures. ZHAN & WHEATCRAFT (1996[4]) analyze the macrodispersivity tensor in fractal porous media using a non-integer exponent which consists of the HURST coefficient and the fractal dimension D. To avoid this non-integer exponent for numerical reasons we extend the study of DENTZ ET AL. (2000 I[2] & II[3]) and derive explicit expressions for the center-of-mass velocity and the longitudinal dispersion coefficient for isotropic and anisotropic media as well as for point-like (where the extent of the source distribution is small compared to the correlation lengths of the heterogeneities) and spatially extended injections. Our results clearly show that the difference between Deff and Dens persists for all times. In other words, ensemble mixing and effective mixing coefficients do not approach the same asymptotic limit. The center-of-mass fluctuations between different flow paths for a plume traveling through the medium never become irrelevant and ergodicity breaks down in such media. Our ongoing work concerns the investigation of the transversal dispersion coefficient and the extension of the upscaling method coarse graining[1] to heterogeneous fractal porous media with embedded single fractures. References [1]ATTINGER, S. (2003): Generalized coarse graining procedures for flow in porous media, Computational Geosciences, 7 (4), pp. 253-273. [2]DENTZ, M. / KINZELBACH, H. / ATTINGER, S. and W. KINZELBACH (2000): Temporal behavior of a solute cloud in a heterogeneous porous medium: 1. Point-like injection, Water Resources Research, 36 (12), pp. 3591-3604. [3]DENTZ, M. / KINZELBACH, H. / ATTINGER, S. and W. KINZELBACH (2000): Temporal behavior of a solute cloud in a heterogeneous porous medium: 2. Spatially extended injection, Water Resources Research, 36 (12), pp. 3605-3614. [4]ZHAN, H. and S. W. WHEATCRAFT (1996): Macrodispersivity tensor for nonreactive solute transport in isotropic and anisotropic fractal porous media: Analytical solutions, Water Resources Research, 32 (12), pp. 3461-3474.
Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo
2016-04-01
Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.
VIRUS TRANSPORT IN PHYSICALLY AND GEOCHEMICALLY HETEROGENEOUS SUBSURFACE POROUS MEDIA. (R826179)
A two-dimensional model for virus transport in physically and geochemically heterogeneous subsurface porous media is presented. The model involves solution of the advection–dispersion equation, which additionally considers virus inactivation in the solution, as well as ...
Direct Breakthrough Curve Prediction From Statistics of Heterogeneous Conductivity Fields
NASA Astrophysics Data System (ADS)
Hansen, Scott K.; Haslauer, Claus P.; Cirpka, Olaf A.; Vesselinov, Velimir V.
2018-01-01
This paper presents a methodology to predict the shape of solute breakthrough curves in heterogeneous aquifers at early times and/or under high degrees of heterogeneity, both cases in which the classical macrodispersion theory may not be applicable. The methodology relies on the observation that breakthrough curves in heterogeneous media are generally well described by lognormal distributions, and mean breakthrough times can be predicted analytically. The log-variance of solute arrival is thus sufficient to completely specify the breakthrough curves, and this is calibrated as a function of aquifer heterogeneity and dimensionless distance from a source plane by means of Monte Carlo analysis and statistical regression. Using the ensemble of simulated groundwater flow and solute transport realizations employed to calibrate the predictive regression, reliability estimates for the prediction are also developed. Additional theoretical contributions include heuristics for the time until an effective macrodispersion coefficient becomes applicable, and also an expression for its magnitude that applies in highly heterogeneous systems. It is seen that the results here represent a way to derive continuous time random walk transition distributions from physical considerations rather than from empirical field calibration.
The Effect of Silver Chloride Formation on the Kinetics of Silver Dissolution in Chloride Solution
Ha, Hung; Payer, Joe
2011-01-01
The precipitation and growth of AgCl on silver in physiological NaCl solution were investigated. AgCl was found to form at bottom of scratches on the surface which may be the less effective sites for diffusion or the favorable sites for heterogeneous nucleation. Patches of silver chloride expanded laterally on the substrate until a continuous film formed. The ionic transport path through this newly formed continuous film was via spaces between AgCl patches. As the film grew, the spaces between AgCl patches closed and ion transport was primarily via micro-channels running through AgCl patches. The decrease of AgCl layer conductivity during film growth were attributed to the clogging of micro-channels or decrease in charge carrier concentration inside the micro-channels. Under thin AgCl layer, i.e. on the order of a micrometer, the dissolution of silver substrate was under mixed activation-Ohmic control. Under thick AgCl layer, i.e. on the order of tens of micrometers, the dissolution of silver substrate was mediated by the Ohmic resistance of AgCl layer. PMID:21516171
Can we model solute transfer in heterogeneous soils with MIM model?
NASA Astrophysics Data System (ADS)
Ben Slimene, Erij; Lassabatere, Laurent; Winiarski, Thierry; Gourdon, Remy
2017-04-01
The fate of pollutants in the vadose zone must be understood, in particular, underneath infiltration basins for an optimum management of these plants. Stormwaters carry pollutants (heavy metals, organics, emerging pollutant like nanoparticles, etc.) and thus constitute a risk for groundwater and soil quality. Most infiltration basins are settled over highly permeable soils that exhibit a strong lithological heterogeneity. The impact of such lithological heterogeneity on flow and solute transfer has already been questioned. Previous studies have already proved that lithological heterogeneity was prone to the establishment of preferential flows. In more details, the concomitance of several materials with contrasting hydraulic properties induces funneled flow at the interfaces between less permeable and more permeable lithofacies. Solutes are then carried by water fluxes quickly along preferential flow pathways and have restricted access to zones far from these pathways. It can clearly be imagined that such pattern could be modeled by a MIM model postulating water fraction into two fractions, one mobile and the other immobile, with solute transport by convection and dispersion in mobile water fraction and solute diffusion at the interface between mobile and immobile water fractions. The application of MIM approach to the case of solute transport in strongly heterogeneous soils may be quite advantageous: simplification of the problem, fewer parameters, ease of modeling, numerical computation, gain in computation time, etc. However, such consistency has never been investigated in details. In this paper, we focus on the possibility to model solute transport in a strongly heterogeneous deposit using MIM model. The deposit has been the subject of intensive campaigns of characterization of its lithology and the hydraulic and hydrodispersive properties of its lithofacies. Numerical computations were performed for a section of deposit 13.5 m wide and 2.5 m deep. Numerical results clearly showed the establishment of preferential flows with funneling mostly under unsaturated conditions. Solute elution at 2.5 m depth was characterized and discussed as a function of solute reactivity. Solutes breakthrough curves show clear evidence of MIM like pattern. In this paper, we clearly demonstrate that MIM model accurately reproduces solute elution at 2.5m depths but also at different depths. MIM approach accuracy is ensured provided that related parameters are optimized as a function of depth, hydric and hydraulic conditions and the contrast in hydraulic parameters of the lithofacies that constitute the deposit.
Oliveira, Lilian Vieira; Maia, Thais Souza; Zancopé, Karla; Menezes, Murilo de Souza; Soares, Carlos José; Moura, Camilla Christian Gomes
2018-03-15
The presence of residues within the root canal after post-space preparation can influence the bond strength between resin cement and root dentin when using fiberglass posts (FGPs). Currently, there is no consensus in the literature regarding what is the best solution for the removal of debris after post-space preparation. This systematic review involved "in vitro" studies to investigate if cleaning methods of the root canal after post-space preparation can increase the retention of FGPs evaluated by the push-out test. Searches were carried out in PubMed (MEDLINE) and Scopus databases up to July2017. English language studies published from 2007 to July 2017 were selected. 475 studies were found, and 9 were included in this review. Information from the 9 studies were collected regarding the number of samples, storage method after extraction, root canal preparation, method of post-space preparation, endodontic sealer, resin cement, cleaning methods after post-space and presence of irrigant activation. Five studies presented the best results for the association of sodium hypochlorite (NaOCl) and ethylenediamine tetra-acetic acid (EDTA), while in the other 4 studies, the solutions that showed improved retention of FGPs were photon-induced photoacoustic streaming (PIPS), Qmix, Sikko and EDTA. The results showed heterogeneity in all comparisons due to a high variety of information about cleaning methods, different concentrations, application time, type of adhesive system and resin cements used. In conclusion, this review suggests that the use of NaOCl/EDTA results in the retention of FGPs and may thus be recommended as a post-space cleaning method influencing the luting procedure.
Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko
2011-01-01
A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube.
Examining the influence of heterogeneous porosity fields on conservative solute transport
Hu, B.X.; Meerschaert, M.M.; Barrash, W.; Hyndman, D.W.; He, C.; Li, X.; Guo, Laodong
2009-01-01
It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.
Space-time interpolation of satellite winds in the tropics
NASA Astrophysics Data System (ADS)
Patoux, Jérôme; Levy, Gad
2013-09-01
A space-time interpolator for creating average geophysical fields from satellite measurements is presented and tested. It is designed for optimal spatiotemporal averaging of heterogeneous data. While it is illustrated with satellite surface wind measurements in the tropics, the methodology can be useful for interpolating, analyzing, and merging a wide variety of heterogeneous and satellite data in the atmosphere and ocean over the entire globe. The spatial and temporal ranges of the interpolator are determined by averaging satellite and in situ measurements over increasingly larger space and time windows and matching the corresponding variability at each scale. This matching provides a relationship between temporal and spatial ranges, but does not provide a unique pair of ranges as a solution to all averaging problems. The pair of ranges most appropriate for a given application can be determined by performing a spectral analysis of the interpolated fields and choosing the smallest values that remove any or most of the aliasing due to the uneven sampling by the satellite. The methodology is illustrated with the computation of average divergence fields over the equatorial Pacific Ocean from SeaWinds-on-QuikSCAT surface wind measurements, for which 72 h and 510 km are suggested as optimal interpolation windows. It is found that the wind variability is reduced over the cold tongue and enhanced over the Pacific warm pool, consistent with the notion that the unstably stratified boundary layer has generally more variable winds and more gustiness than the stably stratified boundary layer. It is suggested that the spectral analysis optimization can be used for any process where time-space correspondence can be assumed.
NASA Astrophysics Data System (ADS)
Wang, Xingwei; Chen, Jiajun
2017-06-01
With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium.
Multi-analyte validation in heterogeneous solution by ELISA.
Lakshmipriya, Thangavel; Gopinath, Subash C B; Hashim, Uda; Murugaiyah, Vikneswaran
2017-12-01
Enzyme Linked Immunosorbent Assay (ELISA) is a standard assay that has been used widely to validate the presence of analyte in the solution. With the advancement of ELISA, different strategies have shown and became a suitable immunoassay for a wide range of analytes. Herein, we attempted to provide additional evidence with ELISA, to show its suitability for multi-analyte detection. To demonstrate, three clinically relevant targets have been chosen, which include 16kDa protein from Mycobacterium tuberculosis, human blood clotting Factor IXa and a tumour marker Squamous Cell Carcinoma antigen. Indeed, we adapted the routine steps from the conventional ELISA to validate the occurrence of analytes both in homogeneous and heterogeneous solutions. With the homogeneous and heterogeneous solutions, we could attain the sensitivity of 2, 8 and 1nM for the targets 16kDa protein, FIXa and SSC antigen, respectively. Further, the specific multi-analyte validations were evidenced with the similar sensitivities in the presence of human serum. ELISA assay in this study has proven its applicability for the genuine multiple target validation in the heterogeneous solution, can be followed for other target validations. Copyright © 2017 Elsevier B.V. All rights reserved.
Rodrigues, Miguel A; Balzan, Gustavo; Rosa, Mónica; Gomes, Diana; de Azevedo, Edmundo G; Singh, Satish K; Matos, Henrique A; Geraldes, Vítor
2013-01-01
Freezing is an important operation in biotherapeutics industry. However, water crystallization in solution, containing electrolytes, sugars and proteins, is difficult to control and usually leads to substantial spatial solute heterogeneity. Herein, we address the influence of the geometry of freezing direction (axial or radial) on the heterogeneity of the frozen matrix, in terms of local concentration of solutes and thermal history. Solutions of hemoglobin were frozen radially and axially using small-scale and pilot-scale freezing systems. Concentration of hemoglobin, sucrose and pH values were measured by ice-core sampling and temperature profiles were measured at several locations. The results showed that natural convection is the major source for the cryoconcentration heterogeneity of solutes over the geometry of the container. A significant improvement in this spatial heterogeneity was observed when the freezing geometry was nonconvective, i.e., the freezing front progression was unidirectional from bottom to top. Using this geometry, less than 10% variation in solutes concentration was obtained throughout the frozen solutions. This result was reproducible, even when the volume was increased by two orders of magnitude (from 30 mL to 3 L). The temperature profiles obtained for the nonconvective freezing geometry were predicted using a relatively simple computational fluid dynamics model. The reproducible solutes distribution, predictable temperature profiles, and scalability demonstrate that the bottom to top freezing geometry enables an extended control over the freezing process. This geometry has therefore shown the potential to contribute to a better understanding and control of the risks inherent to frozen storage. © 2013 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Ray, Nadja; Rupp, Andreas; Knabner, Peter
2016-04-01
Soil is arguably the most prominent example of a natural porous medium that is composed of a porous matrix and a pore space. Within this framework and in terms of soil's heterogeneity, we first consider transport and fluid flow at the pore scale. From there, we develop a mechanistic model and upscale it mathematically to transfer our model from the small scale to that of the mesoscale (laboratory scale). The mathematical framework of (periodic) homogenization (in principal) rigorously facilitates such processes by exactly computing the effective coefficients/parameters by means of the pore geometry and processes. In our model, various small-scale soil processes may be taken into account: molecular diffusion, convection, drift emerging from electric forces, and homogeneous reactions of chemical species in a solvent. Additionally, our model may consider heterogeneous reactions at the porous matrix, thus altering both the porosity and the matrix. Moreover, our model may additionally address biophysical processes, such as the growth of biofilms and how this affects the shape of the pore space. Both of the latter processes result in an intrinsically variable soil structure in space and time. Upscaling such models under the assumption of a locally periodic setting must be performed meticulously to preserve information regarding the complex coupling of processes in the evolving heterogeneous medium. Generally, a micro-macro model emerges that is then comprised of several levels of couplings: Macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) include averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time- and space dependent and its geometry inherits information from the transport equation's solutions. Numerical computations using mixed finite elements and potentially random initial data, e.g. that of porosity, complement our theoretical results. Our investigations contribute to the theoretical understanding of the link between soil formation and soil functions. This general framework may be applied to various problems in soil science for a range of scales, such as the formation and turnover of microaggregates or soil remediation.
Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions
NASA Astrophysics Data System (ADS)
Podkościelny, P.; László, K.
2007-08-01
The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tingkun; Gao, Yanfei; Bei, Hongbin
Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.
Liu, Tingkun; Gao, Yanfei; Bei, Hongbin
2017-07-21
Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.
Probability density function of non-reactive solute concentration in heterogeneous porous formations
Alberto Bellin; Daniele Tonina
2007-01-01
Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for...
Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents
Zheng, Zhong; Christov, Ivan C.; Stone, Howard A.
2014-05-01
We report experimental, theoretical and numerical results on the effects of horizontal heterogeneities on the propagation of viscous gravity currents. We use two geometries to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness varies as a power-law function of the streamwise coordinate; (b) a heterogeneous porous medium whose permeability and porosity have power-law variations. We demonstrate that two types of self-similar behaviours emerge as a result of horizontal heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis (scaling) for viscous gravity currents that propagate away from the origin (a point of zero permeability); (b)more » a second-kind self-similar solution is found using a phase-plane analysis for viscous gravity currents that propagate toward the origin. These theoretical predictions, obtained using the ideas of self-similar intermediate asymptotics, are compared with experimental results and numerical solutions of the governing partial differential equation developed under the lubrication approximation. All three results are found to be in good agreement.« less
Post-seismic relaxation theory on laterally heterogeneous viscoelastic model
Pollitz, F.F.
2003-01-01
Investigation was carried out into the problem of relaxation of a laterally heterogeneous viscoelastic Earth following an impulsive moment release event. The formal solution utilizes a semi-analytic solution for post-seismic deformation on a laterally homogeneous Earth constructed from viscoelastic normal modes, followed by application of mode coupling theory to derive the response on the aspherical Earth. The solution is constructed in the Laplace transform domain using the correspondence principle and is valid for any linear constitutive relationship between stress and strain. The specific implementation described in this paper is a semi-analytic discretization method which assumes isotropic elastic structure and a Maxwell constitutive relation. It accounts for viscoelastic-gravitational coupling under lateral variations in elastic parameters and viscosity. For a given viscoelastic structure and minimum wavelength scale, the computational effort involved with the numerical algorithm is proportional to the volume of the laterally heterogeneous region. Examples are presented of the calculation of post-seismic relaxation with a shallow, laterally heterogeneous volume following synthetic impulsive seismic events, and they illustrate the potentially large effect of regional 3-D heterogeneities on regional deformation patterns.
An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-02-13
The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less
An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Chung, Eric T.
The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less
Solving the Puzzle of Metastasis: The Evolution of Cell Migration in Neoplasms
Chen, Jun; Sprouffske, Kathleen; Huang, Qihong; Maley, Carlo C.
2011-01-01
Background Metastasis represents one of the most clinically important transitions in neoplastic progression. The evolution of metastasis is a puzzle because a metastatic clone is at a disadvantage in competition for space and resources with non-metastatic clones in the primary tumor. Metastatic clones waste some of their reproductive potential on emigrating cells with little chance of establishing metastases. We suggest that resource heterogeneity within primary tumors selects for cell migration, and that cell emigration is a by-product of that selection. Methods and Findings We developed an agent-based model to simulate the evolution of neoplastic cell migration. We simulated the essential dynamics of neoangiogenesis and blood vessel occlusion that lead to resource heterogeneity in neoplasms. We observed the probability and speed of cell migration that evolves with changes in parameters that control the degree of spatial and temporal resource heterogeneity. Across a broad range of realistic parameter values, increasing degrees of spatial and temporal heterogeneity select for the evolution of increased cell migration and emigration. Conclusions We showed that variability in resources within a neoplasm (e.g. oxygen and nutrients provided by angiogenesis) is sufficient to select for cells with high motility. These cells are also more likely to emigrate from the tumor, which is the first step in metastasis and the key to the puzzle of metastasis. Thus, we have identified a novel potential solution to the puzzle of metastasis. PMID:21556134
Wang, Xingwei; Chen, Jiajun
2017-06-01
With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium. Copyright © 2017 Elsevier B.V. All rights reserved.
Grid data access on widely distributed worker nodes using scalla and SRM
NASA Astrophysics Data System (ADS)
Jakl, P.; Lauret, J.; Hanushevsky, A.; Shoshani, A.; Sim, A.; Gu, J.
2008-07-01
Facing the reality of storage economics, NP experiments such as RHIC/STAR have been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage. Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task. The Xrootd/Scalla system allows for storage aggregation. We will present an overview of the largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the RHIC/STAR standard analysis framework. We will explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large deployment context. Furthermore, we will give an overview of a fully 'gridified' solution using the plug-and-play features of Scalla architecture, replacing standard storage access with grid middleware SRM (Storage Resource Manager) components designed for space management and will compare the solution with the standard Scalla approach in use in STAR for the past 2 years. Integration details, future plans and status of development will be explained in the area of best transfer strategy between multiple-choice data pools and best placement with respect of load balancing and interoperability with other SRM aware tools or implementations.
USDA-ARS?s Scientific Manuscript database
Soluble fiber ß-glucan is one of the key dietary materials in healthy food products known for reducing serum cholesterol levels. The micro-structural heterogeneity and micro-rheology of high-viscosity barley ß-glucan solutions were investigated by the diffusing wave spectroscopy (DWS) technology. By...
NASA Technical Reports Server (NTRS)
Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.
1988-01-01
The heterogeneous interactions of ClONO2, HCl, and HNO3 with sulfuric acid surfaces were studied using a Knudsen cell flow reactor. The surfaces studied, chosen to simulate global stratospheric particulate, were composed of 65-75 percent H2SO4 solutions at temperatures in the range -63 to -43 C. Heterogeneous loss, but not reaction, of HNO3 and HCl occurred on these surfaces; the measured sticking coefficients are reported. Chlorine nitrate reacted on the cold sulfuric acid surfaces, producing gas-phase HOCl and condensed HNO3. CLONO2 also reacted with HCl dissolved in the 65-percent H2SO4 solution at -63 C, forming gaseous Cl2. In all cases studied, the sticking and/or reaction coefficients were much larger for the 65-percent H2SO4 solution at -63 C than for the 75-percent solution at -43 C.
High fidelity wireless network evaluation for heterogeneous cognitive radio networks
NASA Astrophysics Data System (ADS)
Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso
2012-06-01
We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.
Heterogeneity-induced large deviations in activity and (in some cases) entropy production
NASA Astrophysics Data System (ADS)
Gingrich, Todd R.; Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.
2014-10-01
We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases—one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.
Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps
NASA Astrophysics Data System (ADS)
Yi, Taishan; Chen, Yuming
2017-12-01
In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ke; De Andrade, Vincent; Feng, Zhange
The presence of impurity ions is known to significantly influence mineral surface morphology during crystal growth from aqueous solution, but knowledge on impurity ion-mineral interactions during dissolution under far-from equilibrium conditions remains limited. Here we show that calcite (CaCO 3) exhibits a rich array of dissolution features in the presence of Pb. During the initial stage, calcite exhibits non-classical surface features characterized as micro pyramids developed spontaneously in acidic Pb-bearing solutions. Subsequent pseudomorphic growth of cerussite (PbCO 3) was observed, where nucleation occurred entirely within a pore space created by dissolution at the calcite/substrate interface. Uneven growth rates yielded amore » cerussite shell made of lath- or dendritic-shaped crystals. The cerussite phase was separated from the calcite by pores of less than 200 nm under transmission X-ray microscopy, consistent with the interface-coupled dissolution-precipitation mechanism. These results show that impurity metal ions exert significant control over the microscale dissolution features found on mineral surfaces and provide new insights into interpreting and designing micro structures observed in naturally-occurring and synthetic carbonate minerals by dissolution. In addition, heterogeneous micro-environments created in transport limited reactions under pore spaces may lead to unusual growth forms during crystal nucleation and precipitation.« less
NASA Astrophysics Data System (ADS)
Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham
2018-06-01
This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.
Heat and solute tracers: how do they compare in heterogeneous aquifers?
Irvine, Dylan J; Simmons, Craig T; Werner, Adrian D; Graf, Thomas
2015-04-01
A comparison of groundwater velocity in heterogeneous aquifers estimated from hydraulic methods, heat and solute tracers was made using numerical simulations. Aquifer heterogeneity was described by geostatistical properties of the Borden, Cape Cod, North Bay, and MADE aquifers. Both heat and solute tracers displayed little systematic under- or over-estimation in velocity relative to a hydraulic control. The worst cases were under-estimates of 6.63% for solute and 2.13% for the heat tracer. Both under- and over-estimation of velocity from the heat tracer relative to the solute tracer occurred. Differences between the estimates from the tracer methods increased as the mean velocity decreased, owing to differences in rates of molecular diffusion and thermal conduction. The variance in estimated velocity using all methods increased as the variance in log-hydraulic conductivity (K) and correlation length scales increased. The variance in velocity for each scenario was remarkably small when compared to σ2 ln(K) for all methods tested. The largest variability identified was for the solute tracer where 95% of velocity estimates ranged by a factor of 19 in simulations where 95% of the K values varied by almost four orders of magnitude. For the same K-fields, this range was a factor of 11 for the heat tracer. The variance in estimated velocity was always lowest when using heat as a tracer. The study results suggest that a solute tracer will provide more understanding about the variance in velocity caused by aquifer heterogeneity and a heat tracer provides a better approximation of the mean velocity. © 2013, National Ground Water Association.
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.
2018-07-01
Quantifying the uncertainty in solute mass discharge at an environmentally sensitive location is key to assess the risks due to groundwater contamination. Solute mass fluxes are strongly affected by the spatial variability of hydrogeological properties as well as release conditions at the source zone. This paper provides a methodological framework to investigate the interaction between the ubiquitous heterogeneity of the hydraulic conductivity and the mass release rate at the source zone on the uncertainty of mass discharge. Through the use of perturbation theory, we derive analytical and semi-analytical expressions for the statistics of the solute mass discharge at a control plane in a three-dimensional aquifer while accounting for the solute mass release rates at the source. The derived solutions are limited to aquifers displaying low-to-mild heterogeneity. Results illustrate the significance of the source zone mass release rate in controlling the mass discharge uncertainty. The relative importance of the mass release rate on the mean solute discharge depends on the distance between the source and the control plane. On the other hand, we find that the solute release rate at the source zone has a strong impact on the variance of the mass discharge. Within a risk context, we also compute the peak mean discharge as a function of the parameters governing the spatial heterogeneity of the hydraulic conductivity field and mass release rates at the source zone. The proposed physically-based framework is application-oriented, computationally efficient and capable of propagating uncertainty from different parameters onto risk metrics. Furthermore, it can be used for preliminary screening purposes to guide site managers to perform system-level sensitivity analysis and better allocate resources.
Microrheological Characterization of Collagen Systems: From Molecular Solutions to Fibrillar Gels
Shayegan, Marjan; Forde, Nancy R.
2013-01-01
Collagen is the most abundant protein in the extracellular matrix (ECM), where its structural organization conveys mechanical information to cells. Using optical-tweezers-based microrheology, we investigated mechanical properties both of collagen molecules at a range of concentrations in acidic solution where fibrils cannot form and of gels of collagen fibrils formed at neutral pH, as well as the development of microscale mechanical heterogeneity during the self-assembly process. The frequency scaling of the complex shear modulus even at frequencies of ∼10 kHz was not able to resolve the flexibility of collagen molecules in acidic solution. In these solutions, molecular interactions cause significant transient elasticity, as we observed for 5 mg/ml solutions at frequencies above ∼200 Hz. We found the viscoelasticity of solutions of collagen molecules to be spatially homogeneous, in sharp contrast to the heterogeneity of self-assembled fibrillar collagen systems, whose elasticity varied by more than an order of magnitude and in power-law behavior at different locations within the sample. By probing changes in the complex shear modulus over 100-minute timescales as collagen self-assembled into fibrils, we conclude that microscale heterogeneity appears during early phases of fibrillar growth and continues to develop further during this growth phase. Experiments in which growing fibrils dislodge microspheres from an optical trap suggest that fibril growth is a force-generating process. These data contribute to understanding how heterogeneities develop during self-assembly, which in turn can help synthesis of new materials for cellular engineering. PMID:23936454
Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II
NASA Astrophysics Data System (ADS)
Du, Yihong; Guo, Zongming
We study the diffusive logistic equation with a free boundary in higher space dimensions and heterogeneous environment. Such a model may be used to describe the spreading of a new or invasive species, with the free boundary representing the expanding front. For simplicity, we assume that the environment and the solution are radially symmetric. In the special case of one space dimension and homogeneous environment, this free boundary problem was investigated in Du and Lin (2010) [10]. We prove that the spreading-vanishing dichotomy established in Du and Lin (2010) [10] still holds in the more general and ecologically realistic setting considered here. Moreover, when spreading occurs, we obtain best possible upper and lower bounds for the spreading speed of the expanding front. When the environment is asymptotically homogeneous at infinity, these two bounds coincide. Our results indicate that the asymptotic spreading speed determined by this model does not depend on the spatial dimension.
Electrostatic control of DNA intersegmental translocation by the ETS transcription factor ETV6.
Vo, Tam; Wang, Shuo; Poon, Gregory M K; Wilson, W David
2017-08-11
To find their DNA target sites in complex solution environments containing excess heterogeneous DNA, sequence-specific DNA-binding proteins execute various translocation mechanisms known collectively as facilitated diffusion. For proteins harboring a single DNA contact surface, long-range translocation occurs by jumping between widely spaced DNA segments. We have configured biosensor-based surface plasmon resonance to directly measure the affinity and kinetics of this intersegmental jumping by the ETS-family transcription factor ETS variant 6 (ETV6). To isolate intersegmental target binding in a functionally defined manner, we pre-equilibrated ETV6 with excess salmon sperm DNA, a heterogeneous polymer, before exposing the nonspecifically bound protein to immobilized oligomeric DNA harboring a high-affinity ETV6 site. In this way, the mechanism of ETV6-target association could be toggled electrostatically through varying NaCl concentration in the bulk solution. Direct measurements of association and dissociation kinetics of the site-specific complex indicated that 1) freely diffusive binding by ETV6 proceeds through a nonspecific-like intermediate, 2) intersegmental jumping is rate-limited by dissociation from the nonspecific polymer, and 3) dissociation of the specific complex is independent of the history of complex formation. These results show that target searches by proteins with an ETS domain, such as ETV6, whose single DNA-binding domain cannot contact both source and destination sites simultaneously, are nonetheless strongly modulated by intersegmental jumping in heterogeneous site environments. Our findings establish biosensors as a general technique for directly and specifically measuring target site search by DNA-binding proteins via intersegmental translocation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Soffientini, Chiara D; De Bernardi, Elisabetta; Casati, Rosangela; Baselli, Giuseppe; Zito, Felicia
2017-01-01
Design, realization, scan, and characterization of a phantom for PET Automatic Segmentation (PET-AS) assessment are presented. Radioactive zeolites immersed in a radioactive heterogeneous background simulate realistic wall-less lesions with known irregular shape and known homogeneous or heterogeneous internal activity. Three different zeolite families were evaluated in terms of radioactive uptake homogeneity, necessary to define activity and contour ground truth. Heterogeneous lesions were simulated by the perfect matching of two portions of a broken zeolite, soaked in two different 18 F-FDG radioactive solutions. Heterogeneous backgrounds were obtained with tissue paper balls and sponge pieces immersed into radioactive solutions. Natural clinoptilolite proved to be the most suitable zeolite for the construction of artificial objects mimicking homogeneous and heterogeneous uptakes in 18 F-FDG PET lesions. Heterogeneous backgrounds showed a coefficient of variation equal to 269% and 443% of a uniform radioactive solution. Assembled phantom included eight lesions with volumes ranging from 1.86 to 7.24 ml and lesion to background contrasts ranging from 4.8:1 to 21.7:1. A novel phantom for the evaluation of PET-AS algorithms was developed. It is provided with both reference contours and activity ground truth, and it covers a wide range of volumes and lesion to background contrasts. The dataset is open to the community of PET-AS developers and utilizers. © 2016 American Association of Physicists in Medicine.
Transport toward a well in highly heterogeneous aquifer
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; de Barros, Felipe P. J.; Bellin, Alberto; Fiori, Aldo
2017-04-01
Solute transport toward a well is a challenging subject in subsurface hydrology since the complexity of the mathematical model is tremendously increased by the non-uniformity of the mean flow and heterogeneity of the formation. Up to date, analytical solutions for such flow configurations are limited to low heterogeneous conditions. On the other hand, numerical simulations in 3D highly heterogeneous formations are computationally expensive and plagued by numerical errors. In this work we propose an analytical solution for the Breakthrough Curve (BTC) at the well for an instantaneous linear injection across the aquifer's thickness for any degree of heterogeneity of the porous medium. Our solution makes use of the Multi Indicator Model-Self Consistent Approximation (MIMSCA), by which the aquifer is conceptualized as an ensemble of blocks of constant hydraulic conductivity K randomly drawn from a lognormal distribution. In order to apply MIMSCA, we assume the flow as locally uniform, given that K is uniform within the block. With this approximation, the travel time to the well is equal to the superposition of the time spent by the solute particle within each block. We emphasize that, despite the approximations introduced, the model is able to reproduce the laboratory experiment of [1] without the need to fit any transport parameters. In this work, we present results for two different injection modes: a resident injection (e.g., residual DNAPL) and a flux proportional injection (e.g., leakage from a passive well). The proposed methodology allows to quantify the BTC at the well as a function of few parameters such as the injection mode and the statistical structure of the aquifer (geometric mean, variance and integral scale of the hydraulic conductivity field). Results illustrate that the release condition has a strong impact on the shape of the BTC. Furthermore, the difference between different injection modes increases with the heterogeneity of the K-field. The importance of the both injection mode and heterogeneity degree are also elucidated on the early and late solute arrival times at the well. Finally, we show how travel times become ergodic only for very thick aquifers, even in case of mild heterogeneity. We emphasize that the present framework has a practical validity, giving an affordable, although approximated, first estimation of mass arrival at an extraction well. References [1] Fernàndez-Garcia, D., T. H. Illangasekare, and H. Rajaram (2004), Conservative and sorptive forced-gradient and uniform flow tracer tests in a three-dimensional laboratory test aquifer, Water Resour. Res., 40, W10103, doi:10.1029/2004WR003112.
NASA Astrophysics Data System (ADS)
Parambil, Jose V.; Poornachary, Sendhil K.; Tan, Reginald B. H.; Heng, Jerry Y. Y.
2017-07-01
Studies on the use of template surfaces to induce heterogeneous crystal nucleation have gained momentum in recent years-with potential applications in selective crystallisation of polymorphs and in the generation of seed crystals in a continuous crystallisation process. In developing a template-assisted solution crystallisation process, the kinetics of homogeneous versus heterogeneous crystal nucleation could be influenced by solute-solvent, solute-template, and solvent-template interactions. In this study, we report the effect of solvents of varying polarity on the nucleation of carbamazepine (CBZ) crystal polymorphs, a model active pharmaceutical ingredient. The experimental results demonstrate that functionalised template surfaces are effective in promoting crystallisation of either the metastable (form II) or stable (form III) polymorphs of CBZ only in moderately (methanol, ethanol, isopropanol) and low polar (toluene) solvents. A solvent with high polarity (acetonitrile) is thought to mask the template effect on heterogeneous nucleation due to strong solute-solvent and solvent-template interactions. The current study highlights that a quality-by-design (QbD) approach-considering the synergistic effects of solute concentration, solvent type, solution temperature, and template surface chemistry on crystal nucleation-is critical to the development of a template-induced crystallisation process.
Heterogeneous nucleation of aspartame from aqueous solutions
NASA Astrophysics Data System (ADS)
Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji
1990-03-01
Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.
NASA Astrophysics Data System (ADS)
Sayre, George Anthony
The purpose of this dissertation was to develop the C ++ program Emergency Dose to calculate transport of radionuclides through indoor spaces using intermediate fidelity physics that provides improved spatial heterogeneity over well-mixed models such as MELCORRTM and much lower computation times than CFD codes such as FLUENTRTM . Modified potential flow theory, which is an original formulation of potential flow theory with additions of turbulent jet and natural convection approximations, calculates spatially heterogeneous velocity fields that well-mixed models cannot predict. Other original contributions of MPFT are: (1) generation of high fidelity boundary conditions relative to well-mixed-CFD coupling methods (conflation), (2) broadening of potential flow applications to arbitrary indoor spaces previously restricted to specific applications such as exhaust hood studies, and (3) great reduction of computation time relative to CFD codes without total loss of heterogeneity. Additionally, the Lagrangian transport module, which is discussed in Sections 1.3 and 2.4, showcases an ensemble-based formulation thought to be original to interior studies. Velocity and concentration transport benchmarks against analogous formulations in COMSOLRTM produced favorable results with discrepancies resulting from the tetrahedral meshing used in COMSOLRTM outperforming the Cartesian method used by Emergency Dose. A performance comparison of the concentration transport modules against MELCORRTM showed that Emergency Dose held advantages over the well-mixed model especially in scenarios with many interior partitions and varied source positions. A performance comparison of velocity module against FLUENTRTM showed that viscous drag provided the largest error between Emergency Dose and CFD velocity calculations, but that Emergency Dose's turbulent jets well approximated the corresponding CFD jets. Overall, Emergency Dose was found to provide a viable intermediate solution method for concentration transport with relatively low computation times.
NASA Astrophysics Data System (ADS)
Graham, Wendy; Destouni, Georgia; Demmy, George; Foussereau, Xavier
1998-07-01
The methodology developed in Destouni and Graham [Destouni, G., Graham, W.D., 1997. The influence of observation method on local concentration statistics in the subsurface. Water Resour. Res. 33 (4) 663-676.] for predicting locally measured concentration statistics for solute transport in heterogeneous porous media under saturated flow conditions is applied to the prediction of conservative nonreactive solute transport in the vadose zone where observations are obtained by soil coring. Exact analytical solutions are developed for both the mean and variance of solute concentrations measured in discrete soil cores using a simplified physical model for vadose-zone flow and solute transport. Theoretical results show that while the ensemble mean concentration is relatively insensitive to the length-scale of the measurement, predictions of the concentration variance are significantly impacted by the sampling interval. Results also show that accounting for vertical heterogeneity in the soil profile results in significantly less spreading in the mean and variance of the measured solute breakthrough curves, indicating that it is important to account for vertical heterogeneity even for relatively small travel distances. Model predictions for both the mean and variance of locally measured solute concentration, based on independently estimated model parameters, agree well with data from a field tracer test conducted in Manatee County, Florida.
Optimal control solutions to sodic soil reclamation
NASA Astrophysics Data System (ADS)
Mau, Yair; Porporato, Amilcare
2016-05-01
We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang-bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang-bang solution is also shown to work for the reclamation of other soil conditions, such as saline-sodic soils. The novelty in our modeling approach is the capability of searching the entire "strategy space" for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.
NASA Astrophysics Data System (ADS)
Cui, Tiangang; Marzouk, Youssef; Willcox, Karen
2016-06-01
Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting-both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.
Boyd, O.S.
2006-01-01
We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.
Grid Data Access on Widely Distributed Worker Nodes Using Scalla and SRM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakl, Pavel; /Prague, Inst. Phys.; Lauret, Jerome
2011-11-10
Facing the reality of storage economics, NP experiments such as RHIC/STAR have been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage. Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task. The Xrootd/Scalla system allows for storage aggregation. We will present an overview of themore » largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the RHIC/STAR standard analysis framework. We will explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large deployment context. Furthermore, we will give an overview of a fully 'gridified' solution using the plug-and-play features of Scalla architecture, replacing standard storage access with grid middleware SRM (Storage Resource Manager) components designed for space management and will compare the solution with the standard Scalla approach in use in STAR for the past 2 years. Integration details, future plans and status of development will be explained in the area of best transfer strategy between multiple-choice data pools and best placement with respect of load balancing and interoperability with other SRM aware tools or implementations.« less
Catchment heterogeneity controls emergent archetype concentration-discharge relationships
NASA Astrophysics Data System (ADS)
Musolff, A.; Fleckenstein, J. H.; Rao, P. S.; Jawitz, J. W.
2017-12-01
Relationships between in-stream dissolved solute concentrations (C) and discharge (Q) are often-used indicators of catchment-scale processes and their interference with human activities. Here we analyze observational C-Q relationships from 61 catchments and 8 different solutes across a wide range of land-uses and discharge regimes. This analysis is combined with a parsimonious stochastic modeling approach to test how C-Q relationships arise from spatial heterogeneity in catchment solute sources coupled with different timescales of biogeochemical reactions. The observational data exhibit archetypical dilution, enrichment, and constant C-Q patterns. Moreover, with land-use intensification we find decreasing C variability relative to Q variability (chemostatic export regime). Our model indicates that the dominant driver of emergent C-Q patterns was structured heterogeneity of solute sources implemented as correlation of source concentration to travel time. Regardless of the C-Q pattern, with decreasing source heterogeneity we consistently find lower variability in C than in Q and a dominance of chemostatic export regimes. Here, the variance in exported loads is determined primarily by variance of Q. We conclude that efforts to improve stream water quality and ecological integrity in intensely managed catchments should lead away from landscape homogenization by introducing structured source heterogeneity. References: Musolff, A., J. H. Fleckenstein, P. S. C. Rao, and J. W. Jawitz (2017), Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments, Geophys. Res. Lett., 44(9), 4143-4151, doi: 10.1002/2017GL072630.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
NASA Astrophysics Data System (ADS)
Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith
2018-06-01
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.
Heterogeneous Spacecraft Networks
NASA Technical Reports Server (NTRS)
Nakamura, Yosuke (Inventor); Faber, Nicolas T. (Inventor); Frost, Chad R. (Inventor); Alena, Richard L. (Inventor)
2018-01-01
The present invention provides a heterogeneous spacecraft network including a network management architecture to facilitate communication between a plurality of operations centers and a plurality of data user communities. The network management architecture includes a plurality of network nodes in communication with the plurality of operations centers. The present invention also provides a method of communication for a heterogeneous spacecraft network. The method includes: transmitting data from a first space segment to a first ground segment; transmitting the data from the first ground segment to a network management architecture; transmitting data from a second space segment to a second ground segment, the second space and ground segments having incompatible communication systems with the first space and ground segments; transmitting the data from the second ground station to the network management architecture; and, transmitting data from the network management architecture to a plurality of data user communities.
NASA Astrophysics Data System (ADS)
Klise, K. A.; Weissmann, G. S.; McKenna, S. A.; Tidwell, V. C.; Frechette, J. D.; Wawrzyniec, T. F.
2007-12-01
Solute plumes are believed to disperse in a non-Fickian manner due to small-scale heterogeneity and variable velocities that create preferential pathways. In order to accurately predict dispersion in naturally complex geologic media, the connection between heterogeneity and dispersion must be better understood. Since aquifer properties can not be measured at every location, it is common to simulate small-scale heterogeneity with random field generators based on a two-point covariance (e.g., through use of sequential simulation algorithms). While these random fields can produce preferential flow pathways, it is unknown how well the results simulate solute dispersion through natural heterogeneous media. To evaluate the influence that complex heterogeneity has on dispersion, we utilize high-resolution terrestrial lidar to identify and model lithofacies from outcrop for application in particle tracking solute transport simulations using RWHet. The lidar scan data are used to produce a lab (meter) scale two-dimensional model that captures 2-8 mm scale natural heterogeneity. Numerical simulations utilize various methods to populate the outcrop structure captured by the lidar-based image with reasonable hydraulic conductivity values. The particle tracking simulations result in residence time distributions used to evaluate the nature of dispersion through complex media. Particle tracking simulations through conductivity fields produced from the lidar images are then compared to particle tracking simulations through hydraulic conductivity fields produced from sequential simulation algorithms. Based on this comparison, the study aims to quantify the difference in dispersion when using realistic and simplified representations of aquifer heterogeneity. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Berkowitz, B.
2014-12-01
Recently, we developed an alternative CTRW formulation which uses a "latching" upscaling scheme to rigorously map continuous or fine-scale stochastic solute motion onto discrete transitions on an arbitrarily coarse lattice (with spacing potentially on the meter scale or more). This approach enables model simplification, among many other things. Under advection, for example, we see that many relevant anomalous transport problems may be mapped into 1D, with latching to a sequence of successive, uniformly spaced planes. On this formulation (which we term RP-CTRW), the spatial transition vector may generally be made deterministic, with CTRW waiting time distributions encapsulating all the stochastic behavior. We demonstrate the excellent performance of this technique alongside Pareto-distributed waiting times in explaining experiments across a variety of scales using only two degrees of freedom. An interesting new application of the RP-CTRW technique is the analysis of radial (push-pull) tracer tests. Given modern computational power, random walk simulations are a natural fit for the inverse problem of inferring subsurface parameters from push-pull test data, and we propose them as an alternative to the classical type curve approach. In particular, we explore the visibility of heterogeneity through non-Fickian behavior in push-pull tests, and illustrate the ability of a radial RP-CTRW technique to encapsulate this behavior using a sparse parameterization which has predictive value.
A Methodology to Seperate and Analyze a Seismic Wide Angle Profile
NASA Astrophysics Data System (ADS)
Weinzierl, Wolfgang; Kopp, Heidrun
2010-05-01
General solutions of inverse problems can often be obtained through the introduction of probability distributions to sample the model space. We present a simple approach of defining an a priori space in a tomographic study and retrieve the velocity-depth posterior distribution by a Monte Carlo method. Utilizing a fitting routine designed for very low statistics to setup and analyze the obtained tomography results, it is possible to statistically separate the velocity-depth model space derived from the inversion of seismic refraction data. An example of a profile acquired in the Lesser Antilles subduction zone reveals the effectiveness of this approach. The resolution analysis of the structural heterogeneity includes a divergence analysis which proves to be capable of dissecting long wide-angle profiles for deep crust and upper mantle studies. The complete information of any parameterised physical system is contained in the a posteriori distribution. Methods for analyzing and displaying key properties of the a posteriori distributions of highly nonlinear inverse problems are therefore essential in the scope of any interpretation. From this study we infer several conclusions concerning the interpretation of the tomographic approach. By calculating a global as well as singular misfits of velocities we are able to map different geological units along a profile. Comparing velocity distributions with the result of a tomographic inversion along the profile we can mimic the subsurface structures in their extent and composition. The possibility of gaining a priori information for seismic refraction analysis by a simple solution to an inverse problem and subsequent resolution of structural heterogeneities through a divergence analysis is a new and simple way of defining a priori space and estimating the a posteriori mean and covariance in singular and general form. The major advantage of a Monte Carlo based approach in our case study is the obtained knowledge of velocity depth distributions. Certainly the decision of where to extract velocity information on the profile for setting up a Monte Carlo ensemble is limiting the a priori space. However, the general conclusion of analyzing the velocity field according to distinct reference distributions gives us the possibility to define the covariance according to any geological unit if we have a priori information on the velocity depth distributions. Using the wide angle data recorded across the Lesser Antilles arc, we are able to resolve a shallow feature like the backstop by a robust and simple divergence analysis. We demonstrate the effectiveness of the new methodology to extract some key features and properties from the inversion results by including information concerning the confidence level of results.
Spatial localization in heterogeneous systems
NASA Astrophysics Data System (ADS)
Kao, Hsien-Ching; Beaume, Cédric; Knobloch, Edgar
2014-01-01
We study spatial localization in the generalized Swift-Hohenberg equation with either quadratic-cubic or cubic-quintic nonlinearity subject to spatially heterogeneous forcing. Different types of forcing (sinusoidal or Gaussian) with different spatial scales are considered and the corresponding localized snaking structures are computed. The results indicate that spatial heterogeneity exerts a significant influence on the location of spatially localized structures in both parameter space and physical space, and on their stability properties. The results are expected to assist in the interpretation of experiments on localized structures where departures from spatial homogeneity are generally unavoidable.
Accounting for heterogeneity of public lands in hedonic property models
Charlotte Ham; Patricia A. Champ; John B. Loomis; Robin M. Reich
2012-01-01
Open space lands, national forests in particular, are usually treated as homogeneous entities in hedonic price studies. Failure to account for the heterogeneous nature of public open spaces may result in inappropriate inferences about the benefits of proximate location to such lands. In this study the hedonic price method is used to estimate the marginal values for...
Rapid automated superposition of shapes and macromolecular models using spherical harmonics.
Konarev, Petr V; Petoukhov, Maxim V; Svergun, Dmitri I
2016-06-01
A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented ( SUPALM ). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models ( e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [ J. Appl. Cryst. (2001 ▸), 34 , 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB . The spherical harmonics algorithm is best suited for low-resolution shape models, e.g . those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.
The thermodynamic water retention capacity of solutions and gels.
Borchard, W; Jablonski, P
2003-01-01
The thermodynamic water retention capacity (WRC) has been defined and applied to different heterogeneous phase equilibria. This definition includes others known from the literature for testing heterogeneous systems. For the type of a real solution it is shown that at constant values of temperature and pressure the WRC is related to the difference of the chemical potential of water between the original state and the state after having applied a constraint. The dependence of WRC on concentration of a solute is predicted to be described by an e-function which has been experimentally confirmed in the literature.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
Rod, Kenton; Um, Wooyong; Chun, Jaehun; ...
2018-03-31
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rod, Kenton; Um, Wooyong; Chun, Jaehun
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Yuan, Ke; De Andrade, Vincent; Feng, Zhange; ...
2018-01-04
The presence of impurity ions is known to significantly influence mineral surface morphology during crystal growth from aqueous solution, but knowledge on impurity ion-mineral interactions during dissolution under far-from equilibrium conditions remains limited. Here we show that calcite (CaCO 3) exhibits a rich array of dissolution features in the presence of Pb. During the initial stage, calcite exhibits non-classical surface features characterized as micro pyramids developed spontaneously in acidic Pb-bearing solutions. Subsequent pseudomorphic growth of cerussite (PbCO 3) was observed, where nucleation occurred entirely within a pore space created by dissolution at the calcite/substrate interface. Uneven growth rates yielded amore » cerussite shell made of lath- or dendritic-shaped crystals. The cerussite phase was separated from the calcite by pores of less than 200 nm under transmission X-ray microscopy, consistent with the interface-coupled dissolution-precipitation mechanism. These results show that impurity metal ions exert significant control over the microscale dissolution features found on mineral surfaces and provide new insights into interpreting and designing micro structures observed in naturally-occurring and synthetic carbonate minerals by dissolution. In addition, heterogeneous micro-environments created in transport limited reactions under pore spaces may lead to unusual growth forms during crystal nucleation and precipitation.« less
High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers
NASA Astrophysics Data System (ADS)
Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.
2017-12-01
The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
Toward understanding and exploiting tumor heterogeneity.
Alizadeh, Ash A; Aranda, Victoria; Bardelli, Alberto; Blanpain, Cedric; Bock, Christoph; Borowski, Christine; Caldas, Carlos; Califano, Andrea; Doherty, Michael; Elsner, Markus; Esteller, Manel; Fitzgerald, Rebecca; Korbel, Jan O; Lichter, Peter; Mason, Christopher E; Navin, Nicholas; Pe'er, Dana; Polyak, Kornelia; Roberts, Charles W M; Siu, Lillian; Snyder, Alexandra; Stower, Hannah; Swanton, Charles; Verhaak, Roel G W; Zenklusen, Jean C; Zuber, Johannes; Zucman-Rossi, Jessica
2015-08-01
The extent of tumor heterogeneity is an emerging theme that researchers are only beginning to understand. How genetic and epigenetic heterogeneity affects tumor evolution and clinical progression is unknown. The precise nature of the environmental factors that influence this heterogeneity is also yet to be characterized. Nature Medicine, Nature Biotechnology and the Volkswagen Foundation organized a meeting focused on identifying the obstacles that need to be overcome to advance translational research in and tumor heterogeneity. Once these key questions were established, the attendees devised potential solutions. Their ideas are presented here.
Toward understanding and exploiting tumor heterogeneity
Alizadeh, Ash A; Aranda, Victoria; Bardelli, Alberto; Blanpain, Cedric; Bock, Christoph; Borowski, Christine; Caldas, Carlos; Califano, Andrea; Doherty, Michael; Elsner, Markus; Esteller, Manel; Fitzgerald, Rebecca; Korbel, Jan O; Lichter, Peter; Mason, Christopher E; Navin, Nicholas; Pe’er, Dana; Polyak, Kornelia; Roberts, Charles W M; Siu, Lillian; Snyder, Alexandra; Stower, Hannah; Swanton, Charles; Verhaak, Roel G W; Zenklusen, Jean C; Zuber, Johannes; Zucman-Rossi, Jessica
2016-01-01
The extent of tumor heterogeneity is an emerging theme that researchers are only beginning to understand. How genetic and epigenetic heterogeneity affects tumor evolution and clinical progression is unknown. The precise nature of the environmental factors that influence this heterogeneity is also yet to be characterized. Nature Medicine, Nature Biotechnology and the Volkswagen Foundation organized a meeting focused on identifying the obstacles that need to be overcome to advance translational research in and tumor heterogeneity. Once these key questions were established, the attendees devised potential solutions. Their ideas are presented here. PMID:26248267
Query optimization for graph analytics on linked data using SPARQL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seokyong; Lee, Sangkeun; Lim, Seung -Hwan
2015-07-01
Triplestores that support query languages such as SPARQL are emerging as the preferred and scalable solution to represent data and meta-data as massive heterogeneous graphs using Semantic Web standards. With increasing adoption, the desire to conduct graph-theoretic mining and exploratory analysis has also increased. Addressing that desire, this paper presents a solution that is the marriage of Graph Theory and the Semantic Web. We present software that can analyze Linked Data using graph operations such as counting triangles, finding eccentricity, testing connectedness, and computing PageRank directly on triple stores via the SPARQL interface. We describe the process of optimizing performancemore » of the SPARQL-based implementation of such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity and removing redundant computations by understanding query plans. Our optimized approach shows significant performance gains on triplestores hosted on stand-alone workstations as well as hardware-optimized scalable supercomputers such as the Cray XMT.« less
Solute plumes mean velocity in aquifer transport: Impact of injection and detection modes
NASA Astrophysics Data System (ADS)
Dagan, Gedeon
2017-08-01
Flow of mean velocity U takes place in a heterogeneous aquifer of random spatially variable conductivity K. A solute plume is injected instantaneously along a plane normal to U, over a large area relative to the logconductivity integral scale I (ergodic plume). Transport is by advection by the spatially variable Eulerian velocity. The study is focused on the derivation of the mean plume velocity in the four modes set forth by Kreft and Zuber [1978] for one dimensional flow in a homogeneous medium. In the resident injection mode the mass is initially distributed uniformly in space while in the flux mode it is proportional to the local velocity. In the resident detection mode the mean velocity pertains to the plume centroid, whereas in flux detection it is quantified with the aid of the BTC and the corresponding mean arrival time. In agreement with the literature, it is shown that URR and UFF, pertaining to same injection and detection modes, either resident or flux, are equal to U. In contrast, in the mixed modes the solute velocity may differ significantly from U near the injection plane, approaching it at large distances relative to I. These effects are explained qualitatively with the aid of the exact solution for stratified aquifers.
High Performance Data Distribution for Scientific Community
NASA Astrophysics Data System (ADS)
Tirado, Juan M.; Higuero, Daniel; Carretero, Jesus
2010-05-01
Institutions such as NASA, ESA or JAXA find solutions to distribute data from their missions to the scientific community, and their long term archives. This is a complex problem, as it includes a vast amount of data, several geographically distributed archives, heterogeneous architectures with heterogeneous networks, and users spread around the world. We propose a novel architecture (HIDDRA) that solves this problem aiming to reduce user intervention in data acquisition and processing. HIDDRA is a modular system that provides a highly efficient parallel multiprotocol download engine, using a publish/subscribe policy which helps the final user to obtain data of interest transparently. Our system can deal simultaneously with multiple protocols (HTTP,HTTPS, FTP, GridFTP among others) to obtain the maximum bandwidth, reducing the workload in data server and increasing flexibility. It can also provide high reliability and fault tolerance, as several sources of data can be used to perform one file download. HIDDRA architecture can be arranged into a data distribution network deployed on several sites that can cooperate to provide former features. HIDDRA has been addressed by the 2009 e-IRG Report on Data Management as a promising initiative for data interoperability. Our first prototype has been evaluated in collaboration with the ESAC centre in Villafranca del Castillo (Spain) that shows a high scalability and performance, opening a wide spectrum of opportunities. Some preliminary results have been published in the Journal of Astrophysics and Space Science [1]. [1] D. Higuero, J.M. Tirado, J. Carretero, F. Félix, and A. de La Fuente. HIDDRA: a highly independent data distribution and retrieval architecture for space observation missions. Astrophysics and Space Science, 321(3):169-175, 2009
Effect of physicochemical factors on transport and retention of graphene oxide in saturated media.
Chen, Chong; Shang, Jianying; Zheng, Xiaoli; Zhao, Kang; Yan, Chaorui; Sharma, Prabhakar; Liu, Kesi
2018-05-01
Fate and transport of graphene oxide (GO) have received much attention recently with the increase of GO applications. This study investigated the effect of salt concentration on the transport and retention behavior of GO particles in heterogeneous saturated porous media. Transport experiments were conducted in NaCl solutions with three concentrations (1, 20, and 50 mM) using six structurally packed columns (two homogeneous and four heterogeneous) which were made of fine and coarse grains. The results showed that GO particles had high mobility in all the homogeneous and heterogeneous columns when solution ionic strength (IS) was low. When IS was high, GO particles showed distinct transport ability in six structurally heterogeneous porous media. In homogeneous columns, decreasing ionic strength and increasing grain size increased the mobility of GO. For the column containing coarse-grained channel, the preferential flow path resulted in an early breakthrough of GO, and further larger contact area between coarse and fine grains caused a lower breakthrough peak and a stronger tailing at different IS. In the layered column, there was significant GO retention at coarse-fine grain interface where water flowed from coarse grain to fine grain. Our results indicated that the fate and transport of GO particles in the natural heterogeneous porous media was highly related to the coupled effect of medium structure and salt solution concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel
2013-04-01
Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical simulations differ in lateral scale reaching from 0.2 m to 1.5 m, while the height of the domain is kept constant to 1.5m. Strong material heterogeneity is realized through vertical layers of coarse and fine sand. Both materials remain permanently under liquid-flow-dominated ('stage1') evaporation conditions. Spatial moments as well as the dilution index (Kitanidis, 1994) are used for quantification of transport behaviour. Results show that, while all simulations led to anomalous transport, infiltration-evaporation cycles lead to faster solute leaching rates than solely infiltration at the same net-infiltration rate in both homogeneous and heterogeneous media. Flow and transport-paths significantly differed between infiltration and evaporation, resulting in lateral water fluxes and hence lateral solute transport. Variation of the width of the model domain shows faster leaching rates for domains with small horizontal extent.
NASA Astrophysics Data System (ADS)
Ismail, Nurul Syuhada; Arifin, Norihan Md.; Bachok, Norfifah; Mahiddin, Norhasimah
2017-01-01
A numerical study is performed to evaluate the problem of stagnation - point flow towards a shrinking sheet with homogeneous - heterogeneous reaction effects. By using non-similar transformation, the governing equations be able to reduced to an ordinary differential equation. Then, results of the equations can be obtained numerically by shooting method with maple implementation. Based on the numerical results obtained, the velocity ratio parameter λ< 0, the dual solutions do exist. Then, the stability analysis is carried out to determine which solution is more stable between both of the solutions by bvp4c solver in Matlab.
NASA Astrophysics Data System (ADS)
Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.
2013-05-01
Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Riller, U.; Clark, M. D.; Daxberger, H.; Doman, D.; Lenauer, I.; Plath, S.; Santimano, T.
2017-08-01
Heterogeneous deformation is intrinsic in natural deformation, but often underestimated in the analysis and interpretation of mesoscopic brittle shear faults. Based on the analysis of 11,222 faults from two distinct tectonic settings, the Central Andes in Argentina and the Sudbury area in Canada, interpolation of principal strain directions and scaled analogue modelling, we revisit controversial issues of fault-slip inversions, collectively adhering to heterogeneous deformation. These issues include the significance of inversion solutions in terms of (1) strain or paleo-stress; (2) displacement, notably plate convergence; (3) local versus far-field deformation; (4) strain perturbations and (5) spacing between stations of fault-slip data acquisition. Furthermore, we highlight the value of inversions for identifying the kinematics of master fault zones in the absence of displaced geological markers. A key result of our assessment is that fault-slip inversions relate to local strain, not paleo-stress, and thus can aid in inferring, the kinematics of master faults. Moreover, strain perturbations caused by mechanical anomalies of the deforming upper crust significantly influence local principal strain directions. Thus, differently oriented principal strain axes inferred from fault-slip inversions in a given region may not point to regional deformation caused by successive and distinct deformation regimes. This outcome calls into question the common practice of separating heterogeneous fault-slip data sets into apparently homogeneous subsets. Finally, the fact that displacement vectors and principal strains are rarely co-linear defies the use of brittle fault data as proxy for estimating directions of plate-scale motions.
Geological entropy and solute transport in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Bianchi, Marco; Pedretti, Daniele
2017-06-01
We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.
Encapsulated cell bioremediation: Evaluation on the basis of particle tracer tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrich, C.R.; Stormo, K.E.; Ralston, D.R.
1998-09-01
Microencapsulation of degradative organisms enhances microorganism survivability. The use of encapsulated cell microbeads for in situ biodegradation depends not only on microorganism survival but also on microbead transport characteristics. Two forced-gradient, recirculating-loop tracer experiments were conducted to evaluate the feasibility of encapsulated cell transport and bioremediation on the basis of polystyrene microsphere transport results. The tracer tests were conducted in a shallow, confined, unconsolidated, heterogeneous, sedimentary aquifer using bromide ion and 2 {micro}m, 5 {micro}m, and 15{micro}m microsphere tracers. Significant differences were observed in the transport of bromide solute and polystyrene microspheres. Microspheres reached peak concentrations in monitoring wells beforemore » bromide, which was thought to reflect the influence of aquifer heterogeneity. Greater decreases in microsphere C/C{sub 0} ratios were observed with distance from the injection wells than in bromide C/C{sub 0} ratios, which was attributed to particle filtration and/or settling. Several methods might be considered for introducing encapsulated cell microbeads into a subsurface environment, including direct injection into a contaminated aquifer zone, injection through a recirculating ground water flow system, or emplacement in a subsurface microbial curtain in advance of a plume. However, the in situ use of encapsulated cells in an aquifer is probably limited to aquifers containing sufficiently large pore spaces, allowing passage of at least some encapsulated cells. The use of encapsulated cells may also be limited by differences in solute and microbead transport patterns and flowpath clogging by larger encapsulated cell microbeads.« less
Transient well flow in vertically heterogeneous aquifers
NASA Astrophysics Data System (ADS)
Hemker, C. J.
1999-11-01
A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with partially penetrating wells may be estimated without the need to construct transient numerical models. A computer program based on the hybrid analytical-numerical technique is available from the author.
Numerical Generation of Dense Plume Fingers in Unsaturated Homogeneous Porous Media
NASA Astrophysics Data System (ADS)
Cremer, C.; Graf, T.
2012-04-01
In nature, the migration of dense plumes typically results in the formation of vertical plume fingers. Flow direction in fingers is downwards, which is counterbalanced by upwards flow of less dense fluid between fingers. In heterogeneous media, heterogeneity itself is known to trigger the formation of fingers. In homogeneous media, however, fingers are also created even if all grains had the same diameter. The reason is that pore-scale heterogeneity leading to different flow velocities also exists in homogeneous media due to two effects: (i) Grains of identical size may randomly arrange differently, e.g. forming tetrahedrons, hexahedrons or octahedrons. Each arrangement creates pores of varying diameter, thus resulting in different average flow velocities. (ii) Random variations of solute concentration lead to varying buoyancy effects, thus also resulting in different velocities. As a continuation of previously made efforts to incorporate pore-scale heterogeneity into fully saturated soil such that dense fingers are realistically generated (Cremer and Graf, EGU Assembly, 2011), the current paper extends the research scope from saturated to unsaturated soil. Perturbation methods are evaluated by numerically re-simulating a laboratory-scale experiment of plume transport in homogeneous unsaturated sand (Simmons et al., Transp. Porous Media, 2002). The following 5 methods are being discussed: (i) homogeneous sand, (ii) initial perturbation of solute concentration, (iii) spatially random, time-constant perturbation of solute source, (iv) spatially and temporally random noise of simulated solute concentration, and (v) random K-field that introduces physically insignificant but numerically significant heterogeneity. Results demonstrate that, as opposed to saturated flow, perturbing the solute source will not result in plume fingering. This is because the location of the perturbed source (domain top) and the location of finger generation (groundwater surface) do not coincide. Alternatively, similar to saturated flow, applying either a random concentration noise (iv) or a random K-field (v) generates realistic plume fingering. Future work will focus on the generation mechanisms of plume finger splitting.
A Long-Lived Oscillatory Space-Time Correlation Function of Two Dimensional Colloids
NASA Astrophysics Data System (ADS)
Kim, Jeongmin; Sung, Bong June
2014-03-01
Diffusion of a colloid in solution has drawn significant attention for a century. A well-known behavior of the colloid is called Brownian motion : the particle displacement probability distribution (PDPD) is Gaussian and the mean-square displacement (MSD) is linear with time. However, recent simulation and experimental studies revealed the heterogeneous dynamics of colloids near glass transitions or in complex environments such as entangled actin, PDPD exhibited the exponential tail at a large length instead of being Gaussian at all length scales. More interestingly, PDPD is still exponential even when MSD was still linear with time. It requires a refreshing insight on the colloidal diffusion in the complex environments. In this work, we study heterogeneous dynamics of two dimensional (2D) colloids using molecular dynamics simulations. Unlike in three dimensions, 2D solids do not follow the Lindemann melting criterion. The Kosterlitz-Thouless-Halperin-Nelson-Young theory predicts two-step phase transitions with an intermediate phase, the hexatic phase between isotropic liquids and solids. Near solid-hexatic transition, PDPD shows interesting oscillatory behavior between a central Gaussian part and an exponential tail. Until 12 times longer than translational relaxation time, the oscillatory behavior still persists even after entering the Fickian regime. We also show that multi-layered kinetic clusters account for heterogeneous dynamics of 2D colloids with the long-lived anomalous oscillatory PDPD.
Issues and Solutions for Bringing Heterogeneous Water Cycle Data Sets Together
NASA Technical Reports Server (NTRS)
Acker, James; Kempler, Steven; Teng, William; Belvedere, Deborah; Liu, Zhong; Leptoukh, Gregory
2010-01-01
The water cycle research community has generated many regional to global scale products using data from individual NASA missions or sensors (e.g., TRMM, AMSR-E); multiple ground- and space-based data sources (e.g., Global Precipitation Climatology Project [GPCP] products); and sophisticated data assimilation systems (e.g., Land Data Assimilation Systems [LDAS]). However, it is often difficult to access, explore, merge, analyze, and inter-compare these data in a coherent manner due to issues of data resolution, format, and structure. These difficulties were substantiated at the recent Collaborative Energy and Water Cycle Information Services (CEWIS) Workshop, where members of the NASA Energy and Water cycle Study (NEWS) community gave presentations, provided feedback, and developed scenarios which illustrated the difficulties and techniques for bringing together heterogeneous datasets. This presentation reports on the findings of the workshop, thus defining the problems and challenges of multi-dataset research. In addition, the CEWIS prototype shown at the workshop will be presented to illustrate new technologies that can mitigate data access roadblocks encountered in multi-dataset research, including: (1) Quick and easy search and access of selected NEWS data sets. (2) Multi-parameter data subsetting, manipulation, analysis, and display tools. (3) Access to input and derived water cycle data (data lineage). It is hoped that this presentation will encourage community discussion and feedback on heterogeneous data analysis scenarios, issues, and remedies.
Zeng, Chao; Huang, Hongwei; Zhang, Tierui; Dong, Fan; Zhang, Yihe; Hu, Yingmo
2017-08-23
Photocatalytic CO 2 reduction into solar fuels illustrates huge charm for simultaneously settling energy and environmental issues. The photoreduction ability of a semiconductor is closely correlated to its conduction band (CB) position. A homogeneous-phase solid-solution with the same crystal system always has a monotonously changed CB position, and the high CB level has to be sacrificed to achieve a benign photoabsorption. Herein, we report the fabrication of heterogeneous-phase solid-solution Zn X Ca 1-X In 2 S 4 between trigonal ZnIn 2 S 4 and cubic CaIn 2 S 4 . The Zn X Ca 1-X In 2 S 4 solid solutions with orderly tuned photoresponsive range from 540 to 640 nm present a more negative CB level and highly enhanced charge-separation efficiency. Profiting from these merits, all of these Zn X Ca 1-X In 2 S 4 solid solutions exhibit remarkably strengthened photocatalytic CO 2 reduction performance under visible light (λ > 420 nm) irradiation. Zn 0.4 Ca 0.6 In 2 S 4 , bearing the most negative CB position and highest charge-separation efficiency, casts the optimal photocatalytic CH 4 and CO evolution rates, which reach 16.7 and 6.8 times higher than that of ZnIn 2 S 4 and 7.2 and 3.9 times higher than that of CaIn 2 S 4 , respectively. To verify the crucial role of the heterogeneous-phase solid solution in promoting the band structure and photocatalytic performance, another heterogeneous-phase solid-solution Zn X Cd 1-X In 2 S 4 has been synthesized. It also displays an upshifted CB level and promoted charge separation. This work may provide a new perspective into the development of an efficient visible-light driven photocatalyst for CO 2 reduction and other photoreduction reactions.
Bellin, Alberto; Tonina, Daniele
2007-10-30
Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for the local concentration of conservative tracers migrating in heterogeneous aquifers. Our model accounts for dilution, mechanical mixing within the sampling volume and spreading due to formation heterogeneity. It is developed by modeling local concentration dynamics with an Ito Stochastic Differential Equation (SDE) that under the hypothesis of statistical stationarity leads to the Beta probability distribution function (pdf) for the solute concentration. This model shows large flexibility in capturing the smoothing effect of the sampling volume and the associated reduction of the probability of exceeding large concentrations. Furthermore, it is fully characterized by the first two moments of the solute concentration, and these are the same pieces of information required for standard geostatistical techniques employing Normal or Log-Normal distributions. Additionally, we show that in the absence of pore-scale dispersion and for point concentrations the pdf model converges to the binary distribution of [Dagan, G., 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2, The solute transport. Water Resour. Res. 18 (4), 835-848.], while it approaches the Normal distribution for sampling volumes much larger than the characteristic scale of the aquifer heterogeneity. Furthermore, we demonstrate that the same model with the spatial moments replacing the statistical moments can be applied to estimate the proportion of the plume volume where solute concentrations are above or below critical thresholds. Application of this model to point and vertically averaged bromide concentrations from the first Cape Cod tracer test and to a set of numerical simulations confirms the above findings and for the first time it shows the superiority of the Beta model to both Normal and Log-Normal models in interpreting field data. Furthermore, we show that assuming a-priori that local concentrations are normally or log-normally distributed may result in a severe underestimate of the probability of exceeding large concentrations.
Homogeneous and Heterogeneous (Fex, Cr1-x)(OH)3 Precipitation: Implications for Cr Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Chong; Zuo, Xiaobing; Cao, B
2016-02-16
The formation of (Fe, Cr)(OH)3 nanoparticles determines the fate of aqueous Cr in many aquatic environments. Using small angle X-ray scattering, precipitation rates of (Fe, Cr)(OH)3 nanoparticles in solution and on quartz were quantified from 0.1 mM Fe(III) solutions containing 0 – 0.25 mM Cr(III) at pH = 3.7 ± 0.2. Concentration ratio of aqueous Cr(III)/Fe(III) controlled the chemical composition (x) of (Fex, Cr1-x)(OH)3 precipitates, solutions’ supersaturation with respect to precipitates, and the surface charge of quartz. Therefore, aqueous Cr(III)/Fe(III) ratio affected homogeneous (in solution) and heterogeneous (on quartz) precipitation rates of (Fex, Cr1-x)(OH)3 through different mechanisms. The sequestration mechanismsmore » of Cr(III) in precipitates were also investigated. In solutions with high aqueous Cr(III)/Fe(III) ratios, surface enrichment of Cr(III) on the precipitates occurred, resulting in slower particle growth in solution. From solutions with 0 – 0.1 mM Cr(III), the particles on quartz grew from 2 to 4 nm within 1 h. Interestingly, from solution with 0.25 mM Cr(III), particles of two distinct sizes (2 and 6 nm) formed on quartz, and their sizes remained unchanged throughout the reaction. Our study provided new insights on homogeneous and heterogeneous precipitation of (Fex, Cr1-x)(OH)3 nanoparticles, which can help determine the fate of Cr in aquatic environments.« less
2015-01-01
The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation. PMID:25328493
The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.
Zhang, Zhengcai; Guo, Guang-Jun
2017-07-26
Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.
Huang, Kun; García, Angel E
2014-10-14
The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl- sn -glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.
System model the processing of heterogeneous sensory information in robotized complex
NASA Astrophysics Data System (ADS)
Nikolaev, V.; Titov, V.; Syryamkin, V.
2018-05-01
Analyzed the scope and the types of robotic systems consisting of subsystems of the form "a heterogeneous sensors data processing subsystem". On the basis of the Queuing theory model is developed taking into account the unevenness of the intensity of information flow from the sensors to the subsystem of information processing. Analytical solution to assess the relationship of subsystem performance and uneven flows. The research of the obtained solution in the range of parameter values of practical interest.
1980-08-01
carbonylation of methanol to acetic acid reaction is well suited for a demonstration of the feasibility and value of ionically binding a catalyst to a...approximate doubling of the reaction rate. This result suggests that a liquid flow system design in which there is a large catalyst to methanol ratio could...Heterogenizing Anionic Solution Catalysts . The Carbonylation of Methanol by Russell S. Drago, Eric D. Nyberg, Anton El A’mma and Alan Zombeck ABSTRACT -’Few
Laboratory study of polymer solutions used for mobility control during in situ NAPL recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martel, K.E.; Martel, R.; Lefebvre, R.
1998-12-31
The use of surfactant solutions for the in situ recovery of residual NAPL in aquifers is increasingly considered as a viable remediation technique. The injection of a few pore volumes of high-concentration surfactant solutions can mobilize or solubilize most of the residual NAPL contacted by the solutions. However, the washing solutions` physico-chemical properties (low density and high viscosity), combined with the natural porous media heterogeneity, can prevent a good sweep of the entire contaminated volume. The objective of this laboratory study is first to select and characterize polymers that would be suitable for aquifer restoration. Their experiments showed that amongmore » several polymers, xanthan gum is the most suitable for aquifer remediation. An evaluation of xanthan gum solution rheology was made in order to predict shear rates, xanthan gum concentrations, salinity, and temperature effects on solution viscosity. The second set of experiments were made with a sand box which was designed to reproduce a simple heterogeneous media consisting of layers of sand with different permeability. These tests illustrate the xanthan gum solution`s ability to increase surfactant solution`s sweep efficiency and limit viscous fingering.« less
Wilson, P W; Heneghan, A F; Haymet, A D J
2003-02-01
In biological systems, nucleation of ice from a supercooled aqueous solution is a stochastic process and always heterogeneous. The average time any solution may remain supercooled is determined only by the degree of supercooling and heterogeneous nucleation sites it encounters. Here we summarize the many and varied definitions of the so-called "supercooling point," also called the "temperature of crystallization" and the "nucleation temperature," and exhibit the natural, inherent width associated with this quantity. We describe a new method for accurate determination of the supercooling point, which takes into account the inherent statistical fluctuations of the value. We show further that many measurements on a single unchanging sample are required to make a statistically valid measure of the supercooling point. This raises an interesting difference in circumstances where such repeat measurements are inconvenient, or impossible, for example for live organism experiments. We also discuss the effect of solutes on this temperature of nucleation. Existing data appear to show that various solute species decrease the nucleation temperature somewhat more than the equivalent melting point depression. For non-ionic solutes the species appears not to be a significant factor whereas for ions the species does affect the level of decrease of the nucleation temperature.
NASA Astrophysics Data System (ADS)
Leung, Juliana Y.; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It reinforces the notion that the flow response is influenced by the higher-order statistical description of heterogeneity. An important implication is that when scaling-up transport response from lab-scale results to the field scale, it is necessary to account for the scale-up of heterogeneity. Since the characteristics of higher-order multivariate distributions and large-scale heterogeneity are typically not captured in small-scale experiments, a reservoir modeling framework that captures the uncertainty in heterogeneity description should be adopted.
Heterogeneous Compression of Large Collections of Evolutionary Trees.
Matthews, Suzanne J
2015-01-01
Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2014-05-01
To acquire knowledge of solute transport through the unsaturated zone in the shallow subsurface is decisive to assess groundwater quality, nutrient cycling or to plan remediation strategies. The shallow subsurface is characterized by structural heterogeneity and strongly influenced by atmospheric conditions. This leads to changing flow directions, strong temporal changes in saturation and heterogeneous water fluxes during infiltration and evaporation events. Recent studies (e.g. Lehmann and Or, 2009; Bechtold et al.,2011) demonstrated the importance of lateral flow and solute transport during evaporation conditions (upward flux). The heterogeneous structure in these studies was constructed using two types of sand with strong material contrasts and arranged in parallel with a vertical orientation. Lateral transport and redistribution of solute from coarse to fine media was observed deeper in the soil column and from fine to coarse close to the soil surface. However, if boundary conditions are reversed due to precipitation, the flow field is not necessarily reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport under those conditions. In this contribution we analyze transport of a solute in the shallow subsurface to assess effects resulting from the temporal change of heterogeneous soil structures due to dynamic flow conditions. Two-dimensional numerical simulations of unsaturated flow and transport are conducted using a coupled finite volume and random walk particle tracking algorithm to quantify solute transport and leaching rates. Following previous studies (Lehmann and Or, 2009; Bechtold et al., 2011), the chosen domain is composed of two materials, coarse and fine sand, arranged in parallel with a vertical orientation. Hence, one sharp interface of strong material heterogeneity is induced. During evaporation both sands are assumed to stay under liquid-flow dominated evaporation conditions ("stage 1"). Simulations considering dynamic (infiltration-evaporation) and steady (solely infiltration) boundary conditions are carried out. The influence of dynamic boundary conditions (intensity and duration of precipitation and evaporation events) is examined in a multitude of simulations. If flow rates smaller than the saturated hydraulic conductivity of both materials are chosen to be applied as boundary condition, simulation results indicate that the flow field within the domain is exactly reversed. However, if applied flow rates exceed the saturated hydraulic conductivity of one material, the flow field is not just reversed, but different flow paths during downward and upward flow are observed. Results show the tendency of faster solute leaching under dynamic boundary conditions compared to steady infiltration conditions with the same net-infiltration rate. We use a double domain transport method as an upscaled model to reproduce vertically averaged concentration profiles with net flux only and compare the model parameters for information about flow dynamics and soil heterogeneity.
On the Use and Validation of Mosaic Heterogeneity in Atmospheric Numerical Models
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Atlas, Robert M. (Technical Monitor)
2001-01-01
The mosaic land modeling approach allows for the representation of multiple surface types in a single atmospheric general circulation model grid box. Each surface type, collectively called 'tiles' correspond to different sets of surface characteristics (e.g. for grass, crop or forest). Typically, the tile space data is averaged to grid space by weighting the tiles with their fractional cover. While grid space data is routinely evaluated, little attention has been given to the tile space data. The present paper explores uses of the tile space surface data in validation with station observations. The results indicate the limitations that the mosaic heterogeneity parameterization has in reproducing variations observed between stations at the Atmospheric Radiation Measurement Southern Great Plains field site.
Focusing light in a bianisotropic slab with negatively refracting materials.
Liu, Yan; Guenneau, Sebastien; Gralak, Boris; Ramakrishna, S Anantha
2013-04-03
We investigate the electromagnetic response of a pair of complementary bianisotropic media, which consist of a medium with positive refractive index (+ε, +μ, +ξ) and a medium with negative refractive index(-ε, -μ, -ξ). We show that this idealized system has peculiar imaging properties in that it reproduces images of a source, in principle, with unlimited resolution. We then consider an infinite array of line sources regularly spaced in a 1D photonic crystal (PC) consisting of 2n layers of bianisotropic complementary media. Using coordinate transformations, we map this system into 2D corner chiral lenses of 2n heterogeneous anisotropic complementary media sharing a vertex, within which light circles around closed trajectories. Alternatively, one can consider corner lenses with homogeneous isotropic media and map them into 1D PCs with heterogeneous bianisotropic layers. Interestingly, such complementary media are described by scalar, or matrix valued, sign-shifting parameters, which satisfy a new version of the generalized lens theorem of Pendry and Ramakrishna. This theorem can be derived using Fourier series solutions of the Maxwell-Tellegen equations, or from space-time symmetry arguments. Also of interest are 2D periodic checkerboards consisting of alternating rectangular cells of complementary media which are such that one point source in one cell gives rise to an infinite set of images with an image in every other cell. Such checkerboards can themselves be mapped into a class of 3D corner lenses of complementary bianisotropic media. These theoretical results are illustrated by finite element computations.
NASA Astrophysics Data System (ADS)
Salnikov, Oleg G.; Kovtunov, Kirill V.; Koptyug, Igor V.
2015-09-01
An experimental approach for the production of catalyst-free hyperpolarised ethanol solution in water via heterogeneous hydrogenation of vinyl acetate with parahydrogen and the subsequent hydrolysis of ethyl acetate was demonstrated. For an efficient hydrogenation, liquid vinyl acetate was transferred to the gas phase by parahydrogen bubbling and almost completely converted to ethyl acetate with Rh/TiO2 catalyst. Subsequent dissolution of ethyl acetate gas in water containing OH- ions led to the formation of catalyst- and organic solvent-free hyperpolarised ethanol and sodium acetate. These results represent the first demonstration of catalyst- and organic solvent-free hyperpolarised ethanol production achieved by heterogeneous hydrogenation of vinyl acetate vapour with parahydrogen and the subsequent ethyl acetate hydrolysis.
Salnikov, Oleg G; Kovtunov, Kirill V; Koptyug, Igor V
2015-09-09
An experimental approach for the production of catalyst-free hyperpolarised ethanol solution in water via heterogeneous hydrogenation of vinyl acetate with parahydrogen and the subsequent hydrolysis of ethyl acetate was demonstrated. For an efficient hydrogenation, liquid vinyl acetate was transferred to the gas phase by parahydrogen bubbling and almost completely converted to ethyl acetate with Rh/TiO2 catalyst. Subsequent dissolution of ethyl acetate gas in water containing OH(-) ions led to the formation of catalyst- and organic solvent-free hyperpolarised ethanol and sodium acetate. These results represent the first demonstration of catalyst- and organic solvent-free hyperpolarised ethanol production achieved by heterogeneous hydrogenation of vinyl acetate vapour with parahydrogen and the subsequent ethyl acetate hydrolysis.
The K-INDSCAL Model for Heterogeneous Three-Way Dissimilarity Data
ERIC Educational Resources Information Center
Bocci, Laura; Vichi, Maurizio
2011-01-01
A weighted Euclidean distance model for analyzing three-way dissimilarity data (stimuli by stimuli by subjects) for heterogeneous subjects is proposed. First, it is shown that INDSCAL may fail to identify a common space representative of the observed data structure in presence of heterogeneity. A new model that removes the rotational invariance of…
Lorz, Alexander; Lorenzi, Tommaso; Clairambault, Jean; Escargueil, Alexandre; Perthame, Benoît
2015-01-01
Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang-bang delivery of cytotoxic and cytostatic drugs.
NASA Astrophysics Data System (ADS)
Khebbab, Mohamed; Feliachi, Mouloud; El Hadi Latreche, Mohamed
2018-03-01
In this present paper, a simulation of eddy current non-destructive testing (EC NDT) on unidirectional carbon fiber reinforced polymer is performed; for this magneto-dynamic formulation in term of magnetic vector potential is solved using finite element heterogeneous multi-scale method (FE HMM). FE HMM has as goal to compute the homogenized solution without calculating the homogenized tensor explicitly, the solution is based only on the physical characteristic known in micro domain. This feature is well adapted to EC NDT to evaluate defect in carbon composite material in microscopic scale, where the defect detection is performed by coil impedance measurement; the measurement value is intimately linked to material characteristic in microscopic level. Based on this, our model can handle different defects such as: cracks, inclusion, internal electrical conductivity changes, heterogeneities, etc. The simulation results were compared with the solution obtained with homogenized material using mixture law, a good agreement was found.
NASA Astrophysics Data System (ADS)
Petersson, Anders; Rodgers, Arthur
2010-05-01
The finite difference method on a uniform Cartesian grid is a highly efficient and easy to implement technique for solving the elastic wave equation in seismic applications. However, the spacing in a uniform Cartesian grid is fixed throughout the computational domain, whereas the resolution requirements in realistic seismic simulations usually are higher near the surface than at depth. This can be seen from the well-known formula h ≤ L-P which relates the grid spacing h to the wave length L, and the required number of grid points per wavelength P for obtaining an accurate solution. The compressional and shear wave lengths in the earth generally increase with depth and are often a factor of ten larger below the Moho discontinuity (at about 30 km depth), than in sedimentary basins near the surface. A uniform grid must have a grid spacing based on the small wave lengths near the surface, which results in over-resolving the solution at depth. As a result, the number of points in a uniform grid is unnecessarily large. In the wave propagation project (WPP) code, we address the over-resolution-at-depth issue by generalizing our previously developed single grid finite difference scheme to work on a composite grid consisting of a set of structured rectangular grids of different spacings, with hanging nodes on the grid refinement interfaces. The computational domain in a regional seismic simulation often extends to depth 40-50 km. Hence, using a refinement ratio of two, we need about three grid refinements from the bottom of the computational domain to the surface, to keep the local grid size in approximate parity with the local wave lengths. The challenge of the composite grid approach is to find a stable and accurate method for coupling the solution across the grid refinement interface. Of particular importance is the treatment of the solution at the hanging nodes, i.e., the fine grid points which are located in between coarse grid points. WPP implements a new, energy conserving, coupling procedure for the elastic wave equation at grid refinement interfaces. When used together with our single grid finite difference scheme, it results in a method which is provably stable, without artificial dissipation, for arbitrary heterogeneous isotropic elastic materials. The new coupling procedure is based on satisfying the summation-by-parts principle across refinement interfaces. From a practical standpoint, an important advantage of the proposed method is the absence of tunable numerical parameters, which seldom are appreciated by application experts. In WPP, the composite grid discretization is combined with a curvilinear grid approach that enables accurate modeling of free surfaces on realistic (non-planar) topography. The overall method satisfies the summation-by-parts principle and is stable under a CFL time step restriction. A feature of great practical importance is that WPP automatically generates the composite grid based on the user provided topography and the depths of the grid refinement interfaces. The WPP code has been verified extensively, for example using the method of manufactured solutions, by solving Lamb's problem, by solving various layer over half- space problems and comparing to semi-analytic (FK) results, and by simulating scenario earthquakes where results from other seismic simulation codes are available. WPP has also been validated against seismographic recordings of moderate earthquakes. WPP performs well on large parallel computers and has been run on up to 32,768 processors using about 26 Billion grid points (78 Billion DOF) and 41,000 time steps. WPP is an open source code that is available under the Gnu general public license.
NASA Astrophysics Data System (ADS)
Antamoshkin, O. A.; Kilochitskaya, T. R.; Ontuzheva, G. A.; Stupina, A. A.; Tynchenko, V. S.
2018-05-01
This study reviews the problem of allocation of resources in the heterogeneous distributed information processing systems, which may be formalized in the form of a multicriterion multi-index problem with the linear constraints of the transport type. The algorithms for solution of this problem suggest a search for the entire set of Pareto-optimal solutions. For some classes of hierarchical systems, it is possible to significantly speed up the procedure of verification of a system of linear algebraic inequalities for consistency due to the reducibility of them to the stream models or the application of other solution schemes (for strongly connected structures) that take into account the specifics of the hierarchies under consideration.
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar; Das, Amrita; Parween, Zeenat; Chattopadhyay, Amares
2015-10-01
The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half-space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface of uppermost initially stressed heterogeneous layer and intermediate initially stressed isotropic layer. Dispersion equations are obtained in closed form for both cases of irregularities, distinctly. The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave are the major highlights of the study. Comparative study has been made to identify the effects of different shapes of irregularity, presence of heterogeneity and initial stresses. Numerical computations have been carried out and depicted by means of graphs for the present study.
NASA Astrophysics Data System (ADS)
Koumi, Koffi Espoir; Chaise, Thibaut; Nelias, Daniel
2015-07-01
In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.
Aggarwal, Ankush
2017-08-01
Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.
Dai, Huiwang; Xu, Shuying; Chen, Jianxin; Miao, Xiaozeng; Zhu, Jianxi
2018-05-01
Oxalate enhanced mechanism of Fe 3 O 4 @γ-Fe 2 O 3 was developed to provide novel insight into catalytic process regulation of iron oxide catalysts in heterogeneous UV-Fenton system. And the iron oxide composite of Fe 3 O 4 @γ-Fe 2 O 3 was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FTIR) spectroscopy and nitrogen adsorption-desorption isotherms. The results showed that large amount of iron could be leached from catalyst in the presence of oxalate, which promoted the homogeneous UV-Fenton reactions in solution. Orange II degradation could be significantly enhanced with the increase of the ratio of homogeneous UV-Fenton process to heterogeneous UV-Fenton process. The optimum concentration of oxalate determined by experiment was 0.5 mM in oxalate enhanced heterogeneous UV-Fenton system. On this condition, the pseudo-first-order rate constant value of Orange II degradation was 0.314 min -1 , which was 2.3 times as high as that in heterogeneous UV-Fenton system. The removal rates of color and TOC were 100% and 86.6% after 20 min and 120 min treatment, respectively. In addition, the iron ions in solution could be almost completely adsorbed back to the catalyst surface in later degradation stages of Orange II. During the recycle experiments, the results showed that the increase of pH in solution and the sorption of intermediates on the catalyst surface would hinder oxalate enhanced process and lead to a decrease of degradation rate of Orange II in oxalate enhanced heterogeneous UV-Fenton system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Heat and mass transport during a groundwater replenishment trial in a highly heterogeneous aquifer
NASA Astrophysics Data System (ADS)
Seibert, Simone; Prommer, Henning; Siade, Adam; Harris, Brett; Trefry, Mike; Martin, Michael
2014-12-01
Changes in subsurface temperature distribution resulting from the injection of fluids into aquifers may impact physiochemical and microbial processes as well as basin resource management strategies. We have completed a 2 year field trial in a hydrogeologically and geochemically heterogeneous aquifer below Perth, Western Australia in which highly treated wastewater was injected for large-scale groundwater replenishment. During the trial, chloride and temperature data were collected from conventional monitoring wells and by time-lapse temperature logging. We used a joint inversion of these solute tracer and temperature data to parameterize a numerical flow and multispecies transport model and to analyze the solute and heat propagation characteristics that prevailed during the trial. The simulation results illustrate that while solute transport is largely confined to the most permeable lithological units, heat transport was also affected by heat exchange with lithological units that have a much lower hydraulic conductivity. Heat transfer by heat conduction was found to significantly influence the complex temporal and spatial temperature distribution, especially with growing radial distance and in aquifer sequences with a heterogeneous hydraulic conductivity distribution. We attempted to estimate spatially varying thermal transport parameters during the data inversion to illustrate the anticipated correlations of these parameters with lithological heterogeneities, but estimates could not be uniquely determined on the basis of the collected data.
A discrete-space urban model with environmental amenities
Liaila Tajibaeva; Robert G. Haight; Stephen Polasky
2008-01-01
This paper analyzes the effects of providing environmental amenities associated with open space in a discrete-space urban model and characterizes optimal provision of open space across a metropolitan area. The discrete-space model assumes distinct neighborhoods in which developable land is homogeneous within a neighborhood but heterogeneous across neighborhoods. Open...
A green strategy for federated and heterogeneous clouds with communicating workloads.
Mateo, Jordi; Vilaplana, Jordi; Plà, Lluis M; Lérida, Josep Ll; Solsona, Francesc
2014-01-01
Providers of cloud environments must tackle the challenge of configuring their system to provide maximal performance while minimizing the cost of resources used. However, at the same time, they must guarantee an SLA (service-level agreement) to the users. The SLA is usually associated with a certain level of QoS (quality of service). As response time is perhaps the most widely used QoS metric, it was also the one chosen in this work. This paper presents a green strategy (GS) model for heterogeneous cloud systems. We provide a solution for heterogeneous job-communicating tasks and heterogeneous VMs that make up the nodes of the cloud. In addition to guaranteeing the SLA, the main goal is to optimize energy savings. The solution results in an equation that must be solved by a solver with nonlinear capabilities. The results obtained from modelling the policies to be executed by a solver demonstrate the applicability of our proposal for saving energy and guaranteeing the SLA.
A Green Strategy for Federated and Heterogeneous Clouds with Communicating Workloads
Plà, Lluis M.; Lérida, Josep Ll.
2014-01-01
Providers of cloud environments must tackle the challenge of configuring their system to provide maximal performance while minimizing the cost of resources used. However, at the same time, they must guarantee an SLA (service-level agreement) to the users. The SLA is usually associated with a certain level of QoS (quality of service). As response time is perhaps the most widely used QoS metric, it was also the one chosen in this work. This paper presents a green strategy (GS) model for heterogeneous cloud systems. We provide a solution for heterogeneous job-communicating tasks and heterogeneous VMs that make up the nodes of the cloud. In addition to guaranteeing the SLA, the main goal is to optimize energy savings. The solution results in an equation that must be solved by a solver with nonlinear capabilities. The results obtained from modelling the policies to be executed by a solver demonstrate the applicability of our proposal for saving energy and guaranteeing the SLA. PMID:25478589
Matthes, Jochen; Pery, Tal; Gründemann, Stephan; Buntkowsky, Gerd; Sabo-Etienne, Sylviane; Chaudret, Bruno; Limbach, Hans-Heinrich
2004-07-14
Some transition metal complexes are known to catalyze ortho/para hydrogen conversion, hydrogen isotope scrambling, and hydrogenation reactions in liquid solution. Using the example of Vaska's complex, we present here evidence by NMR that the solvent is not necessary for these reactions to occur. Thus, solid frozen solutions or polycrystalline powdered samples of homogeneous catalysts may become heterogeneous catalysts. Comparative liquid- and solid-state studies provide novel insight into the reaction mechanisms.
NASA Astrophysics Data System (ADS)
Ghattas, O.; Petra, N.; Cui, T.; Marzouk, Y.; Benjamin, P.; Willcox, K.
2016-12-01
Model-based projections of the dynamics of the polar ice sheets play a central role in anticipating future sea level rise. However, a number of mathematical and computational challenges place significant barriers on improving predictability of these models. One such challenge is caused by the unknown model parameters (e.g., in the basal boundary conditions) that must be inferred from heterogeneous observational data, leading to an ill-posed inverse problem and the need to quantify uncertainties in its solution. In this talk we discuss the problem of estimating the uncertainty in the solution of (large-scale) ice sheet inverse problems within the framework of Bayesian inference. Computing the general solution of the inverse problem--i.e., the posterior probability density--is intractable with current methods on today's computers, due to the expense of solving the forward model (3D full Stokes flow with nonlinear rheology) and the high dimensionality of the uncertain parameters (which are discretizations of the basal sliding coefficient field). To overcome these twin computational challenges, it is essential to exploit problem structure (e.g., sensitivity of the data to parameters, the smoothing property of the forward model, and correlations in the prior). To this end, we present a data-informed approach that identifies low-dimensional structure in both parameter space and the forward model state space. This approach exploits the fact that the observations inform only a low-dimensional parameter space and allows us to construct a parameter-reduced posterior. Sampling this parameter-reduced posterior still requires multiple evaluations of the forward problem, therefore we also aim to identify a low dimensional state space to reduce the computational cost. To this end, we apply a proper orthogonal decomposition (POD) approach to approximate the state using a low-dimensional manifold constructed using ``snapshots'' from the parameter reduced posterior, and the discrete empirical interpolation method (DEIM) to approximate the nonlinearity in the forward problem. We show that using only a limited number of forward solves, the resulting subspaces lead to an efficient method to explore the high-dimensional posterior.
NASA Astrophysics Data System (ADS)
Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd
2012-02-01
We present a conditional simulation algorithm to parameterize three-dimensional heterogeneities and construct heterogeneous petrophysical reservoir models. The models match the data at borehole locations, simulate heterogeneities at the same resolution as borehole logging data elsewhere in the model space, and simultaneously honor the correlations among multiple rock properties. The model provides a heterogeneous environment in which a variety of geophysical experiments can be simulated. This includes the estimation of petrophysical properties and the study of geophysical response to the heterogeneities. As an example, we model the elastic properties of a gas hydrate accumulation located at Mallik, Northwest Territories, Canada. The modeled properties include compressional and shear-wave velocities that primarily depend on the saturation of hydrate in the pore space of the subsurface lithologies. We introduce the conditional heterogeneous petrophysical models into a finite difference modeling program to study seismic scattering and attenuation due to multi-scale heterogeneity. Similarities between resonance scattering analysis of synthetic and field Vertical Seismic Profile data reveal heterogeneity with a horizontal-scale of approximately 50 m in the shallow part of the gas hydrate interval. A cross-borehole numerical experiment demonstrates that apparent seismic energy loss can occur in a pure elastic medium without any intrinsic attenuation of hydrate-bearing sediments. This apparent attenuation is largely attributed to attenuative leaky mode propagation of seismic waves through large-scale gas hydrate occurrence as well as scattering from patchy distribution of gas hydrate.
High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas
2017-04-01
Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise mapping application is composed of four principal modules: (1) pre-processing of raw data, (2) massive cross-correlation, (3) post-processing of correlation data based on computation of logarithmic energy ratio and (4) generation of source maps from post-processed data. Implementation of the solution posed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
Spinozzi, Francesco; Mariani, Paolo; Mičetić, Ivan; Ferrero, Claudio; Pontoni, Diego; Beltramini, Mariano
2012-01-01
Octopus vulgaris hemocyanin shows a particular self-assembling pattern, characterized by a hierarchical organization of monomers. The highest molecular weight aggregate is a decamer, the stability of which in solution depends on several parameters. Different pH values, buffer compositions, H2O/D2O ratios and Hofmeister’s salts result in modifications of the aggregation state of Octopus vulgaris hemocyanin. The new QUAFIT method, recently applied to derive the structure of the decameric and the monomeric assembly from small-angle scattering data, is used here to model the polydisperse system that results from changing the solution conditions. A dataset of small-angle X-rays and neutron scattering curves is analysed by QUAFIT to derive structure, composition and concentration of different assemblies present in solution. According to the hierarchy of the association/dissociation processes and the possible number of different aggregation products in solution, each sample has been considered as a heterogeneous mixture composed of the entire decamer, the dissociated “loose” monomer and all the intermediate dissociation products. Scattering curves corresponding to given experimental conditions are well fitted by using a linear combination of single particle form factors. QUAFIT has proved to be a method of general validity to describe solutions of proteins that, even after purification processes, result to be intrinsically heterogeneous. PMID:23166737
Algebraic dynamic multilevel method for compositional flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Cusini, Matteo; Fryer, Barnaby; van Kruijsdijk, Cor; Hajibeygi, Hadi
2018-02-01
This paper presents the algebraic dynamic multilevel method (ADM) for compositional flow in three dimensional heterogeneous porous media in presence of capillary and gravitational effects. As a significant advancement compared to the ADM for immiscible flows (Cusini et al., 2016) [33], here, mass conservation equations are solved along with k-value based thermodynamic equilibrium equations using a fully-implicit (FIM) coupling strategy. Two different fine-scale compositional formulations are considered: (1) the natural variables and (2) the overall-compositions formulation. At each Newton's iteration the fine-scale FIM Jacobian system is mapped to a dynamically defined (in space and time) multilevel nested grid. The appropriate grid resolution is chosen based on the contrast of user-defined fluid properties and on the presence of specific features (e.g., well source terms). Consistent mapping between different resolutions is performed by the means of sequences of restriction and prolongation operators. While finite-volume restriction operators are employed to ensure mass conservation at all resolutions, various prolongation operators are considered. In particular, different interpolation strategies can be used for the different primary variables, and multiscale basis functions are chosen as pressure interpolators so that fine scale heterogeneities are accurately accounted for across different resolutions. Several numerical experiments are conducted to analyse the accuracy, efficiency and robustness of the method for both 2D and 3D domains. Results show that ADM provides accurate solutions by employing only a fraction of the number of grid-cells employed in fine-scale simulations. As such, it presents a promising approach for large-scale simulations of multiphase flow in heterogeneous reservoirs with complex non-linear fluid physics.
Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem*
Katsevich, E.; Katsevich, A.; Singer, A.
2015-01-01
In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule under examination exhibits structural variability, which poses a fundamental challenge in SPR. The heterogeneity problem is the task of mapping the space of conformational states of a molecule. It has been previously suggested that the leading eigenvectors of the covariance matrix of the 3D molecules can be used to solve the heterogeneity problem. Estimating the covariance matrix is challenging, since only projections of the molecules are observed, but not the molecules themselves. In this paper, we formulate a general problem of covariance estimation from noisy projections of samples. This problem has intimate connections with matrix completion problems and high-dimensional principal component analysis. We propose an estimator and prove its consistency. When there are finitely many heterogeneity classes, the spectrum of the estimated covariance matrix reveals the number of classes. The estimator can be found as the solution to a certain linear system. In the cryo-EM case, the linear operator to be inverted, which we term the projection covariance transform, is an important object in covariance estimation for tomographic problems involving structural variation. Inverting it involves applying a filter akin to the ramp filter in tomography. We design a basis in which this linear operator is sparse and thus can be tractably inverted despite its large size. We demonstrate via numerical experiments on synthetic datasets the robustness of our algorithm to high levels of noise. PMID:25699132
Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium
NASA Astrophysics Data System (ADS)
Zhang, Mingkan; Zhang, Ye
2015-03-01
A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems. This article was corrected on 7 MAY 2015. See the end of the full text for details.
Query-Based Outlier Detection in Heterogeneous Information Networks.
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-03-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user's search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks.
Query-Based Outlier Detection in Heterogeneous Information Networks
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-01-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397
Hyporheic less-mobile porosity and solute transport in porous media
NASA Astrophysics Data System (ADS)
MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.
2017-12-01
Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.
Latent Space Tracking from Heterogeneous Data with an Application for Anomaly Detection
2015-11-01
specific, if the anomaly behaves as a sudden outlier after which the data stream goes back to normal state, then the anomalous data point should be...introduced three types of anomalies , all of them are sudden outliers . 438 J. Huang and X. Ning Table 2. Synthetic dataset: AUC and parameters method...Latent Space Tracking from Heterogeneous Data with an Application for Anomaly Detection Jiaji Huang1(B) and Xia Ning2 1 Department of Electrical
Synchrony-induced modes of oscillation of a neural field model
NASA Astrophysics Data System (ADS)
Esnaola-Acebes, Jose M.; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest
2017-11-01
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.
Synchrony-induced modes of oscillation of a neural field model.
Esnaola-Acebes, Jose M; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest
2017-11-01
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.
Biogeochemical control points in a water-limited critical zone
NASA Astrophysics Data System (ADS)
Chorover, J.; Brooks, P. D.; Gallery, R. E.; McIntosh, J. C.; Olshansky, Y.; Rasmussen, C.
2017-12-01
The routing of water and carbon through complex terrain is postulated to control structure evolution in the sub-humid critical zone of the southwestern US. By combining measurements of land-atmosphere exchange, ecohydrologic partitioning, and subsurface biogeochemistry, we seek to quantify how a heterogeneous (in time and space) distribution of "reactants" impacts both short-term (sub-)catchment response (e.g., pore and surface water chemical dynamics) and long-term landscape evolution (e.g., soil geochemistry/morphology and regolith weathering depth) in watersheds underlain by rhyolite and schist. Instrumented pedons in convergent, planar, and divergent landscape positions show distinct depth-dependent responses to precipitation events. Wetting front propagation, dissolved carbon flux and associated biogeochemical responses (e.g., pulses of CO2 production, O2 depletion, solute release) vary with topography, revealing the influence of lateral subsidies of water and carbon. The impacts of these episodes on the evolution of porous media heterogeneity is being investigated by statistical analysis of pore water chemistry, chemical/spectroscopic studies of solid phase organo-mineral products, sensor-derived water characteristic curves, and quantification of co-located microbial community activity/composition. Our results highlight the interacting effects of critical zone structure and convergent hydrologic flows in the evolution of biogeochemical control points.
A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method
NASA Astrophysics Data System (ADS)
Fu, Shubin; Gao, Kai
2017-11-01
Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.
NASA Astrophysics Data System (ADS)
Michael, Holly A.; Khan, Mahfuzur R.
2016-12-01
Aquifer heterogeneity presents a primary challenge in predicting the movement of solutes in groundwater systems. The problem is particularly difficult on very large scales, across which permeability, chemical properties, and pumping rates may vary by many orders of magnitude and data are often sparse. An example is the fluvio-deltaic aquifer system of Bangladesh, where naturally-occurring arsenic (As) exists over tens of thousands of square kilometers in shallow groundwater. Millions of people in As-affected regions rely on deep (≥150 m) groundwater as a safe source of drinking water. The sustainability of this resource has been evaluated with models using effective properties appropriate for a basin-scale contamination problem, but the extent to which preferential flow affects the timescale of downward migration of As-contaminated shallow groundwater is unknown. Here we embed detailed, heterogeneous representations of hydraulic conductivity (K), pumping rates, and sorptive properties (Kd) within a basin-scale numerical groundwater flow and solute transport model to evaluate their effects on vulnerability and deviations from simulations with homogeneous representations in two areas with different flow systems. Advective particle tracking shows that heterogeneity in K does not affect average travel times from shallow zones to 150 m depth, but the travel times of the fastest 10% of particles decreases by a factor of ∼2. Pumping distributions do not strongly affect travel times if irrigation remains shallow, but increases in the deep pumping rate substantially reduce travel times. Simulation of advective-dispersive transport with sorption shows that deep groundwater is protected from contamination over a sustainable timeframe (>1000 y) if the spatial distribution of Kd is uniform. However, if only low-K sediments sorb As, 30% of the aquifer is not protected. Results indicate that sustainable management strategies in the Bengal Basin should consider impacts of both physical and chemical heterogeneity, as well as their correlation. These insights from Bangladesh show that preferential flow strongly influences breakthrough of both conservative and reactive solutes even at large spatial scales, with implications for predicting water supply vulnerability in contaminated heterogeneous aquifers worldwide.
Some solutions of the general three body problem in form space
NASA Astrophysics Data System (ADS)
Titov, Vladimir
2018-05-01
Some solutions of three body problem with equal masses are first considered in form space. The solutions in usual euclidean space may be restored from these form space solutions. If constant energy h < 0, the trajectories are located inside of Hill's surface. Without loss of generality due to scale symmetry we can set h = -1. Such surface has a simple form in form space. Solutions of isosceles and rectilinear three body problems lie within Hill's curve; periodic solutions of free fall three body problem start in one point of this curve, and finish in another. The solutions are illustrated by number of figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehghani, M.H.; Department of Physics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1; Perimeter Institute for Theoretical Physics, 35 Caroline Street North, Waterloo, Ontario
We investigate the existence of Taub-NUT (Newman-Unti-Tamburino) and Taub-bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter {alpha} goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield nonextremal NUT solutions to Einstein gravity having a curvature singularity at r=N in the limit {alpha}{yields}0. Indeed, we have nonextreme NUT solutions in 2+2k dimensions withmore » nontrivial fibration only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a two-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two-dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.
Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flowmore » simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.« less
An open, object-based modeling approach for simulating subsurface heterogeneity
NASA Astrophysics Data System (ADS)
Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.
2017-12-01
Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.
Hu, B.X.; He, C.
2008-01-01
An iterative inverse method, the sequential self-calibration method, is developed for mapping spatial distribution of a hydraulic conductivity field by conditioning on nonreactive tracer breakthrough curves. A streamline-based, semi-analytical simulator is adopted to simulate solute transport in a heterogeneous aquifer. The simulation is used as the forward modeling step. In this study, the hydraulic conductivity is assumed to be a deterministic or random variable. Within the framework of the streamline-based simulator, the efficient semi-analytical method is used to calculate sensitivity coefficients of the solute concentration with respect to the hydraulic conductivity variation. The calculated sensitivities account for spatial correlations between the solute concentration and parameters. The performance of the inverse method is assessed by two synthetic tracer tests conducted in an aquifer with a distinct spatial pattern of heterogeneity. The study results indicate that the developed iterative inverse method is able to identify and reproduce the large-scale heterogeneity pattern of the aquifer given appropriate observation wells in these synthetic cases. ?? International Association for Mathematical Geology 2008.
Liu, Jia; Gong, Maoguo; Qin, Kai; Zhang, Puzhao
2018-03-01
We propose an unsupervised deep convolutional coupling network for change detection based on two heterogeneous images acquired by optical sensors and radars on different dates. Most existing change detection methods are based on homogeneous images. Due to the complementary properties of optical and radar sensors, there is an increasing interest in change detection based on heterogeneous images. The proposed network is symmetric with each side consisting of one convolutional layer and several coupling layers. The two input images connected with the two sides of the network, respectively, are transformed into a feature space where their feature representations become more consistent. In this feature space, the different map is calculated, which then leads to the ultimate detection map by applying a thresholding algorithm. The network parameters are learned by optimizing a coupling function. The learning process is unsupervised, which is different from most existing change detection methods based on heterogeneous images. Experimental results on both homogenous and heterogeneous images demonstrate the promising performance of the proposed network compared with several existing approaches.
Distributed heterogeneous inspecting system and its middleware-based solution.
Huang, Li-can; Wu, Zhao-hui; Pan, Yun-he
2003-01-01
There are many cases when an organization needs to monitor the data and operations of its supervised departments, especially those departments which are not owned by this organization and are managed by their own information systems. Distributed Heterogeneous Inspecting System (DHIS) is the system an organization uses to monitor its supervised departments by inspecting their information systems. In DHIS, the inspected systems are generally distributed, heterogeneous, and constructed by different companies. DHIS has three key processes-abstracting core data sets and core operation sets, collecting these sets, and inspecting these collected sets. In this paper, we present the concept and mathematical definition of DHIS, a metadata method for solving the interoperability, a security strategy for data transferring, and a middleware-based solution of DHIS. We also describe an example of the inspecting system at WENZHOU custom.
NASA Astrophysics Data System (ADS)
Aguirre, E. E.; Karchewski, B.
2017-12-01
DC resistivity surveying is a geophysical method that quantifies the electrical properties of the subsurface of the earth by applying a source current between two electrodes and measuring potential differences between electrodes at known distances from the source. Analytical solutions for a homogeneous half-space and simple subsurface models are well known, as the former is used to define the concept of apparent resistivity. However, in situ properties are heterogeneous meaning that simple analytical models are only an approximation, and ignoring such heterogeneity can lead to misinterpretation of survey results costing time and money. The present study examines the extent to which random variations in electrical properties (i.e. electrical conductivity) affect potential difference readings and therefore apparent resistivities, relative to an assumed homogeneous subsurface model. We simulate the DC resistivity survey using a Finite Difference (FD) approximation of an appropriate simplification of Maxwell's equations implemented in Matlab. Electrical resistivity values at each node in the simulation were defined as random variables with a given mean and variance, and are assumed to follow a log-normal distribution. The Monte Carlo analysis for a given variance of electrical resistivity was performed until the mean and variance in potential difference measured at the surface converged. Finally, we used the simulation results to examine the relationship between variance in resistivity and variation in surface potential difference (or apparent resistivity) relative to a homogeneous half-space model. For relatively low values of standard deviation in the material properties (<10% of mean), we observed a linear correlation between variance of resistivity and variance in apparent resistivity.
NASA Astrophysics Data System (ADS)
Srivastava, D. C.
2016-12-01
A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observationsDeepak C. Srivastava, Prithvi Thakur and Pravin K. GuptaDepartment of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, India. Abstract Paleostress estimation from a group of heterogeneous fault-slip observations entails first the classification of the observations into homogeneous fault sets and then a separate inversion of each homogeneous set. This study combines these two issues into a nonlinear inverse problem and proposes a heuristic search method that inverts the heterogeneous fault-slip observations. The method estimates different paleostress states in a group of heterogeneous fault-slip observations and classifies it into homogeneous sets as a byproduct. It uses the genetic algorithm operators, elitism, selection, encoding, crossover and mutation. These processes translate into a guided search that finds successively fitter solutions and operate iteratively until the termination criteria is met and the globally fittest stress tensors are obtained. We explain the basic steps of the algorithm on a working example and demonstrate validity of the method on several synthetic and a natural group of heterogeneous fault-slip observations. The method is independent of any user-defined bias or any entrapment of solution in a local optimum. It succeeds even in the difficult situations where other classification methods are found to fail.
A reaction-diffusion malaria model with seasonality and incubation period.
Bai, Zhenguo; Peng, Rui; Zhao, Xiao-Qiang
2018-07-01
In this paper, we propose a time-periodic reaction-diffusion model which incorporates seasonality, spatial heterogeneity and the extrinsic incubation period (EIP) of the parasite. The basic reproduction number [Formula: see text] is derived, and it is shown that the disease-free periodic solution is globally attractive if [Formula: see text], while there is an endemic periodic solution and the disease is uniformly persistent if [Formula: see text]. Numerical simulations indicate that prolonging the EIP may be helpful in the disease control, while spatial heterogeneity of the disease transmission coefficient may increase the disease burden.
Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal.
Zhou, Changsong; Sun, Lushi; Zhang, Anchao; Wu, Xiaofeng; Ma, Chuan; Su, Sheng; Hu, Song; Xiang, Jun
2015-04-01
A series of novel spinel Fe3-xCuxO4 (0
Ant Colony Optimization for Mapping, Scheduling and Placing in Reconfigurable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrandi, Fabrizio; Lanzi, Pier Luca; Pilato, Christian
Modern heterogeneous embedded platforms, com- posed of several digital signal, application specific and general purpose processors, also include reconfigurable devices support- ing partial dynamic reconfiguration. These devices can change the behavior of some of their parts during execution, allowing hardware acceleration of more sections of the applications. Never- theless, partial dynamic reconfiguration imposes severe overheads in terms of latency. For such systems, a critical part of the design phase is deciding on which processing elements (mapping) and when (scheduling) executing a task, but also how to place them on the reconfigurable device to guarantee the most efficient reuse of themore » programmable logic. In this paper we propose an algorithm based on Ant Colony Optimization (ACO) that simultaneously executes the scheduling, the mapping and the linear placing of tasks, hiding reconfiguration overheads through prefetching. Our heuristic gradually constructs solutions and then searches around the best ones, cutting out non-promising areas of the design space. We show how to consider the partial dynamic reconfiguration constraints in the scheduling, placing and mapping problems and compare our formulation to other heuristics that address the same problems. We demonstrate that our proposal is more general and robust, and finds better solutions (16.5% in average) with respect to competing solutions.« less
Space-time thermodynamics of the glass transition
NASA Astrophysics Data System (ADS)
Merolle, Mauro; Garrahan, Juan P.; Chandler, David
2005-08-01
We consider the probability distribution for fluctuations in dynamical action and similar quantities related to dynamic heterogeneity. We argue that the so-called “glass transition” is a manifestation of low action tails in these distributions where the entropy of trajectory space is subextensive in time. These low action tails are a consequence of dynamic heterogeneity and an indication of phase coexistence in trajectory space. The glass transition, where the system falls out of equilibrium, is then an order-disorder phenomenon in space-time occurring at a temperature Tg, which is a weak function of measurement time. We illustrate our perspective ideas with facilitated lattice models and note how these ideas apply more generally. Author contributions: M.M., J.P.G., and D.C. performed research and wrote the paper.
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2016-04-01
Quantification of flow and solute transport in the shallow subsurface adjacent to the atmosphere is decisive to prevent groundwater pollution and conserve groundwater quality, to develop successful remediation strategies and to understand nutrient cycling. In nature, due to erratic precipitation-evaporation patterns, soil moisture content and related hydraulic conductivity in the vadose zone are not only variable in space but also in time. Flow directions and flow paths locally change between precipitation and evaporation periods. This makes the identification and description of solute transport processes in the vadose zone a complex problem. Recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a) focused on the investigation of upward transport of solutes during evaporation in heterogeneous soil columns, where heterogeneity was introduced by a sharp vertical material interface between two types of sand. Lateral solute transport through the interface in both (lateral) directions was observed at different depths of the investigated soil columns. Following recent approaches, we conduct two-dimensional numerical simulations in a similar setup which is composed of two sands with a sharp vertical material interface. The investigation is broadened from the sole evaporation to combined precipitation-evaporation cycles in order to quantify transport processes resulting from the combined effects of heterogeneous soil structure and dynamic flow conditions. Simulations are performed with a coupled finite volume and random walk particle tracking algorithm (Ippisch et al., 2006; Bechtold et al., 2011b). By comparing scenarios with cyclic boundary conditions and stationary counterparts with the same net flow rate, we found that duration and intensity of precipitation and evaporation periods potentially have an influence on lateral redistribution of solutes and thus leaching rates. Whether or not dynamic boundary conditions lead to significant deviations in the transport behavior depends on the magnitude of the flow rates and hydraulic conductivity curves of the materials. Based on the unsaturated hydraulic conductivity at the intersection point of conductivity curves, we are able to define an estimate of flow rates at which the dynamic of the upper boundary condition significantly alters preferential flow paths through the system. If flow rates are low, with regard to the materials hydraulic conductivity at the intersection point, the influence of dynamic boundary conditions is small. If flow rates are in the range of the unsaturated hydraulic conductivity at intersection, solute is trapped in the fine material during upwards transport, which results in a more pronounced tailing. For flow rates exceeding the intersection conductivity, a redistribution at the soil surface can occur. References: Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, T.P.A. Ferré and H. Veerecken. 2011a. Near-surface solute redistribution during evaporation. Geophys. Res. Lett., 38, L17404, doi:10.1029/2011GL048147. Bechtold, M., J. Vanderborght, O. Ippisch and H. Vereecken. 2011b. Efficient random walk particle tracking algorithm for advective dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Resour. Res., 47, W10526, doi: 10.1029/2010WR010267. Ippisch O., H.-J. Vogel and P. Bastian. 2006. Validity limits fort he van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour., 29, 1780-1789, doi: 10.1016/j.advwateres.2005.12.011. Lehmann, P. and D. Or. 2009. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E, 80, 046318, doi:10.1103/PhysRevE.80.046318.
NASA Astrophysics Data System (ADS)
Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.
2017-12-01
It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required to reduce an error metric based on the Hessian of the field. This allows the local pressure drawdown to be captured without user¬ driven modification of the mesh. We demonstrate that the method has wide application in reservoir ¬scale models of geothermal fields, and regional models of groundwater resources.
NASA Astrophysics Data System (ADS)
Zhou, Yajun
This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of compact operators, we outline the geometric and physical conditions that guarantee a robust solution to the light scattering problem, and devise an asymptotic solution to the Born equation of electromagnetic scattering for arbitrarily shaped dielectric in a non-perturbative manner.
CO2 diffusion into pore spaces limits weathering rate of an experimental basalt landscape
van Haren, Joost; Dontsova, Katerina; Barron-Gafford, Greg A.; Troch, Peter A.; Chorover, Jon; DeLong, Stephen B.; Breshears, David D.; Huxman, Travis E.; Pelletier, Jon D.; Saleska, Scott; Zeng, Xubin; Ruiz, Joaquin
2017-01-01
Basalt weathering is a key control over the global carbon cycle, though in situ measurements of carbon cycling are lacking. In an experimental, vegetation-free hillslope containing 330 m3 of ground basalt scoria, we measured real-time inorganic carbon dynamics within the porous media and seepage flow. The hillslope carbon flux (0.6–5.1 mg C m–2 h–1) matched weathering rates of natural basalt landscapes (0.4–8.8 mg C m–2 h–1) despite lacking the expected field-based impediments to weathering. After rainfall, a decrease in CO2 concentration ([CO2]) in pore spaces into solution suggested rapid carbon sequestration but slow reactant supply. Persistent low soil [CO2] implied that diffusion limited CO2 supply, while when sufficiently dry, reaction product concentrations limited further weathering. Strong influence of diffusion could cause spatial heterogeneity of weathering even in natural settings, implying that modeling studies need to include variable soil [CO2] to improve carbon cycling estimates associated with potential carbon sequestration methods.
Psychosocial issues affecting crews during long-duration international space missions.
Kanas, N
1998-01-01
Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.
Psychosocial issues affecting crews during long-duration international space missions
NASA Technical Reports Server (NTRS)
Kanas, N.
1998-01-01
Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Joint sparsity based heterogeneous data-level fusion for target detection and estimation
NASA Astrophysics Data System (ADS)
Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe
2017-05-01
Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.
Xie, Xin-Ping; Xie, Yu-Feng; Wang, Hong-Qiang
2017-08-23
Large-scale accumulation of omics data poses a pressing challenge of integrative analysis of multiple data sets in bioinformatics. An open question of such integrative analysis is how to pinpoint consistent but subtle gene activity patterns across studies. Study heterogeneity needs to be addressed carefully for this goal. This paper proposes a regulation probability model-based meta-analysis, jGRP, for identifying differentially expressed genes (DEGs). The method integrates multiple transcriptomics data sets in a gene regulatory space instead of in a gene expression space, which makes it easy to capture and manage data heterogeneity across studies from different laboratories or platforms. Specifically, we transform gene expression profiles into a united gene regulation profile across studies by mathematically defining two gene regulation events between two conditions and estimating their occurring probabilities in a sample. Finally, a novel differential expression statistic is established based on the gene regulation profiles, realizing accurate and flexible identification of DEGs in gene regulation space. We evaluated the proposed method on simulation data and real-world cancer datasets and showed the effectiveness and efficiency of jGRP in identifying DEGs identification in the context of meta-analysis. Data heterogeneity largely influences the performance of meta-analysis of DEGs identification. Existing different meta-analysis methods were revealed to exhibit very different degrees of sensitivity to study heterogeneity. The proposed method, jGRP, can be a standalone tool due to its united framework and controllable way to deal with study heterogeneity.
Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments
NASA Astrophysics Data System (ADS)
Jawitz, J. W.; Gall, H. E.; Rao, P.
2013-12-01
What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
Whale, Thomas F; Holden, Mark A; Wilson, Theodore W; O'Sullivan, Daniel; Murray, Benjamin J
2018-05-07
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 10 5 . This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature.
Role of the constant region domain in the structural diversity of human antibody light chains.
Hifumi, Emi; Taguchi, Hiroaki; Kato, Ryuichi; Uda, Taizo
2017-04-01
Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM -1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains. © FASEB.
Biotic Drivers of Spatial Heterogeneity and Implications for River Ecosystems
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2017-04-01
Rivers throughout the northern hemisphere have been simplified and homogenized by the removal of beavers and instream wood, along with numerous forms of channel engineering and flow regulation. Loss of spatial heterogeneity in river corridors - channels and floodplains - affects downstream fluxes of water, sediment, organic matter, and nutrients, as well as stream metabolism, biomass, and biodiversity. Recent work in streams of the Colorado Rocky Mountains illustrates how the presence of beavers and instream wood can facilitate spatial heterogeneity by creating stable, persistent, multithread channel planform and high channel-floodplain and channel-hyporheic zone connectivity. This spatial heterogeneity facilitates retention of water in pools, floodplain wetlands, and hyporheic storage. Suspended sediment, particulate organic matter (POM), and solutes are also more likely to be retained in these stream segments than in more uniform stream segments with greater downstream conveyance. Retention of POM and solutes equates to greater volumes of organic carbon storage per unit valley length and greater rates of nitrogen uptake. Spatially heterogeneous stream segments also exhibit greater biomass and biodiversity of aquatic macroinvertebrates, salmonid fish, and riparian spiders than do more uniform stream segments. These significant differences in stream form and function are unlikely to be unique to this field area and can provide a conceptual model for understanding and restoring ecosystem functions in other rivers.
Drop-on-Demand Single Cell Isolation and Total RNA Analysis
Moon, Sangjun; Kim, Yun-Gon; Dong, Lingsheng; Lombardi, Michael; Haeggstrom, Edward; Jensen, Roderick V.; Hsiao, Li-Li; Demirci, Utkan
2011-01-01
Technologies that rapidly isolate viable single cells from heterogeneous solutions have significantly contributed to the field of medical genomics. Challenges remain both to enable efficient extraction, isolation and patterning of single cells from heterogeneous solutions as well as to keep them alive during the process due to a limited degree of control over single cell manipulation. Here, we present a microdroplet based method to isolate and pattern single cells from heterogeneous cell suspensions (10% target cell mixture), preserve viability of the extracted cells (97.0±0.8%), and obtain genomic information from isolated cells compared to the non-patterned controls. The cell encapsulation process is both experimentally and theoretically analyzed. Using the isolated cells, we identified 11 stem cell markers among 1000 genes and compare to the controls. This automated platform enabling high-throughput cell manipulation for subsequent genomic analysis employs fewer handling steps compared to existing methods. PMID:21412416
Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions
Hayat, Tasawar; Haider, Farwa; Alsaedi, Ahmed
2017-01-01
Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's law through Cattaneo-Christov heat flux is employed. Equal diffusion coefficients are employed for both reactants and auto catalyst. Optimal homotopy scheme is employed for solutions development of nonlinear problems. Solutions expressions of velocity, temperature and concentration fields are provided. Skin friction coefficient and heat transfer rate are computed and analyzed. Here the temperature and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to classical Fourier's law of heat conduction. Moreover, the homogeneous and heterogeneous reactions parameters have opposite behaviors for concentration field. PMID:28380014
Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajic, H.L.; Ougouag, A.M.
1987-01-01
Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less
Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity
NASA Astrophysics Data System (ADS)
Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.
2017-03-01
The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.
NASA Astrophysics Data System (ADS)
Libera, A.; de Barros, F.; Guadagnini, A.
2015-12-01
We study and compare the effect of temporally variable and uniform pumping regimes on key features of contaminant transport in a randomly heterogeneous aquifer. Pumping wells are used for groundwater supply in the context of urban, agricultural, and industrial activities. Groundwater management agencies typically schedule groundwater extraction through a predefined sequence of pumping periods to balance benefits to anthropogenic activities and environmental needs. The impact of the spatial variability of aquifer hydraulic properties, such as hydraulic conductivity, on contaminant transport and associated solute residence times are widely studied. Only a limited number of studies address the way a given pumping schedule affects contaminant plume behavior in heterogeneous aquifers. In this context, the feedback between a transient pumping regime and contaminant breakthrough curves is largely unexplored. Our goal is to investigate the way diverse groundwater extraction strategies affect the history of solute concentration recovered at the well while accounting for the natural variability of the geological system, in the presence of incomplete information on hydraulic conductivity distribution. Considering the joint effects of spatially heterogeneous hydraulic conductivity and temporally varying well pumping rates, this work offers a realistic evaluation of groundwater contamination risk. The latter is here considered in the context of human health and is quantified in terms of the probability that harm will result from exposure to a contaminant found in groundwater. Two scenarios are considered: a pumping well that extracts a given amount of water operating (a) at a constant pumping rate and (b) under transient conditions. The analysis is performed within a numerical Monte Carlo framework. We probe the impact of diverse geostatistical structures to describe aquifer heterogeneity on solute breakthrough curves and the statistics of target environmental performance metrics, including, e.g., peak concentration and the time at which peak breakthrough at well occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knopf, Daniel A.; Alpert, Peter A.
Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humiditymore » (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log 10(J het) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Finally, we demonstrate that ABIFM can be used to derive frozen fractions of droplets and ice particle production for atmospheric models of cirrus and mixed phase cloud conditions.« less
Knopf, Daniel A; Alpert, Peter A
2013-01-01
Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can be used to derive frozen fractions of droplets and ice particle production for atmospheric models of cirrus and mixed phase cloud conditions.
Knopf, Daniel A.; Alpert, Peter A.
2013-04-24
Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, aw, which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humiditymore » (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, Jhet, to be uniquely expressed by T and aw, a result we term the aw based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, Jhet, frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log 10(J het) values for the various IN types derived exclusively by T and aw, provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Finally, we demonstrate that ABIFM can be used to derive frozen fractions of droplets and ice particle production for atmospheric models of cirrus and mixed phase cloud conditions.« less
Load Balancing in Structured P2P Networks
NASA Astrophysics Data System (ADS)
Zhu, Yingwu
In this chapter we start by addressing the importance and necessity of load balancing in structured P2P networks, due to three main reasons. First, structured P2P networks assume uniform peer capacities while peer capacities are heterogeneous in deployed P2P networks. Second, resorting to pseudo-uniformity of the hash function used to generate node IDs and data item keys leads to imbalanced overlay address space and item distribution. Lastly, placement of data items cannot be randomized in some applications (e.g., range searching). We then present an overview of load aggregation and dissemination techniques that are required by many load balancing algorithms. Two techniques are discussed including tree structure-based approach and gossip-based approach. They make different tradeoffs between estimate/aggregate accuracy and failure resilience. To address the issue of load imbalance, three main solutions are described: virtual server-based approach, power of two choices, and address-space and item balancing. While different in their designs, they all aim to improve balance on the address space and data item distribution. As a case study, the chapter discusses a virtual server-based load balancing algorithm that strives to ensure fair load distribution among nodes and minimize load balancing cost in bandwidth. Finally, the chapter concludes with future research and a summary.
Effect of Co-Solutes on Template-Directed Nonenzymatic Copying of RNA
NASA Astrophysics Data System (ADS)
Bapat, N. V.; Rajamani, S.
2017-07-01
Given the heterogeneous nature of the prebiotic milieu, we report here, the effect of presence of lipid vesicles and Polyethylene Glycol (PEG) as co-solutes on the rate and accuracy of enzyme-free template-directed RNA primer extension reactions.
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi
2007-04-01
We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.
NASA Astrophysics Data System (ADS)
Käser, Martin; Dumbser, Michael; de la Puente, Josep; Igel, Heiner
2007-01-01
We present a new numerical method to solve the heterogeneous anelastic, seismic wave equations with arbitrary high order accuracy in space and time on 3-D unstructured tetrahedral meshes. Using the velocity-stress formulation provides a linear hyperbolic system of equations with source terms that is completed by additional equations for the anelastic functions including the strain history of the material. These additional equations result from the rheological model of the generalized Maxwell body and permit the incorporation of realistic attenuation properties of viscoelastic material accounting for the behaviour of elastic solids and viscous fluids. The proposed method combines the Discontinuous Galerkin (DG) finite element (FE) method with the ADER approach using Arbitrary high order DERivatives for flux calculations. The DG approach, in contrast to classical FE methods, uses a piecewise polynomial approximation of the numerical solution which allows for discontinuities at element interfaces. Therefore, the well-established theory of numerical fluxes across element interfaces obtained by the solution of Riemann problems can be applied as in the finite volume framework. The main idea of the ADER time integration approach is a Taylor expansion in time in which all time derivatives are replaced by space derivatives using the so-called Cauchy-Kovalewski procedure which makes extensive use of the governing PDE. Due to the ADER time integration technique the same approximation order in space and time is achieved automatically and the method is a one-step scheme advancing the solution for one time step without intermediate stages. To this end, we introduce a new unrolled recursive algorithm for efficiently computing the Cauchy-Kovalewski procedure by making use of the sparsity of the system matrices. The numerical convergence analysis demonstrates that the new schemes provide very high order accuracy even on unstructured tetrahedral meshes while computational cost and storage space for a desired accuracy can be reduced when applying higher degree approximation polynomials. In addition, we investigate the increase in computing time, when the number of relaxation mechanisms due to the generalized Maxwell body are increased. An application to a well-acknowledged test case and comparisons with analytic and reference solutions, obtained by different well-established numerical methods, confirm the performance of the proposed method. Therefore, the development of the highly accurate ADER-DG approach for tetrahedral meshes including viscoelastic material provides a novel, flexible and efficient numerical technique to approach 3-D wave propagation problems including realistic attenuation and complex geometry.
NASA Astrophysics Data System (ADS)
Li, W.
2017-12-01
Data is the crux of science. The widespread availability of big data today is of particular importance for fostering new forms of geospatial innovation. This paper reports a state-of-the-art solution that addresses a key cyberinfrastructure research problem—providing ready access to big, distributed geospatial data resources on the Web. We first formulate this data-access problem and introduce its indispensable elements, including identifying the cyber-location, space and time coverage, theme, and quality of the dataset. We then propose strategies to tackle each data-access issue and make the data more discoverable and usable for geospatial data users and decision makers. Among these strategies is large-scale web crawling as a key technique to support automatic collection of online geospatial data that are highly distributed, intrinsically heterogeneous, and known to be dynamic. To better understand the content and scientific meanings of the data, methods including space-time filtering, ontology-based thematic classification, and service quality evaluation are incorporated. To serve a broad scientific user community, these techniques are integrated into an operational data crawling system, PolarHub, which is also an important cyberinfrastructure building block to support effective data discovery. A series of experiments were conducted to demonstrate the outstanding performance of the PolarHub system. We expect this work to contribute significantly in building the theoretical and methodological foundation for data-driven geography and the emerging spatial data science.
Discrete Regularization for Calibration of Geologic Facies Against Dynamic Flow Data
NASA Astrophysics Data System (ADS)
Khaninezhad, Mohammad-Reza; Golmohammadi, Azarang; Jafarpour, Behnam
2018-04-01
Subsurface flow model calibration involves many more unknowns than measurements, leading to ill-posed problems with nonunique solutions. To alleviate nonuniqueness, the problem is regularized by constraining the solution space using prior knowledge. In certain sedimentary environments, such as fluvial systems, the contrast in hydraulic properties of different facies types tends to dominate the flow and transport behavior, making the effect of within facies heterogeneity less significant. Hence, flow model calibration in those formations reduces to delineating the spatial structure and connectivity of different lithofacies types and their boundaries. A major difficulty in calibrating such models is honoring the discrete, or piecewise constant, nature of facies distribution. The problem becomes more challenging when complex spatial connectivity patterns with higher-order statistics are involved. This paper introduces a novel formulation for calibration of complex geologic facies by imposing appropriate constraints to recover plausible solutions that honor the spatial connectivity and discreteness of facies models. To incorporate prior connectivity patterns, plausible geologic features are learned from available training models. This is achieved by learning spatial patterns from training data, e.g., k-SVD sparse learning or the traditional Principal Component Analysis. Discrete regularization is introduced as a penalty functions to impose solution discreteness while minimizing the mismatch between observed and predicted data. An efficient gradient-based alternating directions algorithm is combined with variable splitting to minimize the resulting regularized nonlinear least squares objective function. Numerical results show that imposing learned facies connectivity and discreteness as regularization functions leads to geologically consistent solutions that improve facies calibration quality.
NASA Astrophysics Data System (ADS)
Haslauer, C. P.; Bárdossy, A.; Sudicky, E. A.
2017-09-01
This paper demonstrates quantitative reasoning to separate the dataset of spatially distributed variables into different entities and subsequently characterize their geostatistical properties, properly. The main contribution of the paper is a statistical based algorithm that matches the manual distinction results. This algorithm is based on measured data and is generally applicable. In this paper, it is successfully applied at two datasets of saturated hydraulic conductivity (K) measured at the Borden (Canada) and the Lauswiesen (Germany) aquifers. The boundary layer was successfully delineated at Borden despite its only mild heterogeneity and only small statistical differences between the divided units. The methods are verified with the more heterogeneous Lauswiesen aquifer K data-set, where a boundary layer has previously been delineated. The effects of the macro- and the microstructure on solute transport behaviour are evaluated using numerical solute tracer experiments. Within the microscale structure, both Gaussian and non-Gaussian models of spatial dependence of K are evaluated. The effects of heterogeneity both on the macro- and the microscale are analysed using numerical tracer experiments based on four scenarios: including or not including the macroscale structures and optimally fitting a Gaussian or a non-Gaussian model for the spatial dependence in the micro-structure. The paper shows that both micro- and macro-scale structures are important, as in each of the four possible geostatistical scenarios solute transport behaviour differs meaningfully.
NASA Astrophysics Data System (ADS)
Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean
2014-07-01
The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.
Hussein, Esam M A; Agbogun, H M D; Al, Tom A
2015-03-01
A method is presented for interpreting the values of x-ray attenuation coefficients reconstructed in computed tomography of porous media, while overcoming the ambiguity caused by the multichromatic nature of x-rays, dilution by void, and material heterogeneity. The method enables determination of porosity without relying on calibration or image segmentation or thresholding to discriminate pores from solid material. It distinguishes between solution-accessible and inaccessible pores, and provides the spatial and frequency distributions of solid-matrix material in a heterogeneous medium. This is accomplished by matching an image of a sample saturated with a contrast solution with that saturated with a transparent solution. Voxels occupied with solid-material and inaccessible pores are identified by the fact that they maintain the same location and image attributes in both images, with voxels containing inaccessible pores appearing empty in both images. Fully porous and accessible voxels exhibit the maximum contrast, while the rest are porous voxels containing mixtures of pore solutions and solid. This matching process is performed with an image registration computer code, and image processing software that requires only simple subtraction and multiplication (scaling) processes. The process is demonstrated in dolomite (non-uniform void distribution, homogeneous solid matrix) and sandstone (nearly uniform void distribution, heterogeneous solid matrix) samples, and its overall performance is shown to compare favorably with a method based on calibration and thresholding. Copyright © 2014 Elsevier Ltd. All rights reserved.
Population equations for degree-heterogenous neural networks
NASA Astrophysics Data System (ADS)
Kähne, M.; Sokolov, I. M.; Rüdiger, S.
2017-11-01
We develop a statistical framework for studying recurrent networks with broad distributions of the number of synaptic links per neuron. We treat each group of neurons with equal input degree as one population and derive a system of equations determining the population-averaged firing rates. The derivation rests on an assumption of a large number of neurons and, additionally, an assumption of a large number of synapses per neuron. For the case of binary neurons, analytical solutions can be constructed, which correspond to steps in the activity versus degree space. We apply this theory to networks with degree-correlated topology and show that complex, multi-stable regimes can result for increasing correlations. Our work is motivated by the recent finding of subnetworks of highly active neurons and the fact that these neurons tend to be connected to each other with higher probability.
Hot spots and hot moments in riparian zones: potential for improved water quality management
USDA-ARS?s Scientific Manuscript database
Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Haslauer, C. P.; Cirpka, O. A.; Vesselinov, V. V.
2016-12-01
It is desirable to predict the shape of breakthrough curves downgradient of a solute source from subsurface structural parameters (as in the small-perturbation macrodispersion theory) both for realistically heterogeneous fields, and at early time, before any sort of Fickian model is applicable. Using a combination of a priori knowledge, large-scale Monte Carlo simulation, and regression techniques, we have developed closed-form predictive expressions for pre- and post-Fickian flux-weighted solute breakthrough curves as a function of distance from the source (in integral scales) and variance of the log hydraulic conductivity field. Using the ensemble of Monte Carlo realizations, we have simultaneously computed error envelopes for the estimated flux-weighted breakthrough, and for the divergence of point breakthrough curves from the flux-weighted average, as functions of the predictive parameters. We have also obtained implied late-time macrodispersion coefficients for highly heterogeneous environments from the breakthrough statistics. This analysis is relevant for the modelling of reactive as well as conservative transport, since for many kinetic sorption and decay reactions, Laplace-domain modification of the breakthrough curve for conservative solute produces the correct curve for the reactive system.
Moment tensor solutions for the Iberian-Maghreb region during the IberArray deployment (2009-2013)
NASA Astrophysics Data System (ADS)
Martín, R.; Stich, D.; Morales, J.; Mancilla, F.
2015-11-01
We perform regional moment tensor inversion for 84 earthquakes that occurred in the Iberian-Maghreb region during the second and third leg of IberArray deployment (2009-2013). During this period around 300 seismic broadband stations were operating in the area, reducing the interstation spacing to ~ 50 km over extended areas. We use the established processing sequence of the IAG moment tensor catalogue, increasing to 309 solutions with this update. New moment tensor solutions present magnitudes ranging from Mw 3.2 to 6.3 and source depths from 2 to 620 km. Most solutions correspond to Northern Algeria, where a compressive deformation pattern is consolidated. The Betic-Rif sector shows a progression of faulting styles from mainly shear faulting in the east via predominantly extension in the central sector to reverse and strike-slip faulting in the west. At the SW Iberia margin, the predominance of strike-slip and reverse faulting agrees with the expected transpressive character of the Eurasian-Nubia plate boundary. New strike-slip and oblique reverse solutions in the Trans-Alboran Shear Zone reflect its left-lateral regime. The most significant improvement corresponds to the Atlas Mountains and the surroundings of the Gibraltar Arc with scarce previous solutions. Reverse and strike-slip faulting solutions in the Atlas System display the accommodation of plate convergence by shortening in the belt. At the Gibraltar Arc, several new solutions were obtained at lower crustal and subcrustal depths. These mechanisms show substantial heterogeneity, covering the full range of faulting styles with highly variable orientations of principal stress axes, including opposite strike slip faulting solutions at short distance. The observations are not straightforward to explain by a simple geodynamic scenario and suggest the interplay of different processes, among them plate convergence in old oceanic lithospheric with large brittle thickness at the SW Iberia margin, as well as delamination of thickened continental lithosphere beneath the Betic-Rif arc.
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes
Holden, Mark A.; Wilson, Theodore W.; O'Sullivan, Daniel; Murray, Benjamin J.
2018-01-01
Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 105. This concentration was chosen for a survey across multiple solutes–nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these ‘solute effects’, to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature. PMID:29780544
Piazza, Gustavo Antonio; Dupas, Rémi; Gascuel-Odoux, Chantal; Grimaldi, Catherine; Pinheiro, Adilson; Kaufmann, Vander
2018-04-20
Despite global efforts to monitor water quality in catchments worldwide, tropical and subtropical zones still lack data to study the influence of human activities and climate variations on solute dynamics. In this study, we monitored ten solutes every two weeks for six years (2010-2015) in three nested catchments (2 to30 km 2 ), which contained heterogeneous landscapes composed of forests and agricultural land, and one small neighboring forested catchment (0.4 km 2 ). Data analysis revealed that i) rainfall, discharge and solute concentrations displayed no clear seasonal patterns, unlike many catchments of the temperate zone; ii) solute concentrations in the agricultural area were higher than those in the forested area, but both areas displayed similar temporal patterns due to a common hydroclimatic driver; iii) all four catchments displayed a chemostatic export regime for most of the solutes, similar to catchments of the temperate zone; and iv) a positive correlation was observed between anion concentrations and ENSO (El Niño-Southern Oscillation) index. ENSO appeared to influence both hydroclimatic and anion dynamics in these subtropical catchments. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Xiangyu; Xie, Nijie; Tian, Xinyue
2017-01-01
This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget. PMID:28208730
Li, Xiangyu; Xie, Nijie; Tian, Xinyue
2017-02-08
This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget.
NASA Technical Reports Server (NTRS)
Jozwiak, L. M.; Head, J. W., III; Neumann, G. A.; Wilson, L.
2016-01-01
Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity solution from GRAIL and also a degree 100-600 band-filtered Bouguer gravity solution. The low-magnitude of anomalies arising from shallow magmatic intrusions makes identification using unfiltered Bouguer gravity solutions inconclusive. The observed anomalies in the degree 100-600 Bouguer gravity solution are spatially heterogeneous, although there is spatial correlation between volcanic surface morphologies and positive Bouguer anomalies. We interpret these observations to mean that the spatial heterogeneity observed in the Bouguer signal is the result of variable degrees of magmatic degassing within the intrusions.
NASA Astrophysics Data System (ADS)
Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco
2017-04-01
Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is characterized by a velocity transition probability and the steady state velocity distribution. These are related to the Eulerian velocity distribution and the distribution and spatial organization of hydraulic conductivity. The CTRW model is used for the prediction of transport data (particle dispersion and breakthrough curves) from direct numerical flow and transport simulations in heterogeneous hydraulic conductivity fields. References: [1] Comolli, A., Hidalgo, J. J., Moussey, C., & Dentz, M. (2016). Non-Fickian Transport Under Heterogeneous Advection and Mobile-Immobile Mass Transfer. Transport in Porous Media, 1-25. [2] Dentz, M., Kang, P. K., Comolli, A., Le Borgne, T., & Lester, D. R. (2016). Continuous time random walks for the evolution of Lagrangian velocities. Physical Review Fluids, 1(7), 074004.
NASA Astrophysics Data System (ADS)
Zarlenga, Antonio; de Barros, Felipe; Fiori, Aldo
2017-04-01
Predicting solutes displacement in ecosystems is a complex task because of heterogeneity of hydrogeological properties and limited financial resources for characterization. As a consequence, solute transport model predictions are subject to uncertainty and probabilistic methods are invoked. Despite the significant theoretical advances in subsurface hydrology, there is a compelling need to transfer those specialized know-hows into an easy-to-use practical tool. The deterministic approach is able to capture some features of the transport behavior but its adoption in practical applications (e.g. remediation strategies or health risk assessment) is often inadequate because of its inability to accurately model the phenomena triggered by the spatial heterogeneity. The rigorous evaluation of the local contaminant concentration in natural aquifers requires an accurate estimate of the domain properties and huge computational times; those aspects limit the adoption of fully 3D numerical models. In this presentation, we illustrate a physically-based methodology to analytically estimate of the statistics of the solute concentration in natural aquifers and the related health risk. Our methodology aims to provide a simple tool for a quick assessment of the contamination level in aquifers, as function of a few relevant, physically based parameters such as the log conductivity variance, the mean flow velocity, the Péclet number. Solutions of the 3D analytical model adopt the results of previous works: transport model is based on the solutions proposed by Zarlenga and Fiori (2013, 2014) where semi-analytical relations for the statics of local contaminant concentration are carry out through a Lagrangian first-order model. As suggested in de Barros and Fiori (2014), the Beta distribution is assumed for the concentration cumulative density function (CDF). We illustrate the use of the closed-form equations for the probability of local contaminant concentration and health risk in a series of problems of practical relevance. The basic scenario is constituted by a steady state plume in a 3D heterogeneous formation. In this case the non-reactive transport is ruled by interplay of the spreading (lateral and vertical) and dilution. The second scenario considers two different dynamics of degradation in aerobic and anaerobic conditions which allows the contaminant abatement. The final example links the environmental concentration with adverse health effects. For this case, additional information on toxicological and behavioral parameters are required. Despite the simplifying assumptions adopted, the proposed solutions are appealing in applications due to their simplicity and the fact that they allow to easily propagate the uncertainty from different sources in the final risk endpoint. de Barros, F.P., Fiori, A., 2014. First-order based cumulative distribution function for solute concentration in heterogeneous aquifers: theoretical analysis and implications for human health risk assessment. Water Resour. Res. 50, 4018-4037. Zarlenga, A., Fiori, A., 2013. Steady plumes in heterogeneous porous formations: a stochastic lagrangian approach. Water Resour. Res. 49, 864-873. Zarlenga, A., Fiori, A., 2014. Stochastic analytical modeling of the biodegradation of steady plumes. J. Contam. Hydrol. 157, 106-116.
NASA Astrophysics Data System (ADS)
Pandey, S.; Rajaram, H.
2015-12-01
This work investigates hydrologic and geochemical interactions in the Critical Zone (CZ) using high-resolution reactive transport modeling. Reactive transport models can be used to predict the response of geochemical weathering and solute fluxes in the CZ to changes in a dynamic environment, such as those pertaining to human activities and climate change in recent years. The scales of hydrology and geochemistry in the CZ range from days to eons in time and centimeters to kilometers in space. Here, we present results of a multi-dimensional, multi-scale hydro-geochemical model to investigate the role of subsurface heterogeneity on the formation of mineral weathering fronts in the CZ, which requires consideration of many of these spatio-temporal scales. The model is implemented using the reactive transport code PFLOTRAN, an open source subsurface flow and reactive transport code that utilizes parallelization over multiple processing nodes and provides a strong framework for simulating weathering in the CZ. The model is set up to simulate weathering dynamics in the mountainous catchments representative of the Colorado Front Range. Model parameters were constrained based on hydrologic, geochemical, and geophysical observations from the Boulder Creek Critical Zone Observatory (BcCZO). Simulations were performed in fractured rock systems and compared with systems of heterogeneous and homogeneous permeability fields. Tracer simulations revealed that the mean residence time of solutes was drastically accelerated as fracture density increased. In simulations that include mineral reactions, distinct signatures of transport limitations on weathering arose when discrete flow paths were included. This transport limitation was related to both advective and diffusive processes in the highly heterogeneous systems (i.e. fractured media and correlated random permeability fields with σlnk > 3). The well-known time-dependence of mineral weathering rates was found to be the most pronounced in the fractured systems, with a departure from the maximum system-averaged dissolution rate occurring after ~100 kyr followed by a gradual decrease in the reaction rate with time that persists beyond 104 kyr.
ERIC Educational Resources Information Center
Hwang, Heungsun; Montreal, Hec; Dillon, William R.; Takane, Yoshio
2006-01-01
An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…
Khosravi, Arezoo; Bani, Milad Salimi; Bahreinizade, Hossein; Karimi, Alireza
2016-01-01
In the present study, three layers of the ascending aorta in respect to the time and space at various blood pressures have been simulated. Two well-known commercial finite element (FE) software have used to be able to provide a range of reliable numerical results while independent on the software type. The radial displacement compared with the time as well as the peripheral stress and von Mises stress of the aorta have calculated. The aorta model was validated using the differential quadrature method (DQM) solution and, then, in order to design functionally graded materials (FGMs) with different heterogeneous indexes for the artificial vessel, two different materials have been employed. Fluid–structure interaction (FSI) simulation has been carried out on the FGM and a natural vessel of the human body. The heterogeneous index defines the variation of the length in a function. The blood pressure was considered to be a function of both the time and location. Finally, the response characteristics of functionally graded biomaterials (FGBMs) models with different values of heterogeneous material parameters were determined and compared with the behaviour of a natural vessel. The results showed a very good agreement between the numerical findings of the FGM materials and that of the natural vessel. The findings of the present study may have implications not only to understand the performance of different FGMs in bearing the stress and deformation in comparison with the natural human vessels, but also to provide information for the biomaterials expert to be able to select a suitable material as an implant for the aorta. PMID:27836981
NASA Astrophysics Data System (ADS)
Guner, Ozkan; Korkmaz, Alper; Bekir, Ahmet
2017-02-01
Dark soliton solutions for space-time fractional Sharma-Tasso-Olver and space-time fractional potential Kadomtsev-Petviashvili equations are determined by using the properties of modified Riemann-Liouville derivative and fractional complex transform. After reducing both equations to nonlinear ODEs with constant coefficients, the \\tanh ansatz is substituted into the resultant nonlinear ODEs. The coefficients of the solutions in the ansatz are calculated by algebraic computer computations. Two different solutions are obtained for the Sharma-Tasso-Olver equation as only one solution for the potential Kadomtsev-Petviashvili equation. The solution profiles are demonstrated in 3D plots in finite domains of time and space.
NASA Astrophysics Data System (ADS)
Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song
2017-09-01
We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.
Onuk, A. Emre; Akcakaya, Murat; Bardhan, Jaydeep P.; Erdogmus, Deniz; Brooks, Dana H.; Makowski, Lee
2015-01-01
In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem. Employing the adenylate kinase (ADK) protein and its known conformations as an example, and using Monte Carlo simulations, we demonstrate the performance of the proposed estimation scheme. Here, although we use 45 crystallographically determined experimental structures and we could generate many more using, for instance, molecular dynamics calculations, the clustering technique indicates that the data cannot support the determination of relative abundances for more than 5 conformations. The estimation of this maximum number of conformations is intrinsic to the methodology we have used here. PMID:26924916
Meeting People's Needs in a Fully Interoperable Domotic Environment
Miori, Vittorio; Russo, Dario; Concordia, Cesare
2012-01-01
The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes ‘invisible’, as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space. PMID:22969322
Meeting people's needs in a fully interoperable domotic environment.
Miori, Vittorio; Russo, Dario; Concordia, Cesare
2012-01-01
The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes 'invisible', as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space.
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yue, Cheng-Feng
2004-12-01
This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.
2018-05-01
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers.
Kim, Jaehyun; Kim, Jaekyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Myungwon; Moon, Juhyuk; Yang, Lin; Kim, Myung-Gil; Kim, Yong-Hoon; Park, Sung Kyu
2016-04-01
An ultra-thin and large-area skin-compatible heterogeneous organic/metal-oxide photosensor array is demonstrated which is capable of sensing and boosting signals with high detectivity and signal-to-noise ratio. For the realization of ultra-flexible and high-sensitive heterogeneous photosensor arrays on a polyimide substrate having organic sensor arrays and metal-oxide boosting circuitry, solution-processing and room-temperature alternating photochemical conversion routes are applied. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rocchini, Duccio
2009-01-01
Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600
Pervasive Sensing: Addressing the Heterogeneity Problem
NASA Astrophysics Data System (ADS)
O'Grady, Michael J.; Murdoch, Olga; Kroon, Barnard; Lillis, David; Carr, Dominic; Collier, Rem W.; O'Hare, Gregory M. P.
2013-06-01
Pervasive sensing is characterized by heterogeneity across a number of dimensions. This raises significant problems for those designing, implementing and deploying sensor networks, irrespective of application domain. Such problems include for example, issues of data provenance and integrity, security, and privacy amongst others. Thus engineering a network that is fit-for-purpose represents a significant challenge. In this paper, the issue of heterogeneity is explored from the perspective of those who seek to harness a pervasive sensing element in their applications. A initial solution is proposed based on the middleware construct.
Duality in Phase Space and Complex Dynamics of an Integrated Pest Management Network Model
NASA Astrophysics Data System (ADS)
Yuan, Baoyin; Tang, Sanyi; Cheke, Robert A.
Fragmented habitat patches between which plants and animals can disperse can be modeled as networks with varying degrees of connectivity. A predator-prey model with network structures is proposed for integrated pest management (IPM) with impulsive control actions. The model was analyzed using numerical methods to investigate how factors such as the impulsive period, the releasing constant of natural enemies and the mode of connections between the patches affect pest outbreak patterns and the success or failure of pest control. The concept of the cluster as defined by Holland and Hastings is used to describe variations in results ranging from global synchrony when all patches have identical fluctuations to n-cluster solutions with all patches having different dynamics. Heterogeneity in the initial densities of either pest or natural enemy generally resulted in a variety of cluster oscillations. Surprisingly, if n > 1, the clusters fall into two groups one with low amplitude fluctuations and the other with high amplitude fluctuations (i.e. duality in phase space), implying that control actions radically alter the system's characteristics by inducing duality and more complex dynamics. When the impulsive period is small enough, i.e. the control strategy is undertaken frequently, the pest can be eradicated. As the period increases, the pest's dynamics shift from a steady state to become chaotic with periodic windows and more multicluster oscillations arise for heterogenous initial density distributions. Period-doubling bifurcation and periodic halving cascades occur as the releasing constant of the natural enemy increases. For the same ecological system with five differently connected networks, as the randomness of the connectedness increases, the transient duration becomes smaller and the probability of multicluster oscillations appearing becomes higher.
Cohesive stress heterogeneities and the transition from intrinsic ductility to brittleness
NASA Astrophysics Data System (ADS)
Tanguy, D.
2017-11-01
The influence of nanoscale cavities on the fracture of the Σ 33 {554 }[110 ] symmetrical tilt grain boundary is studied by atomistic simulations. The crack crystallography is chosen such that dislocation emission is easy. A transition from a ductile behavior of the tip to a brittle one is obtained for a dense (coverage beyond 15% and intercavity spacing smaller than 4 nm) distribution of small cavities (sizes in-between 1 and 2 nm). The results are in good agreement with recent experiments from the literature. Even at the highest coverage, the character of the crack is highly sensitive to the initial position of the tip and a mixture of ductile and brittle responses is found. This complexity is beyond the usual criterion based on the drop of the work of separation with the amount of damage in the structure. It is shown that a heterogeneous cohesive zone model, with parameters extracted from the simulations and enriched with a criterion for plasticity, can explain the simulations and reproduce the transition. Additional simulations show that outside this range of small sizes and dense packing, which gives essentially a two-dimensional response (either crack opening or infinite straight dislocation emission), dislocation half-loops appear for intercavity spacing starting at about 4 nm. They constitute, together with regions of low coverage/small cavities, efficient obstacles to brittle cracking. These results could be guidelines to designing interfaces more resistant to solute embrittlement, in general. The cohesive zone model is generic. Furthermore, the {554} single crystal was used to determine to which extent the results depend on the details of the core structure versus the cavity distribution. These elements show that the conclusions reached have a generic character.
SPORT: An Algorithm for Divisible Load Scheduling with Result Collection on Heterogeneous Systems
NASA Astrophysics Data System (ADS)
Ghatpande, Abhay; Nakazato, Hidenori; Beaumont, Olivier; Watanabe, Hiroshi
Divisible Load Theory (DLT) is an established mathematical framework to study Divisible Load Scheduling (DLS). However, traditional DLT does not address the scheduling of results back to source (i. e., result collection), nor does it comprehensively deal with system heterogeneity. In this paper, the DLSRCHETS (DLS with Result Collection on HET-erogeneous Systems) problem is addressed. The few papers to date that have dealt with DLSRCHETS, proposed simplistic LIFO (Last In, First Out) and FIFO (First In, First Out) type of schedules as solutions to DLSRCHETS. In this paper, a new polynomial time heuristic algorithm, SPORT (System Parameters based Optimized Result Transfer), is proposed as a solution to the DLSRCHETS problem. With the help of simulations, it is proved that the performance of SPORT is significantly better than existing algorithms. The other major contributions of this paper include, for the first time ever, (a) the derivation of the condition to identify the presence of idle time in a FIFO schedule for two processors, (b) the identification of the limiting condition for the optimality of FIFO and LIFO schedules for two processors, and (c) the introduction of the concept of equivalent processor in DLS for heterogeneous systems with result collection.
Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V
2018-06-09
We have investigated the mechanism of the nucleation of acetaminophen on poly(methyl-methacrylate) and poly(vinyl-acetate) utilizing a combination of quantum mechanical computations and electrostatic models. We have used a heterogeneous dielectric solvation model to determine the stability of different orientations of acetaminophen on polymer surfaces. We find that for the nucleation of acetaminophen on the polymer surfaces in vacuum, the most stable orientation is a flat orientation. For the nucleation process in solution where acetaminophen and the polymer surface are surrounded by a solvent, we find that the heterogeneous dielectric solvation model predicts that a sideways orientation is the most stable orientation.
Accessing files in an Internet: The Jade file system
NASA Technical Reports Server (NTRS)
Peterson, Larry L.; Rao, Herman C.
1991-01-01
Jade is a new distribution file system that provides a uniform way to name and access files in an internet environment. It makes two important contributions. First, Jade is a logical system that integrates a heterogeneous collection of existing file systems, where heterogeneous means that the underlying file systems support different file access protocols. Jade is designed under the restriction that the underlying file system may not be modified. Second, rather than providing a global name space, Jade permits each user to define a private name space. These private name spaces support two novel features: they allow multiple file systems to be mounted under one directory, and they allow one logical name space to mount other logical name spaces. A prototype of the Jade File System was implemented on Sun Workstations running Unix. It consists of interfaces to the Unix file system, the Sun Network File System, the Andrew File System, and FTP. This paper motivates Jade's design, highlights several aspects of its implementation, and illustrates applications that can take advantage of its features.
Accessing files in an internet - The Jade file system
NASA Technical Reports Server (NTRS)
Rao, Herman C.; Peterson, Larry L.
1993-01-01
Jade is a new distribution file system that provides a uniform way to name and access files in an internet environment. It makes two important contributions. First, Jade is a logical system that integrates a heterogeneous collection of existing file systems, where heterogeneous means that the underlying file systems support different file access protocols. Jade is designed under the restriction that the underlying file system may not be modified. Second, rather than providing a global name space, Jade permits each user to define a private name space. These private name spaces support two novel features: they allow multiple file systems to be mounted under one directory, and they allow one logical name space to mount other logical name spaces. A prototype of the Jade File System was implemented on Sun Workstations running Unix. It consists of interfaces to the Unix file system, the Sun Network File System, the Andrew File System, and FTP. This paper motivates Jade's design, highlights several aspects of its implementation, and illustrates applications that can take advantage of its features.
Modeling non-Fickian dispersion by use of the velocity PDF on the pore scale
NASA Astrophysics Data System (ADS)
Kooshapur, Sheema; Manhart, Michael
2015-04-01
For obtaining a description of reactive flows in porous media, apart from the geometrical complications of resolving the velocities and scalar values, one has to deal with the additional reactive term in the transport equation. An accurate description of the interface of the reacting fluids - which is strongly influenced by dispersion- is essential for resolving this term. In REV-based simulations the reactive term needs to be modeled taking sub-REV fluctuations and possibly non-Fickian dispersion into account. Non-Fickian dispersion has been observed in strongly heterogeneous domains and in early phases of transport. A fully resolved solution of the Navier-Stokes and transport equations which yields a detailed description of the flow properties, dispersion, interfaces of fluids, etc. however, is not practical for domains containing more than a few thousand grains, due to the huge computational effort required. Through Probability Density Function (PDF) based methods, the velocity distribution in the pore space can facilitate the understanding and modelling of non-Fickian dispersion [1,2]. Our aim is to model the transition between non-Fickian and Fickian dispersion in a random sphere pack within the framework of a PDF based transport model proposed by Meyer and Tchelepi [1,3]. They proposed a stochastic transport model where velocity components of tracer particles are represented by a continuous Markovian stochastic process. In addition to [3], we consider the effects of pore scale diffusion and formulate a different stochastic equation for the increments in velocity space from first principles. To assess the terms in this equation, we performed Direct Numerical Simulations (DNS) for solving the Navier-Stokes equation on a random sphere pack. We extracted the PDFs and statistical moments (up to the 4th moment) of the stream-wise velocity, u, and first and second order velocity derivatives both independent and conditioned on velocity. By using this data and combining the Taylor expansion of velocity increments, du, and the Langevin equation for point particles we obtained the components of velocity fluxes which point to a drift and diffusion behavior in the velocity space. Thus a partial differential equation for the velocity PDF has been formulated that constitutes an advection-diffusion equation in velocity space (a Fokker-Planck equation) in which the drift and diffusion coefficients are obtained using the velocity conditioned statistics of the derivatives of the pore scale velocity field. This has been solved by both a Random Walk (RW) model and a Finite Volume method. We conclude that both, these methods are able to simulate the velocity PDF obtained by DNS. References [1] D. W. Meyer, P. Jenny, H.A.Tschelepi, A joint velocity-concentration PDF method for traqcer flow in heterogeneous porous media, Water Resour.Res., 46, W12522, (2010). [2] Nowak, W., R. L. Schwede, O. A. Cirpka, and I. Neuweiler, Probability density functions of hydraulic head and velocity in three-dimensional heterogeneous porous media, Water Resour.Res., 44, W08452, (2008) [3] D. W. Meyer, H. A. Tchelepi, Particle-based transport model with Markovian velocity processes for tracer dispersion in highly heterogeneous porous media, Water Resour. Res., 46, W11552, (2010)
An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations
NASA Astrophysics Data System (ADS)
Drivas, Theodore D.; Eyink, Gregory L.
2017-12-01
We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.
Active Solution Space and Search on Job-shop Scheduling Problem
NASA Astrophysics Data System (ADS)
Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo
In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.
The dual-mode (partition/hole-filling) model of soil organic matter (SOM) as
a heterogeneous polymerlike sorbent of hydrophobic compounds predicts that a
competing solute will accelerate diffusion of the primary solute by blocking the
holes, allowing the principal ...
NASA Astrophysics Data System (ADS)
Prechtel, Alexander; Ray, Nadja; Rupp, Andreas
2017-04-01
We want to present an approach for the mathematical, mechanistic modeling and numerical treatment of processes leading to the formation, stability, and turnover of soil micro-aggregates. This aims at deterministic aggregation models including detailed mechanistic pore-scale descriptions to account for the interplay of geochemistry and microbiology, and the link to soil functions as, e.g., the porosity. We therefore consider processes at the pore scale and the mesoscale (laboratory scale). At the pore scale transport by diffusion, advection, and drift emerging from electric forces can be taken into account, in addition to homogeneous and heterogeneous reactions of species. In the context of soil micro-aggregates the growth of biofilms or other glueing substances as EPS (extracellular polymeric substances) is important and affects the structure of the pore space in space and time. This model is upscaled mathematically in the framework of (periodic) homogenization to transfer it to the mesoscale resulting in effective coefficients/parameters there. This micro-macro model thus couples macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) with averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time and space dependent and its geometry inherits information from the transport equation's solutions. The microscale problems rely on versatile combinations of cellular automata and discontiuous Galerkin methods while on the mesoscale mixed finite elements are used. The numerical simulations allow to study the interplay between these processes.
Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin
Takeuchi, Akari; Ohtsuki, Chikara; Miyazaki, Toshiki; Kamitakahara, Masanobu; Ogata, Shin-ichi; Yamazaki, Masao; Furutani, Yoshiaki; Kinoshita, Hisao; Tanihara, Masao
2005-01-01
Acidic proteins play an important role during mineral formation in biological systems, but the mechanism of mineral formation is far from understood. In this paper, we report on the relationship between the structure of a protein and hydroxyapatite deposition under biomimetic conditions. Sericin, a type of silk protein, was adopted as a suitable protein for studying structural effect on hydroxyapatite deposition, since it forms a hydroxyapatite layer on its surface in a metastable calcium phosphate solution, and its structure has been reported. Sericin effectively induced hydroxyapatite nucleation when it has high molecular weight and a β sheet structure. This indicates that the specific structure of a protein can effectively induce heterogeneous nucleation of hydroxyapatite in a biomimetic solution, i.e. a metastable calcium phosphate solution. This finding is useful in understanding biomineralization, as well as for the design of organic polymers that can effectively induce hydroxyapatite nucleation. PMID:16849195
Joseph A.M. Smith; Leonard R. Reitsma; Peter P. Marra
2011-01-01
We investigated the relationships among space-use patterns, home-range attributes, and individual characteristics to determine the consequences of different space-use strategies for the overwinter physical condition of Northern Waterthrushes (Parkesia noveboracensis). We have elsewhere demonstrated that heterogeneity in food availability drives the movement decisions...
NASA Astrophysics Data System (ADS)
Cortez, E.; Remsen, E.; Chlanda, V.; Wideman, T.; Zank, G.; Carrol, P.; Sneddon, L.
1998-06-01
Boron Nitride, BN, and composite SiNCB ceramic fibers are important structural materials because of their excellent thermal and oxidative stabilities. Consequently, polymeric materials as precursors to ceramic composites are receiving increasing attention. Characterization of these materials requires the ability to evaluate simultaneous molecular weight and compositional heterogeneity within the polymer. Size exclusion chromatography equipped with viscometric and refractive index detection as well as coupled to a LC-transform device for infrared absorption analysis has been employed to examine these heterogeneities. Using these combined approaches, the solution properties and the relative amounts of individual functional groups distributed through the molecular weight distribution of SiNCB and BN polymeric precursors were characterized.
NASA Astrophysics Data System (ADS)
Nguyen, Dang Van; Li, Jing-Rebecca; Grebenkov, Denis; Le Bihan, Denis
2014-04-01
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution at the cell interfaces by using double nodes. Using a transformation of the Bloch-Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge-Kutta-Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.
Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media
NASA Astrophysics Data System (ADS)
Mehmani, Yashar; Tchelepi, Hamdi
2017-11-01
Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).
Quasi-heterogeneous efficient 3-D discrete ordinates CANDU calculations using Attila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preeti, T.; Rulko, R.
2012-07-01
In this paper, 3-D quasi-heterogeneous large scale parallel Attila calculations of a generic CANDU test problem consisting of 42 complete fuel channels and a perpendicular to fuel reactivity device are presented. The solution method is that of discrete ordinates SN and the computational model is quasi-heterogeneous, i.e. fuel bundle is partially homogenized into five homogeneous rings consistently with the DRAGON code model used by the industry for the incremental cross-section generation. In calculations, the HELIOS-generated 45 macroscopic cross-sections library was used. This approach to CANDU calculations has the following advantages: 1) it allows detailed bundle (and eventually channel) power calculationsmore » for each fuel ring in a bundle, 2) it allows the exact reactivity device representation for its precise reactivity worth calculation, and 3) it eliminates the need for incremental cross-sections. Our results are compared to the reference Monte Carlo MCNP solution. In addition, the Attila SN method performance in CANDU calculations characterized by significant up scattering is discussed. (authors)« less
Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution
Bartsch, Tobias F.; Kochanczyk, Martin D.; Lissek, Emanuel N.; Lange, Janina R.; Florin, Ernst-Ludwig
2016-01-01
Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of ∼10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for. PMID:27596919
NASA Astrophysics Data System (ADS)
Hielscher, Andreas H.; Liu, Hanli; Wang, Lihong V.; Tittel, Frank K.; Chance, Britton; Jacques, Steven L.
1994-07-01
Near infrared light has been used for the determination of blood oxygenation in the brain but little attention has been paid to the fact that the states of blood oxygenation in arteries, veins, and capillaries differ substantially. In this study, Monte Carlo simulations for a heterogeneous system were conducted, and near infrared time-resolved reflectance measurements were performed on a heterogeneous tissue phantom model. The model was made of a solid polyester resin, which simulates the tissue background. A network of tubes was distributed uniformly through the resin to simulate the blood vessels. The time-resolved reflectance spectra were taken with different absorbing solutions filled in the network. Based on the simulation and experimental results, we investigated the dependence of the absorption coefficient obtained from the heterogeneous system on the absorption of the actual absorbing solution filled in the tubes. We show that light absorption by the brain should result from the combination of blood and blood-free tissue background.
Phase behavior and reactive transport of partial melt in heterogeneous mantle model
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2013-12-01
The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation front that followes a stationary melting front which creates low porosity intermediate states. Therefore, localization of the melt flow is not observed because the precipitation front is stable and the melting front is always stationary under these conditions. This analysis illustrates the counterintuitive behavior that can arise when the phase behavior is taken into account and is a first step to understanding reactive melt transport and the reactive constraints on channelization in partial melts. ¬¬
A perturbation analysis of a mechanical model for stable spatial patterning in embryology
NASA Astrophysics Data System (ADS)
Bentil, D. E.; Murray, J. D.
1992-12-01
We investigate a mechanical cell-traction mechanism that generates stationary spatial patterns. A linear analysis highlights the model's potential for these heterogeneous solutions. We use multiple-scale perturbation techniques to study the evolution of these solutions and compare our solutions with numerical simulations of the model system. We discuss some potential biological applications among which are the formation of ridge patterns, dermatoglyphs, and wound healing.
Integrating CLIPS applications into heterogeneous distributed systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1991-01-01
SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.
Kharge, Angana Banerjee; Wu, You
2014-01-01
In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. PMID:25414246
Research of G3-PLC net self-organization processes in the NS-3 modeling framework
NASA Astrophysics Data System (ADS)
Pospelova, Irina; Chebotayev, Pavel; Klimenko, Aleksey; Myakochin, Yuri; Polyakov, Igor; Shelupanov, Alexander; Zykov, Dmitriy
2017-11-01
When modern infocommunication networks are designed, the combination of several data transfer channels is widely used. It is necessary for the purposes of improvement in quality and robustness of communication. Communication systems based on more than one data transfer channel are named heterogeneous communication systems. For the design of a heterogeneous network, the most optimal solution is the use of mesh technology. Mesh technology ensures message delivery to the destination under conditions of unpredictable interference environment situation in each of two channels. Therewith, one of the high-priority problems is the choice of a routing protocol when the mesh networks are designed. An important design stage for any computer network is modeling. Modeling allows us to design a few different variants of design solutions and also to compute all necessary functional specifications for each of these solutions. As a result, it allows us to reduce costs for the physical realization of a network. In this article the research of dynamic routing in the NS3 simulation modeling framework is presented. The article contains an evaluation of simulation modeling applicability in solving the problem of heterogeneous networks design. Results of modeling may be afterwards used for physical realization of this kind of networks.
Optimal File-Distribution in Heterogeneous and Asymmetric Storage Networks
NASA Astrophysics Data System (ADS)
Langner, Tobias; Schindelhauer, Christian; Souza, Alexander
We consider an optimisation problem which is motivated from storage virtualisation in the Internet. While storage networks make use of dedicated hardware to provide homogeneous bandwidth between servers and clients, in the Internet, connections between storage servers and clients are heterogeneous and often asymmetric with respect to upload and download. Thus, for a large file, the question arises how it should be fragmented and distributed among the servers to grant "optimal" access to the contents. We concentrate on the transfer time of a file, which is the time needed for one upload and a sequence of n downloads, using a set of m servers with heterogeneous bandwidths. We assume that fragments of the file can be transferred in parallel to and from multiple servers. This model yields a distribution problem that examines the question of how these fragments should be distributed onto those servers in order to minimise the transfer time. We present an algorithm, called FlowScaling, that finds an optimal solution within running time {O}(m log m). We formulate the distribution problem as a maximum flow problem, which involves a function that states whether a solution with a given transfer time bound exists. This function is then used with a scaling argument to determine an optimal solution within the claimed time complexity.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.
1996-01-01
A user's guide for the computer program OPTCOMP2 is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in unidirectional metal matrix composites subjected to combined thermomechanical axisymmetric loading by altering the processing history, as well as through the microstructural design of interfacial fiber coatings. The user specifies the initial architecture of the composite and the load history, with the constituent materials being elastic, plastic, viscoplastic, or as defined by the 'user-defined' constitutive model, in addition to the objective function and constraints, through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the inelastic response of a fiber/interface layer(s)/matrix concentric cylinder model where the interface layers can be either homogeneous or heterogeneous. The response of heterogeneous layers is modeled using Aboudi's three-dimensional method of cells micromechanics model. The commercial optimization package DOT is used for the nonlinear optimization problem. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.
Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason
2010-01-01
Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time costs were minimal. Despite the increase in overhead, virtual clusters are an ideal solution for Grid heterogeneity. With greater development of virtual cluster technology in Grid environments, the problem of platform heterogeneity may be eliminated through virtualization, allowing greater usage of VS, and will benefit all Grid applications in general.
A knowledge-based system for prototypical reasoning
NASA Astrophysics Data System (ADS)
Lieto, Antonio; Minieri, Andrea; Piana, Alberto; Radicioni, Daniele P.
2015-04-01
In this work we present a knowledge-based system equipped with a hybrid, cognitively inspired architecture for the representation of conceptual information. The proposed system aims at extending the classical representational and reasoning capabilities of the ontology-based frameworks towards the realm of the prototype theory. It is based on a hybrid knowledge base, composed of a classical symbolic component (grounded on a formal ontology) with a typicality based one (grounded on the conceptual spaces framework). The resulting system attempts to reconcile the heterogeneous approach to the concepts in Cognitive Science with the dual process theories of reasoning and rationality. The system has been experimentally assessed in a conceptual categorisation task where common sense linguistic descriptions were given in input, and the corresponding target concepts had to be identified. The results show that the proposed solution substantially extends the representational and reasoning 'conceptual' capabilities of standard ontology-based systems.
A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers
NASA Astrophysics Data System (ADS)
Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.
2016-10-01
Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.
NASA Astrophysics Data System (ADS)
Bagherzadeh, Mojtaba; Ashouri, Fatemeh; Đaković, Marijana
2015-03-01
A metal-organic framework [Co3(BDC)3(DMF)2(H2O)2] was synthesized and structurally characterized. X-ray single crystal analysis revealed that the framework contains a 2D polymeric chain through coordination of 1,4-benzenedicarboxylic acid linker ligand to cobalt centers. The polymer crystallize in monoclinic P21/n space group with a=13.989(3) Å, b=9.6728(17) Å, c=16.707(3) Å, and Z=2. The polymer features a framework based on the perfect octahedral Co-O6 secondary building units. The catalytic activities of [Co3(BDC)3(DMF)2(H2O)2]n for olefins oxidation was conducted. The heterogeneous catalyst could be facilely separated from the reaction mixture, and reused three times without significant degradation in catalytic activity. Furthermore, no contribution from homogeneous catalysis of active species leaching into reaction solution was detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincent M. Laboure; Yaqi Wang; Mark D. DeHart
In this paper, we study the Least-Squares (LS) PN form of the transport equation compatible with voids in the context of Continuous Finite Element Methods (CFEM).We first deriveweakly imposed boundary conditions which make the LS weak formulation equivalent to the Self-Adjoint Angular Flux (SAAF) variational formulation with a void treatment, in the particular case of constant cross-sections and a uniform mesh. We then implement this method in Rattlesnake with the Multiphysics Object Oriented Simulation Environment (MOOSE) framework using a spherical harmonics (PN) expansion to discretize in angle. We test our implementation using the Method of Manufactured Solutions (MMS) and findmore » the expected convergence behavior both in angle and space. Lastly, we investigate the impact of the global non-conservation of LS by comparing the method with SAAF on a heterogeneous test problem.« less
Economic dynamics with financial fragility and mean-field interaction: A model
NASA Astrophysics Data System (ADS)
Di Guilmi, C.; Gallegati, M.; Landini, S.
2008-06-01
Following Aoki’s statistical mechanics methodology [Masanao Aoki, New Approaches to Macroeconomic Modeling, Cambridge University Press, 1996; Masanao Aoki, Modeling Aggregate Behaviour and Fluctuations in Economics, Cambridge University Press, 2002; Masanao Aoki, and Hiroshi Yoshikawa, Reconstructing Macroeconomics, Cambridge University Press, 2006], we provide some insights into the well-known works of [Bruce Greenwald, Joseph Stiglitz, Macroeconomic models with equity and credit rationing, in: R. Hubbard (Ed.), Information, Capital Markets and Investment, Chicago University Press, Chicago, 1990; Bruce Greenwald, Joseph Stiglitz, Financial markets imperfections and business cycles, Quarterly journal of Economics (1993)]. Specifically, we reach analytically a closed form solution of their models overcoming the aggregation problem. The key idea is to represent the economy as an evolving complex system, composed by heterogeneous interacting agents, that can be partitioned into a space of macroscopic states. This meso level of aggregation permits to adopt mean-field interaction modeling and master equation techniques.
NASA Technical Reports Server (NTRS)
Dorman, L. I.; Kobilinski, Z.
1975-01-01
The modulation of galactic cosmic rays is studied by the magnetic heterogeneities stream on the assumption that the diffusion coefficient is reduced whereas the solar wind velocity is increased with the growth of the angle between the sun's rotation axis and the direction of solar plasma motion. The stationary plane problem of isotropic diffusion is solved as it applies to two cases: (1) with due account of particle retardation by the antiphermium mechanism; and (2) without an account of the above mechanism. This problem is solved by the grid method in the polar coordinate system. The results of the calculations are followed by a discussion of the method of solution and of the errors.
The Jade File System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rao, Herman Chung-Hwa
1991-01-01
File systems have long been the most important and most widely used form of shared permanent storage. File systems in traditional time-sharing systems, such as Unix, support a coherent sharing model for multiple users. Distributed file systems implement this sharing model in local area networks. However, most distributed file systems fail to scale from local area networks to an internet. Four characteristics of scalability were recognized: size, wide area, autonomy, and heterogeneity. Owing to size and wide area, techniques such as broadcasting, central control, and central resources, which are widely adopted by local area network file systems, are not adequate for an internet file system. An internet file system must also support the notion of autonomy because an internet is made up by a collection of independent organizations. Finally, heterogeneity is the nature of an internet file system, not only because of its size, but also because of the autonomy of the organizations in an internet. The Jade File System, which provides a uniform way to name and access files in the internet environment, is presented. Jade is a logical system that integrates a heterogeneous collection of existing file systems, where heterogeneous means that the underlying file systems support different file access protocols. Because of autonomy, Jade is designed under the restriction that the underlying file systems may not be modified. In order to avoid the complexity of maintaining an internet-wide, global name space, Jade permits each user to define a private name space. In Jade's design, we pay careful attention to avoiding unnecessary network messages between clients and file servers in order to achieve acceptable performance. Jade's name space supports two novel features: (1) it allows multiple file systems to be mounted under one direction; and (2) it permits one logical name space to mount other logical name spaces. A prototype of Jade was implemented to examine and validate its design. The prototype consists of interfaces to the Unix File System, the Sun Network File System, and the File Transfer Protocol.
Gagliano, Michael P.; Nyquist, Jonathan E.; Toran, Laura; Rosenberry, Donald O.
2009-01-01
Underwater electrical‐resistivity data were collected along the southwest shore of Mirror Lake, NH, as part of a multi‐year assessment of the utility of geophysics for mapping groundwater seepage beneath lakes. We found that resistivity could locate shoreline sections where water is seeping out of the lake. A resistivity line along the lake bottom starting 27‐m off shore and continuing 27‐m on shore (1‐m electrode spacing) showed the water table dipping away from the lake, the gradient indicative of lake discharge in this area. Resistivity could also broadly delineate high‐seepage zones. An 80‐m line run parallel to shore using a 0.5‐m electrode spacing was compared with measurements collected the previous year using 1‐m electrode spacing. Both data sets showed the transition from high‐seepage glacial outwash, to low‐seepage glacial till, demonstrating reproducibility. However, even the finer 0.5‐m electrode spacing was insufficient to resolve the heterogeneity well enough to predict seepage variability within each zone. For example, over a 12.5‐m stretch where seepage varied from 1–38 cm/day, resistivity varied horizontally from 700–3900 ohm‐m and vertically in the top 2‐m from 900–4000 ohm‐m without apparent correlation with seepage. In two sections along this 80‐m line, one over glacial outwash, the other over till, we collected 14 parallel lines of resistivity, 13.5 m long spaced 1 m apart to form a 13.5 × 13 m data grid. These lines were inverted individually using a 2‐D inversion program and then interpolated to create a 3‐D volume. Examination of resistivity slices through this volume highlights the heterogeneity of both these materials, suggesting groundwater flow takes sinuous flow paths. In such heterogeneous materials the goal of predicting the precise location of high‐seepage points remains elusive.
Exploring Lovelock theory moduli space for Schrödinger solutions
NASA Astrophysics Data System (ADS)
Jatkar, Dileep P.; Kundu, Nilay
2016-09-01
We look for Schrödinger solutions in Lovelock gravity in D > 4. We span the entire parameter space and determine parametric relations under which the Schrödinger solution exists. We find that in arbitrary dimensions pure Lovelock theories have Schrödinger solutions of arbitrary radius, on a co-dimension one locus in the Lovelock parameter space. This co-dimension one locus contains the subspace over which the Lovelock gravity can be written in the Chern-Simons form. Schrödinger solutions do not exist outside this locus and on this locus they exist for arbitrary dynamical exponent z. This freedom in z is due to the degeneracy in the configuration space. We show that this degeneracy survives certain deformation away from the Lovelock moduli space.
NASA Astrophysics Data System (ADS)
Indra, Sandipa; Guchhait, Biswajit; Biswas, Ranjit
2016-03-01
We have performed steady state UV-visible absorption and time-resolved fluorescence measurements and computer simulations to explore the cosolvent mole fraction induced changes in structural and dynamical properties of water/dioxane (Diox) and water/tetrahydrofuran (THF) binary mixtures. Diox is a quadrupolar solvent whereas THF is a dipolar one although both are cyclic molecules and represent cycloethers. The focus here is on whether these cycloethers can induce stiffening and transition of water H-bond network structure and, if they do, whether such structural modification differentiates the chemical nature (dipolar or quadrupolar) of the cosolvent molecules. Composition dependent measured fluorescence lifetimes and rotation times of a dissolved dipolar solute (Coumarin 153, C153) suggest cycloether mole-fraction (XTHF/Diox) induced structural transition for both of these aqueous binary mixtures in the 0.1 ≤ XTHF/Diox ≤ 0.2 regime with no specific dependence on the chemical nature. Interestingly, absorption measurements reveal stiffening of water H-bond structure in the presence of both the cycloethers at a nearly equal mole-fraction, XTHF/Diox ˜ 0.05. Measurements near the critical solution temperature or concentration indicate no role for the solution criticality on the anomalous structural changes. Evidences for cycloether aggregation at very dilute concentrations have been found. Simulated radial distribution functions reflect abrupt changes in respective peak heights at those mixture compositions around which fluorescence measurements revealed structural transition. Simulated water coordination numbers (for a dissolved C153) and number of H-bonds also exhibit minima around these cosolvent concentrations. In addition, several dynamic heterogeneity parameters have been simulated for both the mixtures to explore the effects of structural transition and chemical nature of cosolvent on heterogeneous dynamics of these systems. Simulated four-point dynamic susceptibility suggests formation of clusters inducing local heterogeneity in the solution structure.
The Limitations of an Exclusively Colloidal View of Protein Solution Hydrodynamics and Rheology
Sarangapani, Prasad S.; Hudson, Steven D.; Migler, Kalman B.; Pathak, Jai A.
2013-01-01
Proteins are complex macromolecules with dynamic conformations. They are charged like colloids, but unlike colloids, charge is heterogeneously distributed on their surfaces. Here we overturn entrenched doctrine that uncritically treats bovine serum albumin (BSA) as a colloidal hard sphere by elucidating the complex pH and surface hydration-dependence of solution viscosity. We measure the infinite shear viscosity of buffered BSA solutions in a parameter space chosen to tune competing long-range repulsions and short-range attractions (2 mg/mL ≤ [BSA] ≤ 500 mg/mL and 3.0 ≤ pH ≤ 7.4). We account for surface hydration through partial specific volume to define volume fraction and determine that the pH-dependent BSA intrinsic viscosity never equals the classical hard sphere result (2.5). We attempt to fit our data to the colloidal rheology models of Russel, Saville, and Schowalter (RSS) and Krieger-Dougherty (KD), which are each routinely and successfully applied to uniformly charged suspensions and to hard-sphere suspensions, respectively. We discover that the RSS model accurately describes our data at pH 3.0, 4.0, and 5.0, but fails at pH 6.0 and 7.4, due to steeply rising solution viscosity at high concentration. When we implement the KD model with the maximum packing volume fraction as the sole floating parameter while holding the intrinsic viscosity constant, we conclude that the model only succeeds at pH 6.0 and 7.4. These findings lead us to define a minimal framework for models of crowded protein solution viscosity wherein critical protein-specific attributes (namely, conformation, surface hydration, and surface charge distribution) are addressed. PMID:24268154
Yilmaz Eroglu, Duygu; Caglar Gencosman, Burcu; Cavdur, Fatih; Ozmutlu, H. Cenk
2014-01-01
In this paper, we analyze a real-world OVRP problem for a production company. Considering real-world constrains, we classify our problem as multicapacitated/heterogeneous fleet/open vehicle routing problem with split deliveries and multiproduct (MCHF/OVRP/SDMP) which is a novel classification of an OVRP. We have developed a mixed integer programming (MIP) model for the problem and generated test problems in different size (10–90 customers) considering real-world parameters. Although MIP is able to find optimal solutions of small size (10 customers) problems, when the number of customers increases, the problem gets harder to solve, and thus MIP could not find optimal solutions for problems that contain more than 10 customers. Moreover, MIP fails to find any feasible solution of large-scale problems (50–90 customers) within time limits (7200 seconds). Therefore, we have developed a genetic algorithm (GA) based solution approach for large-scale problems. The experimental results show that the GA based approach reaches successful solutions with 9.66% gap in 392.8 s on average instead of 7200 s for the problems that contain 10–50 customers. For large-scale problems (50–90 customers), GA reaches feasible solutions of problems within time limits. In conclusion, for the real-world applications, GA is preferable rather than MIP to reach feasible solutions in short time periods. PMID:25045735
Discrete bivariate population balance modelling of heteroaggregation processes.
Rollié, Sascha; Briesen, Heiko; Sundmacher, Kai
2009-08-15
Heteroaggregation in binary particle mixtures was simulated with a discrete population balance model in terms of two internal coordinates describing the particle properties. The considered particle species are of different size and zeta-potential. Property space is reduced with a semi-heuristic approach to enable an efficient solution. Aggregation rates are based on deterministic models for Brownian motion and stability, under consideration of DLVO interaction potentials. A charge-balance kernel is presented, relating the electrostatic surface potential to the property space by a simple charge balance. Parameter sensitivity with respect to the fractal dimension, aggregate size, hydrodynamic correction, ionic strength and absolute particle concentration was assessed. Results were compared to simulations with the literature kernel based on geometric coverage effects for clusters with heterogeneous surface properties. In both cases electrostatic phenomena, which dominate the aggregation process, show identical trends: impeded cluster-cluster aggregation at low particle mixing ratio (1:1), restabilisation at high mixing ratios (100:1) and formation of complex clusters for intermediate ratios (10:1). The particle mixing ratio controls the surface coverage extent of the larger particle species. Simulation results are compared to experimental flow cytometric data and show very satisfactory agreement.
Comparing a discrete and continuum model of the intestinal crypt
Murray, Philip J.; Walter, Alex; Fletcher, Alex G.; Edwards, Carina M.; Tindall, Marcus J.; Maini, Philip K.
2011-01-01
The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalisations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts. PMID:21411869
Development of cost-effective surfactant flooding technology. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1996-11-01
Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also availablemore » in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.« less
Heterogeneous Distributed Computing for Computational Aerosciences
NASA Technical Reports Server (NTRS)
Sunderam, Vaidy S.
1998-01-01
The research supported under this award focuses on heterogeneous distributed computing for high-performance applications, with particular emphasis on computational aerosciences. The overall goal of this project was to and investigate issues in, and develop solutions to, efficient execution of computational aeroscience codes in heterogeneous concurrent computing environments. In particular, we worked in the context of the PVM[1] system and, subsequent to detailed conversion efforts and performance benchmarking, devising novel techniques to increase the efficacy of heterogeneous networked environments for computational aerosciences. Our work has been based upon the NAS Parallel Benchmark suite, but has also recently expanded in scope to include the NAS I/O benchmarks as specified in the NHT-1 document. In this report we summarize our research accomplishments under the auspices of the grant.
NASA Astrophysics Data System (ADS)
Wei, Fanan; Jiang, Minlin; Liu, Lianqing
2015-07-01
Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.
NASA Astrophysics Data System (ADS)
Bera, Subrata; Bhattacharyya, S.
2017-12-01
A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.
NASA Astrophysics Data System (ADS)
Bera, Subrata; Bhattacharyya, S.
2018-04-01
A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.
Some exact solutions for maximally symmetric topological defects in Anti de Sitter space
NASA Astrophysics Data System (ADS)
Alvarez, Orlando; Haddad, Matthew
2018-03-01
We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.
NASA Astrophysics Data System (ADS)
Sahraei, S.; Asadzadeh, M.
2017-12-01
Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.
Comparison of local grid refinement methods for MODFLOW
Mehl, S.; Hill, M.C.; Leake, S.A.
2006-01-01
Many ground water modeling efforts use a finite-difference method to solve the ground water flow equation, and many of these models require a relatively fine-grid discretization to accurately represent the selected process in limited areas of interest. Use of a fine grid over the entire domain can be computationally prohibitive; using a variably spaced grid can lead to cells with a large aspect ratio and refinement in areas where detail is not needed. One solution is to use local-grid refinement (LGR) whereby the grid is only refined in the area of interest. This work reviews some LGR methods and identifies advantages and drawbacks in test cases using MODFLOW-2000. The first test case is two dimensional and heterogeneous; the second is three dimensional and includes interaction with a meandering river. Results include simulations using a uniform fine grid, a variably spaced grid, a traditional method of LGR without feedback, and a new shared node method with feedback. Discrepancies from the solution obtained with the uniform fine grid are investigated. For the models tested, the traditional one-way coupled approaches produced discrepancies in head up to 6.8% and discrepancies in cell-to-cell fluxes up to 7.1%, while the new method has head and cell-to-cell flux discrepancies of 0.089% and 0.14%, respectively. Additional results highlight the accuracy, flexibility, and CPU time trade-off of these methods and demonstrate how the new method can be successfully implemented to model surface water-ground water interactions. Copyright ?? 2006 The Author(s).
NASA Astrophysics Data System (ADS)
Kumar, Anand; Marcolli, Claudia; Luo, Beiping; Peter, Thomas
2018-05-01
Potassium-containing feldspars (K-feldspars) have been considered as key mineral dusts for ice nucleation (IN) in mixed-phase clouds. To investigate the effect of solutes on their IN efficiency, we performed immersion freezing experiments with the K-feldspar microcline, which is highly IN active. Freezing of emulsified droplets with microcline suspended in aqueous solutions of NH3, (NH4)2SO4, NH4HSO4, NH4NO3, NH4Cl, Na2SO4, H2SO4, K2SO4 and KCl, with solute concentrations corresponding to water activities aw = 0.9-1.0, were investigated by means of a differential scanning calorimeter (DSC). The measured heterogeneous IN onset temperatures, Thet(aw), deviate strongly from ThetΔawhet(aw), the values calculated from the water-activity-based approach (where ThetΔawhet(aw) = Tmelt(aw + Δawhet) with a constant offset Δawhet with respect to the ice melting point curve). Surprisingly, for very dilute solutions of NH3 and NH4+ salts (molalities ≲1 mol kg-1 corresponding to aw ≳ 0.96), we find IN temperatures raised by up to 4.5 K above the onset freezing temperature of microcline in pure water (Thet(aw = 1)) and 5.5 K above ThetΔawhet(aw), revealing NH3 and NH4+ to significantly enhance the IN of the microcline surface. Conversely, more concentrated NH3 and NH4+ solutions show a depression of the onset temperature below ThetΔawhet(aw) by as much as 13.5 K caused by a decline in IN ability accompanied with a reduction in the volume fraction of water frozen heterogeneously. All salt solutions not containing NH4+ as cation exhibit nucleation temperatures Thet(aw) < ThetΔawhet(aw) even at very small solute concentrations. In all these cases, the heterogeneous freezing peak displays a decrease as solute concentration increases. This deviation from Δawhet = const. indicates specific chemical interactions between particular solutes and the microcline surface not captured by the water-activity-based approach. One such interaction is the exchange of K+ available on the microcline surface with externally added cations (e.g., NH4+). However, the presence of a similar increase in IN efficiency in dilute ammonia solutions indicates that the cation exchange cannot explain the increase in IN temperatures. Instead, we hypothesize that NH3 molecules hydrogen bonded on the microcline surface form an ice-like overlayer, which provides hydrogen bonding favorable for ice to nucleate on, thus enhancing both the freezing temperatures and the heterogeneously frozen fraction in dilute NH3 and NH4+ solutions. Moreover, we show that aging of microcline in concentrated solutions over several days does not impair IN efficiency permanently in case of near-neutral solutions since most of it recovers when aged particles are resuspended in pure water. In contrast, exposure to severe acidity (pH ≲1.2) or alkalinity (pH ≳11.7) damages the microcline surface, hampering or even destroying the IN efficiency irreversibly. Implications for IN in airborne dust containing microcline might be multifold, ranging from a reduction of immersion freezing when exposed to dry, cold and acidic conditions to a 5 K enhancement during condensation freezing when microcline particles experience high humidity (aw≳0.96) at warm (252-257 K) and NH3/NH4+-rich conditions.
Brown, C; Burslem, D F R P; Illian, J B; Bao, L; Brockelman, W; Cao, M; Chang, L W; Dattaraja, H S; Davies, S; Gunatilleke, C V S; Gunatilleke, I A U N; Huang, J; Kassim, A R; Lafrankie, J V; Lian, J; Lin, L; Ma, K; Mi, X; Nathalang, A; Noor, S; Ong, P; Sukumar, R; Su, S H; Sun, I F; Suresh, H S; Tan, S; Thompson, J; Uriarte, M; Valencia, R; Yap, S L; Ye, W; Law, R
2013-08-07
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Mixture Hidden Markov Models in Finance Research
NASA Astrophysics Data System (ADS)
Dias, José G.; Vermunt, Jeroen K.; Ramos, Sofia
Finite mixture models have proven to be a powerful framework whenever unobserved heterogeneity cannot be ignored. We introduce in finance research the Mixture Hidden Markov Model (MHMM) that takes into account time and space heterogeneity simultaneously. This approach is flexible in the sense that it can deal with the specific features of financial time series data, such as asymmetry, kurtosis, and unobserved heterogeneity. This methodology is applied to model simultaneously 12 time series of Asian stock markets indexes. Because we selected a heterogeneous sample of countries including both developed and emerging countries, we expect that heterogeneity in market returns due to country idiosyncrasies will show up in the results. The best fitting model was the one with two clusters at country level with different dynamics between the two regimes.
Method and apparatus for measuring volatile compounds in an aqueous solution
Gilmore, Tyler J [Pasco, WA; Cantrell, Kirk J [West Richland, WA
2002-07-16
The present invention is an improvement to the method and apparatus for measuring volatile compounds in an aqueous solution. The apparatus is a chamber with sides and two ends, where the first end is closed. The chamber contains a solution volume of the aqueous solution and a gas that is trapped within the first end of the chamber above the solution volume. The gas defines a head space within the chamber above the solution volume. The chamber may also be a cup with the second end. open and facing down and submerged in the aqueous solution so that the gas defines the head space within the cup above the solution volume. The cup can also be entirely submerged in the aqueous solution. The second end of the. chamber may be closed such that the chamber can be used while resting on a flat surface such as a bench. The improvement is a sparger for mixing the gas with the solution volume. The sparger can be a rotating element such as a propeller on a shaft or a cavitating impeller. The sparger can also be a pump and nozzle where the pump is a liquid pump and the nozzle is a liquid spray nozzle open, to the head space for spraying the solution volume into the head space of gas. The pump could also be a gas pump and the nozzle a gas nozzle submerged in the solution volume for spraying the head space gas into the solution volume.
Cabrera-Marín, N V; Liedo, P; Vandame, R; Sánchez, D
2015-04-01
Agroecosystem management commonly involves the use of pesticides. As a result, a heterogeneous landscape is created, in which suitable and unsuitable spaces are defined by the absence/presence of pesticides. In this study, we explored how foragers of the honey bee, Apis mellifera L., adapt to such context. We specifically evaluated the effect of GF-120, a spinosad-based fruit fly toxic bait, on the allocation of foragers between food sources under the hypothesis that foragers will move from food sources with GF-120 to food sources without it. We thus carried out three experiments: in experiment 1, a group of foragers was trained to collect honey solution from a feeder; next, this feeder offered a GF-120/honey solution. A minority of foragers continued collecting the GF-120/honey solution. In experiment 2, we trained two groups of foragers from a colony to two food sources equally rewarding. Next, GF-120 was added to one of the food sources. We found that the majority of foragers moved from the GF-120-treated feeder to the feeder without GF-120 and that the minority that continued visiting the GF-120-treated feeder did not collect the GF-120/honey solution. In a third experiment, we wanted to know if foragers in an experimental setup as in experiment 1 would perform waggle dances: none of the foragers that collected GF-120/honey were observed dancing. Our results emphasize the importance of "food refuges" for non-target species, since they minimize the impact of agrochemicals upon them.
Curvature and temperature of complex networks.
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián
2009-09-01
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
Scaling properties of conduction velocity in heterogeneous excitable media
NASA Astrophysics Data System (ADS)
Shajahan, T. K.; Borek, Bartłomiej; Shrier, Alvin; Glass, Leon
2011-10-01
Waves of excitation through excitable media, such as cardiac tissue, can propagate as plane waves or break up to form reentrant spiral waves. In diseased hearts reentrant waves can be associated with fatal cardiac arrhythmias. In this paper we investigate the conditions that lead to wave break, reentry, and propagation failure in mathematical models of heterogeneous excitable media. Two types of heterogeneities are considered: sinks are regions in space in which the voltage is fixed at its rest value, and breaks are nonconducting regions with no-flux boundary conditions. We find that randomly distributed heterogeneities in the medium have a decremental effect on the velocity, and above a critical density of such heterogeneities the conduction fails. Using numerical and analytical methods we derive the general relationship among the conduction velocity, density of heterogeneities, diffusion coefficient, and the rise time of the excitation in both two and three dimensions. This work helps us understand the factors leading to reduced propagation velocity and the formation of spiral waves in heterogeneous excitable media.
NASA Astrophysics Data System (ADS)
Liu, Qiao
2015-06-01
In recent paper [7], Y. Du and K. Wang (2013) proved that the global-in-time Koch-Tataru type solution (u, d) to the n-dimensional incompressible nematic liquid crystal flow with small initial data (u0, d0) in BMO-1 × BMO has arbitrary space-time derivative estimates in the so-called Koch-Tataru space norms. The purpose of this paper is to show that the Koch-Tataru type solution satisfies the decay estimates for any space-time derivative involving some borderline Besov space norms.
DIMP: an interoperable solution for software integration and product data exchange
NASA Astrophysics Data System (ADS)
Wang, Xi Vincent; Xu, Xun William
2012-08-01
Today, globalisation has become one of the main trends of manufacturing business that has led to a world-wide decentralisation of resources amongst not only individual departments within one company but also business partners. However, despite the development and improvement in the last few decades, difficulties in information exchange and sharing still exist in heterogeneous applications environments. This article is divided into two parts. In the first part, related research work and integrating solutions are reviewed and discussed. The second part introduces a collaborative environment called distributed interoperable manufacturing platform, which is based on a module-based, service-oriented architecture (SOA). In the platform, the STEP-NC data model is used to facilitate data-exchange among heterogeneous CAD/CAM/CNC systems.
Pore-scale simulations of concentration tails in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Di Palma, Paolo Roberto; Parmigiani, Andrea; Huber, Christian; Guyennon, Nicolas; Viotti, Paolo
2017-10-01
The retention of contaminants in the finest and less-conductive regions of natural aquifer is known to strongly affect the decontamination of polluted aquifers. In fact, contaminant transfer from low to high mobility regions at the back end of a contaminant plume (i.e. back diffusion) is responsible for the long-term release of contaminants during remediation operation. In this paper, we perform pore-scale calculations for the transport of contaminant through heterogeneous porous media composed of low and high mobility regions with two objectives: (i) study the effect of permeability contrast and solute transport conditions on the exchange of solutes between mobile and immobile regions and (ii) estimate the mass of contaminants sequestered in low mobility regions based on concentration breakthrough curves.
Complicated asymptotic behavior of solutions for porous medium equation in unbounded space
NASA Astrophysics Data System (ADS)
Wang, Liangwei; Yin, Jingxue; Zhou, Yong
2018-05-01
In this paper, we find that the unbounded spaces Yσ (RN) (0 < σ <2/m-1 ) can provide the work spaces where complicated asymptotic behavior appears in the solutions of the Cauchy problem of the porous medium equation. To overcome the difficulties caused by the nonlinearity of the equation and the unbounded solutions, we establish the propagation estimates, the growth estimates and the weighted L1-L∞ estimates for the solutions.
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent; ...
2017-03-01
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
NASA Astrophysics Data System (ADS)
Nowak, W.; Koch, J.
2014-12-01
Predicting DNAPL fate and transport in heterogeneous aquifers is challenging and subject to an uncertainty that needs to be quantified. Models for this task needs to be equipped with an accurate source zone description, i.e., the distribution of mass of all partitioning phases (DNAPL, water, and soil) in all possible states ((im)mobile, dissolved, and sorbed), mass-transfer algorithms, and the simulation of transport processes in the groundwater. Such detailed models tend to be computationally cumbersome when used for uncertainty quantification. Therefore, a selective choice of the relevant model states, processes, and scales are both sensitive and indispensable. We investigate the questions: what is a meaningful level of model complexity and how to obtain an efficient model framework that is still physically and statistically consistent. In our proposed model, aquifer parameters and the contaminant source architecture are conceptualized jointly as random space functions. The governing processes are simulated in a three-dimensional, highly-resolved, stochastic, and coupled model that can predict probability density functions of mass discharge and source depletion times. We apply a stochastic percolation approach as an emulator to simulate the contaminant source formation, a random walk particle tracking method to simulate DNAPL dissolution and solute transport within the aqueous phase, and a quasi-steady-state approach to solve for DNAPL depletion times. Using this novel model framework, we test whether and to which degree the desired model predictions are sensitive to simplifications often found in the literature. With this we identify that aquifer heterogeneity, groundwater flow irregularity, uncertain and physically-based contaminant source zones, and their mutual interlinkages are indispensable components of a sound model framework.
On oscillating flows in randomly heterogeneous porous media.
Trefry, M G; McLaughlin, D; Metcalfe, G; Lester, D; Ord, A; Regenauer-Lieb, K; Hobbs, B E
2010-01-13
The emergence of structure in reactive geofluid systems is of current interest. In geofluid systems, the fluids are supported by a porous medium whose physical and chemical properties may vary in space and time, sometimes sharply, and which may also evolve in reaction with the local fluids. Geofluids may also experience pressure and temperature conditions within the porous medium that drive their momentum relations beyond the normal Darcy regime. Furthermore, natural geofluid systems may experience forcings that are periodic in nature, or at least episodic. The combination of transient forcing, near-critical fluid dynamics and heterogeneous porous media yields a rich array of emergent geofluid phenomena that are only now beginning to be understood. One of the barriers to forward analysis in these geofluid systems is the problem of data scarcity. It is most often the case that fluid properties are reasonably well known, but that data on porous medium properties are measured with much less precision and spatial density. It is common to seek to perform an estimation of the porous medium properties by an inverse approach, that is, by expressing porous medium properties in terms of observed fluid characteristics. In this paper, we move toward such an inversion for the case of a generalized geofluid momentum equation in the context of time-periodic boundary conditions. We show that the generalized momentum equation results in frequency-domain responses that are governed by a second-order equation which is amenable to numerical solution. A stochastic perturbation approach demonstrates that frequency-domain responses of the fluids migrating in heterogeneous domains have spatial spectral densities that can be expressed in terms of the spectral densities of porous media properties. This journal is © 2010 The Royal Society
Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan
2013-09-01
Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P < 0.001). The 129Xe gas-transfer maps also exhibited significant heterogeneity, as measured by the coefficient of variation, that correlated with subject total lung capacity (r = 0.77, P = 0.015). Gas-transfer intensity varied nonmonotonically with slice position and increased in slices proximal to the main pulmonary arteries. Despite substantial heterogeneity, the mean gas transfer for all subjects was 1.00 ± 0.01 while supine and 1.01 ± 0.01 while prone (P = 0.25), indicating good "matching" between gas- and dissolved-phase distributions. This study demonstrates that single-breath gas- and dissolved-phase 129Xe MR imaging yields 129Xe gas-transfer maps that are sensitive to altered gas exchange caused by differences in lung inflation and posture.
Gao, Jing; Liu, Yutang; Xia, Xinnian; Wang, Longlu; Dong, Wanyue
2018-07-05
Heterogeneous Fenton-like system has been proved to be an promising alternative to Fenton system due to its easy separation. However, it's a challenge to design heterogeneous Fenton-like catalysts with high activity and great durability. Here, ternary solid solution Fe 1-x Zn x S were prepared via hydrothermal synthesis as heterogeneous Fenton-like catalysts. The Fe 0.7 Zn 0.3 S sample exhibited state of the art activity for yielding OH by H 2 O 2 decomposition, and the ultrafast degradation of phenol was achieved in 4 min at initial acidic condition under room temperature. The phenol degradation rate constant of Fe 0.7 Zn 0.3 S was 99 and 70 times of ZnS and FeS, respectively. Further, we show that the unique structural configuration of iron atoms, the formation of FeS 2 -pyrite with (200) plane, are responsible for the excellent activity. The intermediate products were identified by LC-MS and a possible pathway was accordingly proposed to elucidate the mechanism of phenol degradation by OH. Overall, this work provides an idea for the rational design of the relevant heterogeneous Fenton-like catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jawitz, J. W.; Basu, N.; Chen, X.
2007-05-01
Interwell application of coupled nonreactive and reactive tracers through aquifer contaminant source zones enables quantitative characterization of aquifer heterogeneity and contaminant architecture. Parameters obtained from tracer tests are presented here in a Lagrangian framework that can be used to predict the dissolution of nonaqueous phase liquid (NAPL) contaminants. Nonreactive tracers are commonly used to provide information about travel time distributions in hydrologic systems. Reactive tracers have more recently been introduced as a tool to quantify the amount of NAPL contaminant present within the tracer swept volume. Our group has extended reactive tracer techniques to also characterize NAPL spatial distribution heterogeneity. By conceptualizing the flow field through an aquifer as a collection of streamtubes, the aquifer hydrodynamic heterogeneities may be characterized by a nonreactive tracer travel time distribution, and NAPL spatial distribution heterogeneity may be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to derive a simple analytical solution for contaminant dissolution. This analytical solution, and the tracer techniques used for its parameterization, were validated both numerically and experimentally. Illustrative applications are presented from numerical simulations using the multiphase flow and transport simulator UTCHEM, and laboratory experiments of surfactant-enhanced NAPL remediation in two-dimensional flow chambers.
A FFT-based formulation for discrete dislocation dynamics in heterogeneous media
NASA Astrophysics Data System (ADS)
Bertin, N.; Capolungo, L.
2018-02-01
In this paper, an extension of the DDD-FFT approach presented in [1] is developed for heterogeneous elasticity. For such a purpose, an iterative spectral formulation in which convolutions are calculated in the Fourier space is developed to solve for the mechanical state associated with the discrete eigenstrain-based microstructural representation. With this, the heterogeneous DDD-FFT approach is capable of treating anisotropic and heterogeneous elasticity in a computationally efficient manner. In addition, a GPU implementation is presented to allow for further acceleration. As a first example, the approach is used to investigate the interaction between dislocations and second-phase particles, thereby demonstrating its ability to inherently incorporate image forces arising from elastic inhomogeneities.
IMIS desktop & smartphone software solutions for monitoring spacecrafts' payload from anywhere
NASA Astrophysics Data System (ADS)
Baroukh, J.; Queyrut, O.; Airaud, J.
In the past years, the demand for satellite remote operations has increased guided by on one hand, the will to reduce operations cost (on-call operators out of business hours), and on the other hand, the development of cooperation space missions resulting in a world wide distribution of engineers and science team members. Only a few off-the-shelf solutions exist to fulfill the need of remote payload monitoring, and they mainly use proprietary devices. The recent advent of mobile technologies (laptops, smartphones and tablets) as well as the worldwide deployment of broadband networks (3G, Wi-Fi hotspots), has opened up a technical window that brings new options. As part of the Mars Science Laboratory (MSL) mission, the Centre National D'Etudes Spatiales (CNES, the French space agency) has developed a new software solution for monitoring spacecraft payloads. The Instrument Monitoring Interactive Software (IMIS) offers state-of-the-art operational features for payload monitoring, and can be accessed remotely. It was conceived as a generic tool that can be used for heterogeneous payloads and missions. IMIS was designed as a classical client/server architecture. The server is hosted at CNES and acts as a data provider while two different kinds of clients are available depending on the level of mobility required. The first one is a rich client application, built on Eclipse framework, which can be installed on usual operating systems and communicates with the server through the Internet. The second one is a smartphone application for any Android platform, connected to the server thanks to the mobile broadband network or a Wi-Fi connection. This second client is mainly devoted to on-call operations and thus only contains a subset of the IMIS functionalities. This paper describes the operational context, including security aspects, that led IMIS development, presents the selected software architecture and details the various features of both clients: the desktop and the sm- rtphone application.
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K
2017-09-15
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers. Copyright © 2017. Published by Elsevier B.V.
Continuation of tailored composite structures of ordered staple thermoplastic material
NASA Technical Reports Server (NTRS)
Santare, Michael H.; Pipes, R. Byron
1992-01-01
The search for the cost effective composite structure has motivated the investigation of several approaches to develop composite structure from innovative material forms. Among the promising approaches is the conversion of a planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. A framework was established which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. Predictions for the effective viscosities of a hyper-anisotropic medium consisting of collimated, discontinuous fibers suspended in viscous matrix were extended to capture the characteristics of typical polymers including non-Newtonian behavior and temperature dependence. In addition, the influence of fiber misorientation was also modeled by compliance averaging to determine ensemble properties for a given orientation distribution. A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams such as those used in aircraft fuselage structures. Material heterogeneity can be induced during manufacturing processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing radial and tangential gradients in material properties. Two analysis procedures are used to solve the beam problems. The first method uses separate two-dimensional elasticity solutions for the stresses in the flange and web sections of the beam. The separate solutions are coupled by requiring that forces and displacements match section boundaries. The second method uses an approximate Rayleigh-Ritz technique to find the solutions for more complex beams. Analyses are performed for curved beams of various cross-sections loaded in pure bending and with a uniform distributed load. Preliminary results show that the geometry of the beam dictates the effect of heterogeneity on performance. The role of heterogeneity is larger in beams with a small average radius-to-depth ration, R/t, where R is the average radius of the beam and t is the difference between the inside and outside radii. Results of the anlysis are in the form of stresses and displacements and are compared to both mechanics of materials and numerical solutions obtained using finite element analysis.
Stability of Internal Space in Kaluza-Klein Theory
NASA Astrophysics Data System (ADS)
Maeda, K.; Soda, J.
1998-12-01
We extend a model studied by Li and Gott III to investigate a stability of internal space in Kaluza-Klein theory. Our model is a four-dimensional de-Sitter space plus a n-dimensional compactified internal space. We introduce a solution of the semi-classical Einstein equation which shows us the fact that a n-dimensional compactified internal space can be stable by the Casimir effect. The self-consistency of this solution is checked. One may apply this solution to study the issue of the Black Hole singularity.
Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions
Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; ...
2015-11-24
Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably,more » despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.« less
Mouse infection models for space flight immunology
NASA Technical Reports Server (NTRS)
Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)
2005-01-01
Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander; Myerson, Allan S.
1993-01-01
A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.
ERIC Educational Resources Information Center
Menéndez, M. Isabel; Borge, Javier
2014-01-01
The heterogeneous equilibrium of the solubility of calcium hydroxide in water is used to predict both its solubility product from solubility and solubility values from solubility product when inert salts, in any concentration, are present. Accepting the necessity of including activity coefficients to treat the saturated solution of calcium…
Using conceptual spaces to fuse knowledge from heterogeneous robot platforms
NASA Astrophysics Data System (ADS)
Kira, Zsolt
2010-04-01
As robots become more common, it becomes increasingly useful for many applications to use them in teams that sense the world in a distributed manner. In such situations, the robots or a central control center must communicate and fuse information received from multiple sources. A key challenge for this problem is perceptual heterogeneity, where the sensors, perceptual representations, and training instances used by the robots differ dramatically. In this paper, we use Gärdenfors' conceptual spaces, a geometric representation with strong roots in cognitive science and psychology, in order to represent the appearance of objects and show how the problem of heterogeneity can be intuitively explored by looking at the situation where multiple robots differ in their conceptual spaces at different levels. To bridge low-level sensory differences, we abstract raw sensory data into properties (such as color or texture categories), represented as Gaussian Mixture Models, and demonstrate that this facilitates both individual learning and the fusion of concepts between robots. Concepts (e.g. objects) are represented as a fuzzy mixture of these properties. We then treat the problem where the conceptual spaces of two robots differ and they only share a subset of these properties. In this case, we use joint interaction and statistical metrics to determine which properties are shared. Finally, we show how conceptual spaces can handle the combination of such missing properties when fusing concepts received from different robots. We demonstrate the fusion of information in real-robot experiments with a Mobile Robots Amigobot and Pioneer 2DX with significantly different cameras and (on one robot) a SICK lidar.ÿÿÿÿ
Shang, Yu; Yu, Guoqiang
2014-09-29
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order ( N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The N th-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.
NASA Astrophysics Data System (ADS)
Henri, Christopher; Fernàndez-Garcia, Daniel
2015-04-01
Modeling multi-species reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterwards. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.
NASA Astrophysics Data System (ADS)
Henri, Christopher V.; Fernàndez-Garcia, Daniel
2014-09-01
Modeling multispecies reactive transport in natural systems with strong heterogeneities and complex biochemical reactions is a major challenge for assessing groundwater polluted sites with organic and inorganic contaminants. A large variety of these contaminants react according to serial-parallel reaction networks commonly simplified by a combination of first-order kinetic reactions. In this context, a random-walk particle tracking method is presented. This method is capable of efficiently simulating the motion of particles affected by first-order network reactions in three-dimensional systems, which are represented by spatially variable physical and biochemical coefficients described at high resolution. The approach is based on the development of transition probabilities that describe the likelihood that particles belonging to a given species and location at a given time will be transformed into and moved to another species and location afterward. These probabilities are derived from the solution matrix of the spatial moments governing equations. The method is fully coupled with reactions, free of numerical dispersion and overcomes the inherent numerical problems stemming from the incorporation of heterogeneities to reactive transport codes. In doing this, we demonstrate that the motion of particles follows a standard random walk with time-dependent effective retardation and dispersion parameters that depend on the initial and final chemical state of the particle. The behavior of effective parameters develops as a result of differential retardation effects among species. Moreover, explicit analytic solutions of the transition probability matrix and related particle motions are provided for serial reactions. An example of the effect of heterogeneity on the dechlorination of organic solvents in a three-dimensional random porous media shows that the power-law behavior typically observed in conservative tracers breakthrough curves can be largely compromised by the effect of biochemical reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.
2008-07-29
Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less
Backbone conformational preferences of an intrinsically disordered protein in solution.
Espinoza-Fonseca, L Michel; Ilizaliturri-Flores, Ian; Correa-Basurto, José
2012-06-01
We have performed a 4-μs molecular dynamics simulation to investigate the native conformational preferences of the intrinsically disordered kinase-inducible domain (KID) of the transcription factor CREB in solution. There is solid experimental evidence showing that KID does not possess a bound-like structure in solution; however, it has been proposed that coil-to-helix transitions upon binding to its binding partner (CBP) are template-driven. While these studies indicate that IDPs possess a bias towards the bound structure, they do not provide direct evidence on the time-dependent conformational preferences of IDPs in atomic detail. Our simulation captured intrinsic conformational characteristics of KID that are in good agreement with experimental data such as a very small percentage of helical structure in its segment α(B) and structural disorder in solution. We used dihedral principal component analysis dPCA to map the conformations of KID in the microsecond timescale. By using principal components as reaction coordinates, we further constructed dPCA-based free energy landscapes of KID. Analysis of the free energy landscapes showed that KID is best characterized as a conformational ensemble of rapidly interconverting conformations. Interestingly, we found that despite the conformational heterogeneity of the backbone and the absence of substantial secondary structure, KID does not randomly sample the conformational space in solution: analysis of the (Φ, Ψ) dihedral angles showed that several individual residues of KID possess a strong bias toward the helical region of the Ramachandran plot. We suggest that the intrinsic conformational preferences of KID provide a bias toward the folded state without having to populate bound-like conformations before binding. Furthermore, we argue that these conformational preferences do not represent actual structural constraints which drive binding through a single pathway, which allows for specific interactions with multiple binding partners. Based on this evidence, we propose that the backbone conformational preferences of KID provide a thermodynamic advantage for folding and binding without negatively affecting the kinetics of binding. We further discuss the relation of our results to previous studies to rationalize the functional implications of the conformational preferences of IDPs, such as the optimization of structural disorder in protein-protein interactions. This study illustrates the importance in obtaining atomistic information of intrinsically disordered proteins in real time to reveal functional features arising from their complex conformational space.
Heterogeneity and scale of sustainable development in cities.
Brelsford, Christa; Lobo, José; Hand, Joe; Bettencourt, Luís M A
2017-08-22
Rapid worldwide urbanization is at once the main cause and, potentially, the main solution to global sustainable development challenges. The growth of cities is typically associated with increases in socioeconomic productivity, but it also creates strong inequalities. Despite a growing body of evidence characterizing these heterogeneities in developed urban areas, not much is known systematically about their most extreme forms in developing cities and their consequences for sustainability. Here, we characterize the general patterns of income and access to services in a large number of developing cities, with an emphasis on an extensive, high-resolution analysis of the urban areas of Brazil and South Africa. We use detailed census data to construct sustainable development indices in hundreds of thousands of neighborhoods and show that their statistics are scale-dependent and point to the critical role of large cities in creating higher average incomes and greater access to services within their national context. We then quantify the general statistical trajectory toward universal basic service provision at different scales to show that it is characterized by varying levels of inequality, with initial increases in access being typically accompanied by growing disparities over characteristic spatial scales. These results demonstrate how extensions of these methods to other goals and data can be used over time and space to produce a simple but general quantitative assessment of progress toward internationally agreed sustainable development goals.
Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements
NASA Astrophysics Data System (ADS)
Cliffe, K. A.; Graham, I. G.; Scheichl, R.; Stals, L.
2000-11-01
In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity-pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.
Heterogeneity and scale of sustainable development in cities
Brelsford, Christa; Lobo, José; Hand, Joe
2017-01-01
Rapid worldwide urbanization is at once the main cause and, potentially, the main solution to global sustainable development challenges. The growth of cities is typically associated with increases in socioeconomic productivity, but it also creates strong inequalities. Despite a growing body of evidence characterizing these heterogeneities in developed urban areas, not much is known systematically about their most extreme forms in developing cities and their consequences for sustainability. Here, we characterize the general patterns of income and access to services in a large number of developing cities, with an emphasis on an extensive, high-resolution analysis of the urban areas of Brazil and South Africa. We use detailed census data to construct sustainable development indices in hundreds of thousands of neighborhoods and show that their statistics are scale-dependent and point to the critical role of large cities in creating higher average incomes and greater access to services within their national context. We then quantify the general statistical trajectory toward universal basic service provision at different scales to show that it is characterized by varying levels of inequality, with initial increases in access being typically accompanied by growing disparities over characteristic spatial scales. These results demonstrate how extensions of these methods to other goals and data can be used over time and space to produce a simple but general quantitative assessment of progress toward internationally agreed sustainable development goals. PMID:28461489
NASA Astrophysics Data System (ADS)
Denicol, Gabriel; Heinz, Ulrich; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-12-01
We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructed by considering the conformal map between Minkowski space and the direct product of three-dimensional de Sitter space with a line. The resulting solution respects S O (3 )q⊗S O (1 ,1 )⊗Z2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations. The macroscopic solutions are obtained in de Sitter space and are subject to the same symmetries used to obtain the exact kinetic solution.
Designing and defining dynamic protein cage nanoassemblies in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Y. -T.; Hura, G. L.; Dyer, K. N.
Central challenges in the design of large and dynamic macromolecular assemblies for synthetic biology lie in developing effective methods for testing design strategies and their outcomes, including comprehensive assessments of solution behavior. Here, we created and validated an advanced design of a 600-kDa protein homododecamer that self-assembles into a symmetric tetrahedral cage. The monomeric unit is composed of a trimerizing apex-forming domain genetically linked to an edge-forming dimerizing domain. Enhancing the crystallographic results, high-throughput small-angle x-ray scattering (SAXS) comprehensively contrasted our modifications under diverse solution conditions. To generate a phase diagram associating structure and assembly, we developed force plots thatmore » measure dissimilarity among multiple SAXS data sets. These new tools, which provided effective feedback on experimental constructs relative to design, have general applicability in analyzing the solution behavior of heterogeneous nanosystems and have been made available as a web-based application. Specifically, our results probed the influence of solution conditions and symmetry on stability and structural adaptability, identifying the dimeric interface as the weak point in the assembly. Force plots comparing SAXS data sets further reveal more complex and controllable behavior in solution than captured by our crystal structures. Lastly, these methods for objectively and comprehensively comparing SAXS profiles for systems critically affected by solvent conditions and structural heterogeneity provide an enabling technology for advancing the design and bioengineering of nanoscale biological materials.« less
Designing and defining dynamic protein cage nanoassemblies in solution
Lai, Y. -T.; Hura, G. L.; Dyer, K. N.; ...
2016-12-14
Central challenges in the design of large and dynamic macromolecular assemblies for synthetic biology lie in developing effective methods for testing design strategies and their outcomes, including comprehensive assessments of solution behavior. Here, we created and validated an advanced design of a 600-kDa protein homododecamer that self-assembles into a symmetric tetrahedral cage. The monomeric unit is composed of a trimerizing apex-forming domain genetically linked to an edge-forming dimerizing domain. Enhancing the crystallographic results, high-throughput small-angle x-ray scattering (SAXS) comprehensively contrasted our modifications under diverse solution conditions. To generate a phase diagram associating structure and assembly, we developed force plots thatmore » measure dissimilarity among multiple SAXS data sets. These new tools, which provided effective feedback on experimental constructs relative to design, have general applicability in analyzing the solution behavior of heterogeneous nanosystems and have been made available as a web-based application. Specifically, our results probed the influence of solution conditions and symmetry on stability and structural adaptability, identifying the dimeric interface as the weak point in the assembly. Force plots comparing SAXS data sets further reveal more complex and controllable behavior in solution than captured by our crystal structures. Lastly, these methods for objectively and comprehensively comparing SAXS profiles for systems critically affected by solvent conditions and structural heterogeneity provide an enabling technology for advancing the design and bioengineering of nanoscale biological materials.« less
NASA Astrophysics Data System (ADS)
Gackowski, Mariusz; Kuterasiński, Łukasz; Podobiński, Jerzy; Sulikowski, Bogdan; Datka, Jerzy
2018-03-01
Ammonia treatment of ultrastable zeolite Y has a great impact on its features. XRD showed a partial loss of crystallinity coupled with a loss of long-distance zeolite ordering. However, a typical short-range zeolite ordering, in the light of 29Si NMR studies, was largely preserved. 27Al MAS NMR spectra evidenced that most of Al was located in zeolitic tetrahedral positions, but some of them adopted a distorted configuration. Evolution of zeolites acidity was followed quantitatively by using IR. In particular, such studies revealed the presence of strongly acidic Sisbnd OHsbnd Al groups. IR studies suggest also heterogeneity of these OH groups. The heterogeneity of Sisbnd OHsbnd Al groups was a consequence of the less ordered structure of zeolites treated with ammonia solutions. It was also found that the treatment with ammonia solutions yields hierarchical material. The samples revealed promising catalytic properties in the liquid phase isomerization of α-pinene. Zeolites desilicated with ammonia may constitute an inexpensive route yielding viable hierarchical catalysts.
NASA Astrophysics Data System (ADS)
Vagh, Hardik A.; Baghai-Wadji, Alireza
2008-12-01
Current technological challenges in materials science and high-tech device industry require the solution of boundary value problems (BVPs) involving regions of various scales, e.g. multiple thin layers, fibre-reinforced composites, and nano/micro pores. In most cases straightforward application of standard variational techniques to BVPs of practical relevance necessarily leads to unsatisfactorily ill-conditioned analytical and/or numerical results. To remedy the computational challenges associated with sub-sectional heterogeneities various sophisticated homogenization techniques need to be employed. Homogenization refers to the systematic process of smoothing out the sub-structural heterogeneities, leading to the determination of effective constitutive coefficients. Ordinarily, homogenization involves a sophisticated averaging and asymptotic order analysis to obtain solutions. In the majority of the cases only zero-order terms are constructed due to the complexity of the processes involved. In this paper we propose a constructive scheme for obtaining homogenized solutions involving higher order terms, and thus, guaranteeing higher accuracy and greater robustness of the numerical results. We present
Factors that significantly impact wildlife population dynamics, such as resource availability and exposure to stressors, frequently vary over space and thereby contribute to the heterogeneous spatial distributions of organisms. The spatial co-occurrence of organisms, environmenta...
Assessment of applications of transport models on regional scale solute transport
NASA Astrophysics Data System (ADS)
Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.
2017-12-01
Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.
DEFLECTION OF A HETEROGENEOUS WIDE-BEAM UNDER UNIFORM PRESSURE LOAD
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. V. Holschuh; T. K. Howard; W. R. Marcum
2014-07-01
Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or generic test plate assembly (GTPA), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates onset by hydraulic forces. This test program supports ongoing work conducted for/by the Global Threat Reduction Initiative (GTRI) Fuels Development Program. This study’s focus supports the ongoing collaborative effort by detailing the derivation of an analytic solution for deflection of a heterogeneousmore » plate under a uniform, distributed load in order to predict the deflection of test plates in the GTPA. The resulting analytical solutions for three specific boundary condition sets are then presented against several test cases of a homogeneous plate. In all test cases considered, the results for both homogeneous and heterogeneous plates are numerically identical to one another, demonstrating correct derivation of the heterogeneous solution. Two additional problems are presents herein that provide a representative deflection profile for the plates under consideration within the GTPA. Furthermore, qualitative observations are made about the influence of a more-rigid internal fuel-meat region and its influence on the overall deflection profile of a plate. Present work is being directed to experimentally confirm the analytical solution’s results using select materials.« less
Transient well flow in layered aquifer systems: the uniform well-face drawdown solution
NASA Astrophysics Data System (ADS)
Hemker, C. J.
1999-11-01
Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.
Zeolite crystal growth in space - What has been learned
NASA Technical Reports Server (NTRS)
Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.
1993-01-01
Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.
All symmetric space solutions of eleven-dimensional supergravity
NASA Astrophysics Data System (ADS)
Wulff, Linus
2017-06-01
We find all symmetric space solutions of eleven-dimensional supergravity completing an earlier classification by Figueroa-O’Farrill. They come in two types: AdS solutions and pp-wave solutions. We analyze the supersymmetry conditions and show that out of the 99 AdS geometries the only supersymmetric ones are the well known backgrounds arising as near-horizon limits of (intersecting) branes and preserving 32, 16 or 8 supersymmetries. The general form of the superisometry algebra for symmetric space backgrounds is also derived.
NASA Astrophysics Data System (ADS)
Gotovac, Hrvoje; Srzic, Veljko
2014-05-01
Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large linear system on adaptive grid because each Fup coefficient is obtained by predefined formulas equalizing Fup expansion around corresponding collocation point and particular collocation operator based on few surrounding solution values. Furthermore, each Fup coefficient can be obtained independently which is perfectly suited for parallel processing. Adaptive grid in each time step is obtained from solution of the last time step or initial conditions and advective Lagrangian step in the current time step according to the velocity field and continuous streamlines. On the other side, we implement explicit stabilized routine SERK2 for dispersive Eulerian part of solution in the current time step on obtained spatial adaptive grid. Overall adaptive concept does not require the solving of large linear systems for the spatial and temporal approximation of conservative transport. Also, this new Eulerian-Lagrangian-Collocation scheme resolves all mentioned numerical problems due to its adaptive nature and ability to control numerical errors in space and time. Proposed method solves advection in Lagrangian way eliminating problems in Eulerian methods, while optimal collocation grid efficiently describes solution and boundary conditions eliminating usage of large number of particles and other problems in Lagrangian methods. Finally, numerical tests show that this approach enables not only accurate velocity field, but also conservative transport even in highly heterogeneous porous media resolving all spatial and temporal scales of concentration field.
Heterogeneous Electron-Transfer Dynamics through Dipole-Bridge Groups.
Nieto-Pescador, Jesus; Abraham, Baxter; Li, Jingjing; Batarseh, Alberto; Bartynski, Robert A; Galoppini, Elena; Gundlach, Lars
2016-01-14
Heterogeneous electron transfer (HET) between photoexcited molecules and colloidal TiO 2 has been investigated for a set of Zn-porphyrin chromophores attached to the semiconductor via linkers that allow to change level alignment by 200 meV by reorientation of the dipole moment. These unique dye molecules have been studied by femtosecond transient absorption spectroscopy in solution and adsorbed on the TiO 2 colloidal film in vacuum. In solution energy transfer from the excited chromophore to the dipole group has been identified as a slow relaxation pathway competing with S 2 -S 1 internal conversion. On the film heterogeneous electron transfer occurred in 80 fs, much faster compared to all intramolecular pathways. Despite a difference of 200 meV in level alignment of the excited state with respect to the semiconductor conduction band, identical electron transfer times were measured for different linkers. The measurements are compared to a quantum-mechanical model that accounts for electronic-vibronic coupling and finite band width for the acceptor states. We conclude that HET occurs into a distribution of transition states that differs from regular surface states or bridge mediated states.
Roy, Rajarshi; Desai, Jaydev P.
2016-01-01
This paper outlines a comprehensive parametric approach for quantifying mechanical properties of spatially heterogeneous thin biological specimens such as human breast tissue using contact-mode Atomic Force Microscopy. Using inverse finite element (FE) analysis of spherical nanoindentation, the force response from hyperelastic material models is compared with the predicted force response from existing analytical contact models, and a sensitivity study is carried out to assess uniqueness of the inverse FE solution. Furthermore, an automation strategy is proposed to analyze AFM force curves with varying levels of material nonlinearity with minimal user intervention. Implementation of our approach on an elastic map acquired from raster AFM indentation of breast tissue specimens indicates that a judicious combination of analytical and numerical techniques allow more accurate interpretation of AFM indentation data compared to relying on purely analytical contact models, while keeping the computational cost associated an inverse FE solution with reasonable limits. The results reported in this study have several implications in performing unsupervised data analysis on AFM indentation measurements on a wide variety of heterogeneous biomaterials. PMID:25015130
PML solution of longitudinal wave propagation in heterogeneous media
NASA Astrophysics Data System (ADS)
Farzanian, M.; Arbabi, Freydoon; Pak, Ronald
2016-06-01
This paper describes the development of a model for unbounded heterogeneous domains with radiation damping produced by an unphysical wave absorbing layer. The Perfectly Matched Layer (PML) approach is used along with a displacement-based finite element. The heterogeneous model is validated using the closed-form solution of a benchmark problem: a free rod with two-part modulus subjected to a specified time history. Both elastically supported and unsupported semi-infinite rods with different degrees of inhomogeneity and loading are considered. Numerical results illustrate the effects of inhomogeneity on the response and are compared with those for equivalent homogeneous domains. The effects of characteristic features of the inhomogeneous problem, presence of local maxima and cut-off frequency are determined. A degenerate case of a homogeneous semi-infinite rod on elastic foundations is produced by tending the magnitude of the foundation stiffness to zero. The response of the latter is compared with that of a free rod. The importance of proper selection of the PML parameters to highly accurate and efficient results is demonstrated by example problems.
NASA Astrophysics Data System (ADS)
Shallal, Muhannad A.; Jabbar, Hawraz N.; Ali, Khalid K.
2018-03-01
In this paper, we constructed a travelling wave solution for space-time fractional nonlinear partial differential equations by using the modified extended Tanh method with Riccati equation. The method is used to obtain analytic solutions for the space-time fractional Klein-Gordon and coupled conformable space-time fractional Boussinesq equations. The fractional complex transforms and the properties of modified Riemann-Liouville derivative have been used to convert these equations into nonlinear ordinary differential equations.
An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space
NASA Astrophysics Data System (ADS)
Balog, János
2014-11-01
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.
Understanding and exploiting nanoscale surface heterogeneity for particle and cell manipulation
NASA Astrophysics Data System (ADS)
Kalasin, Surachate
This thesis explores the impact of surface heterogeneities on colloidal interactions and translates concepts to biointerfacial systems, for instance, microfluidic and biomedical devices. The thesis advances a model system, originally put forth by Kozlova: Tunable electrostatic surface heterogeneity is produced by adsorbing small amounts of cationic polyelectrolyte on a silica flat. The resulting positive electrostatic patches possess a density that is tuned from a saturated carpet down to average spacings on the order of a few hundred nanometers. At these length-scales, multiple adhesive elements (from tens to thousands) are present in the area of contact between a particle and a surface, a distinguishing feature of the thesis. Much of the literature addressing surface "heterogeneity" engineers surfaces with micron-scale features, almost always larger than the contact area between a particle and a second surface. With a nanoscale heterogeneity model, this thesis reports and quantitatively explains particle interaction behavior not typical of homogeneous interfaces. This includes (1) an adhesion threshold, a minimum average surface density of cationic patches needed for particle capture, (previously observed by Kozlova); (2) a crossover, from salt-destabilized to salt-stabilized interactions between heterogeneous surfaces with net-negative charge; (3) a shift of the adhesion threshold with shear, reducing adhesion; (4) a crossover from shear-enhanced to shear-hindered particle adhesion; (5) a range of surface compositions and processing parameters that sustain particle rolling; and (6) conditions where particles arrest immediately on contact. Through variations in ionic strength and particle size, the particle-surface contact area is systematically varied relative to the heterogeneity lengthscale. This provides a semi-quantitative explanation for the shifting of the adhesion threshold, in terms of the statistical probability of a particle being able to find a surface region sufficiently attractive for capture. Though neglecting hydrodynamics, the resulting (kappa-1a)1/2 power law scaling for the density of patches at the adhesion threshold roughly captures the general shape of the data. The study also reveals that at high ionic strength, particle-surface interactions are most influenced by the patchy surface heterogeneity; however, at low ionic strengths, the system becomes most sensitive to the average system properties. Thus for heterogeneous interfaces, the extent to which heterogeneity is influential depends on other factors (particle size, ionic strength). While this comprises a crossover from heterogeneity-dominated to mean field behavior, it is worth noting that even in the mean field regime, the spacing between patches always exceeds the Debye length, making the regions of different surface charge always distinct. Comparison with the simulations of Duffadar and Davis reveals that the criterion for particle capture is a nearly constant number of cationic patches per unit area of contact between a particle and a heterogeneous collector. The heterogeneous surface model displays a shear crossover seen with bacteria and other complex systems: At low shear, particle capture is enhanced, while at higher shears it is reduced. This behavior, sometimes rationalized in terms of the complex energy landscapes of biological bonds, is clearly explained in the heterogeneity model. For weakly adhesive systems engaging only a few adhesive elements or receptors, shear compromises the ability of a few bonds to capture particles. For more strongly adhesive systems, shear increases particle transport. The convolution of this competition leads to the non-monotonic effect of shear seen in biology. The complex variety of particle behaviors combined with the large number of independently variable parameters, each with different scaling of interfacial forces, necessitates a state-space approach to mapping regimes interactions and motion signatures. Following the approach taken by biophysicists for describing the interactions of leukocytes with the endothelial vasculature near an injury, the state spaces in this thesis map regimes of free particle motion, immediate firm arrest, and persistent rolling against macroscopic average patch density, Debye length, particle size, and shear rate. Surprisingly, the electrostatic heterogeneity state space resembles that for selectin-mediated leukocyte motion, and reasons are put forth. This finding is important because it demonstrates how synthetic nanoscale constructs can be exploited to achieve the selective cell capture mechanism previously attributed only to specialized cell adhesion molecules. This thesis initiates studies that extend these fundamental principles, developed for a tunable and well-characterized synthetic model to biological systems. For instance, it is demonstrated that general behaviors seen with the electrostatic model are observed when fibrinogen proteins are substituted for the electrostatic patches. This shows that the nature of the attractions is immaterial to adhesion, and that the effect of added salt primarily alters the range of the electrostatic repulsion and, correspondingly, the contact area. Also, studies with Staphylococcus aureus run parallel to those employing 1 mum silica spheres, further translating the concepts. Inaugural studies with mammalian cells, in the future work section, indicate that application of the surface heterogeneity approach to cell manipulation holds much future promise.
Quantitative analysis of eyes and other optical systems in linear optics.
Harris, William F; Evans, Tanya; van Gool, Radboud D
2017-05-01
To show that 14-dimensional spaces of augmented point P and angle Q characteristics, matrices obtained from the ray transference, are suitable for quantitative analysis although only the latter define an inner-product space and only on it can one define distances and angles. The paper examines the nature of the spaces and their relationships to other spaces including symmetric dioptric power space. The paper makes use of linear optics, a three-dimensional generalization of Gaussian optics. Symmetric 2 × 2 dioptric power matrices F define a three-dimensional inner-product space which provides a sound basis for quantitative analysis (calculation of changes, arithmetic means, etc.) of refractive errors and thin systems. For general systems the optical character is defined by the dimensionally-heterogeneous 4 × 4 symplectic matrix S, the transference, or if explicit allowance is made for heterocentricity, the 5 × 5 augmented symplectic matrix T. Ordinary quantitative analysis cannot be performed on them because matrices of neither of these types constitute vector spaces. Suitable transformations have been proposed but because the transforms are dimensionally heterogeneous the spaces are not naturally inner-product spaces. The paper obtains 14-dimensional spaces of augmented point P and angle Q characteristics. The 14-dimensional space defined by the augmented angle characteristics Q is dimensionally homogenous and an inner-product space. A 10-dimensional subspace of the space of augmented point characteristics P is also an inner-product space. The spaces are suitable for quantitative analysis of the optical character of eyes and many other systems. Distances and angles can be defined in the inner-product spaces. The optical systems may have multiple separated astigmatic and decentred refracting elements. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law
NASA Astrophysics Data System (ADS)
Torres-Cordoba, Rafael; Martinez-Garcia, Edgar
2017-10-01
This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.
NASA Astrophysics Data System (ADS)
Katayama, Soichiro
We consider the Cauchy problem for systems of nonlinear wave equations with multiple propagation speeds in three space dimensions. Under the null condition for such systems, the global existence of small amplitude solutions is known. In this paper, we will show that the global solution is asymptotically free in the energy sense, by obtaining the asymptotic pointwise behavior of the derivatives of the solution. Nonetheless we can also show that the pointwise behavior of the solution itself may be quite different from that of the free solution. In connection with the above results, a theorem is also developed to characterize asymptotically free solutions for wave equations in arbitrary space dimensions.
Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J
2017-04-17
This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
On supersymmetric AdS6 solutions in 10 and 11 dimensions
NASA Astrophysics Data System (ADS)
Gutowski, J.; Papadopoulos, G.
2017-12-01
We prove a non-existence theorem for smooth, supersymmetric, warped AdS 6 solutions with connected, compact without boundary internal space in D = 11 and (massive) IIA supergravities. In IIB supergravity we show that if such AdS 6 solutions exist, then the NSNS and RR 3-form fluxes must be linearly independent and certain spinor bilinears must be appropriately restricted. Moreover we demonstrate that the internal space admits an so(3) action which leaves all the fields invariant and for smooth solutions the principal orbits must have co-dimension two. We also describe the topology and geometry of internal spaces that admit such a so(3) action and show that there are no solutions for which the internal space has topology F × S 2, where F is an oriented surface.
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Super-resolution study of polymer mobility fluctuations near c*.
King, John T; Yu, Changqian; Wilson, William L; Granick, Steve
2014-09-23
Nanoscale dynamic heterogeneities in synthetic polymer solutions are detected using super-resolution optical microscopy. To this end, we map concentration fluctuations in polystyrene-toluene solutions with spatial resolution below the diffraction limit, focusing on critical fluctuations near the polymer overlap concentration, c*. Two-photon super-resolution microscopy was adapted to be applicable in an organic solvent, and a home-built STED-FCS system with stimulated emission depletion (STED) was used to perform fluorescence correlation spectroscopy (FCS). The polystyrene serving as the tracer probe (670 kg mol(-1), radius of gyration RG ≈ 35 nm, end-labeled with a bodipy derivative chromophore) was dissolved in toluene at room temperature (good solvent) and mixed with matrix polystyrene (3,840 kg mol(-1), RG ≈ 97 nm, Mw/Mn = 1.04) whose concentration was varied from dilute to more than 10c*. Whereas for dilute solutions the intensity-intensity correlation function follows a single diffusion process, it splits starting at c* to imply an additional relaxation process provided that the experimental focal area does not greatly exceed the polymer blob size. We identify the slower mode as self-diffusion and the increasingly rapid mode as correlated segment fluctuations that reflect the cooperative diffusion coefficient, Dcoop. These real-space measurements find quantitative agreement between correlation lengths inferred from dynamic measurements and those from determining the limit below which diffusion coefficients are independent of spot size. This study is considered to illustrate the potential of importing into polymer science the techniques of super-resolution imaging.
Moon, Su-Young; Proussaloglou, Emmanuel; Peterson, Gregory W; DeCoste, Jared B; Hall, Morgan G; Howarth, Ashlee J; Hupp, Joseph T; Farha, Omar K
2016-10-10
Owing to their high surface area, periodic distribution of metal sites, and water stability, zirconium-based metal-organic frameworks (Zr 6 -MOFs) have shown promising activity for the hydrolysis of nerve agents GD and VX, as well as the simulant, dimethyl 4-nitrophenylphosphate (DMNP), in buffered solutions. A hurdle to using MOFs for this application is the current need for a buffer solution. Here the destruction of the simulant DMNP, as well as the chemical warfare agents (GD and VX) through hydrolysis using a MOF catalyst mixed with a non-volatile, water-insoluble, heterogeneous buffer is reported. The hydrolysis of the simulant and nerve agents in the presence of the heterogeneous buffer was fast and effective. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Ahmed, Sohail; Muhammad, Taseer; Alsaedi, Ahmed
2017-10-01
This article examines homogeneous-heterogeneous reactions and internal heat generation in Darcy-Forchheimer flow of nanofluids with different base fluids. Flow is generated due to a nonlinear stretchable surface of variable thickness. The characteristics of nanofluid are explored using CNTs (single and multi walled carbon nanotubes). Equal diffusion coefficients are considered for both reactants and auto catalyst. The conversion of partial differential equations (PDEs) to ordinary differential equations (ODEs) is done via appropriate transformations. Optimal homotopy approach is implemented for solutions development of governing problems. Averaged square residual errors are computed. The optimal solution expressions of velocity, temperature and concentration are explored through plots by using several values of physical parameters. Further the coefficient of skin friction and local Nusselt number are examined through graphs.
Homoclinic accretion solutions in the Schwarzschild-anti-de Sitter space-time
NASA Astrophysics Data System (ADS)
Mach, Patryk
2015-04-01
The aim of this paper is to clarify the distinction between homoclinic and standard (global) Bondi-type accretion solutions in the Schwarzschild-anti-de Sitter space-time. The homoclinic solutions have recently been discovered numerically for polytropic equations of state. Here I show that they exist also for certain isothermal (linear) equations of state, and an analytic solution of this type is obtained. It is argued that the existence of such solutions is generic, although for sufficiently relativistic matter models (photon gas, ultrahard equation of state) there exist global solutions that can be continued to infinity, similarly to standard Michel's solutions in the Schwarzschild space-time. In contrast to that global solutions should not exist for matter models with a nonvanishing rest-mass component, and this is demonstrated for polytropes. For homoclinic isothermal solutions I derive an upper bound on the mass of the black hole for which stationary transonic accretion is allowed.
Heterotopias of Homelessness: Citizenship on the Margins
ERIC Educational Resources Information Center
Mendel, Maria
2011-01-01
The concept of heterotopia challenges political theory, which has often focused on utopic thinking. Foucault describes a heterotopia as a heterogenous space that juxtaposes in a single real place several spaces, several sites that are in themselves incompatible. Streets, squares and parks form heterotopias when their utopic purity as public space…
"Religion" in Educational Spaces: Knowing, Knowing Well, and Knowing Differently
ERIC Educational Resources Information Center
I'Anson, John; Jasper, Alison
2011-01-01
The focus of this article is how "religion", as a materially heterogeneous concept, becomes mobilized in different educational spaces, and the "kinds of knowing" to which this gives rise. Three "case studyish" illustrations are deployed in order to consider how religion and education produce kinds of knowing which…
NASA Astrophysics Data System (ADS)
Prasetyo, I.; Ramadhan, H. S.
2017-07-01
Here we present some solutions with noncanonical global monopole in nonlinear sigma model in 4-dimensional spacetime. We discuss some blackhole solutions and its horizons. We also obtain some compactification solutions. We list some possible compactification channels from 4-space to 2 × 2-spaces of constant curvatures.
2010-01-01
Background The use of Clinical Data Management Systems (CDMS) has become essential in clinical trials to handle the increasing amount of data that must be collected and analyzed. With a CDMS trial data are captured at investigator sites with "electronic Case Report Forms". Although more and more of these electronic data management systems are used in academic research centres an overview of CDMS products and of available data management and quality management resources for academic clinical trials in Europe is missing. Methods The ECRIN (European Clinical Research Infrastructure Network) data management working group conducted a two-part standardized survey on data management, software tools, and quality management for clinical trials. The questionnaires were answered by nearly 80 centres/units (with an overall response rate of 47% and 43%) from 12 European countries and EORTC. Results Our survey shows that about 90% of centres have a CDMS in routine use. Of these CDMS nearly 50% are commercial systems; Open Source solutions don't play a major role. In general, solutions used for clinical data management are very heterogeneous: 20 different commercial CDMS products (7 Open Source solutions) in addition to 17/18 proprietary systems are in use. The most widely employed CDMS products are MACRO™ and Capture System™, followed by solutions that are used in at least 3 centres: eResearch Network™, CleanWeb™, GCP Base™ and SAS™. Although quality management systems for data management are in place in most centres/units, there exist some deficits in the area of system validation. Conclusions Because the considerable heterogeneity of data management software solutions may be a hindrance to cooperation based on trial data exchange, standards like CDISC (Clinical Data Interchange Standard Consortium) should be implemented more widely. In a heterogeneous environment the use of data standards can simplify data exchange, increase the quality of data and prepare centres for new developments (e.g. the use of EHR for clinical research). Because data management and the use of electronic data capture systems in clinical trials are characterized by the impact of regulations and guidelines, ethical concerns are discussed. In this context quality management becomes an important part of compliant data management. To address these issues ECRIN will establish certified data centres to support electronic data management and associated compliance needs of clinical trial centres in Europe. PMID:20663165
Thermodynamic Studies of Levitated Microdroplets of Highly Supersaturated Electrolyte Solutions
NASA Technical Reports Server (NTRS)
Myerson, Allan S.; Izmailov, Alexander F.; Na, Han-Soo
1996-01-01
Highly supersaturated electrolyte solutions are studied by employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. A correspondence of 96-99% between the theory and experiment for the all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin) and its calculation for various electrolyte solutions at 298 K.
Analysis of mesoscopic attenuation in gas-hydrate bearing sediments
NASA Astrophysics Data System (ADS)
Rubino, J. G.; Ravazzoli, C. L.; Santos, J. E.
2007-05-01
Several authors have shown that seismic wave attenuation combined with seismic velocities constitute a useful geophysical tool to infer the presence and amounts of gas hydrates lying in the pore space of the sediments. However, it is still not fully understood the loss mechanism associated to the presence of the hydrates, and most of the works dealing with this problem focuse on macroscopic fluid flow, friction between hydrates and sediment matrix and squirt flow. It is well known that an important cause of the attenuation levels observed in seismic data from some sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths. In order to analyze this effect in heterogeneous gas-hydrate bearing sediments, we developed a finite-element procedure to obtain the effective complex modulus of an heterogeneous porous material containing gas hydrates in its pore space using compressibility tests at different oscillatory frequencies in the seismic range. The complex modulus were obtained by solving Biot's equations of motion in the space-frequency domain with appropriate boundary conditions representing a gedanken laboratory experiment measuring the complex volume change of a representative sample of heterogeneous bulk material. This complex modulus in turn allowed us to obtain the corresponding effective phase velocity and quality factor for each frequency and spatial gas hydrate distribution. Physical parameters taken from the Mallik 5L-38 Gas Hydrate Research well (Mackenzie Delta, Canada) were used to analyze the mesoscopic effects in realistic hydrated sediments.
Power law analysis of the human microbiome.
Ma, Zhanshan Sam
2015-11-01
Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Yongjing; Chen, Zhe; Yao, Lei; Wang, Xiao; Fu, Ping; Lin, Zhidong
2018-04-01
The interlayer spacing of graphene oxide (GO) is a key property for GO membrane. To probe the variation of interlayer spacing of the GO membrane immersing in KCl aqueous solution, electrochemical impedance spectroscopy (EIS), x-ray diffraction (XRD) and computational calculation was utilized in this study. The XRD patterns show that soaking in KCl aqueous solution leads to an increase of interlayer spacing of GO membrane. And the EIS results indicate that during the immersing process, the charge transfer resistance of GO membrane decreases first and then increases. Computational calculation confirms that intercalated water molecules can result in an increase of interlayer spacing of GO membrane, while the permeation of K+ ions would lead to a decrease of interlayer spacing. All the results are in agreement with each other. It suggests that during the immersing process, the interlayer spacing of GO enlarges first and then decreases. EIS can be a promisingly online method for examining the interlayer spacing of GO in the aqueous solution.
NASA Astrophysics Data System (ADS)
Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.
2010-04-01
The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.
NASA Astrophysics Data System (ADS)
Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.
2010-08-01
The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.
NASA Astrophysics Data System (ADS)
Souto Mantecon, Francisco Javier
One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite-reflected cylindrical geometry.
NASA Astrophysics Data System (ADS)
Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi
2003-08-01
When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.
Expansion Under Climate Change: The Genetic Consequences.
Garnier, Jimmy; Lewis, Mark A
2016-11-01
Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.
The Plastic Nature of the Human Bone-Periodontal Ligament-Tooth Fibrous Joint
Ho, Sunita P.; Kurylo, Michael P.; Grandfield, Kathryn; Hurng, Jonathan; Herber, Ralf-Peter; Ryder, Mark I.; Altoe, Virginia; Aloni, Shaul; Feng, Jian Q. (Jerry); Webb, Samuel; Marshall, Grayson W.; Curtis, Donald; Andrews, Joy C.; Pianetta, Piero
2014-01-01
This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano transmission X-ray microscopy (nano-TXM), and micro tomography (Micro XCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8 GPa) compared to lamellar bone (0.8-6 GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30 μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted. PMID:24063947
NASA Astrophysics Data System (ADS)
Liu, Jiangen; Zhang, Yufeng
2018-01-01
This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg-de Vries equation with space-time local fractional derivatives. By using the improved (G‧ G )-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.
Factors Affecting Public Preferences for Grassland Landscape Heterogeneity in the Great Plains
NASA Astrophysics Data System (ADS)
Joshi, Omkar; Becerra, Terrie A.; Engle, David M.; Fuhlendorf, Samuel D.; Elmore, R. Dwayne
2017-11-01
Agricultural intensification has fragmented rangelands in the Great Plains, which has contributed to uniform and homogeneous landscapes and decreased biodiversity. Alternative land management practices involving fire-grazing interactions can help maintain biodiversity without affecting livestock productivity. A survey was designed to understand the factors that influence preferences among the general population towards grassland landscape heterogeneity. Given the ordinal nature of survey responses, requisite data were analyzed using a generalized ordinal logit model. Results suggested that respondents who valued open space and those who recognized a need for a varying mix of uniform grasses and grasslands preferred landscape heterogeneity. Female respondents were about two times as likely to prefer heterogeneous landscapes compared to male respondents. In contrast, population groups that preferred wildlife habitat did not desire heterogeneous landscapes. Results suggest the need for extension and outreach activities to educate certain segments of the general population regarding benefits of alternative management practices that support landscape heterogeneity in the Great Plains.
Treeby, Bradley E; Jaros, Jiri; Rendell, Alistair P; Cox, B T
2012-06-01
The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.
Organic, Organometallic and Bioorganic Catalysts for Electrochemical Reduction of CO2
Schlager, Stefanie; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar
2017-01-01
Abstract A broad review of homogeneous and heterogeneous catalytic approaches toward CO2 reduction using organic, organometallic, and bioorganic systems is provided. Electrochemical, bioelectrochemical and photoelectrochemical approaches are discussed in terms of their faradaic efficiencies, overpotentials and reaction mechanisms. Organometallic complexes as well as semiconductors and their homogeneous and heterogeneous catalytic activities are compared to enzymes. In both cases, their immobilization on electrodes is discussed and compared to homogeneous catalysts in solution. PMID:28383174
Gradient of the temperature function at the voxel (i, j, k) for heterogeneous bio-thermal model
NASA Astrophysics Data System (ADS)
Cen, Wei; Hoppe, Ralph; Sun, Aiwu; Gu, Ning; Lu, Rongbo
2018-06-01
Determination of the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples based on numerical methods is essential in biomedical engineering (e.g. microwave thermal ablation in clinic). In this paper, the gradient expression is examined and analyzed in detail, as how the gradient operators can be discretized is the only real difficulty to the solution of bio-heat equation for highly inhomogeneous model utilizing implicit scheme.
Ion beam analysis of diffusion in heterogeneous materials
NASA Astrophysics Data System (ADS)
Clough, A. S.; Jenneson, P. M.
1998-04-01
Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.
Lezama-Pacheco, Juan S; Cerrato, José M; Veeramani, Harish; Alessi, Daniel S; Suvorova, Elena; Bernier-Latmani, Rizlan; Giammar, Daniel E; Long, Philip E; Williams, Kenneth H; Bargar, John R
2015-06-16
Oxidative dissolution controls uranium release to (sub)oxic pore waters from biogenic uraninite produced by natural or engineered processes, such as bioremediation. Laboratory studies show that uraninite dissolution is profoundly influenced by dissolved oxygen (DO), carbonate, and solutes such as Ca(2+). In complex and heterogeneous subsurface environments, the concentrations of these solutes vary in time and space. Knowledge of dissolution processes and kinetics occurring over the long-term under such conditions is needed to predict subsurface uranium behavior and optimize the selection and performance of uraninite-based remediation technologies over multiyear periods. We have assessed dissolution of biogenic uraninite deployed in wells at the Rifle, CO, DOE research site over a 22 month period. Uraninite loss rates were highly sensitive to DO, with near-complete loss at >0.6 mg/L over this period but no measurable loss at lower DO. We conclude that uraninite can be stable over decadal time scales in aquifers under low DO conditions. U(VI) solid products were absent over a wide range of DO values, suggesting that dissolution proceeded through complexation and removal of oxidized surface uranium atoms by carbonate. Moreover, under the groundwater conditions present, Ca(2+) binds strongly to uraninite surfaces at structural uranium sites, impacting uranium fate.
Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K
2011-11-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dang Van; NeuroSpin, Bat145, Point Courrier 156, CEA Saclay Center, 91191 Gif-sur-Yvette Cedex; Li, Jing-Rebecca, E-mail: jingrebecca.li@inria.fr
2014-04-15
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch–Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution atmore » the cell interfaces by using double nodes. Using a transformation of the Bloch–Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge–Kutta–Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.« less
NASA Astrophysics Data System (ADS)
Shahnazari, M. R.; Maleka Ashtiani, I.; Saberi, A.
2018-03-01
In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.
Gupta, Rahul; Reneaux, Melissa; Karmeshu
2016-01-01
Besides the geometrical tortousity due to the extrasynaptic structures, macromolecular crowding and geometrical irregularities constituting the cleft composition at central excitatory synapses has a major and direct role in retarding the glutamate diffusion within the cleft space. However, the cleft composition may not only coarsely reduce the overall diffusivity of the glutamate but may also lead to substantial spatial variation in the diffusivity across the cleft space. Decrease in the overall diffusivity of the glutamate may have straightforward consequences to the glutamate transients in the cleft. However, how spatial variation in the diffusivity may further affect glutamate transients is an intriguing aspect. Therefore, to understand the role of cleft heterogeneity, the present study adopts a novel approach of glutamate diffusion which considers a gamma statistical distribution of the diffusion coefficient of glutamate (Dglut) across the cleft space, such that its moments discernibly capture the dual impacts of the cleft composition, and further applies the framework of superstatistics. The findings reveal a power law behavior in the glutamate transients, akin to the long-range anomalous subdiffusion, which leads to slower decay profile of cleft glutamate at higher intensity of cleft heterogeneity. Moreover, increase in the cleft heterogeneity is seen to eventually cause slower-rising excitatory postsynaptic currents with higher amplitudes, lesser noise, and prolonged duration of charge transfer across the postsynaptic membrane. Further, with regard to the conventional standard diffusion approach, the study suggests that the effective Dglut essentially derives from the median of the Dglut distribution and does not necessarily need to be the mean Dglut. Together, the findings indicate a strong implication of cleft heterogeneity to the metabolically cost-effective tuning of synaptic response during the phenomenon of plasticity at individual synapses and also provide an additional factor of variability in transmission across identical synapses. PMID:27907112
Application of Multi-Hypothesis Sequential Monte Carlo for Breakup Analysis
NASA Astrophysics Data System (ADS)
Faber, W. R.; Zaidi, W.; Hussein, I. I.; Roscoe, C. W. T.; Wilkins, M. P.; Schumacher, P. W., Jr.
As more objects are launched into space, the potential for breakup events and space object collisions is ever increasing. These events create large clouds of debris that are extremely hazardous to space operations. Providing timely, accurate, and statistically meaningful Space Situational Awareness (SSA) data is crucial in order to protect assets and operations in space. The space object tracking problem, in general, is nonlinear in both state dynamics and observations, making it ill-suited to linear filtering techniques such as the Kalman filter. Additionally, given the multi-object, multi-scenario nature of the problem, space situational awareness requires multi-hypothesis tracking and management that is combinatorially challenging in nature. In practice, it is often seen that assumptions of underlying linearity and/or Gaussianity are used to provide tractable solutions to the multiple space object tracking problem. However, these assumptions are, at times, detrimental to tracking data and provide statistically inconsistent solutions. This paper details a tractable solution to the multiple space object tracking problem applicable to space object breakup events. Within this solution, simplifying assumptions of the underlying probability density function are relaxed and heuristic methods for hypothesis management are avoided. This is done by implementing Sequential Monte Carlo (SMC) methods for both nonlinear filtering as well as hypothesis management. This goal of this paper is to detail the solution and use it as a platform to discuss computational limitations that hinder proper analysis of large breakup events.
Grain refinement of cast zinc through magnesium inoculation: Characterisation and mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhilin; Qiu, Dong; Wang, Feng
2015-08-15
It was previously found that peritectic-forming solutes are more favourable for the grain refinement of cast Al alloys than eutectic-forming solutes. In this work, we report that the eutectic-forming solute, Mg, can also significantly grain refine cast Zn. Differential thermal analysis (DTA) of a Zn–Mg alloy, in which efficient grain refinement occurred, evidenced an unexpected peak that appeared before the nucleation of η-Zn grains on the DTA spectrum. Based on extensive examination using X-ray diffraction, high resolution SEM and EDS, it was found that: (a) some faceted Zn–Mg intermetallic particles were reproducibly observed; (b) the particles were located at ormore » near grain centres; (c) the atomic ratio of Mg to Zn in the intermetallic compound was determined to be around 1/2. Using tilting selected area diffraction (SAD) and convergent beam Kikuchi line diffraction pattern (CBKLDP) techniques, these faceted particles were identified as MgZn{sub 2} and an orientation relationship between such grain-centred MgZn{sub 2} particles and the η-Zn matrix was determined. Hence, the unexpected peak on the DTA spectrum is believed to correspond to the formation of MgZn{sub 2} particles, which act as effective heterogeneous nucleation sites in the alloy. Together with the effect of Mg solute on restricting grain growth, such heterogeneous nucleation is cooperatively responsible for the grain size reduction in Zn–Mg alloys. - Highlights: • A new eutectic-based grain refiner for the cast Zn was found. • The formation process of an intermetallic compound (MgZn{sub 2}) was characterised. • MgZn{sub 2} can act as potent heterogeneous nucleation sites above the liquidus. • A new OR between MgZn{sub 2} and η-Zn was determined using the CBKLDP technique.« less
Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei
2016-01-12
In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment analysis suggests that because essential conformational events are mainly driven by the compensating fluctuations of essential solute-solvent and solute-solute interactions, commonly employed "predictive" sampling methods are unlikely to be effective on this seemingly "simple" system. The gOST development presented in this paper illustrates how to employ the OSS scheme for physics-based sampling method designs.
Product Lifecycle Management and the Quest for Sustainable Space Transportation Solutions
NASA Technical Reports Server (NTRS)
Caruso, Pamela W.
2009-01-01
This viewgraph presentation reviews NASA Marshall's effort to sustain space transportation solutions through product lines that include: 1) Propulsion and Transportation Systems; 2) Life Support Systems; and 3) and Earth and Space Science Spacecraft Systems, and Operations.
Friedel, Michael J.
2001-01-01
This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water-heat-solute transport. The first three problems considered in model verification were compared to either analytical or numerical solutions, whereas the coupled problem was compared to measured laboratory results for which no known analytic solutions or numerical models are available. The test results indicate the model is accurate and applicable for a wide range of conditions, including when water (liquid and vapor), heat (sensible and latent), and solute are coupled in ground-water systems. The cumulative residual errors for the coupled problem tested was less than 10-8 cubic centimeter per cubic centimeter, 10-5 moles per kilogram, and 102 calories per cubic meter for liquid water content, solute concentration and heat content, respectively. This model should be useful to hydrologists, engineers, and researchers interested in studying coupled processes associated with variably saturated transport in ground-water systems.
Higher dimensional Taub-NUT spaces and applications
NASA Astrophysics Data System (ADS)
Stelea, Cristian Ionut
In the first part of this thesis we discuss classes of new exact NUT-charged solutions in four dimensions and higher, while in the remainder of the thesis we make a study of their properties and their possible applications. Specifically, in four dimensions we construct new families of axisymmetric vacuum solutions using a solution-generating technique based on the hidden SL(2,R) symmetry of the effective action. In particular, using the Schwarzschild solution as a seed we obtain the Zipoy-Voorhees generalisation of the Taub-NUT solution and of the Eguchi-Hanson soliton. Using the C-metric as a seed, we obtain and study the accelerating versions of all the above solutions. In higher dimensions we present new classes of NUT-charged spaces, generalising the previously known even-dimensional solutions to odd and even dimensions, as well as to spaces with multiple NUT-parameters. We also find the most general form of the odd-dimensional Eguchi-Hanson solitons. We use such solutions to investigate the thermodynamic properties of NUT-charged spaces in (A)dS backgrounds. These have been shown to yield counter-examples to some of the conjectures advanced in the still elusive dS/CFT paradigm (such as the maximal mass conjecture and Bousso's entropic N-bound). One important application of NUT-charged spaces is to construct higher dimensional generalisations of Kaluza-Klein magnetic monopoles, generalising the known 5-dimensional Kaluza-Klein soliton. Another interesting application involves a study of time-dependent higher-dimensional bubbles-of-nothing generated from NUT-charged solutions. We use them to test the AdS/CFT conjecture as well as to generate, by using stringy Hopf-dualities, new interesting time-dependent solutions in string theory. Finally, we construct and study new NUT-charged solutions in higher-dimensional Einstein-Maxwell theories, generalising the known Reissner-Nordstrom solutions.
NASA Astrophysics Data System (ADS)
Melo, Elis Almeida; Magnabosco, Rodrigo
2017-11-01
The aim of this work is to study the influence of the heterogeneous nucleation site quantity, observed in different ferrite and austenite grain size samples, on the phase transformations that result in intermetallic phases in a UNS S31803 duplex stainless steel (DSS). Solution treatment was conducted for 1, 24, 96, or 192 hours at 1373 K (1100 °C) to obtain different ferrite and austenite grain sizes. After solution treatment, isothermal aging treatments for 5, 8, 10, 20, 30, or 60 minutes at 1123 K (850 °C) were performed to verify the influence of different amounts of heterogeneous nucleation sites in the kinetics of intermetallic phase formation. The sample solution treated for 1 hour, with the highest surface area between matrix phases, was the one that presented, after 60 minutes at 1123 K (850 °C), the smaller volume fraction of ferrite (indicative of greater intermetallic phase formation), higher volume of sigma (that was present in coral-like and compact morphologies), and chi phase. It was not possible to identify which was the first nucleated phase, sigma or chi. It was also observed that the phase formation kinetics is higher for the sample solution treated for 1 hour. It was evidenced that, from a certain moment on, the chi phase begins to be consumed due to the sigma phase formation, and the austenite/ferrite interface presents higher S V for all solution treatment times. It was also observed that intermetallic phases form preferably in austenite-ferrite interfaces, although the higher occupation rate occurs at triple junction ferrite-ferrite-ferrite. It was verified that there was no saturation of nucleation sites in any interface type nor triple junction, and the equilibrium after 1 hour of aging at 1123 K (850 °C) was not achieved. It was then concluded that sigma phase formation is possibly controlled by diffusional processes, without saturation of nucleation sites.
Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy.
Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye
2017-06-06
Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments.
Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy
Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye
2017-01-01
Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments. PMID:28587309
Pischedda, L; Poggiale, J C; Cuny, P; Gilbert, F
2008-06-01
The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.
NASA Astrophysics Data System (ADS)
Puckett, E. G.; Turcotte, D. L.; He, Y.; Lokavarapu, H. V.; Robey, J.; Kellogg, L. H.
2017-12-01
Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions.Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB.These regions have been associated with lower mantle structures known as large low shear velocity provinces below Africa and the South Pacific.The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves.Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle.Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods.Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or `artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm.We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method.We compare the performance of these four algorithms on three problems, including computing an approximation to the solution of an initially compositionally stratified fluid at Ra = 105 with buoyancy numbers {B} that vary from no stratification at B = 0 to stratified flow at large B.
The effect of soil heterogeneity on ATES performance
NASA Astrophysics Data System (ADS)
Sommer, W.; Rijnaarts, H.; Grotenhuis, T.; van Gaans, P.
2012-04-01
Due to an increasing demand for sustainable energy, application of Aquifer Thermal Energy Storage (ATES) is growing rapidly. Large-scale application of ATES is limited by the space that is available in the subsurface. Especially in urban areas, suboptimal performance is expected due to thermal interference between individual wells of a single system, or interference with other ATES systems or groundwater abstractions. To avoid thermal interference there are guidelines on well spacing. However, these guidelines, and also design calculations, are based on the assumption of a homogeneous subsurface, while studies report a standard deviation in logpermeability of 1 to 2 for unconsolidated aquifers (Gelhar, 1993). Such heterogeneity may create preferential pathways, reducing ATES performance due to increased advective heat loss or interference between ATES wells. The role of hydraulic heterogeneity of the subsurface related to ATES performance has received little attention in literature. Previous research shows that even small amounts of heterogeneity can result in considerable uncertainty in the distribution of thermal energy in the subsurface and an increased radius of influence (Ferguson, 2007). This is supported by subsurface temperature measurements around ATES wells, which suggest heterogeneity gives rise to preferential pathways and short-circuiting between ATES wells (Bridger and Allen, 2010). Using 3-dimensional stochastic heat transport modeling, we quantified the influence of heterogeneity on the performance of a doublet well energy storage system. The following key parameters are varied to study their influence on thermal recovery and thermal balance: 1) regional flow velocity, 2) distance between wells and 3) characteristics of the heterogeneity. Results show that heterogeneity at the scale of a doublet ATES system introduces an uncertainty up to 18% in expected thermal recovery. The uncertainty increases with decreasing distance between ATES wells. The uncertainty in the thermal balance ratio related to heterogeneity is limited (smaller than 3%). If thermal interference should be avoided, wells in heterogeneous aquifers should be placed further apart than in homogeneous aquifers, leading to larger volume claim in the subsurface. By relating the number of ATES systems in an area to their expected performance, these results can be used to optimize regional application of ATES. Bridger, D. W. and D. M. Allen (2010). "Heat transport simulations in a heterogeneous aquifer used for aquifer thermal energy storage (ATES)." Canadian Geotechnical Journal 47(1): 96-115. Ferguson, G. (2007). "Heterogeneity and thermal modeling of ground water." Ground Water 45(4): 485-490. Gelhar, L. W. (1993). Stochastic Subsurface Hydrology, Prentice Hall.
Phase-space networks of geometrically frustrated systems.
Han, Yilong
2009-11-01
We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Wright, D.; Liu, S.
2017-12-01
Regional frequency analyses of extreme rainfall are critical for development of engineering hydrometeorology procedures. In conventional approaches, the assumptions that `design storms' have specified time profiles and are uniform in space are commonly applied but often not appropriate, especially over regions with heterogeneous environments (due to topography, water-land boundaries and land surface properties). In this study, we present regional frequency analyses of extreme rainfall for Baltimore study region combining storm catalogs of rainfall fields derived from weather radar and stochastic storm transposition (SST, developed by Wright et al., 2013). The study region is Dead Run, a small (14.3 km2) urban watershed, in the Baltimore Metropolitan region. Our analyses build on previous empirical and modeling studies showing pronounced spatial heterogeneities in rainfall due to the complex terrain, including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in this region. We expand the original SST approach by applying a multiplier field that accounts for spatial heterogeneities in extreme rainfall. We also characterize the spatial heterogeneities of extreme rainfall distribution through analyses of rainfall fields in the storm catalogs. We examine the characteristics of regional extreme rainfall and derive intensity-duration-frequency (IDF) curves using the SST approach for heterogeneous regions. Our results highlight the significant heterogeneity of extreme rainfall in this region. Estimates of IDF show the advantages of SST in capturing the space-time structure of extreme rainfall. We also illustrate application of SST analyses for flood frequency analyses using a distributed hydrological model. Reference: Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck (2013), Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition, J. Hydrol., 488, 150-165.
Fullerton, A.H.; Torgersen, Christian E.; Lawer, J.J.; Steel, E. A.; Ebersole, J.L.; Lee, S.Y.
2018-01-01
Climate-change driven increases in water temperature pose challenges for aquatic organisms. Predictions of impacts typically do not account for fine-grained spatiotemporal thermal patterns in rivers. Patches of cooler water could serve as refuges for anadromous species like salmon that migrate during summer. We used high-resolution remotely sensed water temperature data to characterize summer thermal heterogeneity patterns for 11,308 km of second–seventh-order rivers throughout the Pacific Northwest and northern California (USA). We evaluated (1) water temperature patterns at different spatial resolutions, (2) the frequency, size, and spacing of cool thermal patches suitable for Pacific salmon (i.e., contiguous stretches ≥ 0.25 km, ≤ 15 °C and ≥ 2 °C, aooler than adjacent water), and (3) potential influences of climate change on availability of cool patches. Thermal heterogeneity was nonlinearly related to the spatial resolution of water temperature data, and heterogeneity at fine resolution (< 1 km) would have been difficult to quantify without spatially continuous data. Cool patches were generally > 2.7 and < 13.0 km long, and spacing among patches was generally > 5.7 and < 49.4 km. Thermal heterogeneity varied among rivers, some of which had long uninterrupted stretches of warm water ≥ 20 °C, and others had many smaller cool patches. Our models predicted little change in future thermal heterogeneity among rivers, but within-river patterns sometimes changed markedly compared to contemporary patterns. These results can inform long-term monitoring programs as well as near-term climate-adaptation strategies.
NASA Astrophysics Data System (ADS)
Xie, Jibo; Li, Guoqing
2015-04-01
Earth observation (EO) data obtained by air-borne or space-borne sensors has the characteristics of heterogeneity and geographical distribution of storage. These data sources belong to different organizations or agencies whose data management and storage methods are quite different and geographically distributed. Different data sources provide different data publish platforms or portals. With more Remote sensing sensors used for Earth Observation (EO) missions, different space agencies have distributed archived massive EO data. The distribution of EO data archives and system heterogeneity makes it difficult to efficiently use geospatial data for many EO applications, such as hazard mitigation. To solve the interoperable problems of different EO data systems, an advanced architecture of distributed geospatial data infrastructure is introduced to solve the complexity of distributed and heterogeneous EO data integration and on-demand processing in this paper. The concept and architecture of geospatial data service gateway (GDSG) is proposed to build connection with heterogeneous EO data sources by which EO data can be retrieved and accessed with unified interfaces. The GDSG consists of a set of tools and service to encapsulate heterogeneous geospatial data sources into homogenous service modules. The GDSG modules includes EO metadata harvesters and translators, adaptors to different type of data system, unified data query and access interfaces, EO data cache management, and gateway GUI, etc. The GDSG framework is used to implement interoperability and synchronization between distributed EO data sources with heterogeneous architecture. An on-demand distributed EO data platform is developed to validate the GDSG architecture and implementation techniques. Several distributed EO data achieves are used for test. Flood and earthquake serves as two scenarios for the use cases of distributed EO data integration and interoperability.
Van Assche, Tom R C; Duerinck, Tim; Van der Perre, Stijn; Baron, Gino V; Denayer, Joeri F M
2014-07-08
Due to the combination of metal ions and organic linkers and the presence of different types of cages and channels, metal-organic frameworks often possess a large structural and chemical heterogeneity, complicating their adsorption behavior, especially for polar-apolar adsorbate mixtures. By allocating isotherms to individual subunits in the structure, the ideal adsorbed solution theory (IAST) can be adjusted to cope with this heterogeneity. The binary adsorption of methanol and n-hexane on HKUST-1 is analyzed using this segregated IAST (SIAST) approach and offers a significant improvement over the standard IAST model predictions. It identifies the various HKUST-1 cages to have a pronounced polar or apolar adsorptive behavior.
Preventing Supercooling Of Gallium
NASA Technical Reports Server (NTRS)
Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie
1994-01-01
Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.
An efficient and practical approach to obtain a better optimum solution for structural optimization
NASA Astrophysics Data System (ADS)
Chen, Ting-Yu; Huang, Jyun-Hao
2013-08-01
For many structural optimization problems, it is hard or even impossible to find the global optimum solution owing to unaffordable computational cost. An alternative and practical way of thinking is thus proposed in this research to obtain an optimum design which may not be global but is better than most local optimum solutions that can be found by gradient-based search methods. The way to reach this goal is to find a smaller search space for gradient-based search methods. It is found in this research that data mining can accomplish this goal easily. The activities of classification, association and clustering in data mining are employed to reduce the original design space. For unconstrained optimization problems, the data mining activities are used to find a smaller search region which contains the global or better local solutions. For constrained optimization problems, it is used to find the feasible region or the feasible region with better objective values. Numerical examples show that the optimum solutions found in the reduced design space by sequential quadratic programming (SQP) are indeed much better than those found by SQP in the original design space. The optimum solutions found in a reduced space by SQP sometimes are even better than the solution found using a hybrid global search method with approximate structural analyses.
Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations
NASA Technical Reports Server (NTRS)
Fijany, Amir
1993-01-01
In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.
Cosmological perturbations in the (1 + 3 + 6)-dimensional space-times
NASA Astrophysics Data System (ADS)
Tomita, K.
2014-12-01
Cosmological perturbations in the (1+3+6)-dimensional space-times including photon gas without viscous processes are studied on the basis of Abbott et al.'s formalism [R. B. Abbott, B. Bednarz, and S. D. Ellis, Phys. Rev. D 33, 2147 (1986)]. Space-times consist of outer space (the 3-dimensional expanding section) and inner space (the 6-dimensional section). The inner space expands initially and later contracts. Abbott et al. derived only power-type solutions, which appear at the final stage of the space-times, in the small wave-number limit. In this paper, we derive not only small wave-number solutions, but also large wave-number solutions. It is found that the latter solutions depend on the two wave-numbers k_r and k_R (which are defined in the outer and inner spaces, respectively), and that the k_r-dependent and k_R-dependent parts dominate the total perturbations when (k_r/r(t))/(k_R/R(t)) ≫ 1 or ≪ 1, respectively, where r(t) and R(t) are the scale-factors in the outer and inner spaces. By comparing the behaviors of these perturbations, moreover, changes in the spectrum of perturbations in the outer space with time are discussed.
Comprehensive monitoring for heterogeneous geographically distributed storage
Ratnikova, Natalia; Karavakis, E.; Lammel, S.; ...
2015-12-23
Storage capacity at CMS Tier-1 and Tier-2 sites reached over 100 Petabytes in 2014, and will be substantially increased during Run 2 data taking. The allocation of storage for the individual users analysis data, which is not accounted as a centrally managed storage space, will be increased to up to 40%. For comprehensive tracking and monitoring of the storage utilization across all participating sites, CMS developed a space monitoring system, which provides a central view of the geographically dispersed heterogeneous storage systems. The first prototype was deployed at pilot sites in summer 2014, and has been substantially reworked since then.more » In this study, we discuss the functionality and our experience of system deployment and operation on the full CMS scale.« less
On the initial value problem for the wave equation in Friedmann-Robertson-Walker space-times.
Abbasi, Bilal; Craig, Walter
2014-09-08
The propagator W ( t 0 , t 1 )( g , h ) for the wave equation in a given space-time takes initial data ( g ( x ), h ( x )) on a Cauchy surface {( t , x ) : t = t 0 } and evaluates the solution ( u ( t 1 , x ),∂ t u ( t 1 , x )) at other times t 1 . The Friedmann-Robertson-Walker space-times are defined for t 0 , t 1 >0, whereas for t 0 →0, there is a metric singularity. There is a spherical means representation for the general solution of the wave equation with the Friedmann-Robertson-Walker background metric in the three spatial dimensional cases of curvature K =0 and K =-1 given by S. Klainerman and P. Sarnak. We derive from the expression of their representation three results about the wave propagator for the Cauchy problem in these space-times. First, we give an elementary proof of the sharp rate of time decay of solutions with compactly supported data. Second, we observe that the sharp Huygens principle is not satisfied by solutions, unlike in the case of three-dimensional Minkowski space-time (the usual Huygens principle of finite propagation speed is satisfied, of course). Third, we show that for 0< t 0 < t the limit, [Formula: see text] exists, it is independent of h ( x ), and for all reasonable initial data g ( x ), it gives rise to a well-defined solution for all t >0 emanating from the space-time singularity at t =0. Under reflection t →- t , the Friedmann-Robertson-Walker metric gives a space-time metric for t <0 with a singular future at t =0, and the same solution formulae hold. We thus have constructed solutions u ( t , x ) of the wave equation in Friedmann-Robertson-Walker space-times which exist for all [Formula: see text] and [Formula: see text], where in conformally regularized coordinates, these solutions are continuous through the singularity t =0 of space-time, taking on specified data u (0,⋅)= g (⋅) at the singular time.
Distributed Access View Integrated Database (DAVID) system
NASA Technical Reports Server (NTRS)
Jacobs, Barry E.
1991-01-01
The Distributed Access View Integrated Database (DAVID) System, which was adopted by the Astrophysics Division for their Astrophysics Data System, is a solution to the system heterogeneity problem. The heterogeneous components of the Astrophysics problem is outlined. The Library and Library Consortium levels of the DAVID approach are described. The 'books' and 'kits' level is discussed. The Universal Object Typer Management System level is described. The relation of the DAVID project with the Small Business Innovative Research (SBIR) program is explained.
Connectivity, interoperability and manageability challenges in internet of things
NASA Astrophysics Data System (ADS)
Haseeb, Shariq; Hashim, Aisha Hassan A.; Khalifa, Othman O.; Ismail, Ahmad Faris
2017-09-01
The vision of Internet of Things (IoT) is about interconnectivity between sensors, actuators, people and processes. IoT exploits connectivity between physical objects like fridges, cars, utilities, buildings and cities for enhancing the lives of people through automation and data analytics. However, this sudden increase in connected heterogeneous IoT devices takes a huge toll on the existing Internet infrastructure and introduces new challenges for researchers to embark upon. This paper highlights the effects of heterogeneity challenges on connectivity, interoperability, management in greater details. It also surveys some of the existing solutions adopted in the core network to solve the challenges of massive IoT deployment. The paper finally concludes that IoT architecture and network infrastructure needs to be reengineered ground-up, so that IoT solutions can be safely and efficiently deployed.
A Sensor Middleware for integration of heterogeneous medical devices.
Brito, M; Vale, L; Carvalho, P; Henriques, J
2010-01-01
In this paper, the architecture of a modular, service-oriented, Sensor Middleware for data acquisition and processing is presented. The described solution was developed with the purpose of solving two increasingly relevant problems in the context of modern pHealth systems: i) to aggregate a number of heterogeneous, off-the-shelf, devices from which clinical measurements can be acquired and ii) to provide access and integration with an 802.15.4 network of wearable sensors. The modular nature of the Middleware provides the means to easily integrate pre-processing algorithms into processing pipelines, as well as new drivers for adding support for new sensor devices or communication technologies. Tests performed with both real and artificially generated data streams show that the presented solution is suitable for use both in a Windows PC or a Windows Mobile PDA with minimal overhead.
NASA Astrophysics Data System (ADS)
Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi
2013-02-01
The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.
Automated inverse computer modeling of borehole flow data in heterogeneous aquifers
NASA Astrophysics Data System (ADS)
Sawdey, J. R.; Reeve, A. S.
2012-09-01
A computer model has been developed to simulate borehole flow in heterogeneous aquifers where the vertical distribution of permeability may vary significantly. In crystalline fractured aquifers, flow into or out of a borehole occurs at discrete locations of fracture intersection. Under these circumstances, flow simulations are defined by independent variables of transmissivity and far-field heads for each flow contributing fracture intersecting the borehole. The computer program, ADUCK (A Downhole Underwater Computational Kit), was developed to automatically calibrate model simulations to collected flowmeter data providing an inverse solution to fracture transmissivity and far-field head. ADUCK has been tested in variable borehole flow scenarios, and converges to reasonable solutions in each scenario. The computer program has been created using open-source software to make the ADUCK model widely available to anyone who could benefit from its utility.
High-performance computing on GPUs for resistivity logging of oil and gas wells
NASA Astrophysics Data System (ADS)
Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.
2017-10-01
We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.
Quantifying solute spreading and mixing in rocks using 3D X-ray CT and PET imaging
NASA Astrophysics Data System (ADS)
Kurotori, T.; Zahasky, C.; Benson, S. M.; Pini, R.
2016-12-01
Geological structures are heterogeneous with key transport properties varying over a wide range of scales. This limits our current capability to accurately predict fluid transport in the subsurface and therefore represents a major challenge for technologies, such as the sequestration of CO2in deep reservoirs. In this project, a novel experimental approach is proposed that is at the forefront of current practices for reservoir core analysis. Conventional pulse-tracer tests are combined with the simultaneous imaging of flows, thus including X-ray CT and Positron Emission Tomography (PET), so as to obtain real-time dynamic 3D images during tracer transport. The ability to directly visualize tracer flows with such level of observational detail is key to improve our understanding on the effects of heterogeneity in natural complex systems. A set of pulse-tracer tests has been carried out using two distinct porous systems, namely an unconsolidated glass beadpack and a consolidated Ketton carbonate to quantify hydrodynamic dispersion at various Péclet numbers. Tracer spreading and mixing is investigated by analysing breakthrough curves and 2D spatial distribution at various control planes within the rock sample. The experiments with beadpacks confirm observations from earlier studies where homogeneous spatial and temporal spreading of the tracer was reported. Although various studies exist on experiments with beadpacks, only few have gathered a multidimensional data set. In that respect, the results presented here are very important to "calibrate" the system for sub-core scale (mm-scale) observations, in view of the inherent heterogeneity of rock sample at the same scale and noise that comes with images acquired from non-invasive techniques. Interestingly, results with Ketton exhibit a non-Fickian behaviour. We anticipate that the former is not only caused by the presence of sub-core scale heterogeneities, but also due to the mass transfer effects between the bulk fluid and the stagnant fluid in the micropores that represent a significant portion (50%) of the pore space. So-called capacitance (or multi-rate mass transfer, MRMT) models have been used to account for the additional mechanism that contributes to the anomalous transport.
Exact-solution for cone-plate viscometry
NASA Astrophysics Data System (ADS)
Giacomin, A. J.; Gilbert, P. H.
2017-11-01
The viscosity of a Newtonian fluid is often measured by confining the fluid to the gap between a rotating cone that is perpendicular to a fixed disk. We call this experiment cone-plate viscometry. When the cone angle approaches π/2 , the viscometer gap is called narrow. The shear stress in the fluid, throughout a narrow gap, hardly departs from the shear stress exerted on the plate, and we thus call cone-plate flow nearly homogeneous. In this paper, we derive an exact solution for this slight heterogeneity, and from this, we derive the correction factors for the shear rate on the cone and plate, for the torque, and thus, for the measured Newtonian viscosity. These factors thus allow the cone-plate viscometer to be used more accurately, and with cone-angles well below π/2 . We find cone-plate flow field heterogeneity to be far slighter than previously thought. We next use our exact solution for the velocity to arrive at the exact solution for the temperature rise, due to viscous dissipation, in cone-plate flow subject to isothermal boundaries. Since Newtonian viscosity is a strong function of temperature, we expect our new exact solution for the temperature rise be useful to those measuring Newtonian viscosity, and especially so, to those using wide gaps. We include two worked examples to teach practitioners how to use our main results.
White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, David A.; Harden, J.W.
2005-01-01
Although long-term changes in solid-state compositions of soil chronosequences have been extensively investigated, this study presents the first detailed description of the concurrent hydrochemical evolution and contemporary weathering rates in such sequences. The most direct linkage between weathering and hydrology over 3 million years of soil development in the Merced chronosequence in Central California relates decreasing permeability and increasing hydrologic heterogeneity to the development of secondary argillic horizons and silica duripans. In a highly permeable, younger soil (40 kyr old), pore water solutes reflect seasonal to decadal-scale variations in rainfall and evapotranspiration (ET). This climate signal is strongly damped in less permeable older soils (250 to 600 kyr old) where solutes increasingly reflect weathering inputs modified by heterogeneous flow. Elemental balances in the soils are described in terms of solid state, exchange and pore water reservoirs and input/output fluxes from precipitation, ET, biomass, solute discharge and weathering. Solute mineral nutrients are strongly dependent on biomass variations as evidenced by an apparent negative K weathering flux reflecting aggradation by grassland plants. The ratios of solute Na to other base cations progressively increase with soil age. Discharge fluxes of Na and Si, when integrated over geologic time, are comparable to solid-state mass losses in the soils, implying similar past weathering conditions. Similarities in solute and sorbed Ca/Mg ratios reflect short-term equilibrium with the exchange reservoir. Long-term consistency in solute ratios, when contrasted against progressive decreases in solid-state Ca/Mg, requires an additional Ca source, probably from dry deposition. Amorphous silica precipitates from thermodynamically-saturated pore waters during periods of high evapotranspiration and result in the formation of duripans in the oldest soils. The degree of feldspar and secondary gibbsite and kaolinite saturation varies both spatially and temporally due to the seasonality of plant-respired CO2 and a decrease in organically complexed Al. In deeper pore waters, K-feldspar is in equilibrium and plagioclase is about an order of magnitude undersaturated. Hydrologic heterogeneity produces a range of weathering gradients that are constrained by solute distributions and matrix and macropore flow regimes. Plagioclase weathering rates, based on precipitation-corrected Na gradients, vary between 3 and 7 ?? 10-16 mol m-2 s-1. These rates are similar to previously determined solid-state rates but are several orders of magnitude slower than for experimental plagioclase dissolution indicating strong inhibitions to natural weathering, partly due to near-equilibrium weathering reactions. Copyright ?? 2005 Elsevier Ltd.
Mukai, Kazuo; Ouchi, Aya; Azuma, Nagao; Takahashi, Shingo; Aizawa, Koichi; Nagaoka, Shin-Ichi
2017-02-01
Recently, a new assay method for the quantification of the singlet oxygen absorption capacity (SOAC) of antioxidants (AOs) and food extracts in homogeneous organic solvents was proposed. In this study, second-order rate constants (k Q ) for the reaction of singlet oxygen ( 1 O 2 ) with eight different carotenoids (Cars) and α-tocopherol (α-Toc) were measured in an aqueous Triton X-100 (5.0 wt %) micellar solution (pH 7.4, 35 °C), which was used as a simple model of biomembranes. The k Q and relative SOAC values were measured using ultraviolet-visible (UV-vis) spectroscopy. The UV-vis absorption spectra of Cars and α-Toc were measured in both a micellar solution and chloroform, to investigate the effect of solvent on the k Q and SOAC values. Furthermore, decay rates (k d ) of 1 O 2 were measured in 0.0, 1.0, 3.0, and 5.0 wt % micellar solutions (pH 7.4), using time-resolved near-infrared fluorescence spectroscopy, to determine the absolute k Q values of the AOs. The results obtained demonstrate that the k Q values of AOs in homogeneous and heterogeneous solutions vary notably depending on (i) the polarity [dielectric constant (ε)] of the reaction field between AOs and 1 O 2 , (ii) the local concentration of AOs, and (iii) the mobility of AOs in solution. In addition, the k Q and relative SOAC values obtained for the Cars in a heterogeneous micellar solution differ remarkably from those in homogeneous organic solvents. Measurements of k Q and SOAC values in a micellar solution may be useful for evaluating the 1 O 2 quenching activity of AOs in biological systems.
Castet, Jean-Francois; Saleh, Joseph H.
2013-01-01
This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks. PMID:23599835
Castet, Jean-Francois; Saleh, Joseph H
2013-01-01
This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks.
Droplet microfluidics--a tool for single-cell analysis.
Joensson, Haakan N; Andersson Svahn, Helene
2012-12-03
Droplet microfluidics allows the isolation of single cells and reagents in monodisperse picoliter liquid capsules and manipulations at a throughput of thousands of droplets per second. These qualities allow many of the challenges in single-cell analysis to be overcome. Monodispersity enables quantitative control of solute concentrations, while encapsulation in droplets provides an isolated compartment for the single cell and its immediate environment. The high throughput allows the processing and analysis of the tens of thousands to millions of cells that must be analyzed to accurately describe a heterogeneous cell population so as to find rare cell types or access sufficient biological space to find hits in a directed evolution experiment. The low volumes of the droplets make very large screens economically viable. This Review gives an overview of the current state of single-cell analysis involving droplet microfluidics and offers examples where droplet microfluidics can further biological understanding. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Hanxiong; Liu, Liping; Liu, Dong
2017-03-01
The equilibrium shape of a bubble/droplet in an electric field is important for electrowetting over dielectrics (EWOD), electrohydrodynamic (EHD) enhancement for heat transfer and electro-deformation of a single biological cell among others. In this work, we develop a general variational formulation in account of electro-mechanical couplings. In the context of EHD, we identify the free energy functional and the associated energy minimization problem that determines the equilibrium shape of a bubble in an electric field. Based on this variational formulation, we implement a fixed mesh level-set gradient method for computing the equilibrium shapes. This numerical scheme is efficient and validated by comparing with analytical solutions at the absence of electric field and experimental results at the presence of electric field. We also present simulation results for zero gravity which will be useful for space applications. The variational formulation and numerical scheme are anticipated to have broad applications in areas of EWOD, EHD and electro-deformation in biomechanics.
Scaling and entropy in p-median facility location along a line
NASA Astrophysics Data System (ADS)
Gastner, Michael T.
2011-09-01
The p-median problem is a common model for optimal facility location. The task is to place p facilities (e.g., warehouses or schools) in a heterogeneously populated space such that the average distance from a person's home to the nearest facility is minimized. Here we study the special case where the population lives along a line (e.g., a road or a river). If facilities are optimally placed, the length of the line segment served by a facility is inversely proportional to the square root of the population density. This scaling law is derived analytically and confirmed for concrete numerical examples of three US interstate highways and the Mississippi River. If facility locations are permitted to deviate from the optimum, the number of possible solutions increases dramatically. Using Monte Carlo simulations, we compute how scaling is affected by an increase in the average distance to the nearest facility. We find that the scaling exponents change and are most sensitive near the optimum facility distribution.
Protein crystal nucleation in pores.
Nanev, Christo N; Saridakis, Emmanuel; Chayen, Naomi E
2017-01-16
The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials.
On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Lu, Hao; Porté-Agel, Fernando
2015-10-01
With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.
Transport methods and interactions for space radiations
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Schimmerling, Walter S.; Khandelwal, Govind S.; Khan, Ferdous S.; Nealy, John E.; Cucinotta, Francis A.; Simonsen, Lisa C.; Shinn, Judy L.; Norbury, John W.
1991-01-01
A review of the program in space radiation protection at the Langley Research Center is given. The relevant Boltzmann equations are given with a discussion of approximation procedures for space applications. The interaction coefficients are related to solution of the many-body Schroedinger equation with nuclear and electromagnetic forces. Various solution techniques are discussed to obtain relevant interaction cross sections with extensive comparison with experiments. Solution techniques for the Boltzmann equations are discussed in detail. Transport computer code validation is discussed through analytical benchmarking, comparison with other codes, comparison with laboratory experiments and measurements in space. Applications to lunar and Mars missions are discussed.
Li, Weihua; Qiu, Tian; Ling, Yun; Gao, Shugeng; Ying, Jianming
2018-05-01
Next-generation sequencing (NGS) has recently been rapidly adopted in the molecular diagnosis of cancer, but it still faces some obstacles. In this study, 665 lung adenocarcinoma samples (558 TKI-naive and 107 TKI-relapsed samples) were interrogated using NGS, and the challenges and possible solutions of subjecting appropriate tissue samples to NGS testing were explored. The results showed that lower frequencies of HER2/BRAF/PIK3CA and acquired EGFR T790M mutations were observed in biopsy samples with <20% tumor cellularity than in those with ≥20%, but there were no significant differences in the frequencies of EGFR or KRAS mutations. Moreover, tumor heterogeneity was assessed by heterogeneity score (HS), which was calculated through multiplying by 2 the mutant allele frequency (MAF) of tumor cells. In TKI-naive samples, intratumor heterogeneity could occur in EGFR, KRAS, HER2, BRAF, and PIK3CA mutant tumors, but the degree was variable. Higher EGFR, but lower BRAF and PIK3CA HS values were observed compared with KRAS HS. In TKI-relapsed samples, analysis of concomitant sensitizing EGFR and T790M MAFs showed that intratumor heterogeneity was common in acquired EGFR T790M mutant tumors. The mutational status between primary and metastatic tumors was usually concordant, but KRAS, HER2, and PIK3CA HS were significantly higher in metastatic tumors than in primary tumors. Additionally, the discordance rate of mutational status in multifocal lung adenocarcinomas diagnosed as equivocal or multiple primary tumors was high. Together, our findings demonstrate that a comprehensive quality assessment is necessary during tissue process to mitigate the challenges of poor tumor cellularity, tumor heterogeneity, and multifocal clonally independent tumors. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Morikawa, Claudio Kendi; Shinohara, Makoto
2016-01-01
Recently, we developed two new Fenton catalysts using iron (Fe) and spent tea leaves or coffee grounds as raw material. In this study, Fe-to-tea or Fe-to-coffee polyphenol complexes were successfully tested as heterogeneous photo-Fenton catalysts. The photodegradation efficiency of methylene blue solutions with Fe-to-polyphenol complexes was higher than that of homogeneous iron salts in the photo-Fenton process. Furthermore, the tested Fe-to-polyphenol complexes could be reused by simply adding H2O2 to the solutions. After three sequential additions of H2O2, the conventional catalysts FeCl2·4H2O and FeCl3 removed only 16.6% and 53.6% of the dye, while the catalysts made using spent coffee grounds and tea leaves removed 94.4% and 96.0% of the dye, respectively. These results showed that the complexes formed between Fe and chlorogenic acid, caffeic acid, gallic acid and catechin, which are the main polyphenols in tea and coffee, can be used to improve the photo-Fenton process.
NASA Astrophysics Data System (ADS)
Doke, Atul M.; Sadana, Ajit
2006-05-01
A fractal analysis is presented for the binding and dissociation of different heart-related compounds in solution to receptors immobilized on biosensor surfaces. The data analyzed include LCAT (lecithin cholesterol acyl transferase) concentrations in solution to egg-white apoA-I rHDL immobilized on a biosensor chip surface.1 Single- and dual- fractal models were employed to fit the data. Values of the binding and the dissociation rate coefficient(s), affinity values, and the fractal dimensions were obtained from the regression analysis provided by Corel Quattro Pro 8.0 (Corel Corporation Limited).2 The binding rate coefficients are quite sensitive to the degree of heterogeneity on the sensor chip surface. Predictive equations are developed for the binding rate coefficient as a function of the degree of heterogeneity present on the sensor chip surface and on the LCAT concentration in solution, and for the affinity as a function of the ratio of fractal dimensions present in the binding and the dissociation phases. The analysis presented provided physical insights into these analyte-receptor reactions occurring on different biosensor surfaces.
Catalytic degradation of picric acid by heterogeneous Fenton-based processes.
Dulova, Niina; Trapido, Marina; Dulov, Aleksandr
2011-01-01
The efficiency of goethite, magnetite and iron powder (Fe0) in catalysing the Fenton-based oxidation of picric acid (PA) in aqueous solution was studied. The effect of pH, hydrogen peroxide concentration, and catalyst type and dosage on treatment efficacy was investigated. The adsorption of PA from aqueous solution by heterogeneous catalysts was also examined. The results demonstrated negligible PA removal in H2O2/alpha-FeOOH and H2O2/Fe3O4 systems independent of process pH, and hydrogen peroxide and catalyst dosage. The PA adsorption effects of both iron oxides turned out to be insignificant for all studied pH values and catalyst dosages. The H2O2/Fe0 system proved efficient at degrading PA, but only under acidic conditions (pH 3). The results indicated that, due to rather fast leaching of ferrous ions from the iron powder surface, PA degradation was carried out mainly by the classic Fenton oxidation mechanism in the bulk solution. The adsorption of PA onto the iron powder surface may also contribute to the overall efficiency of PA degradation.
Analytical approach for the fractional differential equations by using the extended tanh method
NASA Astrophysics Data System (ADS)
Pandir, Yusuf; Yildirim, Ayse
2018-07-01
In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.
NASA Astrophysics Data System (ADS)
Poat, M. D.; Lauret, J.; Betts, W.
2015-12-01
The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.
Miao, Jie; Sunarso, Jaka; Su, Chao; Zhou, Wei; Wang, Shaobin; Shao, Zongping
2017-01-01
Perovskite-like oxides SrCo1−xTixO3−δ (SCTx, x = 0.1, 0.2, 0.4, 0.6) were used as heterogeneous catalysts to activate peroxymonosulfate (PMS) for phenol degradation under a wide pH range, exhibiting more rapid phenol oxidation than Co3O4 and TiO2. The SCT0.4/PMS system produced a high activity at increased initial pH, achieving optimized performance at pH ≥ 7 in terms of total organic carbon removal, the minimum Co leaching and good catalytic stability. Kinetic studies showed that the phenol oxidation kinetics on SCT0.4/PMS system followed the pseudo-zero order kinetics and the rate on SCT0.4/PMS system decreased with increasing initial phenol concentration, decreased PMS amount, catalyst loading and solution temperature. Quenching tests using ethanol and tert-butyl alcohol demonstrated sulfate and hydroxyl radicals for phenol oxidation. This investigation suggested promising heterogeneous catalysts for organic oxidation with PMS, showing a breakthrough in the barriers of metal leaching, acidic pH, and low efficiency of heterogeneous catalysis. PMID:28281656
Bilbao, Sonia; Martínez, Belén; Frasheri, Mirgita; Cürüklü, Baran
2017-01-01
Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity). This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS) software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer) where other technologies are also interweaved with middleware (wireless communications, acoustic networks). Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performance. PMID:28783049
Rodríguez-Molina, Jesús; Bilbao, Sonia; Martínez, Belén; Frasheri, Mirgita; Cürüklü, Baran
2017-08-05
Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity). This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS) software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer) where other technologies are also interweaved with middleware (wireless communications, acoustic networks). Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performance.
Hayat, T.; Hussain, Zakir; Alsaedi, A.; Farooq, M.
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ—perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lin; Dai, Zhenxue; Gong, Huili
Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This study develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in anmore » accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. Finally, the result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.« less
Hayat, T; Hussain, Zakir; Alsaedi, A; Farooq, M
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears.
The role of artificial intelligence techniques in scheduling systems
NASA Technical Reports Server (NTRS)
Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.
1990-01-01
Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.
Pore Pressure and Stress Distributions Around a Hydraulic Fracture in Heterogeneous Rock
NASA Astrophysics Data System (ADS)
Gao, Qian; Ghassemi, Ahmad
2017-12-01
One of the most significant characteristics of unconventional petroleum bearing formations is their heterogeneity, which affects the stress distribution, hydraulic fracture propagation and also fluid flow. This study focuses on the stress and pore pressure redistributions during hydraulic stimulation in a heterogeneous poroelastic rock. Lognormal random distributions of Young's modulus and permeability are generated to simulate the heterogeneous distributions of material properties. A 3D fully coupled poroelastic model based on the finite element method is presented utilizing a displacement-pressure formulation. In order to verify the model, numerical results are compared with analytical solutions showing excellent agreements. The effects of heterogeneities on stress and pore pressure distributions around a penny-shaped fracture in poroelastic rock are then analyzed. Results indicate that the stress and pore pressure distributions are more complex in a heterogeneous reservoir than in a homogeneous one. The spatial extent of stress reorientation during hydraulic stimulations is a function of time and is continuously changing due to the diffusion of pore pressure in the heterogeneous system. In contrast to the stress distributions in homogeneous media, irregular distributions of stresses and pore pressure are observed. Due to the change of material properties, shear stresses and nonuniform deformations are generated. The induced shear stresses in heterogeneous rock cause the initial horizontal principal stresses to rotate out of horizontal planes.
Bloem, E; Hogervorst, F A N; de Rooij, G H
2009-04-01
Solutes spread out in time and space as they move downwards from the soil surface with infiltrating water. Solute monitoring in the field is often limited to observations of resident concentrations, while flux concentrations govern the movement of solutes in soils. A recently developed multi-compartment sampler is capable of measuring fluxes at a high spatial resolution with minimal disturbance of the local pressure head field. The objective of this paper is to use this sampler to quantify the spatial and temporal variation of solute leaching below the root zone in an agricultural field under natural rainfall in winter and spring. We placed two samplers at 31 and 25 cm depth in an agricultural field, leaving the soil above undisturbed. Each sampler contained 100 separate cells of 31x31 mm. Water fluxes were measured every 5 min for each cell. We monitored leaching of a chloride pulse under natural rainfall by frequently extracting the collected leachate while leaving the samplers buried in situ. This experiment was followed by a dye tracer experiment. This setting yielded information that widely surpassed the information that can be provided by separate anionic and dye tracer trials, and solute transport monitoring by coring or suction cups. The detailed information provided by the samplers showed that percolation at the sampling depth started much faster (approximately 3 h after the start of rainfall) in initially wet soil (pressure head above -65 cm) than in drier soil (more than 14 h at pressure heads below -80 cm). At any time, 25% of the drainage passed through 5-6% of the sampled area, reflecting the effect of heterogeneity on the flow paths. The amount of solute carried by individual cells varied over four orders of magnitude. The lateral concentration differences were limited though. This suggests a convective-dispersive regime despite the short vertical travel distance. On the other hand, the dilution index indicates a slight tendency towards stochastic-convective transport at this depth. There was no evidence in the observed drainage patterns and dye stained profiles of significant disturbance of the flow field by the samplers.
Solution of the determinantal assignment problem using the Grassmann matrices
NASA Astrophysics Data System (ADS)
Karcanias, Nicos; Leventides, John
2016-02-01
The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.
Green's Function and Stress Fields in Stochastic Heterogeneous Continua
NASA Astrophysics Data System (ADS)
Negi, Vineet
Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.
Online Heterogeneous Transfer by Hedge Ensemble of Offline and Online Decisions.
Yan, Yuguang; Wu, Qingyao; Tan, Mingkui; Ng, Michael K; Min, Huaqing; Tsang, Ivor W
2017-10-10
In this paper, we study the online heterogeneous transfer (OHT) learning problem, where the target data of interest arrive in an online manner, while the source data and auxiliary co-occurrence data are from offline sources and can be easily annotated. OHT is very challenging, since the feature spaces of the source and target domains are different. To address this, we propose a novel technique called OHT by hedge ensemble by exploiting both offline knowledge and online knowledge of different domains. To this end, we build an offline decision function based on a heterogeneous similarity that is constructed using labeled source data and unlabeled auxiliary co-occurrence data. After that, an online decision function is learned from the target data. Last, we employ a hedge weighting strategy to combine the offline and online decision functions to exploit knowledge from the source and target domains of different feature spaces. We also provide a theoretical analysis regarding the mistake bounds of the proposed approach. Comprehensive experiments on three real-world data sets demonstrate the effectiveness of the proposed technique.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
NASA Astrophysics Data System (ADS)
Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.
Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V
2018-03-15
Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matouš, Karel, E-mail: kmatous@nd.edu; Geers, Marc G.D.; Kouznetsova, Varvara G.
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platformmore » in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.« less
NASA Astrophysics Data System (ADS)
Li, Weiyao; Huang, Guanhua; Xiong, Yunwu
2016-04-01
The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ning
Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less
Building a gateway with open source software for secure-DICOM communication over insecure networks
NASA Astrophysics Data System (ADS)
Emmel, Dirk; Ricke, Jens; Stohlmann, Lutz; Haderer, Alexander; Felix, Roland
2002-05-01
For Teleradiology the exchange of DICOM-images is needed for several purposes. Existing solutions often don't consider about the needs for data security and data privacy. Communication is done without any encryption over insecure networks or with encryption using proprietary solutions, which reduces the data communication possibilities to partners with the same equipment. Our goal was to build a gateway, which offers a transparent solution for secure DICOM-communication in a heterogeneous environment We developed a PC-based gateway system with DICOM-communication to the in-house network and secure DICOM communication for the communication over the insecure network. One gateway installed at each location is responsible for encryption/decryption. The sender just transfers the image data over the DICOM protocol to the local gateway. The gateway forwards the data to the gateway on the destination site using the secure DICOM protocol, which is part of the DICOM standard. The receiving gateway forwards the image data to the final destination again using the DICOM-Protocol. The gateway is based on Open Source software and runs under several operating systems. Our experience shows a reliable solution, which solves security issues for DICOM communication of image data and integrates seamless into a heterogeneous DICOM environment.
FV-MHMM: A Discussion on Weighting Schemes.
NASA Astrophysics Data System (ADS)
Franc, J.; Gerald, D.; Jeannin, L.; Egermann, P.; Masson, R.
2016-12-01
Upscaling or homogenization techniques consist in finding block-equivalentor equivalent upscaled properties on a coarse grid from heterogeneousproperties defined on an underlying fine grid. However, this couldbecome costly and resource consuming. Harder et al., 2013, have developeda Multiscale Hybrid-Mixed Method (MHMM) of upscaling to treat Darcytype equations on heterogeneous fields formulated using a finite elementmethod. Recently, Franc et al. 2016, has extended this method of upscalingto finite volume formulation (FV-MHMM). Although convergence refiningLagrange multipliers space has been observed, numerical artefactscan occur while trapping numerically the flow in regions of low permeability. This work will present the development of the method along with theresults obtained from its classical formulation. Then, two weightingschemes and their benefits on the FV-MHMM method will be presented insome simple random permeability cases. Next example will involve alarger heterogeneous 2D permeability field extracted from the 10thSPE test case. Eventually, multiphase flow will be addressed asan extension of this single phase flow method. An elliptic pressureequation solved on the coarse grid via FV-MHMM will be sequentiallycoupled with a hyperbolic saturation equation on the fine grid. Theimproved accuracy thanks to the weighting scheme will be measuredcompared to a finite volume fine grid solution. References: Harder, C., Paredes, D. and Valentin, F., A family of multiscalehybrid-mixed finite element methods for the Darcy equation with roughcoefficients, Journal of Computational Physics, 2013. Franc J., Debenest G., Jeannin L., Egermann P. and Masson R., FV-MHMMfor reservoir modelling ECMOR XV-15th European Conference on the Mathematicsof Oil Recovery, 2015.
NASA Astrophysics Data System (ADS)
Cloninger, Alexander; Czaja, Wojciech; Doster, Timothy
2017-07-01
As the popularity of non-linear manifold learning techniques such as kernel PCA and Laplacian Eigenmaps grows, vast improvements have been seen in many areas of data processing, including heterogeneous data fusion and integration. One problem with the non-linear techniques, however, is the lack of an easily calculable pre-image. Existence of such pre-image would allow visualization of the fused data not only in the embedded space, but also in the original data space. The ability to make such comparisons can be crucial for data analysts and other subject matter experts who are the end users of novel mathematical algorithms. In this paper, we propose a pre-image algorithm for Laplacian Eigenmaps. Our method offers major improvements over existing techniques, which allow us to address the problem of noisy inputs and the issue of how to calculate the pre-image of a point outside the convex hull of training samples; both of which have been overlooked in previous studies in this field. We conclude by showing that our pre-image algorithm, combined with feature space rotations, allows us to recover occluded pixels of an imaging modality based off knowledge of that image measured by heterogeneous modalities. We demonstrate this data recovery on heterogeneous hyperspectral (HS) cameras, as well as by recovering LIDAR measurements from HS data.
Generic evolution of mixing in heterogeneous media
NASA Astrophysics Data System (ADS)
De Dreuzy, J.; Carrera, J.; Dentz, M.; Le Borgne, T.
2011-12-01
Mixing in heterogeneous media results from the competition bewteen flow fluctuations and local scale diffusion. Flow fluctuations quickly create concentration contrasts and thus heterogeneity of the concentration field, which is slowly homogenized by local scale diffusion. Mixing first deviates from Gaussian mixing, which represents the potential mixing induced by spreading before approaching it. This deviation fundamentally expresses the evolution of the interaction between spreading and local scale diffusion. We characterize it by the ratio γ of the non-Gaussian to the Gaussian mixing states. We define the Gaussian mixing state as the integrated squared concentration of the Gaussian plume that has the same longitudinal dispersion as the real plume. The non-Gaussian mixing state is the difference between the overall mixing state defined as the integrated squared concentration and the Gaussian mixing state. The main advantage of this definition is to use the full knowledge previously acquired on dispersion for characterizing mixing even when the solute concentration field is highly non Gaussian. Using high precision numerical simulations, we show that γ quickly increases, peaks and slowly decreases. γ can be derived from two scales characterizing spreading and local mixing, at least for large flux-weighted solute injection conditions into classically log-normal Gaussian correlated permeability fields. The spreading scale is directly related to the longitudinal dispersion. The local mixing scale is the largest scale over which solute concentrations can be considered locally uniform. More generally, beyond the characteristics of its maximum, γ turns out to have a highly generic scaling form. Its fast increase and slow decrease depend neither on the heterogeneity level, nor on the ratio of diffusion to advection, nor on the injection conditions. They might even not depend on the particularities of the flow fields as the same generic features also prevail for Taylor dispersion. This generic characterization of mixing can offer new ways to set up transport equations that honor not only advection and spreading (dispersion), but also mixing.
NASA Astrophysics Data System (ADS)
Glišović, Petar; Forte, Alessandro
2016-04-01
The paleo-distribution of density variations throughout the mantle is unknown. To address this question, we reconstruct 3-D mantle structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating mantle that employ 3-D mantle structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed mantle heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day mantle heterogeneity in the upper mantle. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the mantle could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.
Ferromagnetic transition in a simple variant of the Ising model on multiplex networks
NASA Astrophysics Data System (ADS)
Krawiecki, A.
2018-02-01
Multiplex networks consist of a fixed set of nodes connected by several sets of edges which are generated separately and correspond to different networks ("layers"). Here, a simple variant of the Ising model on multiplex networks with two layers is considered, with spins located in the nodes and edges corresponding to ferromagnetic interactions between them. Critical temperatures for the ferromagnetic transition are evaluated for the layers in the form of random Erdös-Rényi graphs or heterogeneous scale-free networks using the mean-field approximation and the replica method, from the replica symmetric solution. Both methods require the use of different "partial" magnetizations, associated with different layers of the multiplex network, and yield qualitatively similar results. If the layers are strongly heterogeneous the critical temperature differs noticeably from that for the Ising model on a network being a superposition of the two layers, evaluated in the mean-field approximation neglecting the effect of the underlying multiplex structure on the correlations between the degrees of nodes. The critical temperature evaluated from the replica symmetric solution depends sensitively on the correlations between the degrees of nodes in different layers and shows satisfactory quantitative agreement with that obtained from Monte Carlo simulations. The critical behavior of the magnetization for the model with strongly heterogeneous layers can depend on the distributions of the degrees of nodes and is then determined by the properties of the most heterogeneous layer.
NASA Astrophysics Data System (ADS)
MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Bagtzoglou, A. C.
2017-12-01
Although hyporheic zones are often modeled at the reach scale as homogeneous "boxes" of exchange, heterogeneity caused by variations of pore sizes and connectivity is not uncommon. This heterogeneity leads to the creation of more- and less-mobile zones of hydraulic exchange that influence reactive solute transport processes. Whereas fluid sampling is generally sensitive to more-mobile zones, geoelectrical measurement is sensitive to ionic tracer dynamics in both less- and more-mobile zones. Heterogeneity in pore connectivity leads to a lag between fluid and bulk electrical conductivity (EC) resulting in a hysteresis loop, observed during tracer breakthrough tests, that contains information about the less-mobile porosity attributes of the medium. Here, we present a macro-scale model of solute transport and electrical conduction developed using COMSOL Multiphysics. The model is used to simulate geoelectrical monitoring of ionic transport for bed sediments based on (1) a stochastic sand-and-cobble mixture and (2) a dune feature with strong permeability layering. In both of these disparate sediment types, hysteresis between fluid and bulk EC is observed, and depends in part on fluid flux rate through the model domain. Using the hysteresis loop, the ratio of less-mobile to mobile porosity and mass-transfer coefficient are estimated graphically. The results indicate the presence and significance of less-mobile porosity in the hyporheic zones and demonstrate the capability of the proposed model to detect heterogeneity in flow processes and estimate less-mobile zone parameters.
Responsive Urban Models by Processing Sets of Heterogeneous Data
NASA Astrophysics Data System (ADS)
Calvano, M.; Casale, A.; Ippoliti, E.; Guadagnoli, F.
2018-05-01
This paper presents some steps in experimentation aimed at describing urban spaces made following the series of earthquakes that affected a vast area of central Italy starting on 24 August 2016. More specifically, these spaces pertain to historical centres of limited size and case studies that can be called "problematic" (due to complex morphological and settlement conditions, because they are difficult to access, or because they have been affected by calamitous events, etc.). The main objectives were to verify the use of sets of heterogeneous data that are already largely available to define a workflow and develop procedures that would allow some of the steps to be automated as much as possible. The most general goal was to use the experimentation to define a methodology to approach the problem aimed at developing descriptive responsive models of the urban space, that is, morphological and computer-based models capable of being modified in relation to the constantly updated flow of input data.
On the multiple depots vehicle routing problem with heterogeneous fleet capacity and velocity
NASA Astrophysics Data System (ADS)
Hanum, F.; Hartono, A. P.; Bakhtiar, T.
2018-03-01
This current manuscript concerns with the optimization problem arising in a route determination of products distribution. The problem is formulated in the form of multiple depots and time windowed vehicle routing problem with heterogeneous capacity and velocity of fleet. Model includes a number of constraints such as route continuity, multiple depots availability and serving time in addition to generic constraints. In dealing with the unique feature of heterogeneous velocity, we generate a number of velocity profiles along the road segments, which then converted into traveling-time tables. An illustrative example of rice distribution among villages by bureau of logistics is provided. Exact approach is utilized to determine the optimal solution in term of vehicle routes and starting time of service.
NASA Astrophysics Data System (ADS)
Sudicky, E. A.; Unger, A. J. A.; Lacombe, S.
1995-02-01
A noniterative algorithm for handling prescribed well bore boundary conditions while pumping or injecting fluid in a three-dimensional heterogeneous aquifer is described. The algorithm is formulated by superimposing conductive one-dimensional line elements representing the well screen onto the three-dimensional matrix elements epresenting the aquifer. Storage in the well casing is also naturally accommodated by the superposition of the line elements. The numerical algorithm is verified by comparison with results obtained from the solution of Papadopulos and Cooper (1967). A large-scale example problem involving groundwater extraction from a partially penetrating pumping well located in a highly heterogeneous confined aquifer is presented to demonstrate the utility of the approach.
NASA Astrophysics Data System (ADS)
Tawfik, Ashraf M.; Fichtner, Horst; Elhanbaly, A.; Schlickeiser, Reinhard
2018-06-01
Anomalous diffusion models of energetic particles in space plasmas are developed by introducing the fractional Parker diffusion-convection equation. Analytical solution of the space-time fractional equation is obtained by use of the Caputo and Riesz-Feller fractional derivatives with the Laplace-Fourier transforms. The solution is given in terms of the Fox H-function. Profiles of particle densities are illustrated for different values of the space fractional order and the so-called skewness parameter.
Similarity solutions of some two-space-dimensional nonlinear wave evolution equations
NASA Technical Reports Server (NTRS)
Redekopp, L. G.
1980-01-01
Similarity reductions of the two-space-dimensional versions of the Korteweg-de Vries, modified Korteweg-de Vries, Benjamin-Davis-Ono, and nonlinear Schroedinger equations are presented, and some solutions of the reduced equations are discussed. Exact dispersive solutions of the two-dimensional Korteweg-de Vries equation are obtained, and the similarity solution of this equation is shown to be reducible to the second Painleve transcendent.
Solution Growth and Characterization of Single Crystals on Earth and in Microgravity
NASA Technical Reports Server (NTRS)
Aggarwal, M. D.; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.
2007-01-01
Crystal growth has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high-technology devices, and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this Technical Memorandum (TM) an attempt is made to give the fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, the authors proposed a new cooled-sting technique to grow crystals in space. The authors experience from conducting two Space Shuttle solution crystal growth experiments are also detailed in this TM and the complexity of solution growth experiments to grow crystals in space are also discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that shares basic principles of the solution growth technique is given, along with some flight hardware information for growth in microgravity.
Growth and Characteristics of Bulk Single Crystals Grown from Solution on Earth and in Microgravity
NASA Technical Reports Server (NTRS)
Aggarwal, M. D.; Batra, A. K.; Lal, R. B.; Penn, Benjamin G.; Frazier, Donald O.
2011-01-01
The growth of crystals has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high technology devices and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this chapter an attempt is made to give some fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, authors had proposed a new cooled sting technique to grow crystals in space. Authors? experiences of conducting two space shuttle experiments relating to solution crystal growth are also detailed in this work. The complexity of these solution growth experiments to grow crystals in space are discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that also shares basic principles of solution growth technique is given along with some flight hardware information for its growth in microgravity.
Psychological and interpersonal issues in space.
Kanas, N
1987-06-01
As future manned space missions become longer, and as crews become more heterogeneous, psychological and interpersonal factors will take on increasing importance in assuring mission success. On the basis of a review of more than 60 American and Soviet space simulation studies on Earth, along with reports from U.S. and Soviet space missions, the author identifies nine psychological and seven interpersonal issues, which are discussed along with pertinent research findings and examples from manned spaceflights. He concludes that more psychological and interpersonal research should be done under actual spaceflight conditions and offers suggestions.
Radiation Hardened DDR2 SDRAM Solution
NASA Astrophysics Data System (ADS)
Wang, Pierre-Xiao; Sellier, Charles
2016-08-01
The Radiation Hardened (RH) DDR2 SDRAM Solution is a User's Friendly, Plug-and-Play and Radiation Hardened DDR2 solution, which includes the radiation tolerant stacking DDR2 modules and a radiation intelligent memory controller (RIMC) IP core. It provides a high speed radiation hardened by design DRAM solution suitable for all space applications such as commercial or scientific geo-stationary missions, earth observation, navigation, manned space vehicles and deep space scientific exploration. The DDR2 module has been guaranteed with SEL immune and TID > 100Krad(Si), on the other hand the RIMC IP core provides a full protection against the DDR2 radiation effects such as SEFI and SEU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapol, B.D., E-mail: ganapol@cowboy.ame.arizona.edu; Mostacci, D.; Previti, A.
2016-07-01
We present highly accurate solutions to the neutral particle transport equation in a half-space. While our initial motivation was in response to a recently published solution based on Chandrasekhar's H-function, the presentation to follow has taken on a more comprehensive tone. The solution by H-functions certainly did achieved high accuracy but was limited to isotropic scattering and emission from spatially uniform and linear sources. Moreover, the overly complicated nature of the H-function approach strongly suggests that its extension to anisotropic scattering and general sources is not at all practical. For this reason, an all encompassing theory for the determination ofmore » highly precise benchmarks, including anisotropic scattering for a variety of spatial source distributions, is presented for particle transport in a half-space. We illustrate the approach via a collection of cases including tables of 7-place flux benchmarks to guide transport methods developers. The solution presented can be applied to a considerable number of one and two half-space transport problems with variable sources and represents a state-of-the-art benchmark solution.« less
NASA Technical Reports Server (NTRS)
Bogdan, V. M.; Bond, V. B.
1980-01-01
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.
BigQ: a NoSQL based framework to handle genomic variants in i2b2.
Gabetta, Matteo; Limongelli, Ivan; Rizzo, Ettore; Riva, Alberto; Segagni, Daniele; Bellazzi, Riccardo
2015-12-29
Precision medicine requires the tight integration of clinical and molecular data. To this end, it is mandatory to define proper technological solutions able to manage the overwhelming amount of high throughput genomic data needed to test associations between genomic signatures and human phenotypes. The i2b2 Center (Informatics for Integrating Biology and the Bedside) has developed a widely internationally adopted framework to use existing clinical data for discovery research that can help the definition of precision medicine interventions when coupled with genetic data. i2b2 can be significantly advanced by designing efficient management solutions of Next Generation Sequencing data. We developed BigQ, an extension of the i2b2 framework, which integrates patient clinical phenotypes with genomic variant profiles generated by Next Generation Sequencing. A visual programming i2b2 plugin allows retrieving variants belonging to the patients in a cohort by applying filters on genomic variant annotations. We report an evaluation of the query performance of our system on more than 11 million variants, showing that the implemented solution scales linearly in terms of query time and disk space with the number of variants. In this paper we describe a new i2b2 web service composed of an efficient and scalable document-based database that manages annotations of genomic variants and of a visual programming plug-in designed to dynamically perform queries on clinical and genetic data. The system therefore allows managing the fast growing volume of genomic variants and can be used to integrate heterogeneous genomic annotations.
Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences
NASA Astrophysics Data System (ADS)
Moffett, Kevan B.; Gorelick, Steven M.
2016-03-01
Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.
NASA Astrophysics Data System (ADS)
Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.
2009-04-01
This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of velocities in the reservoir, thus significantly delaying the asymptotic approach to Gaussian behaviour. As a consequence, the asymptotic behaviour might not be reached at the field scale. This is illustrated by the multi-scale approach in which transport at core, gridblock and field scale is viewed as a series of particle transitions between discrete nodes governed by probability distributions. At each scale of interest a distribution that represents transport physics (and the heterogeneity) is used as an input to model a subsequent reservoir scale. The extensions to reactive transport are discussed.
Quantifying site-specific physical heterogeneity within an estuarine seascape
Kennedy, Cristina G.; Mather, Martha E.; Smith, Joseph M.
2017-01-01
Quantifying physical heterogeneity is essential for meaningful ecological research and effective resource management. Spatial patterns of multiple, co-occurring physical features are rarely quantified across a seascape because of methodological challenges. Here, we identified approaches that measured total site-specific heterogeneity, an often overlooked aspect of estuarine ecosystems. Specifically, we examined 23 metrics that quantified four types of common physical features: (1) river and creek confluences, (2) bathymetric variation including underwater drop-offs, (3) land features such as islands/sandbars, and (4) major underwater channel networks. Our research at 40 sites throughout Plum Island Estuary (PIE) provided solutions to two problems. The first problem was that individual metrics that measured heterogeneity of a single physical feature showed different regional patterns. We solved this first problem by combining multiple metrics for a single feature using a within-physical feature cluster analysis. With this approach, we identified sites with four different types of confluences and three different types of underwater drop-offs. The second problem was that when multiple physical features co-occurred, new patterns of total site-specific heterogeneity were created across the seascape. This pattern of total heterogeneity has potential ecological relevance to structure-oriented predators. To address this second problem, we identified sites with similar types of total physical heterogeneity using an across-physical feature cluster analysis. Then, we calculated an additive heterogeneity index, which integrated all physical features at a site. Finally, we tested if site-specific additive heterogeneity index values differed for across-physical feature clusters. In PIE, the sites with the highest additive heterogeneity index values were clustered together and corresponded to sites where a fish predator, adult striped bass (Morone saxatilis), aggregated in a related acoustic tracking study. In summary, we have shown general approaches to quantifying site-specific heterogeneity.
Knowledge based systems for intelligent robotics
NASA Technical Reports Server (NTRS)
Rajaram, N. S.
1982-01-01
It is pointed out that the construction of large space platforms, such as space stations, has to be carried out in the outer space environment. As it is extremely expensive to support human workers in space for large periods, the only feasible solution appears to be related to the development and deployment of highly capable robots for most of the tasks. Robots for space applications will have to possess characteristics which are very different from those needed by robots in industry. The present investigation is concerned with the needs of space robotics and the technologies which can be of assistance to meet these needs, giving particular attention to knowledge bases. 'Intelligent' robots are required for the solution of arising problems. The collection of facts and rules needed for accomplishing such solutions form the 'knowledge base' of the system.
Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity
NASA Astrophysics Data System (ADS)
Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.
2016-04-01
Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.
Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity.
Amaral, Marco A; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K L
2016-04-01
Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.
What Can Interfacial Water Molecules Tell Us About Solute Structure?
NASA Astrophysics Data System (ADS)
Willard, Adam
The molecular structure of bulk liquid water reflects a molecular tendency to engage in tetrahedrally coordinated hydrogen bonding. At a solute interface waters preferred three-dimensional hydrogen bonding network must conform to a locally anisotropy interfacial environment. Interfacial water molecules adopt configurations that balance water-solute and water-water interactions. The arrangements of interfacial water molecules, therefore encode information about the effective solute-water interactions. This solute-specific information is difficult to extract, however, because interfacial structure also reflects waters collective response to an anisotropic hydrogen bonding environment. Here I present a methodology for characterizing the molecular-level structure of liquid water interface from simulation data. This method can be used to explore waters static and/or dynamic response to a wide range of chemically and topologically heterogeneous solutes such as proteins.
Applying design principles to fusion reactor configurations for propulsion in space
NASA Technical Reports Server (NTRS)
Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.
1993-01-01
The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).
Discrete Space-Time: History and Recent Developments
NASA Astrophysics Data System (ADS)
Crouse, David
2017-01-01
Discussed in this work is the long history and debate of whether space and time are discrete or continuous. Starting from Zeno of Elea and progressing to Heisenberg and others, the issues with discrete space are discussed, including: Lorentz contraction (time dilation) of the ostensibly smallest spatial (temporal) interval, maintaining isotropy, violations of causality, and conservation of energy and momentum. It is shown that there are solutions to all these issues, such that discrete space is a viable model, yet the solution require strict non-absolute space (i.e., Mach's principle) and a re-analysis of the concept of measurement and the foundations of special relativity. In developing these solutions, the long forgotten but important debate between Albert Einstein and Henri Bergson concerning time will be discussed. Also discussed is the resolution to the Weyl tile argument against discrete space; however, the solution involves a modified version of the typical distance formula. One example effect of discrete space is then discussed, namely how it necessarily imposes order upon Wheeler's quantum foam, changing the foam into a gravity crystal and yielding crystalline properties of bandgaps, Brilluoin zones and negative inertial mass for astronomical bodies.
Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.
2015-01-01
Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406